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Points of quantum SLn coming from quantum snakes

DANIEL C DOUGLAS

We show that the quantized Fock–Goncharov monodromy matrices satisfy the relations of the quantum
special linear group SLqn. The proof employs a quantum version of the technology of Fock and Goncharov,
called snakes. This relationship between higher Teichmüller theory and quantum group theory is integral
to the construction of an SLn–quantum trace map for knots in thickened surfaces, partially developed in
previous work of the author.

20G42, 32G15, 57K31

Introduction

For a finitely generated group � and a suitable Lie group G, a primary object of study in low-dimensional
geometry and topology is the G–character variety

RG.�/D f� W �!Gg ==G

consisting of group homomorphisms � from � to G, considered up to conjugation. Here the quotient
is taken in the algebraic geometric sense of geometric invariant theory; see Mumford, Fogarty, and
Kirwan [25]. Character varieties can be explored using a wide variety of mathematical skill sets. Some
examples include the Higgs bundle approach of Hitchin [18], the dynamics approach of Labourie [23],
and the representation theory approach of Fock and Goncharov [9].

In the case where the group � D �1.S/ is the fundamental group of a punctured surface S of finite
topological type, and where the Lie group G D SLn.C/ is the special linear group, we are interested
in studying a relationship between two competing deformation quantizations of the character variety
RSLn.C/.S/ WDRSLn.C/.�1.S//. Here a deformation quantization fRqgq of a Poisson space R is a family
of noncommutative algebras Rq parametrized by a nonzero complex parameter q D e2�i„, such that the
lack of commutativity in Rq is infinitesimally measured in the classical limit „! 0 by the Poisson bracket
of the space R. In the case where RDRSLn.C/.S/ is the character variety, the bracket is provided by the
Goldman Poisson structure on RSLn.C/.S/ [15; 16].

The first quantization of the character variety is the SLn.C/–skein algebra S
q
n.S/ of the surface S; see

Bullock, Frohman, and Kania-Bartoszyńska [3], Kuperberg [22], Przytycki [27], Sikora [30], Turaev [32],
and Witten [33]. The skein algebra is motivated by the classical algebraic geometric approach to studying
the character variety RSLn.C/.S/ via its algebra of regular functions CŒRSLn.C/.S/�. An example of
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2538 Daniel C Douglas

a regular function is the trace function Tr W RSLn.C/.S/! C associated to a closed curve  2 �1.S/
sending a representation � W �1.S/! SLn.C/ to the trace Tr.�.// 2C of the matrix �./ 2 SLn.C/. A
theorem of classical invariant theory, due to Procesi [26], implies that the trace functions Tr generate the
algebra of functions CŒRSLn.C/.S/� as an algebra. According to the philosophy of Turaev and Witten,
quantizations of the character variety should be of a 3–dimensional nature. Indeed, knots (or links) K in
the thickened surface S� .0; 1/ represent elements of the skein algebra S

q
n.S/. The skein algebra S

q
n.S/

has the advantage of being natural, but can be difficult to study directly.

The second quantization of the SLn.C/–character variety is the Fock–Goncharov quantum space T
q
n .S/;

see Fock and Goncharov [12], Fock and Chekhov [7], and Kashaev [20]. At the classical level, Fock
and Goncharov [9] introduced a framed version RPSLn.C/.S/fr (called the X–space) of the PSLn.C/–
character variety, which, roughly speaking, consists of representations � W �1.S/! PSLn.C/ equipped
with additional linear algebraic data attached to the punctures of S. Associated to each ideal triangulation
� of the punctured surface S is a �–coordinate chart U� for RPSLn.C/.S/fr parametrized by N nonzero
complex coordinates X1; X2; : : : ; XN where the integer N depends only on the topology of the surface S
and the rank of the Lie group SLn.C/. These coordinates Xi are computed by taking various generalized
cross-ratios of configurations of n–dimensional flags attached to the punctures of S. When written in
terms of these coordinates Xi , the trace functions Tr D Tr .X

˙1=n
i / associated to closed curves 

take the form of Laurent polynomials in n–roots of the variables Xi . At the quantum level, there are
q–deformed versions Xqi of these coordinates, which no longer commute but q–commute with each other.
The quantized character variety T

q
n .S/ is obtained by gluing together quantum tori Tqn .�/, including

one for each triangulation � D � consisting of Laurent polynomials in the quantized Fock–Goncharov
coordinates Xqi . The quantum character variety T

q
n .S/ has the advantage of being easier to work with

than the skein algebra S
q
n.S/, however it is less intrinsic.

We are interested in studying q–deformed versions Trq of the trace functions Tr , associating to a closed
curve  a Laurent polynomial in the quantized Fock–Goncharov coordinates Xqi . Turaev and Witten’s
philosophy leads us from the 2–dimensional setting of curves  on the surface S to the 3–dimensional
setting of knots K in the thickened surface S� .0; 1/. In the case of SL2.C/, such a quantum trace map
was developed by Bonahon and Wong [1] as an injective algebra homomorphism

Trq.�/ W Sq2.S/ ,! T
q
2 .�/

from the SL2.C/–skein algebra to (the �–quantum torus of) the quantized SL2.C/–character variety.
Their construction is “by hand”, but is implicitly related to the theory of the quantum group Uq.sl2/ or,
more precisely, of its Hopf dual SLq2; see Kassel [21]. Developing a quantum trace map for SLn.C/
requires a more conceptual approach, making explicit this connection between higher Teichmüller theory
and quantum group theory. In a companion paper [6], we make significant progress in this direction. Our
goal here is to establish a local building block result that is essential to understanding the quantum trace
map more conceptually.
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Whereas the classical trace Tr .�/ 2 C is a number obtained by evaluating the trace of an SLn.C/–
monodromy �./ taken along a curve  in the surface S, the quantum trace TrK.X

q
i / 2 T

q
n .�/ is a

Laurent polynomial obtained from a quantum monodromy associated to a knot K in the thickened surface
S� .0; 1/. This quantum monodromy is essentially constructed by chopping the knot K into little pieces,
namely the components C of K\ .�k � .0; 1// where the �k are the triangles of the ideal triangulation �,
and associating to each piece C a local quantum monodromy matrix M

q
C 2 Mn.T

q
n .�k//. Here the

coefficients of the matrix M
q
C lie in a local quantum torus Tqn .�k/ associated to the triangle �k , closely

associated to the quantum torus Tqn .�/.

Theorem When C is an arc on the corner of a triangle �k , the Fock–Goncharov quantum matrix
M
q
C 2Mn.T

q
n .�k// is a T

q
n .�k/–point of the quantum special linear group SLqn. In other words , each

such matrix defines an algebra homomorphism

'.M
q
C / W SLqn! Tqn .�k/

by the property that the n2–many generators of the algebra SLqn are sent to the corresponding n2–many
entries of the matrix M

q
C (see Section 2.4.1).

See Theorem 2.8 (and Douglas [5, Theorem 3.10]). Our proof uses a quantum version of the technology
of Fock and Goncharov, called snakes.

The main property of the quantum trace TrK.X
q
i / 2 T

q
n .�/ is its invariance under isotopy of the knot K.

This is equivalent to invariance under a handful of local Reidemeister-like moves in the thickened
triangulated surface. These topological moves are independent of n, and can be seen as the oriented
versions of the moves depicted in [1, Figures 15–19]. In particular, due to their local nature, these
moves have a purely algebraic formulation as equalities involving n� n matrices with coefficients in
the quantum torus. Our main result is essentially equivalent to the algebraic formulation of one of these
moves, specifically that depicted in [1, Figure 17]; see also [6, Section 6].

For an independent study of these same algebraic identities underlying the isotopy invariance of the
quantum trace map, in the context of integrable systems, see Chekhov and Shapiro [4, Theorems 2.12
and 2.14] (which, in particular, reproduces our main result). This was motivated in part by Schrader
and Shapiro [28; 29]; see also Fock and Goncharov [8], Gekhtman, Shapiro, and Vainshtein [14],
and Goncharov and Shen [17]. Our work complements that of [4] by focusing attention on a single
isotopy move, and conceptualizing the associated quantum phenomenon as arising naturally from the
underlying geometry.
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1 Fock–Goncharov snakes

We recall some of the classical (as opposed to the quantum) geometric theory of Fock and Goncharov [9],
underlying the quantum theory discussed later on; see also [10; 11]. This section is a condensed version
of [5, Chapter 2]. For other references on Fock–Goncharov coordinates and snakes see [19; 13; 24].
When nD 2, these coordinates date back to Thurston’s shearing coordinates for Teichmüller space [31].

Let n 2 Z for n> 2, and V DCn be the standard n–dimensional complex vector space.

1.1 Generic configurations of flags and Fock–Goncharov invariants

A (complete) flag E in V is a collection of linear subspaces E.a/ � V indexed by 06 a 6 n, satisfying
the property that each subspace E.a/ is properly contained in the subspace E.aC1/. In particular, E.a/ is
a–dimensional, E.0/ D f0g, and E.n/ D V . Denote the space of flags by Flag.V /.

1.1.1 Generic triples and quadruples of flags There are at least two notions of genericity for a
configuration of flags. We will use just one of them, the maximum span property; for a complementary
notion, the minimum intersection property see [5, Section 2.10].

Definition 1.1 A flag tuple .E1; E2; : : : ; Ek/ 2 Flag.V /k satisfies the maximum span property if either
of the following equivalent conditions are satisfied: for all 06 a1; a2; : : : ; ak 6 n,

(1) for all a1Ca2C� � �Cak D n, the sum E
.a1/
1 CE

.a2/
2 C� � �CE

.ak/

k
DE

.a1/
1 ˚E

.a2/
2 ˚� � �˚E

.ak/

k

is direct, and thus the sum is V , or

(2) the dimension formula dim.E.a1/1 CE
.a2/
2 C � � �CE

.ak/

k
/ equals min.a1C a2C � � �C ak; n/.

In the case nD 3, such a flag triple .E; F;G/ 2 Flag.V /3 is called a maximum span flag triple, and in
the case nD 4, such a flag quadruple .E; F;G;H/ 2 Flag.V /4 is called a maximum span flag quadruple.

1.1.2 Discrete triangle The discrete n–triangle ‚n � Z3
>0 is defined by

‚n D f.a; b; c/ 2 Z3>0 j aC bC c D ng:

See Figure 1. The interior int.‚n/�‚n of the discrete triangle is defined by

int.‚n/D f.a; b; c/ 2‚n j a; b; c > 0g:

An element � 2‚n is called a vertex of‚n. Put �.‚n/Df.n; 0; 0/; .0; n; 0/; .0; 0; n/g�‚n. An element
� 2 �.‚n/ is called a corner vertex of ‚n.

1.1.3 Fock–Goncharov triangle and edge invariants For a maximum span triple of flags .E; F;G/ 2
Flag.V /3, Fock and Goncharov assigned to each interior point .a; b; c/ 2 int.‚n/ a triangle invariant
�abc.E; F;G/ 2C�f0g, defined by the formula

�abc.E; F;G/D
e.a�1/ ^f .bC1/ ^g.c/

e.aC1/ ^f .b�1/ ^g.c/

e.a/ ^f .b�1/ ^g.cC1/

e.a/ ^f .bC1/ ^g.c�1/

e.aC1/ ^f .b/ ^g.c�1/

e.a�1/ ^f .b/ ^g.cC1/
2C�f0g:
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C

C

F‚n
.0; n; 0/

C�

�

�

GE

.1; n� 1; 0/

.n� 1; 1; 0/
.a; b; c/

.0; 1; n� 1/

.0; 0; n/.1; 0; n� 1/.n� 1; 0; 1/.n; 0; 0/

.0; n� 1; 1/

Figure 1: Discrete triangle, and triangle invariants for a generic flag triple.

