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Asymptotic dimensions of the arc graphs and disk graphs
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We give quadratic upper bounds for the asymptotic dimensions of the arc graphs and disk graphs.

20F65, 20F69, 57K20; 57M60

1 Introduction

The asymptotic dimension, denoted by dimasym X, of a metric space X was introduced by Gromov [1993,
page 29] as a large-scale analogue of the covering dimension. The curve graph, C.S/, for a surface
S D Sg;b was introduced by Harvey [1981, page 246] as a sort of Bruhat–Tits building for Teichmüller
space. It has since been generalised in many ways. Bell and Fujiwara [2008, Corollary 1] first proved that
the asymptotic dimension of C.S/ is finite. More recently, Bestvina and Bromberg [2019, Corollary 1.1]
proved that dimasym C.Sg/ � 4g � 4 (when g > 1) and that dimasym C.Sg;b/ � 4g � 3C b D � 0.Sg;b/

when g > 0 and b > 0 (or g D 0 and b > 2).

Here we combine the machineries of [Bestvina et al. 2015; Masur and Schleimer 2013] to produce a
quasi-isometric embedding of the arc graph A.S; �/ into a finite product of quasitrees of curve complexes.
From this we deduce the following:

Corollary 3.11 Suppose that S D Sg;b has nonempty boundary. Suppose that �� @S is a nonempty
union of components. Finally, suppose that � 0.S/� 1. Then

dimasym A.S; �/� 1
2
.4gC b/.4gC b� 3/� 2:

Sisto (private communication, 2022) suggests that the machineries of [Behrstock et al. 2017, Theorem 5.2;
Vokes 2022, Theorem A.2] can be combined to obtain a similar result.

We also obtain the following result for the disk graph D.M;S/ of a compression body:

Corollary 4.18 Suppose M is a nontrivial spotless compression body with upper boundary S D Sg;b .
Suppose that � 0.S/� 1. Then

dimasym D.M;S/� 1
2
.4gC b/.4gC b� 3/� 2:

Hamenstädt [2019, Theorem 3.6] has obtained a similar result when M is a handlebody; see Remark 4.20.
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2656 Koji Fujiwara and Saul Schleimer

Obtaining lower bounds better than linear, if even possible, would require new ideas. Therefore, we end
our introduction with the following:

Question 1.1 How tight are the upper bounds of Corollaries 3.11 and 4.18? G

2 Background

Suppose that .X; dX / is a metric space. Suppose that U and V are nonempty subsets of X with bounded
diameter. Then we define their distance as

dX .U;V /D diamX .U [V /:

This notation is taken from [Masur and Minsky 2000, Formula (2.1), page 916].

We write p DC q if, for nonnegative numbers p, q and C, we have both q � CpCC and p � CqCC.
Also, we use the cut-off function: Œp�C is equal to p if p � C and is zero otherwise.

We now more-or-less follow the conventions of [Bell and Dranishnikov 2008]. Suppose that X and Y are
metric spaces. A relation f WX ! Y is a coarse map if there is a constant C such that, for all x 2X, the
image f .x/ is nonempty and has diamY .f .x//� C. A coarse map f WX ! Y is a coarse embedding if
there are functions F;G WR!R such that

� limt!1 F.t/D limt!1G.t/D1, and

� for all x;y 2X, we have

F.dX .x;y//� dY .f .x/; f .y//�G.dX .x;y//:

A coarse map f WX ! Y is coarsely onto if there is a constant C> 0 such that, for all y 2 Y, there is a
point x 2X with dY .f .x/;y/ < C.

A coarse map f WX!Y is coarsely Lipschitz if there is a constant C>0 such that, for all x;y 2X, we have

dY .f .x/; f .y//� C � dX .x;y/CC:

That is, we have no lower bound, but we require the upper bound to be affine.

A coarse embedding f is a quasi-isometric embedding if the functions F and G are both affine (with
positive coefficients). The more usual definition is to require a constant C > 0 such that dX .x;y/DC

dY .f .x/; f .y// for all x;y 2X. A quasi-isometric embedding f is a quasi-isometry if f is also coarsely
onto.

2.1 Asymptotic dimension

We now follow [Gromov 1993, Section 1.E]. A metric space X has asymptotic dimension dimasym.X / at
most n if, for every R> 0, there is a D> 0 and a cover U of X such that

� for all U 2U, we have diamX .U /� D, and

� every metric R–ball in X intersects at most nC 1 sets in U.
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Asymptotic dimensions of the arc graphs and disk graphs 2657

For example, trees have asymptotic dimension at most one. More generally, following [Bell and Dranish-
nikov 2008, page 1272], a collection of metric spaces X has asymptotic dimension at most n, uniformly,
if for every R there is a constant D such that every X 2 X has a cover as above.

If two metric spaces X and Y are quasi-isometric and dimasym.X /� n, then dimasym.Y /� n. In view of
this, we say a finitely generated group G has asymptotic dimension at most n if some (and thus all) of its
Cayley graphs have asymptotic dimension at most n.

We list two well-known facts about asymptotic dimension.

Fact 2.2 [Bell and Dranishnikov 2008, Theorem 32] Suppose that U and V are metric spaces. We give
U �V the `1 product metric. Then

dimasym U �V � dimasym U C dimasym V:

Fact 2.3 [Bell and Dranishnikov 2008, Proof of Proposition 22] If U coarsely embeds into V, then

dimasym U � dimasym V:

2.4 Quasitrees of metric graphs

We quickly review the machinery of quasitrees of metric spaces, as introduced in [Bestvina et al. 2015,
Section 4]. Suppose that F is a collection of metric graphs. Suppose also that we have, for every pair of
distinct graphs A;B 2 F, a nonempty subset �B.A/� B. Also, fix a sufficiently large constant k> 0.

