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The negative cyclic homology for a differential graded algebra over the rational field has a quotient of
the Hochschild homology as a direct summand if the S–action is trivial. With this fact, we show that
the string bracket in the sense of Chas and Sullivan is reduced to the loop product followed by the BV
operator on the loop homology provided the given manifold is BV-exact. The reduction is indeed derived
from the equivalence between the BV-exactness and the triviality of the S–action. Moreover, it is proved
that a Lie bracket on the loop cohomology of the classifying space of a connected compact Lie group
possesses the same reduction. By using these results, we consider the nontriviality of string brackets.
We also show that a simply connected space with positive weights is BV-exact. Furthermore, the higher
BV-exactness is discussed featuring the cobar-type Eilenberg–Moore spectral sequence.
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1 Introduction

Let LM be the free loop space, namely, the space of continuous maps from the circle S1 to a space M

with compact-open topology. The rotation on the domain space S1 of LM induces an S1–action on LM .
Then we have the S1–equivariant homology H S1

� .LM /DH�.ES1�S1 LM / for a space M . The string
bracket is a Lie bracket on the S1–equivariant homology of the free loop space LM of an orientable
closed manifold M , which is introduced by Chas and Sullivan in [8]. The bracket is defined by using the
loop product on the loop homology H�.LM / and maps in the Gysin exact sequence of the S1–principal
bundle

(1.1) S1
!ES1

�LM !ES1
�S1 LM:

In particular, the Batalin–Vilkovisky (BV) identity of the BV operator on the loop homology induces the
Jacobi identity for the string bracket; see the proof of [8, Theorem 6.1].

As for computations of the string brackets, Basu [2] and Félix, Thomas and Vigué-Poirrier [19] have
determined explicitly the rational string bracket of the product of spheres. For a simply connected
closed manifold M whose rational cohomology is generated by a single element, the rational string
bracket is trivial though the rational loop product of M is highly nontrivial; see [2, Theorem 3.4] and
[19, Section 5.2, Example 1]. On the other hand, a result due to Tabing [43] shows that the integral string
bracket of the sphere is nontrivial.

The loop homology of the classifying space BG of a connected compact Lie group G in the sense of
Chataur and Menichi [9] admits the BV algebra structure; see also [27, Theorem C.1]. Therefore, the
same argument as that about manifolds allows us to deduce that the string cohomology of BG is endowed
with a graded Lie algebra structure; see Proposition 2.3 and Chen, Eshmatov and Liu [11, Theorem 1.1].

The aim of this article is to investigate general methods for computing the rational string brackets for a
manifold and the classifying space of a connected compact Lie group. The key strategy is to use Jones’
isomorphisms

H�.LM IQ/Š HH�.APL.M // and H�
S1.LM IQ/Š HC�� .APL.M //;

where APL.M / is the polynomial de Rham algebra over Q of a simply connected space M and the
right-hand sides of the isomorphisms denote the Hochschild homology and the negative cyclic homology
of the complex, respectively; see Section 3 for more details. Furthermore, the decomposition theorem
of the negative cyclic homology and the cyclic homology (additive K–theory in the sense of Feigin and
Tsygan [20]) in Vigué-Poirrier [46] and Kuribayashi and Yamaguchi [29] is applied in the computation;
see Theorem 2.15. It turns out that for a simply connected closed manifold M , the rational string bracket
for M is reduced to the loop product of M followed by the BV operator provided the manifold possesses
the exactness of the operator; see Definition 2.9.
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Assertion 1.2 Let M be a simply connected closed manifold. Suppose further that M is BV-exact.
Then the string bracket in the string homology H S1

� .LM IQ/ is regarded as the loop bracket in the
loop homology H�.LM IQ/ up to isomorphism , and hence the string bracket is determined by the
Gerstenhaber bracket in the Hochschild cohomology of the polynomial de Rham algebra APL.M / of M .

The detail is described in Corollary 2.16. In particular, the nilpotency of the string bracket is equivalent to
that of the Gerstenhaber bracket. We stress that the Gerstenhaber algebra in Assertion 1.2 is considered
with the Lie model for M without using the loop product; see Félix, Menichi and Thomas [16]. It is worth
mentioning that the BV-exactness, which is introduced to consider the reduction of the string brackets, is
a new homotopy invariant deeply related to other traditional rational homotopy invariants for spaces. We
discuss and summarize this topic in Assertion 1.3 below and several paragraphs before the assertion.

Félix, Thomas and Vigué-Poirrier [19] have given an explicit description of the rational string bracket
of M with its Sullivan model. On the other hand, our method for computing the string bracket is
formulated with the loop product and the BV operator on the loop homology. Moreover, the BV-exactness
is also described in terms of the loop homology. Therefore, it is possible to make a computation of the
dual to the string bracket on the equivariant homology H S1

� .LM IQ/ by considering only behavior of the
BV operator on the loop homology H�.LM IQ/; see Remark 2.14 for more details. This is an advantage
of our result.

In the case of the classifying space, the same strategy as above is applicable in the computation of
the string bracket. In fact, for the classifying space BG of every compact connected Lie group G, the
rational string bracket for BG is described as the BV operator followed by the dual loop coproduct;
see Theorems 2.7(i) and 2.8(i). As for general properties of the string brackets, the theorems allow
us to deduce that the Lie bracket on the string cohomology H�

S1.LBGIQ/ is highly nontrivial even
if rank G D 1; see Proposition 5.2. Moreover, Propositions 5.3 and 5.4 assert that the loop homology
endowed with the string bracket of a simply connected Lie group G is nilpotent if and only if rank G D 1.

The notion of a Gorenstein space due to Félix, Halperin and Thomas [14] enables us to deal with a
manifold and the classifying space of a Lie group simultaneously. As a consequence, with the influence
of string topology on Gorenstein spaces (see Félix and Thomas [18]), we have Theorems 2.7, 2.8 and 2.15
mentioned above.

We moreover propose a method for computing the string bracket of a non-BV-exact space M . To this
end, we introduce a bracket on the cobar-type Eilenberg–Moore spectral sequence (EMSS) converging to
H�

S1.LM IQ/ which is compatible with the string bracket of the target; see Theorem 7.7. Moreover, the
EMSS carries a decomposition compatible with the Hodge decomposition of the target; see Remark 7.3.
While there is no computational example obtained by applying the spectral sequence, in future work, it is
expected that the EMSS is applicable in computing the string bracket explicitly; see Section 1.1 problems.

As described above, the BV-exactness is a key to computing string brackets on Gorenstein spaces.
Moreover, it is worthwhile mentioning that the BV-exactness for a space M is equivalent to the triviality
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of the S–action in Connes’ exact sequence; see Theorem 2.11. In fact, the new invariant is only described
in terms of the Hochschild homology while the S–action is defined on the negative cyclic homology.
A deep consideration due to Vigué-Poirrier in [45; 46] shows that the S–action on the negative cyclic
homology is trivial if M is formal. Thus we see that the class of BV-exact spaces contains that of formal
spaces; see Corollary 2.13.

With historical perspectives, we comment on relationships among notions of p–universality in Mimura,
O’Neill and Toda [36], positive weights in Body and Douglas [4], the BV-exactness and its variants; see
Definition 2.20 for positive weights.

By definition, simply connected spaces X and Y are said to be p–equivalent if there is a map f WX ! Y

which induces H�.X IZ=p/ŠH�.Y IZ=p/, where p is a prime or zero and Z=0DQ. In [41], Serre
raised the so-called symmetry question whether the existence of a p–equivalence X ! Y implies the
existence of a p–equivalence in the reverse direction Y !X . However, in general, the p–equivalence
does not satisfy the symmetricity.

Mimura, O’Neil and Toda [36] defined the notion of a p–universal space and proved that in the full
subcategory of p–universal spaces of the category of simply connected spaces whose homotopy types are
those of finite CW complexes, the p–equivalence is indeed an equivalence relation. We observe that the
p–universality does not depend on p or 0; see [36, Proposition 2.9]. Afterward, Body and Douglas [4]
defined the concept of positive weights for Sullivan minimal models. Scheerer’s result [40, Theorem 2],
in turn, yields that the two notions of p–universality and positive weights are equivalent.

By using the EMSS mentioned above, we also introduce the notion of r–BV-exactness; see Definition 7.11.
The r–BV-exactness for a simply connected space M is equivalent to the collapsing at the ErC1–term of
the EMSS for M ; see Corollary 7.5. The decomposition of the EMSS allows us to deduce that the notion
of BV-exactness is indeed equivalent to that of 1–BV-exactness; see Theorem 7.10. Thus r–BV-exactness
is regarded as a higher version of BV-exactness. We summarize important relationships among invariants
mentioned above.

Assertion 1.3 The following implications concerning rational homotopy invariants hold for a simply
connected space X :

X is formal X admits positive weights X is p–universal

X is (1–)BV-exact X is 2–BV-exact � � � X is r–BV-exact � � �

The S–action on
zH�S1.LX IQ/ is trivial

The r times S–action on
zH�S1.LX IQ/ is trivial

� � �

[24, Section 3]

Theorem 2.21

Theorem 2.11 Theorem 7.10 Corollary 7.5

[40]

(�)
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Here the reduced cohomology zH�S1.LX IQ/ is the cokernel of the map H�S1.�IQ/! H�S1.LX IQ/

induced by the trivial map , and the S–action on zH�S1.LX IQ/ is defined by the multiplication of the
generator of zH�.BS1IQ/ with the map induced by the projection q of the fibration

LX !ES1
�S1 LX

q
! BS1:

Observe that the equivalence (�) holds if X has the homotopy type of a finite CW complex.

As mentioned above, a simply connected space admitting positive weights is BV-exact. Proposition 6.1
gives an example of a nonformal BV-exact manifold. Moreover, we obtain an elliptic and non-BV-exact
space in Appendix A.

This manuscript is organized as follows. In Section 2, our results are stated in detail. In Section 3,
we recall the Hochschild homology, the cyclic homology and Connes’ exact sequences. Moreover, the
Gorenstein space in the sense of Félix, Halperin and Thomas [14] is also recalled. Section 4 provides the
proofs of our results described in Section 2. Section 5 discusses the nilpotency of the string homology of
a Lie group and the classifying space of a Lie group. In Section 6, the BV-exactness for a nonformal
manifold of dimension 11 is considered. Thanks to the reduction for computing the bracket described in
Section 2, we determine explicitly the dual string bracket for the manifold; see Theorem 6.6. We believe
that the result gives the first example which computes the string bracket of a non formal space. Section 7
considers the cobar-type Eilenberg–Moore spectral sequence (EMSS) for computing string brackets of
non-BV-exact manifolds.

In Appendix A, we obtain an example of an elliptic and non-BV-exact space. Appendix B describes the
Gysin exact sequence associated with the principal bundle S1! ES1 �LM

p
�! ES1 �S1 LM for

a simply connected space M in terms of Sullivan models; see Whitehead [52, (5.12) Theorem] for the
exact sequence.

Finally, on page 2651 there is a list of symbols used repeatedly in this article.

1.1 Problems

We propose questions and problems on topics in this article.

(P1) If a space is BV-exact, then does it admit positive weights?

(P2) For each r > 1, is there an r–BV-exact space which is not .r�1/–BV-exact?

(P3) Is a space r–BV-exact for some r <1?

(P4) By making use of the EMSS in Section 7, compute explicitly the string brackets of a non-BV-exact
manifold.
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2 String brackets described in terms of the Hochschild homology

While the underlying field in Proposition 2.3 below is of arbitrary characteristic, other results described
in this section hold for a field of characteristic zero.

Let K be a field and denote the singular homology and cohomology with coefficients in K by H�.�/

and H�.�/, respectively. For an orientable closed manifold M of dimension d , the Chas and Sullivan
loop product � on the shifted homology H�.LM / WD H�Cd .LM / is unital, associative and graded
commutative; see [8]. Consider the principal bundle S1!ES1 �LM

p
�!ES1 �S1 LM . The bundle

gives rise to the homology Gysin sequence

� � � !H��d .LM /
p�
��!H S1

� .LM /
c
�!H S1

��2.LM /
M
�!H��d�1.LM /! � � � :

The string bracket Œ ; � on H S1

� .LM / is defined by

(2.1) Œa; b� WD .�1/jaj�dp�.M.a/ �M.b// for a; b 2H S1

� .LM /:

The bracket is of degree 2� d and gives a Lie algebra structure to the equivariant homology of LM .

