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Let B4 (resp. PBy) be the braid group (resp. the pure braid group) on 4 strands and NFlpg, (B4) be the
poset whose elements are finite-index normal subgroups N of B4 that are contained in PB4. We introduce
GT-shadows, which may be thought of as “approximations” to elements of the profinite version GT
of the Grothendieck—Teichmiiller group (Drinfeld 1991). We prove that GT—shadows form a groupoid
whose objects are elements of the underlying set NFlpg, (B4). GT—shadows coming from elements of GT
satisfy various additional properties and we investigate these properties. We establish an explicit link
between GT—shadows and the group GT. Selected results of computer experiments on GT—shadows are
presented. In the appendix we give a complete description of GT—shadows in the abelian setting. We
also prove that, in the abelian setting, every GT—shadow comes from an element of GT. Objects very
similar to GT—shadows were introduced by D Harbater and L Schneps (1997). A variation of the concept
of GT—shadows for the gentle version of GT was studied by P Guillot (2016 and 2018).
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1 Introduction

The absolute Galois group Gg of the field Q of rational numbers and the Grothendieck—Teichmiiller
group GT introduced by V Drinfeld in [7] are among the most mysterious objects in mathematics. A far
from complete list of references includes Ellenberg [8], Fresse [9], Harbater and Schneps [14], Thara [15],
Lochak and Schneps [19], Nakamura and Schneps [22], Pop [23] and Schneps [25].
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Using the outer action of G on the algebraic fundamental group of Pé \ {0, 1, 0o}, one can produce a
natural group homomorphism

(1-1) Go — GT

and, due to Belyi’s theorem [3], this homomorphism is injective. Although both Gg and GT are
uncountable, it is very hard to produce explicit examples of elements in G and in GT.In particular, the
famous question on surjectivity of (1-1) posed by Ihara at his ICM address [15] is still open.

The group G can be studied by investigating finite-degree field extensions of Q. In fact Gg coincides
with the limit of the functor that sends a finite-degree Galois extension K of Q to the Galois group
Gal(K/Q). The goal of this paper is to propose a loose analog of such a functor for GT.

The most elegant definition of the group GT involves (the profinite completion PaB of) the operad PaB of
parenthesized braids; see Bar-Natan [1], Fresse [9, Chapter 6] and Tamarkin [28]. PaB is an operad in the
category of groupoids that is “assembled from” braid groups B, for all # > 1. The objects of PaB(n)
are words of the free magma generated by symbols 1, 2, ..., n in which each generator appears exactly
once. For example, PaB(3) has exactly 12 objects: (12)3, (21)3, (23)1, (32)1, (31)2, (13)2, 1(23), 2(13),
2(31), 3(21), 3(12), 1(32). For every n > 2 and every object t of PaB, we have

AlltPaB(n) (r) =PBy,
where PB,, is the pure braid group on n strands.

As an operad in the category of groupoids, PaB is generated by the two morphisms

2 1 1 2 3)
(1-2) B = \ and o= J J
1 2 (1 2 3

Moreover, any relation on 8 and « in PaB is a consequence of the pentagon relation and the two hexagon
relations; see (A-13), (A-14) and (A-15) in Section A.3. The hexagon relations come from two ways of
connecting (12)3 to 3(12) and two ways of connecting 1(23) to (23)1 in PaB(3). Similarly, the pentagon
relation comes from two ways of connecting ((12)3)4 to 1(2(34)) in PaB(4). For more details about the
operad PaB and its profinite completion PaB, see Appendix A.

By definition, GT is the group Aut(P/é\B) of (continuous) automorphisms' of the profinite completion
PaB of PaB.

Since the morphisms 8 and « from (1-2) are topological generators of PaB, every T eGTis uniquely
determined by its values

(1-3) T(B) e Hompas((1,2), (2,1)) and T(«) € Hompag((1,2)3,1(2,3)).

IWe tacitly assume that our automorphisms act as identity on objects.

