Download this article
 Download this article For screen
For printing
Recent Issues

Volume 24
Issue 7, 3571–4137
Issue 6, 2971–3570
Issue 5, 2389–2970
Issue 4, 1809–2387
Issue 3, 1225–1808
Issue 2, 595–1223
Issue 1, 1–594

Volume 23, 9 issues

Volume 22, 8 issues

Volume 21, 7 issues

Volume 20, 7 issues

Volume 19, 7 issues

Volume 18, 7 issues

Volume 17, 6 issues

Volume 16, 6 issues

Volume 15, 6 issues

Volume 14, 6 issues

Volume 13, 6 issues

Volume 12, 4 issues

Volume 11, 5 issues

Volume 10, 4 issues

Volume 9, 4 issues

Volume 8, 4 issues

Volume 7, 4 issues

Volume 6, 5 issues

Volume 5, 4 issues

Volume 4, 2 issues

Volume 3, 2 issues

Volume 2, 2 issues

Volume 1, 2 issues

The Journal
About the Journal
Editorial Board
Subscriptions
 
Submission Guidelines
Submission Page
Policies for Authors
Ethics Statement
 
ISSN 1472-2739 (online)
ISSN 1472-2747 (print)
Author Index
To Appear
 
Other MSP Journals
Realization of Lie algebras of derivations and moduli spaces of some rational homotopy types

Yves Félix, Mario Fuentes and Aniceto Murillo

Algebraic & Geometric Topology 24 (2024) 2285–2305
Abstract

We construct Lie algebras of derivations (and identify their geometric realizations) whose Maurer–Cartan sets provide moduli spaces describing the classes of homotopy types of rational spaces having the same homotopy Lie algebra, homology or cohomology.

Keywords
rational homotopy, deformation of Lie algebras
Mathematical Subject Classification
Primary: 55P62
References
Publication
Received: 22 September 2022
Revised: 11 February 2023
Accepted: 4 March 2023
Published: 16 July 2024
Authors
Yves Félix
Département de Mathématiques
Université Catholique de Louvain
Louvain-la-Neuve
Belgium
Mario Fuentes
Departamento de Algebra, Geometria y Topología
Universidad de Málaga
Málaga
Spain
CIMI, Insitut de Mathématiques
Université Paul Sabatier
Toulouse
France
Aniceto Murillo
Departamento de Algebra, Geometria y Topología
Universidad de Málaga
Málaga
Spain

Open Access made possible by participating institutions via Subscribe to Open.