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We consider in parallel pointed homotopy automorphisms of iterated wedge sums of finite CW–complexes
and boundary-relative homotopy automorphisms of iterated connected sums of manifolds minus a disk.
Under certain conditions on the spaces and manifolds, we prove that the rational homotopy groups of these
homotopy automorphisms form finitely generated FI–modules, and thus satisfy representation stability
for symmetric groups in the sense of Church and Farb. We also calculate explicit bounds on the weights
and stability degrees of these FI–modules.
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1 Introduction

Pointed homotopy automorphisms of iterated wedge sums of spaces and boundary-relative homotopy
automorphisms of iterated connected sums of manifolds minus a disk, come with stabilization maps that
yield questions of whether the homology groups or the homotopy groups of these homotopy automorphisms
stabilize in any sense. Previously Berglund and Madsen [2020] have proven rational homological stability
for homotopy automorphisms of iterated connected sums of higher-dimensional tori Sn �Sn for n� 3,
and these results were later expanded by Grey [2019] and Stoll [2024] for homotopy automorphisms of
iterated connected sums of certain manifolds of the form Sn �Sm for n;m� 3.

We instead study the rational homotopy groups of the homotopy automorphisms in question, which we
consider as based spaces with the identity map as the basepoint. These homotopy groups do not stabilize in
the traditional sense. Instead, we show that they satisfy a different kind of stability, known as representation
stability. In the two cases we study here, we consider sequences of rational homotopy groups, which in
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step n are representations of the symmetric group †n. For such representations there is a consistent way
to name the irreducible representations for arbitrary n, and representation stability essentially means that
as n tends to infinity, the decomposition into irreducible representations eventually becomes constant.

Representation stability was introduced by Church and Farb [2013] and later further developed by Church,
Ellenberg and Farb [Church et al. 2015], who showed that for representations of symmetric groups this
notion can be encoded by so-called FI–modules, which are functors from the category of finite sets and
injections to the category of vector spaces. The stable range of representation stability corresponds to
stability degree and weight of the corresponding FI–module.

We review FI–modules and representation stability in more detail in Section 2. Our first main result is
the following:

Theorem A Let .X;�/ be a pointed simply connected space with the homotopy type of a finite CW–
complex and let XS WD

WS
X for any finite set S . For each k � 1, the functor

S 7! �
Q
k
.aut�.XS //

is an FI–module. If Hn.X;Q/ D 0 for n � d , this FI–module is of weight � kC d � 1 and stability
degree � kC d .

For the analogous theorem for connected sums, we need the notion of a boundary-relative homotopy
automorphism of a manifold N (with boundary). A boundary-relative homotopy automorphism of N is a
homotopy automorphism of N that preserves the boundary @ WD @N pointwise. The boundary-relative
homotopy automorphisms of N form a topological monoid, with respect to composition, which we will
denote by aut@.N /.

Let M DM d be a closed oriented d–dimensional manifold. For any finite set S , we let MS denote
the S–fold connected sum of M with itself, with an open d–disk removed: MS D #S M n VDd . For
n D f1; 2; : : : ; ng, we denote Mn simply by Mn. A homotopy automorphism of Mn does not extend
to a homotopy automorphism of MnC1 in any canonical way in general. However, boundary-relative
homotopy automorphisms of Mn extend by the identity to a boundary-relative homotopy automorphism
of MnC1. In particular, there is a stabilization map

sn W aut@.Mn/! aut@.MnC1/:

By picking some basepoint in the boundary of M1, there is a deformation retract MS
'�!
WS

M1 (see
eg [Félix et al. 2008, Section 3.1.2]), where the wedge sum is taken along this basepoint. It follows by
Theorem A that there is an FI–module given on objects by S 7!�k.aut�.MS //Š�k.aut�.

WS
M1//. For

any finite set S we have an obvious inclusion map aut@.MS / ,! aut�.MS /, so we may ask whether we can
find an FI–module given by S 7! �k.aut@.MS // that make these maps into a morphism of FI–modules,
ie a natural transformation of functors. We will refer to this as “lifting” the FI–module structure. In our
second main theorem, we address this problem:
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Theorem B Let M DM d be a closed simply connected oriented d–dimensional manifold. With MS

defined as above , we have the following:

(a) For each k � 1, the FI–module

S 7! �k

�
aut�

� S_
M1

��
Š �k.aut�.MS //

lifts to an FI–module
S 7! �k.aut@.MS //

sending the standard inclusion n! nC 1 to the map �k.aut@.Mn//! �k.aut@.MnC1// induced
by the stabilization map sn.

(b) The rationalization of this FI–module is of weight � kC d � 2 and stability degree � kC d � 1.

Remark 1.1 Theorems A and B are somewhat analogous to those for unordered configuration spaces
of manifolds. Rational homological stability for unordered configuration spaces of arbitrary connected
manifolds was proven by Church [2012], following integral results for open1 manifolds by Arnold [1969],
McDuff [1975] and Segal [1979]. It was later proven by Kupers and Miller [2018] that the rational
homotopy groups of unordered configuration spaces on connected, simply connected manifolds of
dimension at least 3 satisfy representation stability.

Homotopy automorphisms of iterated wedge sums of spheres have been studied by Miller, Patzt and
Petersen [Miller et al. 2019]. Using representation stability, they prove that for d � 2 the sequence˚
B aut

�Wn
iD1 S

d
�	
n�1

satisfies homological stability with Z
�
1
2

�
–coefficients, which proves homological

stability with the same coefficients for fB GLn.S/gn�1, where S is the sphere spectrum. These results
are neither weaker nor stronger than Theorem A, since on one hand they work with Z

�
1
2

�
–coefficients

and on the other hand we work with wedge sums of more general CW–complexes than spheres.

For a simply connected d–dimensional manifold M , with boundary @M Š Sd�1, the rational homotopy
theory of aut@.M/ has been thoroughly studied by Berglund and Madsen [2020], whose results we will use.

As a byproduct of the techniques used for proving Theorem B(a) we get the following:

Theorem Let M be a closed oriented simply connected d–dimensional manifold such that the reduced
homology of M n VDd is nontrivial. Given a subspace A� @Mn, possibly empty , such that A�Mn is a
cofibration , then the groups �0.autA.Mn//, �0.DiffA.Mn// and �0.HomeoA.Mn// contain a subgroup
isomorphic to †n.

Structure In Section 2 we review the necessary background on FI–modules. The reader familiar with
FI–modules may skip directly to Section 2.8, where we introduce the notion of FI–Lie models of pointed
FI–spaces, which is of key importance for proving the main theorems. In Section 3 we review rational

1Integral homological stability is known not to hold for closed manifolds. A simple counterexample is given already by the
2–sphere S2, where H1.Bn.S2/;Z/Š Z=.2n� 2/Z; see for example [Birman 1974, Theorem 1.11].

Algebraic & Geometric Topology, Volume 24 (2024)



2676 Erik Lindell and Bashar Saleh

homotopy theory for homotopy automorphisms needed for proving the main theorems. In Section 4 we
study homotopy automorphisms of wedge sums and prove Theorem A. In Section 5 we study homotopy
automorphisms of connected sums and prove Theorem B.
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2 Representation stability, FI–modules and Lie models of FI–spaces

2.1 Conventions

Throughout the paper, we will useR to denote a commutative ring, which we will assume to be Noetherian
for convenience. We will mainly work over the field Q, so unless otherwise specifically stated, all vector
spaces are over Q. We will use “dg” to abbreviate the term differential graded. FI denotes the category
of finite sets with injective maps as morphisms.

If S is a finite set, we will use jS j to denote its cardinality, and we will write †.S/ WD AutFI.S/ for the
symmetric group on S . If S D n WD f1; 2; : : : ; ng, we will simply write †.S/D†n for brevity.

Recall that the irreducible Q–representations of †n are indexed by partitions of weight n, ie sequences
of nonnegative integers � D .�1 � �2 � � � � � �l � 0 � � � � / such that j�j D �1C �2C � � � D n. We
will denote the corresponding Q–representation by V�. For any k � nC�1, we also define the padded
partition �Œk� WD .k�n� �1 � �2 � � � � / and write V.�/k WD V�Œk�.

2.2 Representation stability

Before we introduce the language of FI–modules, let us recall the original notion of representation stability,
which is formulated in terms of consistent sequences of †n–representations.

Definition 2.1 Let R be a commutative ring. A consistent sequence of †n–representations over R is
a sequence fV n; �ng, where V n is an RŒ†n�–module and �n W V n ! V nC1 is a †n–equivariant map
(where V nC1 is considered an RŒ†n�–module through the standard inclusion †n ,!†nC1).
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If RDQ, we may define (uniform) representation stability for such a sequence as follows:

Definition 2.2 A consistent sequence of rational †n–representations fV n; �ng is said to be uniformly
representation stable with stable range n�N if, for all n�N ,

(i) the map �n is injective,

(ii) the image of �n generates V nC1 as a †nC1–representation,

(iii) for each partition � the multiplicity of V.�/n in V n is independent of n.

Next, we will introduce FI–modules, and recall how representation stability is encoded in that language.

2.3 FI–modules

We first introduce the notion of an FI–object in an arbitrary category.

Definition 2.3 Let C be a category. A functor FI! C is called an FI–object in C.

Let us review the kinds of FI–objects that will be of interest to us:

� An FI–object in .gr/ModR, the category of (Z–graded) R–modules, is called a (graded) FI–R–module.
An FI–object in dgModR, the category of differential graded R–modules, is called a dg FI–R–module.
For a dg FI–R–module V , we will write H�.V/ for the composition with the homology functor and refer
to it as the homology of V .

� An FI–object in dgLieR, the category of dg Lie algebras, over R, will be called a dg FI–R–Lie algebra.

� An FI–object in Top�, the category of pointed topological spaces, will be called a pointed FI–space. If
P is a property of pointed topological spaces, such as being simply connected, we will say that a pointed
FI–space X has property P if X .S/ has property P , for every finite set S . If X is a pointed FI–space with
�1.X .S// being abelian for every finite set S , composing with the (rational) homotopy groups functor ��
(resp. �Q

� ) naturally gives us a graded FI–Z–module (resp. graded FI–Q–module). We will simply write
��.X / (resp. �Q

� .X /) for this composite functor and refer to it as the (rational) homotopy groups of X .

We will generally consider the first two examples for RDQ and RDZ. If the ring is clear from context,
or if the choice of R is not important, we will generally drop it from the notation.

