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Remarks on symplectic circle actions, torsion and loops

MARCELO S ATALLAH

We study loops of symplectic diffeomorphisms of closed symplectic manifolds. Our main result, which is
valid for a large class of symplectic manifolds, shows that the flux of a symplectic loop vanishes whenever
its orbits are contractible. As a consequence, we obtain a new vanishing result for the flux group and new
instances where the presence of a fixed point of a symplectic circle action is a sufficient condition for it to
be Hamiltonian. We also obtain applications to symplectic torsion; more precisely, nontrivial elements of
Symp0.M; !/ that have finite order.

53D22, 53D40, 57R17; 57S15, 57S17

1 Introduction

1.1 The flux group and the e–homomorphism

Let .M; !/ be a closed symplectic manifold and denote by ASymp0.M; !/ the universal cover of the
identity component Symp0.M; !/ of the group of symplectic diffeomorphisms. The flux homomorphism

eFlux WASymp0.M; !/! H1.M IR/

is defined by assigning to each class z 2ASymp0.M; !/ a cohomology class

eFlux.z /D
Z 1

0

Œ�X t!� dt;

where X t is the time-dependent vector field induced by a symplectic path f tg representing z . In
particular, if 
 is a 1–cycle in M, we have that

(1) heFlux.f tg/; Œ
 �i D

Z
Œ0;1��R=Z

˛�!;

where ˛ W Œ0; 1� � R=Z ! M is given by setting ˛.t; s/ D  t .
 .s//. We shall often denote the flux
of z by eFlux.f tg/. The flux group � is the image of the restriction of the flux homomorphism to
�1.Symp0.M; !//�ASymp0.M; !/. The eFlux map descends to a homomorphism

Flux W Symp0.M; !/! H1.M IR/=�;

whose kernel was shown by Banyaga [2] to be equal to Ham.M; !/. In particular, we have the exact
sequence

1! Ham.M; !/! Symp0.M; !/! H1.M IR/=�! 1;
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2368 Marcelo S Atallah

which implies that Ham.M; !/ coincides with Symp0.M; !/ if and only if H1.M IR/ vanishes. For a
basepoint x0 2M, denote by

ev W �1.Symp0.M; !/; id/! �1.M;x0/

the evaluation homomorphism given by setting ev.Œf tg�/D Œf t .x0/g�. The image of ev lies in the center
of �1.M /; see Polterovich [25]. Therefore, since M is connected, the evaluation maps for different
choices of basepoints x0 2M are identified. Hence, we write ev without making specific reference to x0.
Observe that the evaluation map factors through the flux group � yielding the following commutative
diagram:1

(2)

�1.Symp0.M; !//

fFlux
��

ev

((

�
e

// �1.M /

To see that the e–homomorphism is well-defined note that if

eFlux.f�tg/D eFlux.f tg/;

then the loop f�t ı 
�1
t g of symplectic diffeomorphisms can be homotoped to a Hamiltonian loop, which

is known to have contractible orbits; see McDuff [16]. An important consequence of diagram (2) is that
whenever e is injective, a symplectic loop with contractible orbits can be homotoped to a Hamiltonian
loop. It is not hard to see that this is the case for .M; !/ symplectically aspherical: Œ!� vanishes on the
image HS

2 .M IZ/ of the Hurewicz map �2.M /! H2.M IZ/. Indeed, if a symplectic loop f tg has
trivial evaluation and 
 is any 1–cycle in M, then the torus ˛.T2/, where ˛.t; s/D  t .
 .s//, will have
the symplectic area of a sphere. Equation (1) then implies that the flux of the loop f tg vanishes.

The injectivity of the e–homomorphism has important consequences in the theory of symplectic circle
actions discussed in Section 1.2. Furthermore, it allows one to deduce the vanishing of the Flux group in
cases where the evaluation map is trivial. In particular, we have the following:

Proposition 1.1 Let .M; !/ be a closed symplectic manifold with injective e–homomorphism , and
suppose further that either �.M /¤ 0 or that �1.M / has finite center. Then the flux group � is trivial.

Proof When �.M /¤ 0 we have that ev is trivial, a fact that is true even in the more general setting
of loops of diffeomorphisms on a closed manifold; see Lê and Ono [12]. Therefore, � is trivial by the
injectivity of e. Now, suppose that �1.M / has finite center and let f tg be a symplectic loop. Then,
there exists some positive integer k such that ev.f tg/

k D 1. Thus, we have

e.eFlux.f k
t g//D ev.f k

t g/D ev.f tg/
k
D 1:

We conclude, by the injectivity of e and the fact that eFlux is a homomorphism to a torsion-free group,
that the loop f tg has no flux.

1The fact that ev factors through the flux group was pointed out to me by Egor Shelukhin.
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Remark In the case where .M; !/ is symplectically aspherical and the Euler characteristic is nonzero,
Proposition 1.1 can be obtained from [12, Proposition 1.7, Corollary 4.2]. Furthermore, the fact that the
flux group vanishes was established in Lalonde, McDuff and Polterovich [11] and Polterovich [24]. We
also note that in Kędra, Kotschick and Morita [9], the implication of Proposition 1.1 is proven under the
weak Lefschetz assumption.

