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Bundle transfer of L–homology orientation classes for singular spaces

MARKUS BANAGL

We consider transfer maps on ordinary homology, bordism of singular spaces and homology with
coefficients in Ranicki’s symmetric L–spectrum, associated to block bundles with closed oriented PL
manifold fiber and compact polyhedral base. We prove that if the base polyhedron is a Witt space,
for example a pure-dimensional compact complex algebraic variety, then the symmetric L–homology
orientation of the base, constructed by Laures, McClure and the author, transfers to the L–homology
orientation of the total space. We deduce from this that the Cheeger–Goresky–MacPherson L–class of
the base transfers to the product of the L–class of the total space with the cohomological L–class of the
stable vertical normal microbundle.
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1 Introduction

To a fiber bundle p W X ! B whose structure group is a compact Lie group acting smoothly on the
compact smooth d–dimensional manifold fiber F , and whose base space B is a finite complex, Becker
and Gottlieb associate in [8] a transfer homomorphism p! WHn.B/!HnCd .X /. Boardman discusses
this transfer and several closely related constructions, such as the Umkehr map and pullback transfers,
in [9]. Let L�.˛/ denote the cohomological Hirzebruch L–class of a vector bundle ˛, and for a smooth
closed oriented manifold M with tangent bundle TM, let L�.M / 2H�.M IQ/ denote the Poincaré dual
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2580 Markus Banagl

of L�.TM/. Suppose that F is oriented and the structure group of p acts in an orientation-preserving
manner. If the base B of the fiber bundle is a smooth closed oriented manifold M , then

(1) p!L�.M /DL�.Tp/
�1
\L�.X /;

where Tp is the vertical tangent bundle of p. This is a straightforward consequence of the bundle
isomorphism TX Š p�TM˚Tp , naturality and the Whitney sum formula for the cohomological L–class,
multiplicative properties of the transfer, and the fact that p! maps the fundamental class of the base to the
fundamental class of the total space.

If the base B is a singular pseudomanifold then the above argument does not apply. On the other
hand, intersection homology methods still allow for the construction of a homological L–class L�.B/ 2

H�.BIQ/ for many types of compact pseudomanifolds B: When B allows for a stratification with only
even-codimensional strata, for example a pure-dimensional compact complex algebraic variety, L�.B/ has
been defined by Goresky and MacPherson in [21]. This construction has been extended by P Siegel [44] to
Witt spaces, ie oriented polyhedral pseudomanifolds that may have strata of odd codimension such that the
middle-dimensional middle-perversity rational intersection homology of the corresponding links vanishes.
In [1; 2], the author has yet more generally defined L�.B/ for topologically stratified spaces B that allow
for Lagrangian structures along strata of odd codimension. A local definition of L–classes for triangulated
pseudomanifolds with piecewise-flat metric was given by Cheeger [16] in terms of �–invariants of links.
As for manifolds, the L–class of singular spaces plays an important role in the topological classification
of such spaces, as shown by Cappell and Weinberger in [13] and by Weinberger in [49].

Let F be a closed oriented d–dimensional PL manifold, B a compact polyhedron and � an oriented PL
F–block bundle over B; see Casson [15]. Oriented PL F–fiber bundles p W X ! B are a special case.
Block bundles, and hence our results here, do not require a locally trivial projection map p. Then � still
admits a transfer homomorphism

� !
WHn.B/!HnCd .X /:

See Ebert and Randal-Williams [19] and Section 5. Furthermore, � possesses a stable vertical normal PL
microbundle �� ; see Hebestreit, Land, Lück and Randal-Williams [25] and Section 2. Here we develop
methods that yield, among other results, formula (1) for F–block bundles over Witt spaces B:

Theorem 8.1 Let B be a closed Witt space (eg a pure-dimensional compact complex algebraic variety)
and let F be a closed oriented PL manifold. Let � be an oriented PL F–block bundle over B with total
space X and oriented stable vertical normal microbundle �� over X . Then X is a Witt space , and the
associated block bundle transfer � ! sends the Cheeger–Goresky–MacPherson–Siegel L–class of B to
the product

(2) � !L�.B/DL�.��/\L�.X /:

Note that since the cohomological class L�.��/ is invertible, this formula yields a method for computing
the Cheeger–Goresky–MacPherson L–class of the total space.
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Our method of proof rests on the geometric description of PL cobordism provided by Buoncristiano,
Rourke and Sanderson [12] in terms of mock bundles. We construct a transfer � ! WEn.B/!EnCd .X /

for any module spectrum E over the Thom spectrum MSPL of oriented PL bundle theory. In addition
to the transfer on ordinary homology, this yields transfer homomorphisms on Ranicki’s homology with
coefficients in the symmetric L�–spectrum and on Witt bordism theory, �Witt

� . We describe the latter
transfer geometrically as a pullback transfer and use this, together with mock bundle theory, to show
that the Witt bordism transfer sends the fundamental class ŒB�Witt 2�

Witt
� .B/ to the fundamental class

ŒX �Witt 2 �
Witt
� .X /; see Proposition 6.8. Using work of Laures, McClure and the author [7], which

provides a map of ring spectra MWITT! L�.Q/, where MWITT represents Witt-bordism, as well as a
fundamental class ŒB�L 2 L�.Q/�.B/, we then show:

Theorem 7.1 Let B be a closed Witt space of dimension n and let F be a closed oriented PL manifold of
dimension d . Let � be an oriented PL F–block bundle over B with total space X . Then the L�–homology
block bundle transfer

� !
W L�.Q/n.B/! L�.Q/nCd .X /

maps the L�.Q/–homology fundamental class of B to the L�.Q/–homology fundamental class of X ,

� !ŒB�L D ŒX �L:

The result on Cheeger–Goresky–MacPherson L–classes is then deduced from an explicit formula for the
transfer by tensoring with the rationals. For a PL F–fiber bundle p WX ! B over a PL manifold base B,
the formula

p!ŒB�L D ŒX �L 2 L�.Z/nCd .X /

was stated by Lück and Ranicki in [32]. The behavior of the L–class for singular spaces under transfers
associated to finite-degree covering projections has already been clarified in [4], where we showed that
for a closed oriented Whitney stratified pseudomanifold B admitting Lagrangian structures along strata
of odd codimension (eg B Witt) and p WX ! B an orientation-preserving covering map of finite degree,
the L–class of B transfers to the L–class of the cover, ie

p!L�.B/DL�.X /:

For the Witt case, from our perspective this is a special case of (2).

An inclusion g W Y ,! X of stratified spaces is called normally nonsingular if Y possesses a tubular
neighborhood in X that can be equipped with the structure of a real vector bundle; see eg work of
Goresky and MacPherson [23] and the author [5]. An oriented normally nonsingular inclusion g of real
codimension c has a Gysin map

g!
WH�.X IQ/!H��c.Y IQ/

on ordinary homology,
g!
W L�.Q/�.X /! L���c.Q/.Y /

on L�.Q/–homology, and
g!
W�Witt
� .X /!�Witt

��c.Y /

Algebraic & Geometric Topology, Volume 24 (2024)
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on Witt bordism. In [5], we showed that if g is a normally nonsingular inclusion of closed oriented
even-dimensional piecewise-linear Witt pseudomanifolds, for example pure-dimensional compact complex
algebraic varieties, then

(3) g!L�.X /DL�.�g/\L�.Y /;

g!ŒX �L D ŒY �L; g!ŒX �Witt D ŒY �Witt;

where �g is the normal bundle of g. These formulae have been applied in [5] to compute the Cheeger–
Goresky–MacPherson L–class of certain singular Schubert varieties. No previous computations of such
classes seem to be available in the literature. Together with the bundle transfer formula (2), this makes it
possible to compute the transfer of the Cheeger–Goresky–MacPherson L–class associated to a normally
nonsingular map, that is, a map which can be factored as a composition of a normally nonsingular
inclusion, followed by the projection of an oriented PL F–fiber bundle � with closed PL manifold fiber F ;
see Section 9.

For complex algebraic, possibly singular, varieties X , Brasselet, Schürmann and Yokura [11] introduced
Hodge-theoretic intersection Hirzebruch characteristic classes ITy;�.X /, which agree with L�.X / for
y D 1 and X nonsingular or, more generally, a rational homology manifold; see de Bobadilla and
Pallarés [10]. Using results of Schürmann [43] and Maxim and Schürmann [34], we established an
algebraic version of (3) for IT1;� in a context of appropriately normally nonsingular regular algebraic
embeddings [5, Theorem 6.30]. Similarly, we expect IT1� to satisfy a relation analogous to (2) for
smooth algebraic morphisms p WX !B, where �p would now be inverse to the algebraic relative tangent
bundle TX=B . Such a relation, together with our results here, then enable further comparison between
the Hodge-theoretic class IT1� and the topological class L�. The aforementioned normally nonsingular
maps form a topological parallel to the algebraic concept of a local complete intersection morphism, ie
a morphism of varieties that can be factored into a closed regular embedding and a smooth morphism.
Hence our results impact the behavior of topological characteristic classes under transfers associated to
local complete intersection morphisms.

Acknowledgments This work is funded by the Deutsche Forschungsgemeinschaft (DFG, German
research foundation) research grant 495696766.

2 Stable vertical normal block bundles

Block bundles with manifold fiber over compact polyhedra admit stable vertical normal closed disc block
bundles; see eg [19; 25], as well as [12, page 83] for the more general mock bundle situation. We will
use the vertical normal block bundle later in the description of the Umkehr map, and thus recall the
construction in the form we need.

Let F be a closed oriented PL manifold of dimension d and let K be a finite ball complex with associated
polyhedron B D jKj. (The polyhedron B is not required to be a manifold.) Let � be an oriented PL
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F–block bundle over K (see Casson [15]) with total space X DE.�/. Let b denote the dimension of B

so that dim X D dCb. The block of � over a cell � 2K will be denoted by �.�/. For every � , there is a
block-preserving PL homeomorphism �.�/Š F � � . Thus the blocks of � are compact PL manifolds
with boundary

�.@�/ WD
[
�2@�

�.�/:

Over the interiors V� of cells, we set �. V�/ WD �.�/� �.@�/.

In order to construct a stable vertical normal PL block bundle (and hence a stable PL microbundle, since
BSPL' BeSPL) for � , choose a block-preserving PL embedding

� WX ,!Rs
�B

for sufficiently large s > 2d C bC 1, ie a PL embedding such that

�.�. V�//�Rs
� V�

and
� jW .�.�/; �.@�//! .Rs

� �;Rs
� @�/

is a locally flat PL embedding of manifolds for every simplex � � K. One way to obtain such an
embedding is to choose first a PL embedding e W X ,! Rs . By Casson [15, Lemma 6, page 43], � can
be equipped with a choice of block fibration p W X ! B. This is a PL map such that �.�/ D p�1.�/

for every cell � 2 K. Then � WD .e;p/ W X ,! Rs � B is a block-preserving PL embedding. (The
local flatness is ensured by requiring the codimension to be at least 3.) Another method to construct
a block-preserving embedding � is by induction over the cells � 2 K, starting with the 0–cells �0

and embeddings � W �.�0/ Š F � Rs � �0 Š Rs . These are then extended to proper embeddings of
manifolds-with-boundary � W �.�1/�Rs � �1 for every 1–cell �1 in K, etc. As in [41], an embedding
j WM !Q of manifolds is proper if j�1.@Q/D @M .

Recall that one says that a PL embedding j W A! P of polyhedra possesses a normal PL closed disc
block bundle if there exists a regular neighborhood N of j .A/ in P such that N is the total space of a PL
closed disc block bundle over j .A/ whose zero section embedding agrees with the inclusion j .A/�N .