Here e.a
0/, f .b

0/, and g.c
0/ are choices of generators for the exterior powers ƒa

0

.E.a
0// � ƒa

0

.V /,
ƒb
0

.F .b
0//�ƒb

0

.V /, and ƒc
0

.G.c
0//�ƒc

0

.V /, respectively. The maximum span property ensures that
each wedge product e.a

0/ ^f .b
0/ ^g.c

0/ is nonzero in ƒa
0Cb0Cc0.V /Dƒn.V /ŠC. Since there are the

same number of terms in the numerator as the denominator, �abc.E; F;G/ is independent of this choice
of isomorphism ƒn.V / Š C. Since each generator e.a

0/, f .b
0/, and g.c

0/ appears exactly once in the
numerator and denominator, �abc.E; F;G/ is independent of the choices of these generators.

The six numerators and denominators appearing in the expression defining �abc.E; F;G/ can be visualized
as the vertices of a hexagon in ‚n centered at .a; b; c/; see Figure 1.

Similarly, for a maximum span quadruple of flags .E;G; F; F 0/ 2 Flag.V /4, Fock and Goncharov
assigned to each integer 16 j 6 n� 1 an edge invariant �j .E;G; F; F 0/ by

�j .E;G; F; F
0/D�

e.j / ^g.n�j�1/ ^f .1/

e.j / ^g.n�j�1/ ^f 0.1/

e.j�1/ ^g.n�j / ^f 0.1/

e.j�1/ ^g.n�j / ^f .1/
2C�f0g:

The four numerators and denominators appearing in the expression defining �j .E;G; F; F 0/ can be
visualized as the vertices of a square, which crosses the “common edge” between two “adjacent” discrete
triangles ‚n.G; F;E/ and ‚n.E; F 0; G/; see Figure 2.

‚n
F 0

� C

GE

F

n� 1 j 1

C �

.0; 0; n/

.n; 0; 0/.0; 0; n/

.n; 0; 0/

Figure 2: Edge invariants for a generic flag quadruple.
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1.1.4 Action of PGL.V / on generic flag triples The action of the general linear group GL.V / on the
vector space V induces an action of the projective linear group PGL.V / on the space Flag.V / of flags.
The corresponding diagonal action of PGL.V / on Flag.V /n restricts to generic configurations of flags.
By an elementary argument, for nD 2 this diagonal action on generic flag pairs .E; F / has a single orbit
in Flag.V /2.

Theorem 1.2 (Fock and Goncharov) Two maximum span flag triples .E; F;G/ and .E 0; F 0; G0/ have
the same triangle invariants , namely �abc.E; F;G/ D �abc.E 0; F 0; G0/ 2 C � f0g for every .a; b; c/ 2
int.‚n/, if and only if there exists ' 2 PGL.V / such that .'E; 'F; 'G/D .E 0; F 0; G0/ 2 Flag.V /3.

Conversely , for each choice of nonzero complex numbers xabc 2C�f0g assigned to the interior points
.a; b; c/ 2 int.‚n/, there exists a maximum span flag triple .E; F;G/ such that �abc.E; F;G/D xabc
for all .a; b; c/.

Proof See [9, Section 9]. The proof uses the concept of snakes, due to Fock and Goncharov. For a
sketch of the proof and some examples see [5, Section 2.19].

1.2 Snakes and projective bases

1.2.1 Snakes Snakes are combinatorial objects associated to the .n�1/–discrete triangle ‚n�1; see
Section 1.1.2. In contrast to ‚n, we denote the coordinates of a vertex � 2 ‚n�1 by � D .˛; ˇ; /

corresponding to solutions ˛CˇC  D n� 1 for ˛; ˇ;  2 Z>0.

Definition 1.3 A snake-head � is a fixed corner vertex of the .n�1/–discrete triangle

� 2 f.n� 1; 0; 0/; .0; n� 1; 0/; .0; 0; n� 1/g D �.‚n�1/�‚n�1:

Remark 1.4 In a moment, we will define a snake. The most general definition involves choosing a snake-
head � 2 �.‚n�1/. For simplicity, we define a snake only in the case �D .n�1; 0; 0/. The definition for
other choices of snake-heads follows by triangular symmetry. We will usually take �D .n� 1; 0; 0/ and
will alert the reader if otherwise.

Definition 1.5 A left n–snake (for the snake-head � D .n� 1; 0; 0/ 2 �.‚n�1/), or just snake, � is
an ordered list � D .�1; �2; : : : ; �n/ 2 .‚n�1/n of n–many vertices �k D .˛k; ˇk; k/ in the discrete
triangle ‚n�1, called snake-vertices, satisfying

˛k D k� 1; ˇk > ˇkC1; and k > kC1 for k D 1; 2; : : : ; n:

See Figure 3. On the right-hand side, we show a snake � D .�k/k in the case n D 5 (where we have
taken some artistic license to assist the reader in locating the snake’s head and tail; in Section 3, we will
find it useful to split the snake in half down its length, as illustrated in Figure 15). On the left-hand side,
we show how the snake-vertices �k 2‚n�1 can be pictured as small upward-facing triangles � in the
n–discrete triangle ‚n.
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Points of quantum SLn coming from quantum snakes 2543

‚n
‚n�1

�

�D �n D .n� 1; 0; 0/

�1

�2

.0; n� 1; 0/

.0; 0; n� 1/

.0; 0; n/

.0; n; 0/

.n; 0; 0/

Figure 3: Snake.

1.2.2 Line decomposition of V � associated to a generic triple of flags and a snake Let V � D
flinear map V !Cg. For a subspace W � V , define W ? D fu 2 V � j u.w/D 0 for all w 2W g. A line
in a vector space V 0 is a 1–dimensional subspace.

Fix a maximum span triple .E; F;G/ 2 Flag.V /3. For any vertex � D .˛; ˇ; / 2‚n�1,

dim..E.˛/˚F .ˇ/˚G.//?/D 1

by the maximum span property, since ˛CˇC  D n� 1. Consequently, the subspace

L.˛;ˇ;/ WD .E
.˛/
˚F .ˇ/˚G.//? � V �

is a line for all vertices .˛; ˇ; / 2‚n�1.

If in addition we are given a snake � D .�k/k , then we may consider the n–many lines

L�k D L.˛k ;ˇk ;k/ � V
� for k D 1; : : : ; n;

where �k D .˛k; ˇk; k/ 2‚n�1. By genericity, we obtain a direct sum line decomposition

V � D

nM
kD1

L�k :

1.2.3 Projective basis of V � associated to a generic triple of flags and a snake Given a generic flag
triple .E; F;G/ and a snake � , Fock and Goncharov construct in addition a projective basis ŒU� of V �

adapted to the associated line decomposition. Here UD fu1; u2; : : : ; ung is a linear basis of V � such
that uk 2 L�k for all k, and the projective basis ŒU� is the equivalence class of U under the relation
fu1; u2; : : : ; ung � f�u1; �u2; : : : ; �ung for all �¤ 0.

Put �k D .˛k; ˇk; k/. We begin by choosing a covector un in the line L�n � V
�, called a normalization.

Having defined covectors un; un�1; : : : ; ukC1, we will define a covector

uk 2 L�k D .E
.˛k/˚F .ˇk/˚G.k//? � V �:

Algebraic & Geometric Topology, Volume 24 (2024)
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‚n�1

F

E G

�1

� left
kC1

�
right
kC1
D �k

�kC1

C

�

�D �n

Figure 4: Three coplanar lines involved in the definition of a projective basis. For the meaning of
theC and � signs see Definition 1.6.

By the definition of snakes, we see that given �kC1 there are only two possibilities for �k , denoted by
� left
kC1

and � right
kC1

:

� left
kC1 D .˛

left
kC1; ˇ

left
kC1; 

left
kC1/ for ˛left

kC1 D k� 1; ˇleft
kC1 D ˇkC1C 1;  left

kC1 D kC1;

�
right
kC1
D .˛

right
kC1

; ˇ
right
kC1

; 
right
kC1

/ for ˛
right
kC1
D k� 1; ˇ

right
kC1
D ˇkC1; 

right
kC1
D kC1C 1:

See Figure 4, in which �k D �
right
kC1

. Thus the lines L� left
kC1

and L
�

right
kC1

can be written

L� left
kC1
D .E.k�1/˚F .ˇkC1C1/˚G.kC1//? � V �;

L
�

right
kC1

D .E.k�1/˚F .ˇkC1/˚G.kC1C1//? � V �:

It follows by the maximum span property that the three lines L�kC1 , L� left
kC1

, and L
�

right
kC1

in V � are distinct
and coplanar. Specifically, they lie in the plane

.E.k�1/˚F .ˇkC1/˚G.kC1//? � V �;

which is indeed 2–dimensional, since .k�1/CˇkC1CkC1D .n�1/�1, as ˛kC1D k. Thus, if ukC1
is a nonzero covector in the line L�kC1 , then there exist unique nonzero covectors uleft

kC1
and uright

kC1
in the

lines L� left
kC1

and L
�

right
kC1

, respectively, such that

ukC1Cu
left
kC1Cu

right
kC1
D 0 2 V �:

Definition 1.6 Having chosen a normalization un 2 L�n D L.n�1;0;0/ and having inductively defined
uk0 2 L�k0 for k0 D n; n� 1; : : : ; kC 1, define uk 2 L�k by

(1) uk DCu
left
kC1
2 L� left

kC1
if �k D � left

kC1
,

(2) uk D�u
right
kC1
2 L

�
right
kC1

if �k D �
right
kC1

.

Algebraic & Geometric Topology, Volume 24 (2024)
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See Figure 4, which falls into (2). Note if the initial normalization un is replaced by �un for some scalar
� ¤ 0, then uk is replaced by �uk for all 1 6 k 6 n. Thus this process produces a projective basis
ŒU�D Œfu1; u2; : : : ; ung� of V �, as desired. We call UD fu1; u2; : : : ; ung the normalized projective basis
for V � depending on the normalization un 2 L�n .

1.3 Snake moves

1.3.1 Elementary matrices LetA be a commutative algebra with 1, such asADC. LetX1=n; Z1=n2A,
and put X D .X1=n/n and Z D .Z1=n/n. Let Mn.A/ (resp. SLn.A/) denote the ring of n�n matrices
(resp. having determinant equal to 1) over A (see also Section 2.1.2).

For k D 1; 2; : : : ; n� 1 define the kth left-elementary matrix S left
k
.X/ 2 SLn.A/ by

S left
k .X/DX�.k�1/=n

0BBBBBBBBBBBB@

X

:: :

X

1 1

1

1

: : :

1

1CCCCCCCCCCCCA
2 SLn.A/ where X appears k� 1 times;

and define the kth right-elementary matrix S
right
k

.X/ 2 SLn.A/ by

S
right
k

.X/DXC.k�1/=n

0BBBBBBBBBBBB@

1

: : :

1

1

1 1

X�1

: : :

X�1

1CCCCCCCCCCCCA
2 SLn.A/ where X appears k� 1 times:

Note that S left
1 .X/ and S

right
1 .X/ do not, in fact, involve the variable X , and so we will denote these

matrices simply by S left
1 and S

right
1 , respectively.

For j D 1; 2; : : : ; n� 1 define the j th edge-elementary matrix S
edge
j .Z/ 2 SLn.A/ by

S
edge
j .Z/DZ�j=n

0BBBBBBBB@

Z

:: :

Z

1

: : :

1

1CCCCCCCCA
2 SLn.A/ where Z appears j times:

Algebraic & Geometric Topology, Volume 24 (2024)
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‚n�1

F

GE

X

�1 D �
0
1

�k�1 D �
0
k�1

�kC1 D �
0
kC1

�

� 0
k

�D �n D �
0
n

� 0

�k

Figure 5: Diamond move.