Our main result provides more sufficient conditions for the injectivity of the e–homomorphism.

Definition 1.2 Let .M; !/ be a closed symplectic manifold of dimension 2n. We say that it satisfies
condition .F/ if at least one of the following is true:

� Symplectically aspherical The cohomology class Œ!� vanishes on the image HS
2 .M IZ/ of the

Hurewicz map �2.M /! H2.M IZ/.

� Spherically monotone There exists a constant � 2R n f0g such that

Œ!�j�2.M / D � � c1.M /j�2.M /;

where c1.M / denotes the first Chern class associated with .M; !/. We say positive (resp. negative)
spherically monotone when � > 0 (resp. � < 0).

� Weak Lefschetz property The multiplication map

Œ!�n�1
W H1.M IR/! H2n�1.M IR/

is injective (hence an isomorphism).

Remark (examples satisfying .F/) The standard symplectic torus .T 2n; dp ^ dq/ and any closed
oriented surface †g of genus g � 1 with the standard area form are symplectically aspherical. Symplectic
products of the form .M �N; !M ˚!N /, where .M; !M / is positive (resp. negative) homologically
monotone and .N; !N / is aspherical, are positive (resp. negative) spherically monotone but not homolog-
ically monotone. In particular, CPn �T2m with symplectic form !FS˚ dp^ dq is positive spherically
monotone. Hypersurfaces of CPn defined by setting zm

0
C � � �C zm

n D 0, with m> nC 1, are negative
homologically monotone; see McDuff and Salamon [18]. Finally, all closed Kähler manifolds satisfy the
weak Lefschetz property.

Theorem 1.3 Let .M; !/ be a closed symplectic manifold satisfying .F/. Then the e–homomorphism is
injective.

When the weak Lefschetz property is satisfied the injectivity of the e–homomorphism follows from
classical arguments that were known at least as early as the work of Ono in [20]; see also McDuff and
Salamon [19] and Lalonde, McDuff and Polterovich [11]. Indeed, if f tg is a symplectic loop inducing a
symplectic vector field Xt , then the homology classes of its orbits are Poincaré dual to the class

1

Vol.M /

�
eFlux.f tg/^

!n�1

.n� 1/!

�
2 H2n�1.M IR/:
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Therefore, by the injectivity of Œ!�n�1, we have that eFlux.f tg/D 0 whenever ev.f tg/D 1, since every
orbit of f tg is homologically trivial.

1.1.1 Outline of the proof of Theorem 1.3 When .M; !/ is spherically monotone we provide two
proofs of the injectivity of the e–homomorphism, which are detailed in Section 3. The first proof
relies on looking at this problem from the perspective of Floer–Novikov theory developed by Lê and
Ono [30]; see also Ono [22; 23]. Floer–Novikov cohomology is a natural generalization of Hamiltonian
Floer cohomology in the sense that to a symplectic path f tg based at identity with nondegenerate
endpoint  D  1, we can associate a Floer-type cohomology group HFN�.f tgIJ / that, up to a natural
isomorphism, depends only on the flux of f tg. The proof has two key steps. First, using ideas in [23]
we obtain an isomorphism

HFN.f tgIJ /Š H�.M IQ/˝ƒ!

for a symplectic path f tg with eFlux.f tg/D Œ� � 2 ker e. Next, we show that when .M; !/ is spherically
monotone, the Floer–Novikov cohomology of a symplectic path f tg is isomorphic to the Morse–Novikov
cohomology HN�.M; �/ of its flux. A simple rank comparison then shows that this is only possible when
eFlux.f tg/D 0, which concludes the argument.

The second proof follows from a result of McDuff [14, Theorem 1], from which the triviality of �
in the homologically monotone setting follows. Let f tg be a symplectic loop. For a loop 
 , set
˛.t; s/D t .
 .s// as before. McDuff’s result implies that the 2–cycle A
 represented by the torus im.˛/
satisfies

(3) hc1.M /;A
 i D 0:

If f tg has trivial evaluation, then im.˛/ can be represented by a sphere. Thus, we obtain

heFlux.f tg/; Œ
 �i D hŒ!�;A
 i D � � hc1.M /;A
 i D 0;

where � ¤ 0 is the monotonicity constant. Since 
 is arbitrary, we conclude that eFlux.f tg/ D 0.
While this proof is easier, it heavily relies on McDuff’s result, which was proven using highly nontrivial
topological arguments. The first proof, on the other hand, is symplectic in nature.

1.2 Symplectic circle actions

Let S1 D R=Z be the standard circle group. Let .M; !/ be a symplectic manifold equipped with a
smooth S1–action generated by a vector field X . The contraction of the symplectic form with the vector
field X defines a 1–form �X! on M. The circle action is called symplectic whenever �X! is closed,
and Hamiltonian if it is also exact. Knowing that the action is Hamiltonian has several advantages.
For example, one can use a primitive H of �X!, referred to as a moment map, to obtain a symplectic
quotient of M at a regular value of H. This procedure is used, in particular, to reduce the dimension
of the phase-space associated to problems arising in classical mechanics that have a circular symmetry.
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If H1.M IR/D 0, it is clear that every symplectic circle action is Hamiltonian. Otherwise, it becomes
substantially more difficult to determine whether �X! is an exact 1–form. Finding sufficient and necessary
conditions assuring that a symplectic circle action is Hamiltonian has been a subject of interest at least as
early as the work of T Frankel in the late 1950s showing the following:

Theorem 1.4 (Frankel [6]) A symplectic circle action on a closed Kähler manifold is Hamiltonian if
and only if it has fixed points.

