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Topological Hochschild homology of truncated Brown–Peterson spectra, I

GABRIEL ANGELINI-KNOLL

DOMINIC LEON CULVER

EVA HÖNING

We compute the topological Hochschild homology of sufficiently structured forms of truncated Brown–
Peterson spectra with coefficients. In particular, we compute THH�.BhniIHZ.p// for all n, where Bhni

is an E3 form of BPhni for certain primes p, and THH�.Bh2iIM / for M 2 fk.1/; k.2/g. For example,
this gives a computation of THH.tafD

IM / for M 2 fHZ.3/; k.1/; k.2/g where tafD is the E1 form of
BPh2i constructed by Hill and Lawson.

16E40, 19D55, 55N22, 55P43, 55Q51; 55P42, 55Q10, 55T99

1 Introduction

Topological Hochschild homology and cohomology are rich invariants of rings, or more generally ring
spectra, with applications to such fields as string topology [Cohen and Jones 2002], deformation theory
of A1 algebras [Angeltveit 2008], and integral p–adic Hodge theory [Bhatt et al. 2019]. Topological
Hochschild homology is also a first order approximation to algebraic K–theory in a sense made precise
using Goodwillie calculus by [Dundas and McCarthy 1994].

Algebraic K–theory of ring spectra that arise in chromatic stable homotopy theory are of particular interest
because of the program of Ausoni and Rognes [2002], which suggests that algebraic K–theory shifts
chromatic complexity up by one, a higher chromatic height analogue of conjectures of Lichtenbaum [1973]
and Quillen [1975]. A higher chromatic height analogue of one of the Lichtenbaum–Quillen conjectures
was recently proven for truncated Brown–Peterson spectra BPhni by [Hahn and Wilson 2018]. However,
it is still desirable to have a more explicit computational understanding of algebraic K–theory of BPhni
in order to understand the étale cohomology of BPhni as suggested by Rognes [2014, Sections 5 and 6].

One of the most fundamental objects in chromatic stable homotopy theory is the Brown–Peterson
spectrum BP, which is a complex oriented cohomology theory that carries the universal p–typical formal
group. The coefficients of BP are the symmetric algebra over Z.p/ on generators vi for i � 1, and we may
form truncated versions of BP, denoted by BPhni, by coning off the regular sequence .vnC1; vnC2; : : : /.
More generally, we consider forms of BPhni, in the spirit of [Morava 1989], which are constructed
by coning off some sequence .v0

nC1
; v0

nC2
; : : : / of indecomposable algebra generators in BP� where

jv0
k
j D jvk j (see Definition 2.1 for a precise definition). We will be most interested in working with forms
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of BPhni that are Em–ring spectra for sufficiently large m. We will refer to such spectra as Em forms
of BPhni. For example, the spectrum HZ.p/ is an E1 form of BPh0i, and ` is an E1 form of BPh1i at
all primes by [Baker and Richter 2008].

In the last decade E1 forms of BPh2i were constructed at the prime p D 2 by [Lawson and Naumann
2012] and p D 3 by [Hill and Lawson 2010]. Lawson and Naumann [2012] used the moduli stack
of formal groups with a �1.3/–structure to construct an E1 form of BPh2i at the prime 2 denoted by
tmf1.3/. Hill and Lawson [2010] used a quaternion algebra D of discriminant 14 and its associated
Shimura curve XD to construct an E1 form of BPh2i at the prime p D 3, denoted by tafD . Even more
recently, Hahn and Wilson [2022] constructed an E3 form of BPhni at all primes and for all n, which
we denote by BPhni0. This is especially interesting since no E2.p2C2/ form of BPhni exists for n � 4

by Lawson [2018] at the prime p D 2 and Senger [2017] at primes p > 2. Highly structured models for
truncated Brown–Peterson spectra make computations of invariants of these truncated Brown–Peterson
spectra more tractable, and therefore they will be important for our calculations.

For small values of n, the calculations of THH�.BPhni/ are known and of fundamental importance.
The first known computations of topological Hochschild homology are those of Bökstedt [1985] for
THH�.HFp/ and THH�.HZ.p//. To illustrate how fundamental these computations are, we point out
that the computation THH�.HFp/ Š P .�0/ where j�0j D 2 is the linchpin for a new proof of Bott
periodicity [Hesselholt and Nikolaus 2020]. McClure and Staffeldt [1993] computed the Bockstein
spectral sequence

THH�.`IHFp/Œv1�) THH�.`I k.1//;

which was extended by Angeltveit, Hill, and Lawson [Angeltveit et al. 2010] to compute the square of
spectral sequences

THH�.BPh1iIHFp/Œv0; v1� +3

��

THH�.BPh1iIHZ.p//p Œv1�

��
THH�.BPh1iI k.1//Œv0� +3 THH�.BPh1iIBPh1i/p

This gives a complete computation of THH�.BPh1i/.

Let Bhni denote an E3 form of BPhni (see Definition 2.1).1 In Proposition 2.7 we compute

THH�.BhniIHFp/ŠE.�1; : : : ; �nC1/˝P .�nC1/;

where j�i j D 2pi � 1 and j�nC1j D 2pnC1, as a consequence of work of [Angeltveit and Rognes 2005].
Hahn and Wilson [2018] calculated the groups THH�.Bhni=MU/, but working over MU significantly
simplifies the calculation. Ausoni and Richter [2020] computed THH�.E.2// under the assumption that
E.2/D BPh2iŒv�1

2
� has an E1–ring structure and gave a conjectural answer for THH�.E.n//, which is

consistent with our calculations. These are currently the only known results for n� 2.

1Note that there is a spectrum commonly denoted by B.n/D v�1
n P .n/ in other references (eg [Ravenel 1986]) and our notation

and meaning is distinct.
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The main three results of this paper are computations of the Bockstein spectral sequences

THH�.BhniIHFp/Œv0�) THH�.BhniIHZ.p//p;(1-1)

THH�.Bh2iIHFp/Œv1�) THH�.Bh2iI k.1//;(1-2)

THH�.Bh2iIHFp/Œv2�) THH�.Bh2iI k.2//;(1-3)

where Bhni is an E3 form of BP hni and we assume p � 3 for our computation of the spectral se-
quence (1-2). The Bockstein spectral sequences (1-2) and (1-3) are of similar computational complexity
to the main result of McClure and Staffeldt [1993] and we were inspired by their work.

We summarize our three main results as follows: First, we compute the topological Hochschild homology
of an E3 form of BPhni with HZ.p/ coefficients.

Theorem A (Theorem 3.8) Let Bhni be an E3 form of BPhni and at p > 2 assume the error term (3-7)
vanishes. Then there is an isomorphism of graded Z.p/–modules

THH�.BhniIHZ.p//ŠEZ.p/.�1; : : : ; �n/˝ .Z.p/˚T n
0 /

where T n
0

is an explicit torsion Z.p/–module defined in (3-11).

In particular, the error term (3-7) vanishes for any E4 form of BPhni such as Bh2iD tafD . It is possible that
the error term (3-7) also vanishes for Bhni D BPhni0 where BPhni0 is the E3 form of BPhni constructed
by Hahn and Wilson [2022] at odd primes, but it is not known to the authors. Theorem 3.8 also holds for
Bh2i D tmf1.3/ and Bhni D BPhni0, where BPhni0 is the E3 form of BPhni at the prime 2 constructed
by Hahn and Wilson [2022].

Second, we compute the topological Hochschild homology of an E3 form Bh2i of BPh2i at p � 3 with
k.1/ coefficients.

Theorem B (Theorem 4.6) Let Bh2i denote an E3 form of BPh2i at an odd prime p. There is an
isomorphism of P .v1/–modules

THH�.Bh2iI k.1//ŠE.�1/˝ .P .v1/˚T 2
1 /

where T 2
1

is an explicit v1–torsion P .v1/–module defined in (4-3).

In particular, this result holds for Bh2i D tafD and BPh2i0 at odd primes.

Finally, we compute topological Hochschild homology of any E3 form of BPh2i with k.2/ coefficients.

Theorem C (Theorem 5.5) Let Bh2i be an E3 form of BPh2i. There is an isomorphism of P .v2/–
modules

THH�.Bh2iI k.2//Š P .v2/˚T 2
2 ;

where T 2
2

is an explicit v2–torsion P .v2/–module defined in (5-2).
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In particular, this result holds for Bh2i D tafD , Bh2i D tmf1.3/, and BP h2i0 at any prime. We end with
a conjectural answer (see Conjecture 5.6) for THH�.BhniI k.m// for all integers 1�m� n and any E3

form of Bhni at a prime p.

