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The strong Haken theorem via sphere complexes

SEBASTIAN HENSEL

JENNIFER SCHULTENS

We give a short proof of Scharlemann’s strong Haken theorem for closed 3–manifolds (and manifolds
with spherical boundary). As an application, we also show that given a decomposing sphere R for a
3–manifold M that splits off an S2 �S1 summand, any Heegaard splitting of M restricts to the standard
Heegaard splitting on the summand.

57K30

1 Introduction

Any (closed oriented connected) 3–dimensional manifold M admits a Heegaard splitting, that is, it can
be decomposed into two 3–dimensional handlebodies V and V 0 of the same genus g along an embedded
surface S �M :

M D V [S V 0:

In theory, all information about the 3–manifold is encoded in the identification of the two handlebodies.
However, in practice, interpreting topological properties of M using a Heegaard splitting is often nontrivial.

A basic example of this occurs when studying spheres in M . If ˛ � S is a curve which bounds disks D

and D0 in both V and V 0, then gluing these disks yields a 2–sphere D[D0 �M which intersects S in
the single curve ˛. When essential, such a sphere is called a Haken sphere — but a priori it is completely
unclear what kind of spheres in M are of this form.

A classical theorem of Haken [6] shows that if M admits any essential sphere � , then it also admits a
Haken sphere � 0. In fact, Scharlemann [16] recently proved a strong Haken theorem, showing that � 0 can
in fact be chosen to be isotopic to � :

Theorem 1.1 (strong Haken theorem) Let M D V [S V 0 be a Heegaard splitting. Every essential
2–sphere in M is isotopic to a Haken sphere for M D V [S V 0.

Our purpose here is to give an independent short proof of Theorem 1.1 for any M which is closed or has
spherical boundary. We want to mention that Scharlemann’s version of the strong Haken theorem is in
fact more general, allowing for manifolds with arbitrary boundary, and also showing that any properly
embedded disk is isotopic to a Haken disk. This more general case could also be obtained from our
methods; for clarity we focus on the closed case.
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2708 Sebastian Hensel and Jennifer Schultens

To prove Theorem 1.1, we make crucial use of the (surviving) sphere complex, which is a combinatorial
complex encoding the intersection pattern of essential (surviving) spheres in M . Such complexes have
already been used successfully in the study of outer automorphism groups of free groups (via mapping
class groups of connected sums of S2 � S1). Here, we show that this perspective can also be useful
in streamlining arguments in low-dimensional topology. The other crucial ingredient is the classical
Waldhausen theorem on Heegaard splittings of the 3–sphere [18]. Together, these allow an inductive
approach to Theorem 1.1.

Our methods and results also allow control over Heegaard splittings of reducible manifolds. As a
motivating example, we prove:

Proposition 1.2 Every Heegaard splitting of Wn D n.S2 � S1/ is isotopic to a stabilization of the
standard Heegaard splitting.

Combining the uniqueness for W1 with the strong Haken theorem, we obtain the following structural
result on Heegaard splittings of arbitrary reducible 3–manifolds:

Corollary 1.3 For a reducible 3–manifold M with a Heegaard splitting M DV [S V 0, any decomposing
sphere that splits off an S2 �S1 summand can be isotoped so that S is standard in this summand.

Acknowledgements We would like to thank Martin Scharlemann for finding a mistake in an earlier
draft, and many helpful comments.

2 Heegaard splittings of closed 3–manifolds

In this section, we recall some preliminaries on closed 3–manifolds, their Heegaard splittings, and spheres
in such manifolds. The results presented here are classical.

2.1 Heegaard splittings

Definition 2.1 (Heegaard splitting) A handlebody is a 3–manifold that is homeomorphic to a regular
neighborhood of a graph in S3. A Heegaard splitting of a 3–manifold M is a decomposition M DV [S V 0,
where V and V 0 are handlebodies and S D @V D @V 0 D V \V 0.

The surface S is called the splitting surface or Heegaard surface. Heegaard splittings are considered
equivalent if their splitting surfaces are isotopic.

Remark 2.2 The Heegaard splitting M D V [S V 0 is completely specified by the pair .M;S/, so we
will sometimes write .M;S/ instead of M D V [S V 0.