This result was later generalized by Ono [20] to closed Lefschetz manifolds. The condition of having fixed
points was shown to be sufficient to guarantee the exactness of the circle action in a few other instances.
McDuff [15] proved it when M has dimension four, while Ono [21] and Ginzburg [7] showed it in the
symplectically aspherical case. Tolman and Weitsman [29] proved that it remains true for semifree circle
actions with isolated fixed points. Finally, Lupton and Oprea [13] and McDuff [14] showed that every
symplectic circle action is Hamiltonian when .M; !/ is homologically monotone, ie the cohomology
class Œ!� is a nonzero multiple of the first Chern class c1.M /— a fact which is not true in the more
general spherically monotone setting. Indeed, one can consider the symplectic circle action on T2 �S2

(with the product symplectic form of the standard symplectic structures) given by rotation in the first
factor and identity on the second.

On the other hand, McDuff constructed in [15] a non-Hamiltonian circle action with fixed tori on a
closed 6–dimensional Calabi–Yau symplectic manifold (see Cho and Kim [3]), showing that the condition
M S1

¤∅ alone is not sufficient to guarantee the exactness of �X! for general closed symplectic manifolds.
McDuff and Salamon then asked if every symplectic circle action with isolated fixed points on a closed
symplectic manifold is Hamiltonian. This question was answered in the negative by Tolman in [28]; see
also Jang and Tolman [8]. It remains unclear when such examples can exist, or from another viewpoint,
how large the class is of closed symplectic manifolds for which the presence of fixed points is equivalent
to the exactness of the circle action. Nonetheless, the e–homomorphism gives a partial characterization
of this class. In particular, we have the following:

Proposition 1.5 Let .M; !/ be a closed symplectic manifold such that the e–homomorphism is injective.
Then a symplectic circle action is Hamiltonian if and only if it has fixed points.

Proof If a symplectic circle action has a fixed point, then the symplectic loop f tg induced by it has
trivial evaluation. The injectivity of the e–homomorphism implies that Œ�X!�D eFlux.f tg/D 0. Here,
X is the time-independent vector field generating the action.

In view of Theorem 1.3, we obtain the following.

Theorem 1.6 Let .M; !/ be a closed spherically monotone symplectic manifold. Then , a symplectic
circle action is Hamiltonian if and only if it has a fixed point.
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A result of McDuff [17] showed that every closed symplectic manifold that admits a Hamiltonian
circle action is uniruled in the Gromov–Witten sense. In particular, they are geometrically uniruled:
for each !–compatible almost complex structure J and each point x 2M, there is a nonconstant J–
holomorphic sphere u such that x 2 im.u/. Symplectic manifolds that are symplectically Calabi–Yau are
not geometrically uniruled, neither are (spherically) negative monotone ones. By considering this fact in
addition to Theorem 1.6 we obtain the following corollary.

Corollary 1.7 Let the circle act symplectically and nontrivially on a closed symplectic manifold .M; !/

such that
c1.M /j�2.M / D � � Œ!�j�2.M /

for � 2R. Then:

(i) If � > 0, the action is Hamiltonian if and only if it has fixed points.

(ii) If � < 0, the action is non-Hamiltonian , and has no fixed points.

(iii) If �D 0 the action is non-Hamiltonian.

Remark When �¤ 0 there are examples of non-Hamiltonian symplectic circle actions. In particular,
consider the symplectic product T2 �M of the standard symplectic torus with any closed spherically
monotone symplectic manifold, and the symplectic circle action given by t � .x;y;p/D .xC t;y;p/ for
.x;y/ 2 T 2 and p 2M.

Another closely related question was raised by McDuff and Salamon [19]. They asked if there exists a
symplectic free circle action whose orbits are contractible. Kotschick [10] proved this to be the case for
all symplectic manifolds of dimension four, even if the action is only assumed to be smooth. Furthermore,
Kotschick produced examples of symplectic free circle actions with contractible orbits in every even
dimension greater than or equal to six. As a corollary of Theorem 1.3 and the argument in the proof of
Proposition 1.5, we obtain the following.

Theorem 1.8 Let .M; !/ be a closed symplectic manifold satisfying .F/. Then every free symplectic
circle action must have noncontractible orbits.

1.3 Applications to symplectic torsion

The injectivity of the e–homomorphism, when combined with results in Atallah and Shelukhin [1],
provides applications to questions about the existence of finite subgroups of Symp0.M; !/. In [1], it was
shown that if .M; !/ is positive spherically monotone, then the existence of a nontrivial finite subgroup
of Ham.M; !/ implies that .M; !/ is geometrically uniruled. Furthermore, it was shown that if .M; !/

is negative spherically monotone, then there are no nontrivial finite subgroups of Ham.M; !/. Therefore,
as a corollary of Proposition 1.1 and Theorem 1.3 we obtain the following.
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Theorem 1.9 Let .M; !/ be a closed symplectic manifold such that

c1.M /j�2.M / D � � Œ!�j�2.M /

for � 2R n f0g. Further , suppose that either �.M /¤ 0 or �1.M / has finite center. Then:

(i) If � > 0, then the existence of a nontrivial finite subgroup of Symp0.M; !/ implies that .M; !/ is
geometrically uniruled.