Proposition 2.1 Let � be an F–block bundle over a finite cell complex K with polyhedron B D jKj,
where F is a closed PL manifold. A block-preserving PL embedding � WX !Rs�B of the total space X

of � possesses a normal PL closed .s�d/–disc block bundle �� over �.X /. If � is oriented , then �� is
canonically oriented.

Proof We begin by constructing a particular regular neighborhood N of �.X / in Rs �B such that N is
compatible with the blocks �.�.�// and Rs �� for all cells � 2K. There exists a locally finite simplicial
complex L with subcomplexes T;L� �L (� 2K) such that

(i) jLj DRs �B,

(ii) �.X /D jT j,
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(iii) for every cell � in K, Rs � � D jL� j, and

(iv) each simplex of L meets T in a single face or not at all.

It follows from (ii) and �.�.�// � Rs � � that the compact manifold M� WD �.�.�// is triangulated
by L� \T . The boundary of M� is triangulated by the subcomplex L@� \T of L, where L@� is the
subcomplex of L given by

L@� D
[
�2@�

L� :

Furthermore, (iv) implies that each simplex of L� meets L� \ T in a single face or not at all. Let
f WL! Œ0; 1�D�1 be the unique simplicial map such that f �1.0/D jT j. Then the preimage

N WD f �1
�
0; 1

2

�
�Rs

�B

is a regular neighborhood of �.X / in Rs � B. The intersection Q� WD N \ .Rs � �/ is a regular
neighborhood of the manifold M� in the manifold Rs�� . This regular neighborhood meets the boundary
Rs �@� transversely, ie N \ .Rs �@�/ is a regular neighborhood of �.�.�//\ .Rs �@�/D �.�.@�// in
Rs � @� . The boundary of the compact manifold Q� is described by

(4) @Q� D
�
f �1

�
1
2

�
\ .Rs

� �/
�
[

[
�2@�

Q�

and M� is a proper submanifold of Q� .

We will construct a PL closed disc block bundle �� over �.X / by induction on the cells � of K. The
total space E.�� / of �� is given by E.�� / WDN . Given a nonnegative integer n, we set

Ln WD

[
�

L� ;

where the union is taken over all cells � 2K of dimension at most n. The corresponding polyhedron is
jLnj DRs �Bn, where Bn denotes the n–skeleton of B. Set

Qn WD

[
�

Q� �Rs
�Bn;

where the union is taken over all cells � 2K of dimension at most n, so that

Qn DN \ .Rs
�Bn/:

For nD b D dim B we have Bn D B and thus Qb DN .

Let � be a 0–cell of K. By [41, Theorem 4.3, page 16], there is a disc block bundle �� over the complex
L� \ T with total space E.�� / D Q� . Then the collection of blocks �� .ˇ/, for ˇ 2 L� \ T , of the
bundles �� endow Q0 with the structure of a disc block bundle �0 over L0\T . Assume inductively that
a block bundle �n�1 over Ln�1\T with total space

E.�n�1/DQn�1
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has been constructed such that for all cells � 2 K with dim � < n, the restriction �� of �n�1 to the
subcomplex L� \ T � Ln�1 \ T has total space E.�� / D Q� . Let � 2 K be an n–cell. The pair
.M� ; @M� / is triangulated by .L� \T;L@� \T /. Using the description (4) of @Q� , we have

E.�n�1jL@�\T /D
[
�2@�

E.�n�1jL�\T /D
[
�

Q� � @Q� :

Since Q� is a regular neighborhood of the compact manifold M� , there exists, again by [41, Theorem 4.3],
a disc block bundle �� over L� \T with total space E.�� /DQ� such that

�� jL@�\T D �n�1jL@�\T :

Then the collection of blocks �� .ˇ/, for ˇ 2 L� \ T and dim � � n, of the bundles �� endow
Qn D

S
dim��n Q� with the structure of a disc block bundle �n over Ln\T . By construction,

E.�njL�\T /DE.�� /DQ�

for all � 2K and dim � � n. This concludes the inductive step. For nD b, �� WD �b is a PL closed disc
block bundle over Lb \T D T with total space E.�/DN .

If P is an oriented codimension-0 submanifold of the boundary @M of an oriented manifold M , then
the incidence number �.P;M / is defined to be C1 if the orientation on P induced by the orientation
of M agrees with the given orientation of P , and �1 otherwise. Suppose that � is oriented as an F–block
bundle. Then K is an oriented cell complex and each block �.�/ is oriented (as a manifold) so that
�.�.�/; �.�//D �.�; �/ whenever � is a codimension-1 face of a cell � 2K. Requiring � to be orientation
preserving, we obtain orientations of all M� such that �.M� ;M� / D �.�; �/. Give every Rs � � the
product orientation determined by the orientation of the cell � and the standard orientation of Rs . Then
the inclusion embeddings of oriented manifolds M� �Rs � � induce unique orientations of the normal
bundles �� . The above incidence number relation implies that these orientations fit together to give an
orientation of �� .

Using the PL homeomorphism � WX ! �.X /, we may think of �� as a bundle over X .

Proposition 2.2 For s sufficiently large (compared to the dimension of X ), the equivalence class of
the disc block bundle �� as constructed in Proposition 2.1 is independent of the choice of blockwise
embedding � WX ,!Rs �B, and thus only depends on the F–block bundle � .

Proof Let �; � 0 W X ,! Rs � B be �–block-preserving PL embeddings. These give rise to vertical
normal disc block bundles �� and �� 0 . The idea is to construct a .��I/–block-preserving concordance
N� WX �I ,!Rs �B�I between � and � 0 and then apply Proposition 2.1 to endow inductively a suitable
regular neighborhood of the image of the concordance with the structure of a disc block bundle, extending
the disc block bundles �� and �� 0 . This implies that �� and �� 0 are equivalent.
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Observe that the equivalence class of the block bundle �� does not change under passage to a simplicial
subdivision L0 of the complex L used in the proof of Proposition 2.1. This is a consequence of M Cohen’s
uniqueness theorem for regular neighborhoods in general polyhedra [17, Theorem 3.1, page 196] and
Rourke and Sanderson’s uniqueness theorem for disc block bundle structures [41, Theorem 4.4, page 16].

The cylinder B D B � I is the polyhedron of the product cell complex K DK � I , where I carries the
minimal cell structure. Let X DX � I . The product block bundle N� WD � � I is an F–block bundle over
the cell complex K with total space E.� � I/D X and blocks .� � I/.� � �/D �.�/� � , where � is
a cell in K and � a cell of I . For sufficiently large s, by induction over the finitely many cells � in K,
there exists a PL embedding

N� WX !Rs
�B D .Rs

�B/� I

such that N�0 D � � 0, N�1 D �
0 � 1, N�. N�. V�//�Rs � V� and

N� jW . N�.�/; N�.@�//! .Rs
� �;Rs

� @�/

is a locally flat PL embedding of manifolds for every cell � �K. Thus N� is a block-preserving concordance
between � and � 0 satisfying

N�.X � I/\ .Rs
�B � 0/D �.X /� 0 and N�.X � I/\ .Rs

�B � 1/D � 0.X /� 1:

There exists a locally finite simplicial complex L with subcomplexes T ;L� �L, for � 2K, such that

(i) jLj DRs �B,

(ii) the complexes L�0 and L0�1 used in constructing �� and �� 0 are both subcomplexes of L such that

jLj DRs
�B � 0 and jL0j DRs

�B � 1;

(iii) N�.X /D jT j,

(iv) for every cell � in K,
Rs
� � D jL� j;

(v) each simplex of L meets T in a single face or not at all.

(To achieve the fullness property, (v), it may be necessary to subdivide L � 0 and L0 � 1, but we
have observed earlier that this does not change the equivalence class of �� or �� 0 . Thus we may call
the subdivisions L � 0 and L0 � 1 again.) Let f W L! Œ0; 1� be the unique simplicial map such that
f �1.0/D jT j D �.X /. The disc block bundle �� over T has total space

E.�� /DN D f �1
�
0; 1

2

�
�Rs

�B;

a regular neighborhood of �.X / in Rs �B. Let f 0 WL0! Œ0; 1� be the unique simplicial map such that
f 0�1.0/D jT 0j D � 0.X /. The disc block bundle �� 0 over T 0 has total space

E.�� 0/DN 0 D f 0�1
�
0; 1

2

�
�Rs

�B;
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a regular neighborhood of � 0.X / in Rs �B. Let Nf WL! Œ0; 1� be the unique simplicial map such that
Nf �1.0/D jT j D N�.X � I/. By Proposition 2.1 and its proof, the regular neighborhood

N WD Nf �1
�
0; 1

2

�
�Rs

�B � I

of N�.X � I/ is the total space E.� N� /DN of a PL disc block bundle � N� over T such that

� N� jL�0 D �� and � N� jL0�1 D �� 0 :

Thus, pulling back � N� to X � I along N� , we obtain a PL disc block bundle over X � I whose restriction
to X � 0 is �� and whose restriction to X � 1 is �� 0 . This implies that �� and �� 0 are equivalent as disc
block bundles.

The oriented normal block bundle �� provided by Proposition 2.1 is classified by a map

X ! BeSPLs�d :

If s is sufficiently large, then by Proposition 2.2 the homotopy class of this map does not depend on the
choice of blockwise embedding � . We denote the resulting disc block bundle equivalence class by �� and
refer to it as the stable vertical normal block bundle of � . The restriction s > bC 2d C 1 ensures that the
block bundle �� is in the stable range, there exists a unique (up to equivalence) oriented PL microbundle
� over X whose underlying block bundle is �� , and this microbundle is also in the stable range: since
dim X D d C b < .s� d/� 1, the natural map

ŒX;BSPLs�d �Š ŒX;BeSPLs�d �

is a bijection. We will refer to � as the stable vertical normal microbundle of � .

Example 2.3 For the trivial F–block bundle � with total space X D F � B, we may choose a PL
embedding �F W F ,!Rs , for s large, and take � WX ,!Rs �B to be � D �F � idB W F �B ,!Rs �B,
which is �–block preserving. Let �F be the (stable) normal disc block bundle of �F and �F its unique lift
to a PL microbundle. Then the stable vertical normal block bundle �� is represented by �� D pr�

1
�F and

the stable vertical normal microbundle is �D pr�
1
�F , where pr1 W F �B! F is the factor projection.

Example 2.4 If F is a point, then X D B and we may take � WX D B ,!Rs �B to be �.x/D .0;x/.
The stable vertical normal block bundle �� and the stable vertical normal microbundle � are both trivial.

3 The PL Umkehr map

Given an oriented F–block bundle � with nonsingular fiber F over a compact polyhedron and a
module spectrum E over the Thom spectrum MSPL, we will construct a transfer homomorphism
� ! W En.B/! EnCd .X /. This will be done in Section 5 by composing suspension, the PL Umkehr
map T .�/ and the Thom homomorphism ˆ. The Umkehr map will be constructed in the present section,
and the Thom homomorphism in the next.
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As in Section 2, let F be a closed oriented PL manifold of dimension d and let K be a finite ball complex
with associated polyhedron B D jKj. Let � be an oriented PL F–block bundle over K with total space
X D E.�/. Fix a block-preserving PL embedding � W X ,! Rs �B for sufficiently large s, and let us
briefly write � for the vertical normal disc block bundle �� given by Proposition 2.1. As discussed in
Section 2, there is a unique PL microbundle � whose underlying block bundle is �. The total space
E.�/DN is a �–block-preserving regular neighborhood of �.X / in B �Rs . Let P� denote the sphere
block bundle of � and write @N for the total space of P�. Let

Th.�/ WDN [@N cone.@N /

be the Thom space of �. The cone point in Th.�/ will be denoted by1. Thom spaces of PL microbundles
have been constructed by Williamson in [50]. By his construction, we may take Th.�/D Th.�/, since
the underlying block bundle of � is � and the homotopy type of the Thom space depends only on the
underlying block bundle (in fact only on the underlying spherical fibration).