With respect to the data .F; �; k/ we require the following axioms:

Axiom 2.5 (bounded projections) For distinct A;B 2 F, we have

diamB.�B.A//� k:

For A;B;C 2 F, and if A¤ B and B ¤ C, we adopt the shorthand

dB.A;C /D dB.�B.A/; �B.C //:

Axiom 2.6 (Behrstock inequality) For distinct A;B;C 2 F, at most one of the following is greater
than k:

dA.B;C /; dB.A;C /; dC .A;B/:

Axiom 2.7 (large links) For distinct A;C 2 F, the following set is finite:

fB 2 F jA¤ B, B ¤ C and dB.A;C / > kg:

We call these the BBF axioms. These are called (P0), (P1) and (P2) in [Bestvina et al. 2015].

Suppose that the data .F; �; k/ satisfies the BBF axioms. Then, by [Bestvina et al. 2015, Theorem A], for
every sufficiently large K� k there is a metric graph C.F/D CK.F/, called the quasitree of graphs. We
denote the metric on C.F/ by dC. We now list several properties of C.F/.
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2658 Koji Fujiwara and Saul Schleimer

Fact 2.8 [Bestvina et al. 2015, Theorem A and Definition 3.6] By construction , every A 2 F iso-
metrically embeds into C.F/. The image is totally geodesic. For distinct A;B 2 F, their images in C.F/

are disjoint. Finally, these images cover the vertices of C.F/.

Thus, we may identify the vertices of A with their images in C.F/. We extend the definition of �B as
follows. If b 2B then we take �B.b/Db. If a2A, and A is distinct from B, then we take �B.a/D�B.A/.
One may think of �B W C.F/! B as being a “closest-points projection” map. We adopt the shorthand

dB.a; c/D dB.�B.a/; �B.c//:

Fact 2.9 [Bestvina et al. 2015, Definition 4.1] By construction , there is a constant L (depending only
on K) with the following property. Suppose that A;B 2 F are graphs such that the set of Axiom 2.7 is
empty. Then dC.�A.B/; �B.A//� L.

We have the following distance estimate for dC:

Theorem 2.10 [Bestvina et al. 2015, Theorem 4.13] Suppose that F is a family of metric graphs
satisfying the BBF axioms. Suppose that K is sufficiently large. Suppose that CK.F/ is the quasitree of
graphs. Then every K0 sufficiently larger than K has the following property: for any a; c 2 C.F/, we have

1

2

X
ŒdB.a; c/�K0 � dC.F/.a; c/� 6KC 4

X
ŒdB.a; c/�K;

where both sums are taken over all B 2 F.

Suppose that G is a group acting on F. We further assume that, for any g 2G and for any A 2F, there is
an isometry gA WA! g �A. We suppose that these isometries have the following consistency properties.
Suppose that g; h 2G are group elements and A;B 2 F are graphs with B D g �A.

� For all a 2A, we have hB.gA.a//D .hg/A.a/.

� For any C 2 F, we have gA.�A.C //D �B.g �C /.

From [Bestvina et al. 2015, Section 3.7], we deduce the following: there is an isometric action of G on
the quasitree of graphs C.F/ which extends the action of the isometries gA.

We also have the following control on the asymptotic dimension of C.F/:

Theorem 2.11 [Bestvina et al. 2015, Theorem 4.24] Suppose that F is a family of metric graphs
satisfying the BBF axioms. Suppose that F has asymptotic dimension at most D, uniformly. Then
dimasym.C.F//�DC 1.

When all of the metric graphs are quasitrees, this can be improved:

Theorem 2.12 [Bestvina et al. 2015, Theorem B(ii)] Suppose that F is a family of quasitrees satisfying
the BBF axioms. Suppose further that the quasi-isometry constants are uniformly bounded. Then
dimasym.C.F//� 1.
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Asymptotic dimensions of the arc graphs and disk graphs 2659

The notion of a quasitree of metric spaces was introduced and used to prove [Bestvina et al. 2015,
Theorem D]: mapping class groups (of connected, compact, oriented surfaces) have finite asymptotic
dimension.

2.13 Surfaces, curves and arcs

Let S D Sg;b denote the connected, compact, oriented surface of genus g with b boundary components.
The complexity of S is defined to be �.S/D 3g� 3C b. This counts the number of curves in any pants
decomposition of S. We will always assume that �.S/� 1. We will also need the modified complexity
� 0.S/D 4g� 3C b. If S is closed then we will simply write Sg for Sg;0.

Suppose that ˛ is an embedded arc or curve in S. We call the embedding proper if ˛ \ @S D @˛. A
properly embedded arc or curve ˛ in S is essential if it does not cut a disk off of S. A properly embedded
curve ˛ is nonperipheral if it does not cut an annulus off of S.

A proper isotopy is an isotopy through proper embeddings. Let Œ˛� denote the proper isotopy class of ˛.
Given ˛ and ˇ, properly embedded arcs or curves, we define their geometric intersection number

i.˛; ˇ/Dminfj˛0\ˇ0j W ˛0 2 Œ˛�; ˇ0 2 Œˇ�g:

Note that i.˛; ˇ/D 0 if and only if they have disjoint (proper isotopy) representatives. To lighten the
notation, we typically will not distinguish between a curve (or arc) ˛ and its proper isotopy class Œ˛�.