We now outline our approach to computing THH�.tafD/ in the sequels to this paper. There is a cube of
Bockstein spectral sequences

(1-4)

HF3

!)

��

+3 HZ.3/
#+

��

k.1/

��

+3 Bh2i=v2

��

k.2/

!)

+3 Bh2i=v1

#+
Bh2i=3 +3 Bh2i

where we use the abbreviation M=x)M for the Bockstein spectral sequence with signature

THH�.tafD
IM=x/Œx�) THH�.tafD

IM /;

where M 2 fHZ.3/; k.1/; k.2/; tafD=3; tafD=v1; tafD=v2; tafD
g. Here we write tafD=x for the cofiber

of a representative of an element x 2 �2k tafD regarded as a tafD–module map †2k tafD
! tafD . In

the sequels to this paper, we plan to compute THH�.tafD
IM / for M D tafD=3 and M D tafD=v1

by comparing the edges of the cube of Bockstein spectral sequences to the Hochschild–May spectral
sequence [Angelini-Knoll and Salch 2018] and the Brun spectral sequence [Höning 2020], which compute
the diagonals of the faces of the cube directly. Finally, we plan to compute THH�.tafD/ by again
comparing the Hochschild–May spectral sequence to the relevant Bockstein spectral sequences in addition
to cosimplicial descent techniques.

Conventions We write F�X for ��.F ^X / for any spectra F and X . We also use the shorthand H�.X /

for .HFp/�X for any spectrum X . We write PD to mean that an equality holds up to multiplication by a unit.
The dual Steenrod algebra H�.HFp/ will be denoted by A� with coproduct � WA�!A�˝A�. Given
a left A�–comodule M , its left coaction will be denoted by � WA�!A�˝M , where the comodule M

is understood from the context. The antipode � WA�!A� will not play a role except that we will write
N�i WD �.�i/ and N�i WD �.�i/.

When not otherwise specified, tensor products will be taken over Fp and HH�.A/ denotes the Hochschild
homology of a graded Fp–algebra relative to Fp. We will let PR.x/, ER.x/ and �R.x/ denote a
polynomial algebra, exterior algebra, and divided power algebra over R on a generator x. When RD Fp ,
we omit it from the notation. Let Pi.x/ denote the truncated polynomial algebra P .x/=.xi/.

Acknowledgements The authors would like to thank Tyler Lawson for helpful conversations. The
authors would also like to thank John Rognes and the referee for their careful reading of the paper and
useful suggestions for improvement. Parts of this paper were written while Culver was in residence at the
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funded by the DFG priority program SPP 1786 Homotopy theory and algebraic geometry and the Radboud
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2 Topological Hochschild homology mod .p; : : : ; vn/

We begin by giving a precise definition of an Em form Bhni of BPhni. We then compute topological
Hochschild homology of an E3 form Bhni of BPhni at an arbitrary prime p with coefficients in HFp.
First, recall that there is an isomorphism BP� Š Z.p/Œvi j i � 1� and an isomorphism

BP�BPŠ Z.p/Œvi j i � 1�Œti j i � 1�

where the degrees of the generators are jvi j D jti j D 2pi � 2 for i � 1. The generators ti are determined
by the canonical strict isomorphism f from the universal p–typical formal group law to itself given by
the power series

f �1.x/D

FX
i�0

tix
pi

where F is the universal p–typical formal group law [Ravenel 1986, Lemma A2.1.26]. We let vi be the
Araki generators. Note that the Araki generators agree with Hazewinkel generators mod p [Ravenel 1986,
Theorem A2.2.3].

2.1 Forms of BPhni

We fix a precise notion of a form of the truncated Brown–Peterson spectrum in the spirit of [Morava
1989] below.

Definition 2.1 (cf [Lawson and Naumann 2014, Definition 4.1]) Fix integers m� 1 and n� 0. By an
Em form of BPhni (at the prime p), we mean a p–local Em–ring spectrum R equipped with a complex
orientation MU.p/!R such that the composite

Z.p/Œv1; : : : ; vn�! BP�! ��MU.p/! ��R

is an isomorphism.

Remark 2.2 Note that we do not assume that an Em form of BPhni at the prime p is an Em MU–algebra,
and therefore Definition 2.1 differs slightly from the definition of an Em MU–algebra form of BPhni
appearing in work of Hahn and Wilson [2022, Definition 2.0.1]. An Em MU–algebra form of BPhni in
the sense of [Hahn and Wilson 2022, Definition 2.0.1] is an Em form of BPhni at the prime p in the sense
of Definition 2.1. The distinction arises because, for example, tafD is an E1 form of BP h2i; however it
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is not known, at least to the authors, whether the complex orientation MU! tafD can be elevated to an
E1–ring spectrum map. Nonetheless, we know that the map MU! tafD is an E2–ring spectrum map
by [Chadwick and Mandell 2015, Theorem 1.2], which is sufficient for our purposes.

Notation 2.3 Throughout, we let Bhni denote an E3 form of BPhni at the prime p in the sense of
Definition 2.1 for n� 0.

We collect some consequences of Definition 2.1.

Proposition 2.4 Since Bhni is an E3 form of BPhni at the prime p for m� 3, the following hold :

(1) There are indecomposable algebra generators v0i with v0i D vi for 1� i � n such that

BP�=.v0k j k � nC 1/Š ��Bhni:

(2) The orientation MU.p/!Bhni lifts to an E2–ring spectrum map and consequently there is an E2–
ring spectrum map BP!Bhni realizing the canonical quotient map BP�! BP�=.v0k j k � nC1/

on homotopy groups.

(3) There is an E3–ring spectrum map Bhni !HZ.p/ and the map induced by the composite

(2-1) Bhni !HZ.p/!HFp

in mod p homology provides an isomorphism

H�.Bhni/ŠA==E.n/� �A�

of A�–comodule Fp–algebras onto its image in the dual Steenrod algebra.

(4) If Bhni is E3 and x1; : : : ;xn is a regular sequence of elements in Bhni�, then one can construct
the spectrum Bhni=.x1;x2; : : : ;xn/ as an E1 Bhni–algebra.

(5) The p–completion of Bhni is weakly equivalent to the p–completion of any other Em form of
BPhni at the prime p in the category of spectra.

Proof For part (1) set v0i WD vi � fi.v1; : : : ; vn/ for i � nC 1, where fi.v1; : : : ; vn/ is the image of
vi under BP� ! BPhni� Š Z.p/Œv1; : : : ; vn�. Part (2) follows by applying [Chadwick and Mandell
2015, Theorem 1.2]. Part (3) is [Lawson and Naumann 2014, Theorem 4.4]. Part (4) follows from
[Angeltveit 2008, Section 3] (cf [Hahn and Wilson 2018, Theorem A]). Part (5) is [Angeltveit and Lind
2017, Theorem A].

Example 2.5 The Eilenberg–Mac Lane spectrum HZ.p/ is an E1 form of BPh0i. The Adams summand
` is an E1 form of BPh1i by [Baker and Richter 2008, Corollary 1.4].

Notation 2.6 Let tmf1.3/ denote the E1 form of BPh2i constructed by Lawson and Naumann [2012]
at p D 2. Let tafD denote the E1 form of BPh2i constructed by Hill and Lawson [2010] at p D 3. Let
BPhni0 denote the E3 form of BPhni constructed by Hahn and Wilson [2022] at all primes.