We shall construct a PL map

T .�/ W S sBC D Th.Rs
�B/! Th.�/;

called the Umkehr map, following the terminology of [8]. Points in N � S sBC are to be mapped by
the identity to points in N � Th.�/. By Cohen’s [17, Theorem 5.3], @N is collared in the closure of
.Rs �B/�N . Thus there exists a polyhedral neighborhood V of @N in the closure of .Rs �B/�N and
a PL homeomorphism h W .@N /� Œ0; 1�Š V such that h.x; 0/D x for x 2 @N . Now let T .�/ map those
points of V that lie in h..@N /� f1g/ to1. Map all points in S sBC� .N [V / to1. Finally, map the
points in V , using the collar coordinate in Œ0; 1�, correspondingly along cone lines in cone.@N /� Th.�/.
This concludes the description of the Umkehr map T .�/ W S sBC! Th.�/. Since it sends1 to1, this is
a pointed map.

Example 3.1 We continue Example 2.3 on the trivial F–block bundle �. Let T .F / W S s! Th.�F /D

Th.�F / be the standard Pontryagin–Thom collapse over a point associated to the embedding �F WF ,!Rs .
The Umkehr map for � is given by

T .�/ W S s
^BC

T .F /^id
BC��������! Th.�F /^BC D Th.�� /:

If E is any spectrum, then on reduced E–homology the Umkehr map induces a homomorphism

T .�/� W zEnCs.S
sBC/! zEnCs.Th.�//:

The suspension isomorphism provides an identification

� WEn.B/D zEn.B
C/Š zEnCs.S

sBC/:

The composition yields a map

T .�/� ı � WEn.B/! zEnCs.Th.�//D zEnCs.Th.�//:
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Example 3.2 We continue Example 3.1 on the trivial F–block bundle � . Let E be a commutative ring
spectrum and let ŒS s �E 2 zEs.S

s/ denote the image of the unit 1 2 �0.E/ under � W zE0.S
0/ Š�! zEs.S

s/.
Then the above map T .�/� ı � has the description

T .�/��.a/D .T .F /^ idBC/��.a/D .T .F /^ idBC/�.ŒS
s �E ^ a/D .T .F /�ŒS

s �E/^ a;

where a 2En.B/. Setting ŒTh�F �E D T .F /�ŒS
s �E , we thus arrive at

T .�/��.a/D ŒTh�F �E ^ a:

4 The Thom homomorphism, mock bundles and Witt spaces

We recall the Thom homomorphism ˆ associated to an oriented PL microbundle �. This homomorphism
will later be used in the definition of the F–block bundle transfer � ! with � the stable vertical normal PL
microbundle of � . The Thom map is given by taking the cap product with the Thom class of �. Therefore,
we will recall the homotopy-theoretic description uSPL.�/ of this class, as well as its geometric description
uBRS.�PLB/ in terms of mock bundles, as given by Buoncristiano, Rourke and Sanderson [12], where
�PLB denotes the underlying PL closed disc block bundle of �. In particular, we take the opportunity to
provide a brief review of mock bundle theory. Mock bundles over Witt spaces will play an important role
later on. One key fact in the subsequent development is that the total space of a mock bundle over a Witt
space is again a Witt space.

Let MSPL be the Thom spectrum associated to PL microbundles (or PL .Rm; 0/–bundles; see Kuiper
and Lashof [29]). This is a ring spectrum whose homotopy groups can be identified with the bordism
groups of oriented PL manifolds via the Pontryagin–Thom isomorphism. Let 
 SPL

m denote the universal
oriented rank-m PL bundle over the classifying space BSPLm. An oriented PL microbundle � of rank m

over a compact polyhedron X is classified by a map X ! BSPLm, which is covered by a bundle map
�! 
 SPL

m . The induced map on Thom spaces yields a homotopy class

uSPL.�/ 2 Œ†
1 Th.�/;†mMSPL�D AMSPL

m
.Th.�//:

This class uSPL.�/ is the Thom class of � in oriented PL cobordism. It is in fact an MSPL–orientation
of � in Dold’s sense. Indeed, every HZ–orientable PL bundle is MSPL–orientable; see Hsiang and Wall
[26, Lemma 5, page 357] and Switzer [46, page 308].

Buoncristiano, Rourke and Sanderson give a geometric description of MSPL–cobordism in [12], and use
it to obtain in particular a geometric description of the Thom class uSPL.�/. The geometric cocycles are
given by oriented mock bundles, whose definition we recall here.

Definition 4.1 Let K be a finite ball complex and q an integer (possibly negative). A q–mock bundle
�q=K with base K and total space E.�/ consists of a PL map p WE.�/! jKj such that, for each � 2K,
p�1.�/ is a compact PL manifold of dimension qC dim.�/, with boundary p�1.@�/. The preimage
�.�/ WD p�1.�/ is called the block of � over � .
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The empty set is regarded as a manifold of any dimension; thus �.�/ may be empty for some cells
� 2 K. Note that if �0 is a 0–dimensional cell of K, then @�0 D ¿ and thus p�1.@�/ D ¿. Hence
the blocks over 0–dimensional cells are closed manifolds. Mock bundles over the same complex are
isomorphic if there exists a block-preserving PL homeomorphism of total spaces. (The homeomorphism
is not required to preserve the projections.) For our purposes, we need oriented mock bundles, which are
defined using incidence numbers of cells and blocks: Suppose that .M n; @M / is an oriented PL manifold
and .N n�1; @N / is an oriented PL manifold with N � @M . Then an incidence number �.N;M /D˙1

is defined by comparing the orientation of N with that induced on N from M ; �.N;M /DC1 if these
orientations agree and �1 if they disagree. An oriented cell complex K is a cell complex in which each
cell is oriented. We then have the incidence number �.�; �/ defined for codimension-1 faces � < � 2K.

Definition 4.2 An oriented mock bundle is a mock bundle �=K over an oriented (finite) ball complex K

in which every block is oriented (ie is an oriented PL manifold) such that for each codimension-1 face �
of � 2K, �.�.�/; �.�//D �.�; �/.

Using intersection homology, Witt spaces were introduced by Siegel in [44] as a geometric cycle reservoir
representing KO–homology at odd primes. Sources on intersection homology include [21; 22; 27; 20; 3].

Definition 4.3 A Witt space is an oriented PL pseudomanifold where the links L2k of odd-codimensional
PL intrinsic strata have vanishing middle-perversity degree-k rational intersection homology,

IH xmk .LIQ/D 0:

For example, pure-dimensional complex algebraic varieties are Witt spaces, since they are oriented
pseudomanifolds and possess a Whitney stratification whose strata all have even codimension. The
vanishing condition on the intersection homology of links L2k is equivalent to requiring the canonical
morphism from lower middle to upper middle-perversity intersection chain sheaves to be an isomorphism
in the derived category of sheaf complexes. Consequently, these middle-perversity intersection chain
sheaves are Verdier self-dual, and this induces global Poincaré duality for the middle-perversity intersection
homology groups of a Witt space. In particular, Witt spaces X have a well-defined bordism invariant
signature and L–classes L�.X / 2 H�.X IQ/ which agree with the Poincaré duals of Hirzebruch’s
tangential L–classes when X is smooth. The notion of Witt spaces with boundary can be introduced as
pairs .X; @X /, where X is a PL space and @X a stratum-preservingly collared PL subspace of X such
that X � @X and @X are both compatibly oriented Witt spaces. The following result is [5, Lemma 3.11],
which is itself an analog of [12, Lemma 1.2, page 21].

Lemma 4.4 Let .K;L/ be a finite ball complex pair such that the polyhedron jKj is an n–dimensional
compact Witt space with (possibly empty) boundary @jKj D jLj. Orient K in such a way that the sum of
oriented n–balls is a cycle rel boundary. (This is possible since jKj, being a Witt space , is an oriented
pseudomanifold with boundary.) Let �=K be an oriented q–mock bundle over K with projection p. Then
the total space E.�/ is an .nCq/–dimensional compact Witt space with boundary p�1.@jKj/.
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Let .K;L/ be any finite ball complex pair. Oriented mock bundles �0 and �1 over K, both empty over L,
are cobordant, if there is an oriented mock bundle � over K�I , empty over L�I , such that �jK�0Š �0

and �jK�1 Š �1. This is an equivalence relation, and we set

�
q
SPL.K;L/ WD fŒ�

q=K� W �jL D¿g;

where Œ�q=K� denotes the cobordism class of the oriented q–mock bundle �q=K over K. Then by the
duality theorem [12, Theorem II.3.3] of Buoncristiano, Rourke and Sanderson, Spanier–Whitehead duality,
together with the Pontryagin–Thom isomorphism, provides an isomorphism

(5) ˇ W�
�q
SPL.K;L/ŠMSPLq.jKj; jLj/

for compact jKj and jLj, which is natural with respect to inclusions .K0;L0/ � .K;L/; see also
[12, Remarks(3), top of page 32]. This is the geometric description of oriented PL cobordism that we
use here. The functor ��SPL.�/ gives rise to a functor on the category of compact polyhedral pairs and
homotopy classes of continuous maps, which will be denoted by the same symbol [12, Theorem II.1.1].

Let ˛ W jKj ! BeSPLm be an oriented PL closed disc block bundle of rank m over a finite complex K.
Let N denote the total space of ˛ and @N the total space of the sphere block bundle of ˛. Then ˛ has a
Thom class (see [12, page 26])

(6) uBRS.˛/ 2�
�m
SPL.N; @N /;

which we shall call the BRS–Thom class of ˛, given as follows: Let i WK!N be the zero section of ˛.
Endow N with the ball complex structure given by taking the blocks ˛.�/ of the bundle ˛ as balls, together
with the balls of a suitable ball complex structure on the total space @N of the sphere block bundle of ˛.
Then i WK!N is the projection of an oriented .�m/–mock bundle �, and thus determines an element

uBRS.˛/D Œ�� 2�
�m
SPL.N; @N /:

The block of � over a ball ˛.�/ of N is � 2K. The following is [5, Lemma 3.14].

Lemma 4.5 Let ˛ W jKj ! BSPLm be an oriented PL .Rm; 0/–bundle , with jKj compact. Under the
isomorphism ˇ in (5), the BRS–Thom class uBRS.˛PLB/ of the underlying oriented PL block bundle ˛PLB

of ˛ gets mapped to the Thom class uSPL.˛/.

Let E be an MSPL–module spectrum. Then there is a cap product

\WMSPLp.X;A/˝Eq.X;A/!Eq�p.X /:

The reduced cobordism group of the Thom space can be expressed as a relative group,

AMSPL
p
.Th.�//ŠMSPLp.N; @N /;

where N , as in Section 3, is the total space of the underlying oriented PL closed disc block bundle of�. Let

�� WE�.N / Š�!E�.X /
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be the inverse of the isomorphism induced on E–homology by the inclusion X ,!N of the zero section.
Using the cap product

\WMSPLm.N; @N /˝Eq.N; @N /!Eq�m.N /
��
Š Eq�m.X /;

we obtain the Thom homomorphism

ˆ WD ��.uSPL.�/\�/ W zEq.Th.�//ŠEq.N; @N /!Eq�m.X /:

Under suitable conditions this map is an isomorphism, for example if X is connected, E is a ring spectrum
and uSPL.�/ determines an E–orientation of �. (See [46, page 309, Theorem 14.6]; recall that our X is
a finite complex.)