(ii) If � < 0, then all finite subgroups of Symp0.M; !/ are trivial.

Remark The symplectic product of .CPn; !FS/ with any closed oriented surface †g of genus g � 2

with the standard area form satisfies condition (i) of Theorem 1.9. More generally, any symplectic product
of the form .M �N; !M ˚ !N /, where .M; !M / is positive spherically monotone with �.M / ¤ 0

and .N; !N / is symplectically aspherical with �.N /¤ 0. Furthermore, following Dimca [4], the Euler
characteristic of the degree m hypersurface Xm �CPn defined by setting zm

0
C� � �C zm

n D 0 is given by

�.Xm/D
1

m
..1�m/nC1

� 1/C nC 1:

Therefore, �.Xm/¤ 0 when m> nC 1. Hence, Xm, which is negative monotone, satisfies condition (ii)
of Theorem 1.9.

The injectivity of the e–homomorphism also gives information about the presence of fixed points of a
nontrivial symplectic diffeomorphism  2 Symp0.M; !/ of finite order. The following definition given
by Polterovich in [24] naturally fits into this context.

Definition 1.10 A fixed point x of a symplectic diffeomorphism  2 Symp0.M; !/ is of contractible
type if there exists a symplectic path f tg based at the identity with  1 D  such that the loop f t .x/g

is contractible in M.

The presence of a fixed point of contractible type of a nontrivial  2 Symp0.M; !/ of finite order implies
that it must be Hamiltonian. Indeed, we have the following:

Proposition 1.11 Let .M; !/ be a closed symplectic manifold such that the e–homomorphism is injective.
Further suppose that  2 Symp0.M; !/ is nontrivial of finite order , ie  d D id for some integer d > 1.
Then  is Hamiltonian if and only if it admits a fixed point of contractible type.

Proof Suppose x 2 Fix.x/ is of contractible type. Let f tg be a symplectic path with  1 D  such that
f t .x/g is contractible in M. Note that f d

t g is a symplectic loop. Then,

e.eFlux.f d
t g//D Œf 

d
t .x/g�D Œf t .x/g�

d
D 1:

Hence, by the injectivity of e and the fact that eFlux is a homomorphism to a torsion-free group, we have
that eFlux.f tg/D 0. In particular,  is Hamiltonian.
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Corollary 1.12 Let .M; !/ be a closed symplectic manifold satisfying .F/ such that �.M /¤ 0. Then
all nontrivial symplectic diffeomorphisms  2 Symp0.M; !/ of finite order are Hamiltonian.

We note that any orientation-preserving diffeomorphism of a closed manifold, which is of finite order and
has finitely many fixed points, must have the number of fixed points equal to the Lefschetz number of the
diffeomorphism. Therefore, when the Euler characteristic of .M; !/ is zero and  2 Symp0.M; !/ is
torsion, it either has no fixed points or nonisolated ones. In the latter case, there is no a priori reason for
the existence of a fixed point of contractible type. However, in the case of the standard symplectic torus,
Polterovich [24] showed that any fixed point of a symplectic diffeomorphism  2 Symp0.T

2n; dp^ dq/

is of contractible type. We can adapt that argument to prove the following:

Corollary 1.13 Let .M; !/ be a simply connected closed symplectic manifold satisfying .F/. Then
every non-Hamiltonian  2 Symp0.T

2n �M; dp^ dq˚!/ of finite order has no fixed points.

Proof Let .x;p/ 2 T2n �M be a fixed point of  , and f tg a symplectic path such that  0 D id and
 1 D  . Consider the lift

z t WR
2n
�M !R2n

�M

of  t to the universal cover of T2n �M and pick .zx;p/ 2 ��1.f.x;p/g/. Then, z .zx;p/D .zxC a;p/

for some a 2 Z2n. We can then define a symplectic flow ft � idM on T2n �M by setting

ft .y/D y � t � a mod 1:

Note that its lift to the universal cover is given by

. zft � idM /.y; q/D .y � t � a; q/:

Therefore, by setting 't D ft ı t , we obtain a symplectic path based at the identity with '1 D  , and
whose lift z't satisfies z'.zx;p/D .zx;p/. Consequently, the loop f't .x;p/g is contractible in T2n �M.
The corollary then follows by noting that T 2n �M satisfies condition .F/ and by Proposition 1.11.