Algebraic & Geometric Topology, Volume 24 (2024)
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2.2 Topological Hochschild homology mod .p; : : : ; vn/

The mod p homology of THH.BPhni/ has been calculated by Angeltveit and Rognes [2005, Theorem 5.12]
assuming that BPhni is an E3–ring spectrum. Their argument also applies to topological Hochschild
homology of any E3 form Bhni of BPhni at a prime p, as we now explain. By Proposition 2.4, the
linearization map (2-1) induces an isomorphism

H�.Bhni/Š

�
P . N�1; N�2; : : : /˝E. N�nC1; N�nC2; : : : / if p � 3;

P . N�2
1
; : : : ; N�2

nC1
; N�nC2; : : : / if p D 2;

with its image in A� as an A�–subcomodule algebra of A�. By [Brun et al. 2007, Theorem 3.4], the
spectrum THH.BhniIHFp/ is an E2–ring spectrum and the unit map

HFp! THH.BhniIHFp/

is a map of E2–ring spectra. Using [Brun et al. 2007, Section 3.3], the proof of [Angeltveit and Rognes
2005, Proposition 4.3] carries over mutatis mutandis and implies that the Bökstedt spectral sequence with
signature

E2
�;� D HH�;�.H�.Bhni/IA�/)H�.THH.BhniIHFp//

is a spectral sequence of A�–comodule algebras. As in [Angeltveit and Rognes 2005, Section 5.2], the
spectral sequence collapses at the E2–page if p D 2. If p � 3, one can use the map to the Bökstedt
spectral sequence with signature

E2
�;� D HH�;�.A�/)H�.THH.HFp//

to determine the differentials (cf [Angeltveit and Rognes 2005, Section 5.4]). Since Bhni is an E3–ring
spectrum, Dyer–Lashof operations are defined on H�.Bhni/ and H�.THH.BhniIHFp// in a range
that is sufficient to resolve the multiplicative extensions (see [Angeltveit and Rognes 2005, Proof of
Theorem 5.12]). We get an isomorphism of A�–comodule A�–algebras

(2-2) H�.THH.BhniIHFp//Š

�
A�˝E.� N�1; : : : ; � N�nC1/˝P .� N�nC1/ if p � 3;

A�˝E.� N�2
1
; : : : ; � N�2

nC1
/˝P .� N�nC2/ if p D 2:

Since � W H�.Bhni/ ! H�C1.THH.Bhni// ! H�C1.THH.BhniIHFp// is a comodule map and a
derivation, the A�–coaction of

H�.THH.BhniIHFp//

can be deduced from that of H�.Bhni/�A� (cf [Angeltveit and Rognes 2005, Proof of Theorem 5.12]):
for p � 3 the classes � N�i for 1� i � nC 1 are A�–comodule primitives and we have

(2-3) �.� N�nC1/D 1˝ � N�nC1C N�0˝ � N�nC1:

For p D 2 the classes � N�2
i for 1� i � nC 1 are A�–comodule primitives and we have

(2-4) �.� N�nC2/D 1˝ � N�nC2C
N�1˝ � N�

2
nC1:

Algebraic & Geometric Topology, Volume 24 (2024)
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Proposition 2.7 Let Bhni be an E3 form of BPhni. There is an isomorphism of graded Fp–algebras

(2-5) THH�.BhniIHFp/ŠE.�1; : : : ; �nC1/˝P .�nC1/;

where the degrees of the algebra generators are j�i j D 2pi � 1 for 1� i � nC 1 and j�nC1j D 2pnC1.

Proof Since THH.BhniIHFp/ is an HFp–module, the Hurewicz homomorphism induces an isomor-
phism between THH�.BhniIHFp/ and the subalgebra of comodule primitives in H�.THH.BhniIHFp//.
For 1� i � nC 1 we write �i WD � N�i if p � 3 and �i WD � N�

2
i if p D 2. We also define

�nC1 WD

�
� N�nC1� N�0� N�nC1 if p � 3;

� N�nC2�
N�1� N�

2
nC1

if p D 2:

Then it is clear that the subalgebra of H�.THH.BhniIHFp// consisting of comodule primitives is as
claimed.

3 Topological Hochschild homology mod .v1; : : : ; vn/

We begin by setting up the Bockstein spectral sequence. In order to ensure that this spectral sequence is
multiplicative, we compare it with the Adams spectral sequence.

3.1 Bockstein and Adams spectral sequences

Let Bhni be an E3 form of BPhni at the prime p which is equipped with a choice of generators vi in
degrees jvi j D 2pi � 2 for 0< i � n such that Bhni� DZ.p/Œv1; : : : ; vn�. Let v0 D p by convention. Let

k.i/D Bhni=.p; : : : ; vi�1; viC1; : : : ; vn/

be the E1 Bhni–algebra constructed in Proposition 2.4 (4) where k.0/DHZ.p/. We regard k.i/ as a
right Bhni ^Bhniop–module by restriction along the map

Bhni ^Bhniop
! Bhni ! k.i/:

For 0� i � n we have cofiber sequences of right Bhni ^Bhniop–modules

†jvi jk.i/
�vi
�! k.i/!HFp:

Applying the functor �^Bhni^Bhniop Bhni produces the cofiber sequence

†jvi j THH.BhniI k.i//! THH.BhniI k.i//! THH.BhniIHFp/:

Iterating this, we produce the tower

(3-1)

� � � // †2jvi jT .k.i//
�vi

//

��

†jvi jT .k.i//

��

�vi
// T .k.i//

��

†2jvi jT .HFp/ †jvi jT .HFp/ T .HFp/

where T .k.i// WD THH.BhniI k.i// and T .HFp/ WD THH.BhniIHFp/.

Algebraic & Geometric Topology, Volume 24 (2024)
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This yields an exact couple after applying homotopy groups and it produces the vi–Bockstein spectral
sequence with E1–page

(3-2) E
�;�
1
D THH.BhniIHFp/Œvi �:

Note that the fact that Bhni and k.i/ are connective and have homotopy groups that are degreewise
finitely generated Z.p/–modules implies that the homotopy groups of THH.BhniI k.i// are degreewise
finitely generated Z.p/–modules, too. It follows that THH�.BhniI k.i// has the form

THH�.BhniI k.i//Š
M

l

P .vi/f˛lg˚

M
k

Prk
.vi/fˇkg

for some classes ˛l and ˇk . Here, for i D 0, P .vi/ is defined to be Z.p/ and Pr .vi/ is Z=pi . We get that

THH�.BhniIHFp/Š
M

l

Fpfalg˚

M
k

Fpfbkg˚

M
k

Fpfckg;

where al and bk are the images of ˛l and ˇk under the map THH�.BhniI k.i//! THH�.BhniIHFp/,
and ck is a preimage of vrk�1

i ˇk under the map THH�.BhniIHFp/!†jvi jC1 THH�.Bh2iI k.i//. The
differentials in the spectral sequence are given as follows: The classes al and bk are infinite cycles. The
class ck survives to the Erk

–page and we have

drk
.ck/D v

rk

i bk :

The spectral sequence converges strongly to THH�.BhniIk.i// for 0< i�n and��.THH.BhniIHZ.p//p/

for i D 0. The cofibers in the tower (3-1) are HFp–module spectra.

We now relate the Bockstein spectral sequence to the Adams spectral sequence. In order to do this, we
show that the tower (3-1) is also an Adams resolution. For the definition of an Adams resolution, the
reader is referred to [Ravenel 1986, Definition 2.1.3]. In order to show that this tower is an Adams
resolution, it must be shown that the vertical morphisms

(3-3) †mjvi j THH.BhniI k.i//!†mjvi j THH.BhniIHFp/

induce monomorphisms in mod p homology. We have equivalences of spectra

THH.BhniIM /'M ^Bhni THH.Bhni/

for M 2 fHFp; k.i/ j 0� i � ng by [Hahn and Wilson 2022, Remark 6.1.4] and consequently there is an
Eilenberg–Moore spectral sequence

TorH�Bhni
�;� .H�.M /;H�.THH.Bhni///)H�.THH.BhniIM //

for each M 2 fHFp; k.i/ j 0� i �ng. Since H�.THH.Bhni// is a free H�.Bhni/–module by [Angeltveit
and Rognes 2005, Theorem 5.12], the Eilenberg–Moore spectral sequence collapses at the E2–page
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without room for differentials. Furthermore, the morphism (3-3) induces a morphism of Eilenberg–Moore
spectral sequences. Thus, we observe that the morphism (3-3) induces the map

(3-4) H�.k.i//˝H�.Bhni/H�.THH.Bhni//!A�˝H�.Bhni/H�.THH.Bhni//

in mod p homology where the map on the first factor is induced by the linearization map k.i/!HFp.
The map (3-4) is an injection. Since H�.THH.Bhni// is a free H�.Bhni/–module, the map (3-3) induces
an injection on mod p homology. Thus, we have shown the following proposition.

Proposition 3.1 The tower (3-1) is an Adams resolution.