5 Block bundle transfer

Let E be a module spectrum over the Thom spectrum MSPL of oriented PL bundle theory. As in
Section 2, F denotes a closed oriented PL manifold of dimension d and K a finite ball complex with
associated polyhedron B D jKj of dimension b. Let � be an oriented PL F–block bundle over K with
total space X DE.�/. Following Boardman [9] and Becker and Gottlieb [8], we shall construct a transfer
homomorphism

(7) � !
WEn.B/!EnCd .X /:

Let � denote the stable oriented vertical normal PL microbundle of � whose underlying disc block
bundle is �� , the oriented vertical normal disc block bundle of the F–block bundle �, associated to a
block-preserving embedding � for � . The rank of � and �� is mD s�d for d D dim F and s large. The
block bundle transfer is defined to be the composition

En.B/
T .�/�ı�
������! zEnCs.Th.�// ˆ�!EnCd .X /;

where � is the suspension isomorphism, T .�/ is the Umkehr map of Section 3 and ˆ is the Thom
homomorphism of � as described in Section 4.

Remark 5.1 The geometric description of block bundle transfer as provided above is serviceable for
the subsequent PL geometric arguments concerning orientation classes of PL pseudomanifolds. We are
grateful to a referee for pointing out that the geometric context embeds into a more general homotopy
theoretic one as follows: A fibration � with Poincaré complex fiber over a base space B possesses
a vertical Spivak fibration �� and a canonical map of spectra †1BC ! Th.��/, provided one has
1–categorical functoriality of the Pontryagin–Thom collapse associated to a Poincaré complex; see
Carmeli, Cnossen, Ramzi and Yanovski [14] and Klein, Malkiewich and Ramzi [28]. Since the vertical
Spivak fibration of an oriented block bundle with manifold blocks has a stable PL bundle reduction (by
Hebestreit, Land, Lück and Randal-Williams [25]), it is MSPL–oriented.

We are mainly interested in the case where E is ordinary homology, Ranicki’s symmetric L�–spectrum
or Witt bordism. Let us discuss each of these cases in turn.
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5.1 Block transfer on ordinary homology

Let HZ denote the Eilenberg–Mac Lane spectrum of the ring Z. The stable universal Thom class in
H 0.MSPL/ yields a map ˛ WMSPL!HZ, and this map is a ring map. Thus ˛ makes the ring spectrum
HZ into an MSPL–module by taking the action map to be

MSPL^HZ ˛^id
���!HZ^HZ

�H
��!HZ;

where �H is the product on HZ. The induced map

˛� W�
SPL
n .Z/ŠMSPLn.Z/!Hn.ZIZ/

is the Steenrod–Thom homomorphism sending the bordism class of a singular PL manifold Œf WM n!Z�2

�SPL
n .Z/ to f�ŒM � 2Hn.ZIZ/. We recall the following standard fact:

Proposition 5.2 (Rudyak [42, Proposition V.1.6]) Let � WD!E be a ring morphism of ring spectra.
Let 
 be an .Sn;�/–fibration equipped with a D–orientation uD 2

zDn.Th 
 /. Then the image �.uD/ 2

zEn.Th 
 / is an E–orientation of 
 .

We apply this to the ring morphism ˛ WMSPL!HZ and to our microbundle �, which we had already
equipped with the MSPL–orientation uSPL.�/. By the proposition, the homomorphism

˛ W AMSPL
s�d

.Th.�//! zH s�d .Th.�/IZ/

sends uSPL.�/ to an HZ–orientation

(8) uZ.�/ WD ˛.uSPL.�// 2 zH
s�d .Th.�/IZ/:

(This is the Thom class of � in ordinary cohomology.) Another standard fact from stable homotopy
theory is:

Lemma 5.3 Let D and E be ring spectra , and � W D ! E a ring morphism. We consider E as a
D–module via the action map

D ^E �^id
���!E ^E

�E
��!E:

This module structure yields a cap product \D;E WD
�.X /˝E�.X /!E�.X /. The ring structure on E

yields a cap product \E WE
�.X /˝E�.X /!E�.X /. Then the diagram

D�.X /˝E�.X /
\D;E

//

�˝id
��

E�.X /

E�.X /˝E�.X /
\E

// E�.X /

commutes.

By this lemma and (8), the transfer on ordinary homology is given by

� !.�/D ��.uSPL.�/\MSPL;H Z T .�/��.�//D ��.˛.uSPL.�//\H Z T .�/��.�//

D ��.uZ.�/\H Z T .�/��.�//:
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We summarize: the block bundle transfer (7) on ordinary homology E DHZ is given by

� !
D ��.uZ.�/\T .�/��.�// WHn.BIZ/!HnCd .X IZ/:

5.2 Block transfer on Witt bordism

Let �Witt
� .�/ denote Witt bordism theory as defined by Siegel in [44]. Elements of �Witt

n .Z/ are Witt
bordism classes of continuous maps f WW n! Z defined on an n–dimensional closed Witt space W .
Let MWITT be the Quinn spectrum associated to the ad-theory of Witt spaces, representing Witt bordism
via a natural equivalence

(9) MWITT�.�/Š�Witt
� .�/:

See Banagl, Laures and McClure [7]. A weakly equivalent spectrum was first considered by Curran [18].
He verified that this spectrum is an MSO–module [18, Theorem 3.6, page 117]. The product of two Witt
spaces is again a Witt space. This implies essentially that MWITT is a ring spectrum; for more details
see [7]. (There, we focused on the spectrum MIP representing bordism of integral intersection homology
Poincaré spaces studied by Goresky and Siegel in [24] and by Pardon in [36], but everything works in
an analogous, indeed simpler, manner for Q–Witt spaces.) Every oriented PL manifold is a Witt space.
Hence there is a map

�W WMSPL!MWITT;

which, using the methods of ad-theories and Quinn spectra employed in [7], can be constructed to be
multiplicative. Using this ring map, the spectrum MWITT becomes an MSPL–module with action map

MSPL^MWITT!MWITT

given by the composition

MSPL^MWITT �W ^id
����!MWITT^MWITT!MWITT:

(The product of a Witt space and an oriented PL manifold is again a Witt space.) In particular, there is a
cap product

(10) \WMSPLj .Z;Y /˝MWITTn.Z;Y /!MWITTn�j .Z/

and a transfer
� !
WMWITTn.B/!MWITTnCd .X /;

where � is our F–block bundle over B and d D dim F .

Let C be any finite ball complex with subcomplex D � C and suppose that Z D jC j and Y D jDj. By
Buoncristiano, Rourke and Sanderson [12], a geometric description of the above cap product (10) is given
as follows: One uses the canonical identifications to think of the cap product as a product

\W�
�j
SPL.C;D/˝�

Witt
n .jC j; jDj/!�Witt

n�j .jC j/:
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Let us first discuss the absolute case D D ¿, and then return to the relative one. If C is simplicial,
f WW ! C is a simplicial map from an n–dimensional triangulated closed Witt space W to C , and �q is
a q–mock bundle over C (with q D�j ), then one has (see [12, page 29])

Œ�q=C �\ Œf WW ! jC j�D Œg WE.f ��/! jC j� 2�Witt
n�j .jC j/;

where g is the diagonal arrow in the cartesian diagram

E.f ��/ //

��

g

$$

E.�/

p

��

W
f

// C

Here, one uses the fact (see [12, II.2, page 23]) that mock bundles over simplicial complexes admit
pullbacks under simplicial maps. By Lemma 4.4, E.f ��/ is a closed Witt space. For the relative case,
we observe that if .W; @W / is a compact Witt space with boundary, f W .W; @W /! .jC j; jDj/ maps the
boundary into jDj and �jD D¿, then f ��j@W D¿ and so @E.f ��/D¿, ie the Witt space E.f ��/ is
closed. Hence it defines an absolute bordism class.

In Section 6, we provide a more direct geometric description of the Witt bordism transfer

� !
WMWITTn.B/!MWITTnCd .X /

as a pullback transfer � !
PB W�

Witt
n .B/!�Witt

nCd
.X /.

5.3 Block transfer on L�–homology

We write L� D L�.Z/ D L�h0i.Z/ for Ranicki’s connected symmetric algebraic L–spectrum with
homotopy groups �n.L�/ D Ln.Z/, the symmetric L–groups of the ring of integers; see eg [39].
Technically, we shall use the construction of L� as the Quinn spectrum of a suitable ad-theory; see
Banagl, Laures and McClure [7]. That construction is weakly equivalent to Ranicki’s. Localization
Z!Q induces a map �Q W L

�.Z/! L�.Q/, and �n.L�.Q//DLn.Q/ with

Ln.Q/Š

�
Z˚ .Z=2/

1˚ .Z=4/
1 if n� 0 .mod 4/;

0 if n¥ 0 .mod 4/:

The spectra L�.Z/ and L�.Q/ are ring spectra. Let MSTOP be the Thom spectrum associated to oriented
topological .Rn; 0/–bundles. There is a canonical forget map

�F WMSPL!MSTOP :

Ranicki [37, page 290] constructed a map

�� WMSTOP! L�;

and in [7], we constructed a map
� WMWITT! L�.Q/:
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(Actually, we even constructed an integral map MIP! L�, where MIP represents bordism of integral
intersection homology Poincaré spaces, but everything works in the same manner for Witt theory, if one
uses the L�–spectrum with rational coefficients.) This map is multiplicative, ie a ring map, as shown in
[7, Section 12], and the diagram

(11)

MSTOP ��
// L�.Z/

�Q

��

MSPL

�F 55

�W
))

MWITT �
// L�.Q/

homotopy commutes, since it comes from a commutative diagram of ad-theories under applying the
symmetric spectrum functor M of Laures and McClure [31]. Using the ring map ��W WMSPL!L�.Q/,
the spectrum L�.Q/ becomes an MSPL–module with action map

MSPL^L�.Q/! L�.Q/

given by the composition

MSPL^L�.Q/
.��W /^id
������! L�.Q/^L�.Q/! L�.Q/:

The associated transfer is
� !
W L�.Q/n.B/! L�.Q/nCd .X /;

with � our F–block bundle over B and d D dim F .

We shall show that the block bundle transfer � ! commutes with the passage, under ��, from Witt bordism
theory to L�.Q/–homology. The homotopy commutative diagram

MSPL^MWITT id^�
//

�W ^id
��

MSPL^L�.Q/

.��W /^id
��

MWITT^MWITT �^�
//

��

L�.Q/^L�.Q/

��

MWITT �
// L�.Q/

shows that � WMWITT! L�.Q/ is an MSPL–module morphism. In the proof of Lemma 5.5, we use the
following standard fact:

Lemma 5.4 If E is a ring spectrum , F and F 0 are module spectra over E and � W F ! F 0 is an
E–module morphism , then the diagram

Em.X;A/˝Fn.X;A/
\
//

id˝��
��

Fn�m.X /

��
��

Em.X;A/˝F 0n.X;A/
\
// F 0n�m.X /

commutes: if u 2Em.X;A/ and a 2 Fn.X;A/, then

��.u\ a/D u\��.a/:
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Lemma 5.5 The Thom homomorphisms ˆ of an oriented PL microbundle � of rank m over a compact
polyhedron X commute with the passage from Witt bordism to L�.Q/–homology, that is , the diagram

BMWITTn.Th.�// ˆ
//

��
��

MWITTn�m.X /

��
��fL�.Q/n.Th.�// ˆ

// L�.Q/n�m.X /

commutes.

Proof As �� is a natural transformation of homology theories, it commutes with the isomorphism ��.
Since � is an MSPL–module morphism, Lemma 5.4 applies to give

��ˆD ����.u\�/D ����.u\�/D ��.u\ ��.�//Dˆ��;

where uD uSPL.�/.