Now let us recall some basics from the theory of FI–modules. Since the category of (graded) R–modules
is abelian, the category of (graded) FI–R–modules inherits this structure, which means that there are
natural notions of (graded) FI–R–submodules as well as quotients, direct sums and tensor products of
(graded) FI–R–modules, all defined pointwise; see [Church et al. 2015, Remark 2.1.2].

Remark 2.4 Any FI–R–module V gives rise to a consistent sequence fV n WDV.n/; �n WDV.n ,!nC1/g
of RŒ†n�–modules, where n ,! nC 1 is the standard inclusion.

Remark 2.5 Not every consistent sequence arises from an FI–module; see [loc. cit., Remark 3.3.1].
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Sometimes it will be more convenient to work with consistent sequences than with FI–modules. For this
purpose, the following lemma is important:

Lemma 2.6 [loc. cit., Remark 3.3.1] A consistent sequence fV n; �ng is induced by some FI–module if
and only if every � 2†nCk with � jn D id acts trivially on

im.�nCk�1 ı � � � ı�n W V n! V nCk/:

If two FI–modules give rise to isomorphic consistent sequences , then the two FI–modules are isomorphic.

The main property of FI–modules that will be of interest to us is finite generation, since this is what
encodes representation stability:

Definition 2.7 Let n WD f1; 2; : : : ; ng. A (graded) FI–R–module V is said to be finitely generated if there
exists a finite set S �

F
n�1 V.n/ such that there is no proper (graded) FI–R–submodule W of V such

that S �
F
n�1W.n/.

Now we can describe how representation stability relates to FI–modules:

Theorem 2.8 [loc. cit., Theorem 1.13] An FI–Q–module V is finitely generated if and only if the
consistent sequence fV n WD V.n/g is uniformly representation stable and each V n is finite-dimensional.

What makes working with the category of FI–R–modules for any Noetherian ring R particularly useful is
that it is Noetherian, ie an FI–R–submodule of such a finitely generated FI–R–module is itself finitely
generated; see [Church et al. 2015, Theorem 1.3; 2014, Theorem A]. Finite generation is also preserved
by tensor products and quotients. This means that to prove that an FI–R–module is finitely generated, it
suffices to show that it is a subquotient of a tensor product of some FI–R–modules that are more obviously
finitely generated.

Since we want to use rational homotopy theory to prove our results, we need to consider graded FI–modules
in our proofs. For this reason we will need the following definition:

Definition 2.9 If V is a graded FI–R–module and m 2 Z, let Vm be the degree-m part of V , ie the
postcomposition with the functor grVectQ!VectQ given by sending a graded vector space to its degree-
m part. If Vm D 0 for m � m0 (resp. m � m0), we say that V is concentrated in degrees above (resp.
below) m0. Such a graded FI–module is called bounded from below (resp. above).

2.4 Weight and stability degree

For the rest of Section 2 we will assume that R D Q. We have seen how finite generation of FI–Q–
modules corresponds to representation stability of the corresponding consistent sequence of rational
†n–representations, but in order to make quantitative statements about stability ranges we need to
introduce the weight and stability degree of such FI–modules.

Algebraic & Geometric Topology, Volume 24 (2024)
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Recall that if V is a †n–representation, .V /†n denotes the quotient of coinvariants of V . For an
FI–module V , this allows us to define a sequence f�a.V/ng of vector spaces and maps between them,
for each a � 0, by �a.V/n WD .V.a t n//†n . Any inclusion � W n ,! n C 1 gives us an inclusion
idt � W atn ,! at.nC1/, inducing a map �a.V/n! �a.V/nC1. Since we quotient by †nC1, the choice
of inclusion � does not matter.

With this, we can define the stability degree of an FI–module:

Definition 2.10 [Church et al. 2015, Definition 3.1.3] The injectivity degree inj-deg.V/ (resp. surjectivity
degree surj-deg.V/) of an FI–module V is the smallest s � 0 such that for all a � 0, the map �a.V/n!
�a.V/nC1, defined as above, is injective (resp. surjective) for all n� s (and if no such s exists we set the
degree to1). We define the stability degree stab-deg.V / of V to be the maximum of the injectivity and
surjectivity degrees.

Definition 2.11 The weight of an FI–module V , which we denote by weight.V/, is the maximum
weight j�j over all V.�/n appearing in the †n–representation V.n/, if such a maximum exists. If no
maximum exists, we set weight.V/D1 and if the FI–module is zero we set it to zero.

These definitions are relevant because of their relation to representation stability, which may now be
stated as follows:

Proposition 2.12 [loc. cit., Proposition 3.3.3] Let V be an FI–module. The consistent sequence fV n; �ng
determined by V is uniformly representation stable with stable range n� weight.V/C stab-deg.V/.

Remark 2.13 This implies that if an FI–module has finite weight and stability degree, it is finitely
generated. For this reason we will only be working with weight and stability degree going forward.
However, due to the Noetherian property of FI–modules, it is possible to freely take submodules and
quotients and preserve finite generation. This is not the case for stability degree, as we will see, making it
much easier to prove finite generation than to obtain an explicit bound on stability degree.

Let us recall some useful properties of weight and stability degree. First, the following is immediate from
the definitions:

Proposition 2.14 Let V1 and V2 be FI–modules. Then weight.V1˚V2/�max.weight.V1/;weight.V2//
and stab-deg.V1˚V2/�max.stab-deg.V1/; stab-deg.V2//.

Next, we will recall how weight and stability degree behave under taking tensor products:

Proposition 2.15 Suppose that V1;V2; : : : ;Vk are FI–modules with stability degrees � r1; r2; : : : ; rk
and weights � s1; s2; : : : ; sk , respectively. Then

weight.V1˝ � � �˝Vk/� s1C � � �C sk
and

stab-deg.V1˝ � � �˝Vk/�max.r1C s1; : : : ; rkC sk; s1C � � �C sk/:
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Proof The first part is [Church et al. 2015, Proposition 3.2.2], while the second part is [Kupers and
Miller 2018, Proposition 2.23].

We also need to know how stability degree and weight behave when taking submodules and quotients:

Proposition 2.16 Let V be an FI–module and W be an FI–submodule of V . Then weight.W/�weight.V/
and weight.V=W/� weight.V/. If in addition V is such that V.S/ is finite-dimensional for every finite
set S , we have the following:

(i) inj-deg.W/� inj-deg.V/.

(ii) surj-deg.V=W/� surj-deg .V /.

(iii) If inj-deg.V/� r and surj-deg.W/� r , then inj-deg.V=W/� r .

(iv) If surj-deg.V/� r and inj-deg.V=W/� r , then surj-deg.W/� r .

Proof The first part follows directly by the definition of weight, and (i) and (ii) are [Church et al. 2015,
Lemma 3.1.6].

To prove (iii) and (iv), note that for each a � 0, �a defines a functor from the category of FI–modules to
the category of sequences of vector spaces and linear maps, and this functor is exact. Thus the following
respective propositions from linear algebra suffice to prove (iii) and (iv): if f W V !W is a linear map of
finite-dimensional vector spaces, V 0 � V and W 0 �W are subspaces, f 0 W V 0!W 0 is a linear map such
that f 0.v/Df .v/ for all v2V 0 and f=f 0 WV=V 0!W=W 0 is the induced map between the quotients, then

(iii0) if f is injective and f 0 is surjective, f=f 0 is injective,

(iv0) if f is surjective and f=f 0 is injective, f 0 is surjective.

These are both simple exercises in linear algebra and therefore left to the reader.

Note however that given only the stability degree of an FI–module we can in general not say anything
about the stability degree of its FI–submodules or quotients. However, if an FI–module V is isomorphic
to both an FI–submodule of an FI–module and a quotient of an FI–module, for both of which we have
bounds on the stability degree, we can use the proposition above to determine a bound on stab-deg.V/.
This will be the case for an important class of FI–modules that we consider in Section 2.6. Note that in
particular, we get the following corollary:

Corollary 2.17 Suppose W is an FI–module which is a direct summand of another FI–module V , ie that
there exists a third FI–module U such that V ŠW˚U . Then stab-deg.W/� stab-deg.V/.

Finally, we need a way to determine the weight and stability degree in each degree when taking the
homology of a differential graded FI–module. We will prove the following more general statement (see
[Kupers and Miller 2018, Proposition 2.19]):
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Proposition 2.18 Let U f
�! V g

�!W be a sequence of FI–modules and morphisms of FI–modules such
that U.S/;W.S/ and V.S/ are finite-dimensional for all S 2 FI and g ıf D 0. Then

weight.ker.g/=im.f //� weight.W/;

and if all three FI–modules have stability degree� r , then stab-deg.ker.g/=im.f //� r . In particular , if V
is a dg FI–module such that Vm.S/ is finite-dimensional for each m and finite set S then weight.Hm.V//�
weight.Vm/, and if stab-deg.Vi /� r for i 2 fm� 1;m;mC 1g, we have stab-deg.Hm.V//� r .

Proof The first part follows directly from the first part of Proposition 2.16. We prove the second part by
showing that the homology has injectivity and surjectivity degree � r . For injectivity degree, note that
ker.g/ has injectivity degree � r by Proposition 2.16(i), since it is an FI–submodule of V . Furthermore,
since the category of FI–modules is abelian, im.f / Š U=ker.f /, which has surjectivity degree � r
by Proposition 2.16(ii). Thus it follows from Proposition 2.16(iii) that ker.g/=im.f / has injectivity
degree � r .

For surjectivity degree, we argue similarly as follows: The injectivity degree of im.g/ is at most r by
Proposition 2.16(i), and since im.g/ Š V=ker.g/, we thus get by Proposition 2.16(iv) that ker.g/ has
surjectivity degree � r . Thus the quotient ker.g/=im.f / does as well, by Proposition 2.16(ii).

2.5 FI#–modules

Many FI–modules appearing “naturally” actually have additional structure, which may be encoded using
the notion of an FI#–module. The category FI# has the same objects as FI, but the morphisms S ! T are
given by a pair of subsets A� S and B � T and a bijection A! B . We call these partial injections. An
FI#–object in a category C is simply a functor FI#

! C. Since FI is a subcategory of FI#, any FI#–object
has an underlying FI–object, so all the notions defined in the previous sections can be defined for (graded)
FI#–modules by simply considering the underlying (graded) FI–module.