Remark 2.3 The connected sum of two 3–manifolds M1 and M2 with Heegaard splittings .M1;S1/

and .M2;S2/ inherits a Heegaard splitting .M1 # M2, S1 # S2/. This Heegaard splitting is unique in the
sense that it is completely determined by the construction. Later, we will briefly consider a refined notion
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The strong Haken theorem via sphere complexes 2709

of equivalence for Heegaard splittings where we distinguish between the two sides of the splitting surface.
With respect to this refined notion of equivalence, the Heegaard splitting of a connected sum is then not
(a priori) unique, as the construction allows two different choices, namely which side of S1 is identified
to which side of S2.

Definition 2.4 Given a Heegaard splitting .M;S/, the Heegaard splitting obtained from the pairwise
connected sum .M;S/ # .S3;T /, where T is the standard unknotted torus in S3, is called a stabilization
of .M;S/. A Heegaard splitting is stabilized if it is the stabilization of another Heegaard splitting and
unstabilized otherwise.

A sphere that separates .M;S/ # .S3;T /, ie a sphere that splits off a punctured 3–ball containing an
unknotted punctured torus, is called a stabilizing sphere.

A stabilizing pair of disks is a pair .D;D0/ of disks such that D is properly embedded in V , D0 is properly
embedded in V 0 and @D\ @D0 is exactly one point.

Remark 2.5 A Heegaard splitting is stabilized if and only if it admits a stabilizing pair of disks. Indeed,
consider the standard unknotted torus in the 3–sphere and observe that it separates S3 into two solid tori.
The boundaries of the meridian disks of these solid tori intersect in exactly one point.

A crucial theorem of Waldhausen’s characterizes all Heegaard splittings of the 3–sphere; see [18].

Theorem 2.6 (Waldhausen’s theorem) Every Heegaard splitting of the 3–sphere is a stabilization of the
unique standard genus-0 Heegaard splitting.

2.2 Sphere complexes

A core tool in our argument is the following simplicial complex, which encodes the intersection patterns
of spheres in M :

Definition 2.7 (sphere complex) A sphere S in a 3–manifold is compressible if it bounds a 3–ball.
Otherwise it is incompressible. We say that a sphere is peripheral if it is isotopic into the boundary of the
manifold.

The sphere complex of a 3–manifold M is the simplicial complex S.M / determined by the following
three conditions:

(1) Vertices of S.M / correspond to isotopy classes of incompressible nonperipheral embedded 2–
spheres.

(2) Edges of S.M / correspond to pairs of vertices with disjoint representatives.

(3) The complex S.M / is flag.

It is not hard to see that a simplex in the sphere complex corresponds to a collection of nonisotopic
spheres that can be realized disjointly. See Figure 1 for an example of a simplex.

Algebraic & Geometric Topology, Volume 24 (2024)
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Figure 1: A 3–simplex in the sphere complex of W4, the double of a genus-4 handlebody
(alternatively, the connected sum of four copies of S2 �S1). Here, only one of the handlebodies
is pictured; the spheres comprising the simplex intersect it in the pictured disks.

Furthermore, a standard argument involving surgery at innermost intersection circles shows that the sphere
complex of any closed 3–manifold is connected (if it is nonempty). See eg [7] for a proof in the case of
doubled handlebodies, which also works in general.

2.3 Haken spheres

Our central aim will be to understand how essential spheres in M interact with Heegaard splittings of M .
The following notion is crucial:

Definition 2.8 Let M D V [S V 0 be a Heegaard splitting. An essential sphere in M that meets the
Heegaard surface S in a single simple closed curve is called a Haken sphere. A (not necessarily essential)
sphere that intersects S in a single simple closed curve essential in S is called a reducing sphere.

The following theorem was originally proved by Haken in [6]. Proofs can be found in the standard
references on 3–manifolds; see [8; 9; 17].

Theorem 2.9 (Haken’s lemma) If a closed 3–manifold M contains an essential sphere and M D

V [S V 0 is a Heegaard splitting , then M admits a Haken sphere.

In general, the Haken sphere is obtained by modifying the given essential sphere by surgery, and so
cannot be guaranteed to be related to the sphere given at the outset.

3 3–Manifolds with spherical boundary

In this section, we present versions of the results and notions of the previous section for 3–manifolds with
spherical boundary. These appear naturally in our inductive proof of the strong Haken theorem (even if
one is just interested in proving it in the closed case). For ease of notation, if M is a 3–manifold with
spherical boundary, then we call each component of @M a puncture. Similarly, we call such a manifold a
punctured manifold.