1.3.2 Adjacent snake pairs

Definition 1.7 We say that an ordered pair .�; � 0/ of snakes � and � 0 forms an adjacent pair of snakes if
it satisfies either of the following conditions:

(1) For some 26 k 6 n� 1,

(a) �j D �
0
j for 16 j 6 k� 1 and kC 16 j 6 n,

(b) �k D �
right
kC1

.D �
0right
kC1

/ and � 0
k
D � left

kC1
.D � 0left

kC1
/,

in which case .�; � 0/ is called an adjacent pair of diamond-type; see Figure 5.

(2) (a) �j D �
0
j for 26 j 6 n,

(b) �1 D �
right
2 .D �

0right
2 / and � 01 D �

left
2 .D � 0left

2 /,

in which case .�; � 0/ is called an adjacent pair of tail-type; see Figure 6.

1.3.3 Diamond and tail moves Let .�; � 0/ be an adjacent pair of snakes of diamond-type, as shown in
Figure 5.

Consider the snake-vertices �kC1.D � 0kC1/, �k , � 0
k

, and �k�1.D � 0k�1/. One checks that

˛k D ˛
0
k D k� 1; ˇ0k D ˇk�1 D ˇkC1C 1; and k D k�1 D kC1C 1:

‚n�1

F

GE

�
�D �n D �

0
n

�1

� 01� 0

�2 D �
0
2

Figure 6: Tail move.
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Taken together, these three coordinates form a vertex

.a; b; c/D .k� 1; ˇkC1C 1; kC1C 1/ 2 int.‚n/

in the interior of the n–discrete triangle ‚n (not ‚n�1), since .k � 1/C .ˇkC1C 1/C .kC1C 1/ D
.˛kC1CˇkC1C kC1/C 1D n. The coordinates of this internal vertex .a; b; c/ can also be thought of
as delineating the boundary of a small downward-facing triangle r in the discrete triangle ‚n�1, whose
three vertices are �k , � 0

k
, and �k�1 (Figure 5). Put Xabc D �abc.E; F;G/ 2C�f0g, namely Xabc is the

Fock–Goncharov triangle invariant (Section 1.1.3) associated to the generic flag triple .E; F;G/ and the
internal vertex .a; b; c/ 2 int.‚n/.

The proposition below is the main ingredient going into the proof of Theorem 1.2. First, we set our
conventions for change of basis matrices for bases of V �.

Given any basis UD fu1; u2; : : : ; ung of V �, and given a covector u in V �, the coordinate covector Œu�U
of the covector u with respect to the basis U is the unique row matrix Œu�UD

�
y1 y2 � � � yn

�
in M1;n.C/

such that u D
Pn
iD1 yiui . If U0 D fu01; u

0
2; : : : ; u

0
ng is another basis for V �, then the change of basis

matrix BU!U0 going from the basis U to the basis U0 is the unique invertible matrix in GLn.C/�Mn.C/

satisfying
Œu�UBU!U0 D Œu�U0 2M1;n.C/ for u 2 V �:

Change of basis matrices satisfy the property

BU!U00 DBU!U0BU0!U00 2 GLn.C/ for U;U0 and U00 bases for V �:

Proposition 1.8 (Fock and Goncharov) Let .E; F;G/ be a maximum span flag triple , .�; � 0/ an
adjacent pair of snakes , and U and U0 the corresponding normalized projective bases of V �, satisfying
the compatibility condition un D u0n 2 L�n D L�.

If .�; � 0/ is of diamond-type , then the change of basis matrix BU!U0 2 GLn.C/ is

BU!U0 DX
C.k�1/=n

abc
S left
k .Xabc/ 2 GLn.C/ .see Section 1.3.1/:

We say this case expresses a diamond move from the snake � to the adjacent snake � 0.

If .�; � 0/ is of tail-type , then the change of basis matrix BU!U0 equals

BU!U0 D S left
1 2 SLn.C/ .see Section 1.3.1/:

We say this case expresses a tail move from the snake � to the adjacent snake � 0.

Proof See [9, Section 9]. We also provide a proof in [5, Section 2.18].

1.3.4 Right snakes and right snake moves Our definition of a (left) snake in Section 1.2.1 took the
snake-head �D �n to be the nth snake-vertex. There is another possibility, where �D �1.
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Definition 1.9 A right n–snake � (for the snake-head �D .n� 1; 0; 0/ 2 �.‚n�1/) is an ordered list
� D .�1; �2; : : : ; �n/ 2 .‚n�1/

n of n–many vertices �k D .˛k; ˇk; k/, satisfying

˛k D n� k; ˇk > ˇk�1; and k > k�1 for k D 1; 2; : : : ; n:

Right snakes for other snake-heads � 2 �.‚n�1/ are similarly defined by triangular symmetry.

To adjust for using right snakes, the definitions of Sections 1.2.3, 1.3.2, and 1.3.3 need to be modified.

Given �k�1, there are two possibilities for �k:

� left
k�1 D .˛

left
k�1; ˇ

left
k�1; 

left
k�1/ for ˛left

k�1 D n� k; ˇleft
k�1 D ˇk�1C 1;  left

k�1 D k�1;

�
right
k�1
D .˛

right
k�1

; ˇ
right
k�1

; 
right
k�1

/ for ˛
right
k�1
D n� k; ˇ

right
k�1
D ˇk�1; 

right
k�1
D k�1C 1:

The algorithm defining the (ordered) projective basis ŒU�D Œfu1; u2; : : : ; ung� becomes

(1) uk D�u
left
k�1
2 L� left

k�1
if �k D � left

k�1
,

(2) uk DCu
right
k�1
2 L

�
right
k�1

if �k D �
right
k�1

.

In particular, the algorithm starts by making a choice of normalization covector u1 2 L�1 D L.n�1;0;0/.
Notice that, compared to the setting of left snakes (Definition 1.6 and Figure 4), the signs defining the
projective basis have been swapped.

An ordered pair .�; � 0/ of right snakes forms an adjacent pair if either:

(1) For some 26 k 6 n� 1,

(a) �j D �
0
j for 16 j 6 k� 1 and kC 16 j 6 n,

(b) �k D �
left
k�1

.D � 0left
k�1

/ and � 0
k
D �

right
k�1

.D �
0right
k�1

/,

in which case .�; � 0/ is called an adjacent pair of diamond-type.

(2) (a) �j D �
0
j for 16 j 6 n� 1,

(b) �n D �
left
n�1.D �

0left
n�1/ and � 0n D �

right
n�1.D �

0right
n�1 /,

in which case .�; � 0/ is called an adjacent pair of tail-type.

Given an adjacent pair .�; � 0/ of right snakes of diamond-type, there is naturally associated a vertex
.a; b; c/ 2‚n to which is assigned a Fock–Goncharov triangle invariant Xabc .

Proposition 1.10 (Fock and Goncharov) Let .E; F;G/ be a maximum span triple , .�; � 0/ an adjacent
pair of right snakes , and U and U0 the corresponding normalized projective bases of V �, satisfying the
compatibility condition u1 D u01 2 L�1 D L�.

If .�; � 0/ is of diamond-type , then the change of basis matrix BU!U0 2 GLn.C/ equals

BU!U0 DX
�.k�1/=n

abc
S

right
k

.Xabc/ 2 GLn.C/ .see Section 1.3.1/:

If .�; � 0/ is of tail-type , then the change of basis matrix BU!U0 equals

BU!U0 D S
right
1 2 SLn.C/ .see Section 1.3.1/:

Proof See [9, Section 9]. This is similar to the proof of Proposition 1.8.
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GE

F 0

F

‚n�1

�

� 0
� 01 D .0; 0; n� 1/

�1 D .n� 1; 0; 0/�D �n D .0; 0; n� 1/

�0 D � 0n D .n� 1; 0; 0/

Figure 7: Edge move.

Remark 1.11 From now on, “snake” means “left snake”, as in Definition 1.5, and we will say explicitly
if we are using right snakes.

1.3.5 Snake moves for edges

Caution 1.12 In this subsubsection, we will consider snake-heads in the set of corner vertices �.‚n�1/
other than .n� 1; 0; 0/, specifically � below; see Remark 1.4.

Let .E;G; F; F 0/ be a maximum span flag quadruple; see Section 1.1.1. By Section 1.1.3, for each
j D 1; : : : ; n� 1 we may consider the Fock–Goncharov edge invariant Zj D �j .E;G; F; F 0/ 2C�f0g

associated to the quadruple .E;G; F; F 0/.

Consider two copies of the discrete triangle; see Figure 7. The bottom triangle ‚n�1.G; F;E/ has
a maximum span flag triple .G; F;E/ assigned to the corner vertices �.‚n�1/, and the top triangle
‚n�1.E; F

0; G/ has assigned to �.‚n�1/ a maximum span flag triple .E; F 0; G/.

Define (left) snakes � and � 0 in ‚n�1.G; F;E/ and ‚n�1.E; F 0; G/, respectively, as follows:

�k D .n� k; 0; k� 1/ 2‚n�1.G; F;E/ for k D 1; : : : ; n;

� 0k D .k� 1; 0; n� k/ 2‚n�1.E; F
0; G/ for k D 1; : : : ; n:

The line decompositions associated to the snakes � and � 0 and their respective triples of flags are the same:

L�k D L� 0k
D .E.k�1/˚G.n�k//? � V � for k D 1; : : : ; n:

Let U and U0 be the associated normalized projective bases, where the normalizations are chosen in a
compatible way, that is, such that un D u0n in L�n D L� 0n .

Proposition 1.13 (Fock and Goncharov) The change of basis matrix expressing the snake edge move
� ! � 0 is

BU!U0 D

n�1Y
jD1

Z
Cj=n
j S

edge
j .Zj / 2 GLn.C/ .see Section 1.3.1/:

Proof See [9, Section 9]. This is similar to the proof of Proposition 1.8; see also [5, Section 2.22].
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1.4 Classical left, right, and edge matrices

Caution 1.14 We consider snake-heads in the set of corner vertices f.n�1; 0; 0/; .0; n�1; 0/; .0; 0; n�1/g
other than .n� 1; 0; 0/; see Remark 1.4.

We will also consider both (left) snakes and right snakes; see Remark 1.11.

We begin the process of algebraizing the geometry discussed throughout this first section.

1.4.1 Snake sequences

Left setting Define a snake-head � 2 �.‚n�1/ and two (left) snakes �bot and � top, called the bottom
and top snakes, respectively, by

�D .n� 1; 0; 0/; �bot
k D .k� 1; 0; n� k/; and �

top
k
D .k� 1; n� k; 0/ for k D 1; : : : ; n:

Right setting Define � and right snakes �bot and � top by

�D .0; 0; n� 1/; �bot
k D .k� 1; 0; n� k/; and �

top
k
D .0; k� 1; n� k/ for k D 1; : : : ; n:

In either left or right setting, consider a sequence �bot D �1; �2; : : : ; �N�1; �N D � top of snakes having
the same snake-head � as �bot and � top, such that .� l ; � lC1/ is an adjacent pair; see Figure 8. Note that this
sequence of snakes is not in general unique. For the N –many projective bases ŒUl �D Œful1; u

l
2; : : : ; u

l
ng�

associated to the snakes � l , choose a common normalization uln WD un 2L� (resp. ul1 WD u1 2L�), where
the same un (resp. u1) is used for all l , when working in the left (resp. right) setting. Then, the change of
basis matrix BUbot!Utop can be decomposed as (see Section 1.3.3)

(�) BUbot!Utop DBU1!U2BU2!U3 � � �BUN�1!UN 2 GLn.C/:

‚n�1

�
top
1 D .0; n� 1; 0/

11

10

8 6

2
1

345

�D �
top
n D �

bot
n D .n� 1; 0; 0/

.0; 0; n� 1/D �bot
1

‚n�1

�
top
n D .0; n� 1; 0/

�bot
n D .n� 1; 0; 0/

�D �bot
1 D �

top
1 D .0; 0; n� 1/

1
2 3 4 5

6 8

10

11

Figure 8: Classical snake sweep for n D 5. The preferred choices for the left and right snake
sequences are on the left and right, respectively.
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M left.X/

Xi ’s Xi ’s

M right.X/

M edge.Z /

Z1Zn�1

Figure 9: Classical matrices (viewed from the ‚n–perspective): from left to right, the left, right,
and edge matrices.