Proposition 5.6 Let F be a closed oriented d–dimensional PL manifold and let � be an oriented
F–block bundle with total space X over the compact polyhedral base B. Then the diagram

MWITTn.B/
�!

//

��
��

MWITTnCd .X /

��
��

L�.Q/n.B/
�!

// L�.Q/nCd .X /

commutes.

Proof Let � be the stable vertical normal microbundle of � . The right-hand square of the diagram

MWITTn.B/
Š

�
//

��
��

BMWITTnCs.S
sBC/

��
��

T .�/�
// BMWITTnCs.Th.�//

��
��

L�.Q/n.B/
Š

�
// fL�.Q/nCs.S

sBC/
T .�/�

// fL�.Q/nCs.Th.�//

commutes, as �� is a natural transformation of homology theories. The left-hand square, involving the
suspension isomorphism � , commutes for the same reason. The statement now follows from Lemma 5.5.

An oriented topological .Rm; 0/–bundle ˛ over a CW complex Z, classified by a map Z! BSTOPm,
possesses a Thom class

uSTOP.˛/ 2 BMSTOP
m
.Th.˛//

in oriented topological cobordism. The next auxiliary result on compatibility of Thom classes is standard;
see eg [5, Lemma 3.7].

Lemma 5.7 Let ˛ be an oriented PL .Rm; 0/–bundle. On cobordism groups , the homomorphism

�F W
AMSPL

m
.Th.˛//! BMSTOP

m
.Th.˛TOP//

induced by the canonical map �F WMSPL!MSTOP sends the Thom class of ˛ to the Thom class of the
underlying oriented topological .Rm; 0/–bundle ˛STOP,

�F .uSPL.˛//D uSTOP.˛STOP/:

Algebraic & Geometric Topology, Volume 24 (2024)



2598 Markus Banagl

Following [37, pages 290–291], an oriented topological .Rm; 0/–bundle ˛ has a canonical L�–cohomology
orientation

uL.˛/ 2fL�m.Th.˛//;

which we shall also refer to as the L�–cohomology Thom class of ˛, defined by

(12) uL.˛/ WD �
�.uSTOP.˛//:

The morphism of spectra �Q W L
�.Z/! L�.Q/ coming from localization induces a homomorphismfL�m.Th.˛//!fL�.Q/m.Th.˛//:

We denote the image of uL.˛/ under this map again by uL.˛/ 2fL�.Q/m.Th.˛//.

Lemma 5.8 Let ˛ be an oriented PL .Rm; 0/–bundle. The homomorphism

��W W
AMSPL

m
.Th.˛//! L�.Q/m.Th.˛//

induced by the ring morphism ��W WMSPL! L�.Q/ sends the MSPL–cohomology Thom class of ˛ to
the L�–cohomology Thom class of (the underlying topological bundle of ) ˛,

��W .uSPL.˛//D uL.˛/:

Proof By Lemma 5.7, Ranicki’s definition (12) and the homotopy commutativity of (11),

��W .uSPL.˛//D �Q�
��F .uSPL.˛//D �Q�

�.uSTOP.˛STOP//D uL.˛STOP/:

Lemma 5.8, together with Lemma 5.3, implies that the F–block bundle transfer on L�.Q/–homology is
given by

� !
D ��.uL.�/\T .�/��.�// W L

�.Q/n.B/! L�.Q/nCd .X /:

Example 5.9 We continue Example 3.2 and compute the transfer for the trivial F–block bundle �
with total space X D F �B. Let E be a commutative ring spectrum and � WMSPL! E a morphism
of ring spectra, equipping E with the structure of an MSPL–module. Recall that we had chosen a
PL embedding �F W F ,! Rs with s large enough that �F has a tubular neighborhood given by a
PL microbundle �F which represents the stable normal PL microbundle of F . The stable vertical
normal bundle of � is then given by � D pr�

1
�F . Its Thom class uSPL.�/ 2 AMSPL

s�d
.Th.�// D

AMSPL
s�d

.Th.�F / ^ BC/ is uSPL.�/ D uSPL.�F / ^ 1, since the bundle map � ! 
 SPL
s�d

factors as
�! �F ! 
 SPL

s�d
, where the first map covers the projection pr1 W F �B! F and the second map the

classifying map for �F . The element �.uSPL.�F // is an E–orientation of �F [42, Proposition V.1.6] and
thus ŒF �E WD�F�

�
�.uSPL.�F //\ŒTh�F �E

�
2Ed .F /, with �F� WEd .NF /ŠEd .F /, is an E–homology

orientation for the PL manifold F [42, Proposition V.2.8; 46, page 333, Lemma 14.40]. The transfer
� ! WEn.B/!EnCd .F �B/ is then given on a 2En.B/ by

(13) � !.a/D ŒF �E � a;
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as follows from the calculation

� !.a/DˆT .�/��.a/Dˆ.ŒTh�F �E ^ a/D ��.�.uSPL.�//\ .ŒTh�F �E ^ a//

D ��.�.uSPL.�F /^ 1/\ .ŒTh�F �E ^ a//D ��..�.uSPL.�F //^ 1/\ .ŒTh�F �E ^ a//

D ��..�.uSPL.�F //\ ŒTh�F �E/� .1\ a//D �F�.�.uSPL.�F //\ ŒTh�F �E/� aD ŒF �E � a:

6 Geometric pullback transfer on bordism

As in previous sections, F is a closed d–dimensional oriented PL manifold and � is an oriented PL
F–block bundle with total space X over a finite ball complex K, where B D jKj. We shall geometrically
construct a pullback transfer

� !
PB W�

Witt
n .B/!�Witt

nCd .X /

on Witt bordism. Let f WW !B be a continuous map representing an element Œf � of �Witt
n .B/. Choose a

PL map g WW !B homotopic to f . We follow Casson’s method for pulling back F–block bundles [15].
(Note that the pullback of block and mock bundles is not generally defined through cartesian diagrams.)
There is a compact polyhedron V and a factorization

W
� � j

//

g
%%

B �V

pr1
��

B

of g into a PL embedding j followed by a standard projection. Let L be a cell complex with jLj D V .
The F–block bundle pullback pr�

1
� is by definition � �L, an F–block bundle over the cell complex

K�L with total space E.pr�
1
�/DX �V . Thus the first factor projection X �V !X defines a PL map

pr1 WE.pr�1 �/!X:

Let C be the product cell complex C WDK �L and put � WD pr�
1
�. Let C 0 be a subdivision of C such

that the subpolyhedron j .W / � V �B is given by j .W / D jD0j for a subcomplex D0 of C 0. Block
bundles can be subdivided, and this does not change the total space [15, page 37]. Let �0 over C 0 be a
subdivision of �, E.�0/D E.�/. Block bundles can be restricted to subcomplexes. The total space of
the restriction is given by the union of the blocks over the cells of the subcomplex. Thus we can restrict
�0 to the subcomplex D0 of C 0 and obtain an F–block bundle �0jD0 whose total space is a PL subspace
E.�0jD0/ ,!E.�0/DE.�/. The composition

E.�0jD0/ ,!E.�/!X

gives a map

(14) Ng WE.�0jD0/!X:

Let j �� be the F–block bundle over W that corresponds to �0jD0 under the PL homeomorphism
j WW Š j .W /. The pullback F–block bundle g�� is then defined to be

g�� D j ��D j �.pr�1 �/:
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Thus (14) is a map
Ng WE.g��/!X:

Note that E.g��/ is a compact polyhedron. In the above construction of pullbacks and Ng, it was not
important that the Witt domain W has empty boundary; everything applies to compact W with boundary
as well. Indeed, Casson’s pullback applies of course to PL maps with general polyhedral domain. Let �
and � 0 be F–block bundles over cell complexes K and K0 such that jKj DB D jK0j. Recall that � and � 0

are called equivalent if, for some common subdivision K00 of K and K0, the subdivision of � over K00

is isomorphic to the subdivision of � 0 over K00. (An isomorphism of F–block bundles over the same
complex is a block-preserving homeomorphism of total spaces.) An equivalence � W � Š � 0 of F–block
bundles over B induces an equivalence

g�� W g�� Š g�� 0

such that
E.g��/

g�� Š
��

Ng
// E.�/DX

�Š

��

E.g�� 0/
Ng0
// E.� 0/DX 0

commutes.

Lemma 6.1 Let g W W ! B be a PL map defined on a compact Witt space with possibly nonempty
boundary @W . Then the total space E.g��/ is a closed Witt space with boundary E..g��/j@W /.

Proof An F–block bundle is in particular a mock bundle. Thus g�� is a mock bundle over the Witt
space W and the result follows from Lemma 4.4.

By Lemma 6.1, the map Ng WE.g��/!X represents an element Œ Ng� 2�Witt
nCd

.X /.

For future reference and additional clarity in subsequent arguments, let us record explicitly:

Lemma 6.2 Let W and W 0 be closed n–dimensional Witt spaces. If f ' f 0 WW !X are homotopic
maps , then Œf � D Œf 0� 2 �Witt

n .X /. If � W W Š�! W 0 is a PL homeomorphism , and f W W ! X and
f 0 WW 0!X maps such that f 0 ı� D f , then Œf �D Œf 0� 2�Witt

n .X /.

Proof The first statement, asserting homotopy invariance, is part of the fact that Witt bordism constitutes
a homology theory and is proven by considering a homotopy as a Witt bordism, noting that the cylinder
on a closed Witt space is a Witt space with boundary. The bordism required by the second statement is
given by taking a cylinder on the domain of the PL homeomorphism and a cylinder on the target of the
PL homeomorphism, and then gluing the two cylinders using the homeomorphism.

Lemma 6.3 The class
Œ Ng WE.g��/!X � 2�Witt

nCd .X /

depends only on the Witt class Œg� 2�Witt
n .B/.
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Proof Let g0 WW0!B and g1 WW1!B be PL maps such that Œg0�D Œg1� 2�
Witt
n .B/. Let G WW !B

be a Witt bordism between g0 and g1; we may assume G to be PL. Let ij WWj ,!W denote the boundary
inclusions for j D 0; 1. Since gj DG ı ij , there is an equivalence g�j � Š i�j G�� such that

E.g�j �/

Š

��

Ngj

&&

E.i�j G��/
Gij
// E.�/DX

commutes. Thus Ngj and Gij are Witt bordant, for j D 0; 1, by Lemma 6.2. According to Lemma 6.1,
E.G��/ is a compact Witt space with boundary E.i�

0
G��/tE.i�

1
G��/. The diagram

E.i�j G��/
� _

��

Gij

&&

E.G��/
G
// E.�/DX

commutes for j D 0; 1. Hence, G is a Witt bordism between Gi0 and Gi1.

We define the geometric transfer (or pullback transfer)

� !
PB W�

Witt
n .B/!�Witt

nCd .X /

by
� !

PBŒg WW ! B�D Œ Ng WE.g��/!X �;

where g is a PL representative of the bordism class. Let

� !
BRS W�

Witt
n .B/!�Witt

nCd .X /

be the map
� !

BRSŒg� WD ��.uBRS.�/\T .�/��Œg�/;

where � D �� WX ! BeSPLs�d represents the stable vertical normal PL disc block bundle of � . This is a
technical intermediary; in terms of their respective definitions, the difference between � !

BRS and � ! is that
the former uses the Thom class uBRS.�/, while the latter uses the Thom class uSPL.�/. We will eventually
see that � !

PB D �
!
BRS D �

! on Witt bordism. Towards that goal, let us first investigate the behavior of both
the pullback transfer and the BRS–transfer under standard factor projections.