Algebraic & Geometric Topology, Volume 24 (2024)



The strong Haken theorem via sphere complexes 2711

3.1 Heegaard splittings

To define Heegaard splittings of punctured manifolds, we use spotted handlebodies.

Definition 3.1 A spotted handlebody is a handlebody with a specified set of disks D1 t � � � tDk in its
boundary. Each disk is called a spot. A Heegaard splitting of a 3–manifold M with spherical boundary is
a decomposition M D V [S V 0, where V and V 0 are spotted handlebodies with spots D1t � � � tDk and
D0

1
t � � � tD0

k
, respectively, and S D @V � .D1 t � � � tDk/D @V

0� .D0
1
t � � � tD0

k
/.

Remark 3.2 In a Heegaard splitting of a 3–manifold with spherical boundary, each puncture meets the
splitting surface in a single simple closed curve. This simple closed curve is the boundary of a spot on
each of the handlebodies.

Suppose M1 and M2 are two punctured manifolds with boundary components @i � Mi , and M D

M1[@1D@2
M2 is the manifold obtained by gluing the boundary components. Given Heegaard splittings

of M1 and M2, the manifold M inherits a Heegaard splitting which is obtained by gluing the handlebodies
at the corresponding spots.

The glued boundary components yield an essential 2–sphere � in M , which intersects the induced
Heegaard splitting in a single circle (ie it becomes a Haken sphere). Conversely, given a Haken sphere �
for any manifold M , one can cut the manifold and the splitting at � .

We need a version of Waldhausen’s theorem in the context of punctured 3–spheres (which is a fairly
straightforward consequence of Waldhausen’s theorem for S3).

Theorem 3.3 (Waldhausen’s theorem for punctured 3–spheres) Every Heegaard splitting of a punctured
3–sphere is a stabilization of a unique standard genus-0 Heegaard splitting.

Proof Let M be a punctured 3–sphere and M D V [S V 0 a Heegaard splitting. Construct yM D S3

from M by attaching a 3–ball to each puncture. By Alexander’s theorem, the result does not depend
on the attaching map. Moreover, the attaching maps can be chosen so that a meridional disk of each
3–ball caps off a component of @S . We thus obtain a closed surface yS that defines a Heegaard splitting
S3 D yV [ yS

yV 0.

Each 3–ball that has been attached to a puncture is a regular neighborhood of a point and, as such,
arbitrarily small. By Waldhausen’s theorem, S3 D yV [ yS

yV 0 is a stabilization of the standard genus-0
Heegaard splitting of S3. The stabilizing pairs of disks can be chosen to be disjoint from the attached
3–balls. Thus, after destabilizing, if necessary, we may assume that S is genus 0.

Hence, to prove the theorem, it suffices to show that any genus-0 splitting of a punctured S3 is standard. To
this end, observe that the spotted genus-0 handlebody V �S3 can be isotoped to be a regular neighborhood
of a graph � � V . The graph � can be chosen to have the following form: It has one vertex v0 in the
interior of M , and one vertex on each boundary component. Each vertex on a boundary component is
joined to v0 by an edge. We are done, once we show that any two such graphs � and � 0 are isotopic.

Algebraic & Geometric Topology, Volume 24 (2024)
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We may assume that � and � 0 have the same vertex set, and edges are disjoint or equal. Pick an edge
e � � and the edge e0 � � 0 joining the same vertices. Then e and e0 are isotopic rel endpoints by an
isotopy fixing � n e. This follows by the light bulb trick, noting that a small regular neighborhood of
� n e and all boundary spheres it touches is a sphere. Inductively, it follows that � and � 0 are isotopic,
proving the theorem.

At this point, we briefly want to address the ambiguity appearing in the previous proof when filling
the boundary and drilling it out again — namely, one can isotope a pair of stabilizing disks across a
puncture. This leads to a homeomorphism of the manifold preserving the Heegaard surface. Given a
Heegaard splitting of a 3–manifold, the Goeritz group of the splitting is the group of isotopy classes of
orientation-preserving diffeomorphisms of the manifold that preserve the splitting. Loosely speaking, the
Goeritz group will be small if the surface automorphism that defines the Heegaard splitting is complicated
relative to the handlebodies. Conversely, the Goeritz group will be as large as possible in the case of Wn,
the manifold for which this surface automorphism is the identity, and the Goeritz group is equal to
the handlebody group. Scharlemann finds a system of 4g C 1 generators for the Goeritz group of a
handlebody; see [14]. On the other hand, the Goeritz group of the 3–sphere is still largely mysterious.
We refer the interested reader to the recent [15].