We consider FI#–modules because there is a natural way to define duals in this category. Note that the
category FI# is naturally isomorphic to its opposite category simply by taking the inverse of the bijection
(see the end of [Church et al. 2015, Remark 4.1.3]). This allows us to make the following definition:

Definition 2.19 If V W FI#
! VectQ, we define the dual FI#–module V� as the composite functor

FI# Š�! .FI#/op Vop
��! Vectop

Q
HomQ.�;Q/
��������! VectQ:

2.6 Schur functors

The graded FI–modules that we will study will be constructed by composing Schur functors with simpler
graded FI–modules, which is why they are of finite type. In this section we will review what we mean by
Schur functors in this context and their properties when composed with graded FI–modules.

Algebraic & Geometric Topology, Volume 24 (2024)
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If � is a partition of k � 0, we define the Schur functor S� W grVectQ! grVectQ on objects by

V 7! S�˝†k V
˝k;

considering V ˝k with the standard†k–action and considering S� as a graded vector space concentrated in
degree 0. Another definition, which gives an isomorphic functor, is that S�.V / is given by the composition
of the kth tensor power functor with the action of a certain idempotent operator c� 2QŒ†k�, known as a
Young symmetrizer, acting on V ˝k (see [Fulton and Harris 1991] for a definition). This characterizes
S�.V / as a subrepresentation of V ˝k .

If W is a finite-dimensional graded †k–representation, we more generally define its associated Schur
functor by

V 7!W ˝†k V
˝k;

and denote it by SW . Note that since W is finite-dimensional, this functor decomposes as a direct sum of
Schur functors S� (possibly shifted in degree).

Even more generally, given a symmetric sequence W D .W.1/;W.2/; : : : / of (graded) vector spaces,
ie a sequence in which W.k/ is a graded †k–representation, we can associate to it the endofunctorL
k�1 SW.k/ ıV of grVectQ, which we will denote by SW and call the Schur functor associated to W .

Schur functors are of interest to us, since they preserve stability degree and weight in the following way:

Proposition 2.20 Let W D .W.1/;W.2/; : : : / be a symmetric sequence of graded vector spaces , where
each W.k/ is finite-dimensional and concentrated in nonnegative degree , and let V W FI! grVectQ be a
graded FI–module such that V.S/ is concentrated in strictly positive degrees for every S 2 FI. Suppose
that V.S/ is finite-dimensional in each degree and that weight.Vi /� s and stab-deg.Vi /� r for all i �m.
Then weight..SW ıV/m/�ms and stab-deg..SW ıV/m/�max.r C s;ms/.

Proof By definition SW ıV decomposes as the direct sumM
k�1

SW.k/ ıV;

and we may decompose each summand further as

SW.k/ ıV D
M
j�0

M
i�1

W.k/j ˝†k .V
˝k/i :

Since W.k/ is concentrated in nonnegative degree and V is concentrated in positive degree, it follows
that SW.k/ ıV is concentrated in degrees � k. We thus have

.SW ıV/m D
mM
kD1

M
iCjDm

W.k/j ˝†k .V
˝k/i :

By Corollary 2.17, it thus suffices to find bounds on the weight and stability degree ofW.k/j˝†k .V
˝k/i

for all k � m and all i and j such that i C j D m. By definition, this is a quotient of the FI–module
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W.k/j ˝ .V˝k/i . Since W.k/j is a constant FI–module and .V˝k/i decomposes as a direct sum of
summands of the form Vl1˝� � �˝Vlk such that l1C� � �C lk D i , it follows by Propositions 2.15 and 2.16
that weight.W.k/j ˝ .V˝k/i /� is and surj-deg.W j ˝ .V˝k/i /�max.r C s; is/.

By the discussion above, we also have that W.k/j ˝†k .V
˝k/i is isomorphic to a direct sum of graded

FI–submodules of .V˝kŒj �/i (by decomposing W.k/j into irreducible †k–representations and applying
the corresponding Young symmetrizer for each summand), where Œj � denotes a shift of j degrees upwards.
Thus we get the same bound on injectivity degree, finishing the proof, since i �m.

2.7 Derivation Lie algebras as FI–Lie algebras

Now let us introduce more specific examples of FI–modules that will be of interest to us. Here it will be
useful to work with FI#–modules. We make the following definition:

Definition 2.21 Let H be a graded vector space. We define a graded FI#–module H by letting
H.S/ WD H˚S for any S 2 FI, and for any A � S , B � T and bijection f W A ! B we define a
linear map H.f / WH.S/!H.T / as the composition

H.S/�H.A/!H.B/ ,!H.T /;

where the first map is the natural projection, the second is the map induced by f and the last is the
natural injection.

In the following sections H will be the desuspension of the reduced homology of a simply connected
finite CW–complex, so that its homology is finite-dimensional. We then have weight.H/D 1, since H˚S

decomposes into a direct sum of trivial and standard representations of †.S/, which correspond to the
padded partitions �ŒjS j� of �D .1/ and �D .0/, respectively. It is also easily verified that stab-deg.H/D 1.

Composing with the free graded Lie algebra functor L, we get a new graded FI#–module, which we
denote by LH.

Since H is an FI#–module, we may consider its dual FI#–module H�. Let us describe it in some more
detail. For a finite set S we simply have H�.S/DH.S/�D .H�/˚S , and if S �A f

�!B � T is a partial
injection then H�.S � A f

�! B � T / is the composition

H�.S/�H�.A/ ıH.f
�1/

������!H�.B/ ,!H�.T /:

Remark 2.22 If we restrict this FI#–module to FI and i W S ,! T is an injection, we can describe the map
H�.i/ as follows: Let � 2H�.S/ and x˛ be in the summand of H˚T corresponding to ˛ 2 T . Then

(1) .H�.i/.�//.x˛/D
�
0 if ˛ 2 T n i.S/;
.� ıH.i/�1/.x˛/ if ˛ 2 i.S/:

Just as for H, the following proposition is easily verified:

Proposition 2.23 If H is a finite-dimensional graded vector space , then the graded FI#–module H� has
weight � 1 and stability degree � 1.
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Next, we will define the graded FI#–Lie algebra of derivations on the graded FI#–Lie algebra LH. Recall
that if L is a graded Lie algebra, we define a derivation on L as a (graded) linear map D W L ! L

which satisfies
DŒx; y�D ŒDx; y�C .�1/jxjjDjŒx;Dy�

for all x; y 2 L. We denote the graded vector space of all derivations by Der.L/.

Definition 2.24 We define the graded FI–module Der.LH/ W FI! grVectQ by letting Der.LH/.S/D
Der.LH.S// for S 2 FI, and for i W S ,! T an injection we define Der.LH/.i/ as follows: Recall
that a derivation on LH.T / is uniquely determined by its restriction to H.T /. Suppose therefore that
x˛ 2H.T / lies in the direct summand of H.T / corresponding to ˛ 2 T and let D 2Der.L.H˚S //. Then
Der.LH/.i/D is determined by

(2) .Der.LH/.i/D/.x˛/D
�
0 if ˛ 2 T n i.S/;
.LH.i/ ıD ıH.i/�1/.x˛/ if ˛ 2 i.S/:

Remark 2.25 The functor Der.LH/ may in fact be extended to all of FI# using a similar definition, but
since we will not be using this we only consider the simpler functor from FI#.

For a graded Lie algebra L, the commutator Lie bracket

ŒD;D0�DD ıD0� .�1/jDjjD
0jD0 ıD

makes Der.L/ into a graded Lie algebra. A straightforward computation using (2) shows that

Der.LH/.i/ŒD;D0�D ŒDer.LH/.i/.D/;Der.LH/.i/.D0/�;

giving us the following result:

Proposition 2.26 The functor Der.LH/ W FI! grVectQ of Definition 2.24 factors through the forgetful
functor grLieQ! grVectQ, where grLieQ is the category of graded Lie algebras over Q.

Further, we can determine explicit weights and stability degrees in each degree of this graded FI–module:

Proposition 2.27 Let H be a finite-dimensional graded vector space concentrated in strictly positive
degrees. If the degree of H is bounded strictly below d , for some d � 1, we have weight.Der.LH/m/�
mC d and stab-deg.Der.LH/m/�mC d .

Proof For every S 2 FI, we have an isomorphism of graded vector spaces

‰S WH�.S/˝LH.S/ Š�! Der.LH/.S/;

given by sending �˝A 2H�.S/˝LH.S/ to the derivation in Der.LH/.S/ defined by

x 7! �.x/A
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on x 2H.S/. We want to prove that this defines a map of graded FI–modules, ie that for every morphism
i W S ,! T , the diagram

(3)
H�.S/˝LH.S/ Der.LH/.S/

H�.T /˝LH.T / Der.LH/.T /

‰S

H�.i/˝LH.i/ Der.LH/.i/

‰T

is commutative. This can be verified by applying the definitions of ‰S and ‰T , together with the
description of H�.i/ given by (1) and the description of Der.LH/.i/ given by (2).

Thus Der.LH/ŠH�˝LH, as graded FI–modules. Note that H� is concentrated in negative degrees,
which are bounded from below, by the assumption on H . We thus have

.H�˝LH/m D
d�1M
iD1

.H�/�i ˝ .LH/mCi :

Since both H and H� are of weight and stability degree 1, the same argument as in the proof of
Proposition 2.20 shows that .H�/�i ˝ .LH/mCi is simultaneously a quotient of an FI–module of weight
and stability degree �mC i C 1, so .H�˝LH/m thus has both weight and stability degree mC d , due
to Propositions 2.16 and 2.17.

The FI–modules that we consider in Theorem A are the homology groups of graded FI–modules of the
type Der.LH/, with H as above, so it will follow immediately from Proposition 2.18 that we get the
claimed bounds on weight and stability degree. In the case of Theorem B, it turns out that we can use
Proposition 2.20 more directly, due to results from [Berglund and Madsen 2020].

2.8 FI–Lie models

Now, let us introduce the notion of an FI–Lie model, which will be one of our main tools. For the basic
theory of Lie models in rational homotopy theory, see for example [Félix et al. 2001].

Definition 2.28 Let X be a simply connected based FI–space and let L be a dg FI–Lie algebra. We say
that L is an FI–Lie model for X if

(i) for every S 2 FI, L.S/ is a dg Lie model for the space X .S/, and

(ii) for every morphism S ,! T in FI, the dgl map

L.S/! L.T /

is a model for the map X .S/! X .T /.