Thus, the Adams spectral sequence for THH.BhniI k.i// agrees with the Bockstein spectral sequence
for 0 � i � n. By [Ravenel 1986, Theorem 2.3.3], we know that the Adams spectral sequence for
THH.BhniI k.i//, and consequently the Bockstein spectral sequence, is multiplicative for 0 � i � n

from the E2–page onwards. To see that the Adams spectral sequence is in fact multiplicative from the
E1–page onwards, we prove explicitly in the case i D 0 that the d1 differential satisfies the Leibniz rule
in Lemma 3.4. In the case i > 0, we can apply a change of rings isomorphism and compute explicitly
that the E2–page is

Ext�;�
E.Qi /�

.Fp;E.�1; : : : ; �nC1/˝P .�nC1//D P .vi/˝E.�1; : : : ; �nC1/˝P .�nC1/

using the coactions discussed previously on �i and �nC1. Consequently, when i > 0 there are no nontrivial
d1 differentials. Altogether, this proves the following corollary.

Corollary 3.2 The vi–Bockstein spectral sequence computing THH�.BhniI k.i// in the case i � 1 and
�� THH.BhniIHZ.p//p in the case i D 0 is multiplicative from the E1–page onwards.

3.2 Rational topological Hochschild homology

We use the HQ–based Bökstedt spectral sequence to compute

��.L0 THH.Bhni//DHQ� THH.Bhni/D �� THH.Bhni/˝Q

for 0 � n � 1 where Bh1i D BP and L0 D LH Q is the Bousfield localization at HQ. Since BP
and Bhni are E3–ring spectra, the HQ–based Bökstedt spectral sequences are strongly convergent
multiplicative spectral sequence with signature

E2
�� D HHQ

�;�.HQ�Bhni/)HQ� THH.Bhni/

for 0� n�1. Recall that the rational homology of Bhni is

HQ�Bhni Š PQ.v1; : : : ; vn/

with jvi j D 2pi � 2 for 1� i � n�1. Thus, the E2–term of the Bökstedt spectral sequence is

E2
�;� D PQ.v1; : : : ; vn/˝Q EQ.�v1; : : : ; �vn/
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where the bidegree of �vi is .1; 2.pi � 1// for 1 � i � n � 1. Since the E2–page is generated as a
Q–algebra by classes in Bökstedt filtration degree 0 and 1, the first quadrant spectral sequence collapses
at the E2–page and E2

�;� D E1�;�. There are no multiplicative extensions, because the E1–pages are
free graded-commutative Q–algebras. Therefore, we produce isomorphisms of graded Q–algebras

THH�.Bhni/˝QŠ PQ.v1; : : : ; vn/˝Q EQ.�v1; : : : ; �vn/

with j�vi j D 2pi � 1 for 1� i � n�1. It follows that there is an equivalence

L0 THH.Bhni/'
_

x2Bn

†jxjL0Bhni;

where Bn is a graded basis for EQ.�v1; : : : ; �vn/ as a graded Q–vector space, since L0 is a smashing
localization. We may also let n D 1 and in this case Bh1i D BP and B1 is a graded basis for
EQ.�v1; �v2; : : : / as a graded Q–vector space.

By Proposition 2.4, the linearization map BPhni ! HZ.p/ is an E3–ring spectrum map. Since the
localization map HZ.p/!HQ is an E1–ring spectrum map, we may infer that the Bökstedt spectral
sequence

E2
�� D HHQ

�;�.HQ�BhniIQ/)HQ� THH.BhniIHQ/

is a spectral sequence of Q–algebras by using [Brun et al. 2007, Section 3.3] to adapt the proof of
[Angeltveit and Rognes 2005, Proposition 4.3]. This spectral sequence collapses without extensions by
the same argument as before. All of these computations are functorial with respect to the map of E2–ring
spectra BP! Bhni from Proposition 2.4. This proves the following result.

Proposition 3.3 There is an isomorphism of graded Q–algebras

(3-5) THH�.BhniIHQ/ŠEQ.�v1; : : : ; �vn/

for all 0� n�1. The map

THH�.BPIHQ/! THH�.BhniIHQ/

sends �vi to �vi for 0� i � n.

3.3 The v0–Bockstein spectral sequence

In this section, we compute the v0–Bockstein spectral sequence with signature

(3-6) E
�;�
1
D THH�.BhniIHFp/Œv0�) THH�.BhniIHZ.p//p

where Bhni is an E3 form of BPhni. At odd primes, we must assume that a certain error term (3-7)
vanishes. This error term vanishes for any E4 form of BPhni at odd primes, for example tafD .

Lemma 3.4 There is a differential
d1.�nC1/ PD v0�nC1

in the v0–Bockstein spectral sequence (3-6) and the d1 differential satisfies the Leibniz rule.
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Proof We just give the argument for p � 3 to simplify the discussion since the argument for p D 2

is the same up to a change of symbols. Recall that the classes �nC1 and �nC1 in THH�.BhniIHFp/

correspond to the comodule primitives � N�nC1 � N�0� N�nC1 and � N�nC1 in H�.THH.BhniIHFp//. We
therefore have to show that � N�nC1� N�0� N�nC1 maps to � N�nC1 under the map ˇ1 that is given by applying
H�.�/ to

†�1 THH.BhniIHFp/! THH.BhniIHZ.p//! THH.BhniIHFp/:

As above, one sees that

H�.THH.BhniIHZ.p///ŠH�.HZ.p//˝E.� N�1; : : : ; � N�nC1/˝P .� N�nC1/:

The map
H�.THH.BhniIHZ.p///!H�.THH.BhniIHFp//

is induced by the inclusion H�.HZ.p//!H�.HFp/. Since the elements � N�nC1 and � N�nC1 are in the
image of this map, they map to zero under ˇ1. Since N�0 is not in the image, it maps to 1 under ˇ1 (up
to a unit). Since ˇ1 is a derivation, we get ˇ1.� N�nC1 � N�0� N�nC1/

:
D � N�nC1.2 Finally, we observe that

the d1–differential satisfies the Leibniz rule because the Hurewicz map is a ring map and the Bockstein
operator ˇ1 is a derivation.

To compute the differentials dr for r > 1 we use [May 1970, Proposition 6.8].

Lemma 3.5 [May 1970, Proposition 6.8] If dr�1.x/¤ 0 in the v0–Bockstein spectral sequence (3-6)
and jxj D 2q, then

dr .x
p/ PD v0xp�1dr�1.x/

if r > 2. If r D 2 and p D 2, then

dr .x
p/ PD v0xp�1dr�1.x/CQjxj.d1.x//:

If r D 2 and p > 2, then
dr .x

p/ PD v0xp�1dr�1.x/CE;

where

(3-7) ED

.p�1/=2X
jD1

j Œd1.x/x
j�1; d1.x/x

p�j�1�1

and Œ�;��1 denotes the Browder bracket.

Remark 3.6 The result above also appears in [Bruner 1977] in the context of the Adams spectral
sequence for an H1–ring spectrum (cf [Bruner et al. 1986, Chapter VI Theorems 1.1 and 1.2]).

We note that in order to apply [May 1970, Proposition 6.8], we need the[1–product on THH.BhniIHZ.p//

to satisfy the Hirsch formula, which states that �[1 c is a derivation. We observe that the [1–product is

2Note that the Bockstein operator ˇ1 is defined for any HZ–algebra R and it is a derivation at this level of generality by
[Browder 1961; Shipley 2007].
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a chain homotopy from x �y to y cof x, which corresponds to a braiding in a braided monoidal category.
From this perspective, the Hirsch formula corresponds to the first Hexagon axiom in the definition of a
braided monoidal category [Joyal and Street 1985, Section 1, B1]. It is well documented that there is
an E2–operad in small categories with the property that algebras over this operad are braided monoidal
categories [Dunn 1997]. The nth category in this operad is the translation groupoid Brn

R
†n of the

action of the pure Artin braid group Brn on †n via the canonical inclusion Brn ! †n. We consider
the corresponding operad B2 in HZ–modules by applying the nerve of the category Brn

R
†n and then

applying the functor HZ.p/^�. In other words, the nth chain complex in the operad in chain complexes
is B2.n/DHZ.p/^N.Brn

R
†n/C. The fact that THH.BhniIHZ.p// satisfies the Hirsch formula now

follows from two facts:

(1) algebras over the operad B2 in chain complexes satisfy the Hirsch formula (cf [Dunn 1997,
Theorem 1.6]), and

(2) using [May 1972, Construction 9.6], we replace the E2 HZ.p/–algebra THH.BhniIZ.p// with an
B2 algebra without changing the underlying spectrum.