3.2 Sphere complexes

We now want to define a useful sphere complex for punctured manifolds. One obvious change is that for
the vertices one should also exclude peripheral spheres, ie spheres which are homotopic into the boundary
(otherwise, such spheres are adjacent to any other vertex, rendering the resulting complex useless).
However, even with this modification, the resulting sphere complex will be somewhat problematic for our
purposes, as it may often be disconnected. Namely, suppose that M0 is an aspherical 3–manifold with
infinite fundamental group. Let M be the manifold obtained from M0 by removing two open balls. The
manifold M admits many essential nonperipheral spheres obtained by joining the two punctures by a
nontrivial tube. In fact, by asphericity of M0, any essential nonperipheral sphere in M is of this form. In
particular, no two such are disjoint.

To sidestep this issue, we use the following variant of the sphere complex:

Definition 3.4 (surviving sphere complex) We call a sphere S in a punctured 3–manifold M almost
peripheral if a component of M nS is a punctured 3–ball. Equivalently, S is almost peripheral if S is
inessential in the manifold obtained by filling the punctures of M .

If S is not almost peripheral, then it is surviving.

The surviving sphere complex of a 3–manifold M is the simplicial complex Ss.M / determined by the
following three conditions:
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The strong Haken theorem via sphere complexes 2713

(1) Vertices of Ss.M / correspond to isotopy classes of incompressible embedded surviving 2–spheres.

(2) Edges of Ss.M / correspond to pairs of vertices with disjoint representatives.

(3) The complex Ss.M / is flag.

The terminology stems from the fact that the spheres “survive filling in the punctures” and is in analogy
to the surviving curve complex used in the study of mapping class groups of surfaces; see eg [1; 5]. It
turns out that these complexes are much better behaved in our setting.

Lemma 3.5 Let M be a 3–manifold. Then the surviving sphere complex Ss.M / is connected (if it is
nonempty).

Proof Let � and � 0 be two incompressible embedded surviving 2–spheres in M . Up to isotopy, we may
assume that � and � 0 intersect transversely. Further, we may assume that up to isotopy, the number of
intersection components � \ � 0 is minimal.

Let C � � \ � 0 be an innermost intersection circle, ie suppose that it bounds a disk D � � with
D\ � 0 D @D D C . Denote by SC;S� � � 0 the two disks bounded by C , and denote by �˙ D S˙[D

the two 2–spheres obtained by disk-swapping. Observe that up to isotopy, both of these are disjoint
from � 0, and intersect � in at least one fewer circle than � 0. If either �C or �� were compressible,
then we could reduce the number of components in � \ � 0 by sliding � over the ball bounded by the
compressible sphere, which is impossible by our choice.

Assume that �� is almost peripheral. Then, after filling in the punctures of M , the spheres � and �C are
isotopic (by sliding D over the now unpunctured ball bounded by ��; see Figure 2). In particular, �C is
surviving, as the same is true for � .

Hence, at least one of �˙ is surviving, and we are done. Indeed, repeating this process produces a
sequence of spheres corresponding to vertices in a path, in Ss.M /, between Œ� � and Œ� 0�.

D

@M

@M

�

S�
SC

� 0

Figure 2: In the proof of Lemma 3.5: The innermost intersection circle of � and � 0 cuts � 0 into
two disks SC and S�. If �� is almost peripheral then �C is isotopic to � after filling the punctures.
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3.3 Haken spheres

Just as in the closed case, we call an essential sphere which intersects a Heegaard splitting of a punctured
manifold in a single curve a Haken sphere. For punctured manifolds, almost peripheral and surviving
Haken spheres behave slightly differently.

On the one hand, using the same strategy as in the proof of Theorem 3.3, we obtain the following corollary
of Theorem 2.9:

Theorem 3.6 (surviving Haken’s lemma) If M contains a surviving sphere and M D V [S V 0 is a
Heegaard splitting , then there is a surviving Haken sphere.