A connected, compact subsurface X � S is essential if every component of @X is either a component
of @S or is essential and nonperipheral in S. If X is essential, we define the relative boundary of X to be
@SX D @X � @S.

Remark 2.14 If X � Y are both essential subsurfaces of S, then � 0.X /� � 0.Y /. Equality holds if and
only if X and Y are isotopic. G

We say that a properly embedded curve or an arc ˛ cuts X if every ˛0 2 Œ˛� intersects X. If ˛ does not
cut X, then we say that ˛ misses X. Suppose that X and Y are essential, and nonisotopic, subsurfaces
of S. We say that X is nested in Y if it is (perhaps after an isotopy) contained in Y. We say that X and Y

overlap if @SX cuts Y and @SY cuts X.

2.15 Curve and arc graphs

We now define the curve graph C.S/. Let C.0/.S/ be the set of proper isotopy classes of essential,
nonperipheral curves in S. We have an edge .˛; ˇ/2C.1/ exactly when ˛ and ˇ are distinct and i.˛; ˇ/D0.

We define the arc graph A.S/ similarly: A.0/.S/ is the set of proper isotopy classes of essential arcs
in S. Again we have an edge .˛; ˇ/ 2A.1/ exactly when ˛ and ˇ are distinct and i.˛; ˇ/D 0. Note that
A.S/ is empty when S is closed.
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Masur and Schleimer [2013, Definition 7.1] generalise the definition of the arc graph slightly, as follows.
Suppose that �� @S is a nonempty collection of boundary components. We define A.S; �/ to be the
subgraph of A.S/ spanned by the arcs having both endpoints in �. Note that A.S; @S/DA.S/.

We next define the arc and curve graph AC.S/: the zero skeleton is exactly A.0/.S/[C.0/.S/. Edges
come from having disjoint representatives, as before. Note that the inclusion of C.0/.S/ into AC.0/.S/

induces a quasi-isometry of graphs.

The definition of the curve complex must be modified when �.S/� 1: for S1;1 we use i.˛; ˇ/D 1 and
for S0;4 we use i.˛; ˇ/D 2. For both of these surfaces the graph of curves is a copy of the Farey graph.
When S is an annulus we define C.0/.S/ to be the set of proper isotopy classes of essential properly
embedded arcs, where now isotopies are required to fix boundary points. Two classes span an edge if
they have representatives which are disjoint on their interiors.

All of the various curve, arc, and arc and curve graphs are connected when they are nonempty [Masur and
Minsky 1999, Lemma 2.1]. We make each of these into a metric graph by decreeing that all edges have
length one. It is then a theorem of Masur and Minsky [1999, Theorem 1.1] that, for any surface S with
�.S/� 1, the curve complex C.S/ is Gromov hyperbolic. Masur and Schleimer [2013, Theorem 20.3]
proved that the same holds for A.S; �/.

2.16 I–bundles

Suppose that F is a connected, compact surface, possibly nonorientable, with nonempty boundary. Let
� W T ! F be an I–bundle. We call F the base surface of the bundle. We define @vT D ��1.@F / to be
the vertical boundary of T. We define the closure

@hT D @T � @vT

to be the horizontal boundary of T. Also, we define the curves

@.@hT /D @.@vT /

to be the corners of T. Finally, there is an involution � W @hT ! @hT associated to � obtained by swapping
the ends of interval fibres.

We now define �F W TF ! F to be the orientation I–bundle over F. Here the preimage under �F of a
simple closed curve ˛ is an annulus or a Möbius band as ˛ is or is not, respectively, orientation-preserving
in F. When F is nonorientable, we call TF twisted and so @hTF=� Š F is nonorientable. If TF is not
twisted then TF Š F � Œ�1; 1� is a product. In this case, � jF�f�1g is a homeomorphism from F � f�1g

to F � f1g.

2.17 Compression bodies

References on compression bodies, of the type we are interested in here, include [Bonahon 1983,
Appendix B; Oertel 2002, Section 1].
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Suppose that S D Sg;b is a surface. We assume that S is neither a disk nor a sphere. We form T D S �I.
We take @CT D S � f1g and @�T D S � f0g to be the upper and lower boundaries of T. As before,
@vT D @S � I is the vertical boundary. We now attach a collection of three-dimensional two- and
three-handles to the lower boundary of T to obtain a three-manifold M. We define @CM D @CT as well
as @vM D @vT. Finally, we define

@�M D @M � .@CM [ @vM /:

Thus, M is a compression body. If @�M is not homeomorphic to @CM, then M is nontrivial. If @�M
has no sphere or disk components, then M is spotless. To simplify the notation, we take S D @CM. Note
that, if @�M is empty, then M is necessarily a handlebody of positive genus.

We now state the classification of compression bodies.

Theorem 2.18 Suppose that M and N are compression bodies. Then .M; @vM / is homeomorphic to
.N; @vN / if and only if .@CM; @�M / is homeomorphic to .@CN; @�N /.

The proof is similar to that of the classification of surfaces [Farb and Margalit 2012, Theorem 1.1] and
of handlebodies [Hempel 1976, Theorem 2.2]. The case of @vM D ∅ is discussed by Biringer and
Vlamis [2017, Corollary 2.3].