We therefore tacitly replace our E2–ring spectrum THH.BhniIHZ.p// in HZ.p/–modules with an
algebra over the operad B2 throughout the remainder of the section. The authors thank T Lawson for
suggesting this argument.

We can consequently prove the following differential pattern.

Corollary 3.7 In the spectral sequence (3-6), there are differentials

(3-8) drC1.�
pr

nC1
/ PD vrC1

0
�

pr�1
nC1

�nC1

when p D 2 under the assumption that Bhni is an E3 form. Consequently, there are differentials

d�p.k/C1.�
k
nC1/ PD v

�p.k/C1

0
�k�1

nC1�nC1

where �p.k/ denotes the p–adic valuation of k. The same formulas hold for p � 3 when the error term
(3-7) vanishes , for example when Bhni is an E4 form of BPhni.

Proof There is a differential
d1.�nC1/ PD v0�nC1

by Lemma 3.4 for any prime p. We will argue that this differential implies the differentials (3-8) for
r � 1 by applying Lemma 3.5 and observing that the obstructions vanish.

When r D 1 and p > 2, the formula (3-8) holds whenever the error term (3-7) vanishes by Lemma 3.5.
The Browder bracket Œ�;��1 vanishes by [May 1970, Proposition 6.3(iii)] when Bhni is an E4 form
of BPhni since in that case THH.BhniIHZ.p// is an E3–ring spectrum. This completes the base step in
the induction for p > 2.
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If p D 2 and r D 1, Lemma 3.4 implies that the error term for d2.�
2
nC1

/ is Q2nC2

�nC1. At p D 2,

(3-9) Q2nC2

�nC1 DQ2nC2

.� N�2
nC1/D �.Q

2nC2

. N�2
nC1//D �..Q

2nC1
N�nC1/

2/D �. N�2
nC2/D 0

as we now explain. First, the operation Q2nC2

is defined on �nC1 because 2nC2 D j�nC1j C 1 and
Bhni is an E3 form of BPhni by assumption. The first equality in (3-9) holds by definition of �3, the
second equality holds because � commutes with Dyer–Lashof operations by [Angeltveit and Rognes
2005, Proposition 5.9], the third equality holds by [Bruner et al. 1986, Chapter III, Theorem 2.2], and
the last equality holds because � is a derivation in mod p homology, by [Angeltveit and Rognes 2005,
Proposition 5.10]. This completes the base step in the induction at p D 2.

Now let ˛ D �p.k/ and let p be any prime. We have that k D p˛j where p does not divide j . So, by
the Leibniz rule,

d˛C1.�
k
nC1/D d˛C1..�

p˛

nC1
/j /D j�

p˛.j�1/
nC1

d˛C1.�
p˛

nC1
/

D j v˛C1
0

�
p˛.j�1/
nC1

�
p˛�1
nC1

�nC1 D v
˛C1
0

�k�1
nC1�nC1

since j is not divisible by p and therefore is a unit in Fp.

We now argue that the classes �i for 1 � i � n are not p–torsion in THH.BhniIHZ.p//. Recall from
Proposition 3.3 that there is an isomorphism

THH�.BhniIHQ/ŠEQ.�v1; : : : ; �vn/:

We claim that the map
THH�.BhniIHZ.p//! THH�.BhniIHQ/

sends �i to p�1�vi 1� i � n. To see this, we note that there is a map of E2–ring spectra BP!Bhni by
Proposition 2.4 and this produces a commutative diagram

THH.BP/

��

// THH.BPIHQ/

��

THH.BhniIHZ.p// // THH.BhniIHQ/

of E1–ring spectra by [Brun et al. 2007]. By Proposition 3.3, we know �vi maps to �vi for 1� i � n

under the left vertical map. By [Rognes 2020, Theorem 1.1], we know that

�vi � p Q�i mod .vi j i � 1/

up to a unit for some classes Q�iD� ti . Note that the choice of generators vi in [Rognes 2020, Theorem 1.1]
differ from ours, but they are the same up to a unit and modulo decomposables. Therefore there isn’t a
difference up to a unit modulo .vi j i � 1/ after applying the derivation � . There is an isomorphism

THH�.BP/ŠEBP�.
Q�k j k � 1/

and we know that Q�i maps to �i under the map

THH�.BP/! THH�.BhniIZ.p//
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for 1� i � n by Zahler [1971] and this does not depend on our choice of E3 form of BPhni. Therefore,
the elements �1; : : : ; �n are not p–torsion and there are no further differentials in the v0–Bockstein
spectral sequence (3-6). We define

(3-10) �s WD

�
�s if 1� s � nC 1;

�s�1�
ps�.nC2/.p�1/
nC1

if s > nC 1:

Note that THH�.BhniIZ.p// is finite type so we can compute THH�.BhniIZ.p// from THH�.BhniIQ/
and THH�.BhniIQp/ using the arithmetic fracture square

THH�.BhniIZ.p// //

��

Q
p THH�.BhniIZp/

��

THH�.BhniIQ/ //
Q

p THH�.BhniIQp/

This proves the following theorem.

Theorem 3.8 Let Bhni be an arbitrary E3 form of BPhni and at p > 2 assume the error term (3-7)
vanishes. Then there is an isomorphism of graded Z.p/–modules

THH�.BhniIHZ.p//ŠEZ.p/.�1; : : : ; �n/˝ .Z.p/˚T n
0 /;

where T n
0

is a torsion Z.p/–module defined by

(3-11) T n
0 D

M
s�1

Z=ps
˝PZ.p/.�

ps

nC1
/˝Z.p/f�nCs�

jps�1

nC1
j 0� j � p� 2g:

4 Topological Hochschild homology mod .p; v2/

In this section, we compute topological Hochschild homology of Bh2i with coefficients in k.1/. First we
compute topological Hochschild homology with coefficients in K.1/.

4.1 K.1/–local topological Hochschild homology

In this section we assume that p� 3 and write Bh2i for an E3 form of BPh2i. Write k.1/DBh2i=.p; v2/

for the E1 Bh2i–algebra constructed as in Proposition 2.4 and let K.1/Dk.1/Œv�1
1
�. In order to determine

the topological Hochschild homology of Bh2i with coefficients in k.1/, we first determine

THH.Bh2iIK.1//D THH.Bh2iIK.1//:

To compute the multiplicative Bökstedt spectral sequence

E2
�;� D HHK.1/�

�;� .K.1/�Bh2i/)K.1/� THH.Bh2i/;

we first need to compute K.1/�Bh2i. To compute K.1/�Bh2i we first relate it to BP�BP. Recall that

BP�BPD BP�Œt1; t2; : : : �
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with jti j D 2pi � 2. By [Ravenel 1986, Theorem A2.2.6], the right unit �R is determined by

(4-1)
FX

i;j�0

ti�R.vj /
pi

D

FX
i;j�0

vi t
pi

j

where t0 D 1 and v0 D p.

Lemma 4.1 The composite map

K.1/�˝BP� BP�BP˝BP� Bh2i�! ��.K.1/^BP .BP^BP/^BP Bh2i/ŠK.1/�Bh2i

is an isomorphism.

Proof Consider the commutative diagram

(4-2)

��.K.1/^Bh2i/ // ��.K.1/^Bh2iŒv�1
1
�/

��.K.1/^BP .BP^BP/^BP Bh2i/ //

Š

OO

��.K.1/^BP .BP^BP/^BP Bh2iŒv�1
1
�/

Š

OO

K.1/�˝BP� BP�BP˝BP� Bh2i� //

OO

��.K.1//˝BP� BP�BP˝BP� Bh2i�Œv
�1
1
�

OO

Since Bh2iŒv�1
1
� is Landweber exact, the right-hand vertical map is an isomorphism. In (4-1) the F–

summands in degree � 2p� 2 are �R.v0/, t1�R.v0/
p, �R.v1/, v0, v1 and v0t1. Thus, �R.v1/D v1 in

K.1/�˝BP� BP�BPDK.1/�Œti j i � 1�, because p D 0 in this ring. In K.1/�˝BP� BP�BP˝BP� Bh2i�,

v1˝ 1˝ 1D 1˝ v1˝ 1D 1˝ �R.v1/˝ 1D 1˝ 1˝ v1

holds. This implies that the upper and lower horizontal map in the diagram are isomorphisms. It follows
that the left vertical map is an isomorphism too.