Algebraic € Geometric Topology, Volume 24 (2024)



What are GT-shadows? 2723

Moreover, since Autpaa((1,2)3) = 15E3, Autp((1,2)) = @2 and 15E2 =~ 7, the underlying set of GT
can be identified with the subset of pairs (71, f) € 7 x PB 3 satisfying some relations and technical
conditions.

Recall that PBj is isomorphic to the direct product F, x Z of the free group F, on two generators and
the infinite cyclic group. The F,—factor is generated by the two standard generators x1, and x,3, and
the Z—factor is generated by the element ¢ := x33X1,2x13. In this paper, we tacitly identify F, (resp. its
profinite completion /F\z) with the subgroup (x5, X23) < PBj3 (resp. the topological closure of (x{;, X23)
in @3). Occasionally, we denote the standard generators of F, by x and y.

One can show? (see, for example, Corollary 2.22 in Section 2 of this paper) that, for every T € GT,
the corresponding element f cPB 3 belongs to the topological closure ([?2, ﬁz])Cl of the commutator
subgroup of /F\z.

Remark 1.1 Due to Proposition 2.19, the restriction of every (continuous) automorphism T e Aut(l%)
to fz < P/B\3 = Autpzg((1,2)3) gives us an automorphism of fz. In fact, many authors introduce GT as
the subgroup of (continuous) automorphisms of /F\z of the form

x> xt oy TS

where the pair (X fA )e 7% x ([ﬁz, ﬁz])CI satisfies certain cocycle relations and the “invertibility condition”.
Another equivalent definition of GT is based on the use of the outer automorphisms of the profinite
completions of the pure mapping class groups. For more details about this definition, we refer the reader
to [14, Main Theorem].

Remark 1.2 It is known [18, Theorem 2] that, for every (7, f )€ GT , the element f satisfies further,
rather subtle, properties. It would be interesting to investigate whether GT—shadows satisfy consequences
of these properties.

1.1 The link between Gg and GT

For completeness, we briefly recall here the link between the absolute Galois group G of rationals and
the Grothendieck—Teichmiiller group GT.

Applying the basic theory of the algebraic fundamental group (see for instance Grothendieck [11] and
Szamuely [27, Section 5.6]) to
Pg \ {0. 1. 00},

we get an outer action of the absolute Galois group Gg on F>. Using the fact that this action preserves
the inertia subgroups, we can lift this outer action to an honest action of the form

(1-4) g(x) =xX® g(y) = fo(x, )X ® fy(x,y) for g € Go,

2This statement can also be found in many introductory papers on GT.
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where x: Gg — 7" is the cyclotomic character and fg(x, y) is an element of ([ﬁz, ’F\z])d that depends
only on g.

It is known — see Drinfeld [7, Section 4], Ihara [15, Section 3] and Szamuely [27, Theorem 4.7.7 and
Fact 4.7.8] — that:

e Forall g € G, the pair (%(X(g) -1, ng(x, y)) €7 x F, defines an element of GT.
o The assignment g € Gg — (3 (x(g)—1). fo(x. y)) € 7 x F, defines the group homomorphism (1-1).

¢ Finally, using Belyi’s theorem [3], one can prove that the homomorphism (1-1) is injective.

For more details, we refer the reader to Thara [16].

1.2 The groupoid GTSh of GT-shadows and its link to GT

Let us denote by PaB=# the truncation of the operad PaB up to arity 4, ie
PaB=*:= PaB(1) L PaB(2) L PaB(3) LI PaB(4).
Moreover, let NFlpg, (B4) be the poset of finite-index normal subgroups N <1 B4 such that N < PB4.

To every N € NFlpg, (B4), we assign an equivalence relation ~y on Pa B=* that is compatible with the
structure of the truncated operad and the composition of morphisms. For every N € NFlpg,(By), the
quotient

PaB=*/~y

is a truncated operad in the category of finite groupoids.

In this paper, we introduce a groupoid GTSh whose objects are elements of the underlying set NFlpg, (B4).
Morphisms from N to N are isomorphisms of truncated operads

(1-5) PaB=*/~5 -=> PaB=*/~y.
We call these isomorphisms GT—shadows.