Let G be a connected compact Lie group of dimension d . We write H�.LBG/ WDH�Cd .LBG/ and
H�.LBG/ WDH�CdC1

S1 .LBG/. With this notation, the cohomology Gysin sequence associated with the
principal bundle S1!ES1 �LBG

p
�!ES1 �S1 LBG induces an exact sequence of the form

� � � !H��2.LBG/
S
�!H�.LBG/

�WDp�

�����!H�C1.LBG/
ˇ
�!H��1.LBG/! � � � :

Chataur and Menichi [9] have proved that there exists an associative and graded commutative multi-
plication ˇ on H�.LBG/ which is induced by the dual loop coproduct with an appropriate sign; see
[27, Corollary B.3] and also Section 3. Then the dual string cobracket Œ ; � on H�.LBG/ is defined by

(2.2) Œx;y� WD .�1/kxkˇ.�.x/ˇ�.y// for x;y 2H�.LBG/:

Here the notation kxk means the degree of x as an element in the shifted cohomology.

Proposition 2.3 Let G be a connected compact Lie group of dimension d and K a field of arbitrary
characteristic. Then the dual string cobracket gives H�.LBG/ a graded Lie algebra structure.

Remark 2.4 Proposition 2.3 is a particular case of [9, Theorem 65] and [11, Theorem 1.1]. The result
[9, Theorem 65] shows the Lie algebra structure on a homological conformal field theory. The result
[11, Theorem 1.1] describes a gravity algebra structure on the negative cyclic homology of a mixed
complex; see [21] for a gravity algebra. We give an elementary proof of this proposition by taking care of
sign convention in Section 4.

We relate the string brackets (ie the string bracket (2.1) and the dual string cobracket (2.2)) above to
the Hochschild homology and the cyclic homology. Let � be a connected differential graded algebra
(DGA) over a field K of arbitrary characteristic. A DGA � is called a cochain algebra if the differential

Algebraic & Geometric Topology, Volume 24 (2024)



A reduction of the string bracket to the loop product 2625

is of degree C1. If the differential of a DGA � decreases degree by one, we call the DGA � a chain
algebra. Let � be a chain algebra, which is nonpositive; that is, �D

L
i�0�i . We recall Connes’ exact

sequences [30, Theorem 2.2.1 and Proposition 5.1.5] for the Hochschild homology, cyclic homology and
the negative cyclic homology of �, which are of the form

(2.5)

� � � ! HHnC1.�/
I
�! HCnC1.�/

S 0

�! HCn�1.�/
BHH
���! HHn.�/! � � � ;

� � � ! HC�nC2.�/
SD�u
����! HC�n .�/

�
�! HHn.�/

ˇ
�! HC�nC1.�/! � � � ;

� � � ! HC�nC1.�/
�u
��! HCper

n�1
.�/

z�
�! HCn�1.�/

BHC
��! HC�n .�/! � � � :

Here S denotes the S–action and the maps BHH, ˇ and BHC are induced by Connes’ B–map B; see
Section 3.1 for more details. The reduced versions of the Hochschild homology and the negative cyclic
homology of � are denoted by eHH�.�/ and fHC

�

� .�/, respectively; see Section 3.1.

Remark 2.6 Following Jones [26], we define the Hochschild homology and the cyclic homology for
a chain algebra but not a cochain algebra. For a cochain algebra �, we define a chain algebra �] by
.�]/�i D�

i for i . Thus, for a nonnegative cochain algebra M, we have a nonpositive chain algebra M].
The Hochschild homology and the negative cyclic homology of M are defined by HH�.M]/ and HC�� .M]/,
respectively. By abuse of notation, we may write HH�.M/ and HC�� .M/ for HH.M]/ and HC�� .M]/,
respectively.

The constructions of the string brackets above are generalized with Gorenstein spaces. An orientable
manifold and the classifying space of a connected Lie group are typical examples of Gorenstein spaces;
see Section 3 for the definition and fundamental properties of a Gorenstein space. For a Gorenstein
space M of dimension d , we define a comultiplication �_ and a multiplication ˇ on the cohomology
H�.LM IK/, which are called the dual loop product and the dual loop coproduct, respectively; see
Section 3. Therefore, by using the formulae (2.1) and (2.2) above, we have the string bracket and the dual
string cobracket for a Gorenstein space M with � WD .�_/_ and ˇ, respectively; see Theorems 2.7 and
2.8 below for more details. We do not know the string brackets satisfy the Jacobi identity for general
Gorenstein spaces. However, as seen in Theorem 2.8, these constructions indeed give generalizations of
brackets (2.1) on manifolds and (2.2) on classifying spaces.

The following theorem asserts that the dual to the string bracket in the sense of Chas and Sullivan for a
manifold is the dual loop product followed by the BV operator. Moreover, we see that the string bracket
in Proposition 2.3 is described as the BV operator followed by the dual loop coproduct.

In the rest of this section, we further assume that K is a field of characteristic zero and a DGA � is locally
finite; that is the homology Hi.�/ is finite-dimensional for each i � 0.

Algebraic & Geometric Topology, Volume 24 (2024)
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Theorem 2.7 Let M be a simply connected Gorenstein space and � the chain algebra APL.M /]˝Q K.
Suppose that the S–action on the reduced negative cyclic homology fHC

�

� .�/ is trivial. Then:

(i) There is a commutative diagram

..eHH�.�/=Im�/˚KŒu�/˝2
Š

„˝„
//

�˝� ��

HC�� .�/
˝2

�˝� ��

HH�.�/˝2

ˇ
��

HH�.�/˝2

ˇ
��

HH�.�/
Cokernel ��

HH�.�/
ˇ
��

.eHH�.�/=Im�/˚KŒu�
Š

„
// HC�� .�/

Here � D BHH ı I W HH�.�/! HH�.�/ is the “BV operator”, ˇ is the product described in
Section 3.3, Cokernel is defined by .projection on the cokernel; 0/, and the horizontal isomor-
phism „ is defined by the composite

.eHH�.�/=Im�/˚KŒu�
I
��!
Š

fHC�.�/˚KŒu�
BHC
��!
Š

fHC
�

� .�/˚KŒu�
sp
��!
Š

HC�� .�/;

with the map sp in Remark 3.1 below.

(ii) There is a commutative diagram

..eHH�.�/=Im�/˚KŒu�/˝2
Š

„˝„
// HC�� .�/

˝2

HH�.�/˝2

Cokernel˝Cokernel
OO

HH�.�/˝2

ˇ˝ˇ
OO

HH�.�/
�
_

OO

HH�.�/
�
_

OO

.eHH�.�/=Im�/˚KŒu�
Š

„
//

�

OO

HC�� .�/:
�
OO

Here �DBHHıI is the BV operator of the BV algebra HH�.�/, and the horizontal isomorphism„

is the one defined in (i).

We call the right-hand vertical composites in Theorem 2.7(i) and (ii) the dual string cobracket and the
dual string bracket, respectively.

Note that the condition on the S–action can be replaced with BV-exactness; see Definition 2.9 and
Remark 2.14 for details. It is also worth mentioning that the composite BHH ı I is nothing but the
cohomological Batalin–Vilkovisky (BV) operator � on the Hochschild homology of a DGA � if � is
the polynomial de Rham algebra of a manifold or the classifying space of a connected Lie group. By
abuse of terminology, we may call BHH ı I the BV operator in general.
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As mentioned above, under the isomorphisms ‚1 and ‚2 due to Jones [26, Theorem A], the loop coho-
mology H�.LM / and the string cohomology H�

S1.LM / are identified with the Hochschild homology
and the negative cyclic homology of APL.M /, respectively. Thus, we have:

Theorem 2.8 (i) The dual string cobracket for BG described in Proposition 2.3 coincides with that in
Theorem 2.7(i) up to isomorphisms ‚1 and ‚2.

(ii) Let M be a simply connected closed manifold of dimension d . Then the dual Œ ; �_ to the
string bracket in the sense of Chas and Sullivan on M coincides with the dual string bracket in
Theorem 2.7(ii) up to isomorphisms ‚1 and ‚2.

In view of [27, Theorem 4.1], Theorem 2.7(i) and Theorem 2.8(i) allow us to compute the dual string
cobracket on H�

S1.LBGIK/ explicitly if K is a field of characteristic zero; see Section 5. We observe
that the classifying space BG is formal and then the S–action is trivial; see Corollary 2.13 below.

Moreover, by dualizing Theorem 2.7(ii) and Theorem 2.8(ii), we have Theorem 2.15, described below,
for computing the string bracket of a manifold. It turns out that, in the rational case, the original string
bracket can be formulated as the loop product followed by the BV operator on the loop homology. Before
describing our main result concerning a manifold, we need a notion of the Batalin–Vilkovisky exactness.

Definition 2.9 A DGA � is Batalin–Vilkovisky exact (BV-exact) if Im zB D Ker zB, where the reduced
operator zB WeHH�.�/!eHH�.�/, is a restriction of Connes’ B–operator B WD�ıˇ WHH�.�/!HH�.�/.
We say that a simply connected space M is BV-exact if the polynomial de Rham algebra APL.M / of M is.

Remark 2.10 Let M be a simply connected closed manifold. The result [17, Proposition 2] implies
that the dual of the BV operator �0 W H�.LM / ! H�C1.LM / is identified with the operator B in
Definition 2.9 under the isomorphism ‚1 mentioned above. Then, it follows that a manifold M is
BV-exact if and only if Im z�0 D Ker z�0 for the reduced BV operator z�0 W zH�.LM /! zH�C1.LM /.

Theorem 2.11 A simply connected DGA � is BV-exact if and only if the reduced S–action on fHC
�

� .�/

is trivial.

We refer the reader to Theorem 7.10 for a generalization of the result. An important example with trivial
reduced S–action is given by the following proposition due to Vigué-Poirrier.

Proposition 2.12 [46, Proposition 5] If a simply connected DGA � is formal , then the reduced
S–action on fHC

�

� .�/ is trivial.

By combining Theorem 2.11 and Proposition 2.12, we have:

Corollary 2.13 If a simply connected DGA� is formal , then it is BV-exact. As a consequence , a simply
connected manifold whose rational cohomology is generated by a single element and the classifying space
of a compact connected Lie group are BV-exact.
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We also have a generalization of the corollary; see Theorem 2.21.

Remark 2.14 It follows from Theorem 2.11 that the condition on the S–action in Theorems 2.7 and 2.8
may be replaced with the BV-exactness. This implies that the string brackets are determined exactly with
the loop (co)products and the BV operator on the Hochschild homology of a DGA � without dealing
with the cyclic homology of � itself provided � is BV-exact. There is an isomorphism

z� WeHH�.�/=Im z�DeHH�.�/=Ker z� Š�! Im z�D Ker z�:

Dualizing Theorems 2.7(ii) and 2.8(ii), we have:

Theorem 2.15 Let M be a simply connected closed manifold and K a field of characteristic zero.
Assume further that M is BV-exact. Then there exists a commutative diagram

H S1

� .LM IK/˝2

Œ ; � the string bracket
��

Š

ˆ˝ˆ
// .Ker z�0˚KŒu�/˝2 inc˚0

// H�.LM IK/˝2

the loop product �

��

H�
S1

.LM IK/
Š

ˆ
// .Ker z�0˚KŒu�/ H�.LM IK/

�0
oo

Here z�0 W zH�.LM IK/! zH�C1.LM IK/ denotes the reduced BV operator on the homology , and ˆ is
the dual of the composite of the isomorphisms ‚2 and „ described in Theorem 2.7.

The shifted homology H�.LM / WDH�Cd .LM / for an orientable closed manifold M of dimension d

admits a BV algebra structure with the loop product � and the BV operator �0; see [8]. It turns out that
the homology is endowed with a Gerstenhaber algebra structure whose Lie bracket (loop bracket) f ; g is
given by

fa; bg D .�1/jaj.�0.a � b/� .�0a/ � b� .�1/jaja � .�0b// for a; b 2H�.LM /:

If a and b are in the kernel of �0, then fa; bg D .�1/jaj�0.a � b/. Therefore, by virtue of Theorem 2.15,
we have:

Corollary 2.16 Under the same assumption and notations as in Theorem 2.15, the rational string bracket
of the loop space LM is regarded as a restriction of the loop bracket up to the isomorphism ˆ.

Remark 2.17 (i) Proposition 2.12 implies that Theorems 2.7, 2.8 and 2.15 are applicable to a formal
simply connected closed manifold.