2 Preliminaries

2.1 Floer–Novikov cohomology

In Section 2.1.2 we review the construction of Floer–Novikov cohomology after Ono [23]. This is a
cohomological version of the construction introduced by Lê and Ono [30] with a slightly smaller coefficient
ring. In Section 2.1.3 we review a variant of Floer–Novikov cohomology introduced in Ono [22] which
enables the comparison between symplectic paths with different flux. We refer to Lê and Ono [12] for an
in-depth discussion of the variants of Floer–Novikov cohomology and the relations among them. We
also briefly recall the definition of classical Morse–Novikov cohomology and outline a few important
properties it satisfies. For further details on Morse–Novikov cohomology, see [30; 26; 5].
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2.1.1 Morse–Novikov cohomology Let M be a closed smooth manifold and let � be a closed 1–form
on M. Fix a ground field K. For our purposes it will be sufficient to consider the case KDQ. Denote by
I� W �1.M /!R the homomorphism given by integrating � over a representative loop; that is,

I� .Œ
 �/D

Z



�:

In particular, I� depends only on the cohomology class Œ� �. Denote by � WM � !M the covering space
of M corresponding to ker I� � �1.M /. It is the minimal abelian covering on which ��� is exact. The
covering transformation group is given by G� D �1.M /=ker I� . We denote by ƒ� the completion of the
group ring of G� with respect to the filtration induced by I� ; that is,

ƒ� D

�X
i

aigi

ˇ̌̌
ai 2K and gi 2G� satisfy condition (A)

�
;

where condition (A) is:

(A) For each c 2R, the set fi j ai ¤ 0; I� .gi/ < cg is finite.

The fact that K is a field implies that so is ƒ� . Let xf be a choice of primitive for ��� . Then, to each
zx 2 Crit. xf / there corresponds a zero x D �.zx/ of � . A 1–form � is said to be Morse if all the critical
points of xf are nondegenerate. The Morse–Novikov cochain complex in degree k with coefficients in K

is defined as

CNk.M; �/D

�X
i

ai zxi

ˇ̌̌
ai 2K and zxi 2 Crit. xf /; where index.zxi/D k; satisfy condition (B)

�
;

where condition (B) is:

(B) For each c 2R the set fi j ai ¤ 0; xf .zxi/ < cg is finite.

Note that CN�.M; �/ is finitely generated over ƒ� . For a choice of Riemannian metric g on M, the
coboundary operator ı is defined by counting bounded gradient trajectories of xf with respect to the
pullback metric ��g that are emerging from a critical point zx 2 Crit. xf / and converging to critical points
zy 2Crit. xf / such that index.zy/� index.zx/D 1. We may assume that the gradient flow is of Morse–Smale
type. The Morse–Novikov cohomology of � is defined as HN�.M; �/DH�..CN.M; �/; ı//, and is a
finitely generated ƒ�–module. The resulting cohomology is independent of the choice of Riemannian
metric for which the flow is of Morse–Smale type. Furthermore, cohomologous 1–forms have canonically
isomorphic Morse–Novikov cohomologies. That is, if Œ�1� D Œ�2�, then HN�.M; �1/ is isomorphic to
HN�.M; �2/ as graded vector spaces over ƒ�1

Dƒ�2
. More generally, we have the following.

Proposition 2.1 (Lê and Ono [30, Theorem C.2]) Suppose that �1 and �2 are closed 1–forms such that
ker I�1

� ker I�2
. Then , for each degree k,

dimƒ�1
HNk.M; �1/� dimƒ�2

HNk.M; �2/:

Algebraic & Geometric Topology, Volume 24 (2024)
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In addition, we have the following useful proposition, which distinguishes Morse–Novikov cohomology
from usual Morse cohomology.

Proposition 2.2 (Ono [23, Proposition 4.12]) Let � be a closed 1–form such that Œ� �¤ 0. Then

dimƒ� HNk.M; �/D 0 for k D 0 or k D dim.M /:

In particular, when � is not exact, we have that

(4) dimƒ� HN.M; �/ < dimQ H.M /:

2.1.2 Floer–Novikov cohomology Let .M; !/ be a closed symplectic manifold, and f tg a symplectic
path based at the identity with endpoint  1 D  . The deformation lemma in [30] implies that we can
suppose, without loss of generality, that there exists a 1–periodic smooth family of smooth functions
Ft 2 C1.M /, with FtC1 D Ft , such that

(5) �X t! D � C dFt ;

where X t is the time-dependent vector field induced by the symplectic isotopy f tg and � is a closed
1–form representing eFlux.f tg/. When � is exact, equation (5) becomes the usual Hamiltonian equation
for Ht DFtCf , where df D � . Similarly, we have a formal closed 1–form on the contractible component
LM of the loop space of M. Indeed, for a loop x 2 LM and v 2 TxLM D �.x�TM /, we define

af t g.v/D

Z 1

0

!.v.t/;x0.t/�X t .x.t/// dt D

Z 1

0

!.v.t/;x0.t// dt C

Z 1

0

.� C dFt /.v.t// dt:

The idea is to find a suitable cover on which af t g is exact, and then to define Floer–Novikov cohomology as
an analog of Morse theory for a primitive A t

. Consider the homomorphisms I� ;I! ;Ic1
W�1.LM /!R

defined as

I� D I� ıEv�; I!.fxsg/D

Z
C.fxsg/

!; Ic1
.fxsg/D hc1.M /; ŒC.fxsg/�i;

for a loop fxsgs2Œ0;1� in LM. Here, Ev W LM !M is given by evaluation at t D 0, and C.fxsg/ is the
2–cycle represented by

