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Algebraic generators of the skein algebra of a surface

RAMANUJAN SANTHAROUBANE

Let † be a surface with negative Euler characteristic, genus at least one and at most one boundary
component. We prove that the Kauffman bracket skein algebra of † over the field of rational functions
can be algebraically generated by a finite number of simple closed curves that are naturally associated to
certain generators of the mapping class group of †. The action of the mapping class group on the skein
algebra gives canonical relations between these generators. From this, we conjecture a presentation for a
skein algebra of †.
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1 Introduction

1.1 Main results

This paper is focused on finding algebraic generators of the Kauffman bracket skein algebra of a surface.
Throughout this paper, we will refer to the Kauffman bracket skein algebra simply as the skein algebra. Let
† be a compact oriented connected surface of genus at least one and with at most one boundary component.
Moreover, we will suppose that † has negative Euler characteristic. We denote by S.†;Q.A// the skein
module of †� Œ0; 1� with coefficients in the field of rational function Q.A/ and by S.†/ the skein module
over ZŒA˙1�. The module S.†;Q.A// is equipped with a natural product given by stacking banded
links. For 
 is a simple closed curve on †, we write 
 for the element 
 �

�
1
2
; 2

3

�
in S.†;Q.A// and we

denote by t
 the Dehn twist along 
 .

Theorem 1.1 Let f
j gj2I be a finite set of nonseparating simple closed curves such that

(1) for any i; j 2 I , the curves 
i and 
j intersect at most once;

(2) the set ft
j gj2I generates the mapping class group of †.

Then f
j gj2I generates S.†;Q.A// as a Q.A/–algebra. Moreover , f
j gj2I generates

S.†/˝Z
h
A˙1;

1

A2�A�2

i
as a ZŒA˙1; 1=.A2�A�2/�–algebra.

We recall that the mapping class group of † is �0.HomeoC.†; @†//. We will now give an interpretation
of some relations that should hold for the generators in the previous theorem. Let us fix f
j gj2I a
set of simple closed curves on † satisfying the hypothesis of Theorem 1.1. Let Q.A/hIi be the free
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noncommutative Q.A/–algebra generated by fXj gj2I . The theorem says that there exists a surjective
algebra homomorphism

(1) ‰ WQ.A/hIi ! S.†;Q.A//

defined by
‰.Xj /D


j

A2�A�2
for all j 2 I:

Now for j 2 I and � 2 f�1; 1g, let T �
j WQ.A/hIi !Q.A/hIi be the homomorphism of Q.A/–algebra

defined by

(2) T �
j .Xk/D

�
Xk if �.
j ; 
k/D 0;

�.A�Xj Xk �A��XkXj / if �.
j ; 
k/D 1:

Here � is the geometric intersection of simple closed curves. With the convention that a Dehn twist always
turn to the right with respect to the orientation of the surface, we can check that ‰ exchanges the actions
of the Tj and the tj in the sense that

‰.T �
j X /D t�
j .‰.X // for all X 2Q.A/hIi; j 2 I; and � 2 f�1; 1g:

Let �.†/ be the mapping class group of † and let �.†/ be the group �.†/ modulo its center. Suppose
that I D f1; : : : ;N g and let us denote each t
j simply by tj . Note that the map t�j 7! T �

j does not extend
to an action of �.†/ on Q.A/hIi. Indeed Q.A/hIi is a free noncommutative algebra and the relations
in �.†/ satisfied by the Dehn twists ft˙1

j gj2J have no reason to be satisfied by the operators fT˙1
j gj2J .

Hence the relations between the ft˙1
j gj2J give relations between the generators f
j gj2J in S.†;Q.A//.