(ii) It follows from [10, Theorem 8.5] that the loop homology of an orientable closed manifold admits a
gravity algebra structure extending the Lie algebra structure on the string homology. Theorem 2.15
may enable us to determine a gravity algebra structure on the string homology of a BV-exact
manifold M ; see Example 5.6.
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Remark 2.18 In general, the cyclic homology (additive K–theory [20]) for a DGA does not appear as
the singular homology of any topological space because the homology is of Z–grading. We stress that,
however, the cyclic homology is used to investigate the string brackets for a manifold and the classifying
space of a Lie group. In fact, the horizontal isomorphism „ in Theorem 2.7 factors through the cyclic
homology of APL.M /].

Remark 2.19 By using the description of the dual loop product Dlp in [28, Theorem 2.3] and Theorem 2.7,
we may relate the dual of the string bracket to the cup product on H�.LM IK/ for a manifold M . In
fact, the isomorphism „ in Theorem 2.7 is a morphism of algebras if the S–action is trivial; see
[29, Theorem 2.5]. We observe that the additive K–theory KC.�/ WD HC��1.�/ for a chain algebra �
is a graded algebra with the Loday–Quillen �–product in [31]; see [29, Proposition 1.1].

We relate the BV-exactness to a more familiar rational homotopy invariant.

Definition 2.20 A simply connected space X admits positive weights if the Sullivan minimal model
.^V; d/ for X has a direct sum decomposition V D

L
i>0 V.i/ satisfying d.V.i//� .^V /.i/. A nonzero

element in V.i/ is said to have weight i , and the weight on V is extended in a multiplicative way to ^V .
For x 2 .^V /.i/, its weight is written by wt.x/D i .

Many spaces admit positive weights.

(1) The Sullivan minimal model M.X / of a formal space X is given by the bigraded model .ƒV; d/ of
its cohomology algebra H�.X IQ/ [24, Section 3], whose lower degree is given by dVp� .ƒV /p�1

for p > 0 and dV0 D 0. Then the space X admits positive weights defined by wt.v/ WD jvjCp for
v 2 Vp.

(2) If a space X has a two stage Sullivan minimal model M.X /D .ƒ.V0˚V1/; d/ with dV0 D 0 and
dV1 �ƒV0, then X admits positive weights defined by wt.v/ WD jvjC i for v 2 Vi . For example, a
homogeneous space is such a space even if it is not formal; see also Section 6 for such a manifold.

(3) It is known that smooth complex algebraic varieties admit positive weights coming from its mixed
Hodge structure [38]. In the paper, the Sullivan minimal models are discussed over C, but admitting
positive weights is reduced to that over Q; see [5, Theorem 2.7].

Theorem 2.21 A simply connected space X admitting positive weights is BV-exact.

A simply connected space does not necessarily admit positive weights. In fact, there exist a four cell
complex [37, Section 4] and elliptic spaces [1, Section 5] not admitting positive weights; see also
Appendix A. It is worth mentioning that every finite group is realized as the group of self-homotopy
equivalences of a rationalized elliptic space which does not admit positive weights; see [13].
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3 Preliminaries

In this section, we recall the Hochschild homology and the cyclic homology together with relationships
between them and the loop homology.

3.1 Hochschild and cyclic homology

In this section we recall the definitions of the Hochschild chain complex and the cyclic bar complex in [22]
and [23]. Let � be a connected commutative DGA over a field K of arbitrary characteristic endowed
with a differential d of degree �1. We call a DGA � nonpositive if �D

L
i�0�i . In what follows, it is

assumed that a DGA is nonpositively graded algebra with the properties above unless otherwise stated.
The degree of a homogeneous element x of a graded algebra is denoted by jxj.

First we recall the Hochschild chain complex together with the Connes’ B–operator. Write x�D�=K
and C.�/D

P1
kD0�˝

x�˝k . We define K–linear maps b;B W C.�/! C.�/ of degrees �1 and 1 by

b.w0; : : : ; wk/D

�

kX
iD0

.�1/�i�1.w0; : : : ; wi�1; dwi ; wiC1; : : : ; wk/

�

k�1X
iD0

.�1/�i .w0; : : : ; wi�1; wiwiC1; wiC2; : : : ; wk/C .�1/.jwi j�1/�k�1.wkw0; : : : ; wk�1/;

B.w0; : : : ; wk/D

kX
iD0

.�1/.�i�1C1/.�k��i�1/.1; wi ; : : : ; wk ; w0; : : : ; wi�1/:

Here deg.w0; : : : ; wk/D jw0jC � � �C jwk jCk for .w0; : : : ; wk/ 2 C.�/, �i D jw0jC � � �C jwi j� i and
juj D �2. Note that the formulae bBCBb D 0 and b2 DB2 D 0 hold. The chain complex .C.�/; b/ is
called the Hochschild chain complex. The Hochschild homology HH�.�/ and the reduced Hochschild
homology eHH�.�/ are the homologies of the complexes .C.�/; b/ and .C.�/=K; b/, respectively.

The cyclic bar complex is the complex .C.�/Œu�1�; bC uB/, where b and B are regarded as KŒu�1�–
linear maps extending b and B on C.�/. Its homology is denoted by HC�.�/ and called the cyclic
homology. The negative cyclic homology HC�� .�/, the reduced negative cyclic homology fHC

�

� .�/ and
the periodic cyclic homology HCper

� .�/ of a DGA � are defined as the homologies of the complexes
.C.�/ŒŒu��; bCuB/, ..C.�/=K/ŒŒu��; bCuB/ and .C.�/ŒŒu;u�1�; bCuB/, respectively. Since a DGA
in our case has negative degree, the power series algebra C.�/ŒŒu�� coincides with the polynomial algebra
C.�/Œu�; similarly, .C.�/=K/ŒŒu��D .C.�/=K/Œu� and C.�/ŒŒu;u�1�D C.�/Œu;u�1�.

We recall Connes’ exact sequences (2.5). The projection of the cyclic complex onto itself gives rise
to the map S 0. More precisely, we have S 0

�P
i�0 xiu

�i
�
D
P

i�0 xiC1u�i . Observe that the cyclic
homology HC�.�/ and the negative cyclic homology HC�� .�/ are KŒu�–modules, where juj D �2. The
multiplication S D�u W HC�nC2.�/! HC�n .�/ is called the S–action on the negative cyclic homology.
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For the connecting homomorphism ˇ in Connes’ exact sequence (2.5), we see that ˇ.Œa0�/D ŒB.a0/�.
Moreover, we have BHH

���P
i�0 xiu

�i
���
D ŒB.x0/� and BHC

���P
i�0 xiu

�i
���
D ŒB.x0/�.

Remark 3.1 Under the same notation as above, the unit and augmentation of � yield a split exact
sequence of KŒu�–modules of the form 0!C.K/Œu�!C.�/Œu�! .C.�/=K/Œu�! 0. Then the splitting
map s0 WfHC

�

� .�/!HC�� .�/ gives rise to an isomorphism sp WfHC
�

� .�/˚KŒu� Š�!HC�� .�/. We observe
that C.K/Œu�DKŒu�D HC�� .K/.

3.2 Sullivan minimal models

Let M.Z/D .^V; d/ be the Sullivan minimal model of a nilpotent CW complex Z of finite type [15].
It is a free Q–commutative DGA with a Q–graded vector space V D

L
i�1 V i , where dim V i <1,

and a decomposable differential in the sense that d.V i/� .^CV � ^CV /iC1 and d ı d D 0. Here ^CV

denotes the ideal of ^V generated by elements of positive degree. Observe that M.Z/ determines the
rational homotopy type of Z; that is, the spatial realization kM.Z/k is homotopy equivalent to Z0, the
rationalization of Z. In particular, we see that

V n
Š Hom.�n.Z/;Q/ and H�.^V; d/ŠH�.ZIQ/;

the second isomorphism being of graded algebras. A space X is said to be formal if there exists a
quasi-isomorphism � WM.X /! .H�.X IQ/; 0/ of DGA’s. We refer the reader to [15] for more details.

In what follows, let K be a field of characteristic zero unless otherwise specifically mentioned. Let M be a
free DGA .^V; d/ with V D

L
i>1 V i over K. We denote by .L; ı; s/ the double complex defined in [7].

Namely, LD^.V ˚V /, s is the unique derivation of degree �1 defined by s.v/D xv, s.xv/D 0 and ı is
the unique derivation of degree C1 which satisfies ı jVD d and ısC sı D 0. Here V is the suspension
of V ; that is, V n D V nC1. By [7, Theorem 2.4(i)], we see that the map ‚ W C.M/! L defined by
‚.a0; a1; : : : ; ap/D .1=p!/a0s.a1/ � � � s.ap/ is a chain map between the double complexes .C.M/; b;B/
and .L; ı; s/. Moreover, it follows from [7, Theorem 2.4(ii)–(iii)] that the map ‚ induces isomorphisms
H.‚/ W HH�.M/ D H�.C.M/; b/ Š H�.L; ı/ and H.‚˝ 1/ W HC�� .M/ D H�.C.M/Œu�; b C uB/ Š

H�.LŒu�; ıCu � s/.

Remark 3.2 As mentioned in Section 3.1, the connecting homomorphism ˇ in Connes’ exact sequence
(2.5) is given by ˇ.Œa0�/D ŒB.a0/�. It follows that ˇ.Œa0�/D Œs.a0/� up to the isomorphism H.‚/; see
again [7, Theorem 2.4(i)].

Let X be a simply connected space of finite type and LX the free loop space of X . Then the Sullivan
minimal model of LX over K, M.LX /, is given by .L; ı/ (see [48]), and the Sullivan minimal model of the
orbit space ES1�S1 LX , M.ES1�S1 LX /, is given by .E;D/ WD .LŒu�; ıCu �s/ (see [47, Theorem A]).
Thus we have isomorphisms HH�.M.X //ŠH��.LX IK/ and HC�� .M.X //ŠH��.ES1�S1 LX IK/

by composing ‚1 and ‚2 with H.‚/ and H.‚˝ 1/, respectively.
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3.3 Loop product and coproduct on Gorenstein spaces

In order to introduce uniformly the loop product due to Chas and Sullivan and the dual loop coproduct
due to Chataur and Menichi, we recall the notion of a Gorenstein DGA introduced by Félix, Halperin and
Thomas in [14].

Let A be an augmented DGA over K. We call A a Gorenstein algebra of dimension d if

dim Ext�A.K;A/D
�

0 if � ¤ d;

1 if � D d:

Here Ext is defined by using semifree resolutions; see [14, Appendix] for details. A path-connected
space M is called a Gorenstein space of dimension d if the polynomial de Rham algebra APL.M / is a
Gorenstein algebra of dimension d .

The result [14, Theorem 3.1] implies that a simply connected Poincaré duality space, for example a
simply connected closed orientable manifold of dimension d , is a Gorenstein space of dimension d . It
follows from [14, Proposition 3.2] that the classifying space BG of a connected compact Lie group G is
also a Gorenstein space of dimension �dim G. The following result due to Félix and Thomas is a key to
defining the loop product and the loop coproduct on the loop homology of a Gorenstein space.

Theorem 3.3 [20, Theorem 12] Let M be a simply connected Gorenstein space of dimension d whose
cohomology with coefficients in Q is of finite type. Then , for any integer k,

ExtkAPL.M n/.APL.M /;APL.M
n//ŠH k�.n�1/d .M IQ/;

where APL.M / is considered an APL.M
n/–module via the diagonal map Diag WM !M n.

For a Gorenstein space M as in Theorem 3.3, let D.Mod–APL.M
n// be the derived category of right

APL.M
n/–modules. In the category, we define Diag! by the map which corresponds to a generator of the

one-dimensional vector space H 0.M IQ/ under the isomorphism Ext.n�1/d

APL.M n/
.APL.M /;APL.M

n//Š

H 0.M /. Moreover, for a homotopy fiber square

E0
q

//

p0

��

E

p

��

M
Diag

// M n

there exists a unique map q! in Ext.n�1/d

APL.E/
.APL.E

0/;APL.E// which fits into the commutative diagram in
D.Mod–APL.M

n//

A�PL.E
0/

q!

// A
�C.n�1/d
PL .E/

A�PL.M /
Diag!