Proof Denote by � an essential surviving sphere in M . Let M 0 be the 3–manifold obtained from M

by gluing a ball to each boundary component. Denote by B �M 0 the disjoint union of the resulting
balls. By definition of almost peripheral, the image of � in M 0 is still essential. Thus, Haken’s lemma
(Theorem 2.9) applies, and yields a Haken sphere � 0 �M 0. By an isotopy preserving the Heegaard
surface, we may assume that � 0 is disjoint from B. We can thus interpret � 0 as a sphere in M �M 0,
where it is the desired Haken sphere.

On the other hand, almost peripheral spheres are also Haken spheres:

Lemma 3.7 (almost peripheral strong Haken theorem) Let M be a 3–manifold with at least two
punctures , and M D V [S V 0 be a Heegaard splitting. Then any almost peripheral sphere � in M is
isotopic to a Haken sphere.

Proof We begin with the case where � cuts off exactly two punctures ı1 and ı2. The almost peripheral
sphere � is then isotopic to the boundary of a regular neighborhood of ı1[˛[ ı2, where ˛ �M is a
properly embedded arc. We may homotope ˛ to lie in S , as any arc in a handlebody is homotopic into the
boundary. However, the arc may now not be embedded anymore. We can remove the self-intersections
by “popping subarcs over ı1 \ S”. To be more precise, parametrize ˛ W Œ0; 1�! S so that it starts on
ı1\S , and homotope so that all self-intersections are transverse. Consider the first self-intersection point
˛.t/D ˛.s/ for t < s. In particular, this implies that ˛jŒ0;t � is an embedded arc.

Now homotope a small subarc ˛jŒs��;sC�� to instead be the arc obtained by following ˛jŒ0;t � backwards
to ı1\S , following around ı1\S , and returning along ˛jŒ0;t � (see Figure 3). This homotopy is possible
in V , and the resulting arc has at least one fewer self-intersection.

After a finite number of modifications of this type, the boundary of a regular neighborhood of ı1[˛[ ı2
(which is homotopic to �) intersects S in a single curve, and thus is a Haken sphere. By a theorem of
Laudenbach [10], homotopy and isotopy are the same for spheres in 3–manifolds; hence the claim follows.1

1One could also avoid citing this theorem by isotoping ˛ into a regular neighborhood of S and resolving crossings of the
projection to S by isotopies which slide strands over the puncture similar to Figure 3.
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Figure 3: Removing self-intersections of an arc joining two spots.

Now we suppose � is a sphere cutting off k > 2 punctures. Then there is a sphere � 0, disjoint from � ,
which cuts off two punctures, and which is contained in the punctured S3 bounded by � . By the initial
case, � 0 may be assumed to be Haken. Let M 0 be the manifold obtained by cutting M at � 0, with the
induced Heegaard splitting; observe that � �M 0 is still almost peripheral, but now cuts off at most k � 1

spheres. By induction, � is a Haken sphere.

Since any essential nonperipheral sphere in a punctured S3 is almost peripheral, this implies the following:

Corollary 3.8 (strong Haken theorem for punctured 3–spheres) Any essential sphere in a punctured
3–sphere is isotopic to a Haken sphere.

4 Heegaard splittings of n.S 1 � S 2/

In this section, we study Heegaard splittings of a specific manifold, namely:

Definition 4.1 We denote the double of the genus-n handlebody by Wn. It is the connected sum of n

copies of S2 �S1.

A reader only interested in the strong Haken theorem may safely skip ahead to the next section. Our
goal here will be to prove that, similar to Waldhausen’s theorem for the 3–sphere, all Heegaard splittings
of Wn are “standard” in the following sense:

Definition 4.2 A Heegaard splitting of Wn is standard if it is the double of a genus-n handlebody. A
standard Heegaard splitting of Wn is a Heegaard splitting that is the connected sum of n copies of W1

with the standard Heegaard splitting.

Waldhausen seems to claim in [18] that all Heegaard splittings of Wn are standard (although it is not
entirely clear up to which equivalence relation, and the proof sketch is incomplete). In the unpublished
preprint [3], Oertel and Navarro Carvalho prove the result, using results on the homeomorphism groups of
handlebodies and Wn (in a very similar way to the argument we will use below). In this section, we show
that these techniques could also be used to prove a strong Haken theorem (and obtain the uniqueness of
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splittings as a corollary). We want to emphasize that this of course follows from the general strong Haken
theorem (Theorem 1.1), but consider the argument using homeomorphisms of Wn interesting enough to
warrant this alternative proof.