Here the matrices BUl!UlC1 are computed as in Proposition 1.8 (resp. Proposition 1.10) in the left (resp.
right) setting, and in particular are completely determined by the Fock–Goncharov triangle invariants
Xabc 2C�f0g associated to the internal vertices .a; b; c/ 2 int.‚n/ of the n–discrete triangle.

Note that the matrix BUbot!Utop is, by definition, independent of the choice of snake sequence .� l/l . For
concreteness, throughout we make a preferred choice of such sequence, depending on whether we are in
the left or right setting; see Figure 8.

1.4.2 Algebraization Let A be a commutative algebra (Section 1.3.1). For i D 1; 2; : : : ; 1
2
.n�1/.n�2/,

let X1=ni 2 A and put Xi D .X
1=n
i /n. For j D 1; 2; : : : ; n� 1, let Z1=nj 2 A and put Zj D .Z

1=n
j /n.

Note, 1
2
.n� 1/.n� 2/ is the number of elements .a; b; c/ 2 int.‚n/, which we arbitrarily enumerate

1; 2; : : : ; 1
2
.n� 1/.n� 2/; see Figure 9, left and center. And note that n� 1 is the number of noncorner

vertices of ‚n lying on a single edge, which we enumerate 1; 2; : : : ; n� 1 as shown in Figure 9, right.
Let X D .Xi /i and Z D .Zj /j be the corresponding tuples of these elements of A.

As a notational convention, given a family Ml 2Mn.A/ of n�n matrices, put
pY
lDm

Ml DMmMmC1 � � �Mp;

mY
lDpC1

Ml D 1 for m6 p;

ma
lDp

Ml DMpMp�1 � � �Mm;

pa
lDm�1

Ml D 1 for m6 p:

Definition 1.15 The left matrix M left.X/ in SLn.A/ is defined by

M left.X/D

1a
kDn�1

�
S left
1

kY
lD2

S left
l .X.l�1/.n�k/.k�lC1//

�
2 SLn.A/;

where the matrix S left
l
.Xabc/ is the l th left-elementary matrix; see Section 1.3.1.
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Similarly, the right matrix M right.X/ in SLn.A/ is defined by

M right.X/D

1a
kDn�1

�
S

right
1

kY
lD2

S
right
l

.X.k�lC1/.n�k/.l�1//

�
2 SLn.A/;

where the matrix S
right
l

.Xabc/ is the l th right-elementary matrix; see Section 1.3.1.

Lastly, the edge matrix M edge.Z / in SLn.A/ is defined by

M edge.Z /D

n�1Y
lD1

S
edge
l

.Zl/ 2 SLn.A/;

where the matrix S
edge
l

.Zl/ is the l th edge-elementary matrix; see Section 1.3.1. See Figure 9.

Remark 1.16 In the case where A D C and the Xi D �abc.E; F;G/ and Zj D �j .E;G; F; F
0/ in

C � f0g are the triangle and edge invariants (as in Sections 1.3.3, 1.3.4, and 1.3.5), then the left and
right matrices M left.X/ and M right.X/ are the normalized change of basis matrix BUbot!Utop=Det1=n

(see (�)) in the left and right settings, respectively, normalized to have determinant 1, and decomposed in
terms of our preferred snake sequence (Figure 8). Also, the edge matrix M edge.Z / is the normalization
BU!U0=Det1=n of the change of basis matrix from Proposition 1.13. Note, these normalizations require
choosing n–roots of the invariants Xi and Zj .

2 Quantum matrices

Although we will not use explicitly the geometric results of the previous section, those results motivate
the algebraic objects that are our main focus.

Throughout, let q 2C�f0g and ! D q1=n
2

be a n2–root of q. Technically, also choose !1=2.

2.1 Quantum tori, matrix algebras, and the Weyl quantum ordering

2.1.1 Quantum tori Let P (for “Poisson”) be an integer N �N antisymmetric matrix.

Definition 2.1 The quantum torus (with n–roots) T!.P/ associated to P is the quotient of the free algebra
CfX1=n1 ; X

�1=n
1 ; : : : ; X

1=n
N ; X

�1=n
N g in the indeterminates X˙1=ni by the two-sided ideal generated by

the relations

X
1=n
i X

1=n
j D !PijX

1=n
j X

1=n
i and X

1=n
i X

�1=n
i DX

�1=n
i X

1=n
i D 1:

Put X˙1i D .X
˙1=n
i /n. We refer to the X˙1=ni as generators, and the Xi as quantum coordinates, or just

coordinates. Define the subset of fractions

Z=nD
n
m

n

ˇ̌
m 2 Z

o
�Q:

Written in terms of the coordinates Xi and the fractions r 2 Z=n, we have the relations

X
ri
i X

rj
j D q

Pij rirjX
rj
j X

ri
i for ri ; rj 2 Z=n:
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2.1.2 Matrix algebras

Definition 2.2 The matrix algebra Mn.T/ with coefficients in a possibly noncommutative algebra T is
the vector space of n�n matrices, equipped with the usual multiplicative structure. Namely, the product
MN of two matrices M and N is defined entrywise by

.MN /ij D

nX
kD1

MikNkj 2 T for 16 i; j 6 n:

Here we use the usual convention that the entry Mij of a matrix M is the entry in the i th row and j th

column. Note that the order of Mik and Nkj in the above equation matters since these elements might
not commute in T.

2.1.3 Weyl quantum ordering If T is a quantum torus, then there is a linear map

Œ�� WCfX1=n1 ; X
�1=n
1 ; : : : ; X

1=n
N ; X

�1=n
N g ! T

from the free algebra to T, called the Weyl quantum ordering, defined by the property that a word
X
r1
i1
X
r2
i2
� � �X

rk
ik

for ra 2 Z=n (note that ia may equal ib if a¤ b) is mapped to

ŒX
r1
i1
X
r2
i2
� � �X

rk
ik
�D .q�

1
2

P
16a<b6k Piaib rarb /X

r1
i1
X
r2
i2
� � �X

rk
ik
;

where on the right-hand side we implicitly mean the equivalence class in T. Also, the empty word is
mapped to 1. Note that the Weyl ordering Œ�� depends on the choice of !1=2; see the beginning of Section 2.

The Weyl ordering is specially designed to satisfy the symmetry

ŒX
r1
i1
X
r2
i2
� � �X

rk
ik
�D ŒX

r�.1/
i�.1/

X
r�.2/
i�.2/
� � �X

r�.k/
i�.k/

�

for every permutation � of f1; : : : ; kg; see [1]. Also, ŒX1=ni X
�1=n
i �D 1. Consequently, a linear map

Œ�� WCŒX˙1=n1 ; : : : ; X
˙1=n
N �! T

is induced from the commutative Laurent polynomial algebra to T. This determines a linear map of matrix
algebras

Œ�� WMn.CŒX
˙1=n
1 ; : : : ; X

˙1=n
N �/!Mn.T/ given by ŒM �ij D ŒMij � in T:

2.2 Fock–Goncharov quantum torus for a triangle

Let �.‚n/ denote the set of corner vertices �.‚n/ D f.n; 0; 0/; .0; n; 0/; .0; 0; n/g of the discrete
triangle ‚n; see Section 1.1.2.

Define a function
P W .‚n��.‚n//� .‚n��.‚n//! f�2;�1; 0; 1; 2g

using the quiver with vertex set‚n��.‚n/ illustrated in Figure 10. The function P is defined by sending
the ordered tuple .�1; �2/ of vertices of ‚n��.‚n/ to 2 (resp. �2) if there is a solid arrow pointing from
�1 to �2 (resp. �2 to �1), to 1 (resp. �1) if there is a dotted arrow pointing from �1 to �2 (resp. �2 to �1),
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‚n��.‚n/

Figure 10: Quiver defining the Fock–Goncharov quantum torus.

and to 0 if there is no arrow connecting �1 and �2. Note that all of the small downward-facing triangles
are oriented clockwise, and all of the small upward-facing triangles are oriented counterclockwise. By
labeling the vertices of ‚n��.‚n/ by their coordinates .a; b; c/ we may think of the function P as an
N �N antisymmetric matrix P D .Pabc;a0b0c0/, called the Poisson matrix associated to the quiver. Here
N D 3.n� 1/C 1

2
.n� 1/.n� 2/; compare with Section 1.4.2.

Definition 2.3 Define the Fock–Goncharov quantum torus

T!n DCŒX˙1=n1 ; X
˙1=n
2 ; : : : ; X

˙1=n
N �!

associated to the discrete n–triangle ‚n to be the quantum torus T!.P/ defined by the N �N Poisson
matrix P , with generators X˙1=ni DX

˙1=n

abc
for all .a; b; c/ 2‚n��.‚n/. Note that when q D ! D 1

this recovers the classical Laurent polynomial algebra T1n DCŒX˙1=n1 ; X
˙1=n
2 ; : : : ; X

˙1=n
N �.

As a notational convention, for j D 1; 2; : : : ; n� 1 we write Z˙1=nj (resp. Z0˙1=nj and Z00˙1=nj ) in place
of X˙1=n

j0.n�j /
(resp. X˙1=n

j.n�j /0
and X˙1=n

0j.n�j /
); see Figure 11. So, triangle-coordinates will be denoted by

Xi DXabc for .a; b; c/ 2 int.‚n/ while edge-coordinates will be denoted by Zj , Z0j , and Z00j .

2.3 Quantum left and right matrices

2.3.1 Weyl quantum ordering for the Fock–Goncharov quantum torus Let T D T!n be the Fock–
Goncharov quantum torus (Section 2.2). Then the Weyl ordering Œ�� of Section 2.1.3 gives a map

Œ�� WMn.T
1
n/!Mn.T

!
n /;

where we have used the identification T1n DCŒX˙1=n1 ; X
˙1=n
2 ; : : : ; X

˙1=n
N � discussed in Section 2.2.

2.3.2 Quantum left and right matrices For a commutative algebra A, in Section 1.4.2 we defined the
classical matrices M left.X/, M right.X/, and M edge.Z / in SLn.A/. If ADCŒX˙1=n1 ; : : : ; X

˙1=n
N �D T1n,

we now use these matrices to define the primary objects of study.

Definition 2.4 Put vectors X D .Xi /, Z D .Zj /, Z 0 D .Z0j /, Z 00 D .Z00j / as in Figure 11. We define
the quantum left matrix L! in Mn.T

!
n / by the formula

L! DL!.Z ;X ;Z 0/D ŒM edge.Z /M left.X/M edge.Z 0/� 2Mn.T
!
n /;
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‚n��.‚n/

Z00n�1

R!

Z001

Z1Zn�1

Z01

L!

Xi ’sZ0n�1

Figure 11: Quantum left and right matrices (compare with Figure 9).

where we have applied the Weyl quantum ordering Œ�� discussed in Section 2.3.1 to the product
M edge.Z /M left.X/M edge.Z 0/ of classical matrices in Mn.T

1
n/. In other words, we apply the Weyl

ordering to each entry of the classical matrix.