Notation 4.2 Let fi.v1; v2/ 2 Bh2i� D Z.p/Œv1; v2� be the image of vi under BP�! Bh2i�. Define

v0i WD vi �fi.v1; v2/ 2 BP�:

Then v0i is in the kernel of BP�! Bh2i� and BP� D Z.p/Œv1; v2; v
0
3
; : : : �.

By Lemma 4.1,

K.1/�Bh2i D .K.1/�˝BP� BP�Œt1; : : : �/˝Z.p/Œv1;v2;v
0
3
;:::�Z.p/Œv1; v2�

DK.1/�Œti j i � 1�=.�R.v
0
3/; : : : /:

Lemma 4.3 For i � 0 the element �R.viC1/ 2K.1/�Œti j i � 1� actually lies in K.1/�Œt1; : : : ; ti �. In fact ,

�R.viC1/D viC1C v1t
p
i � v

pi

1
ti Cgi ;

where gi 2K.1/�Œt1; : : : ; ti�1�.

Proof We will prove the claim in k.1/�Œti j i � 1�; from this the result will follow. The reason we do
this is because we will want to make degree arguments, and hence will want to avoid negative gradings.
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In BP�BP=.p/, we have �R.v1/D v1. It also follows from (4-1) that, for i � 0,

�R.viC1/� viC1C v1t
p
i � v

pi

1
ti mod .t1; t2; : : : ; ti�1/

in BP�BP=.p/. Thus, this congruence also holds in k.1/�Œti j i � 1�. Since �R.viC1/ lifts to BP�BP=.p/
we may make our degree arguments in k.1/�Œti j i � 1�. In the ring k.1/�Œti j i � 1�, we therefore have

�R.viC1/D viC1C v1t
p
i � v

pi

1
ti Cgi ;

where gi is a polynomial in the ideal generated by t1; t2; : : : ; ti�1. Thus far we have not excluded the
possibility that a monomial divisible by tj with j � i occurs as a summand of gi .

For j > i C 1, we can exclude this possibility for degree reasons. Indeed, �R.viC1/ is homogenous of
degree 2.piC1� 1/, and when j > i C 1 the element tj has degree greater than 2.piC1� 1/. Consider
the case when j D i C 1. To exclude this case, suppose there exists a monomial m in k.1/�Œt1; : : : ; ti �

which is a summand of gi and is divisible by tiC1. Then as the degrees of tiC1 and �R.viC1/ are the
same, it follows that mD atiC1 for some a 2 Fp . If a¤ 0, then this contradicts the assumption that gi is
in the ideal .t1; : : : ; ti�1/. This shows that gi 2 k.1/�Œt1; : : : ; ti �.

We now exclude the possibility that a monomial divisible by ti occurs as a summand of gi . Note that
the summands tk�R.vj /

pk

and vk t
pk

j in (4-1) both have degree 2.pkCj � 1/. Cross terms in (4-1) from
those summands with degree less than or equal than 2.piC1� 1/ could potentially produce a ti divisible
monomial as a summand of gi . On the right-hand side of (4-1), the possible summands are those of the
form vj t

pj

i . As this must have degree at most 2.piC1� 1/, we must have j D 0; 1. These correspond,
respectively, to v0ti D pti and v1t

p
i . But p D 0 in k.1/�, so the only one to consider is v1t

p
i . This has

degree exactly 2.piC1� 1/, and so a monomial divisible by this element does not occur in gi . In fact, it
has already been accounted for.

For the left-hand side, we similarly find that the only summand which could potentially produce a ti

divisible monomial as a summand of �R.viC1/ is

ti�R.v1/
pi

D tiv
pi

1
:

As this has exactly degree 2.piC1� 1/, it does not occur in gi because it cannot be written as an element
in the ideal .t1; : : : ; ti�1/ for degree reasons. In fact, this element has already been accounted for. Thus
there are no ti divisible monomials appearing as summands of gi . Consequently, we have shown that
gi 2 k.1/�Œt1; : : : ; ti�1� as desired.

Recall from the proof of Proposition 2.4 that

v0i D vi �fi.v1; v2/

for some fi 2 Z.p/Œx;y�. In light of the previous lemma, we conclude that the class

�R.v
0
i/D �R.vi/�fi.�R.v1/; �R.v2// 2K.1/�Œti j i � 1�

also lies in K.1/�Œt1; : : : ; ti�1� for each i � 3.
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Lemma 4.4 The maps of commutative K.1/�–algebras

K.1/�Œt1; : : : ; ti�1�=.�R.v
0
3/; : : : ; �R.v

0
i//!K.1/�Œt1; : : : ; ti �=.�R.v

0
3/; : : : ; �R.v

0
iC1//

induced by precomposing the canonical quotient map with the canonical inclusion map are étale for i � 2.

Proof For ease of notation, set

Ai WDK.1/�Œt1; : : : ; ti�1�=.�R.v
0
3/; : : : ; �R.v

0
i//

for i �2. Note that Lemma 4.3 allows us to make this definition. Note also that AiC1DAi Œti �=.�R.v
0
iC1

//.
We wish to show that the map

Ai!AiC1

is an étale morphism. To do this, it is enough to show that the partial derivative of �R.v
0
iC1

/ with respect
to ti is a unit in Ai . Write @i for the partial derivative with respect to ti . Since

v0iC1 D viC1�fiC1.v1; v2/

for some fiC1 2 Z.p/Œx;y�, we can infer that

�R.v
0
iC1/D �R.viC1/�fiC1.�R.v1/; �R.v2//:

In K.1/�Œt1; t2; : : : �, we know �R.v1/D v1 since p D 0 in K.1/�, and we have

�R.v2/D v1t
p
1
� v

p
1

t1:

Thus,
@i�R.v

0
iC1/D @i�R.viC1/

for i � 2 and it suffices to show that @i�R.viC1/ is a unit in Ai .

By Lemma 4.3, we have the formula

�R.viC1/D viC1C v1t
p
i � v

pi

1
ti Cgi ;

where gi 2K.1/�Œt1; : : : ; ti�1�. Thus, we conclude that

@i�R.viC1/D�v
pi

1
2K.1/�Œt1; : : : ; ti�1�:

Since vpi

1
is a unit in K.1/�, this shows that @i�R.viC1/ is a unit in Ai .

We continue to use the notation from the proof of the previous lemma. Since each map Ai !AiC1 is
étale, we may apply [Weibel and Geller 1991, Theorem 0.1] to conclude that

HHK.1/�
�;� .K.1/�Bh2i/D colim HHK.1/�

�;� .Ai/

D colim HHK.1/�
�;� .A2/˝A2

Ai

D HHK.1/�
�;� .A2/˝A2

K.1/�Bh2i

DE.� t1/˝K.1/�Bh2i:

Algebraic & Geometric Topology, Volume 24 (2024)



Topological Hochschild homology of truncated Brown–Peterson spectra, I 2527

Since this is concentrated in Bökstedt filtration 0 and 1, the Bökstedt spectral sequence collapses, yielding

E.� t1/˝K.1/�Bh2i ŠK.1/� THH.Bh2i/:

In the Hopf algebroid .BP�;BP�BP/, we have the formula

FX
i�0

�.ti/D

FX
i;j�0

ti ˝ t
pi

j

by [Ravenel 1986, Theorem A2.1.27]. Since the BP�BP–coaction on ti agrees with the coproduct, it is
determined by the formula

�.t1/D 1˝ t1C t1˝ 1:

Note that .K.1/�;K.1/�K.1// is a flat Hopf algebroid and K.1/�.X / is a left K.1/�K.1/–comodule
for every spectrum X . By naturality, we observe that t1 2 K.1/�Bh2i has the K.1/�K.1/–coaction
1˝ t1C t1˝ 1. Let

� WK.1/�Bh2i !K.1/�C1 THH.Bh2i/

be the usual � operator analogous to the one defined in [McClure and Staffeldt 1993]. By [Angeltveit and
Rognes 2005, Proposition 5.10], which also applies to our setting because the Hopf element �D 02K.1/�,
the operator � is a derivation. It is also clear that � is compatible with the K.1/�K.1/–comodule action
in the sense that

 .�x/D .1˝ �/. .x//;

where
 WK.1/� THH.Bh2i/!K.1/�K.1/˝K.1/� THH.Bh2i/:

It follows that � t1 2 K.1/� THH.Bh2i/ is a comodule primitive. Since there is a weak equivalence
THH.Bh2i;K.1//'K.1/^Bh2i THH.Bh2i/ by [Hahn and Wilson 2022, Remark 6.1.4], we may infer
from the Künneth isomorphism that there is an isomorphism of K.1/�–modules

K.1/� THH.Bh2iIK.1//ŠK.1/�K.1/˝E.� t1/;

where � t1 is a comodule primitive. Since THH.Bh2iIK.1// is a K.1/–module spectrum and K.1/� is a
graded field, we have that it splits as a sum of suspensions of K.1/ and that its homotopy is isomorphic to
the comodule primitives in K.1/� THH.Bh2iIK.1//. Thus, there is an isomorphism of K.1/�–modules

THH�.Bh2iIK.1//DK.1/�˝E.� t1/:

Since � t1 lifts to a class in Q�1 2 THH�.Bh2iI k.1// which projects onto �1 via the map

THH�.Bh2iI k.1//! THH�.Bh2iIHFp/

induced by the linearization map k.1/!HFp by [Zahler 1971], we simply rename this class �1.