2.19 Disk graphs

Suppose that .M;S/ is a nontrivial, spotless compression body. Suppose that .D; @D/ � .M;S/ is
a properly embedded disk. We call D essential if @D is essential in S. We now define the disk
graph D.M;S/. The vertices of D.M;S/ are proper isotopy classes of essential disks in .M;S/.
A pair of distinct vertices D and E give an edge .D;E/ 2 D.M;S/ if they have disjoint representatives.

2.20 Subsurface projection

We give one of the standard definitions of subsurface projection:

Definition 2.21 [Masur and Schleimer 2013, Definition 4.4] Suppose that X is an essential subsurface,
but not a pair of pants, in S. The relation of subsurface projection, �X WAC.S/! C.X /, is defined as
follows. Let �X W S

X ! S be the covering map corresponding to the subgroup �1.X / < �1.S/. Note
that the Gromov compactification of SX is homeomorphic to X. This gives an identification of the graphs
C.SX / and C.X /. For any ˛ 2 AC.S/, we define ˛X D ��1

X
.˛/ to be the full preimage. We define

˛jX to be the essential arcs, and essential nonperipheral curves, of ˛X. If X is an annulus, then we set
�X .˛/D ˛jX . Otherwise, for every ˇ 2 ˛jX , we form N DN.ˇ[@X / and we place the essential isotopy
classes of @X N into �X .˛/. G

Note that, if ˛ misses X, then �X .˛/ is empty. Suppose instead that ˛ cuts X. If X is an annulus, then
the diameter of �X .˛/ is at most one. If X is not an annulus, then the diameter of �X .˛/ is at most
two [Masur and Minsky 2000, Lemma 2.3]. If X and Y are essential subsurfaces of S, then we define
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�Y .X /D �Y .@SX /. If X and Y are disjoint, or if Y is nested in X, then this is empty. We record the
following for later use:

Lemma 2.22 Suppose that X and Y are overlapping essential subsurfaces of S. Then �Y .X / is
nonempty and has diameter at most two.

We will adopt the following useful shorthand notation. Suppose that ˛ and ˇ are curves or arcs, both
cutting an essential subsurface X � S. Then

dX .˛; ˇ/D dC.X /.�X .˛/; �X .ˇ//

is the subsurface projection distance between ˛ and ˇ in X.

3 Bound for the arc graph

Let S D Sg;b , where � 0.S/ > 0 and b > 0. Take � � @S to be a nonempty union of components. Let
A.S; �/ be the graph of essential arcs with endpoints in �.

3.1 Witnesses for the arc graph

Definition 3.2 An essential subsurface X � S is a witness for A.S; �/ if every arc ˛ 2 A.S; �/

cuts X. G

We repackage a few results [Masur and Schleimer 2013, Lemmas 5.9 and 7.2]:

Lemma 3.3 Suppose that X � S is an essential subsurface , but not an annulus or a pair of pants. The
following are equivalent :

� X is a witness for A.S; �/.

� X contains �.

� For all arcs ˛ 2A.S; �/, the projection �X .˛/ is nonempty.

� The projection �X WA.S; �/! C.X / is coarsely Lipschitz with a constant of 2.

We have a useful corollary:

Corollary 3.4 Suppose that X and Y are distinct witnesses with � 0.X /D � 0.Y /. Then X and Y overlap.

Proof By Lemma 3.3, both X and Y contain �; thus, they intersect. Since they have the same modified
complexity, by Remark 2.14 they cannot be nested. Thus, they overlap.

We let MCG.S; �/ be the mapping class group for the pair .S; �/: the group of mapping classes that
preserve � setwise. We say that a pair of arcs ˛; ˇ 2A.S; �/ have the same topological type (or, more
simply, the same type) if there is a mapping class f 2MCG.S; �/ such that f .˛/D ˇ.
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Lemma 3.5 The quotient A.S; �/=MCG.S; �/ has diameter at most two.

Proof Suppose that ˛ 2A.S; �/ is an arc. We break the proof into cases, depending on the number of
components of @S and of �.

Suppose that � has at least two components. Then ˛ is disjoint from some  2A.S; �/ meeting two
components of �. Since we made no assumptions on ˛, we find that, in the quotient, all vertices are at
most distance one from Œ �. Thus, the diameter is at most two.

Suppose that � has only one component, but @S has at least two. Let ı be some component of @S ��.
Then ˛ is disjoint from some arc  2A.S; �/ such that  separates ı from the rest of S. We again obtain
a diameter bound of two.

Suppose that @S has a single component, which necessarily equals �. Then ˛ is disjoint from some arc
 2A.S; �/ such that  is nonseparating. This gives the diameter bound and finishes the proof.

3.6 Families of witnesses

Fix a number c � � 0.S/. The collection

Fc D fX � S jX is a witness for A.S; �/ and � 0.X /D cg

is called a family. We only consider nonempty families.

Suppose that X;Y;Z 2 Fc are witnesses, with Y distinct from both X and Z. Then we define

dY .X;Z/D dC.Y /.�Y .X /; �Y .Z//:

This is well defined by Corollary 3.4. We note that there is an abuse of notation here: the family Fc

consists of witnesses X — that is, surfaces — not metric graphs. However, each witness X gives a metric
graph, namely C.X /. We trust this will not cause confusion.

Lemma 3.7 For every c, the family Fc satisfies the three BBF axioms given in Section 2.4. Since
there are only finitely many of these families , there is a common constant k that works for all of them
simultaneously.

Proof Axiom 2.5 follows from Corollary 3.4 and Lemma 2.22.