Remark 2.29 If L is an FI–Lie model for X , then H�.L/Š �Q
� .X / is an isomorphism of FI–modules.
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Remark 2.30 A reader may feel that Definition 2.28 is somewhat unnatural. Indeed, it is not the
“philosophically” correct definition of FI–Lie model, seen from a modern homotopy-theoretic perspective.
There is an equivalence of1–categories

.dgLieQ/�1 Š TopQ
�2;

between the1–categories of connected dg Lie algebras, localized at the quasi-isomorphisms, and simply
connected spaces, localized at the rational homotopy equivalences. The usual definition of dg Lie models in
rational homotopy theory is that a connected dg Lie algebra .L; d/ is a dg Lie model for a simply connected
space X if they are isomorphic under this equivalence. Equivalently, it suffices to require that they are
isomorphic under the equivalence between the homotopy categories h.dgLieQ/�1ŠhTopQ

�2. The correct
definition of FI–Lie model should therefore be that a dg FI–Lie algebra L is an FI–Lie model of a simply
connected pointed FI–space X if they are isomorphic under the equivalence of the homotopy categories

hFun.FI; .dgLieQ/�1/Š hFun.FI;TopQ
�2/:

In contrast, our definition is requiring isomorphism under the equivalence of “ordinary” functor categories

Fun.FI; h.dgLieQ/�1/Š Fun.FI; hTopQ
�2/:

Nevertheless, the naive Definition 2.28 is simpler and sufficient for our purposes here.

3 Rational homotopy theory for homotopy automorphisms

In this section we will review some rational homotopy theory for homotopy automorphisms we will need.

Let X be a simply connected topological space homotopy equivalent to a CW–complex. A homotopy
automorphism of X is a self-map ' WX !X that is a homotopy equivalence. We denote the topological
monoid of unpointed and pointed homotopy automorphisms of X by aut.X/ and aut�.X/, respectively.
Given a subspace A � X , we denote the topological monoid of A–relative homotopy automorphisms
of X , ie the homotopy automorphisms that preserve A pointwise, by autA.X/. When A is a point or
empty we simply write aut�.X/ and aut.X/, respectively, and when X DN is a manifold with boundary
AD @N , the monoid of boundary-relative homotopy automorphisms of N is denoted by aut@.N /.

If X is well pointed and A�X is a cofibration of cofibrant spaces in the Hurewicz model structure, then
all of aut.X/, aut�.X/ and autA.X/ are group-like monoids, and thus equivalent to topological groups.
We take the basepoint of a topological monoid G to be the identity element and �k.G; id/ is abbreviated
by �k.G/. We denote the classifying space of G by BG and its universal cover by fBG. Moreover, if a
topological monoid G is group-like, then G and �BG are weakly equivalent as topological monoids. Let
Gı �G denote the connected component of the identity. Then BGı ' fBG. We observe that

�k.G/˝QŠ �kC1.fBG/˝QŠ �kC1.BGı/˝QŠHk.gBGı/

for all k � 1 and where gBGı is any dg Lie algebra model for BGı.

The identity component of autA.X/ is denoted by autA;ı.X/.
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Remark 3.1 By [Farjoun 1996], there are functorial and continuous rationalization functors that preserve
cofibrations. In particular, given a cofibration A � X , there is a rationalization functor that induces a
group homomorphism r W �0.autA.X//! �0.autAQ.XQ//.

For k � 1 we have that
�k.autA.X//˝QŠ �k.autAQ.XQ//;

since B autA;ı.X/Q ' B autAQ;ı.XQ/; see [Berglund and Saleh 2020, Proposition 2.4].

A model for B autA;ı.X/ is given in terms of dg Lie algebras of derivations.

Definition 3.2 Given a dg Lie algebra L, let Der.L/ denote the dg Lie algebra of derivations of L, where
the graded Lie bracket is given by

Œ�; ��D � ı �� .�1/j� jj�j� ı �

and the differential is given by @D ŒdL;�� where dL is the differential of L.

Definition 3.3 Given a chain complex C DC�, the positive truncation of C , denoted by CC, is given by

CCi D

8<:
Ci if i > 1;
ker.C1

d
�! C0/ if i D 1;

0 if i < 1:

Definition 3.4 A dg Lie algebra .L.V /; d/ is called quasifree if its underlying graded Lie algebra
structure is a free graded Lie algebra on the graded vector space V .

Definition 3.5 We say that a dg Lie algebra map between two quasifree dg Lie algebras � WL.V /!L.U /

is free if � is injective and �.V /� U . In particular U has a decomposition U Š V ˚W .

Remark 3.6 One can show that the free maps between the quasifree dg Lie algebras are exactly the
cofibrant maps between them; see the remark after [Quillen 1969, Proposition 5.5].

Proposition 3.7 (a) Let X be a simply connected space of the homotopy type of a finite CW–complex
with a quasifree dg Lie algebra model LX . A dg Lie model for B aut�;ı.X/ is given by DerC.LX /.

(b) Let A � X be a cofibration of simply connected spaces of the homotopy type of finite CW–
complexes , and let LA! LX be a cofibration (ie a free map) of quasifree dg Lie algebras that
models the inclusion A�X . A dg Lie model for B autA;ı.X/ is given by the positive truncation of
the dg Lie algebra of derivations on LX that vanish on LA, denoted by DerC.LX kLA/.

(c) The inclusion DerC.LX kLA/! DerC.LX / is a model for B autA;ı.X/! B aut�;ı.X/ induced
by the inclusion autA;ı.X/ ,! aut�;ı.X/.

Proof For (a), see [Tanré 1983, corollarie VII.4(4)]. For (b), see [Berglund and Saleh 2020, Theorem 1.1].
Statement (c) follows by [loc. cit., Proposition 4.6] and the theory established in [Berglund 2020,
Sections 3.4 and 3.5].
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We recall the notion of geometric realizations of dg Lie algebras. For a detailed account on the subject
we refer the reader to [Hinich 1997; Getzler 2009; Berglund 2015; 2020].

Definition 3.8 [Hinich 1997, Definition 2.1.1] Let �� D ��� denote the simplicial commutative dg
algebra in which ��n is the Sullivan–de Rham algebra of polynomial differential forms on the n–simplex.
The geometric realization of a positively graded dg Lie algebra L is defined to be the simplicial set
MC.L˝��/ of Maurer–Cartan elements of the simplicial dg Lie algebra L˝��, denoted by MC�.L/.
We recall that the tensor product L˝� of a dg Lie algebra L with a commutative dg algebra � is again a
dg Lie algebra, where Œ`1˝ c1; `2˝ c2�D .�1/jc1jj`2jŒ`1; `2�˝ c1c2. A positively graded dg Lie algebra
L is a Lie model for a simply connected space X if and only if there exists a zigzag of rational homotopy
equivalences between the geometric realization MC�.L/ and X .

The functor MC� takes surjections to Kan fibrations [Getzler 2009, Proposition 4.7] and takes injections
to cofibrations (in the classical model structure on simplicial sets). In particular, if LA! LX is a free
map of dg Lie algebras that models a cofibration A�X , then the cofibration MC�.LA/ ,!MC�.LX / is a
simplicial model for the cofibration AQ �XQ. Thus autAQ.XQ/ and autMC�.LA/.MC�.LX // are weakly
equivalent as topological monoids.

Definition 3.9 The exponential exp.h/ of a nilpotent Lie algebra h concentrated in degree zero is the
nilpotent group with underlying set given by h and multiplication given by the Baker–Campbell–Hausdorff
formula. The exponential of a positively graded dg Lie algebra L, denoted by exp

�
.L/, is the simplicial

group given by the exponential exp.Z0.L˝��// of the zero cycles in L˝��; see [Berglund 2020].

Proposition 3.10 [loc. cit., Corollary 3.10] For a positively graded dg Lie algebra L there is an
equivalence of topological monoids between exp

�
.L/ and the loop space �MC�.L/.

Definition 3.11 Let L.V / � L.V ˚W / be a cofibration of free positively graded dg Lie algebras
and let Der.L.V ˚W / kL.V // denote the dg Lie algebra of derivations on L.V ˚W / that vanish on
L.V /; the differential is ŒdL.V˚W /;��. There is a left action of exp

�

�
DerC.L.V ˚W / kL.V //

�
on

MC�.L.V ˚W // given by

(4) ‚:x D
X
i�0

‚i .x/

i Š
:

See [Berglund and Saleh 2020, Section 3.2].

Proposition 3.12 [Berglund 2022, Proposition 3.7] Let A�X be a cofibration of simply connected
spaces with homotopy types of finite CW–complexes , and let � W L.V /! L.V ˚W / be a free map of
quasifree dg Lie algebras that models the inclusion A�X . Then the topological monoid map

F W exp
�

�
DerC.L.V ˚W / kL.V //

�
! autMC�.L.V //;ı

�
MC�.L.V ˚W //

�
' autAQ;ı.XQ/;

F .‚/.x/D‚:x;

is a weak equivalence.
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Proof Note that the action of exp
�

�
DerC.L.V ˚W /kL.V //

�
on MC�.L.V ˚W // fixes MC�.L.V //�

MC�.L.V ˚W // pointwise. In particular, the group action yields a map

exp
�

�
DerC.L.V ˚W / kL.V //

�
! autMC�.L.V //

�
MC�.L.V ˚W //

�
:

Moreover, since exp
�

�
DerC.L.V ˚W / kL.V //

�
is connected and F preserves the identity element, we

may replace the codomain by

autMC�.L.V //;ı
�
MC�.L.V ˚W //

�
;

ie the component of the identity. We proceed by adapting the proof of [loc. cit., Proposition 3.7] to our
situation. Given a positively graded dg Lie algebra h, there is an isomorphism of abelian groups

G WHk.h/! �k.exp
�
.h//

where a homology class of a cycle z 2Zk.h/ is sent to the homotopy class of the k–simplex z˝ �k 2
Z0.h˝�

�
k
/, where �k is the class kŠdt1 � � � dtk . That G defines an isomorphism is motivated in the

proof of [loc. cit., Proposition 3.7].