Proposition 6.4 Let B and D be compact polyhedra. Let � �D denote the F–block bundle over B �D

obtained by pulling back � under the projection pr1 W B �D! B. Then the diagrams

(15)

�Witt
n .B/

�!
PB

// �Witt
nCd

.X /

�Witt
n .B �D/

pr1�

OO

.��D/!PB
// �Witt

nCd
.X �D/

pr1�

OO
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and

(16)

�Witt
n .B/

�!
BRS

// �Witt
nCd

.X /

�Witt
n .B �D/

pr1�

OO

.��D/!BRS
// �Witt

nCd
.X �D/

pr1�

OO

commute.

Proof We will first establish the commutativity of (15) involving the pullback transfers. Recall that the
F–block bundle � is given over a cell complex K with jKj DB. Let J be a cell complex with polyhedron
jJ j DD. Then � �D is an F–block bundle over the cell complex K�J . Let Œg� 2�Witt

n .B �D/ be any
element, represented by a PL map g WW ! B �D. Choose a compact polyhedron V and a factorization
of g as

(17)
W
� � j

//

g
((

.B �D/�V

prB�D

��

B �D

Let L be a cell complex with jLj D V . We will compute � !
PB pr1�Œg�. The element pr1�Œg� is represented

by pr1 ıg with factorization
W
� � j

//

pr1ıg
((

B �D �V

prB

��

B

The pullback pr�
B
� D � �J �L has total space E.pr�

B
�/DX �D �V which projects to X via

prX WE.pr�B �/DX �D �V !X DE.�/:

Let C be the cell complex C DK � J �L and let C 0 be a subdivision of C such that j .W / is given
by j .W / D jD0j for some subcomplex D0 of C 0. Let .pr�

B
�/0 be the block bundle over C 0 obtained

by subdivision of pr�
B
�. Then .pr�

B
�/0 can be restricted to D0, and the total space of this restriction

.pr�
B
�/0jD0 is a subspace of E..pr�

B
�/0/D E.pr�

B
�/. The composition of the subspace inclusion with

prX yields a map
pr1 ıg WE..pr�B �/

0
jD0/�E.pr�B �/DX �D �V

prX��!X

such that
� !

PBŒpr1 ıg�D Œpr1 ıg�:

Let us compute .� �D/!PBŒg�. The relevant factorization is (17); the pullback

pr�B�D.� �D/D .� �D/�LD � �J �LD pr�B �

has total space E.pr�
B�D

.� �D//DX �D �V which projects to X �D via

prX�D WE.pr�B�D.� �D//D .X �D/�V !X �D DE.� �D/:
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Let .pr�
B�D

.� �D//0 be the block bundle over C 0 obtained by subdivision of pr�
B�D

.� �D/. Then
.pr�

B�D
.� �D//0 D .pr�

B
�/0, and thus

.pr�B�D.� �D//0jD0 D .pr�B �/
0
jD0 :

Consider the commutative diagram

E..pr�
B�D

.� �D//0jD0/
� � // E.pr�

B�D
.� �D//

prX�D
// X �D

pr1

��

E..pr�
B
�/0jD0/

� � // E.pr�
B
�/

prX
// X

The upper horizontal composition is a map Ng such that

.� �D/!PBŒg�D Œ Ng�;

and the lower horizontal composition is pr1 ıg. Therefore,

pr1�.� �D/!PBŒg�D Œpr1 ı Ng�D Œpr1 ıg�D � !
PBŒpr1 ıg�D � !

PB pr1�Œg�:

Thus (15) commutes, as claimed.

It remains to establish the commutativity of (16). Let �� D �� denote the stable vertical normal PL disc
block bundle associated to a particular choice of blockwise embedding � W X D E.�/ ,! Rs �B by
Proposition 2.1. The PL embedding

E.� �D/DX �D
��idD,���! .Rs

�B/�D DRs
� .B �D/

is block preserving over B �D with respect to the F–blocks .� �D/.� � �/D �.�/� � of � �D for
� 2K and � 2 J , as

.� � idD/.�.�/� �/D �.�.�//� � � .R
s
� �/� � DRs

� .� � �/:

Thus the stable vertical normal disc-block bundle of � �D can be computed from the embedding � � idD ,
which yields

���D D ���idD
D �� �D D �� �D;

a disc block bundle over X �D. Recall that the Thom space of the block bundle �� is

Th.��/DN [@N cone.@N /;

with N DE.��/. Thus, with N 0 WDE.���D/DN �D, we have

Th.���D/DN 0[@N 0 cone.@N 0/:

Here @N 0 denotes the total space of the sphere bundle of � �D, @N 0 D .@N / �D. The projection
pr1 WN

0 DN �D!N induces a map

Th.pr1/ W .N �D/[.@N /�D cone..@N /�D/!N [@N cone.@N /;

ie a map
Th.pr1/ W Th.���D/! Th.��/:
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The suspension of the projection pr1 WB�D!B is a map S s pr1 WS
s.B�D/C!S sBC. The F–block

bundle � �D has its Umkehr map

T .� �D/ W S s.B �D/C! Th.���D/

such that the diagram
S sBC

T .�/
// Th.��/

S s.B �D/C

Ss pr1

OO

T .��D/
// Th.���D/

Th.pr1/

OO

commutes up to homotopy. The induced diagram

z�Witt
nCs.S

sBC/
T .�/�

// z�Witt
nCs.Th ��/

z�Witt
nCs.S

s.B �D/C/

.Ss pr1/�

OO

T .��D/�
// z�Witt

nCs.Th ���D/

Th.pr1/�

OO

on reduced Witt bordism commutes. The diagram

�Witt
n .B/

�

Š
// z�Witt

nCs.S
sBC/

�Witt
n .B �D/

pr1�

OO

�

Š
// z�Witt

nCs.S
s.B �D/C/

.Ss pr1/�

OO

commutes by the naturality of the suspension isomorphism � .

It remains to show that

(18)

z�Witt
nCs.Th ��/

uBRS.��/\�
// �Witt

nCd
.E��/

��

Š
// �Witt

nCd
.X /

z�Witt
nCs.Th ���D/

Th.pr1/�

OO

uBRS.���D/\�
// �Witt

nCd
.E���D/

pr1�

OO

��

Š
// �Witt

nCd
.X �D/

pr1�

OO

commutes. The right-hand side commutes, since the zero section embedding X �D ,!E���D DN �D

of ���D is given by i � idD , where i is the zero section embedding i WX ,!E�� DN of �� , so that

N DE�� X
i

oo

N �D DE���D

pr1

OO

X �D
i�idD
oo

pr1

OO

commutes. We will prove that the left-hand side commutes as well. The map

Th.pr1/ W Th.���D/! Th.��/
induces a homomorphism

Th.pr1/
�
W�d�s

SPL .E�� ;
PE��/!�d�s

SPL .E���D ; PE���D/;

which agrees with the homomorphism

pr�1 W�
d�s
SPL .N; @N /!�d�s

SPL ..N; @N /�D/
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induced by the map of pairs pr1 W .N; @N /�D! .N; @N /. By the naturality of the BRS–Thom class
[12, top of page 27], this homomorphism maps the BRS–Thom class of �� to the BRS–Thom class of
pr�

1
�� D ���D ,

pr�1.uBRS.��//D uBRS.���D/:

Given any element
Œg� 2 z�Witt

nCs.Th ���D/D�
Witt
nCs..N; @N /�D/;

the computation

uBRS.��/\ pr1�Œg�D pr1�.pr�1 uBRS.��/\ Œg�/D pr1�.uBRS.���D/\ Œg�/

shows that the left-hand side of (18) commutes.

The pullback transfer � !
PB on Witt bordism agrees with the transfer � !

BRS:

Proposition 6.5 The diagram

z�Witt
nCs.S

sBC/
T .�/�

// z�Witt
nCs.Th.�//

uBRS.�/\�
// �Witt

nCd
.E.�//

��Š

��

�Witt
n .B/

� Š

OO

�!
PB

// �Witt
nCd

.X /

commutes , that is , � !
PB D �

!
BRS.

Proof Let h WW n!B be a continuous map from a closed n–dimensional Witt space W to B, representing
an element Œh� 2 �Witt

n .B/. By simplicial approximation, we may assume that h is PL. We begin by
observing that, by Proposition 6.4, it suffices to prove the statement for the case where h WW ! B is a
PL embedding: Given any PL map h WW ! B, consider the graph embedding

.h; idW / WW ! B �W

which factors h as
W
� � .h;idW /

//

h
''

B �W

pr1

��

B

Let � �W denote the F–block bundle over B �W obtained by pulling back � under the projection
pr1 W B �W ! B. If the statement is known for embeddings, then

.� �W /!PBŒ.h; idW /�D .� �W /!BRSŒ.h; idW /�:

Hence by Proposition 6.4 with D DW ,

� !
PBŒh�D �

!
PBŒpr1 ı .h; idW /�D �

!
PB pr1�Œ.h; idW /�D pr1�.� �W /!PBŒ.h; idW /�

D pr1�.� �W /!BRSŒ.h; idW /�D �
!
BRS pr1�Œ.h; idW /�D �

!
BRSŒh�:

Consequently, it remains to prove the equality � !
PBD �

!
BRS on Witt bordism classes that are represented by

PL embeddings.
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As in the construction of the Umkehr map T .�/ in Section 3, let N denote the total space E.�/ of the
stable vertical normal closed disc block bundle � D �� of � associated to a choice of block-preserving
embedding � W X ,! Rs �B, where X is the total space of the given F–block bundle �. Thus N is a
�–block-preserving regular neighborhood of �.X / in Rs �B. Recall that @N denotes the total space of
the sphere block bundle of �. Let Ds �Rs be a closed PL ball about the origin which is large enough that
.Ds � @Ds/�B contains N [V �Rs �B, where V is the outside collar to @N used in the construction
of the Umkehr map; such a ball exists by compactness of X .

Let h W W ,! B be a PL embedding of a closed Witt space into B. Recall that K is a cell complex
with polyhedron jKj D B and � is given over K. By subdivision of K and �, we may assume that
h.W /D jKW j for a subcomplex KW of K. Let LS be a finite simplicial complex such that

(i) jLS j D S sBC,

(ii) there is a subcomplex L of LS such that jLj DDs �B,

(iii) for every simplex � 2K, there is a subcomplex L� of L such that

jL� j DDs
� �;

(iv) there exists a subcomplex L� of L such that jL� j D �.X /,

(v) the stable vertical normal bundle � is a (disc) block bundle over the complex L� such that

E.�/\ .Ds
� �/D

[
�2L�\L�

�.�/;

where �.�/ is the disc-block of � over the simplex � .

Property (iii) implies that L� is a subcomplex of L� for every face � of � 2K. Furthermore,

Ds
� h.W /DDs

� jKW j D

[
�2KW

Ds
� � D

[
�2KW

jL� j D

ˇ̌̌̌ [
�2KW

L�

ˇ̌̌̌
;

so that
LW WD

[
�2KW

L�

is a simplicial subcomplex of L with Ds�h.W /D jLW j. Since the embedding � WX ,!Rs�B is block
preserving with respect to the F–blocks of � , we have �.�.�//D .Ds��/\�.X / for all � 2K. So by (iv),

�.�.�//D jL� j \ jL� j D jL� \L� j:

Thus the embedded F–blocks �.�.�// are triangulated by the subcomplex L� \L� of L.