Axiom 2.6 follows from Corollary 3.4 and the usual Behrstock inequality [2006, Theorem 4.3]. See [Man-
gahas 2010, Lemma 2.5] for an elementary proof following ideas of Leininger.

Axiom 2.7 appears as [Masur and Minsky 2000, Lemma 6.2]. See [Bestvina et al. 2015, Lemma 5.3] for
a proof giving a concrete bound and avoiding the machinery of hierarchies.
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We now apply the BBF construction, outlined in Section 2.4, to each family Fc . This gives us a quasitree
of curve graphs C.Fc/. We deduce that C.Fc/ is a hyperbolic metric graph where each of the curve
complexes C.X / for X 2Fc embeds as a totally geodesic subgraph. From [Bestvina and Bromberg 2019,
Corollary 1.1] and Theorem 2.11, we deduce that

dimasym C.Fc/� cC 1:

If c D 1 then Theorem 2.12 allows us to sharpen the bound:

dimasym C.F1/� 1:

On the other hand, if c D 4gC b� 3 then Fc D fSg and we have

dimasym C.Fc/� 4gC b� 3:

We now define P.S; �/ to be the product, equipped with the `1 metric, of the quasitrees of curve graphs
C.Fc/ as c ranges from one to � 0.S/. From the above and from Fact 2.2, we deduce the following:

Corollary 3.8 dimasym P.S; �/� 1
2
.4gC b/.4gC b� 3/� 2:

3.9 Embedding the arc graph

In this section we fix the constants k, K and L. We then state and prove Theorem 3.10.

The constant k is the larger of 13 (as explained in the proof of Lemma 3.13) and the constant given by
Lemma 3.7. The constant K is now given by [Bestvina et al. 2015, Theorem A]. Finally, the constant L is
provided by Fact 2.9. We take P.S; �/ to be the product of the resulting quasitrees. Here is the statement:

Theorem 3.10 There is a quasi-isometric embedding � of the arc graph A.S; �/ into the product
P.S; �/ of quasitrees of curve graphs. Moreover , � is equivariant with respect to the action of the
mapping class group MCG.S; �/.

From this, and from Fact 2.3, we deduce the following:

Corollary 3.11 Suppose that S D Sg;b has nonempty boundary. Suppose that �� @S is a nonempty
union of components. Finally, suppose that � 0.S/� 1. Then

dimasym A.S; �/� 1
2
.4gC b/.4gC b� 3/� 2:

We now turn to the proof of Theorem 3.10. Fix a modified complexity c.

Definition 3.12 Suppose that ˇ 2 A.S; �/ is an arc. Suppose that Y 2 Fc is a witness, and ˇ has a
representative contained in Y. Then we say that Y carries ˇ. G

Note that �Y .ˇ/ � C.Y / is one or two essential, nonperipheral curves in Y. Recall, by Fact 2.8, that
C.Y / embeds into C.Fc/. We now define a relation �c WA.S; �/! C.Fc/ as follows:

�c.˛/D f�Y .ˇ/ j dA.˛; ˇ/� 2 and Y 2 Fc carries ˇg:
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Lemma 3.13 The relation �c is an equivariant coarse Lipschitz map.

Proof Equivariance follows from the definition.

The set �c.˛/ is nonempty by Lemma 3.5. Suppose that Y, Y 0 and Z lie in Fc . Suppose that ˇ and ˇ0

are carried by Y and Y 0, respectively, and are distance at most two from ˛. Thus, dA.ˇ; ˇ
0/ � 4. We

deduce that dZ .Y;Y
0/ is at most 12.

We now recall our choices (made above) of k, K and L. In particular, we have k> 12. Thus, by Fact 2.9,
�Y .@Y

0/ and �Y 0.@Y / are distance at most L in C.Fc/. Thus, dC.ˇ; ˇ
0/� LC20, bounding the diameter

of �c.˛/. Thus, �c is a coarse map.

Furthermore, by [Masur and Minsky 2000, Lemma 2.3], if dA.˛; ˛
0/D 1 then the distance between �c.˛/

and �c.˛
0/ is also bounded in terms of L. Applying the triangle inequality gives the result.

Lemma 3.14 Suppose that ˛;  2A.S; �/ are arcs and X is a witness with � 0.X /D c. Then

jdX .˛;  /� dX .�c.˛/; �c. //j � 12

Proof Suppose that ˇ 2A.S; �/ has dA.˛; ˇ/� 2 and ˇ is carried by some witness Y with � 0.Y /D c.
Note that ˛ and �Y .ˇ/ are distance at most three in AC.S/, the arc and curve complex for S.

Now, if X D Y, then
dX .˛; �Y .ˇ//D dX .˛; �X .ˇ//D dX .˛; ˇ/� 4

by [Masur and Minsky 2000, Lemma 2.3]. If X ¤ Y, then instead we have

dX .˛; �Y .ˇ//D dC.X /.�X .˛/; �X .Y //� 6:

This holds for all ˇ arising in the definition of �c.˛/. The lemma now follows by applying the triangle
inequality twice.

We now define � WA.S; �/! P.S; �/ by taking

�.˛/D .�c.˛//c :

All that remains is to prove that � is a quasi-isometric embedding. Suppose that ˛ and  are arcs
in A.S; �/. We must show that dA.˛;  / and dP.�.˛/; �. // are coarsely equal.