Suppose that �.†/ has the following presentation with respect to the generators ftj gj2I :

�.†/D ht1; : : : ; tN jR1.t1; : : : ; tN /D � � � DRK .t1; : : : ; tN /D 1i

where K is an integer and the Rk.t1; : : : ; tN / are some words in ft˙1
j gj2I . Let R be the bi-ideal of

Q.A/hIi generated by the elements

Rk.T1; : : : ;TN /Xi �Xi for 1� i �N and 1� k �K;

Tj T �1
j Xi �Xi for 1� i; j �N;

XiXj �Xj Xi for �.
i ; 
j /D 0:

We define

(3) A.�.†//D
Q.A/hIi

R
;

which is a quotient of Q.A/hIi on which the actions of the T˙1
j extend to a canonical action of �.†/. A

direct consequence of Theorem 1.1 is the following:

Corollary 1.2 The canonical map

A.�.†//! S.†;Q.A//

is surjective.

Algebraic & Geometric Topology, Volume 24 (2024)



Algebraic generators of the skein algebra of a surface 2573

Conjecture 1.3 There exists a presentation of �.†/ for which A.�.†// is isomorphic to S.†;Q.A//

as a noncommutative Q.A/–algebra.

1.2 Notes and references

Bullock [1999] was the first to find algebraic generators of the skein algebra of a surface. His generators
are over ZŒA˙1� and not over Q.A/. The number of his generators is exponential in the genus of the
surface whereas here we have a linear number (by choosing the right generators of �.†/).

It was shown in [Przytycki and Sikora 2000] that each S.†/ has a generating set of cardinality which is
cubic in the genus of the surface.

Finite generation was also prove by Abdiel and Frohman [2017, Theorem 3.7]. Frohman and Kania-
Bartoszynska [2018] studied the skein algebra when A is evaluated at a root of unity. They proved that it
is generated over its center by a pair of subalgebras from pants decomposition. Their generators have
some similarities with the one in the current paper.

Presentations of skein algebras of surfaces are only known in genus zero and one. Bullock and Przytycki
[2000] found such a presentation for the one-holed torus, the four-holed sphere and two-holed torus. They
related some of these algebras to nonstandard deformations of lie algebras.

When A is specialized to �1, it was shown by Bullock [1997] and Przytycki and Sikora [2000] that
the skein algebra of a surface is isomorphic to the ring of algebraic functions of the SL.2;C/ character
variety of the surface. Moreover, for AD

p
�1, Marché [2011] gave an homological interpretation of

the skein algebra of the surface. Note that the map ‰ defined in (1) is not defined if A is specialized
to a 4th primitive root of unity. It is possible to see that if we specialize A at a 4th root of unity in the
algebra A.�.†// we find something different from the algebras studied by Bullock, Marché, Przytycki
and Sikora.

Humphries generators [1979] and Lickorish generators [1964] are examples of generators of the mapping
class groups satisfying the hypothesis of Theorem 1.1. Moreover, presentations for both of these generating
sets are known; we refer to book of Farb and Margalit [2012] for more details.

We consider �.†/ quotiented by its center because the center of the mapping class group acts trivially on
the skein algebra of the surface.

Acknowledgements

I want to thank C Frohman, J Marché and G Masbaum for helpful conversations.

2 Quick review of the skein algebra

For any compact oriented manifold M (maybe with boundary), we denote by S.M / the Kauffman bracket
skein module with coefficients in ZŒA˙1�. We recall that it is the free ZŒA˙1�–module generated by the
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L� L0 L1

Figure 1: Kauffman triple.

set of isotopy classes of banded links in the interior of M quotiented by the following so-called skein
relations. First

(4) L� DAL1CA�1L0

where L�, L0 and L1 are any three banded links in M which are the same outside a small 3–ball but
differ inside as in Figure 1. In this case, the triple L�;L0;L1 is called a Kauffman triple. The second
relation satisfied in S.M / is

L[D D�.A2
CA�2/L

where L is any link in M and D is a trivial banded knot. We define S.M;Q.A// to be the Q.A/–vector
space S.M /˝Q.A/ where the tensor product is made over ZŒA˙1�.