Just like PaB, the truncated operad PaB=* is generated by the braiding 8 € PaB(2) and the associator
o € PaB(3). Hence morphisms of GTSh with the target N € NFlpg, (B4) are in bijection with pairs

(1-6) (m + NowZ, fNpp;) € Z/NowaZ x PB3 /Npg,

that satisfy appropriate versions of the hexagon relations, the pentagon relation and some technical
conditions. Here, the integer N ord and the (finite-index) normal subgroup Npg; <I PB3 are obtained
from N via a precise procedure described in Section 2.2.

We denote by GT(N) the set of such pairs (1-6) and identify them with GT—shadows whose target is N.
From now on, we denote by [(m, f)] the GT—-shadow represented by a pair (m, f) € Z x PB3.

Algebraic € Geometric Topology, Volume 24 (2024)
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A GT—shadow [(m, f)] € GT(N) is called genuine if there exists an element T € GT such that the diagram

& l l

PaB=4/~r — PaB=4/~y

commutes. In (1-7), the lower-horizontal arrow is the isomorphism corresponding to [(m2, f)] and the
vertical arrows are the canonical projections. If such T does not exist, we say that the GT—shadow

[(m, [)]is fake.?

In this paper, we show that genuine GT—shadows satisfy additional conditions. For example, every genuine
GT-shadow in GT(N) can be represented by a pair (m, f) with*

(1-8) S €[F2, Fal,
where [F,, F,] is the commutator subgroup of F, < PBsj.

A GT-shadow [(m, f)] satisfying all these additional conditions (see Definition 2.20) is called charming.
In this paper, we show that charming GT—shadows form a subgroupoid of GTSh and we denote this
subgroupoid by GTSh®

The groupoid GTShY is highly disconnected. However, it is easy to see that, for every N € NFlpgp, (B4),
Q

the connected component GTShy

(N) is a finite groupoid; see Proposition 3.1. In all examples we
o

conn

have considered so far (see Dolgushev [4] and Section 4 of this paper), GTShy . (N) has at most two
objects and, for many of examples of N € NFlpg, (B4), the groupoid GTShconn(N) has exactly one object,
ie GT(N) is a group. Such elements of NFlpg,(B4) play a special role and we call them isolated. We

denote by NFI}fgfted(BO the subposet of isolated elements of NFlpg, (B4).

In this paper, we show that the subposet NFIi,ngted (By) is cofinal, ie for every N € NFlpg, (B4), there exists

Ke NFIiP?gZ“ed (B4) such that K < N. We show that the assignment N — GT(N) upgrades to a functor UL
|iPs§lated
4

from the poset NF (B4) to the category of finite groups and we prove that the limit of this functor is

precisely the Grothendieck—Teichmiiller group GT; see Theorem 3.8.

Remark 1.3 Recall from Harbater and Schneps [14] that, omitting the pentagon relation from the
definition of GT, we get the gentle version GT, of the Grothendieck—Teichmiiller group. It is not hard to
show that GT o 1s the group of continuous automorphisms of the truncated operad PaB=3 and GT is a
subgroup of GT o- P Guillot [12; 13] studies a variant of GT—shadows for this gentle version GT o of the
Grothendieck—Teichmiiller group.

3This name was suggested to the authors by David Harbater.

41t should be mentioned that, in the computer implementation [4], we only considered GT—shadows of the form [(m, f)] with

f€F2 SPB3
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1.3 Organization of the paper

In Section 2, we introduce the poset of compatible equivalence relations on the truncated operad PaB=4,
and we show that NFlpg,(B4) can be identified with the subposet of this poset. We introduce the
concept of GT—pair and show that GT—pairs coming from elements of GT satisfy certain conditions. This
consideration motivates the concept of GT—shadow; see Definition 2.9. We prove that GT—shadows form
a groupoid GTSh: objects of this groupoid are elements of NFlpg, (B4) and morphisms are GT—shadows.

In Section 2, we also investigate further conditions on GT—shadows coming from elements of GT, introduce
charming GT—shadows and prove that charming GT—shadows form a subgroupoid of GTSh. In this section,
we introduce a natural functor Cheyclor from GTSh to the category of finite cyclic groups. We call this
functor the virtual cyclotomic character.