//

.p0/�

OO

A
�C.n�1/d
PL .M n/

p�

OO

The result follows from the same proof as that of [18, Theorems 1 and 2].
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We recall the definition of the loop product on a simply connected Gorenstein space M. Consider the
diagram

(3.4)
LM LM �M LM

Comp
oo

��

q
// LM �LM

.ev0;ev0/
��

M
Diag

// M �M

where the right-hand square is the pull-back of the evaluation map .ev0; ev0/ defined by ev0.
 /D 
 .0/

along the diagonal map Diag, and Comp denotes the concatenation of loops. By definition, the composite

q!
ı .Comp/� WAPL.LM /!APL.LM �M LM /!APL.LM �LM /

induces Dlp, the dual to the loop product on H�.LM IQ/; see [18, Introduction].

We define a product � on H�.LM / WDH�Cd .LM /, which is called the loop product, by

a � b D .�1/d.jajCd/..Dlp/_/.a˝ b/

for a and b 2H�.LM /; see [12, Proposition 4] and [44, Definition 3.2].

In order to recall the loop coproduct for a Gorenstein space M , we consider the commutative diagram

LM �LM LM �M LM
q

oo

��

Comp
// LM

l
��

M
Diag

// M �M

where l WLM !M �M is a map defined by l.
 /D
�

 .0/; 


�
1
2

��
. By definition, the composite

Comp!
ıq� WAPL.LM �LM /!APL.LM �M LM /!APL.LM /

induces the dual to the loop coproduct Dlcop on H�.LM /. We define a product ˇ on the shifted
cohomology H�.LM /DH��d .LM /, called the dual loop coproduct, by

aˇ b D .�1/d.d�jaj/ Dlcop.a˝ b/ for a˝ b 2H�.LM /˝H�.LM /:

Remark 3.5 The product � on H�.LM / is associative and graded commutative if M is a simply
connected Poincaré duality space; see [28, Proposition 2.7]. So is the product ˇ on H�.LM / if M is
the classifying space BG of a connected Lie group G; see [9] and [27, Theorem B.1]. Moreover, so are
both of � and ˇ if M is a Gorenstein space with dim

�L
n �n.M /˝Q

�
<1; see [39, Theorem 1.1] and

[50, Theorem 1.5].

Remark 3.6 By the same fashion as above, a Gorenstein space is defined on an arbitrary field K. Then
Theorem 3.3 remains true after replacing APL.X / with the singular cochain algebra of X with coefficients
in K. That is the original assertion in [18]. Moreover, the constructions of the loop product and the loop
coproduct are applicable to the Gorenstein space M ; that is, those products are defined on the singular
cohomology of LM with coefficient in K; see [18]. However, we only use such an algebra defined on a
field of characteristic zero for our purpose.
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We conclude this section with the definition of a BV algebra. In the next section, the notion plays an
important role in defining the dual string cobracket of the classifying space of a Lie group.

Definition 3.7 A graded algebra .H�;ˇ/ equipped with an operator � on H� of degree �1 is a
BV algebra if � ı�D 0 and the Batalin–Vilkovisky identity holds; that is, for any elements a, b and c

in H�,

�.aˇ bˇ c/D�.aˇ b/ˇ cC .�1/kakaˇ�.bˇ c/C .�1/kbkkakCkbkbˇ�.aˇ c/

��.a/ˇ bˇ c � .�1/kakaˇ�.b/ˇ c � .�1/kakCkbkaˇ bˇ�.c/;

where k˛k stands for the degree of an element ˛ in H�.

4 Proofs of assertions

The strategy of the proof of Proposition 2.3 is exactly that of [8, Theorem 6.2]. In order to make the sign
computation more clear in our setting, we give the proof.

Proof of Proposition 2.3 It is readily seen that the dual string cobracket satisfies skew-symmetry since
the multiplication m is commutative. Indeed, we have

Œy;x�D .�1/kykˇ.�.y/ˇ�.x//D .�1/kxk.kykC1/C1ˇ.�.x/ˇ�.y//D�.�1/kxkkykŒx;y�:

Let � W H�.LBG/ ! H��1.LBG/ be the cohomological BV operator stated in [27, Appendix E].
Observe that � coincides with the composite �ˇ. It follows from [27, Corollary C.3] that the triple
.H�.LBG/;ˇ; �/ is a BV algebra; hence the bracket

fa; bg WD .�1/kak�.aˇ b/� .�1/kak�.a/ˇ b� aˇ�.b/

satisfies the Poisson identity

(4.1) fa; bˇ cg D fa; bgˇ cC .�1/.kak�1/kbkbˇfa; cg:

In the case where aD�.x/, bD�.y/ and cD�.z/, applying ˇ to (4.1) we see that ˇf�.x/; �.y/ˇ�.z/g
coincides with

ˇ.f�.x/; �.y/gˇ�.z/C .�1/.k�.x/k�1/k�.y/k�.y/ˇf�.x/; �.z/g/:

Since �� D 0 and ˇ�D 0, it follows that

f�.x/; �.y/g D .�1/kxk�1�.�.x/ˇ�.y//D��Œx;y�;

ˇf�.x/; �.y/ˇ�.z/g D �.�1/kykˇ.�.x/ˇ�Œy; z�/D�.�1/kxkCkykŒx; Œy; z��:

Therefore, by combining the formulae, we see that

�.�1/kxkCkykŒx; Œy; z��D�ˇ.�Œx;y�ˇ�.z//� .�1/.k�.x/k�1/k�.y/kˇ.�.y/ˇ�Œx; z�/

D�.�1/kxkCkykŒŒx;y�; z�� .�1/.k�.x/k�1/k�.y/kCkykŒy; Œx; z��

D .�1/kxkCkykC.kxkCkyk/kzkŒz; Œx;y��C .�1/kxk.kykCkzk/CkxkCkykŒy; Œz;x��:
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Multiplying the both sides of the above equality by .�1/kxkCkykC1Ckxkkzk, we have

.�1/kxkkzkŒx; Œy; z��D�.�1/kykkzkŒz; Œx;y��� .�1/kxkkykŒy; Œz;x��;

which is indeed the Jacobi identity. This completes the proof.

Proof of Theorem 2.7 We will first prove (i). Recall the homomorphisms BHC WHCn�1.�/!HC�n .�/
and BHH W HCn�1.�/ ! HHn.�/ in Connes’ exact sequence in Section 3, which are defined by
BHC

�P
i�0 xiu

�i
�
D Bx0 and BHH

�P
i�0 xiu

�i
�
D Bx0. The result [29, Theorem 2.5(i)] implies

that B is an isomorphism. By assumption, the S–action is trivial. Then, by [29, Theorems 2.5(ii)–(iii)],
the map I is an isomorphism. By a direct calculation, we see that � ı„DBHH ıI and „ıCokernelD ˇ.
The same consideration as above enables us to obtain the result (ii).

Proof of Theorem 2.8 The assertions (i) and (ii) follow from [26, Theorem A]; see also [10, Theorem 8.3].
In fact, the dual of the homology Gysin exact sequence for the fibration S1!ES1�LM!ES1�S1LM

is identified with the Connes exact sequence under isomorphisms ‚1 and ‚2 mentioned in the sentence
before Theorem 2.8; see [6, Theorem B] and Appendix B for a description of the Gysin sequence in terms
of rational models. With those isomorphisms, we compare the dual to string bracket for a manifold and
the dual string cobracket for BG with the dual string bracket and the dual string cobracket in Theorem 2.7,
respectively.

To this end, we recall that a simply connected closed manifold M of dimension d is a Gorenstein
space of dimension d . Moreover, the classifying space BG of a connected compact Lie group G is a
Gorenstein space of dimension dD�dim G; see [14]. Thus the result [18, Theorem A] and observations in
[18, pages 419–420] yield that the dual loop product �_ for the manifold M and the dual loop coproductˇ
for the classifying space BG are nothing but the dual to the loop product and the dual to the loop coproduct,
respectively. It turns out that the bracket on H�.LM IK/ for the manifold M and the dual string cobracket
on H�.LBGIK/ coincide with the original string brackets (2.1) and (2.2), respectively. Thus, we have
the results.

Proof of Theorem 2.15 Let � be the DGA � D APL.M /]˝Q K for M . We observe that the dual
of the BV operator �0 WH�.LM IK/!H�.LM IK/ on the homology is regarded as the BV operator
� W HH�.�/! HH�.�/ in Theorem 2.7; see Remark 2.10.

Let eHH� denote the reduced Hochschild homology eHH�.�/. Dualizing the reduced BV operator
z�0 W zH�.LM /! zH�.LM /, we have an exact sequence (�):

eHH�
z�0_
��!eHH�

�
�!eHH�=Im z�0_! 0:

Observe that z�0_ D BHH ı I D�. By considering the dual exact sequence of (�), we see that � gives
rise to the isomorphism �_ W Ker z�0 D Ker.�_/ Š�! .eHH�=Im�/_. Theorem 2.8(ii) yields the result.
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In the rest of the section, we prove Theorems 2.11 and 2.21. First we prove the “if” part of Theorem 2.11.

Proof of the “if” part of Theorem 2.11 Let � be a simply connected DGA such that the reduced
S–action on fHC

�

� .�/ is trivial. Consider the reduced version of Connes’ exact sequence

� � � ! fHC
�

nC2.�/
SD0
���! fHC

�

n .�/
�
�!eHHn.�/

ˇ
�! fHC

�

nC1.�/! � � � ;

which splits into a short exact sequence

0! fHC
�

n .�/
�
�!eHHn.�/

ˇ
�! fHC

�

nC1.�/! 0:

By definition, there is a decomposition zB D � ıˇ WeHH�.�/!eHH�.�/ and hence the above short exact
sequence implies Ker zB D Kerˇ D Im� D Im zB.

In order to prove the “only if” part of Theorem 2.11, we recall the notion of the proper exactness of a
sequence of complexes defined in [42].

Definition 4.2 Let M1!M2!M3 be a sequence of complexes and chain maps (of arbitrary degrees).

(i) The sequence is H–exact at M2 if the sequence of cohomology H.M1/!H.M2/!H.M3/ is
exact.

(ii) The sequence is Z–exact at M2 if the sequence of modules of cycles Z.M1/!Z.M2/!Z.M3/

is exact.

(iii) The sequence is proper exact (at M2) if the sequence is exact (as a sequence of underlying graded
modules), H–exact and Z–exact [42].

(iv) The sequence is weakly proper exact at M2 if the sequence is exact and H–exact.

The following lemma is useful to prove the proper exactness from the weak proper exactness of a given
sequence.

Lemma 4.3 Let M0
f0
�!M1

f1
�!M2

f2
�!M3

f3
�!M4 be a sequence of complexes which is proper

exact at M2 and weakly proper exact at M1 and M3. Then it is proper exact also at M3.

Proof For simplicity, we assume that the degrees of the chain maps are zero. We show that Ker Z.f3/�

Im Z.f2/. For any x3 in Ker Z.f3/, there exists an element y2 2M2 such that f2.y2/ D x3 by the
exactness at M3. By the proper exactness at M2, we see that dy2 D f1.y1/ for some y1 2 Z.M1/.
Since H.f1/Œy1� D Œdy2� D 0, it follows from the H–exactness at M1 that y1 � f0y0 D dz for some
Œy0� 2H.M0/ and z 2M1. It is readily seen that f2.y2� f1z/D f2y2 D x3 and d.y2� f1z/D 0. We
have the result.

It is proved that the weak proper exactness for a long sequence yields the proper exactness.
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Proposition 4.4 A weakly proper exact sequence 0!M0!M1!M2! � � � starting from 0 is always
proper exact.

Proof Since the sequence 0! 0! 0!M0!M1 is weakly proper exact at M0 and proper exact
at 0, it follows from Lemma 4.3 that the sequence is proper exact at M0. Similarly, the sequence
0! 0!M0!M1!M2 gives proper exactness at M1. By repeating this argument, we can prove the
proper exactness at Mn for all n.

Remark 4.5 By the same argument as in the proof above, we can also prove the dual of Proposition 4.4,
which asserts that a weakly proper exact sequence ending with 0 is always proper exact.

Next we give a key lemma for proving Theorem 2.11.

Lemma 4.6 Let M0!M1
f1
�!M2

f2
�!M3 be a proper exact sequence. Then one has

Im d \Kerf2 D d.Kerf2/:

Proof The Z–exactness at M2 and the H–exactness at M2 give the result. The details are left to the
reader.

Note that the consequence in Lemma 4.6 is equivalent to the exactness of the sequence of modules of
coboundaries.