Similarly, as in Figure 11, we define the quantum right matrix R! in Mn.T
!
n / by

R!
DR!.Z ;X ;Z 00/D ŒM edge.Z /M right.X/M edge.Z 00/� 2Mn.T

!
n /:

2.4 Main result

2.4.1 Quantum SLn and its points Let T be a possibly noncommutative algebra.

Definition 2.5 We say that a 2� 2 matrix M D
�
a
c
b
d

�
in M2.T/ is a T–point of the quantum matrix

algebra Mq
2, denoted by M 2Mq

2.T/�M2.T/, if

(��) baD qab; dcD qcd; caD qac; dbD qbd; bcD cb; da�ad D .q�q�1/bc in T:

We say that a matrix M 2 M2.T/ is a T–point of the quantum special linear group SLq2, denoted by
M 2 SLq2.T/�Mq

2.T/�M2.T/, if M 2Mq
2.T/ and the quantum determinant

Detq.M /D ad � q�1bc D 1 2 T:

These notions are also defined for n�n matrices, as follows:

Definition 2.6 A matrix M 2 Mn.T/ is a T–point of the quantum matrix algebra Mq
n, denoted by

M 2Mq
n.T/�Mn.T/, if every 2� 2 submatrix of M is a T–point of Mq

2. That is,

MimMik D qMikMim; MjmMim D qMimMjm; MimMjk DMjkMim;

MjmMik �MikMjm D .q� q
�1/MimMjk;

for all i < j and k < m, where 16 i; j; k;m6 n.

The quantum determinant Detq.M / 2 T of a matrix M 2Mn.T/ is

Detq.M /D
X
�2Sn

.�q�1/l.�/M1�.1/M2�.2/ � � �Mn�.n/;
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where the length l.�/ of the permutation � is the minimum number of factors appearing in a decomposition
of � as a product of adjacent transpositions .i; i C 1/; see, for example, [2, Chapter I.2].

A matrix M 2Mn.T/ is a T–point of the quantum special linear group SLqn, denoted by M 2 SLqn.T/�
Mq
n.T/�Mn.T/, if both M 2Mq

n.T/ and Detq.M /D 1.

Remark 2.7 (1) It follows from the definitions that if a T–point M 2Mq
n.T/�Mn.T/ is a triangular

matrix, then the diagonal entries Mi i 2 T commute and Detq.M /D
Q
i Mi i 2 T.

(2) The subsets Mq
n.T/�Mn.T/ and SLqn.T/�Mq

n.T/ are generally not closed under matrix multipli-
cation (see, however, the proof sketch below for a relaxed property).

(3) More abstractly, the quantum special linear group SLqn is the noncommutative algebra defined as the
quotient of the free algebra on generators mij for 16 i; j 6 n subject to the four relations appearing in
Definition 2.6 (with Mij replaced by mij ) plus the relation Detq.m/D1; see, for example, [2, Chapter I.2].
Note then that a T–point M of SLqn is equivalent to an algebra homomorphism '.M / W SLqn! T defined
by the property that '.M /.mij /DMij for all 16 i; j 6 n.

2.4.2 Main result Take TDT!n to be the Fock–Goncharov quantum torus for the discrete n–triangle‚n;
see Section 2.2. Let L! and R! in Mn.T

!
n / be the quantum left and right matrices, respectively, as

defined in Definition 2.4.

Theorem 2.8 The quantum left and right matrices

L! DL!.Z ;X ;Z 0/ and R!
DR!.Z ;X ;Z 00/ 2Mn.T

!
n /

are T!n –points of the quantum special linear group SLqn. That is , L! ;R! 2 SLqn.T!n /�Mn.T
!
n /.

The proof, provided in Section 3, uses a quantum version of Fock–Goncharov snakes (Section 1).

Sketch of proof (see Section 3 for more details) In the case nD2, this is an enjoyable calculation. When
n> 3, the argument hinges on the following well-known fact (see for example [21, Proposition IV.3.4 and
Section IV.10]): if T is an algebra with subalgebras T0;T00�T that commute in the sense that a0a00D a00a0

for all a0 2 T0 and a00 2 T00, and if M 0 2Mn.T
0/ �Mn.T/ and M 00 2Mn.T

00/ �Mn.T/ are T–points
of SLqn, then the matrix product (Definition 2.2) M 0M 00 2Mn.T

0T00/�Mn.T/ is also a T–point of SLqn.

Put MFG WDL! , the quantum left matrix, say. The proof is the same for the quantum right matrix. See
Definition 2.4. The strategy is to see MFG 2Mn.T

!
n / as the product of simpler matrices, over mutually

commuting subalgebras, that are themselves points of SLqn.

More precisely, for a fixed sequence of adjacent snakes �bot D �1; �2; : : : ; �N D � top moving left across
the triangle from the bottom edge to the top-left edge, we will define for each i D 1; : : : ; N � 1 an
auxiliary algebra S!ji , called a snake-move algebra, for ji 2 f1; : : : ; n� 1g, corresponding to the adjacent
snake pair .� i ; � iC1/. As a technical step, there is a distinguished subalgebra TL � T!n satisfying
MFG 2Mn.TL/�Mn.T

!
n /. We construct an algebra embedding TL ,!

N
i S
!
ji

. Through this embedding,
we may view MFG 2Mn.TL/�Mn

�N
i S
!
ji

�
.
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R!

‚n�1 Z003

Z002

Z001

Z01

Z02

Z03

Z3 Z2 Z1

X3

L!

X2 X1

‚n�1

X3

Z003

Z002

Z001

Z01

Z02

Z03

Z3 Z2 Z1

X2 X1

Figure 12: Quantum matrices and quantum torus for nD 4. Left and right matrices (left) and the
quiver (right).

We construct (Proposition 3.3), for each i , a matrix Mji 2Mn.S
!
ji
/�Mn

�N
i S
!
ji

�
such that Mji is an

S!ji–point of SLqn; in other words Mji 2 SLqn.S!ji /� SLqn
�N

i S
!
ji

�
. Since by definition the subalgebras

S!ji ; S
!
ji0
�
N
i S
!
ji

commute if i ¤ i 0 as they constitute different tensor factors of
N
i S
!
ji

, it follows from
the essential fact mentioned above that M WDMj1Mj2 � � �MjN�1 2Mn

�N
i S
!
ji

�
is a

�N
i S
!
ji

�
–point of

SLqn; in other words M 2 SLqn
�N

i S
!
ji

�
.

Since this matrix product M , as well as the quantum left matrix MFG, is being viewed as an element
of Mn

�N
i S
!
ji

�
, it makes sense to ask whether MFG

‹
DM 2 Mn

�N
i S
!
ji

�
. We show that this is true,

implying that MFG 2 SLqn
�N

i S
!
ji

�
. Since MFG 2Mn.TL/�Mn

�N
i S
!
ji

�
, we conclude that MFG is in

SLqn.TL/� SLqn.T!n /.

2.5 Example

Consider the case nD 4; see Figure 12. On the right-hand side is the quiver defining the commutation
relations in the quantum torus T!4 , recalling Figure 10, but viewed in‚n�1. Note that there is a one-to-one
correspondence between points .a; b; c/ 2 int.‚n/ and small downward-facing triangles inside ‚n�1; see
Figure 12. In particular, to each downward-facing triangle there is associated a triangle-coordinate Xi .

Some sample commutation relations in T!4 are

X3Z
00
2 D q

2X3Z
00
2 ; X3X1 D q

�2X1X3; Z3Z2 D qZ2Z3; and Z3Z
0
3 D q

2Z03Z3:

Then, the quantum left and right matrices L! and R! are computed as

L!
D

26664Z� 141 Z
� 2
4

2 Z
� 3
4

3

0BBB@
Z1Z2Z3

Z2Z3

Z3

1

1CCCA
0BBB@
1 1

1

1

1

1CCCAX� 141
0BBB@
X1

1 1

1

1

1CCCAX� 242
0BBB@
X2

X2

1 1

1

1CCCA
0BBB@
1 1

1

1

1

1CCCAX� 143
0BBB@
X3

1 1

1

1

1CCCA
0BBB@
1 1

1

1

1

1CCCAZ0� 141 Z
0� 2
4

2 Z
0� 3
4

3

0BBB@
Z01Z

0
2Z
0
3

Z02Z
0
3

Z03
1

1CCCA
37775
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and

R!
D

26664Z� 141 Z
� 2
4

2 Z
� 3
4

3

0BBB@
Z1Z2Z3

Z2Z3

Z3

1

1CCCA
0BBB@
1

1

1

1 1

1CCCAXC 142

0BBB@
1

1

1 1

X�12

1CCCAXC 241

0BBB@
1

1 1

X�11
X�11

1CCCA
0BBB@
1

1

1

1 1

1CCCAXC 143

0BBB@
1

1

1 1

X�13

1CCCA
0BBB@
1

1

1

1 1

1CCCAZ00� 141 Z
00� 2
4

2 Z
00� 3
4

3

0BBB@
Z001Z

00
2Z
00
3

Z002Z
00
3

Z003
1

1CCCA
37775 :

Theorem 2.8 says that these two matrices are elements of SLq4.T
!
4 /. For instance, the entries a, b, c, and

d of the 2� 2 submatrix (arranged as a 4� 1 matrix) of L!

0BBB@
a

b

c

d

1CCCAD
0BBB@

L!
13

L!
14

L!
23

L!
24

1CCCAD

0BBBBBBBBBB@

ŒZ
1
4
3 Z

2
4
2 Z

3
4
1 Z
0 1
4
3 Z

0� 2
4

2 Z
0� 1
4

1 X
� 1
4

1 X
� 2
4

2 X
� 1
4

3 �CŒZ
1
4
3 Z

2
4
2 Z

3
4
1 Z
0 1
4
3 Z

0� 2
4

2 Z
0� 1
4

1 X
� 1
4

1 X
2
4
2 X

� 1
4

3 �

CŒZ
1
4
3 Z

2
4
2 Z

3
4
1 Z
0 1
4
3 Z

0� 2
4

2 Z
0� 1
4

1 X
3
4
1 X

2
4
2 X

� 1
4

3 �

ŒZ
1
4
3 Z

2
4
2 Z

3
4
1 Z
0� 3
4

3 Z
0� 2
4

2 Z
0� 1
4

1 X
� 1
4

1 X
� 2
4

2 X
� 1
4

3 �

ŒZ
1
4
3 Z

2
4
2 Z
� 1
4

1 Z
0 1
4
3 Z

0� 2
4

2 Z
0� 1
4

1 X
� 1
4

1 X
� 2
4

2 X
� 1
4

3 �CŒZ
1
4
3 Z

2
4
2 Z
� 1
4

1 Z
0 1
4
3 Z

0� 2
4

2 Z
0� 1
4

1 X
� 1
4

1 X
2
4
2 X

� 1
4

3 �

ŒZ
1
4
3 Z

2
4
2 Z
� 1
4

1 Z
0� 3
4

3 Z
0� 2
4

2 Z
0� 1
4

1 X
� 1
4

1 X
� 2
4

2 X
� 1
4

3 �

1CCCCCCCCCCA
satisfy (��). For a computer demonstration of this see [6, Appendix B]. We also verify in that appendix
that (��) is satisfied by the entries a, b, c, and d of the 2�2 submatrix (arranged as a 4�1 matrix) of R! :

0BBB@
a

b

c

d

1CCCAD
0BBB@

R!
31

R!
32

R!
41

R!
42

1CCCAD

0BBBBBBBBBBBBB@

ŒZ
1
4
3 Z
� 1
2

2 Z
� 1
4

1 X
1
4
2 X

1
2
1 X

1
4
3 Z
00 1
4

3 Z
00 1
2

2 Z
00 3
4

1 �

ŒZ
1
4
3 Z
� 1
2

2 Z
� 1
4

1 X
1
4
2 X

� 1
2

1 X
1
4
3 Z
00 1
4

3 Z
00 1
2

2 Z
00� 1
4

1 �C ŒZ
1
4
3 Z
� 1
2

2 Z
� 1
4

1 X
1
4
2 X

1
2
1 X

1
4
3 Z
00 1
4

3 Z
00 1
2

2 Z
00� 1
4

1 �

ŒZ
� 3
4

3 Z
� 1
2

2 Z
� 1
4

1 X
1
4
2 X

1
2
1 X

1
4
3 Z
00 1
4

3 Z
00 1
2

2 Z
00 3
4

1 �

ŒZ
� 3
4

3 Z
� 1
2

2 Z
� 1
4

1 X
� 3
4

2 X
� 1
2

1 X
1
4
3 Z
00 1
4

3 Z
00 1
2

2 Z
00� 1
4

1 �

C ŒZ
� 3
4

3 Z
� 1
2

2 Z
� 1
4

1 X
1
4
2 X

� 1
2

1 X
1
4
3 Z
00 1
4

3 Z
00 1
2

2 Z
00� 1
4

1 �

C ŒZ
� 3
4

3 Z
� 1
2

2 Z
� 1
4

1 X
1
4
2 X

1
2
1 X

1
4
3 Z
00 1
4

3 Z
00 1
2

2 Z
00� 1
4

1 �

1CCCCCCCCCCCCCA
Remark 2.9 In order for these matrices to satisfy the relations required just to be in Mq

n.T
!
n / (let alone

SLqn.T!n /), they have to be normalized by dividing out their determinants. For example, the above matrix
L! for n D 4 would not satisfy the q–commutation relations required to be a point of Mq

4.T
!
4 / if we

had not included the normalizing term Z
�1=4
1 Z

�2=4
2 Z

�3=4
3 X

�1=4
1 X

�2=4
2 X

�1=4
3 Z

0�1=4
1 Z

0�2=4
2 Z

0�3=4
3 , as

there would be a 1 in the bottom corner.