We have that �2
k
D 0, and consequently

F.� ˝ �k/D idC � ˝ �k :

Let us now analyze �k
�
autMC�.L.V //;ı

�
MC�.L.V ˚W //

��
for k � 1, as in the proof of [Berglund

and Madsen 2020, Theorem 3.6]. In order to simplify notation, MC�.L.V // is denoted by AQ and
MC�.L.V ˚W // by XQ. We have that an element f 2 �k.autAQ;ı.XQ// is represented by a map

f W .Sk t�/^XQ!XQ;

where f .�; x/D x for every x 2XQ and f .s; a/D a for every a 2 AQ and s 2 Sk .

A dg Lie algebra model for .Sk t�/^XQ is given by .L.U ˚ skU/; @/ where U D V ˚W and with a
differential determined by the following: Let d be the differential on L.U /. Then @.u/D d.u/ for every
u 2 U and @.sku/D .�1/kskd.u/ for every sku 2 skU .

Now, f W .Sk t �/ ^ XQ ! XQ is modeled by some map 'f W L.U ˚ skU/ ! L.U / that satisfies
'f .u/ D u for every u 2 U and 'f .skv/ D 0 for every v 2 V � U . Let �f be the unique derivation
on L.U / that satisfies �f .u/ D 'f .sku/ for every u 2 U . Note that �f is a cycle and that it vanishes
on L.V /, ie �f 2 Zk

�
DerC.L.U / kL.V //

�
. Also note that if f D �k.F /Œ� ˝ �k� then �f D � . Let

K W �k.autAQ;ı.XQ//!Hk
�
DerC.L.U / kL.V //

�
be given by K.f /D �f . It follows from [Berglund

and Madsen 2020; Lupton and Smith 2007] that this map is well defined and is an isomorphism.

Set hD DerC.L.U / kL.V //. The composition

Hk.h/
G
�! �k.exp

�
.h//

�k.F /
����! �k.autAQ;ı.XQ//

K
�!Hk.h/

is the identity map, which forces �k.F / to be an isomorphism. This proves that F is a weak equivalence.
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Recall that a topological group G0 acts on itself by conjugation G0 ! Aut.G0/ via g 7! �g where
�g.h/ D ghg�1. If g and g0 belong to the same connected component of G0, then �g and �g 0 are
homotopic and this induce equal maps on the homotopy groups of G0. This group action restricts to a
group action on the identity component G0ı of G0, which in turn induces an action of G0 on BG0ı. This
gives that �0.G0/ acts on ��.BG0ı/. Since a group-like monoid G is equivalent to a topological group G0,
we have that �0.G/ acts on ��.Gı/.

In the rest of this section we discuss the action of �0.autA.X// on �k.autA.X// from a rational homotopy
point of view. To do so we recall some theory.

Proposition 3.13 [Espic and Saleh 2020, Theorem 1.3] Given a map f WL.V /! g of positively graded
dg Lie algebras , there exists a minimal relative model q W L.V ˚W / ��! g for f in the following sense:

(a) L.V / is a dg subalgebra of L.V ˚W / and f D q ı �, where � WL.V /!L.V ˚W / is the inclusion.

(b) Given a quasi-isomorphism g W L.V ˚W /! L.V ˚W /, where g restricts to an automorphism
of L.V /, g is an automorphism.

Definition 3.14 Let � W L.V /! L.V ˚W / be a free map of quasifree dg Lie algebras. We say that an
endomorphism ' WL.V ˚W /!L.V ˚W / is �–relative if 'jL.V /D id, and two �–relative endomorphisms
' and  are �–equivalent if there exists a homotopy h WL.V ˚W /!L.V ˚W /˝ƒ.t; dt/ from ' to  
that preserves L.V / in the sense that h.v/Dv˝1 for every v2L.V /; see [Félix et al. 2001, Section 14(a)].

We denote the group of �–relative automorphisms of L.V ˚W / by Aut�.L.V ˚W //.

Lemma 3.15 [Espic and Saleh 2020, Corollary 4.6] Let � W L.V /! L.V ˚W / be a minimal relative
dg Lie model for a cofibration A�X of simply connected spaces. Then there are group isomorphisms

Aut�.L.V ˚W //=�–equivalenceŠ �0
�
autMC�.L.V //

�
MC�.L.V ˚W //

��
Š �0.autAQ.XQ//:

Remark 3.16 By this lemma, it makes sense to refer to an �–relative automorphisms of L.V ˚W / as
an algebraic model for an AQ–relative homotopy automorphism of XQ.

Definition 3.17 Consider the group action of Aut�.L.V ˚W // on Der.L.V ˚W /kL.V // given by the
following: for ' 2 Aut�.L.V ˚W // and � 2 Der.L.V ˚W / kL.V //, let

':� D ' ı � ı'�1:

This induces an action of Aut�.L.V ˚W // on exp
�

�
Der.L.V ˚W / kL.V //

�
.

There is also an action of Aut�.L.V˚W // on autMC�.L.V //;ı
�
MC�.L.V˚W //

�
; for ' 2Aut�.L.V˚W //

and f 2 autMC�.L.V //;ı
�
MC�.L.V ˚W //

�
, let

':f DMC�.'/ ıf ıMC�.'�1/:
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Proposition 3.18 The equivalence

F W exp
�

�
DerC.L.V ˚W / kL.V //

�
! autMC�.L.V //;ı

�
MC�.L.V ˚W //

�
' autAQ;ı.XQ/

of Proposition 3.12 is Aut�.L.V ˚W //–equivariant with respect to the actions in Definition 3.17.

Proof This is a straightforward verification left to the reader.

Corollary 3.19 Let f 2 autAQ.XQ/ and let ' 2 Aut�.L.V ˚W // be a relative model for f . The
automorphism

˛' W Der.L.V ˚W / kL.V //! Der.L.V ˚W / kL.V //; ˛'.�/D ' ı � ı'
�1;

is a model for the delooping of the homotopy automorphism

Adf W autAQ.XQ/! autAQ.XQ/; Adf .g/D f ıg ıf
�1;

where f �1 is an AQ–relative homotopy inverse to f .

4 Homotopy automorphisms of wedge sums

We fix some notation for this section. Let .X;�/ be a fixed simply connected space, homotopy equivalent
to a finite CW–complex. For any finite set S , let XS WD

WS
X . For any morphism S ,! T in FI, there is

an obvious induced basepoint-preserving map XS ,!XT given by inclusion of wedge summands in the
order specified by the injection S ,! T . Thus the functor S 7!XS is a pointed FI–space, which we will
denote by X .

We fix a quasifree dg Lie algebra model L.H/D .L.H/; dL.H// for X . A dg Lie model for XS is given
by the S–fold free product of dg Lie algebras

L.H/�S WD L.H/� � � � �L.H/Š L.H˚S /:

See [Félix et al. 2001, Section 24(f)]. The association S 7! L.H˚S / defines a dg FI–Lie algebra LH.
Given a morphism i WS ,!T in FI, we get an induced inclusionH˚S ,!H˚T , which induces an inclusion
L.H˚S / ,! L.H˚T / that models the map X .i/ W X .S/! X .T /; this follows from eg Example 1 in
Section 12(c) and Example 2 in Section 24(f) of [loc. cit.]. Thus S 7! L.H˚S / defines a dg FI–Lie
model for the pointed FI–space S 7! X .S/.

We proceed and define another pointed FI–space aut�.X / (the basepoint is always the identity) as follows:
For S 2 FI, we let aut�.X /.S/ WD aut�.XS /. For i W S ,! T in FI we get a map aut�.XS / ,! aut�.XT /,
defined, for x˛ 2XT in the wedge summand of XT corresponding to ˛ 2 T and f 2 aut�.XS /, by

.aut�.X /.i/f /.x˛/D
�
x˛ if ˛ 2 T n i.S/;
.X .i/ ıf ıX .i/�1/.x˛/ if ˛ 2 i.S/:

Note that aut�.X /.i/f is in some sense an extension by the identity of f . For instance, if is W n! nC1 is
the standard inclusion, then aut�.X /.is/f is the homotopy automorphism of XnC1 that coincides with f
on the first n wedge summands, and is the identity on the last summand.
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Restricting to the identity component gives a pointed sub-FI–space aut�;ı.X /. We are interested in the
rational homotopy groups of this FI–space.

Remark 4.1 It is tempting to say that we will construct an FI–Lie model for aut�.X /. However, this
pointed FI–space is generally not simply connected. Instead we take a functorial classifying space
construction B W TopMon! Top� from the category of topological monoids to the category of pointed
topological spaces and consider the pointed FI–space B aut�;ı.X /, where aut�;ı.XS / is the identity
component of aut�.XS / for every S 2 FI. For every S we have B aut�;ı.XS /'EB aut�.XS /, and so this
is a simply connected pointed FI–space, which enables us to apply our tools from rational homotopy
theory. Furthermore, for every k � 1

�
Q
k
.aut�.XS //Š �

Q
kC1

.B aut�;ı.XS //;

so
�

Q
k
.aut�.X //Š �Q

kC1
.B aut�;ı.X //;

as FI–modules.

We have by Proposition 3.7(a) that a model forB aut�;ı.XS / is given by DerC.L.H˚S //, with differential
given by ŒdL.H˚S /;��. The inclusion LH.i/ W L.H˚S / ,! L.H˚T / induces a graded Lie algebra map
DerC.L.H˚S // ,! DerC.L.H˚T //, as discussed in Proposition 2.26. Moreover, this map commutes
with the differential, ie it is a dg Lie algebra map. This, together with Proposition 2.26, yields that we
have a dg FI–Lie algebra .DerC.LH/; ŒdLH;��/.

We will show that .DerC.LH/; ŒdLH;��/ defines an FI–Lie model for the pointed FI–space B aut�;ı.X /.

Proposition 4.2 (a) Let is W n! nC1 denote the standard inclusion. Then a dg Lie algebra model for

B aut�;ı.X /.is/ W B aut�;ı.Xn/! B aut�;ı.XnC1/

is given by

'n WD DerC.LH/.is/ W DerC.L.H˚n//! DerC.L.H˚nC1//:

(b) The †n–action on B aut�;ı.Xn/ is modeled by the †n–action on DerC.L.H˚n//.

Proof (a) To simplify notation, let Lk denote L.H˚k/, let Hl Š H denote the last summand of
H˚nC1 and let Ll denote L.Hl/. In particular, LnC1DLn �Ll . Let cn WMC�.Ln/!MC�.LnC1/ and
cl WMC�.Ll/!MC�.LnC1/ denote the cofibrations induced by the standard inclusions Ln! Ln �Ll
and Ll ! Ln �Ll , respectively.