Let † be a compact oriented connected surface; we denote by S.†;Q.A// the space S.†� Œ0; 1�;Q.A//.
Stacking banded links on top of each other gives S.†;Q.A// the structure of a Q.A/–algebra.

A multiloop is a disjoint union of non-null-homotopic simple close curve inside †. For 
 �† a multiloop
we write 
 for the banded link 
 �

�
1
2
; 2

3

�
in S.†;Q.A// and we will still call this banded link a multiloop.

A well-known theorem is the following:

Theorem 2.1 The set of isotopy classes of multiloops on † is a basis of the Q.A/–vector space
S.†;Q.A//.

In particular this theorem clearly implies that simple closed curves generate S.†;Q.A// as an algebra.
Recall that �.†/D �0.HomeoC.†; @†// acts canonically on S.†;Q.A//. If 
 �† is a simple closed
curve, we denote by t
 the Dehn twist along 
 . We use the turn right convention for t
 . More precisely,
let N � † be an annulus neighborhood of 
 , we can identify N with S1 � Œ0; 1� using an orientation
preserving homeomorphism. Outside N, the map t
 is defined to be the identity and on N it is given by
the map .ei� ; t/ 7! .ei.��2� t/; t/. Figure 2 helps to visualize this definition.

The following lemma can be obtained by applying the skein relation (4).

N

t

7�!

N

Figure 2
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Lemma 2.2 Let ˛ and ˇ be two simple close curves intersecting once. Then in S.†;Q.A//,

t�˛.ˇ/D
A�˛ˇ�A��ˇ˛

�.A2�A�2/
:

3 Proof of Theorem 1.1

Let �.†/ be the mapping class group of †. Let f
j gj2I be a set of simple closed curves satisfying the
hypothesis of the Theorem 1.1 and let B be the subalgebra of S.†;Q.A// generated by f
j gj2I .

Lemma 3.1 B is stable by the action of �.†/.

Proof Since ft
j gj2I generates �.†/, it enough to prove that for any j ; k 2 I we have t˙1

j
.
k/ 2B. If


j does not intersect 
k then t˙1

j
.
k/D 
k 2B. Now if 
j intersects 
k once then, by Lemma 2.2,

t˙1

j
.
k/D

A˙1
j
k �A�1
k
j

˙.A2�A�2/
2B:

Lemma 3.2 If C0 denotes the set of nonseparating simple closed curves then C0 �B.

Proof Let 
 2 C0 and 
0 2 f
j gj2I ; there exists � 2 �.†/ such that �.
0/D 
 . Since 
0 belongs to B

which is stable by the action of �.†/ (see the previous lemma), we have 
 2B.

Lemma 3.3 If C1 denotes the set of separating simple closed curves then C1 �B.

Proof Suppose that the genus of † is g � 1. Let ı1; : : : ; ıg be the curves in Figure 3, where ıg is trivial
when † does not have boundary. Let j 2 f1; : : : ;gg and let zj and z0j be the two nonseparating curves in
the torus with two boundary components defined by ıj ; ıj�1, as shown in Figure 4.

By applying the skein relations, we have

z0j zj DA2xj x0j CA�2yj y0j C ıj C ıj�1

where ı0 D�A2�A�2 and xj , x0j , yj and y0j are nonseparating curves. By Lemma 3.2, z0j , zj , xj , x0j ,
yj and y0j are in B, so by an induction on j we can prove that for all 1� j � g we have ıj 2B.

Now if 
 is a separating curve, there exists � 2 �.†/ and j0 such that 
 D �.ıj0
/. Since B is stable by

the action of �.†/, we have 
 2B.