In summary, we have proven the following theorem.
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Theorem 4.5 For Bh2i an E3 form of BPh2i and p � 3, the following hold :

(1) There is a weak equivalence

K.1/_†2p�1K.1/' THH.Bh2iIK.1//:

(2) The P .v1/–module THH�.Bh2iI k.1//, modulo v1–torsion , is freely generated by 1 and �1.

4.2 The v1–Bockstein spectral sequence

We compute THH�.Bh2iI k.1// using the spectral sequence (3-2) for nD 2 and i D 1. For s � 4, we
recursively define

�s WD �s�2�
ps�4.p�1/
3

:

For s � 1, we define

r.s; 1/ WD

�
psC1Cps�1C � � �Cp2 if s � 1 mod 2;

psC1Cps�1C � � �Cp3 if s � 0 mod 2:

Theorem 4.6 Let Bh2i be an E3 form of BPh2i and let p � 3. There is an isomorphism of P .v1/–
modules

THH�.Bh2iI k.1//ŠE.�1/˝ .P .v1/˚T 2
1 /;

where

(4-3) T 2
1 D

M
s�1

Pr.s;1/.v1/˝E.�sC2/˝P .�
ps

3
/˝Fpf�sC1�

jps�1

3
j 0� j � p� 2g:

Proof We prove by induction on s � 1 that

E
�;�
r.s;1/

DE.�1/˝
�
P .v1/˝E.�sC1; �sC2/˝P .�

ps�1

3
/˚Ms

�
with

Ms D

s�1M
tD1

Pr.t;1/.v1/˝E.�tC2/˝P .�
pt

3
/˝Fpf�tC1�

jpt�1

3
j 0� j � p� 2g;

that we have a differential dr.s;1/.�
ps�1

3
/ PD v

r.s;1/
1

�sC1, and that the classes �sC1 and �sC2 are infinite
cycles. This implies the statement.

By Theorem 4.5, the elements vs
1

are permanent cycles for every s, so the classes �2 and �3 cannot
support differentials and thus are infinite cycles. Note that we use p � 3 here; for pD 2 we would have a
possible differential d2.�3/ PD v

2
1
�1�2. Since the classes vn

1
�1 survive by Theorem 4.5, the only possible

differential on �3 is
dp2.�3/ PD v

p2

1
�2

for bidegree reasons. This differential must exist because otherwise the spectral sequence would collapse
at the E2–page by multiplicativity which would contradict Theorem 4.5. This proves the base step s D 1

of the induction. Now, assume that the statement holds for some s � 1. We then get

E
�;�
r.s;1/C1

DE.�1/˝ .P .v1/˝E.�sC2; �sC1�
ps�1.p�1/
3

/˝P .�
ps

3
/˚MsC1;
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and it suffices to show that �sC3 D �sC1�
ps�1.p�1/
3

is an infinite cycle and that

dr.sC1;1/.�
ps

3
/ PD v

r.sC1;1/
1

�sC2:

Note that the class �sC2 is an infinite cycle by the induction hypothesis. The class �sC3 is an infinite
cycle for bidegree reasons and because the classes vs

1
are permanent cycles. Note that we use p � 3 here;

for p D 2 and s even we would have a possible differential dr.s;1/Cp.�sC3/ PD v
r.s;1/Cp
1

�1�sC2. The
class �ps

3
must support a differential because otherwise the spectral sequence would collapse at this stage

which would contradict Theorem 4.5. Since the classes vn
1
�1 are permanent cycles,

dr.sC1;1/.�
ps

3
/ PD v

r.sC1;1/
1

�sC2

for bidegree reasons. Here note that vr.s;1/
1

�sC3 has the right topological degree, but the filtration degree
is too low for it to be the target of a differential on �ps

3
at the E`–page for ` > r.s; 1/. This completes

the induction step.

5 Topological Hochschild homology mod .p; v1/

In this section Bh2i is again an E3 form of BPh2i, eg tmf1.3/ at p D 2, tafD at p D 3, or BPhni0 at an
arbitrary prime p. We let k.2/ WDBh2i=.p; v1/ be the E1 Bh2i–algebra constructed in Proposition 2.4 and
let K.2/D k.2/Œv�1

2
�. The goal of this section is to compute the homotopy groups of THH.Bh2iIK.2//.

In Section 5.1, we first show that the unit map

K.2/! THH�.Bh2iIK.2//

is an equivalence. This implies that in the abutment of the v2–Bockstein spectral sequence

THH�.Bh2iIHFp/Œv2�) THH�.Bh2iI k.2//

all classes are v2–torsion besides the powers of v2. This allows us to compute this spectral sequence in
Section 5.2.

5.1 K.2/–local topological Hochschild homology

Considering a diagram analogous to (4-2), one sees that we have an isomorphism

K.2/�˝BP� BP�BP˝BP� Bh2i�! ��.K.2/^Bh2i/:

For this, note that

�R.v1/D v1 D 0 2K.2/�˝BP� BP�BPDK.2/�Œti j i � 1�

and therefore �R.v2/D v2. This implies that the equality

v2˝ 1˝ 1D 1˝ 1˝ v2

holds in the tensor product
K.2/�˝BP� BP�BP˝BP� Bh2i�:
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From this, we determine that

K.2/�Bh2i DK.2/�Œti j i � 1�=.�R.v
0
3/; : : : /:

In particular, this is a graded commutative K.2/�–algebra even at p D 2 where K.2/ is not homotopy
commutative (cf [Angeltveit and Rognes 2005, Lemma 8.9]).

Lemma 5.1 In K.2/�Œt1 j i � 1�,

�R.viC2/D viC2C v2t
p2

i � v
pi

2
ti Cgi

where gi 2K.2/�Œt1; : : : ; ti�1�.

Proof We argue similarly to Lemma 4.3 and make our arguments in the ring k.2/�Œti j i � 1�. The result
will follow from this. We have that

�R.viC2/� viC2C v2t
p2

i � v
pi

2
ti mod .t1; t2; : : : ; ti�1/;

in BP�BP=.p; v1/ (see [Ravenel 1986, Proof of Theorem 4.3.2]). Consequently, this formula also holds
in k.2/�Œti j i � 1�. This shows that in k.2/�Œti j i � 1�,

�R.viC2/D viC2C v2t
p2

i � v
pi

2
ti Cgi

for some gi in the ideal .t1; t2; : : : ; ti�1/. Since �R.viC2/ lifts to the graded abelian group BP�BP=.p; v1/,
we may also make degree arguments in k.2/�Œti j i � 1�.

Note that for degree reasons, there can be no instance of a tj with j > iC2 dividing a monomial summand
of gi . We can also exclude the possibility of tiC2 dividing a monomial in gi . Indeed, a monomial in gi

divisible by tiC2 would necessarily be just tiC2 itself, contradicting that gi is in the ideal .t1; : : : ; ti�1/.
This shows that

�R.viC2/ 2 k.2/�Œt1; : : : ; tiC1�:

for all i � 0.

We now exclude the possibility that tiC1 divides a monomial in �R.viC2/. To do this, we note that a
tiC1 divisible monomial in gi could arise from cross terms involving the universal p–typical formal
group law and the formula (4-1). Note that the only terms to consider on the right-hand side are v0tiC1

and v1t
p
iC1

, which are 0 since p D v1 D 0 2 k.2/�. On the left-hand side, we only need to consider the
terms tk�R.vjC2/

pk

of degree less than or equal to 2.piC2�1/. This immediately implies that j � i . For
k D i C 1, the term of smallest degree is tiC1�R.v2/

piC1

. The degree of this term is 2.piC3� 1/, which
is too large. Thus we can exclude the possibility that k D i C 1. Now as j � i and since we have shown
that �R.vjC2/ 2 k.2/�Œt1; : : : ; tjC1�, we see that none of the relevant terms on the left-hand side can
contribute a tiC1 divisible monomial summand to �R.viC2/. Thus we have that gi 2K.2/�Œt1; : : : ; ti �.