Now we begin the proof of the “only if” part of Theorem 2.11. Let .^V; d/ be a Sullivan model of the
DGA � with V D V �2. Define .zL; ı/ D .^C.V ˚ V /; ı/ and .zE;D/ D .^u˝ zL;D/; see Section 3.
Then .zL; ı/ and .zE;D/ are chain models for the reduced Hochschild homology and the reduced negative
cyclic homology of �, respectively. Let zs W zL! zL be the derivation defined by zs.v/D xv and zs.xv/D 0

for v 2 V . Now we have a direct sum decomposition .zL; ı/ D
L

n.
zL.n/; ı/ of complexes, where

zL.n/ D zL \ .^V ˝^nV /. Then zs decomposes into a sequence 0! zL.0/ ! zL.1/ ! zL.2/ ! � � � of
complexes.

Lemma 4.7 The sequence 0! zL.0/! zL.1/! zL.2/! � � � is exact ; that is , Ker zs D Im zs in zL.

Proof Take a basis fv�g� of V . Then we have .L; s/ Š
N
�.^.v�; xv�/; s/ and hence H.L; s/ Š Q,

which is equivalent to H.zL; zs/Š 0.

Remark 4.8 The operator zB WeHH�.�/!eHH�.�/ is nothing but the homomorphism H.zs/ up to the
isomorphism H.‚/. This follows from the definition of the map B in Section 3 and Remark 3.2.

Now we recall a result of Vigué-Poirrier which gives a description of the cyclic homology in terms of zL.
Here we give a proof for the convenience of the reader.
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Lemma 4.9 [45, Lemma 2] The canonical inclusion ˆ W .Ker zs; d/! .zE;D/ is a quasi-isomorphism.

Proof Define bounded double complexes fKp;qg and fzEp;qg by Kp;0 D .Ker zs/p and Kp;q D 0 for
q ¤ 0, and zEp;q D^qu˝ zLp�q . Then their total chain complexes are .Ker zs; ı/ and .zE;D/, respectively,
and the inclusion ˆ gives rise to a morphism of double complexes. Now consider the filtration with
respect to p. By Lemma 4.7, we have E

p;0
1

K DE
p;0
1
zED .Ker zs/p and E

p;q
1

K DE
p;q
1
zED 0 for q ¤ 0.

Hence E1ˆ is an isomorphism and so is Hˆ by the convergence of the spectral sequences.

Now we describe the S–action S Du�.�/ WH.zE/!H.zE/ in terms of Ker zs. By Lemma 4.7, we have an
exact sequence 0!Ker zs! zL zs

�!Ker zs!0, and its connecting homomorphism c WH.Ker zs/!H.Ker zs/
is given by c.Œzs˛�/D Œı˛�. Note that any element in H.Ker zs/ can be written as Œzs˛� for some ˛ 2 zL with
ızs˛ D 0, since Ker zs D Im zs by Lemma 4.7. By a straightforward computation, we have:

Lemma 4.10 The map c coincides with S through Hˆ up to sign , ie S ıHˆD�Hˆ ı c.

We are ready to prove the “only if” part of Theorem 2.11.

Proof of the “only if” part of Theorem 2.11 By Lemmas 4.9 and 4.10, in order to prove the assertion it
suffices to show that the connecting homomorphism c is trivial. To this end, we show that Œı˛�D 0 in
H.Ker zs/ for any ˛ 2 zL with ızs˛ D 0; see the argument before Lemma 4.10. Remark 4.8 yields that the
BV-exactness of the DGA � is equivalent to the condition that the sequence (�),

0! zL.0/! zL.1/! zL.2/! � � � ;

is weakly proper exact. Thus, by Proposition 4.4, we see that the sequence (�) is proper exact. Moreover,
Lemma 4.6 implies that Ker zs\ Im ı D ı.Ker zs/. Therefore, it follows that ı˛ 2 Ker zs\ Im ı D ı.Ker zs/
for any ˛ 2 zL with ızs˛ D 0. We have the result.

We conclude this section proving Theorem 2.21. The proof is given by slightly modifying the proof of
[46, Proposition 5].

Proof of Theorem 2.21 Recall that .zL; ı/D .^C.V ˚V /; ı/ is a model of the Hochschild complex. For a
derivation � W ^V !^V of degree 0 with �d D d� and �.V /�^CV , define derivations L� ; e� W zL! zL

by L� .v/ D �v, L� .xv/ D zs�v, e� .v/ D 0 and e� .xv/ D �v. Then, as derivations on zL, we have
ŒL� ; zs�D ŒL� ; ı�D Œe� ; ı�D 0 and Œe� ; zs�DL� . Hence L� induces H.L� / WH.Ker zs/!H.Ker zs/ and
it follows that H.L� / ı c D 0 WH.Ker zs/!H.Ker zs/ by a straightforward computation from the above
equations.

Now we let � be the derivation defined by �.x/D wt.x/x for weight-homogeneous elements x 2 ^V .
Then for any weight-homogeneous element ˛ 2 H.Ker zs/, we have 0 D H.L� / ı c.˛/ D wt.˛/c.˛/,
where the weight on zL is defined as an extension of that on ^V with wt.xv/D wt.v/ for v 2 V . By the
positivity of the weight, we have c.˛/D 0 and hence c D 0. Therefore, Lemmas 4.9 and 4.10 imply the
triviality of the reduced S–action, which is equivalent to the BV-exactness by Theorem 2.11.

Algebraic & Geometric Topology, Volume 24 (2024)



A reduction of the string bracket to the loop product 2639

5 The string brackets for formal spaces

In this section, we consider string brackets for formal spaces as an application of Theorem 2.7.

5.1 Dual string cobrackets for classifying spaces

We begin by considering the string bracket for the classifying space of a connected Lie group of rank one.

Example 5.1 The result [27, Theorem 4.1] enables us to compute the dual loop coproduct on the loop
cohomology H�.LBGIQ/ for every compact connected Lie group G. Thus, in particular, by Theorem 2.7,
we determine explicitly the Lie algebra structure of H�.LBSU.2// WDH�C3C1

S1 .LBSU.2/IQ/ endowed
with the dual string cobracket. In fact, we see that

H� WDH�.LBSU.2//Š .eHH�.�/=Im�/���3�2˚ .QŒu�/���3�1

ŠQfx;x2; : : : ;xn; : : : g˚Qf1;u;u2; : : : ;uk ; : : : g

as vector spaces, where � denotes the Sullivan minimal model for SU.2/. Observe that jxnj D 4n� 5

and j1j D �4 for xn and 1 2H�.LBSU.2//. The formula in [27, Theorem 4.1] for the loop product ˇ
yields that �.xn/ˇ1D nxn�1, �.xn/ˇ�.xm/D˙nm�.x/xnCm�2 and �.1/D 0 in H�.LBSU.2//.
Therefore, we see that Œ1; 1� D 0, Œxn;xm� D 0 for m; n � 1, Œul ; ˛� D 0 for every ˛ 2 H�, l � 1 and
Œxn; 1�D�nxn�1 for n� 1.

Next we consider the dual string cobracket for the classifying space of G with arbitrary rank.

Proposition 5.2 For each n, the n–fold dual string cobracket ŒH; ŒH; : : : ; ŒH;H� � � � �� is nontrivial on
H� WDH�Cdim GC1

S1 .LBGIK/.

Proof For the case rank G D 1, Example 5.1 implies the result. Assume that N WD rank G � 2. Recall
the result [27, Theorem 4.3], which asserts that the loop cohomology H�.LBG/ WDH�Cdim G.LBG/ is
isomorphic to the tensor product of algebra

H�.BG/˝H��.G/DKŒy1; : : : ;yN �˝^.x
_
1 ; : : : ;x

_
N /

equipped with the BV operator � given by �.x_i x_j /D�.yiyj /D�.x
_
i /D�.yi/D 0 and

�.yix
_
j /D

�
0 if i ¤ j ;

1 if i D j:

Thus, an induction argument with the BV identity enables us to deduce that

�.y
k1

1
� � �y

kN

N
x_i1
� � �x_is

/D
X

1�j�s

.�1/dj kij y
k1

1
� � �y

kij
�1

ij
� � �y

kN

N
x_i1
� � �cx_ij � � �x_is

;

whereb� denotes omission and dj D jx
_
i1
jC � � �C jx_ij�1

j. Therefore, it follows that

�.y2x_2 x_1 /ˇ�.y
l
1x_1 x_2 /D x_1 ˇ lyl�1

1 x_2 D lyl�1
1 x_1 x_2 :
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Moreover, we see that�.yl�1
1

x_
1

x_
2
/¤ 0 for l � 2. Then the element yl�1x_

1
x_

2
is not in Im�. Observe

that �2 D 0. We consider an n–fold bracket of the form

˛ WD Œy2x_2 x_1 ; Œy2x_2 x_1 ; : : : ; Œy2x_2 x_1 ;y
l
1x_1 x_2 � � � � �� for l > n:

It turns out that
˛ D l.l � 1/ � � � .l � .n� 1//yl�n

1 x_1 x_2 ¤ 0

in the codomain .eHH�.�/=Im z�/˚KŒu� of the dual string cobracket. Theorem 2.7(i) allows us to obtain
the result.

5.2 String brackets for manifolds

As an application of Theorem 2.8 (or Theorem 2.15), we give another proof of the first half of the result
[2, Theorem 3.4] due to Basu and [19, Example 5.2] due to Félix, Thomas and Vigué-Poirrier.

Proposition 5.3 For a simply connected closed manifold M such that H�.M IQ/ is generated by a
single element , the string bracket is trivial.

Proof The result [17, Theorem 1] implies that the loop homology of M is isomorphic to the Hochschild
cohomology of APL.M / endowed with the BV algebra structure due to Menichi [33]. We observe that M is
formal. Therefore, Theorem 2.15 and explicit computations in [34, Theorem 16] and [53, Main Theorem]
yield the result. In fact, for elements ˛1 and ˛2 in Im z�DKer z�, we have�.˛1�˛2/D0; see Theorem 2.11
and Remark 2.10. In particular, we observe the case where H�.M /ŠH�.Sn/ with n odd. Then the
generator a�n of the loop homology H�.LM / WDH�Cn.LM / with odd degree is in H0.LM /. Then
the generator a�n is not in Ker z�; see Theorem 2.15.

The result [35, Theorem 39] due to Menichi gives an explicit form of the BV operator on the rational
loop homology of a connected compact Lie group. We can also apply the result in our computation. In
particular, the behavior of the string bracket as seen in Proposition 5.3 changes drastically in case of a
Lie group with rank greater than one.

Proposition 5.4 (cf [19, Example 5.2]) Let G be a simply connected Lie group with rank greater than
one. The Lie algebra H� DH S1

��dim GC2
.LGIQ/ endowed with the string bracket is nonnilpotent. More

precisely, for any n, the n–fold bracket ŒH; ŒH; : : : ; ŒH;H� � � � �� is nontrivial.

Proof We first observe that a simply connected Lie group is formal. Indecomposable elements x1; : : : ;xN

in H�.G/ are in the reduced homology zH�.LG/ because N WD rank G > 1. Thus, it follows from
[35, Theorem 39] and [25, Theorem 1] that xi and .s�1xj /

k are in Ker z�. Moreover, there exists a
nontrivial n–fold string bracket. For example, for k > n, we see that on H�,

Œxj ; Œxj ; : : : ; Œxj ; .s
�1xj /

k � � � � ��D˙k.k � 1/ � � � .k � .n� 1//.s�1xj /
k�n
¤ 0:

This follows from the explicit formula of the BV operator in [35, Theorem 39] and Theorem 2.15. Observe
that xj is in Ker z� if rank G > 1. We have the result.
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5.3 Gravity algebras

The gravity algebra with higher Lie brackets was introduced by Getzler [21]. We consider a gravity
algebra structure which appears on the string homology of a manifold and the classifying space of a Lie
group; see, for example, [10, Definition 8.1] for the definition of the gravity algebra.

Example 5.5 The result [11, Theorem 1.1] due to Chen, Eshmatov and Liu shows that the negative
cyclic homology of a DGA � admits a gravity algebra structure if the Hochschild homology of � has a
BV algebra structure. The higher Lie bracket Œ ; : : : ; � W .HC�� .�//

˝n! HC�� .�/ is defined for n� 2 by

Œx1; : : : ;xn�D .�1/.n�1/jx1jC.n�2/jx2jC���Cjxn�1jˇ.�.x1/ˇ�.x2/ˇ � � �ˇ�.xn//;

where ˇ denotes the dual loop coproduct on the Hochschild homology.