Proposition 4.3 Every unstabilized Heegaard splitting of W1 is standard.

Proof Suppose that W1 D V [S V 0 is a Heegaard splitting. We wish to show that W1 D V [S V 0 is
standard. Since W1 is reducible, Haken’s lemma tells us that there is a Haken sphere R for W1DV [S V 0.
Denote V \R by D and V 0\R by D0. Note that all essential spheres in W1, in particular R, are isotopic
to S2 � .point/.

We may assume that S intersects a bicollar of R in an annulus .S \R/� Œ�1; 1�. Removing this bicollar
leaves a copy of S2 � Œ�1; 1�, ie a twice-punctured 3–sphere that inherits a Heegaard splitting. By
Theorem 3.3, this Heegaard splitting is either of genus 0 or stabilized.

Since W1 D V [S V 0 is unstabilized, the Heegaard splitting obtained on the complement of S2 � Œ�1; 1�

must be of genus 0. Specifically, the splitting surface is a twice-punctured 2–sphere, ie an annulus. Hence
we can reconstruct W1 D V [S V 0: Indeed, say, V , is composed of a 3–ball attached to the two copies
D � f˙1g of D. It follows that V is a solid torus. The same is true of V 0, and hence W1 D V [S V 0 is
the standard Heegaard splitting.

First, we have the following classical result due to Griffiths [4]:

Theorem 4.4 The action of the mapping class group of a handlebody Vn on its fundamental group
�1.Vn/D Fn induces a surjection

Mcg.Vn/! Out.Fn/! 1:

We remark that the kernel of this map is quite complicated, and generated by twists about disk-bounding
curves [12]. Next, we need a theorem of François Laudenbach [10] (see also [2; 11] for a modern proof):

Theorem 4.5 The action of the mapping class group of a doubled handlebody Wn on its fundamental
group �1.Wn/D Fn induces a short exact sequence

1!K!Mcg.Wn/! Out.Fn/! 1:

The kernel K is finite , generated by Dehn twists about nonseparating spheres and acts trivially on the
isotopy class of every embedded sphere or loop.

Corollary 4.6 For the standard Heegaard splitting of Wn, every essential sphere in Wn is isotopic to a
Haken sphere.

Proof First, any two nonseparating spheres in Wn can be mapped to each other by a homeomorphism.
Namely, the complement of such a sphere is homeomorphic to Wn�1 with two punctures. Similarly,
separating spheres can be mapped to each other if and only if the fundamental groups of the complements
are free groups of the same rank (as the complement is a disjoint union of once-punctured Wk and Wn�k).
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Next, observe that there are Haken spheres of all such possible types, obtained by doubling a suitable
disk in the handlebody.

Let i W Vn!Wn be the inclusion induced by doubling. Observe that on the one hand, the boundary of Vn

maps under i to the standard Heegaard splitting of Wn, and on the other hand i induces an isomorphism
i� of fundamental groups. For any outer automorphism ' 2 Out.�1.Vn// of the fundamental group
of Vn, by Theorem 4.4 there is a homeomorphism f W Vn! Vn inducing it. Let F WWn!Wn be the
homeomorphism of Wn obtained by doubling f . Observe that F preserves the standard Heegaard splitting
of Wn by construction, and F induces ' via the isomorphism i� W �1.Vn/ ! �1.Wn/. Since ' was
arbitrary, this shows that any outer automorphism of �1.Wn/ can in fact be realized by a homeomorphism
of Wn preserving the standard Heegaard splitting.

Together with Laudenbach’s Theorem 4.5 this shows that any sphere is isotopic to the image of a Haken
sphere under a homeomorphism preserving the standard Heegaard splitting — hence, it is isotopic to a
Haken sphere.

Lemma 4.7 There is a unique Heegaard splitting of Wn of genus n.

Proof Connected sum decompositions of Wn are not unique. However, let Wn D V [S V 0 be the
standard Heegaard splitting and let Wn DX [Y X 0 be any Heegaard splitting of genus n. By repeated
application of Theorem 2.9, there are Haken spheres R1[ � � � [Rn�1 for Wn that cut Wn DX [Y X 0

into standard Heegaard splittings of W1. By Corollary 4.6, R1; : : : ;Rn�1 are also Haken spheres for
Wn D V [S V 0. By an Euler characteristic argument, these cut Wn D V [S V 0 into genus-1 Heegaard
splittings of the summands. By Proposition 4.3 these are standard. In particular, Y is isotopic to S .