From Proposition 3.12 we get topological monoid equivalences

Fn W exp
�
.DerC.Ln//! aut�.MC�.Ln//:

Those maps have adjoints

zFn W exp
�
.DerC.Ln//�MC�.Ln/!MC�.Ln/:
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By the explicit formulas for fFng,

zFnC1 ı .exp
�
.'n/� cn/D cn ı zFn:

In particular, FnC1 ı exp
�
.'n/.‚/ is an extension of Fn.‚/ for ‚ 2 exp

�
.DerC.Ln//.

We also have that

zFnC1 ı .exp
�
.'n/� cl/.g; x/D cl.x/ for all .g; x/ 2 exp

�
.DerC.Ln//�MC�.Ll/:

In particular FnC1 ı exp
�
.'n/.‚/ restricts to the identity on MC�.Ll/�MC�.LnC1/. That means that

exp
�
.'n/ is a simplicial model for aut�;ı.X /.is/ W aut�;ı.Xn/! aut�;ı.XnC1/. This gives (a).

(b) This is a direct consequence of Proposition 3.18 and Corollary 3.19.

Theorem 4.3 The dg FI–Lie algebra .DerC.LH/; ŒdLH;��/ is an FI–Lie model for the pointed FI–space
B aut�;ı.X /.

Proof By the second part of Lemma 2.6, an FI–module is completely determined its underlying
consistent sequence. By Proposition 4.2, the stabilization maps and the †n–actions defining the consistent
sequence for the dg FI–Lie algebra .DerC.LH/; ŒdLH;��/ models the stabilization maps and the †n–
actions defining the consistent sequence for the FI–space B aut�;ı.X /. From this we conclude that
.DerC.LH/; ŒdLH;��/ is an FI–Lie model for the pointed FI–space B aut�;ı.X /.

We now have all the ingredients needed for proving Theorem A.

Theorem A Let .X;�/ be a pointed simply connected space with the homotopy type of a finite CW–
complex and let XS WD

WS
X for any finite set S . For each k � 1, the functor

S 7! �
Q
k
.aut�.XS //

is an FI–module. If Hn.X;Q/ D 0 for n � d , this FI–module is of weight � kC d � 1 and stability
degree � kC d .

Proof We will use the established terminology in this section. We have already seen in Theorem 4.3
that .DerC.LH/; ŒdLH;��/ is an FI–Lie model for B aut�;ı.X /. Since Hk.DerC.LH//Š �Q

k
.aut�.X //

(see Remark 4.1) it is enough to prove that Hk.DerC.LH// has the stated bounds on weight and
stability degree.

Since .DerC.LH/; ŒdLH;��/ defines a dg FI–Lie algebra, it follows that H�.DerC.LH// is a graded FI–
module. The truncation is defined precisely so that Hk.DerC.LH//ŠHk.Der.LH// for all k � 0. Since
H D s�1 zH�.X/ and X is assumed to be simply connected, H is finite-dimensional and concentrated in
positive degree, and since we have assumed that the homology of X vanishes in degree at least d , H
is concentrated in degrees strictly below d � 1. The given bounds on stability degree and weight now
follow from Propositions 2.27 and 2.18.
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5 Homotopy automorphisms of connected sums

LetM be a closed oriented d–dimensional manifold. For a nonempty finite set S , letMS D
�
#S M

�
n VDd

be the space obtained by removing an open d–dimensional disk from the S–fold connected sum of M . If
S D nD f1; : : : ; ng we simply write Mn. We then have a deformation retraction MS

'�!
WS

M1. Hence
there is an FI–module given on objects by S 7! �k.aut�.MS //, as defined in the previous section.

If we choose a basepoint in the boundary of MS , there is an inclusion map aut@.MS /! aut�.MS / for
every S 2 FI. In Section 5.1 we prove that the FI–module S 7! �k.aut�.MS // lifts to an FI–module
given on objects by S 7! �k.aut@.MS //. In Section 5.2 we prove that S 7! �

Q
k
.aut@.MS // is a finitely

generated FI–module using certain rational models.

5.1 The integral FI–module structure on the homotopy automorphisms of iterated
connected sums

For the purposes of this section, we give an explicit construction of Mn by removing the interiors of n
embedded little disks in Dd , which we fix as in Figure 1, left, and gluing n copies of M n VDd along the
new boundary components. Note that with this definition, we still have M1DM n VD

d . In Figure 1, right,
we see how we can embedMn intoMnC1, and by extending a boundary-relative homotopy automorphism
of Mn by the identity thus define a stabilization map

sn W aut@.Mn/! aut@.MnC1/:

In this section we will define a †n–action on the homotopy groups of aut@.Mn/ and, combining this
with the stabilization induced by sn, we obtain our FI–module structure. Before we do this, we need to
introduce some notation:

Definition 5.1 For any pointed spaceX and any finite set S , let us writeQS;X W†.S/!�0
�
aut�

�WS
X
��

for the group homomorphism given by sending � 2†.S/ to the homotopy class of the automorphism
XX .�/ W

WS
X !

WS
X described in the beginning of Section 4.

1 2 � � � n 1 2 � � � n nC1

Figure 1: We can define Mn by gluing copies of M1 into the disks on the left, and we show how
to define an embedding Mn ,!MnC1 on the right.
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Remark 5.2 Since �0
�
aut�

�WS
X
��

acts on �k
�
aut�

�WS
X
��

, we get an induced †.S/–action on
�k
�
aut�

�WS
X
��

by the above. This action coincides with the †.S/–action coming from the FI–module
structure discussed in Section 4.

Definition 5.3 The deformation retraction MS !
WS

M1 induces an equivalence

aut�.MS / ��! aut�

� S_
M1

�
:

Composing this map with the inclusion aut@.MS / ,! aut�.MS / yields a map

u W aut@.MS /! aut�

� S_
M1

�
that induces a group homomorphism �0.u/ W �0.aut@.MS //! �0

�
aut�

�WS
M1

��
.

The first thing we will show to construct our FI–module is the following:

Proposition 5.4 Assuming d � 3, there is a group homomorphism "n W†n! �0.aut@.Mn// such that
Qn;M1 factors as Qn;M1 D �0.u/ ı "n.

Remark 5.5 Since the group �0.aut@.Mn// acts on the higher homotopy groups �k.aut@.Mn//, this
means that there is a †n–action on the higher homotopy groups of aut@.Mn/ which is nontrivial whenever
"n is nontrivial. This action, together with the stabilization maps, will define our FI–module structure.

We will prove this in a number of steps, so let us first describe the idea: WritingD WDDd , we consider the
subgroup Gn � Diff@.D/ consisting of diffeomorphisms which fix the embedded little disks in D from
Figure 1, left, up to permutation. There is then a group homomorphism � WGn!†n, given by sending a
diffeomorphism to the permutation it induces on the little disks. We also get a group homomorphism
Gn! Diff@.Mn/, given by constructing Mn as above, and mapping f 2 Gn to the boundary-relative
diffeomorphism of Mn which is given by f outside the n glued-in copies of M1, and on

Fn
M1 is given

by �.f /. We will construct a group homomorphism †n ,! �0.Gn/, which postcomposed with the maps

�0.Gn/! �0.Diff@.Mn//! �0.aut@.Mn//

is the map "n described in Proposition 5.4. Let us now give the proof in more detail:

Proof Our choice of embedded disks in D defines an element e 2 Emb
�Fn

D;D
�
. Let Ne denote its

image in the quotient Emb
�Fn

D;D
�
=†n, where we take the quotient of the action permuting the

embedded disks. Restricting to the image of e defines a map Diff@.D/! Emb
�Fn

D;D
�
, which is a

Serre fibration. The quotient map Emb
�Fn

D;D
�
! Emb

�Fn
D;D

�
=†n is a covering map, so the

composition

(5) p W Diff@.D/! Emb
� nG

D;D

�.
†n
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is also a Serre fibration. The fiber over Ne consists of the diffeomorphisms which restricted to the image
of e are permutations, ie fibp. Ne/DGn. We thus get a connecting homomorphism

ı W �1.Emb
� nG

D;D

�.
†n/! �0.Gn/

in the long exact sequence of homotopy groups. We will therefore first show that there is an injective
group homomorphism †n ,! �1

�
Emb

�Fn
D;D

��
.

Note that if we let Cn. VD/ denote the ordered configuration space of n points in VD, there is a map
O� W Emb

�Fn
D;D

�
!Cn. VD/ given by restricting to the center of each embedded disk. This map also has

a section Os, given by sending a configuration to an embedding of n little disks, centered at the respective
points and with radii all equal to the minimum distance between the points and between the points and
the boundary of D, divided by three. We also get an induced map

(6) � W Emb
� nG

D;D

�.
†n! Cn. VD/=†n

on orbits, which has a section s defined in the corresponding way. We define Un. VD/ WD Cn. VD/=†n
for brevity. Since we have assumed that d � 3, we have that �1.Un. VD// Š †n and thus we get a
homomorphism �1.s/ W†n Š �1.Un. VD//! �1

�
Emb

�Fn
D;D

�
=†n

�
. Furthermore, note that since s is

a section, �1.�/ ı�1.s/ is the identity on �1.Un. VD// and so �1.s/ is injective.

By composing with the connecting homomorphism in the long exact sequence associated to p, we thus
get a homomorphism †n! �0.Gn/. In order to understand this map better, we describe the connecting
homomorphism ı in more detail. If  is a loop in Emb

�Fn
D;D

�
=†n based at Ne, representing an element

of �1
�
Emb

�Fn
D;D

�
=†n

�
, it lifts to a path Q in Diff@.D/ starting at idD , since p is a Serre fibration.

The connecting homomorphism sends the class of  to the connected component of Gn containing Q.1/.
If we consider the restriction of ı to the image of inclusion �1.s/ above, we see that a permutation � is
sent to the isotopy class of some diffeomorphism in Gn which, restricted to the little disks, is precisely � .
If we finally consider the composite map

†n! �0.Gn/! �0.Diff@.Mn//! �0.aut@.Mn//! �0.aut�.Mn//Š �0

�
aut�

� n_
M1

��
;

it follows by the definition of the mapGn!Diff@.Mn/ that this takes a permutation to the homotopy class
of the homotopy automorphism of

Wn
M1 given by permuting the wedge summands in the corresponding

way. In other words, the composition is equal to Qn;M1 , so we can simply define "n as the composition
of the first three maps.