The image �Œh� under the suspension isomorphism

� W�Witt
n .B/ Š�! z�Witt

nCs.S
sBC/D�Witt

nCs..D
s; @Ds/�B/

is represented by the closed product PL embedding

id� h W .Ds
�W; @.Ds

�W // ,! .Ds
�B; .@Ds/�B/:
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The Umkehr map is a PL map

T .�/ W S sBC D Th.Rs
�B/D

Ds �B

.@Ds/�B
! Th.�/;

which is the identity near �.X /. Composing with it, we obtain a PL map

f D T .�/ ı .id� h/ W .Ds
�W; @.Ds

�W //! .Th.�/;1/:

Let A be the ball complex with jAj DN DE.�/ whose balls include the blocks of �. The rest of the balls
come from the sphere block bundle of �. The BRS–Thom class uBRS.�/2�

�.s�d/
SPL .N; @N / is represented

by the mock bundle � with projection given by the zero section i W �.X /! A. Thus the total space
of � is E.�/D �.X /. The mock bundle � is an embedded mock bundle in the sense of Buoncristiano,
Rourke and Sanderson [12, page 34]: the restriction i jW �.�/! � for a ball � D �.�/ 2A is the inclusion
� ,! �.�/, which is locally flat by definition of a disc block bundle. Furthermore, i jW �.�/! � is proper,
ie i j�1.@�/D @�.�/. We wish to compute the cap product

uBRS.�/\ Œf W .D
s; @Ds/�W ! .Th.�/;1/� 2�Witt

nCd .E.�//:

The base complex of � is only known to be a ball complex, not a simplicial complex as required for pulling
back a mock bundle via a cartesian square. Thus we need to subdivide simplicially. Let L0 be a simplicial
subdivision of L and let A0 be a simplicial subdivision of A such that A0 is a subcomplex of L0. Thus,

jA0j DE.�/ and jL0j DDs
�B:

The complex L0 contains a (simplicial) subcomplex L0
W

given by

L0W D f� 2L0 W � � � for some � 2LW g:

This is a subdivision of LW �L, and

jL0W j D jLW j DDs
� h.W /:

So the inclusion
jL0W j DDs

� h.W / ,!Ds
�B D jL0j

is a simplicial map
L0W ,!L0:

By [12, Theorem 2.1, page 23] (see also [40, subdivision theorem, page 128]), mock bundles can
be subdivided: if ˛ is a mock bundle over a ball complex D with total space E.˛/ and projection
p WE.˛/!D, and D0 is a subdivision of D, then there exists a mock bundle ˛0 over D0 together with a
PL homeomorphism � WE.˛/ Š�!E.˛0/ which preserves ˛–blocks over D, and a homotopy

F WE.˛/� I ! jDj D jD0j with F0 D p and F1 D p0�;

which respects the ˛–blocks over D. (Here p0 W E.˛0/! jD0j is the projection of ˛0.) Moreover, if ˛
is an embedded mock bundle, then the subdivision theorem yields again an embedded mock bundle
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and the homotopy can be taken to be an isotopy which is covered by an ambient isotopy. We apply
this to the zero section mock bundle � over A: Since A0 is a (simplicial) subdivision of A, there
thus exists a correspondingly subdivided mock bundle �0 over A0. Since � is an embedded mock
bundle i W �.X / D E.�/ ,! E.�/, so is �0. Thus the projection map i 0 of �0 may be taken to be a PL
embedding i 0 W E.�0/ ,! E.�/. As the zero section i does not touch the sphere bundle of � (ie � has
empty blocks over @N ), the same is true for the perturbation i 0. There exists a PL homeomorphism
� W �.X /DE.�/ Š�!E.�0/ which preserves �–blocks over the ball complex A. The maps i and i 0� are
isotopic via an isotopy

F W �.X /� I !E.�/� I with F0 D i and F1 D i 0�:

This isotopy is covered by an ambient isotopy

H WE.�/� I !E.�/� I with H0 D id

such that
�.X /� I

F %%

F0�idDi�id
// E.�/� I

Hyy

E.�/� I

commutes. This implies

(19) H1 ı i D F1 D i 0 ı�:

By an induction on the cells � 2K, starting with the 0–dimensional cells, F and H can be constructed to
preserve blocks over K. More precisely: Let �� denote the restriction of � to the embedded F–block
�.�.�//D �.X /\ .Ds � �/. Since � is a block bundle over the complex L� and �.�.�// is triangulated
by L� \L� , the total space of �� is given by E.�� /D

S
� �.�/, where � ranges over all simplices of

L� \L� . Thus by (v) above,

(20) E.�� /DE.�/\ .Ds
� �/:

Then H can be inductively arranged to satisfy

(21) Ht .E.�� //DE.�� /

for all � 2K and all t 2 Œ0; 1�, as follows: Recall that Buoncristiano, Rourke and Sanderson’s construction
of H in their proof of the mock bundle subdivision theorem proceeds inductively over cells of the base,
starting with the 0–cells. In the present context, one organizes their induction as follows: Start with the
0–skeleton A0 of A. For every 0–cell �0 of K, subdivide � over A0 \Ds � �0 within the manifold
E.�/\Ds � �0. Extend this subdivision for every 1–cell �1 of K to a subdivision over A0\Ds � �1

within the manifold E.�/\Ds � �1. Continue in this way with 2–cells �2, etc, until all cells of K have
been used. Then move on to the 1–skeleton A1 of A. For every 0–cell �0 of K, extend the subdivision to
a subdivision over A1\Ds � �0 within the manifold E.�/\Ds � �0. Extend this subdivision for every
1–cell �1 of K to a subdivision over A1\Ds � �1 within the manifold E.�/\Ds � �1, and so on.
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The mock bundle �0 is defined over the simplicial complex A0 with polyhedron jA0j DE.�/, but using
the canonical inclusions E.�/ � Ds �B and E.�/ � Th.�/ we may regard �0 as a mock bundle over
Ds �B, and as a mock bundle over Th.�/. In more detail, the composition

E.�0/ i0,!E.�/D jA0j ,!Ds
�B D jL0j

is the projection of a mock bundle over the complex L0, whose blocks over simplices in A0 are the blocks
of �0 and blocks over simplices not in A0 are taken to be empty. (Here, we are using that �0 has empty blocks
over the sphere bundle @N .) Similarly, after extending the triangulation A0 to a triangulation T 0 of Th.�/
by coning off simplices of A0 that are in @N (and adding the cone point1 as a 0–simplex), the composition

E.�0/ i0,!E.�/D jA0j ,! Th.�/D jT 0j

is the projection of a mock bundle over the complex T 0, whose blocks over simplices in A0 are the blocks
of �0 and blocks over simplices not in A0 are again taken to be empty. In view of the commutative diagram

E.�0/� _
i0
��

E.�/� _

��

� t

''

Ds �B
T .�/

// Th.�/

the pullback T .�/�.�0=T 0/ under the Umkehr map is precisely �0=L0 . Therefore, the mock bundle pullback
f �.�0/ is given by

f �.�0/D .id� h/�T .�/�.�0=T 0/D .id� h/�.�0=L0/:

The mock bundle �0 (contrary to �, possibly) is defined over a simplicial complex L0 and, as pointed out
above, the inclusion Ds � h.W / ,!Ds �B D jL0j is a simplicial map

L0W ,!L0:

Therefore, the mock bundle pullback f �.�0/D .id� h/�.�0/ is given by the cartesian diagram

E..id� h/��0/ //

��

g

((

E.�0/� _
i0
��

Ds � h.W /D jL0
W
j
� � // Ds �B D jL0j

It follows that the cap product of the BRS–Thom class with Œf � is given by the diagonal arrow

uBRS.�/\ Œf �D Œg� 2�
Witt
nCd .E.�//;

the total space of the pullback is given by

E..id� h/��0/D .Ds
� h.W //\ i 0E.�0/

and g is the subspace inclusion

g W .Ds
� h.W //\ i 0E.�0/� i 0E.�0/�E.�/:
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We show next that the final stage H1 WE.�/!E.�/ of the ambient isotopy H induces a homeomorphism

(22) H1 WE.�jKW
/ Š�! .Ds

� h.W //\ i 0E.�0/;

where we use � to identify X D E.�/ and �.X /, and to identify E.�jKW
/ and �.X /\ .Ds � jKW j/.

The homeomorphism H1 restricts to a homeomorphism

H1jW �.X /\ .D
s
� jKW j/

Š�!H1.�.X /\ .D
s
� jKW j//;

whose target we shall now compute:

H1.�.X /\.D
s
�jKW j//DH1.�.X /\E.�/\.Ds

�jKW j//DH1.�.X //\H1.E.�/\Ds
�jKW j/

DH1.�.X //\H1

�
E.�/\

[
�2KW

Ds
��

�

DH1.�.X //\H1

� [
�2KW

E.�/\.Ds
��/

�
DH1.�.X //\

[
�2KW

H1.E.�/\.D
s
��//

DH1.�.X //\
[

�2KW

.E.�/\.Ds
��// (by (20) and (21))

DH1.�.X //\E.�/\
[

�2KW

.Ds
��/DH1.�.X //\

[
�2KW

.Ds
��/

DH1iE.�/\
[

�2KW

jL� j

D i 0�E.�/\jLW j (by (19))

D i 0E.�0/\.Ds
�h.W //:

Thus we obtain the homeomorphism (22). In the diagram

E.�jKW
/

H1j Š

��

� � // E.�/D �.X /
� � i
// E.�/

H1Š

��

i 0E.�0/\ .Ds � h.W //
� � g

// E.�/

all the horizontal arrows are subspace inclusions and thus the diagram commutes. By Lemma 6.2 applied
to the PL homeomorphism H1j,

Œg�D Œg ıH1j� 2�
Witt
nCd .E.�//:

By commutativity of the diagram,

Œg ıH1j�D ŒE.�jKW
/� �.X / H1i

��!E.�/�D ŒE.�jKW
/� �.X /

i0�
��!E.�/�:

By restriction, the isotopy F gives rise to an isotopy

yF WE.�jKW
/� I � �.X /� I F�!E.�/
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from
yF0 DE.�jKW

/� �.X /
F0Di
���!E.�/

to
yF1 DE.�jKW

/� �.X /
F1Di0�
�����!E.�/:

By Lemma 6.2,
Œ yF0�D Œ yF1� 2�

Witt
nCd .E.�//:

Therefore,
Œg�D Œg ıH1j�D Œ yF1�D Œ yF0� 2�

Witt
nCd .E.�//:

Now the geometric pullback transfer of Œh WW ,! B� is given by

� !
PBŒh WW ,! B�D ŒE.�jKW

/�E.�/D �.X /�:

Hence
i��

!
PBŒh WW ,! B�D Œ yF0�:

Finally, since i� and �� are inverses of each other,

� !
PBŒh WW ,! B�D ��Œ yF0�D ��Œg�D ��.uBRS.�/\ Œf �/D ��.uBRS.�/\ ŒT .�/ ı .id� h/�/

D ��.uBRS.�/\T .�/��Œh�/D �
!
BRSŒh�;

as was to be shown.

We will refer to the map ��.uBRS.�/\�/ as the geometric Thom homomorphism.

Proposition 6.6 The homotopy-theoretic Thom homomorphism ˆ agrees with the geometric Thom
homomorphism , that is , the diagram

BMWITTnCs.Th.�// ˆ
//

Š

��

MWITTnCd .X /

Š

��

z�Witt
nCs.Th.�//

��.uBRS.�/\�/
// �Witt

nCd
.X /

commutes.

Proof Recall that ˆ is given by ˆ D ��.uSPL.�/\�/. The result follows from Lemma 4.5 applied
to � with underlying oriented block bundle �PLB D �, together with the geometric description of the cap
product given in [12].

Proposition 6.7 Manifold-block bundle transfer on MWITT–homology and geometric pullback transfer
on Witt bordism agree , that is , the diagram

MWITTn.B/
�!