Let G be a connected Lie group. We see that all higher Lie brackets are nontrivial for the classifying
space BG. For the case where rank G � 2, it follows from Theorem 2.7 that

Œyix
_
i ; : : : ;yix

_
i ;y2x_2 x_1 ;y

l
1x_1 x_2 �D˙1ˇ � � �ˇ 1ˇ�.y2x_2 x_1 /ˇ�.y

l
1x_1 x_2 /D lyl�1

1 x_1 x_2 ¤ 0

with the same notation as in the proof of Proposition 5.2. Suppose that rank G D 1. Then, with the same
notation as in Example 5.1, we see that Œx2; : : : ;x2�D˙Coker.�.x2/ˇ � � �ˇ�.x2/ˇ�.x2/ˇ 1/D

˙Coker.�.x2/ˇ � � �ˇ�.x2/ˇ 2x/D˙2n�1xn�1 ¤ 0 for the higher Lie bracket of rank n.

Example 5.6 In [10], Chen has proved that the string homology of an orientable closed manifolds admits
a gravity algebra structure extending the Lie algebra structure; see [10, Theorem 8.5] for more details.
Let G be a simply connected Lie group. We see that all higher Lie brackets in the string homology of G

are nontrivial if and only if rank G > 1. In fact, in case of rank G > 1, by applying Theorem 2.15 to
the higher Lie bracket of G, we have Œxj ; s

�1xj ; : : : ; s
�1xj �D˙k.s�1xj /

k�1 in H S1

� .LGIQ/ with the
same notation as in Proposition 5.4. If rank G D 1, the only generator x1 of odd degree is not in Ker z�
and then all higher Lie brackets are trivial; see the computation in the proof of Proposition 5.4.

6 Computation of the string bracket for a nonformal space

In this section, we consider the string bracket of a nonformal and BV-exact manifold. We begin recalling
a nonformal manifold in [19, 6.4 Example].

Let U TS6! S6 be the unit tangent bundle over S6. Then, we have a simply connected 11–dimensional
manifold M which fits in the pullback diagram

M

��

// U TS6

p
��

S3 �S3 f
// S6
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where f W S3 �S3! S6 is a smooth map homotopic to the map defined by collapsing the 3–skeleton
into a point. Since the Euler class of the unit tangent bundle mentioned above is nontrivial, it follows
that the minimal model of M has the form M D .^.x;y; z/; d/, where d.x/ D 0 D d.y/, d.z/ D xy,
jxj D jyj D 3 and jzj D 5. It is readily seen that M is nonformal since the Massey product hx;x;yi does
not vanish; see [24, page 277]. Moreover, we have:

Proposition 6.1 The 11–dimensional manifold M is BV-exact.

Proposition 6.1 is proved by computing the Hochschild homology explicitly. To this end, we recall the
minimal model M for M mentioned above. The Hochschild homology of M is the homology of the
Sullivan algebra LD .^.x;y; z; xx; xy;xz/; d/, where d.xx/D 0D d.xy/, d.xz/D�xxyCx xy; see Section 3.
To compute H.L/, we define its subcomplex L0 by ^.x;y; xx; xy;xz/. By a simple calculation, we have
the following lemma.

Lemma 6.2 The set fxxp xyq;xxxp xyq;y xyq;xyxzr j p; q; r � 0g forms a basis of H.L0/.

Next we compute H.L/ by comparing with H.L0/ and L=L0.

Proposition 6.3 The following set forms a basis of the Hochschild homology H.L/:

fxxp
xyq;xxxp

xyq;y xyq;xyxzrC1;xzxxp
xyq;yz xyq;xyzxzr ; zxxpC1

xyq
�xxxp

xyq
xz; z xyqC1

�y xyq
xzg;

where p, q and r run over all nonnegative integers.

Proof Since there is an isomorphism of complexes .L=L0; d/Š .Qfzg; 0/˝.L0; d/, Lemma 6.2 implies
that the set fzxxp xyq;xzxxp xyq;yz xyq;xyzxzr j p; q; r � 0g forms a basis of H.L=L0/. Consider the long
exact sequence associated with the short exact sequence 0! L0! L! L=L0! 0. The connecting
homomorphism H.L=L0/!H.L/ sends z to xy and the other basis elements to zero. Hence each basis
element of H.L0/ or H.L=L0/ corresponds to a basis element of H.L/, except for z and xy. By lifting
basis elements of H.L=L0/ to cocycles in L, we get the above basis.

Proof of Proposition 6.1 Let zL be the reduced complex ^C.x;y; z; xx; xy;xz/. Recall that the reduced
operation zB in Definition 2.9 is modeled by the map Hzs W H.zL/! H.zL/ induced by the derivation
zs W zL! zL, v 7! xv for v D x;y; z; see Remark 3.2.

By using the basis given in Proposition 6.3, we see that

Hzs.xxxp
xyq/D xxpC1

xyq; Hzs.y xyq/D xyqC1; Hzs.xzxxp
xyq/D zxxpC1

xyq
�xxxp

xyq
xz;

Hzs.yz xyq/D z xyqC1
�y xyq

xz; Hzs.xyzxzr /D
rC2

rC1
xyxzrC1:

This proves Ker Hzs D Im Hzs.

Remark 6.4 A program [51] on a personal computer for computing the homology of a DGA helps us in
proving Proposition 6.3. In fact, the computer calculation shows the basis in the proposition, while our
proof is by hand.
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Remark 6.5 In the minimal model M, we define weights of x, y and z by 1, 1 and 2, respectively. Then,
it is readily seen that the model M for the manifold M admits positive weights. Therefore, Theorem 2.21
enables us to conclude that M is BV-exact. However, the explicit generators of the Hochschild homology
of M represented in Proposition 6.3 are used in the computation below of the string bracket of M . We
adhere to the proof of Proposition 6.1.

The negative cyclic homology of M is isomorphic to the homology of ED .^.u/˝^.x;y; z; xx; xy;xz/;D/;
see Section 3. Here, the differential D is given by

D.x/D uxx; D.y/D uxy; D.z/D xyCuxz; D.xx/DD.xy/D 0; D.xz/D�xxyCx xy:

Then the morphism ˇ in Theorem 2.7 is induced by the derivation s W L! E.

It follows from the BV-exactness of the manifold M that HC�� .M/ decomposes into a direct sum
QŒu�˚ Im ž, where ž is a morphism induced by the map zs W zL! zE on the reduced complexes. Hence,
by applying ž to the basis except for 1 in Proposition 6.3, we see that Im ž is spanned by the homology
classes

�p;q WD
1

p!q!
xxp
xyq; �p;qWD

8̂<̂
:

1

p!q!
.zxxp xyq �xxxp�1 xyqxz/ if p ¤ 0;

1

q!
.z xyq �y xyq�1xz/ if p D 0;

�r WD
rC1

r
xyxzr ;

for p, q � 0, r � 1 with .p; q/¤ .0; 0/. We also put �0;0 D 1 for convenience. Denote by Dsb the dual
string bracket Œ ; �_ over Q stated in Theorem 2.8.

Theorem 6.6 For the dual string bracket Dsb over Q of the 11–dimensional manifold M , one has

Dsb.�p;q/D
pC1X
iD0

qC1X
jD0

fi.qC 1/� j .pC 1/g.�i;j ˝ �pC1�i;qC1�j � �pC1�i;qC1�j ˝ �i;j /;

Dsb.�p;q/D �2˝ �p;q � �p;q˝ �2�

pC1X
iD0

qC1X
jD0

fi.qC 1/� j .pC 1/g�i;j ˝ �pC1�i;qC1�j ;

Dsb.�r /D 0:

Proof We first compute the dual loop product Dlp by the rational model described in [19]. Let MD^V

be the minimal model for M , P D .^V /˝2 ˝^V the Sullivan model for the free path space stated
in [15, Section 15] and "P W P! ^V the .^V /˝2–semifree resolution of ^V which is given by the
multiplication of ^V and the canonical augmentation of ^V .

By virtue of [19, Lemma 1], we see that a DGA morphism P!P˝^V P defined by v1˝v2 7!v1˝1˝v2,
xx 7! 1˝ xx C xx ˝ 1, xy 7! 1˝ xy C xy ˝ 1, xz 7! 1˝ xz C xz ˝ 1 � 1

2
xx ˝ xy C 1

2
xy ˝ xx for vi 2 V is

a Sullivan representative for the composition of free paths. This induces a Sullivan representative
MComp W L! L˝^V L for Comp in (3.4) which has formulae

MComp.v/D v; MComp.xx/D 1˝ xxC xx˝ 1;

MComp.xy/D 1˝ xyC xy˝ 1; MComp.xz/D 1˝xzCxz˝ 1� 1
2
xx˝ xyC 1

2
xy˝ xx;
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where v 2 V . Recall the morphism "P˝1 WP˝.^V /˝2 L˝2!^V ˝.^V /˝2 L˝2 appeared in the model
for Dlp. A section � of the morphism "P˝ 1 is given by

�.v/D v˝ 1; �.xx˝ 1/D 1˝ .xx˝ 1/; �.1˝ xx/D 1˝ .1˝ xx/; �.xy˝ 1/D 1˝ .xy˝ 1/;

�.1˝ xy/D 1˝ .1˝ xy/; �.xz˝1/D 1˝ .xz˝1/; �.1˝xz/D 1˝ .1˝xz/�xx˝ .1˝ xy/C xy˝ .1˝xx/:

Define a .^V /˝2–morphism Diag!
W P! .^V /˝2 of degree 11 by

Diag!.1/D .�x˝ 1C 1˝x/.�y˝ 1C 1˝y/.�z˝ 1C 1˝ z/; Diag!
j
^CV � 0;

which gives a representative of a nonzero element in Ext11
.^V /˝2.^V;^V /; see [49, Section 5] for the

detail about a construction of the shriek map Diag!. Then, the result [19, Theorem A] yields that the
composite

L
MComp
���! L˝^V LŠ^V ˝.^V /˝2 L˝2 �

�! P˝.^V /˝2 L˝2 Diag!˝1
�����! L˝2

induces the dual loop product Dlp on homology. This rational model and a straightforward computation
enable us to compute Dlp explicitly. In fact, we have

Dlp.xxp
xyq/Dxyz˝xxp

xyq
Cxxp

xyq
˝xyz

C

pX
iD0

qX
jD0

�p

i

��q

j

��
�xxxi

xyj
˝yzxxp�i

xyq�j
Cyxxi

xyj
˝xzxxp�i

xyq�j

�xzxxi
xyj
˝yxxp�i

xyq�j
Cyzxxi

xyj
˝xxxp�i

xyq�j
�
;

Dlp.zxxp
xyq
�xxxp�1

xyq
xz/Dxyz˝.zxxp

xyq
�xxxp�1

xyq
xz/C.zxxp

xyq
�xxxp�1

xyq
xz/˝xyz

Cxyzxz˝xxxp�1
xyq
Cxxxp�1

xyq
˝xyzxzCxyxz˝xzxxp�1

xyq
�xzxxp�1

xyq
˝xyxz

�

pX
iD0

qX
jD0

�p

i

��q

j

�
.xzxxi

xyj
˝yzxxp�i

xyq�j
�yzxxi

xyj
˝xzxxp�i

xyq�j /;

Dlp.z xyq
�y xyq�1

xz/D�xyz˝.z xyq
�y xyq�1

xz/�.z xyq
�y xyq�1

xz/˝xyzCxyzxz˝y xyq�1
Cy xyq�1

˝xyzxz

Cxyxz˝yz xyq�1
�yz xyq�1

˝xyxz�

qX
jD0

�q

j

�
.xz xyj

˝yz xyq�j
�yz xyj

˝xz xyq�j /;

Dlp.xyxzr /D

rX
iD0

�r

i

�
.�xyzxzi

˝xyxzr�i
Cxyxzi

˝xyzxzr�i/:

It follows from Theorem 2.8(ii) that

Dsb.�p;q/D
1

p!q!
.ˇ˝ˇ/ �_ .xxp

xyq/; Dsb.�p;q/D
1

p!q!
.ˇ˝ˇ/ �_ .zxxp

xyq
�xxxp�1

xyq
xz/;

Dsb.�0;q/D
1

q!
.ˇ˝ˇ/ �_ .z xyq

�y xyq�1
xz/; Dsb.�r /D

rC1

r
.ˇ˝ˇ/ �_ .xyxzr /:

Therefore, by these formulae and the computations of Dlp above, we have the result.
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7 The cobar-type EMSS and r–BV-exactness

Let X be a simply connected space. We define a cobracket on the cobar-type Eilenberg–Moore spectral
sequence converging to the rational equivariant cohomology of the free loop space LX , which is compatible
with the dual to the string bracket in the sense of Chas and Sullivan [8] if X is a simply connected closed
manifold.