Remark 5.6 If we assume that M1 has nontrivial homology, then for any nontrivial permutation �
we have that XM1.�/ W

Wn
M1!

Wn
M1 is not homotopic to the identity, since it induces a nontrivial

permutation of the reduced homology zH�
�Wn

M1

�
D
L

n
zH�.M1/, which is different from the identity
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map whenever zH�.M1/ is nontrivial. If that is the case, the homomorphism Qn;M1 is injective, so it
follows that "n is injective as well, and thus both �0.aut@.Mn// and �0

�
aut�

�Wn
M1

��
contain a subgroup

isomorphic to †n.

Corollary 5.7 Under the assumptions of Remark 5.6, fix a subspace A� @Mn, possibly empty, such that
A�Mn is a cofibration. Then all of the groups �0.autA.Mn//, �0.DiffA.Mn// and �0.HomeoA.Mn//

contain a subgroup isomorphic to †n.

Proof Suppose that A ¤ ¿ and let us first consider the case of homotopy automorphisms. The map
u W aut@.Mn/! aut�

�Wn
M1

�
factors as

aut@.Mn/! autA.Mn/! aut�

� n_
M1

�
;

proving this case. To get the cases with diffeomorphisms or homeomorphisms, consider the factorization

Diff@.Mn/! DiffA.Mn/! HomeoA.Mn/! autA.Mn/! aut�

� n_
M1

�
:

For the case where A is empty, we instead postcompose with the map aut�
�Wn

M1

�
! aut

�Wn
M1

�
, and

the resulting map factors as

aut@.Mn/! aut.Mn/! aut
� n_

M1

�
:

The composition of Qn;M1 with the map induced on �0 by the rightmost map above will still be injective,
and from this the case follows. To get the statement for diffeomorphisms and homeomorphisms, we
instead use the factorization

Diff@.Mn/! Diff.Mn/! Homeo.Mn/! aut.Mn/! aut
� n_

M1

�
:

Remark 5.8 A referee pointed out that the existence of the homomorphism †n ! �0.aut@.Mn// is
likely a consequence of a higher structure. More specifically, it is reasonable to expect that the spaceF
n�1B aut@.Mn/ can be endowed with the structure of an Ed–algebra, ie an algebra over the little

d–disks operad, in a similar way as, for example, the space
F
n�1B Diff@.Mn/. If this is the case, the

Ed–algebra structure maps in particular give us a map

Ed .n/=†n! B aut@.Mn/;

and since Ed .n/=†n ' Un. VD/, taking fundamental groups gives us a map †n! �0.aut@.Mn//, which
should be precisely "n. We expect this to be true, but have elected to use a more hands-on approach, since
rigorously constructing the Ed–algebra structure is nontrivial and seems to require using methods from
higher homotopy theory that go quite far beyond the scope of this paper. For comparison, what makes
this easier in the case of diffeomorphisms is that we have a good model for B Diff@.Mn/ as a topological
space, in terms of embeddings of Mn into R1 (with certain boundary conditions), modulo the action of
Diff@.Mn/. In contrast, it is not clear how to do a similar construction for homotopy automorphisms.
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We have now defined the †n–action on the homotopy groups of aut@.Mn/. Next we show that this action
is compatible with the stabilization maps sn.

Proposition 5.9 There is a commutative diagram

†n †nC1

�0.aut@.Mn// �0.aut@.MnC1//

"n "nC1

�0.sn/

where the upper horizontal map is the standard inclusion.

Proof Construct stabilization mapsGn!GnC1, Emb
�Fn

D;D
�
=†n!Emb

�FnC1
D;D

�
=†nC1 and

Cn. VD/=†n! CnC1. VD/=†nC1 in the same way as sn W aut@.Mn/! aut@.MnC1/, using Figure 1, right.
This gives us a diagram

†n †nC1

�1.Un. VD/ �1.UnC1. VD//

�1
�
Emb

�Fn
D;D

�
=†n

�
�1
�
Emb

�FnC1
D;D

�
=†nC1

�
�0.Gn/ �0.GnC1/

�0.aut@.Mn// �0.aut@.MnC1//

Š Š

where the top horizontal arrow is the standard inclusion. The two upper squares, as well as the bottom
square, are all commutative by the definition of the stabilization maps. The second square from the
bottom can be shown to be commutative simply by once again considering the definition of the connecting
homomorphism in detail as above, but we can also reason as follows: Define a map Diff@.D/!Diff@.D/
in the same was as we defined the stabilization maps, using Figure 1, right, and extending by the identity
(note however that this map is homotopic to the identity), giving us a commutative diagram

Diff@.D/ Diff@.D/

Emb
�Fn

D;D
�
=†n Emb

�FnC1
D;D

�
=†nC1

which is a map of Serre fibrations. By functoriality, this induces a map between the long exact sequences
of homotopy groups, in which the square we consider appears.

Corollary 5.10 For k � 1, the sequence f�k.aut@.Mn//; �k.sn/g is a consistent sequence of ZŒ†n�–
modules.
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Proof Recall that �0.aut@.Mn// acts on �k.aut@.Mn// and thus, through the stabilization map

�0.sn/ W �0.aut@.Mn//! �0.aut@.MnC1//;

�0.aut@.Mn// acts on �k.aut@.MnC1// as well. By definition of the stabilization map, �k.sn/ is
�0.aut@.Mn//–equivariant.

By considering �k.aut@.Mn// as a ZŒ†n�–module via the homomorphism "n W†n! �0.aut@.Mn//, it
follows from Proposition 5.9 and the equivariance discussed above that f�k.aut@.Mn//; �k.sn/g is a
consistent sequence of ZŒ†n�–modules.

Theorem 5.11 For each k � 1, the FI–module S 7! �k.aut�.MS // Š �k
�
aut�

�WS
M1

��
lifts to an

FI–module
S 7! �k.aut@.MS //;

where the standard inclusion n ,! nC 1 gives the induced stabilization map

�k.s/ W �k.aut@.Mn//! �k.aut@.MnC1//:

Proof We have shown in Corollary 5.10 that the homotopy groups f�k.aut@.Mn//gn�1 form a consistent
sequence of ZŒ†n�–modules, and from the previous discussion it is clear that the maps aut@.Mn/!

aut�
�Wn

M1

�
induce a map of consistent sequences to

˚
�k
�
aut�

�Wn
M1

��	
n�1

, which we know comes
from an FI–module. Thus, it is sufficient to show that f�k.aut@.Mn//gn�1 also comes from an FI–module.

From Lemma 2.6, it suffices to show that if � 2†nCm is such that � jn D id, it acts trivially on the image
of the stabilization map �k.aut@.Mn//! �k.aut@.MnCm//. Embedding Mn in MnCm according to the
composition of the embeddingsMn ,!� � � ,!MnCm defined by Figure 1, right, we may represent � by an
automorphism f� 2 aut@.MnCm/ which is supported completely on Mm �MmCn and is thus the identity
on Mn �MmCn. Any homotopy automorphism g 2 im.snCm�1 � � � sn W aut@.Mn/! aut@.MmCn// is
supported on Mn, so f�gf �1� D g. Hence � on acts trivially on the image of the stabilization map
�k.aut@.Mn//! �k.aut@.MnCm//.

5.2 Rational representation stability via algebraic models for relative homotopy
automorphisms

We will study a certain dg Lie model for B aut@;ı.Mn/ constructed in [Berglund and Madsen 2020], and
use it to prove that the FI–module S 7! �

Q
k
.aut@.MS //D �k.aut@.MS //˝Q is finitely generated.

We recall that a quasifree dg Lie algebra .L.V /; d/ is said to be minimal if d.V /� ŒL.V /;L.V /�. If two
minimal dg Lie algebras are quasi-isomorphic then they are isomorphic. Moreover, if L.V / is a minimal
dg Lie algebra model for a nilpotent space X of finite type, then one can show that V is isomorphic to
the desuspension of the reduced rational homology of X , which we will denote by s�1 zH�.X IQ/.

In this subsection we fix a d–dimensional simply connected oriented closed manifold M , where M1 D

M n VD has a nontrivial rational homology. The intersection form on H�.M/ induces a graded symmetric
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inner product of degree d on the reduced homology zH�.M1/. This in turn induces a graded antisymmetric
inner product of degree d � 2 on H D s�1 zH�.M1/.

Definition 5.12 Let H be a graded antisymmetric inner product space of degree d � 2 (eg s�1 zH�.M1/)
with a basis f˛1; : : : ; ˛mg. The dual basis f˛#

1; : : : ; ˛
#
mg is characterized by the following property:

h˛i ; ˛
#
j i D ıij :

Let !H 2 L2.H/ be given by

!H D
1

2

mX
iD1

Œ˛#
i ; ˛i �:

It turns out that !H is independent of choice of basis f˛1; : : : ; ˛mg; see [Berglund and Madsen 2020]
for details.

Remark 5.13 By the same arguments as above, the graded vector space s�1 zH�.Mn/ also has a structure
of a graded antisymmetric inner product space of degree d � 2 which coincides with the one given by the
direct sum .s�1 zH�.M1//

˚n.

The next proposition is due to Stasheff [1983, Theorem 2], and is discussed in [Berglund and Madsen
2020, Theorem 3.11].

Proposition 5.14 Let M DM d be a closed oriented d–dimensional manifold , let M1 DM n VD and let
H D s�1 zH�.M1/. Then the inclusion Sd�1 Š @M1 ,!M1 is modeled by a dg Lie algebra map

� W L.x/ ,! L.H/; �.x/D .�1/d!H ;

where L.H/ and L.x/ denote the minimal dgl models for M1 and Sd�1, respectively.

Given a fixed basis f˛1; : : : ; ˛mg for H D s�1 zH�.M1/ we get a basis for s�1 zH�.Mn/ŠH
˚n which is

of the form
f˛
j
i j 1� i �m; 1� j � ng:

We denote!H˚nD
1
2

P
i;j Œ.˛

j
i /

#; ˛
j
i �2L.H˚n/ by!n. We have that!n is invariant under the†n–action

on L.H˚n/ that permutes the summands of H˚n.

Note that � W L.x/! L.H˚n/ is not a cofibration. In order to model the inclusion @Mn � Mn by a
cofibration in the model category of dg Lie algebras we need a new model for Mn.