In Section 3, we introduce an important subposet N Flggf‘ed (B4) of NFlpg, (B4) and construct a functor £

from NFIiﬁglj‘ted (B4) to the category of finite groups. In this section, we prove that the limit of the functor
M is precisely the Grothendieck—Teichmiiller group GT.

In Section 4, we present selected results of computer experiments. We outline the basic information about
35 selected elements of NFIpg, (B4) and the corresponding connected components of the groupoid GTSh.
We say a few words about selected remarkable examples. Finally, we discuss two versions of the Furusho
property (see Properties 4.2 and 4.3) and list selected open questions.

In Appendix A, we give a brief reminder of (pure) braid groups, the operad PaB and its completion.

In Appendix B, we give a complete description of charming GT—shadows in the abelian setting and we
prove that, in this setting, every charming GT—shadow is genuine; see Theorem B.2.

1.4 Notational conventions

For a set X with an equivalence relation and ¢ € X we will denote by [«] the equivalence class that
contains the element a. For a category 6, Ob(‘€) denotes the set of objects of €. Every poset J is naturally
a category: Ob(J) := J, fora,b € J, J(a,b) is a singleton if a < b and J(a,b) := @ ifa £ b. For a
groupoid ¥, the notation y € ¢ means that y is a morphism of this groupoid.

Every finite group is tacitly considered with the discrete topology. For a group G, G denotes the profinite
completion (see Ribes and Zalesskii [24]) of G. The notation [G, G] is reserved for the commutator
subgroup of G. For a normal subgroup H < G of finite index, we denote by NFlg (G) the poset of
finite-index normal subgroups N in G such that N < H. Moreover, NFI(G) := NFlg(G), ie NFI(G) is
the poset of normal finite-index subgroups of a group G.

For a group G and elements K < N of the poset NFI(G), the notation Py (resp. Pk n) is reserved for the
reduction homomorphism G — G/N (resp. G/K — G/N). The notation @N is reserved for the canonical
(continuous) homomorphism from G to G/N. Similar notation is used for the canonical functors to finite
quotients of a groupoid.

Algebraic € Geometric Topology, Volume 24 (2024)
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The notation B, (resp. PB;,) is reserved for the Artin braid group on n strands (resp. the pure braid group
on n strands). S; denotes the symmetric group on # letters. The standard generators of B, are denoted by
01,...,0,—1 and the standard generators of PB, are denoted by x;; for 1 <i < j <n. We will tacitly
identify the free group F, on two generators with the subgroup (x5, x53) of PB3.

We will freely use the language of operads as in Dolgushev and Rogers [6, Section 3], Fresse [9, Chapter 1],
Loday and Vallette [20], Markl, Shnider and Stasheff [21] and Stasheff [26]. In this paper, we work with
operads in the category of sets and in the category of (topological) groupoids. The category of topological
groupoids is understood in the “strict sense”. For example, the associativity axioms for the elementary
insertions® o; (for operads in the category of groupoids) are satisfied “on the nose”.

For an integer ¢ > 1, a g—truncated operad in the category of groupoids is a collection of groupoids
1%6(n)}1<n<q such that

e forevery 1 <n =< gq, the groupoid %(n) is equipped with an action of S,

o for every triple of integers i,n,m such that 1 <i <n, n,m,n+m —1 < g we have functors
(1-9) 0;:%(n) x4(m) > 4(n+m-—1),
e the axioms of the operad for {%(n)}<,<, are satisfied in the cases where all the arities are < ¢.

For every operad O and every integer ¢ > 1, the disjoint union 0=4 := Zz 0 0(n) is clearly a g—truncated
operad. In this paper, we only consider 4—truncated operads. So we will simply call them truncated

operads.

The operad PaB of parenthesized braids, its truncation PaB=* and its completion PaB=* play the central
role in this paper. See Appendix A for more details.
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3In the literature, elementary insertions are sometimes called partial compositions.
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2 GT-pairs and GT-shadows

2.1 The poset of compatible equivalence relations on PaB=*

An equivalence relation ~ on the disjoint union of groupoids®
PaB=* = PaB(1) L PaB(2) LI PaB(3) LI PaB(4)

is an equivalence relation on the set of morphisms of PaB=* such that, if y ~ ¥, then the source (resp.
the target) of y coincides with the source (resp. the target) of 7. In particular, y ~ y implies that y and ¥
have the same arity.