ı0

ı1
ı2 ıg�1

ıg

Figure 3
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ıj ıj

ıj ıj

ıj�1

zj

z0j

Figure 4

Proof of Theorem 1.1 S.†;Q.A// is algebraically generated by simple closed curves. Hence, combin-
ing Lemmas 3.2 and 3.3, we can conclude the proof. Moreover, we can still conclude by Lemmas 3.1,
3.2 and 3.3 that the ZŒA˙1; 1=.A2�A�2/�–algebra generated by f
j gj2I is

S.†/˝Z
h
A˙1;

1

A2�A�2

i
:

4 Interpretation of the relations in the skein algebra

Let f
j gj2I be a set of simple closed curves on † satisfying the hypothesis of Theorem 1.1. Recall that
Q.A/hIi is the free noncommutative Q.A/–algebra generated by fXj gj2I .

Definition 4.1 For X;Y 2Q.A/hIi we define ŒX;Y �A WDAXY �A�1YX .

Recall that the maps fT �
j gj2I are defined by (2) in the introduction. Recall also that given a presentation

of �.†/ with respected to the generating set ft
j gj2I , we defined A.�.†// via (3) (see the introduction).
By definition, any relation satisfied by the ft
j gj2I (which may not appear in the given presentation)
gives some relation in A.�.†//. Let us focus on the relations

T �1
j T �1

i T �1
j TiTj TiXa�Xa D 0 for �.
i ; 
j /D 1 and a 2 I;(5)

Tj T �1
j Xi �Xi D 0 for i; j 2 I;(6)

XiXj �Xj Xi D 0 for �.
i ; 
j /D 0:(7)

Note that these relations hold but are not a complete set of relations in A.�.†//. The first relation comes
from the braid relations in the mapping class group.

Proposition 4.2 In A.�.†//, the relations (5), (6) and (7) are equivalent to

ŒŒXj ;Xi �A;Xj �A DXi for �.
i ; 
j /D 1;(8)

XiXj �Xj Xi D 0 for �.
i ; 
j /D 0:(9)

Algebraic & Geometric Topology, Volume 24 (2024)
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Proof Let i; j 2 I . Note that if �.
i ; 
j /D 0, the relation (6) is empty and if �.
i ; 
j /D 1, this relation
gives ŒŒXj ;Xi �A;Xj �A DXi .

Let i; j 2 I such that �.
i ; 
j /D 1. Because of (6), the relation (5) can be rewritten as

TiTj TiXk D Tj TiTj Xk

for all k 2 I . It is easy to check that this relation is implied by (8) and (9).

Remark 4.3 We did not include T �1
j Tj Xi DXi in the relations defining A.�.†// because they give

ŒXj ; ŒXi ;Xj �A�A DXi for �.
i ; 
j /D 1 which is the same as ŒŒXj ;Xi �A;Xj �A DXi .

4.1 The case of the one-holed torus

Let † be a surface of genus one with one boundary component. Its mapping class group is the braid
group B3 whose presentation is ht1; t2 j t1t2t1 D t2t1t2i. Here is t1 is Dehn twist along the canonical
meridian of † and t2 is the Dehn twist around the longitude of †. Note that these two curves satisfy the
hypothesis of Theorem 1.1. The center of this group is the group generated by .t1t2t1/

2 and �.†/ is
PSL2.Z/ with presentation

�.†/D ht1; t2 j t1t2t1 D t2t1t2; .t1t2t1/
2
D 1i:

In this case A.�.†// is a noncommutative algebra generated by X1 and X2. Because of Proposition 4.2,
the only relations between X1 and X2 are

ŒX1; ŒX2;X1�A�A DX2; ŒX2; ŒX1;X2�A�A DX1; .T1T2T1/
2X1 DX1; .T1T2T1/

2X2 DX2:

It is easy to check that the two last relations are implied by the two first one. Therefore,

A.�.†//D hX1;X2 j ŒX1; ŒX2;X1�A�A DX2; ŒX2; ŒX1;X2�A�A DX1i:

From [Bullock 1999, Theorem 2.1] the skein module of the one-holed torus is isomorphic to A.�.†//.
Therefore Conjecture 1.3 holds for the one-holed torus.
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