S1
�S1

3 .s; t/ 7! xs.t/ 2M:

We denote by zLM ! LM the covering space of LM corresponding to

ker.I! CI� /\ ker Ic1
� �1.LM /:

A description of zLM can be given in the following manner. Choose a primitive xf of ��� on M � , and
consider pairs .zx;u/ composed of a loop zx 2 LM � and a capping u WD!M such that uj@D D � ı zx.
Define the equivalence relation � given by .zx;u/� .zy; w/ if and only if

� ı zx D � ı zy;

Z
u

!C xf .zx.0//D

Z
w

!C xf .zy.0//; hc1.M /;u # .�w/i D 0:
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Here, u#.�w/ corresponds to the sphere obtained by gluing the two disks along their common boundaries
with the orientation of w reversed. Each element in zLM corresponds to an equivalence class Œzx;u� of
such a pair. With this description, the covering map … W zLM ! LM is given by Œzx;u� 7! � ı zx D x.
A choice of primitive for …�af t g is given by

Af t g.Œzx;u�/D

Z 1

0

. xf CFt ı�/.zx.t// dt C

Z
u

!;

where Ft is as in equation (5). The critical points P.f tg/ of Af t g are the lifts to zLM of the fixed
points x 2 Fix. / of  such that Œf t .x/g�D 1 in �1.M /. To a critical point Œzx;u� we assign an index
CZ.Œzx;u�/ given by the Conley–Zehnder index of x D � ı zx with respect to the trivialization x�TM,
which extends to u�TM. Note that the covering transformation group of LM is given by

G�;! D
�1.LM /

ker.I! CI� /\ ker Ic1

:

Let ƒ�;! be Novikov ring given by the completion of the group ring of G�;! with respect to the filtration
induced by I! CI� ; that is,

ƒ�;! D

�X
i

aigi

ˇ̌̌
ai 2Q and gi 2G�;! satisfy condition (A0)

�
;

where condition (A0) is:

(A0) For each c 2R the set fi j ai ¤ 0; .I! CI� /.gi/ < cg is finite.

Suppose that  is nondegenerate and let J DfJtg be a family of !–compatible almost complex structures.
The Floer–Novikov cochain complex is defined as

CFNk.f tgIJ /D

�X
i

ai Œzxi ;ui �
ˇ̌̌
ai 2Q and Œzxi ;ui � 2 P.f tg/ satisfy condition (B0)

�
;

where condition (B0) is:

(B0) For each c 2R the set fi j ai ¤ 0;Af t g.Œzx;u�/ < cg is finite and CZ.Œzxi ;ui �/D k for all i .

The graded Q–vector space CFN�.f tgIJ / is endowed with the Floer–Novikov coboundary operator ıFN,
which is defined as the signed count of isolated solutions (modulo the R–action) of the asymptotic
boundary value problem on maps u WR�S1!M defined by the gradient of Af t g; see [30; 23]. In other
words, the coboundary operator counts the finite-energy solutions to the Floer equation

@u

@s
CJt .u/

�
@u

@t
�Xt .u/

�
D 0; lim

s!˙1
zu.s; t/D zx˙.t/;

for some lift zu WR�S1!M such that CZ.ŒzxC;uC�/�CZ.Œzx�;u��/D 1 and ŒzxC;u� # u�D ŒzxC;uC�.
The Floer–Novikov cohomology is defined as

HFN�.f tgIJ /DH�.CFN.f tgIJ /; ıFN/:
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It can be shown to be independent of the choice of J . In addition, it only depends on the flux of the
symplectic path.

Theorem 2.3 (Lê and Ono [30, Theorem 4.3]) Suppose that f .1/t g and f .2/t g are symplectic paths
with nondegenerate endpoints. Suppose that f .1/t ı . 

.2/
t /�1g has zero flux. Then ,

HFN�.f .1/t gIJ
.1//Š HFN�.f .2/t gIJ

.2//

as ƒ�;!–modules. Here , Œ� � is the flux of both paths.

Remark When f't
H
g is a Hamiltonian isotopy, M � DM and .CFN�.f gIJ /; ı/ reduces to the usual

Floer cochain complex .CF.H IJ /; ı/ associated with the Hamiltonian function H. Therefore, the PSS
isomorphism yields

(6) HFN�.f't
H gIJ /D HF�.H IJ /Š H�Cn.M IQ/˝Qƒ! :

The main reason for the choice of Novikov ring in this construction is so that we have the following two
statements.

Theorem 2.4 (Ono [23, Theorem 4.10]) Let f .1/t g and f .2/t g be symplectic paths with nondegenerate
endpoints  .1/

1
D  

.2/
1
D  . Suppose that the symplectic loop f .1/t ı . 

.2/
t /�1g has trivial evaluation ,

ie ev.f .1/t ı . 
.2/
t /�1g/D 1. Then , we have a ring isomorphism ‰ Wƒ�1;!

Š�!ƒ�2;! , and

HFN�.f .1/t gIJ
.1//Š HFN�.f .2/t gIJ

.2//

as ƒ�1;!–modules , where Œ�i � corresponds to the flux of f .i/t g for i D 1; 2. The module action of ƒ�1;!

on HFN�.f .2/t g;J
.2// is the one induced by ‰.