We begin by recalling the spectral sequence associated with a filtered complex .A;F; d/. Consider the
submodules Z

p;q
r and B

p;q
r defined by

(7.1) Zp;q
r WD FpApCq

\ d�1.Fp�r ApCqC1/ and Bp;q
r WD FpApCq

\ d.Fp�r ApCq�1/:

With the submodules of A, we have a spectral sequence fEr ; dr g whose Er –term is defined by E
p;q
r WD

Z
p;q
r =.Z

pC1;q�1
r�1

CB
p;q
r�1

/; see [32, Proof of Theorem 2.6].

We use the same notation as that in Section 2. In particular, for a cochain algebra A, we define a chain
algebra A] by .A]/�i DAi for i . The converse is also considered; that is, for a chain algebra �, we have
a cochain algebra �] defined by ..�/]/i D��i for i ; see Remark 2.6.

Let .^V; d/ be a Sullivan model of a simply connected commutative cochain algebra A. Define .L; ı/D
.^.V ˚V /; ı/ and .E;D/D .^u˝L;D/; see Section 3. Then complexes .L; ı/ and .E;D/ compute
the Hochschild homology and the negative cyclic homology of A], respectively. Thus we have the cobar-
type Eilenberg–Moore spectral sequence (the EMSS for short) fE�;�r ; dr g converging to HC�� .A/ WD
.HC�� .A]//

] as an algebra with

E
�;�
2
Š Cotor�;�

^.t/
.HH�.A/;Q/

as a bigraded algebra, where jt j D 1 and the ^.t/–comodule structure on the Hochschild homology
HH�.A/ WD .HH�.A]//] is induced by the derivation s in the cyclic complex .E;D/. In fact, the
^.t/–comodule structure r W L! L˝^.t/ on .L; ı/ is given by r.˛/ D 
 .˛/˝ t C ˛ ˝ 1, where

 .˛/D .�1/j˛js.˛/. A map assigning the element aun in the cyclic complex E to an element aŒt j � � � jt �

in the nth cobar complex gives rise to an isomorphism of complexes. As a consequence, we have
isomorphisms

Cotor�
^.t/.L;Q/ŠH.E;D/Š HC�� .A]/

]:

Remark 7.2 The isomorphisms above allow us to work in the category of ^.t/–comodule in order to
investigate the negative cyclic homology of a DGA.

We observe that, by construction, there is an isomorphism E
0;�
1
Š HH�.A/. In particular, when we

choose the polynomial de Rham algebra APL.M / for a simply connected space M as the DGA A, the
spectral sequence converges to the S1–equivariant cohomology HC�� .A/ŠH�

S1.LM IQ/, with

E
�;�
2
Š Cotor�;�

H �.S1IQ/
.H�.LM IQ/;Q/:
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One has a direct sum decomposition .zL; ı/D
L

n.
zL.n/; ı/ of complexes, where zL.n/D zL\.^V ˝^nV /

with LD zL˚Q. Then the reduced derivation zs decomposes .zL; ı/ into a sequence 0! zL.0/! zL.1/!
zL.2/! � � � of complexes. Thus it follows that the EMSS fE�;�r ; dr g is decomposed as

fE�;�r ; dr g D

M
N2Z

f.N /E
�;�
r ; dr g˚ fQŒu�; 0g;

where bideg u D .1; 1/, each spectral sequence f.N /E
�;�
r ; dr g for N � 0 is constructed by the double

complex

.N /K W 0! zL
.N /
! zL.NC1/

˝Qfug ! zL.NC2/
˝Qfu2

g ! � � �

and for N < 0, the spectral sequence f.N /E
�;�
r ; dr g is obtained by the double complex

.N /K W 0! 0! � � � ! 0! zL.0/˝Qfu�N
g ! zL.1/˝Qfu�NC1

g ! � � � :

Here, the double complex .N /K is regarded as a filtered complex associated with the horizontal degrees.
Thus, in the spectral sequence f.N /E

�;�
r ; dr g for N < 0, we have .N /E

i;�
r D 0 for i < �N . We observe

that each spectral sequence f.N /E
�;�
r ; dr g converges to the target as an algebra.

Remark 7.3 The direct sum of the targets of the spectral sequences f.N /E
�;�
r ; dr g is nothing but the

Hodge decomposition of HC�� .A/; that is, we have fHC
�

� .A/D
L

N�0 H.K.N //; see [6, Section 2]. If A

is the polynomial de Rham algebra APL.X / for a simply connected space X , then the direct summands in
the Hodge decomposition are identified with the eigenspaces of the Adams operation on zH�

S1.LX IQ/;
see [6, Theorem 3.2] for the identification. We refer the reader to [30, 4.5.4] for the operation. The result
[3, Theorem 1.1] shows that the string bracket respects the Hodge decomposition in some sense. Thus,
we are also interested in computations of string brackets, as described in Section 1.1, together with the
consideration of the Hodge decomposition.

Proposition 7.4 If the spectral sequence f.0/Er ; dr g collapses at Er –term , then so does f.N /Er ; dr g for
each integer N , and then Tot Er ŠH�

S1.LX / as a vector space.

Thus, it is readily seen that the collapsing of the EMSS is governed by that of the zeroth spectral sequence.

Corollary 7.5 The spectral sequence f.0/Er ; dr g collapses at the Er –term if and only if so does
fE
�;�
r ; dr g.

Lemma 7.6 For l � r � 1 and N 2 Z, we have .0/E
lCN;�CN
r Š .N /E

l;�
r .

Proof For N < 0, the multiplication u�N�W .0/E
�;�
r ! .N /E

��N;��N
r gives an isomorphism. Assume

that N � 0. By definition, we see that

.N /E
l;�
r D .N /Z

l;�
r =..N /Z

lC1;��1
r�1

C .N /B
l;�
r�1

/;

.0/E
lCN;�CN
r D .0/Z

lCN;�CN
r =..0/Z

lCNC1;�CN�1
r�1

C .0/B
lCN;�CN
r�1

/;

Algebraic & Geometric Topology, Volume 24 (2024)



A reduction of the string bracket to the loop product 2647

where .N /Z and .N /B denote the subcomplexes of .N /K defined in (7.1) for the filtered complex AD .N /K.
Moreover, we have .N /Z

l;�
r Š .0/Z

lCN;�CN
r and .N /Z

lC1;��1
r�1

Š .0/Z
lCNC1;�CN�1
r�1

. Since l � r � 1,
it follows that .N /Bl;�

r�1
Š .0/B

lCN;�CN
r�1

. Then the multiplication uN�W .N /El;�
r Š .0/E

lCN;�CN
r is an

isomorphism.

Proof of Proposition 7.4 Lemma 4.7 yields that the spectral sequence f.0/E
�;�
r ; dr g converges to 0, the

trivial module. The assumption and Lemma 7.6 imply that .N /E
l;�
r D 0 for l � r � 1 and N .

Theorem 7.7 Let M be a simply connected closed manifold , and A the polynomial de Rham algebra
APL.M / of M . Then the map Œ ; �_r WE

p;�
r ! .E

�;�
r ˝E

�;�
r /p;�Cd�2 defined by Œ ; �_r � 0 for p > 0 and

for p D 0, the composite

E0;�
r D Ker dr�1

i
�! HH�.A/

�
_

�! HH�.A/˝2 �˝�
����!E0;�

r ˝E0;�
r

gives rise to a cobracket on the spectral sequence , where i denotes the inclusion. That is , it is compatible
with the differentials and H.Œ ; �_r /D Œ ; �

_
rC1

. Moreover , the cobracket Œ ; �_1 is compatible with the dual
to the string bracket on H S1

� .LM / at the E1–term in the sense that the composite

H�
S1.LM /

�
�!E0;�

1

i
�! HH�.A/

�
_

�! HH�.A/˝2 �˝�
����!E0;�

1 ˝E0;�
1

coincides with the dual to the string bracket modulo F1H�
S1.LM /. Here � is the projection and

fF lH�
S1.LM /gl�0 is the decreasing filtration associated with the spectral sequence.

Proof By dimensional reasons, it is readily seen that .dr ˝ 1˙ 1˝ dr / ı Œ ; �
_
r D 0 D Œ ; �_r ı dr for

p > 0. Moreover, we see that every element in the image of � in E
0;�
r is a permanent cocycle. In fact, for

w 2 Im�, we have DwD .ıCus/wD 0. Then, it follows that .dr ˝1˙1˝dr /ı Œ ; �
_
r D 0D Œ ; �_r ıdr

in E
0;�
r . By the definition of the cobrackets, we have H.Œ ; �_r /D Œ ; �

_
rC1

. In fact, the left-hand side is the
restriction of Œ ; �_r in the nontrivial case.

Consider the compatibility of the cobracket at the E1–term. We have a commutative diagram

HC�� .A/
�

//

Š

��

HH�.A/
�
_
// HH�.A/˝2 ˇ˝ˇ

// HC�� .A/
˝2

pr
��

HC�� .A/=F
1˚

Š

��

F1=F2˚ � � �˚F� .HC�� .A/=F
1/˝2

Š

��L
pCqD�E

p;q
1

pr
// E

0;�
1 D Ker d�C1

i
// HH�.A/

�
_
// HH�.A/˝2 �˝�

//

ˇ˝ˇ

>>

E
0;�
1 ˝E

0;�
1

where fF lgl�0 denotes the decreasing filtration of HC�� .A/ŠH�
S1.LM / associated with the spectral

sequence. In fact, the commutativity of the left-hand side square and the right-hand side triangle follows
from the construction of the spectral sequence; see for example [32, Proof of Theorem 2.6]. Theorem 2.8(ii)
implies the upper sequence is the dual of the string bracket. We have the result.
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Proposition 7.8 For each N , the S–action u� on .E;D/ gives rise to a map

S W f.N /E
�;�
r ; dr g ! f.N�1/E

�C1;�C1
r ; dr g

on the spectral sequence which is compatible with the S–action on the negative cyclic homology HC�� .A/.

Proof The S–action on .E;D/ gives rise to a map .N /K ! .N�1/K which increases the filtration
degree by C1 and is compatible with the differential. Then the map induces the action S on the spectral
sequence.

Lemma 7.9 Suppose that the Er –term .0/E
p;q
r in f.0/E

�;�
r ; dr g is trivial for any .p; q/. Then the .r�1/

times S–action Sr�1 W fHC
�

� .A/!
fHC
�

� .A/ is trivial.

Proof Let x be an element in fHC
�

� .A/. Then x is in fHC
�;.n/
� .A/ for some n � 0 and then it is

represented by an element ˛ in .n/E
t;�
1 for some t � 0. Thus the element Sr�1x is represented by

Sr�1˛ 2 .n�.r�1//E
tC.r�1/;�
1 . By assumption, it follows from Lemma 7.6 that .N /E

l;�
r D 0 for l � r �1

and N 2Z. This implies that Sr�1˛ D 0 in the E1–term and that there is no extension problem; that is,
Sr�1x D Sr�1˛ D 0 in HC�;.n�.r�1//

� .A/� HC�� .A/. This completes the proof.

Moreover, we have:

Theorem 7.10 The Er –term .0/E
p;q
r in f.0/E

�;�
r ; dr g is trivial for any .p; q/ if and only if the .r � 1/

times S–action Sr�1 on fHC
�

� .A/ is.

Proof The “only if” part follows from Lemma 7.9. To prove the “if” part, we assume that Sr�1 is
trivial on fHC

�

� .A/. Take any element x D xp˝upCxpC1˝upC1C � � � 2 .0/Z
p;�
r , where xi 2

zL.i/ is
zero for sufficiently large i . By the definition of .0/Z

p;�
r , the total differential increases the filtration

degree of x by r , ie we have dxp D 0 and zsxi C dxiC1 D 0 for p � i � p C r � 2. Now we have
an element ŒzsxpCr�1� 2 H.Ker zs/ and the above equation implies that ŒdxpC1� D Sr�1ŒsxpCr�1� D

0 2 H.Ker zs/ by Lemma 4.10 and the assumption of triviality of Sr�1. By Lemma 4.7, we see that
Ker zs D Im zs. Thus, there is an element vp 2 zL.p/ with dzsvp D dxpC1. By using these elements,
we define y D .xpC1 � zsvp/˝ upC1 C xpC2 ˝ upC2 C xpC3 ˝ upC3 C � � � 2 .0/Z

pC1;�
r�1

. Then we
can show x � y D xp ˝ up Czsvp ˝ upC1 2 .0/B

p;�
r�1

by the same argument as above. It follows that
x D yC .x�y/ 2 .0/Z

pC1;�
r�1

C .0/B
p;�
r�1

and hence Œx�D 0 2 .0/Z
p;�
r =.0/Z

pC1;�
r�1

C .0/B
p;�
r�1
D .0/E

p;�
r .