//

Š

��

MWITTnCd .X /

Š

��

�Witt
n .B/

�!
PB

// �Witt
nCd

.X /

commutes.
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Proof We must show that the outer square of the diagram

MWITTn.B/
�!

//

T .�/��

))

Š

��

MWITTnCd .X /

Š

��

BMWITTnCs.Th.�//

Š
��

ˆ
44

z�Witt
nCs.Th.�//

��.uBRS.�/\�/

))

�Witt
n .B/

�!
PB

//

T .�/��
55

�Witt
nCd

.X /

commutes. The upper part commutes by definition of the F–block bundle transfer � !. The left-hand
part commutes as the vertical arrows are given by a natural isomorphism of homology theories, while
the right-hand part commutes by Proposition 6.6. The lower part of the diagram, involving the pullback
transfer � !

PB, commutes according to Proposition 6.5.

A closed n–dimensional Witt space W has a fundamental class

ŒW �Witt 2�
Witt
n .W /

in Witt bordism represented by the identity map, ŒW �Witt D Œid WW !W �. This class corresponds to a
unique class ŒW �Witt 2MWITTn.W / under the natural identification (9).

Proposition 6.8 Suppose B is a closed Witt space of dimension n. Then the total space X of the oriented
F–block bundle � over B is a closed Witt space and the geometric pullback transfer

� !
PB W�

Witt
n .B/!�Witt

nCd .X /

maps the Witt fundamental class of B to the Witt fundamental class of X ,

� !
PBŒB�Witt D ŒX �Witt:

Proof If the base B is Witt, then the total space X is Witt by Lemma 6.1. The Witt fundamental class
ŒB�Witt is represented by the identity map gD idB WB!B (which is PL). Pulling back under this identity
map, the map Ng WE.id��/!X is the identity id WE.id��/DX !X . Therefore,

� !
PBŒid W B! B�D Œ Ng WE.id��/!X �D ŒidX �D ŒX �Witt:

Example 6.9 We continue our previous examples on the trivial F–block bundle � with total space X D

F �B for B any compact polyhedron. The geometric pullback transfer � !
PB W�

Witt
n .B/!�Witt

nCd
.F �B/

is then by construction � !
PBŒg WW ! B�D ŒidF �g W F �W ! F �B�. The Witt bordism �–product

�W�Witt
d .F /��Witt

n .B/!�Witt
dCn.F �B/; Œh�� Œg�D Œh�g�;

can be used to decompose the class ŒidF �g� as ŒF �Witt � Œg�. We thus find that

� !
PBŒg�D ŒF �Witt � Œg�;
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which agrees with (13). If B D W is an n–dimensional closed Witt space and g the identity, then
� !

PBŒB�Witt D ŒF �Witt � ŒB�Witt D ŒF �B�Witt, in agreement with Proposition 6.8.

7 Transfer of the L�–homology fundamental class

In [7], we constructed a canonical L�.Q/–homology fundamental class

ŒX �L 2 L�.Q/n.X /

for closed n–dimensional Witt spaces X using the morphism � WMWITT! L�.Q/ of ring spectra. This
class is the image of the Witt theory fundamental class ŒX �Witt under the map

�� W�
Witt
n .X /ŠMWITTn.X /! L�.Q/n.X /;

ie ŒX �L D ��ŒX �Witt.

Theorem 7.1 Suppose B is a closed Witt space of dimension n. Then the total space X of the oriented
F–block bundle � over B is a closed Witt space and the block bundle transfer

� !
W L�.Q/n.B/! L�.Q/nCd .X /

maps the L�.Q/–homology fundamental class of B to the L�.Q/–homology fundamental class of X ,

� !ŒB�L D ŒX �L:

Proof By Proposition 6.8, � !
PBŒB�Witt D ŒX �Witt for the pullback transfer. Thus, using Proposition 6.7 on

the compatibility of block bundle transfer and pullback transfer,

� !ŒB�Witt D �
!
PBŒB�Witt D ŒX �Witt:

Finally, by Proposition 5.6,

� !ŒB�L D �
!��ŒB�Witt D ���

!ŒB�Witt D ��ŒX �Witt D ŒX �L:

Example 7.2 We describe the L�.Q/–homology transfer and illustrate Theorem 7.1 for the trivial
F–block bundle � with total space X DF �B. We use the notation of the earlier examples on this special
case. By Lemma 5.8, uL.�F /D ��W .uSPL.�F //. Hence, using [38, page 552, Proposition 7.1.2],

ŒF �L D �F�

�
��W .uSPL.�F //\ ŒTh�F �L

�
2 L�.Q/d .F /:

See also [39, page 186, Proposition 16.16(c)]. Consequently, (13) applies to yield the description

� !.a/D ŒF �L � a

for the transfer � ! W L�.Q/n.B/! L�.Q/nCd .F �B/. When B is a closed n–dimensional Witt space,
we obtain

� !ŒB�L D ŒF �L � ŒB�L D ŒF �B�L

(where the second equality has been established in [7, Theorem 13.1]), in agreement with Theorem 7.1.
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8 Behavior of the Cheeger–Goresky–MacPherson L–class under transfer

Rationally, Theorem 7.1 leads to a formula describing the behavior of the Cheeger–Goresky–MacPherson
L–class under block bundle transfer.

Theorem 8.1 Let B be a closed Witt space and let F be a closed oriented PL manifold. Let � be an
oriented PL F–block bundle over B with total space X and oriented stable vertical normal PL microbundle
� over X . Then the associated block bundle transfer � ! sends the Cheeger–Goresky–MacPherson L–class
of B to the product

� !L�.B/DL�.�/\L�.X /:

Proof By Theorem 7.1, the L�–homology transfer � ! of � sends the L�.Q/–homology fundamental class
of B to the L�.Q/–homology fundamental class of X : � !ŒB�L D ŒX �L. It remains to analyze what this
equation means after we tensor with Q, ie after we apply the localization morphism

L�.Q/! L�.Q/.0/ D
_

i

S iH.Li.Q/˝Q/D
_
j

S4j HQ;

which is a ring morphism of ring spectra. By [7, Lemma 11.1],

ŒB�L˝QDL�.B/ and ŒX �L˝QDL�.X /:

Let �SPL WMSPL! KO
�

1
2

�
be the Sullivan orientation [45]. Using work of Land and Nikolaus [30], we

construct in [6, Proposition 2.1] a particular equivalence of E1–ring spectra

� W KO
�

1
2

�
'�! L�.R/

�
1
2

�
D L�.Z/

�
1
2

�
and show that the composition

MSPL �SPL
���! KO

�
1
2

�
�
�! L�.Z/

�
1
2

�
is homotopic to Ranicki’s orientation �� [6, Proposition 3.3]. Furthermore, using work of Taylor and
Williams [47] as well as of Morgan and Sullivan [35], we describe in [6] a particular equivalence

L�.Z/.0/
'�!

M
i2Z

HQŒ4i �

such that the diagram

MSPL
�SPL

//

�� %%

KO
�

1
2

�
� '
��

loc
// KO.0/
�.0/ '
��

ph

'
//
L

i2Z HQŒ4i �

L�
�

1
2

� loc
// L�
.0/

'
//
L

i2Z HQŒ4i �

commutes up to homotopy, where ph denotes the Pontryagin character. Now, it is well known that the
Pontryagin character of the Sullivan orientation is given by

ph.loc�SPL/DL�1
[u 2H�.MSPLIQ/;

where L is the universal PL L–class L 2H�.BSPLIQ/ and u the stable Thom class

u 2H 0.MSPLIZ/D Z:
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(See Madsen and Milgram [33, Corollary 5.4, page 102].) Thus by commutativity of the diagram, the
rational localization of �� is given by L�1[u. Hence, for our PL microbundle � WX ! BSPL,

uL.�/˝QD ��L�.�/�1
[uQ.�/;

where uQ.�/ 2 zH
s�d .Th.�/IQ/ is the Thom class of � in ordinary rational cohomology. (See also

Ranicki’s [39, Remark 16.2, page 176] for topological block bundles. Note that a PL microbundle has an
underlying topological block bundle by composition with BSPL! BeSPL! BASTOP, and that Ranicki
omits cupping with uQ.�/ in his notation.) Thus

L�.X /D ŒX �L˝QD .� !ŒB�L/˝QD ��.uL.�/\T .�/��ŒB�L/˝Q

D ��
�
uL.�/˝Q\T .�/��.ŒB�L˝Q/

�
D ��

�
.��L�.�/�1

[uQ.�//\T .�/��L�.B/
�

D ��
�
��L�.�/�1

\.uQ.�/\T .�/��L�.B//
�
DL�.�/�1

\��
�
uQ.�/\T .�/��L�.B/

�
DL�.�/�1

\� !L�.B/:

If t is a stable inverse for �, then t has the interpretation of a stable vertical tangent bundle for � , and by
Theorem 8.1, the following formula holds:

� !L�.B/DL�.t/�1
\L�.X /:

Example 8.2 We discuss Theorem 8.1 vis-à-vis (13) in the situation of a trivial F–block bundle � over B,
using the notation of earlier examples on this case. Let ŒF �Q 2Hd .F IQ/ denote the fundamental class
of the oriented PL manifold F in ordinary rational homology. By (13),

� !.a/D ŒF �Q � a

for a 2Hn.BIQ/. For a closed Witt space B, we obtain in particular

(23) � !L�.B/D ŒF �Q �L�.B/:

Let TF denote the tangent PL microbundle of the PL manifold F . Then �F˚TF is the trivial microbundle,
and hence L�.�F /L

�.TF/DL�.�F ˚TF/D 1. Furthermore, the Hirzebruch signature theorem holds
for PL manifolds and L�.F /DL�.TF/\ŒF �Q; see Madsen and Milgram [33, Chapter 4C] and Thom [48].
According to Theorem 8.1,

� !L�.B/DL�.�/\L�.X /D .L
�.�F /�1/\.L�.F /�L�.B//D .L

�.�F /\L�.F //�.1\L�.B//

D .L�.�F /\L�.TF/\ ŒF �Q/�L�.B/D ŒF �Q�L�.B/;

confirming (23). It is perhaps worthwhile to emphasize that transfer does not in general commute with
localization of spectra: if � !

Q denotes the transfer on ordinary rational homology and � !
L the transfer on

L�.Q/–homology, then generally � !
Q.�˝Q/¤ � !

L.�/˝Q. For example,

� !
Q.ŒB�L˝Q/D � !

Q.L�.B//D ŒF �Q �L�.B/;

which contains less information than

.� !
LŒB�L/˝QD ŒF �B�L˝QDL�.F �B/DL�.F /�L�.B/:
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9 Normally nonsingular maps

Let f W Y !X be a PL map of closed Witt spaces which is the composition

Y
� � g

//

f ""

Z

p
��

X

of an oriented normally nonsingular inclusion g with normal bundle �g, followed by the projection p of
an oriented PL F–fiber bundle � with closed PL manifold fiber F and stable vertical normal bundle �� .
Then f is a normally nonsingular map in the sense of [22, Definition 5.4.3]. Let c be the codimension
of g and d the dimension of F . The bundle transfer � ! and the Gysin restriction g! compose to give a
transfer homomorphism

Hn.X IQ/
�!

�!HnCd .ZIQ/
g!

�!HnCd�c.Y IQ/;

with c � d the relative dimension of f . Combining Theorem 8.1 with [5, Theorem 3.18], we obtain

g!� !L�.X /D g!.L�.��/\L�.Z//D g�L�.��/\g!L�.Z/D g�L�.��/\ .L
�.�g/\L�.Y //

DL�.g��� ˚ �g/\L�.Y /;

at least when Y and Z have even dimensions.
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