Proof Let �t D  
.1/
t ı . 

.2/
t /�1. In [23, Theorem 4.10] the conclusion of Theorem 2.4 was proven

under the assumption that the map ‰ W f
 .t/g 7! f�t .
 .t//g preserves the component LM of the free
loop space consisting of contractible loops. Therefore, Theorem 2.4 follows from the observation that ‰
preserves LM whenever ev.f�tg/D 1. As detailed in [23, Section 4], it is the map ‰ W LM ! LM that
induces the isomorphism HFN�.f .1/t gIJ

.1//Š HFN�.f .2/t gIJ
.2//.

Theorem 2.5 (Ono [23, Theorem 3.12]) Let f tg be a symplectic path based at identity with sufficiently
small flux Œ� �. Then ,

HFN�.f tgIJ /Š HN�Cn.M; �/˝ƒ� ƒ�;! :

Remark The Floer–Novikov cohomology HFN�.f tgIJ / of a symplectic path f tg is not always
isomorphic to the Morse–Novikov cohomology HN.M; �/ of its flux Œ� �; this has also been observed
in Seidel [27]. This can be seen by studying the examples in Jang and Tolman [8], Tolman [28] and
McDuff [15] of non-Hamiltonian symplectic circle actions with fixed points. Indeed, in these cases we
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have symplectic paths with nontrivial flux and trivial evaluation. In particular, if we suppose that such
an isomorphism exists, Theorem 2.4 together with Theorem 2.5 would imply that dimƒ� HN.M; �/D

dimQ H.M IQ/, which is in contradiction to Proposition 2.2. This also shows that the e–homomorphism
is not injective in general.

2.1.3 A variant of Floer–Novikov cohomology for changing flux In this section we recall a variant,
introduced in [22], of the Floer–Novikov cohomology construction presented in Section 2.1.2, which
allows the comparison between symplectic paths that have different flux.

Let .M; !/ be a closed symplectic manifold. Suppose f tg is a symplectic path with endpoint  1 D  

and flux Œ� �. Let p W zM !M be an abelian covering space of M such that p�� is exact; M � is the
smallest choice of such a covering space. Let f zFtg be a smooth family of smooth functions on zM such
that d zFt D p�� . Just as before, we would like to make a choice of covering space of LM on which the
pullback of af t g is exact. We denote by P W zL zM ! LM the covering space of LM associated with

ker I! \ ker Ic1
\Ev�1

� .p�.�1. zM ///� �1.LM /:

This covering can be seen as the space of pairs .zx;u/, uj@D D � ı zx, under the equivalence relation
defined by .zx;u/� .zy; w/ if and only if

zx D zy;

Z
u

! D

Z
w

!; hc1.M /;u # .�w/i D 0:

On zLM, the pullback P�a t
is exact and a choice of primitive is given by

zAf t g.Œzx;u�/D

Z 1

0

zFt .zx.t// dt C

Z
u

!:

Similarly, the critical points zP.f tg/ of zAf t g are lifts to zL zM of the fixed points x 2 Fix. / of  
that satisfy Œf t .x/g� D 1 2 �1.M /. Just as in Section 2.1.2, to each critical point Œzx;u� we assign a
Conley–Zehnder type index. The covering transformation group of zL zM is given by

zG�;! D
�1.LM /

ker I! \ ker Ic1
\Ev�1

� .p�.�1. zM ///
;

and we denote by zƒ�;! the Novikov ring given by the completion of its group ring with respect to the
filtration induced by I! CI� ; that is,

zƒ�;! D

�X
i

aigi

ˇ̌̌
ai 2Q and gi 2

zG�;! satisfy condition (A0)
�
:

Suppose that  is nondegenerate and let J DfJtg be a family of !–compatible almost complex structures.
The Floer–Novikov cochain complex is defined as

CFNk.f tg; zM IJ /D

�X
i

ai Œzxi ;ui �
ˇ̌̌
ai 2Q and Œzxi ;ui � 2 zP.f tg/ satisfy condition (B0)

�
:
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The coboundary operator zıFN is defined by the same formula as in Section 2.1.2. The Floer–Novikov
homology HFN�.f tg; zM IJ / associated with the covering space zM is defined as the homology of
.CFN.f tg; zM IJ /; zıFN /. It is independent of the choice of almost complex structure J and depends
only on the flux of the symplectic path. The following theorem allows the comparison between the ranks
of the Floer–Novikov cohomology of symplectic paths with flux lying in the kernel of p�.

Proposition 2.6 (Ono [22, Proposition 4.8]) Let f .1/t g and f .2/t g be symplectic paths such that
eFlux.f .i/t g/ 2 kerfp� W H1.M IR/! H1. zM IR/g for i D 1; 2. Then ,

rank zƒ�1;!
HFN�.f .1/t g;

zM IJ .1//D rank zƒ�2;!
HFN�.f .2/t g;

zM IJ .2//;

where Œ�i � corresponds to the flux of f .i/t g for i D 1; 2.