We are left to consider whether a ti divisible monomial could occur as a summand of gi via the cross
terms coming from the formal group law F in (4-1). On the right-hand side, we only need to consider the
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term v2t
p2

i . Here we use the fact that v1 D 0 2 k.2/�. This term has already been accounted for and is
not in gi . On the left-hand side, since we have shown that �R.vjC2/ 2 k.2/�Œt1; : : : ; tj �, the only term
we need to consider is tiv

pi

2
. Again, we have already considered this term. We can therefore conclude

that gi 2 k.2/�Œt1; : : : ; ti�1�.

Definition 5.2 We define commutative K.2/�–algebras

C0 WDK.2/�;

Ci WD Ci�1Œti �=�R.v
0
iC2/; i � 1;

and write hi W Ci�1! Ci for the map of commutative K.2/�–algebras defined as the composite of the
canonical inclusion map Ci�1!Ci�1Œti � with the canonical quotient map Ci�1Œti �!Ci�1Œti �=�R.v

0
iC2

/.

Thus we have
Ci DK.2/�Œt1; : : : ; ti �=.�R.v

0
3/; : : : ; �R.v

0
iC2//

for i � 1 and
K.2/�Bh2i D colim

i
Ci :

We proceed in the same fashion as in Section 4.1 and argue that hi W Ci�1! Ci is étale by examining the
derivative of �R.v

0
iC2

/ with respect to ti .

Lemma 5.3 The map of commutative rings hi W Ci�1! Ci from Definition 5.2 is étale.

Proof We have that
v0iC2 D viC2�fiC2.v1; v2/D viC2�fiC2.0; v2/:

Hence,
�R.v

0
iC2/D �R.viC2/�fiC2.0; v2/:

Let @i denote the partial derivative with respect to ti . Since Ci D Ci�1Œti �=.�R.v
0
iC2

//, to show the
morphism Ci�1! Ci is étale, it is enough to show that @i�R.v

0
iC2

/ is a unit. We have

@i�R.v
0
iC2/D @i�R.viC2/� @ifiC2.0; v2/D @i�R.viC2/:

From Lemma 5.1, we find that @igi D 0, and hence

@i�R.viC2/D @i.viC2C v2t
p2

i � v
pi

2
ti Cgi/D�v

pi

2

which is a unit.

Since each map Ci ! CiC1 is étale, we may apply [Weibel and Geller 1991, Theorem 0.1] to conclude
that the unit map

(5-1) K.2/�Bh2i ! HHK.2/�
�;� .K.2/�Bh2i/
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is an isomorphism of graded commutative Fp–algebras (even at p D 2). The unit map

K.2/�Bh2i !K.2/� THH.Bh2i/

is the edge homomorphism in the Bökstedt spectral sequence

E2
�;� D HHK.2/�

�;� .K.2/�Bh2i/)K.2/� THH.Bh2i/

and the input is concentrated in Bökstedt filtration zero by (5-1), so the spectral sequence collapses
without extensions yielding an isomorphism

K.2/�Bh2i ŠK.2/� THH.Bh2i/

of graded commutative Fp–algebras (even at the prime p D 2).

By the Künneth isomorphism, the map

K.2/�K.2/!K.2/� THH.Bh2i;K.2//

is an isomorphism as well. Since both K.2/ and THH.Bh2iIK.2// are K.2/–local, we obtain the
following result.

Corollary 5.4 The unit map
� WK.2/! THH.Bh2iIK.2//

is an equivalence. Consequently , the P .v2/–module THH�.Bh2iI k.2// modulo v2–torsion is freely
generated by 1.

5.2 The v2–Bockstein spectral sequence

Recall from Section 3.1 that the tower of spectra used to build the Bockstein spectral sequence (3-1) can
be identified as an Adams tower and therefore the Bockstein spectral sequence is multiplicative.

For s � 4, recursively define
�s WD �s�3�

ps�4.p�1/
3

:

For s � 1, set

r.s; 2/D

8<:
psCps�3C � � �Cp4Cp if s � 1 mod 3;

psCps�3C � � �Cp5Cp2 if s � 2 mod 3;

psCps�3C � � �Cp6Cp3 if s � 0 mod 3:

Theorem 5.5 Let Bh2i be an E3 form of BPh2i. There is an isomorphism of P .v2/–modules

THH�.Bh2iI k.2//Š P .v2/˚T 2
2 ;

where

(5-2) T 2
2 Š

M
s�1

Pr.s;2/.v2/˝E.�sC1; �sC2/˝P .�
ps

3
/˝Fpf�s�

jps�1

3
j 0� j � p� 2g:
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Proof We prove by induction on s � 1 that

E
�;�
r.s;2/

D P .v2/˝E.�s; �sC1; �sC2/˝P .�
ps�1

3
/˚Ms

with

Ms D

s�1M
tD1

Pr.t;2/.v2/˝E.�tC1; �tC2/˝P .�
pt

3
/˝Fpf�t�

jpt�1

3
j 0� j � p� 2g;

that �s , �sC1 and �sC2 are infinite cycles, and that dr.s;2/.�
ps�1

3
/ PD v

r.s;2/
2

�s . This implies the statement.

Since the vn
2

survive to the E1–page by Corollary 5.4, the classes �1, �2 and �3 are infinite cycles. The
class �3 needs to support a differential, because otherwise the spectral sequence would collapse at the
E2–page by multiplicativity, which is a contradiction to Corollary 5.4. For bidegree reasons the only
possibility is

dp.�3/ PD v
p
2
�1:

This proves the base step s D 1 of the induction. We now assume that the statement holds for some s � 1.
We then get

E
�;�
r.s;2/C1

D P .v2/˝E.�sC1; �sC2; �s�
ps�1.p�1/
3

/˝P .�
ps

3
/˚MsC1:

It now suffices to show that �sC3 D �s�
ps�1.p�1/
3

is an infinite cycle and that we have a differential
dr.sC1;2/.�

ps

3
/ PD v

r.sC1;2/
2

�sC1. We cannot have a differential of the form

dr .�sC3/ PD v
n
2�sC1�sC2

for degree reasons, so �sC3 is an infinite cycle. The class �ps

3
must support a differential, because

otherwise the spectral sequence would collapse at this stage, which is a contradiction to Corollary 5.4.
For bidegree reasons the only possibility is

dr.sC1;2/.�
ps

3
/ PD v

r.sC1;2/
2

�sC1:

Note that vr.s;2/
2

�sC3 has the right topological degree, but a too small filtration degree to be the target of
a differential on �ps

3
. This completes the inductive step.

We end with a conjectural answer for THH.BPhniI k.m// for all 1�m� n.

Conjecture 5.6 Suppose 1�m� n. Let Bhni be an E3 form of BPhni. There is an isomorphism

THH�.BhniI k.m//ŠE.�1; : : : ; �n�m/˝ .P .vm/˚T n
m/;

where

T n
m D

M
s�1

Prn.s;m/.vm/˝E.�n�mCsC1; : : : ; �nCs/˝P .�
ps

nC1
/˝Fpf�n�mCs�

p`ps�1

nC1
j 0� `� p�2g

and by convention E.�1; : : : ; �n�m/D Fp when nDm. The sequence of integers rn.s;m/ is defined by

rn.s;m/D pn�mCs
Cpn�mCs�.mC1/

C � � �CpnCj�m;

where j is the unique element in f1; : : : ;mC 1g such that s � j mod mC 1.
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Here the class �s is defined recursively by the formula

�s WD �s�.mC1/�
ps�.nC2/.p�1/
nC1

for s � nC 2 and we name the classes in the abutment that are not divisible by vn by their projection to
THH�.BhniIHFp/.

Remark 5.7 When m D 1 and n D 2, we observe that this is consistent with Theorem 4.6 where
r2.s; 1/D r.s; 1/. When mD 2 and nD 2, we observe that this is consistent with Theorem 5.5 where
r2.s; 2/D r.s; 2/.
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