Lemma 5.15 Let L.H˚n; x; y/ be the dg Lie algebra that contains L.H˚n/ as a dg Lie subalgebra
where jxj D d � 2 and jyj D d � 1, and where

dx D 0 and dy D x� .�1/d!n:

Then
O� W L.x/! L.H˚n; x; y/; O�.x/D x;

is a cofibration that models the inclusion of @Mn Š S
d�1 into Mn. Moreover this model is a relative

minimal model in the sense of [Espic and Saleh 2020].
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Proof The dg Lie algebra map � W L.H˚n; x; y/! L.H˚n/ where �jH˚n D idH˚n , �.x/D .�1/d!n
and �.y/D 0 is a quasi-isomorphism. Straightforward computation shows that � ı O�D �, proving that
O� is a model for � (which is a model for the inclusion of the boundary). Minimality is straightforward
verification; see [loc. cit., Section 3].

By Proposition 3.7(b), a dg Lie algebra model for B aut@;ı.Mn/ is given by DerC.L.H˚n; x; y/kL.x//.
However, we will use another model thanks to the following result:

Proposition 5.16 [Berglund and Madsen 2020, Theorem 3.12] Let Der.L.H˚n/k!n/ denote the dg Lie
algebra of derivations on L.H˚n/ that vanish on !n and where the differential is given by ŒdL.H˚n/;��.
Then there is an equivalence of dg Lie algebras

DerC.L.H˚n/ k!n/! DerC.L.H˚n; x; y/ kL.x//; � 7! O�;

where O� jL.H˚n/ D � and �.x/D �.y/D 0.

Remark 5.17 It follows that DerC.L.H˚n/ k!n/ is a dg Lie algebra model for B aut@;ı.Mn/ and the
inclusion DerC.L.H˚n/k!n/!DerC.L.H˚n// is a model for the map B aut@;ı.Mn/!B aut�;ı.Mn/,
induced by the inclusion aut@;ı.Mn/ ,! aut�;ı.Mn/.

Definition 5.18 With the terminology of Section 2, we define a dg FI–Lie algebra Der.LH k!H/ as
follows: For S 2 FI, we let Der.LH k!H/.S/ WD Der.LH.S/ k!S / be the dg Lie algebra of derivations
on LH.S/D L.H˚S / that vanish on !S . For i W S ,! T in FI, we get a map

Der.LH k!H/.i/ W Der.L.H˚S / k!S / ,! Der.L.H˚T / k!T /;

defined as follows: Suppose x˛ 2H.T / lies in the direct summand of H.T / corresponding to ˛ 2 T and
let D 2 Der.L.H˚S / k!S /. Then Der.LH k!H/.i/D is determined by

.Der.LH k!H/.i/D/.x˛/D

�
0 if ˛ 2 T n i.S/;
.LH.i/ ıD ıH.i/�1/.x˛/ if ˛ 2 i.S/:

We conclude from having such a dg FI–Lie algebra the following:

Remark 5.19 The above dg FI–Lie algebra structure induces an FI–module structure on the homology.
For k � 1, we have that Hk.Der.L.H˚S /k!S //Š �

Q
k
.aut@.MS //, which gives an FI–module structure

on f�Q
k
.aut@.MS //gS2FI. We will show that this FI–module structure coincides with the one obtained by

rationalizing the FI–module structure on f�k.aut@.MS //gS2FI defined in Section 5.1.

Proposition 5.20 A dg Lie algebra model for the stabilization map B aut@;ı.Mn/! B aut@;ı.MnC1/ is
given by

'n W DerC.L.H˚n/ k!n/! DerC.L.H˚nC1/ k!nC1/;

where 'n.�/ coincides with � on the first n summands of H˚nC1 and vanishes on the last summand.

Proof The proof is omitted since it is very similar to the proof of Proposition 4.2.
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Proposition 5.21 The †n–action on �Q
� .aut@.Mn// induced by "n W†n! �0.aut@.Mn// is modeled by

the †n–action on Hk.Der.L.H˚n// k!n/ induced by the FI–module structure from Definition 5.18.

Proof For every � 2 †n, let �� 2 aut@.Mn// denote a representative for "n.�/ 2 �0.aut@.Mn//, and
define a self-equivalence

Ad� W aut@.Mn/! aut@.Mn/; Ad� .f /D �� ıf ı ���1 :

This induces a†n–action on �k.aut@.Mn// given by �:aD�k.Ad� /.a/ which is precisely the†n–action
given by the FI–module structure.

As we saw in Lemma 5.15, O� W L.x/ ! L.H˚n; x; y/ is a minimal relative model for the inclusion
@Mn ,!Mn.

By Lemma 3.15, �� is modeled by an O�–relative automorphism �� 2 AutO�.L.H˚n; x; y//, and hence, by
Corollary 3.19, the automorphism

˛�� W Der.L.H˚n; x; y/ kL.x//! Der.L.H˚n; x; y/ kL.x//; ˛�� .�/D �� ı � ı �
�1
� ;

is a model for the delooping of Ad� . In particular, Hk.˛�� / is a model for �k.Ad� /. Moreover, this
defines a †n–action on Hk

�
Der.L.H˚n; x; y/ kL.x//

�
given by �:b D Hk.˛�� /.b/ that models the

†n–action on �Q
k
.aut@.Mn// described above.

Since the isomorphism of Lemma 3.15 is not explicit, we do not know what �� is. However, viewing ��
as a nonrelative automorphism that models pointed homotopy automorphisms, we know that it models
the permutation of the summands of

Wn
iD1M1 corresponding to � 2†n. A model for this pointed map

is given by  � W L.H˚n; x; y/! L.H˚n; x; y/, where  � .˛
j
i / D ˛

�.j /
i ,  � .x/ D x and  � .y/ D y.

Since  � and �� model the same pointed homotopy class of pointed maps they have to be homotopic as
dg Lie algebra maps, and thus ˛�� and ˛ � induce the same map on the homology of Der.L.H˚n; x; y//.
In particular, for every cycle � 2Z

�
Der.L.H˚n; x; y//

�
, the difference ˛�� .�/�˛ � .�/ is a boundary

@� for some � 2 Der.L.H˚n; x; y//.

Note that  � is also O�–relative, but not necessarily O�–equivalent, to �� . Since �� and  � are O�–relative, ˛��
and ˛ � define automorphisms of Der.L.H˚n; x; y/ kL.x//. We will show that these automorphisms
induce the same map on homology. Given a cycle � 2Z

�
Der.L.H˚n; x; y/ kL.x//

�
, we have that � is

also a cycle in Der.L.H˚n; x; y//, and thus by the above there is some � 2 Der.L.H˚n; x; y// such
that ˛�� .�/�˛ � .�/D @�. By this equality @�.x/D 0.

Let Q� 2 Der.L.H˚n; x; y/ kL.x// be given by Q�jspan.H˚n;y/ D �jspan.H˚n;y/ and Q�.x/D 0. Now it is
straightforward to see that

˛�� .�/�˛ � .�/D @� D @ Q�:

Hence ˛�� and ˛ � induce the same morphisms on H�
�
Der.L.H˚n; x; y/jL.x//

�
. From this we

conclude that the †n–action on Hk
�
Der.L.H˚n; x; y/jL.x//

�
given by �:b DHk.˛ � /.b/ is a model

for the †n–action on �Q
k
.aut@.Mn//.
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Now consider the !n–preserving automorphism �� W L.H˚n/! L.H˚n/ given by �� D  � jL.H˚n/.
This yields an automorphism

˛�� W Der.L.H˚n/ k!n/! Der.L.H˚n/ k!n/; ˛�� .�/D �� ı � ı�
�1
� :

The †n–action on Der.L.H˚n/ k!n/ given by �:b D ˛�� .b/ is the same †n–action coming from the
FI–module structure described in Definition 5.18.

The diagram
DerC.L.H˚n/ k!n/ DerC.L.H˚n/ k!n/

DerC.L.H˚n; x; y/ kL.x// DerC.L.H˚n; x; y/ kL.x//

�

˛��

�

˛ �

where the vertical maps are the quasi-isomorphisms of dg Lie algebras described in Proposition 5.16,
is commutative, which gives that the induced †n–action on Hk.DerC.L.H˚n/ k!n// is a model for
the †n–action on Hk

�
Der.L.H˚n; x; y/jL.x//

�
— which, in turn, is a model for the †n–action on

�
Q
k
.aut@.Mn//.

We recall that the Lie operad L ie is a cyclic operad, ie that the †n–action on L ie.n/ extends to a
†nC1–action. Let L iec.nC 1/ denote L ie.n/ viewed as a †nC1–representation.

Proposition 5.22 [Berglund and Madsen 2020, Proposition 6.6] There is an isomorphism of FI–modules

Der.LH k!H/Š s
2�dSL iec .H/:

Proof We will prove that this isomorphism is a special case of the more general isomorphism of Berglund
and Madsen, where the authors consider the category of graded antisymmetric inner product spaces of
degree 2� d , with morphisms being linear maps of degree 0 that preserve the inner product. They call
this category Sp2�d . An Sp2�d–module is a functor from Sp2�d to the category of graded vector spaces.
By [loc. cit., Proposition 6.6], V 7! Der.L.V / k!V / defines an Sp2�d–module that is isomorphic to the
Sp2�d–module given by V 7! s2�dSL iec .V /.

For any morphism i W S ! T in FI, the associated map H.i/ W H.S/ D H˚S ! H.T / D H˚T is a
morphism of Sp2�d–modules. Thus the isomorphism above follows.

Theorem B Let M DM d be a closed simply connected oriented d–dimensional manifold. With MS

defined as above , we have the following:

(a) For each k � 1, the FI–module

S 7! �k

�
aut�

� S_
M1

��
Š �k.aut�.MS //

lifts to an FI–module
S 7! �k.aut@.MS //

Algebraic & Geometric Topology, Volume 24 (2024)
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sending the standard inclusion n! nC 1 to the map �k.aut@.Mn//! �k.aut@.MnC1// induced
by the stabilization map sn.

(b) The rationalization of this FI–module is of weight � kC d � 2 and stability degree � kC d � 1.

Proof (a) This is Theorem 5.11.

(b) By the isomorphism in Proposition 5.22,

Der.LH k!H/k Š SL iec .H/kCd�2:

By Proposition 2.20,
weight.Der.LH k!H/k/� kC d � 2

and
stab-deg.Der.LH k!H/k/� kC d � 2:

The weight and the stability degree for the homology follow from Proposition 2.18.
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