We first bound dP.�.˛/; �. // from above. Recall that P.S; �/ is equipped with the `1 metric and so

dP.�.˛/; �. //D
X

c

dC.Fc/.�c.˛/; �c. //:

Each of the terms on the right-hand side is bounded in terms of dA.˛;  / by Lemma 3.13 and we are
done.

We now bound dA.˛;  / from above. Since A.S; �/ is a combinatorial complex in the sense of [Masur and
Schleimer 2013, Section 5], we have a corollary of [Masur and Schleimer 2013, Theorems 5.14 and 13.1]:

Algebraic & Geometric Topology, Volume 24 (2024)



2666 Koji Fujiwara and Saul Schleimer

Theorem 3.15 Suppose that S and � are as above. There is a constant L such that , for any L0 � L, there
is a constant C with the following property. For any arcs ˛ and  , we have

dA.˛;  /DC

X
ŒdX .˛;  /�L0 ;

where the sum is taken over all witnesses X for A.S; �/.

Take K0 > 12 sufficiently larger than the constants K and L appearing in Theorems 2.10 and 3.15,
respectively. Set L0 D K0C 12. Fix a witness X and set c D � 0.X /. If a term dX .˛;  / appears in the
upper bound of Theorem 3.15, then, by Lemma 3.14, the term dX .�c.˛/; �c. // appears in the lower
bound provided by Theorem 2.10 for the family Fc . Also, dX .˛;  / is at most twice dX .�c.˛/; �c. //

(by Lemma 3.14 and because K0 > 12). Thus, dA.˛;  / is coarsely bounded above by dP.�.˛/; �. //,
as desired. This finishes the proof of Theorem 3.10.

4 Bound for the disk complex

Suppose that M is a spotless compression body, as defined in Section 2.17. Suppose that SDSg;bD@
CM

is the upper boundary. We assume that � 0.S/ > 0. Let D.M;S/ be the graph of essential disks with
boundary in S.

4.1 Witnesses for the disk complex

Definition 4.2 An essential subsurface X � S is a witness for D.M;S/ if every disk D 2 D.M;S/

cuts X. G

Some authors call such an X disk-busting [Masur and Schleimer 2013]. We call a witness X large if it
satisfies

diamX

�
�X .D.M;S//

�
> 60:

We now record the classification of large witnesses [Masur and Schleimer 2013, Theorems 10.1, 11.10
and 12.1]:

Theorem 4.3 Suppose that .M;S/ is a nontrivial spotless compression body. Suppose that X � S is a
large witness for D.M;S/. Then we have the following:

� X is not an annulus.

� If X compresses in M, then there are disks D and E with boundary contained in , and filling , X.

� If X is incompressible in M, then there is an orientation I–bundle �F WTF!F with .TF ; @hTF /�

.M;S/ and with X being a component of @hTF . Also , @vTF is properly embedded in .M;S/ and
at least one component of @vTF is isotopic into S. Also , F admits a pseudo-Anosov map.
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Remark 4.4 Suppose that X is a large incompressible witness, as in the third case. Let F be the base of
the associated I–bundle TF . Let PF be the collection of annuli, embedded in S, which are isotopic, rel
boundary, to components of @vTF . We call these annuli the paring locus for TF . The paring locus PF is
nonempty (Theorem 4.3) and is disk-busting [Masur and Schleimer 2013, Remark 12.17]. We call an
essential disk .D; @D/� .M;S/ vertical for TF exactly when D\TF is vertical in TF . Such disks exist
by Theorem 4.3. If D is vertical for TF , then D meets the paring locus PF in exactly two essential arcs.
Finally, the union PF [ @hTF is a compressible witness for D.M;S/. G

Definition 4.5 If TF is a product, then @hTF DX tX 0, where X 0 � S is again a large incompressible
witness. In this case, we call X and X 0 twins. G

Similar to the case of the arc complex (Corollary 3.4), all large witnesses for the disk complex interfere,
as follows:

Corollary 4.6 Suppose that X and Y are disjoint large witnesses with � 0.X /D � 0.Y /. Then either

(1) X and Y are twins , or

(2) X and Y have twins , X 0 and Y 0, respectively, such that X 0 overlaps with Y and Y 0 overlaps
with X.

Proof Suppose that X and Y are not twins. Thus, we may apply [Masur and Schleimer 2013,
Lemma 12.21] to find that X has a twin X 0 and X 0 intersects Y. Since � 0.X 0/ D � 0.Y /, neither X 0

nor Y is nested in the other. Thus, X 0 overlaps with Y. The remainder of the proof is similar.

As usual, we take MCG.M;S/ to be the mapping class group for the pair .M;S/: that is, the group of
mapping classes of M that preserve S setwise. We say that a pair of disks D;E 2 D.M;S/ have the
same topological type (or, more simply, the same type) if there is a mapping class f 2MCG.M;S/ such
that f .D/DE.

Lemma 4.7 The quotient D.M;S/=MCG.M;S/ has diameter at most two.

Proof There are two cases. Suppose first that D.M;S/ contains a nonseparating disk, that is, a disk
.D; @D/� .M;S/ such that M �D is connected. By Theorem 2.18 (the classification of compression
bodies), all nonseparating disks have the same topological type. Suppose that E 2D.M;S/ is a separating
disk. The classification of compression bodies implies that E is disjoint from some nonseparating disk D0.
This gives the desired diameter bound.

Suppose instead that all essential disks in .M;S/ are separating. Thus, the lower boundary of M is
nonempty. Suppose that F is a component of the lower boundary of M. Let D be a separating disk
which cuts a copy of F � I off of M. Now suppose that E is any separating disk. The classification of
compression bodies implies that E is disjoint from some disk D0 which is a homeomorphic image of D.