3 Quantum snakes: proof of Theorem 2.8

Above, we gave a sketch of the proof. We now fill in the details. Our emphasis will be on the left
matrix L! . The proof for the right matrix R! is similar, as we will discuss in Section 3.5.
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z01z02z0j�1

z0jz0n�1

zn�1 zj

zj�1 z2 z1

xj�1

� 0
1=2

�1=2

Figure 13: Diamond snake-move algebra for j D 2; : : : ; n� 1.

Fix a sequence �bot D �1; �2; : : : ; �N D � top of adjacent snakes, as in the left setting; see Section 1.4.1.
The proof is valid for any choice of snake sequence, but our demonstrations in figures and examples will
be for our preferred snake sequence; see Figure 8. Note that the example quantum matrices in Section 2.5
were presented using this preferred snake sequence.

3.1 Snake-move quantum tori

Definition 3.1 For j D 1; : : : ; n� 1, the j th snake-move quantum torus S!j D T.Pj / is the quantum
torus with Poisson matrix Pj defined by the quiver shown in Figure 13 when j D 2; : : : ; n� 1, and in
Figure 14 when j D 1. As usual, there is one generator per edge of the quiver, solid arrows carry a
weight 2, and dotted arrows carry a weight 1; compare with Section 2.2.

Conceptual Remark 3.2 We provide some guiding intuition for the upcoming constructions; strictly
speaking, it is not required for the mathematical progression of the article.

The quiver of Figure 14 for the tail-move quantum torus is divided into a bottom and top side. Similarly,
the quiver of Figure 13 for a diamond-move quantum torus has a bottom and top side, connected by a
diagonal (where the variable xj�1 is located). As illustrated in the figures, we think of the bottom side
(with unprimed generators zj ) as the top “snake-half” �1=2 of a snake � that has been “split in half down
its length”. Similarly, we think of the top side (with primed generators z0j ) as the bottom snake-half � 0

1=2

of a split snake � 0. Compare with Figure 3, which illustrates a classical snake “before splitting”.

This snake splitting can be seen more clearly in the quantum snake sweep (see Section 3.3 and Figure 15)
determined by the sequence of adjacent snakes �bot D �1; �2; : : : ; �N D � top, where each snake � i is
split in half, so that each snake-half forms a side in one of two adjacent snake-move quantum tori. In the
figure, the other halves (colored gray) of the bottom-most and top-most quantum snakes can be thought
of as either living in other triangles or not existing at all. Prior to splitting a snake � in half, the snake

�1=2

� 0
1=2

z0n�1

zn�1 z2 z1

z02
z01

Figure 14: Tail snake-move algebra for j D 1.
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consists of n� 1 “vertebrae” connecting the n snake-vertices �k 2‚n�1. Upon splitting the snake, the
j th vertebra splits into two generators zj and z0j living in adjacent snake-move quantum tori.

3.2 Quantum snake-move matrices

We turn to the key observation for the proof.

Proposition 3.3 For j D 1; : : : ; n� 1, the j th quantum snake-move matrix

Mj WD

�� n�1Y
kD1

S
edge
k

.zk/

�
S left
j .xj�1/

� n�1Y
kD1

S
edge
k

.z0k/

��
2Mn.S

!
j /

is an S!j –point of the quantum special linear group SLqn. That is , Mj 2 SLqn.S!j /�Mn.S
!
j /.

Note the use of the Weyl quantum ordering; see Section 2.1.3. Here the matrices S
edge
k

.z/ and S left
j .x/ for

z and x in the commutative algebra S1j are defined as in Section 1.3.1; see also Sections 2.3.1 and 2.3.2.
When j D 1, the matrix S left

1 .x0/D S left
1 is well defined, despite x0 not being defined.

Proposition 3.3 follows from direct calculation. See Section 3.5 for the proof.

For example, in the case nD 4 and j D 3, the lemma says that the matrix

M3 D

26664z� 141 z
� 2
4

2 z
� 3
4

3

0BBB@
z1z2z3

z2z3

z3

1

1CCCAx� 242
0BBB@
x2

x2

1 1

1

1CCCAz0� 141 z
0� 2
4

2 z
0� 3
4

3

0BBB@
z01z
0
2z
0
3

z02z
0
3

z03
1

1CCCA
37775

is in SLq4.S
!
3 /.

3.3 Technical step: embedding a distinguished subalgebra TL of T!
n into a tensor productNN�1

iD1 S!
ji

of snake-move quantum tori

For the snake-sequence .� i /iD1;:::;N , to each pair .� i ; � iC1/ of adjacent snakes we associate a snake-
move quantum torus S!ji , recalling Figure 15 (see also Conceptual Remark 3.2). Here ji corresponds
to what was called k in Definition 1.7. Recall the Fock–Goncharov quantum torus T!n (for example,
Figure 12).

We now take a technical step. Using the notation of Figures 11 and 12, define TL�T!n (“L” for “left”) to be
the subalgebra generated by all the generators (and their inverses) of T!n except for Z00˙1=n1 ; : : : ; Z

00˙1=n
n�1 .

We claim that the snake-sequence .� i /i induces an embedding

TL
.� i/i,��!

N�1O
iD1

S!ji

of algebras, realizing TL � T!n as a subalgebra of the tensor product of the snake-move quantum tori
S!ji associated to the adjacent snake pairs .� i ; � iC1/. Here recall in general that the algebra structure for
a tensor product A˝B of algebras A and B is defined by .a˝ b/ � .a0˝ b0/D .a � a0/˝ .b � b0/ for all
a; a0 2 A and b; b0 2 B , extended linearly.
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‚n�1

�7 D �N D � top

S!1 D S!j6
D S!jN�1

S!1 D S!j4

S!2

S!3
S!2

S!1 D S!j1

�bot D �1

�2
�3

�4

�5

�6

Figure 15: Quantum snake sweep for nD 4; compare with Figure 8, left.

A more formal definition of the embedding will be given in Section 3.3.1. We first explain the embedding
through an example, in the setting nD 4; see Figure 16 (compare with Figure 15).

In this setting, the coordinate X2, for instance (emphasized in Figure 16), is mapped via

X2 7! 1˝ z02˝ z2x2z
0
2˝ z2z

0
2˝ z2˝ 1 2 S

!
1 ˝ S!2 ˝ S!3 ˝ S!1 ˝ S!2 ˝ S!1 :

Similarly, the other coordinates Z1, Z03, Z2, Z3, X1, X 01, Z02, and Z01 are mapped via

Z1 7! z1˝ 1˝ 1˝ 1˝ 1˝ 1; Z03 7! 1˝ 1˝ z03˝ z3z
0
3˝ z3z

0
3˝ z3z

0
3;

Z2 7! z2z
0
2˝ z2˝ 1˝ 1˝ 1˝ 1; Z3 7! z3z

0
3˝ z3z

0
3˝ z3˝ 1˝ 1˝ 1;

X1 7! z01˝ z1x1z
0
1˝ z1z

0
1˝ z1˝ 1˝ 1; X 01 7! 1˝ 1˝ 1˝ z01˝ z1x1z

0
1˝ z1;

Z02 7! 1˝ 1˝ 1˝ 1˝ z02˝ z2z
0
2; Z01 7! 1˝ 1˝ 1˝ 1˝ 1˝ z01:

Note that the monomials (for instance, z2x2z02 or z2z02) appearing in the i th tensor factor of the image of
a generator X or Z of the subalgebra TL under this mapping consist of mutually commuting generators
x’s and/or z’s of the i th snake-move quantum torus S!ji , so the order in which they are written is irrelevant.
It is clear from Figure 16 that these images satisfy the relations of TL. In particular, the “interior” dotted
arrows lying at each interface between two snake-move quantum tori cancel each other out; note that, in
Figure 16, we have omitted drawing some of these dotted arrows. We gather that the mapping is well
defined and is an algebra homomorphism. Injectivity follows from the property that every generator
(that is, quiver edge) appearing on the right side of Figure 16 corresponds to a unique generator on the
left side. Lastly, we technically should have defined the map on the formal n–roots of the coordinates
of TL. This is done in the obvious way; for instance,

X
1
4

2 7! 1˝ z
0 1
4

2 ˝ z
1
4

2 x
1
4

2 z
0 1
4

2 ˝ z
1
4

2 z
0 1
4

2 ˝ z
1
4

2 ˝ 1 2 S
!
1 ˝ S!2 ˝ S!3 ˝ S!1 ˝ S!2 ˝ S!1 :
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z2

‚n�1
Z01

z02

X 01

X2 X1

Z02

Z03

Z3 Z2 Z1

z2

x2

z1

z02

z02

z2

T!n � TL
.� i /i
,��!

N
i S
!
ji

z3
z03

z03

z3
z03

z3
z03

Figure 16: Embedding TL in the tensor product of snake-move quantum tori.

3.3.1 Formal definition of the embedding A segment �� D �� of the discrete triangle ‚n�1 is a line
connecting neighboring vertices � and �. Segments of the form .˛; ˇ; /; .˛� 1; ˇ;  C 1/ are called
horizontal, segments of the form .˛; ˇ; /; .˛� 1; ˇC 1; / are called acute, and segments of the form
.˛; ˇ; /; .˛; ˇC 1;  � 1/ are called obtuse. Let SegL denote the set of segments minus the obtuse
segments with zero first coordinate. For example, in the case nD 4, the set SegL has 15 elements; see
the left-hand side of Figure 16. Let CoordL � TL denote the set of coordinates, that is,

CoordL D fXabc j .a; b; c/ 2 int.‚n/g[ fZj j j D 1; 2; : : : ; n� 1g[ fZ0j j j D 1; 2; : : : ; n� 1g:

Note that the coordinates Xabc correspond to the small downward facing triangles in ‚n�1, each of
which is a union of a horizontal, acute, and obtuse segment in SegL, the coordinates Zj correspond to
horizontal segments with zero second coordinate, the coordinates Z0j correspond to acute segments with
zero third coordinate, and each segment corresponds in this way to a unique coordinate. In particular,
there is a canonical surjective function � 0 W SegL! CoordL � TL. See the left-hand side of Figure 16 for
the case nD 4, where for example the three bold segments constitute the preimage � 0�1.X2/.