Since x is an arbitrary element of .0/Z
p;�
r , this proves the “if” part.

The BV-exactness of a space is equivalent to the condition that the E2–term of the spectral sequence
f.0/E

�;�
r ; dr g is trivial. Then Theorem 7.10 gives another proof of Theorem 2.11. This consideration

allows us to propose a higher version of the BV-exactness.

Definition 7.11 A simply connected space X is r–BV-exact if the ErC1–term .0/E
p;q
rC1

in the spectral
sequence f.0/E

�;�
r ; dr g associated with X is trivial for any .p; q/.
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Indeed, there exists a non-BV-exact space in the class of rational elliptic spaces; see Appendix A below.
While we are interested in the hierarchy of rational spaces defined by the r–BV-exactness as seen in
Section 1.1, we do not pursue the topic in this manuscript.

Appendix A A non-BV-exact space

We describe an example of a non-BV-exact space. Let .^V; d/ be the minimal model

.^.x1;x2;y1;y2;y3; z/; d/

of an elliptic space X of dimension 228, given in [1, Example 5.2]. The degrees are given by jx1j D 10,
jx2j D 12, jy1j D 41, jy2j D 43, jy3j D 45 and jzj D 119. The differential is as follows:

dx1 D 0;

dx2 D 0;

dy1 D x3
1x2;

dy2 D x2
1x2

2 ;

dy3 D x1x3
2 ;

dz D x2.y1x2�x1y2/.y2x2�x1y3/Cx12
1 Cx10

2 :

Note that X does not admit positive weights. Indeed, let wt.x1/D i and wt.x2/Dj . Then wt.y1/D3iCj ,
wt.y2/D 2i C 2j and wt.y3/D i C 3j . By dz, we have the equations 5i C 6j D 12i D 10j induced
from wt.x2.y1x2�x1y2/.y2x2�x1y3//D wt.x12

1
/D wt.x10

2
/. Thus we obtain i D j D 0.

Let !D x14
1

y2y3�x13
1

x2y1y3Cx12
1

x2
2
y1y2 be the representing cocycle of the fundamental class of the

manifold, which is considered as an element of^CV D zL.0/� zL. Then Œ!� 62 Im
�
H.zs/ W0!H.zL.0//

�
D0.

On the other hand, we have Œ!� 2Ker.H.zs/ WH.zL.0//!H.zL.1///, since zs.!/D ı.˛/ for the element ˛
defined by

˛ D�1380x11
1 x6

2 xy3� 5290x11
1 x5

2y3 xx2� 114x10
1 y1y2 xy2C 114x10

1 y1y3 xy1

� 114x9
1x2y1y2 xy1C

93
2

x2
1y2y3xzCx2

1y2z xy3�x2
1y3z xy2C 114x1x7

2y2y3 xy3

�
93
2

x1x2y1y3xz�x1x2y1z xy3� 114x1x2y2z xy2C 115x1x2y3z xy1C 113x1y1y3z xx2

C 572x1y2y3z xx1C 115x9
2xz� 114x8

2y1y3 xy3C 114x8
2y2y3 xy2C 1150x8

2z xx2

C
93
2

x2
2y1y2xzC 115x2

2y1z xy2� 115x2
2y2z xy1� 340x2y1y2z xx2� 229x2y1y3z xx1:

Hence we have Im H.zs/¨ Ker H.zs/, ie .^V; d/ is not BV-exact. Note that we have found the element ˛
by using the program [51] mentioned in Remark 6.4, while the equality is also checked by hand.

Finally we consider the differentials in the spectral sequence f.0/Er ; dr g defined in Section 7. Since
d1Œ!� D H.zs/Œ!� D 0, the cocycle ! defines an element Œ!� 2 .0/E2, where .0/E2 is considered as a
subquotient of .0/E1 DH.zL; ı/. Then the equality zs.!/D ı.˛/ enables us to compute d2Œ!�D Œzs˛�¤

02 .0/E2, where the nontriviality is proved by using the program [51]. Thus this Sullivan algebra gives an
example such that d2¤ 0 on .0/E2. Note that it is currently unknown whether .0/E3D 0 (ie 2–BV-exact)
or not.

Algebraic & Geometric Topology, Volume 24 (2024)



2650 Katsuhiko Kuribayashi, Takahito Naito, Shun Wakatsuki and Toshihiro Yamaguchi

Appendix B Connes’ B–map in the Gysin exact sequence

In this section, by giving precisely a rational model for the integration over the fiber ˇ WH�C1.LX IQ/!

H�
S1.LX IQ/, we describe the Gysin exact sequence of the S1–principal bundle

S1
!ES1

�LX
p
!ES1

�S1 LX

in terms of Sullivan models for LX and ES1 �S1 LX . As a consequence, the Gysin sequence is
identified with Connes’ exact sequence under the isomorphisms HH�.M.X // Š H��.LX IQ/ and
HC�� .M.X //ŠH��.ES1 �S1 LX IQ/ described in Section 3.

The cohomology Gysin sequence associated with the bundle has the form

� � � !H��2
S1 .LX /

S
�!H�

S1.LX /
p�

��!H�.LX /
ˇ
�!H��1

S1 .LX /! � � � ;

in which S is defined by the cup product with the Euler class q�.u/, where u is the generator of H 2.BS1/.
The S1–principal bundle above fits in the pullback diagram

S1

��

S1

��

LX // ES1 �LX //

p
��

ES1

��

LX // ES1 �S1 LX
q
// BS1

in which the lower sequence is the fiber bundle associated with the universal bundle ES1! BS1.

We recall the Sullivan models L and E defined in Section 3. In the model E for ES1 �S1 LX , we write
u for the Euler class q�.u/. Thus the map S in the Gysin sequence is regarded as the multiplication by u

in the models, namely the S–action in Connes’ exact sequence. In order to obtain rational models for p

and ˇ, we here consider the relative Sullivan algebra L^ WD .E˝^.e/; yı/ with base E, where yı.e/D u

and jej D 1.

Lemma B.1 The canonical projection � W L^! L is a homotopy equivalence.

Proof We define a DGA morphism � W L! L^ by �.˛/ D ˛ C .�1/j˛js.˛/e for ˛ 2 L, where s is
the derivation on L stated in Section 3. Then, we have � ı �D 1 by definition. Moreover, a homotopy
L^ ! L^˝^.t; dt/ defined by e 7! et , u 7! ut � e dt and ˛ 7! ˛C .�1/j˛js.˛/e.1� t/ for ˛ 2 E

implies that � ı � is homotopic to 1. This completes the proof.

Proposition B.2 The derivation s W L! E is a rational model for ˇ.
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Proof From Lemma B.1, the inclusion E ,! L^ is a rational model for the principal bundle

p WES1
�LM !ES1

�S1 LM:

Since ˇ is the fiber integration associated with the principal bundle, it is modeled by a map
R

e W L
^! E

defined by
R

e.˛0C˛1e/D ˛1 for ˛i 2 E. Therefore, the result follows since the composite
R

e � coincides
with the derivation s.

List of symbols

symbol meaning page

� the loop product 2633

ˇ the dual loop coproduct 2633

Œ ; � the string bracket, dual string cobracket 2624

� the BV operator on the Hochschild homology of a differential graded algebra 2626

�0 the BV operator on the homology of LM 2627

HH�.�/ the Hochschild homology of a DGA � 2630
eHH�.�/ the reduced Hochschild homology, HH�.�/ŠeHH�.�/˚K 2630

HC�� .�/ the negative cyclic homology of a DGA � 2630fHC
�

� .�/ the reduced negative cyclic homology, HC�� .�/Š fHC
�

� .�/˚KŒu� 2630

S the S–action on the negative cyclic homology 2630

L, .L; ı/ the Sullivan minimal model for the free loop space LM (and the Hochschild
homology)

2631

E, .E;D/ the Sullivan minimal model for the Borel construction ES1 �S1 LM (and the
negative cyclic homology)

2631

.zL; ı/ the reduced version of .L; ı/ 2637

.zL.n/; ı/ a direct summand of .zL; ı/D
L

n.
zL.n/; ı/ 2637

s a derivation on L, which is a chain model of � 2631

Acknowledgements The authors thank Jean-Claude Thomas and Luc Menichi for comments on the
first draft of this manuscript. The authors are grateful to the referee for a very careful reading of the
manuscript, valuable suggestions and comments.

Kuribayashi was partially supported by a Grant-in-Aid for Scientific Research (B) 21H00982 from Japan
Society for the Promotion of Science. Naito was supported by JSPS KAKENHI grant JP18K13403.
Wakatsuki was supported by JSPS KAKENHI grant 20J00404. Yamaguchi was partially supported by
JSPS KAKENHI grant 20K03591.

Algebraic & Geometric Topology, Volume 24 (2024)



2652 Katsuhiko Kuribayashi, Takahito Naito, Shun Wakatsuki and Toshihiro Yamaguchi

References
[1] M Arkowitz, G Lupton, Rational obstruction theory and rational homotopy sets, Math. Z. 235 (2000)

525–539 MR Zbl

[2] S Basu, Transversal string topology & invariants of manifolds, PhD thesis, State University of New York at
Stony Brook (2011) MR Available at https://www.proquest.com/docview/898888965

[3] Y Berest, A C Ramadoss, Y Zhang, Hodge decomposition of string topology, Forum Math. Sigma 9 (2021)
art. id. e33 MR Zbl

[4] R Body, R Douglas, Unique factorization of rational homotopy types, Pacific J. Math. 90 (1980) 21–26
MR Zbl

[5] R Body, M Mimura, H Shiga, D Sullivan, p–universal spaces and rational homotopy types, Comment.
Math. Helv. 73 (1998) 427–442 MR Zbl

[6] D Burghelea, Z Fiedorowicz, W Gajda, Adams operations in Hochschild and cyclic homology of de Rham
algebra and free loop spaces, K–Theory 4 (1991) 269–287 MR Zbl

[7] D Burghelea, M Vigué-Poirrier, Cyclic homology of commutative algebras, I, from “Algebraic topology:
rational homotopy” (Y Félix, editor), Lecture Notes in Math. 1318, Springer (1988) 51–72 MR Zbl

[8] M Chas, D Sullivan, String topology, preprint (1999) arXiv math/9911159

[9] D Chataur, L Menichi, String topology of classifying spaces, J. Reine Angew. Math. 669 (2012) 1–45 MR
Zbl

[10] X Chen, An algebraic chain model of string topology, Trans. Amer. Math. Soc. 364 (2012) 2749–2781 MR
Zbl

[11] X Chen, F Eshmatov, L Liu, Gravity algebra structure on the negative cyclic homology of Calabi–Yau
algebras, J. Geom. Phys. 147 (2020) 103522, 19 MR Zbl

[12] R L Cohen, J D S Jones, J Yan, The loop homology algebra of spheres and projective spaces, from
“Categorical decomposition techniques in algebraic topology” (G Arone, J Hubbuck, R Levi, M Weiss,
editors), Progr. Math. 215, Birkhäuser, Basel (2004) 77–92 MR Zbl

[13] C Costoya, A Viruel, Every finite group is the group of self-homotopy equivalences of an elliptic space,
Acta Math. 213 (2014) 49–62 MR Zbl

[14] Y Félix, S Halperin, J-C Thomas, Gorenstein spaces, Adv. in Math. 71 (1988) 92–112 MR Zbl

[15] Y Félix, S Halperin, J-C Thomas, Rational homotopy theory, Graduate Texts in Math. 205, Springer
(2001) MR Zbl

[16] Y Félix, L Menichi, J-C Thomas, Gerstenhaber duality in Hochschild cohomology, J. Pure Appl. Algebra
199 (2005) 43–59 MR Zbl

[17] Y Félix, J-C Thomas, Rational BV–algebra in string topology, Bull. Soc. Math. France 136 (2008) 311–327
MR Zbl

[18] Y Félix, J-C Thomas, String topology on Gorenstein spaces, Math. Ann. 345 (2009) 417–452 MR Zbl

[19] Y Félix, J-C Thomas, M Vigué-Poirrier, Rational string topology, J. Eur. Math. Soc. 9 (2007) 123–156
MR Zbl
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