Proof of Proposition 1.2 For an unstabilized Heegaard splitting, this is Lemma 4.7. Furthermore, if
nD 1, then this follows from Proposition 4.3. So suppose that n > 1 and Wn D V [S V 0 is stabilized.
By Corollary 4.6, there is a Haken sphere R that decomposes Wn into W1 # Wn�1. Moreover, by [13],
one of the Heegaard splittings inherited by the summands is stabilized. By induction, Wn D V [S V 0

is a stabilization of a connected sum of standard Heegaard splittings, ie a stabilization of the standard
Heegaard splitting of Wn.

5 Strong Haken theorem

Combining the uniqueness of Heegaard splittings for Wn (Proposition 1.2) with Corollary 4.6 yields
a strong Haken theorem for Wn: any sphere in Wn is isotopic to a Haken sphere. This statement was
recently proved by Scharlemann [16] for all 3–manifolds. In this section, we provide a short independent
proof of this theorem for closed manifolds and manifold with spherical boundary.

The following proof proceeds by two nested inductions. It naturally involves 3–manifolds with spherical
boundary, even if we just want to prove the theorem in the closed case. Recall that for such 3–manifolds,
we decree that each boundary sphere (puncture) meets the splitting surface in a single simple closed curve.
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Proof of Theorem 1.1 We prove the theorem by considering all punctured 3–manifolds and all Heegaard
splittings, ordered according to a suitable complexity. Namely, if M D V [S V 0 is a Heegaard splitting,
we define the complexity as the pair .g.S/; n.S// of genus and number of spots of the handlebodies
(ordered lexicographically). We perform a nested induction on the genus g and the number of boundary
components n. The argument for the inductive step is in fact the same in both cases, and so we describe
both inductions simultaneously.

Induction start (g D 0 and n� 0) Observe that the only punctured 3–manifold that can be obtained
from a Heegaard splitting of genus 0 is the 3–sphere. Thus, the strong Haken theorem in this case is
simply Corollary 3.8.

Induction steps Now suppose that the strong Haken theorem is known for all manifolds of complexity at
most .g; n/ and that M is a manifold of complexity .g; nC1/, or suppose that the strong Haken theorem
is known for all manifolds of complexity .g; k/; k � 0 and that M is a manifold of complexity .gC1; 0/.

First observe that by Lemma 3.7 any almost peripheral sphere in M is isotopic to a Haken sphere. We
thus have to show that surviving spheres in M are also isotopic to Haken spheres.

Claim 5.1 Suppose that R is a surviving Haken sphere in M , and suppose that R0 is a surviving sphere
disjoint from R and not isotopic to R. Then R0 is isotopic to a Haken sphere.

Proof Denote by M �R the punctured 3–manifold obtained by cutting at R. M �R has two punctures
more than M , corresponding to the two sides of R. M �R has one or two components, depending on
whether R is separating or not.

Let M 0 be the component of M �R containing R0. This manifold inherits a Heegaard splitting from
V [S V 0 with splitting surface a component of S 0 D S � .R\ S/. If R\ S is nonseparating, then
g.S 0/ < g.S/. If R\S is separating, then either the genus or the number of boundary components is
smaller for S 0. In either case, .g.S 0/; n.S 0// < .g.S/; n.S// lexicographically.

The sphere R0 defines an essential sphere in M 0: if it would bound a ball in M 0, the same would be true
in M (violating incompressibility of R0 in M ), and if it were isotopic to a boundary component of M 0,
then R0 would be peripheral in M or isotopic to R (both of which we exclude).

If R0 is almost peripheral in M 0, then by Theorem 3.6 it is isotopic to a Haken sphere in M 0. Otherwise,
since the complexity of the splitting of M 0 is smaller than the original one, we can use the inductive
hypothesis on M 0 to conclude that R0 is isotopic to a Haken sphere in M 0. Interpreting M 0 as a
submanifold of M , and using that the Heegaard splitting of M 0 is inherited from M , this shows that R0

is isotopic to a Haken sphere in M as well.

If M contains any surviving spheres, then the surviving Haken lemma (Theorem 3.6) implies that there is
a surviving Haken sphere �0. Connectivity of the surviving sphere complex (Lemma 3.5), together with
Claim 5.1, then inductively implies that any surviving sphere is isotopic to a Haken sphere.
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