Given a snake sequence .� i /iD1;2;:::;N , for each 16 i6N�1 let Coordi �S!ji denote the set of coordinates
in the snake-move quantum torus S!ji . There are associated functions 'i W Coordi ! CoordL, in general
neither surjective nor injective, defined as follows. To each coordinate zk 2S!ji for kD 1; 2; : : : ; n�1 there
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is associated a segment seg.zk/ 2 SegL of the snake � i , namely seg.zk/D � ikC1�
i
k

, to each coordinate
z0
k
2 S!ji for k D 1; 2; : : : ; n � 1 there is associated a segment seg.z0

k
/ 2 SegL of the snake � iC1,

namely seg.z0
k
/D � iC1

kC1
� iC1
k

, and to the coordinate xji�1 2 S
!
ji

there is associated an obtuse segment
seg.xji�1/ 2 SegL which is not a segment of a snake, namely seg.xji�1/ D �

i
ji
� iC1ji

. Compare with
Figure 15. Then 'i is defined by 'i .x/D � 0.seg.x// for all x 2 Coordi .

For example in the case n D 4, as illustrated in Figure 16, we have '1.z1/ D Z1, '2.z02/ D X2,
'3.x2/DX2, '4.z02/DX2, '5.z2/DX2, and '6.z3/DZ03.

Finally, define the desired embedding on generators X1=n of TL, for X 2 CoordL, so that the image
of X1=n in the tensor product

N
i S
!
ji

is the pure tensor defined by the property that its i th factor isQ
x2.'i /�1.X/ x

1=n 2 S!ji . This is well defined since the coordinates x 2 .'i /�1.X/ in each preimage
commute by design. Note, by definition, if .'i /�1.X/ is empty, then the product defining the i th factor is 1.

In Section 3.4, we will make use of the surjective function � W
SN�1
iD1 Coordi ! CoordL defined by

�.x/D 'i .x/ for x 2 Coordi .

3.4 Finishing the proof

Comparing to the sketch of proof given in Section 2.4.2, we gather:

� MFG WDL! 2Mn.TL/�Mn

�NN�1
iD1 S!ji

�
.

� M WDMj1Mj2 � � �MjN�1 2 SLqn
�NN�1

iD1 S!ji

�
�Mn

�NN�1
iD1 S!ji

�
.

To finish the proof, it remains to show

(���) MFG
‹
DM 2Mn

�N�1O
iD1

S!ji

�
:

The strategy is to commute the many variables (as in the right-hand side of Figure 16) appearing on the
right-hand side M D

Q
i Mji (defined via Proposition 3.3) of (���), until M has been put into the form

of the left-hand side MFG (defined via Definition 2.4 followed by applying the embedding TL ,!
N
i S
!
ji

of Section 3.3). This is accomplished by applying the following two facts:

Lemma 3.4 (1) If zM1; zM2; : : : ; zMN�1 are n�n matrices with coefficients in .q D ! D !1=2 D 1/–
specializations T1i of general quantum tori T!1 ;T

!
2 ; : : : ;T

!
N�1, viewed as factors in

T!1 ˝T!2 ˝ � � �˝T!N�1;

then

Œ zM1�Œ zM2� � � � Œ zMN�1�D Œ zM1
zM2 � � �

zMN�1� 2Mn.T
!
1 ˝T!2 ˝ � � �˝T!N�1/:

Here we are viewing the tensor product T!1 ˝T!2 ˝ � � �˝T!N�1 as a quantum torus in the obvious
way , as demonstrated in the proof below.

(2) For commuting variables z and x, the matrices S
edge
k

.z/ and S left
j .x/, as in Section 1.3.1, satisfy

S
edge
k

.z/S left
j .x/D S left

j .x/S
edge
k

.z/ if and only if k ¤ j:
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Proof The proof of (1) is straightforward. To simplify the notation, we demonstrate the calculation
for two matrices zM and zN with coefficients in classical tori T and U with coordinates fXigiD1;2;:::;m
and fYj gjD1;2;:::;p and quivers � and �, respectively, where T and U are viewed in T˝U. The proof for
finitely many matrices is analogous.

By linearity, it suffices to assume zMij 2 T and zNkl 2 U are monomials, that is,

zMij DX
a
ij
1

1 X
a
ij
2

2 � � �X
a
ij
m
m and zNkl D Y

bkl1
1 Y

bkl2
2 � � �Y

bklp
p :

Recall that, by definition, different tensor factors commute under multiplication in T˝U. We have, for
all 16 i; j 6 n,

Œ zM zN �ij D Œ. zM zN /ij �D
X
k

Œ zMik
zNkj �D

X
k

ŒX
aik1
1 X

aik2
2 � � �X

aikm
m Y

b
kj
1

1 Y
b
kj
2

2 � � �Y
b
kj
p

p �

D

X
k

q�
1
2
�X

aik1
1 X

aik2
2 � � �X

aikm
m Y

b
kj
1

1 Y
b
kj
2

2 � � �Y
b
kj
p

p

D

X
k

q�
1
2
�X

aik1
1 X

aik2
2 � � �X

aikm
m Y

b
kj
1

1 Y
b
kj
2

2 � � �Y
b
kj
p

p

D

X
k

ŒX
aik1
1 X

aik2
2 � � �X

aikm
m �ŒY

b
kj
1

1 Y
b
kj
2

2 � � �Y
b
kj
p

p �D
X
k

Œ zMik�Œ zNkj �D .Œ zM �Œ zN �/ij ;

where

�D
X

16˛<ˇ6m

.�˝�/˛ˇa
ik
˛ a

ik
ˇ C

X
16˛6m;16ˇ6p

.�˝�/˛.mCˇ/a
ik
˛ b

kj

ˇ
C

X
16˛<ˇ6p

.�˝�/.mC˛/.mCˇ/b
kj
˛ b

kj

ˇ

and
� D

X
16˛<ˇ6m

�˛ˇa
ik
˛ a

ik
ˇ C

X
16˛6m;16ˇ6p

0aik˛ b
kj

ˇ
C

X
16˛<ˇ6p

�˛ˇb
kj
˛ b

kj

ˇ
:

The proof of (2) is by inspection.

Proof of Theorem 2.8 By Lemma 3.4(1), it suffices to establish (���) when q D ! D !1=2 D 1, in
which case we do not need to worry about the Weyl quantum ordering.

It is helpful to introduce a simplifying notation. For coordinates z.i/
k
; x
.i/
j ; z

0.i/

k
2 S1ji , put

Z
.i/

k
WD S

edge
k

.z
.i/

k
/; X

.i/
j WD S left

jC1.x
.i/
j /; and Z

0.i/

k
WD S

edge
k

.z
0.i/

k
/ 2Mn.S

1
ji
/:

In this new notation, the matrices Mji 2Mn.S
1
ji
/ of Proposition 3.3 can be expressed by

Mji D

� n�1Y
kD1

Z
.i/

k

�
X
.i/
ji�1

� n�1Y
kD1

Z
0.i/

k

�
2Mn.S

1
ji
/;

and Lemma 3.4(2) now reads, for any i1; i2 2 f1; 2; : : : ; N � 1g,

(�) Z
.i1/

k
X
.i2/
j DX

.i2/
j Z

.i1/

k
2Mn

�N�1O
iD1

S1ji

�
if and only if k ¤ j C 1 .similarly for Z !Z 0/:
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Example (nD 2) In this case, N D 2, we have S1j1 D S11 Š TL � T1n, and the embedding TL
�,�! S11 is

the identity, where Z1 7! z
.1/
1 and Z01 7! z

0.1/
1 . Equation (���) is also trivial, reading

M DM1 DZ
.1/
1 X

.1/
0 Z

0.1/
1 D z

.1/�1
2

1

 
z
.1/
1 0

0 1

!�
1 1

0 1

�
z
0.1/�1

2

1

 
z
0.1/
1 0

0 1

!

DZ
� 1
2

1

�
Z1 0

0 1

��
1 1

0 1

�
Z
0� 1
2

1

�
Z01 0

0 1

�
D S

edge
1 .Z1/S

left
1 S

edge
1 .Z01/DMFG:

Example (nD 3) Here N D 4, the subalgebra TL has coordinates Z1, Z2, X1, Z01 and Z02, and the
embedding TL ,! S11˝ S12˝ S11 is defined by (compare the nD 4 case, Figure 16)

Z1 7!z
.1/
1 ; Z2 7!z

.1/
2 z
0.1/
2 z

.2/
2 ; X1 7!z

0.1/
1 z

.2/
1 x

.2/
1 z
0.2/
1 z

.3/
1 ; Z01 7!z

0.3/
1 ; and Z02 7!z

0.2/
2 z

.3/
2 z
0.3/
2 ;

where we have suppressed the tensor products. Note in this case there is a unique snake-sequence
.� i /iD1;:::;4 so there is only one associated embedding of TL. Equation (���) reads

M DM1M2M1 DZ
.1/
1 Z

.1/
2 X

.1/
0 Z

0.1/
1 Z

0.1/
2 �Z

.2/
1 Z

.2/
2 X

.2/
1 Z

0.2/
1 Z

0.2/
2 �Z

.3/
1 Z

.3/
2 X

.3/
0 Z

0.3/
1 Z

0.3/
2

DZ
.1/
1 �Z

.1/
2 Z

0.1/
2 Z

.2/
2 �X

.1/
0 �Z

0.1/
1 Z

.2/
1 X

.2/
1 Z

0.2/
1 Z

.3/
1 �X

.3/
0 �Z

0.3/
1 �Z

0.2/
2 Z

.3/
2 Z

0.3/
2

D S
edge
1 .Z1/S

edge
2 .Z2/S

left
1 S left

2 .X1/S
left
1 S

edge
1 .Z01/S

edge
2 .Z02/DMFG;

where for the third equality we have used the reformulation (�) of Lemma 3.4(2) to commute the matrices.
Note that the ordering of terms in any of the seven groupings in the fourth expression is immaterial. The
fourth equality uses the embedding TL ,! S11˝ S12˝ S11.

General case As we saw in the examples, M D
QN�1
iD1 Mji is a product of distinct terms Z

.i/

k
, X

.i/
j ,

or Z
0.i/

k
. Let A be the set of terms, that is, AD

S
iD1;2;:::;N�1fZ

.i/

k
;X

.i/
ji�1

;Z
0.i/

k
j k D 1; 2; : : : ; n� 1g.

Besides terms of the form X
.i/
0 , there is one term in A for each coordinate z.i/

k
, x.i/j , and z0.i/

k
ofNN�1

iD1 S1ji . We show that there is an algorithm that commutes these terms into the correct groupings, as
in the above examples.

There is a distinguished subset AL � A, precisely defined in the next paragraph. In the example
n D 2, AL D A, and in the example n D 3, the terms in AL are underlined above. All the X

.i/
0

terms are in AL. Besides the X
.i/
0 terms, there is one term in AL for each coordinate Zk , Xj , and Z0

k

of TL; see Figure 16. As another example, for n D 4 and our usual preferred snake sequence .� i /i ,
ALD fZ

.1/
1 ;Z

.1/
2 ;Z

.1/
3 ;X

.1/
0 ;X

.2/
1 ;X

.3/
2 ;X

.4/
0 ;X

.5/
1 ;X

.6/
0 ;Z

0.6/
1 ;Z

0.6/
2 ;Z

0.6/
3 g; see Figures 15 and 16.

More precisely, the general definition of AL � A, valid for any snake sequence .� i /iD1;2;:::;N , is as
follows. First, Z

.1/

k
D S

edge
k

.z
.1/

k
/, Z

0.N�1/

k
D S

edge
k

.z
0.N�1/

k
/, and X

.i/
0 D S left

1 are in AL for all
k D 1; 2; : : : ; n� 1 and for all 1 6 i 6 N � 1 such that ji � 1D 0. And X

.i/
ji�1
D S left

ji
.x
.i/
ji�1

/ is in AL
for all 16 i 6N � 1 such that ji > 1.