Algebraic & Geometric Topology, Volume 24 (2024)



2668 Koji Fujiwara and Saul Schleimer

4.8 Families of witnesses

Fix a modified complexity c � � 0.S/. The collection

Fc D fX � S jX is a large witness for D.M;S/ and � 0.X /D cg

is called a complete family. We now define a reduced family as follows. Suppose that X and X 0 in Fc are
twins. Thus, there is an I–bundle T DFT �I, where @hT DX tX 0. We remove both X and X 0 from Fc

and replace them by the base surface FT . We abuse notation and again use Fc to denote the reduced family.
When AD FT 2 Fc is the base surface associated to T, we abuse notation and define @SAD @S@hT.

Lemma 4.9 Fix .M;S/ and c. Suppose that A;B 2 Fc are distinct. Suppose that B is a base surface
replacing the twinned surfaces Y and Y 0. Then @SA cuts both Y and Y 0.

Proof Let TB be the product I–bundle associated to B. Let PB be the paring locus of TB . Recall that
PB is disk-busting.

Suppose that A is a compressible witness. Thus, PB cuts A. Suppose that @SA does not cut Y. Thus,
Y is (after an isotopy) contained in A. From Remark 2.14, we deduce that Y is isotopic to A. Thus,
PB does not cut A, a contradiction. Thus, @SA cuts Y ; a similar argument proves that @SA cuts Y 0.

Suppose that A is an incompressible witness, with I–bundle TA. Let PA be the paring locus of TA. There
are two subcases as TA is twisted or a product.

Suppose that TA is twisted. Thus, A[PA is a compressible witness (Remark 4.4). Again, since PB is
disk-busting, it cuts A[PA. If PB cuts @SA, we are done because PB is parallel into both Y and Y 0. If
not, then PB is (after an isotopy) contained in A or contained in PA. In either case, Y and Y 0 must cut A.
Since � 0.Y /D � 0.Y 0/D � 0.A/, we cannot have Y or Y 0 contained in A (Remark 2.14). Thus, A overlaps
both Y and Y 0, and we are done.

Suppose that TA is a product. Let X and X 0 be the twin components of @hTA. Appealing to Corollary 4.6,
we may assume that X overlaps with Y. If X overlaps with Y 0, then we are done. If it does not, then, by
Corollary 4.6, we deduce that X 0 overlaps Y 0. Thus, in either case, we are done.

Definition 4.10 Fix a modified complexity c. Suppose that A;B 2Fc . We now define �B.A/. (Note that
we are overloading the notation �B . When the argument is a collection of curves, we use Definition 2.21.
When the argument is a witness, we use Definition 4.10.) There are two cases:

(1) Suppose that B is not a base surface. Then we define �B.A/D �B.@SA/.

(2) Suppose that B is a base surface. Suppose that �B W TB!B is the I–bundle associated to B. Then
we isotope @SA to meet @hTB minimally and we define �B.A/D �B.�B.TB \ @SA//. G

In the above definition, we are considering �B.TB \ @SA/ as a set of arcs and curves in B. We surger
them one at a time to obtain a set of curves in B. Also, in both parts of the definition, Corollary 4.6
implies that �B.A/ is nonempty.
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Suppose that A;B;C 2 Fc . Suppose further that B is distinct from both A and C. Then we define

dB.A;C /D dC.B/.�B.A/; �B.C //:

We will now abuse notation: the reduced family Fc contains surfaces A which index metric spaces,
namely the curve graphs C.A/, instead of being metric spaces themselves.

We now verify the three BBF axioms, as stated in Section 2.4. Recall that .M;S/ is a spotless compression
body, together with its upper boundary. Also, c 2 Z is an integer. Here is the proof of Axiom 2.5:

Lemma 4.11 There is a constant k > 0 such that , for every .M;S/, for every c and for every A;B 2Fc ,
we have that diamB.�B.A//� k.

Proof Suppose that B is not a base surface. Note that @SA is a disjoint collection of curves. By
Corollary 4.6, @SA cuts B. By [Masur and Minsky 2000, Lemma 2.3], the diameter of �B.A/ in C.B/ is
at most two.

Suppose that B is a base surface. Let D be either a compressing disk for A or a vertical disk for TA,
as provided by Theorem 4.3 or Remark 4.4, respectively. If D is a compressing disk, then @D is
disjoint from @SA. If D is a vertical disk, then @D meets @SA D @S@hTA in exactly four points.
We now isotope @D to have minimal intersection with @SB. Applying [Masur and Schleimer 2013,
Lemma 12.20], we deduce that �B.�B.TB\@D// has bounded diameter. Thus, by the triangle inequality,
�B.�B.TB \ @SA// also has bounded diameter, and we are done.

We adopt the notation dY .A;C /D dY .@SA; @SC /.

Lemma 4.12 Let k be the constant of Lemma 4.11. Fix .M;S/ and c. Suppose that A;B;C 2 Fc ,
where B is a base surface replacing the twinned surfaces Y;Y 0. Then

dY .A;C /� dB.A;C /� dY .A;C /C 2k

and the same holds for Y 0.

Proof By Lemma 4.9, dY .A;C / is defined. The first inequality follows from the definitions. The second
inequality follows from two applications of Lemma 4.11 and the triangle inequality.

