Download this article
 Download this article For screen
For printing
Recent Issues

Volume 25, 1 issue

Volume 24, 9 issues

Volume 23, 9 issues

Volume 22, 8 issues

Volume 21, 7 issues

Volume 20, 7 issues

Volume 19, 7 issues

Volume 18, 7 issues

Volume 17, 6 issues

Volume 16, 6 issues

Volume 15, 6 issues

Volume 14, 6 issues

Volume 13, 6 issues

Volume 12, 4 issues

Volume 11, 5 issues

Volume 10, 4 issues

Volume 9, 4 issues

Volume 8, 4 issues

Volume 7, 4 issues

Volume 6, 5 issues

Volume 5, 4 issues

Volume 4, 2 issues

Volume 3, 2 issues

Volume 2, 2 issues

Volume 1, 2 issues

The Journal
About the Journal
Editorial Board
Subscriptions
 
Submission Guidelines
Submission Page
Policies for Authors
Ethics Statement
 
ISSN 1472-2739 (online)
ISSN 1472-2747 (print)
Author Index
To Appear
 
Other MSP Journals
Möbius structures, quasimetrics and completeness

Merlin Incerti-Medici

Algebraic & Geometric Topology 24 (2024) 1809–1840
Bibliography
1 J Beyrer, V Schroeder, Trees and ultrametric Möbius structures, p–Adic Numbers Ultrametric Anal. Appl. 9 (2017) 247 MR3719682
2 J Beyrer, E Fioravanti, M Incerti-Medici, CAT(0) cube complexes are determined by their boundary cross ratio, Groups Geom. Dyn. 15 (2021) 313 MR4235755
3 K Biswas, On Moebius and conformal maps between boundaries of CAT(1) spaces, Ann. Inst. Fourier (Grenoble) 65 (2015) 1387 MR3449184
4 M Bourdon, Structure conforme au bord et flot géodésique d’un CAT(1)–espace, Enseign. Math. 41 (1995) 63 MR1341941
5 S V Buyalo, Möbius and sub-Möbius structures, Algebra i Analiz 28 (2016) 1 MR3637585
6 S Buyalo, V Schroeder, Elements of asymptotic geometry, Eur. Math. Soc. (2007) MR2327160
7 R Charney, M Cordes, D Murray, Quasi-Mobius homeomorphisms of Morse boundaries, Bull. Lond. Math. Soc. 51 (2019) 501 MR3964503
8 U Hamenstädt, Cocycles, Hausdorff measures and cross ratios, Ergodic Theory Dynam. Systems 17 (1997) 1061 MR1477033
9 J Heinonen, Lectures on Lipschitz analysis, 100, University of Jyväskylä (2005) MR2177410
10 M Incerti-Medici, Circumcenter extension maps for non-positively curved spaces, preprint (2020) arXiv:2001.11472
11 F Paulin, Un groupe hyperbolique est déterminé par son bord, J. Lond. Math. Soc. 54 (1996) 50 MR1395067