3 Proof of Theorem 1.3

3.1 Proof using Floer–Novikov theory

When .M; !/ is either symplectically aspherical or satisfies the weak Lefschetz property, we have
presented proofs based on classical arguments in Section 1.1. We shall, therefore, consider the spherically
monotone case. Let f tg be a symplectic loop with

eFlux.f tg/D Œ� � 2 �:

Observe that spherical monotonicity implies that

(7) ker.I! CI� /\ ker Ic1
D ker I! \ ker I� \ ker Ic1

:

Set zM DM � in the construction of the variant of Floer–Novikov homology defined in Section 2.1.3. In
this case, note that Ev�1

�

�
p�.�1.M

� //
�
D ker I� . Indeed, this is a consequence of �1.M

� /D ker I� ,
which follows from the defining property of M � , and of the equality I� D I� ıEv�. These observations
allow one to deduce that for any symplectic path f�tg with flux Œ� �, we have zƒ�;! Dƒ�;! , and

(8) .CFN�.f�tg;M
�
IJ /; zıFN /D .CFN�.f�tgIJ /; ıFN /

by definition (we reiterate that monotonicity is used in an important way; see the remark below).

Remark In general, HFN�.f tg; zM IJ / is different from HFN�.f tgIJ / even in the case zM DM �.
Nonetheless, whenever ker Ic1

� ker I! we have that equation (8) holds and, arguing as in the preceding
paragraph, that

HFN�.f tg;M
�
IJ /D HFN�.f tgIJ /:

This holds for .M; !/ spherically (positive or negative) monotone or symplectically aspherical. We refer
to [12] for more details on the relationship between these cohomology theories.
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Now, further suppose that Œf tg� 2 ker ev. Let f'tg be a Hamiltonian path with endpoint ', which
is generated by a nondegenerate Hamiltonian H, and set  0t D  t ı 't . Then f 0tg and f'tg are two
symplectic paths with nondegenerate endpoints  0 D '. Since ev.f tg/D 1, Theorem 2.4 implies that
ƒ�;! Šƒ! and that

(9) HFN�.f 0tg;J
0/Š HFN�.f'tgIJ /

as ƒ�;!–modules. Since 't is Hamiltonian, we have that

(10) HFN�.f'tgIJ /Š HF�.H IJ /Š H�.M IQ/˝Qƒ! :

For " > 0, let f "�t gt2Œ0;1� be the symplectic path induced by the symplectic vector field X"� defined by
�X"�! D "� . Then, for all " > 0, we have that

eFlux.f "�t g/D "Œ� � 2 kerf�� W H1.M IR/! H1.M �
IR/g:

Therefore, Proposition 2.6 implies that

(11) rank zƒ�;! HFN�.f 0tg;M
�
IJ /D rank zƒ"�;! HFN�.f "�t g;M

�
IJ /:

Finally, equations (8)–(11), Theorem 2.5 and Proposition 2.1 imply that for " > 0 sufficiently small,

rankƒ! H�.M IQ/˝Qƒ! D rankƒ! HFN�.f'tgIJ /D rankƒ�;! HFN�.f 0tg;J
0/

D rank zƒ�;! HFN�.f 0tg;M
�
IJ /D rank zƒ"�;! HFN�.f "�t g;M

�
IJ /

D rankƒ"�;! HFN�.f "�t gIJ /D rankƒ"�;! HN�.M; "�/˝ƒ"� ƒ"�;!

D rankƒ�;! HN�.M; �/˝ƒ� ƒ�;! :

Hence, � must be exact. Indeed, if Œ� �¤ 0, then by Proposition 2.2

rankƒ! H�.M IQ/˝Qƒ! D dimQ H�.M IQ/

> dimƒ� HN�Cn.M; �/D rankƒ�;! HN�Cn.M; �/˝ƒ� ƒ�;! ;

in contradiction with the above equalities. This concludes the proof of Theorem 1.3.

3.2 A proof using a result of McDuff

It follows from McDuff [14, Theorem 1] that if f tg is a symplectic loop, then Ic1
vanishes on the

elements of �1.LM / that are represented by f t .
 .s//gs;t2Œ0;1� for a loop 
 2 LM. If f tg has trivial
evaluation, then f t .
 .s//gs;t2Œ0;1� determines a homotopy class A
 2 �2.M / with hc1.M /;A
 i D 0.
If .M; !/ is spherically monotone, for every 1–cycle in M given by a loop 
 we have that

heFlux.f tg/; Œ
 �i D hŒ!�;A
 i D �hc1.M /;A
 i D 0:

Therefore, eFlux.f tg/D 0, which yields once again the conclusion of Theorem 1.3. In addition, note that
if f tg has trivial evaluation and flux Œ� �¤ 0 we can produce a homotopy class ˛ 2 �1.LM / such that
˛ 2 ker.I!CI� /\ker Ic1

while I� .˛/D�I!.˛/¤ 0. Indeed the class represented by the loop-of-loops
˛.s; t/D  t .
 .s// satisfies these properties. We are then able to conclude the following.
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Corollary 3.1 If the e–homomorphism is not injective , then

ker I! \ ker I� \ ker Ic1
¨ ker.I! CI� /\ ker Ic1

for all Œ� � 2 ker e.

This shows, in hindsight, why the equality of Novikov rings in the spherically monotone setting yielded a
proof of injectivity of the e–homomorphism.
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