Here is the proof of Axiom 2.6:

Lemma 4.13 Let k be the constant of Lemma 4.11. Fix .M;S/ and c. For every A;B;C 2Fc , at most
one of the following is greater than 12C 2k:

dA.B;C /; dB.A;C /; dC .A;B/:

Proof It suffices to assume that dB.A;C / > 12C 2k and bound dA.B;C / from above.

Suppose that neither B nor A is a base surface. Then we may apply the usual Behrstock inequality and
deduce that dA.B;C / < 10; see [Mangahas 2010, Lemma 2.5].
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Suppose instead B is not a base surface but A is. Let X and X 0 be the twins over A. By Corollary 4.6, both
X and X 0 overlap B. Applying [Masur and Minsky 2000, Lemma 2.3], dB.X;C / > 10C 2k. The usual
Behrstock inequality gives dX .B;C / < 10. Applying Lemma 4.12, we deduce that dA.B;C / < 10C 2k.

Suppose instead that B is a base surface but A is not. Let Y and Y 0 be the twins over B. By Lemma 4.12,
dY .A;C /� 12 and also dY 0.A;C /� 12. By Lemma 4.9, both @SB and @SC cut A. Suppose that @SY

cuts A. The usual Behrstock inequality gives dA.Y;C / < 10. We deduce that dA.B;C / < 12, as desired.

Finally, suppose that B and A are base surfaces. Let Y and Y 0, and X and X 0, be the twins over B

and A, respectively. By Corollary 4.6, we may assume that X and Y overlap. Thus, dY .X;C / > 10, so
dX .Y;C / < 10, and we are done as above.

Here is the proof of Axiom 2.7:

Lemma 4.14 Let k be the constant of Lemma 4.11. Fix .M;S/ and c. For every A;C 2 Fc , the
following set is finite:

fB 2 Fc jA¤ B, B ¤ C and dB.A;C / > 7C 2kg:

Proof If A and C are not base surfaces, then this follows from [Bestvina et al. 2015, Lemma 5.3] and
Lemma 4.12. If A is a base surface but C is not, then suppose that X and X 0 are the twins over A. We
may repeat the previous argument for the pairs .X;C / as well as .X 0;C /, paying at most an additional
two [Masur and Minsky 2000, Lemma 2.3] in each case. When both A and C are base surfaces, there are
four such pairs and the cost is at most an additional four in each case.

Since the axioms hold, as in Section 3.6 we may build the product of quasitrees of spaces P.M;S/ for
the disk graph. We obtain the following:

Corollary 4.15 Suppose that .M;S/ is a nontrivial spotless compression body with S D Sg;b . Suppose
that � 0.S/� 1. Then

dimasym P.M;S/� 1
2
.4gC b/.4gC b� 3/� 2:

4.16 Embedding the disk complex

In this section, we prove the following:

Theorem 4.17 There is a quasi-isometric embedding � of the disk graph D.M;S/ into the product
P.M;S/ of quasitrees of curve graphs. Moreover , � is equivariant with respect to the action of the
mapping class group MCG.M;S/.

We deduce from this, and from Fact 2.3, the following:

Corollary 4.18 Suppose that .M;S/ is a nontrivial spotless compression body with S D Sg;b . Suppose
that � 0.S/� 1. Then

dimasym D.M;S/� 1
2
.4gC b/.4gC b� 3/� 2:
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Remark 4.19 When g > 1 and b D 0, the upper bound is smaller by one. See [Bestvina and Bromberg
2019, Corollary 1.1]. G

Remark 4.20 Hamenstädt [2019, Theorem 3.6] previously showed, in the special case of a handle-
body Hg, that dimasym D.Hg; @Hg/ � .3g � 3/.6g � 2/. Her proof technique is quite different from
ours. G

The proof of Theorem 4.17 is the same as that of Theorem 3.10, with three changes. First, we replace
the diameter bound (Lemma 3.5, for arcs) by Lemma 4.7. Second, we replace the definition of carries
(Definition 3.12, for arcs) with the following:

Definition 4.21 Suppose that D 2 D.M;S/ is a disk and A 2 Fc . If A� S is compressible (so not a
base surface), then A carries D exactly when D is a compressing disk for A. If A is a twisted witness,
or a base surface, then A carries D exactly when D is isotopic to a vertical disk in TA. G

Third and lastly, we replace the distance estimate of Theorem 3.15 with the following:

Theorem 4.22 Suppose that M and S are as above. There is a constant K such that , for any K0 � K,
there is a constant C with the following property: for any disks D and E, we have

dD.D;E/DC

X
ŒdX .D;E/�K0 ;

where the sum is taken over all X in all reduced families for D.M;S/.

Proof The distance estimate [Masur and Schleimer 2013, Theorem 19.9] bounds dD.D;E/ above and
below using the sum of projection distances to all witnesses. That is, the sum there is taken over all X in
all complete families for D.M;S/. Suppose that B is a base surface for the twins Y and Y 0. By [Masur
and Schleimer 2013, Theorem 12.20], all three of

dB.D;E/; dY .D;E/ and dY 0.D;E/

are coarsely equal. Here we define dB.D;E/D dB.�B.@D/; �B.@E// and �B.@D/D�B.�B.TB\@D//

as in Definition 4.10. This and [Masur and Schleimer 2013, Theorem 19.9] gives the lower bound. The
upper bound is proved in the same way, after weakening the constant C by a factor of two.

Acknowledgement Fujiwara is supported by Grants-in-Aid for Scientific Research from JSPS (20H00114,
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