Recall that the injectivity of the embedding TL ,!
NN�1
iD1 S1ji followed immediately from the property that

every coordinate z.i/
k

, x.i/j , or z0.i/
k

of
NN�1
iD1 S1ji corresponds to a unique coordinate Zk , Xj , or Z0

k
of TL;
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see Figure 16. This property thus defines a retraction r WA�AL, namely a surjective function restricting
to the identity on AL � A (by definition, X

.i/
0 7!X

.i/
0 ). See the next paragraph for a precise definition.

The retraction r can be visualized as collapsing the right side of Figure 16 to obtain the left side.

More precisely, in the notation of Section 3.3.1, there is a bijection f W A�A0!
SN�1
iD1 Coordi defined

by f .Z .i/

k
/D z

.i/

k
, f .Z 0.i/

k
/D z

0.i/

k
, and f .X .i/

ji�1
/D x

.i/
ji�1

. Here we have put

A0 D fX
.i/
0 j 16 i 6N � 1 such that ji � 1D 0g:

By definition of AL, the restricted composition g defined by g D � ı .f jAL�A0/ W AL�A0! CoordL
is a bijection, where � W

SN�1
iD1 Coordi ! CoordL is defined at the end of Section 3.3.1. The retraction

r W A! AL is defined on A�A0 by r D g�1 ı� ıf , and as the identity on A0 � AL.

The desired algorithm grouping the terms in A, where there is one grouping per term in AL, is defined by
selecting an ungrouped term a 2 A and commuting it left or right until it is adjacent to r.a/ 2 AL. Here
the terms are viewed in the expression for M . This commutation is possible by Lemma 3.4(2), that is, (�).

More precisely, in the expression for M at step s of the algorithm, for each a0 2AL let l.a0; s/ denote the
length of the longest chain of adjacent terms a 2 r�1.a0/ such that this chain contains a0. For instance,
in the nD 3 example above, for a0 DX

.2/
1 , initially the length of the chain containing a0 is 2, while at

the end of the algorithm this length is 5D jr�1.a0/j. Assuming for the moment that the algorithm is well
defined, that is, that the commutation is possible, we see that l.a0; s/6 l.a0; sC 1/ for all a0 2 AL and
for all steps s, and moreover that at least one of these inequalities is strict at each step. It follows that the
algorithm terminates, at which point the length l.a0; sterm/ of the chain containing a0 is jr�1.a0/j for all
a0 2 AL. Thus in the expression for M at the end of the algorithm, replacing each string

Q
a2r�1.a0/

a

with S
edge
k

.Zk/, S left
jC1.Xj /, or S

edge
k

.Z0
k
/, depending on a0, completes the proof. It only remains to

show that the commutations at each step of the algorithm are possible. Only the diagonal matrices Z
.i/

k

or Z
0.i/

k
, are “moving” during the commutation, and these matrices commute with each other. So by (�),

we just need to argue that, upon commuting aDZ
.i/

k
, say, until it is adjacent to a0 D r.a/, we do not

need to commute Z
.i/

k
past any X

.i 0/

k�1
. For concreteness, assume a0 is of the form X

.i 00/

k
with i 00 6 i .

The argument is analogous in the cases where a0 is of the form X
.i 00/

k
with i 00 > i , or Z

.1/

k
or Z

0.N�1/

k
.

The claim is clear when i 00 D i , so assume i 00 < i , so, in particular, Z
.i/

k
is being commuted to the left

until it is just to the right of X
.i 00/

k
. Note such a Z

.i/

k
appears as a horizontal edge lying over the top of

the small downward facing triangle corresponding to X
.i 00/

k
; compare with Figure 16. In the notation of

Section 3.3.1, the horizontal segment seg.f .Z .i/

k
// 2 SegL in the discrete triangle ‚n�1 is of the form

.k; ˇ; n� 1� k�ˇ/.k� 1; ˇ; n� k�ˇ/. Thus the key observation is that if some snake-move matrix
Mji0 DMk contributes X

.i 0/

k�1
to M , then either the bottom snake � i

0

of the i 0–snake-move is later in the
snake sequence than the bottom snake � i of the i–snake-move, in particular i 6 i 0, or the top snake � i

0C1

of the i 0–snake-move is earlier in the snake sequence than the bottom snake � i
00

of the i 00–snake-move, in
particular i 0C 16 i 00. In the former case X

.i 0/

k�1
lies to the right of Z

.i/

k
, and in the latter case X

.i 0/

k�1
lies

to the left of X
.i 00/

k
.
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zn�1
zn�jC1

z0n�1 z0n�jC1
z0n�j

z02 z01

zn�j z2 z1

xn�jC1

� 0
1=2
�1=2

Figure 17: Right diamond snake-move algebra for j D 2; : : : ; n� 1.

z0n�1

� 0
1=2
�1=2

z02 z01

z1z2zn�1

Figure 18: Right tail snake-move algebra for j D 1.

3.5 Setup for the quantum right matrix

We end with a few words about the proof for the quantum right matrix MFG DR! , which essentially
goes the same as for the left matrix.

(1) The right version of the j th snake algebra S!j for j D 1; 2; : : : ; n� 1 is given by replacing the
quivers of Figures 13 and 14 by the quivers shown in Figures 17 and 18.

(2) The j th quantum snake-move matrix Mj of Proposition 3.3 is replaced by

Mj WD

�� n�1Y
kD1

S
edge
k

.zk/

�
S

right
j .xn�jC1/

� n�1Y
kD1

S
edge
k

.z0k/

��
2Mn.S

!
j /:

Note, when j D 1, the matrix S
right
1 .xn/D S

right
1 is well defined, despite xn not being defined.

(3) The subalgebra TR � T!n is generated by all but the Z0˙1=nj ; see Figures 11 and 12.

Appendix Proof of Proposition 3.3

Lemma A.1 If ZW D q�WZ in some quantum torus T, and if
Pm
iD1 ri D 0, then

mY
iD1

ŒZriW ri �D 1 2 T:

Proof Using
�P

i ri
�2
=2D

P
i r
2
i =2C

P
i<j rirj , we computeY

i

ŒZriW ri �D q��
P
i r
2
i
=2Zr1W r1Zr2W r2 � � �ZrmW rm

D q��
P
i r
2
i
=2q��

P
i<j rirjZ

P
i riW

P
i ri D q��.

P
i ri /

2=2
�Z0 �W 0

D 1:
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Proof of Proposition 3.3 As a shorthand, put Lil WD .S left
j .xj�1//il , zEi i WD

Qn�1
kD1.S

edge
k

.zk//i i , and
zE 0i i WD

Qn�1
kD1.S

edge
k

.z0
k
//i i . By Definition 2.6, and by the structure of the matrix Mj , the following three

relations are needed to establish that Mj is in Mq
n.S

!
j /:

Œ zEjjLj.jC1/ zE
0
.jC1/.jC1/�Œ

zEjjLjj zE
0
jj �DqŒ

zEjjLjj zE
0
jj �Œ
zEjjLj.jC1/ zE

0
.jC1/.jC1/�;(A-1)

Œ zE.jC1/.jC1/L.jC1/.jC1/ zE
0
.jC1/.jC1/�Œ

zEjjLj.jC1/ zE
0
.jC1/.jC1/�(A-2)

DqŒ zEjjLj.jC1/ zE
0
.jC1/.jC1/�Œ

zE.jC1/.jC1/L.jC1/.jC1/ zE
0
.jC1/.jC1/�;

Œ zEi iLi i zE
0
i i �Œ
zEkkLkk zE

0
kk�D Œ

zEkkLkk zE
0
kk�Œ
zEi iLi i zE

0
i i � for i <k:(A-3)

We begin with (A-1). Note,

Lj.jC1/ D Ljj D x
.1�j /=n
j�1 and Œ zEjjLj.jC1/ zE

0
.jC1/.jC1/�D Œ

zEjjLjj zE
0
jj z
0�1
j �:

So it suffices to show that commuting z0�1j from left to right across zEjjLjj zE 0jj contributes a factor q,
equivalently, z0j contributes q�1. Indeed, in zEjjLjj zE 0jj we see z0j only interacts with x.1�j /=nj�1 with
weight q2, with .S edge

j .zj //jj D z
.n�j /=n
j with weight q�2, with .S edge

jC1.z
0
jC1//jj D z

0.n�j�1/=n
jC1 with

weight q, and with .S edge
j�1 .z

0
j�1//jj D z

0.1�j /=n
j�1 with weight q�1. The total exponent of q that z0j

contributes is therefore .2.1� j /� 2.n� j /C 1.n� j � 1/� 1.1� j //=nD�1.

Next we check (A-2). Note, L.jC1/.jC1/ D Lj.jC1/ D x
.1�j /=n
j�1 and Œ zEjjLj.jC1/ zE 0.jC1/.jC1/� D

Œzj zE.jC1/.jC1/L.jC1/.jC1/ zE
0
.jC1/.jC1/

�. So it suffices to show that commuting zj from right to left
across zE.jC1/.jC1/L.jC1/.jC1/ zE 0.jC1/.jC1/ contributes a factor q. Indeed, in

zE.jC1/.jC1/L.jC1/.jC1/ zE
0
.jC1/.jC1/

we see that zj only interacts with x.1�j /=nj�1 with weight q2 (because it’s moving from right to left), with
.S

edge
j .z0j //.jC1/.jC1/ D z

0�j=n
j with weight q�2, with .S edge

jC1.zjC1//.jC1/.jC1/ D z
.n�j�1/=n
jC1 with

weight q, and with .S edge
j�1 .zj�1//.jC1/.jC1/ D z

.1�j /=n
j�1 with weight q�1. The total exponent of q that

zj contributes is therefore .2.1� j /� 2.�j /C 1.n� j � 1/� 1.1� j //=nDC1.

Lastly we verify (A-3). Note that the terms in Œ zEi iLi i zE 0i i � appear in the forms x˛
i

j�1 or z
ˇ i
l

l
z
0ˇ i
l

l
for

l D 1; 2; : : : ; n � 1. We see from the quivers in Figures 13 and 14 that terms of this form mutually
commute. So

Œ zEi iLi i zE
0
i i �D Œx

˛i

j�1�
Y
l

Œz
ˇ i
l

l
z
0ˇ i
l

l
�;

where the right-hand side is independent of the ordering of the terms. Similarly for Œ zEkkLkk zE 0kk�. It
follows that Œ zEi iLi i zE 0i i � commutes with Œ zEkkLkk zE 0kk� for all i and k.

It remains to check that the quantum determinant of Mj is equal to 1 2 S!j . Since Mj is in Mq
n.S

!
j / and

is triangular, by Remark 2.7(1) we have Detq.Mj / D
Q
i .Mj /i i . As the only l such that zl does not

commute with z0
l

is l D j , the above equation becomes

.Mj /i i D Œ zEi iLi i zE
0
i i �D Œz

ˇ i
j

j z
0ˇ i
j

j �x˛
i

j�1

Y
l¤j

.zlz
0
l/
ˇ i
l :
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Note,
P
i ˛
i D 0 and

P
i ˇ

i
l
D 0 for all l D 1; 2; : : : ; n� 1 by construction of Mj (this is where the

normalizing factors come in; compare with the example below Proposition 3.3). It follows that (where
the last equality is by Lemma A.1),

Detq.Mj /D

�Y
i

Œz
ˇ i
j

j z
0ˇ i
j

j �

��Y
i

x˛
i

j�1

Y
l¤j

.zlz
0
l/
ˇ i
l

�
D

�Y
i

Œz
ˇ i
j

j z
0ˇ i
j

j �

�
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