Definition 2.1 An equivalence relation ~ on PaB=* is called compatible if

¢ for every pair of composable morphisms y, ¥ € PaB(n), the equivalence class of the composition
y - ¥ depends only on the equivalence classes of y and ¥;

e forevery y,y € PaB(n) and every 0 € S,
y~7 = 0(y)~0(7):
* for every tuple of integers i,n,m, 1 <i <n,n,m,n+m—1<4, and every y1. ¥ € PaB(n),
Y2, ¥» € PaB(m), we have

YI~Vi = Y10 V2a~7V10i V2 and Y2 ~)2 = Y19 V2~ Y19 V2.

It is clear that, for every compatible equivalence relation ~ on PaB=*, the set
(2-1) PaB=%/~

of equivalence classes of morphisms in PaB=* is a truncated operad in the category of groupoids. The set
of objects of (2-1) coincides with the set of objects of PaB=*. The action of symmetric groups and the
elementary insertions are defined by the formulas

o(y) :=[0(y)] for 6 € S, and y € PaB(n),
[viloi[y2] :=[y10i 2] for y; € PaB(n) and y, € PaB(m).
The conditions of Definition 2.1 guarantee that the composition of morphisms, the action of the symmetric

groups on PaB(n)/~ and the elementary operadic insertions are well defined. The axioms of the (truncated)
operad follow directly from their counterparts for PaB=%.

Compatible equivalence relations on PaB=* form a poset with the following obvious partial order: we
say that ~1 <~ if ~ is finer than ~,, ie

Y~y = v~y
6Recall that PaB(0) is the empty groupoid.
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It is clear that, for every pair of compatible equivalence relations ~, ~, on PaB=* such that ~; <~,
we have a natural onto morphism of truncated operads

(2-2) Py my i PaBZH ) — PaB=* /~s.

Moreover, the assignment ~ — PaB=*%/~ upgrades to a functor from the poset of compatible equivalence
relations to the category of truncated operads.

For every compatible equivalence relation ~ on PaB=#, we denote by % the natural (onto) morphism of
truncated operads:

(2-3) P : PaB=* — PaB=*/~.
2.2 From NFlpg,(B4) to the poset of compatible equivalence relations

In this paper, we mostly consider compatible equivalence relations for which the set of morphisms
of (2-1) is finite and a large supply of such compatible equivalence relations come from elements of the
poset NFlpg, (By).

For N € NFlpg, (B4), we set
2-4) Nep, := @753 (N) N ‘91_21,3,4('\') n 901_,;3,4('\') N 901_3,34('\') N@334(N),
(2-5) Npg, = @15 (Npg;) N @15 3(NpB3) N @] 33(Nps3) N @33 (Npg;),

where @123, ¢©12,3,4, ¢1,23.4, ¢1,2,34 and @334 are the homomorphisms defined in (A-16), and ¢,
®12,3, 1,23 and @3 are the homomorphisms defined in (A-17); see also the explicit formulas in (A-18)
and (A-19).

Proposition 2.2 For every N € NFlpg,(By4), the subgroup Npg, (resp. Npg,) is an element of the poset
NFlpg, (B3) (resp. the poset NFlpg, (B2)).

Proof Since every subgroup of B, is normal and Npg, has a finite index in PB,, the statement about
Npg, is obvious.

It is also easy to see that Npg, is a subgroup of finite index in PB3. So it suffices to prove that
gNpp, g~ <Npp, forall g€ Bs.
Let 4 € Npp, and g € B3. Then
(2-6) 91,23.4(g-h-g7") =ou(m(g-h-g7") ozid),
where the map ou: PaB(n) — B, and its right inverse m: B, — PaB(n) are defined in Section A.2.
Using identity (A-11), we get
m(g-h-g7") =6(m(g))-0(x) m(g™),
where 6 = p(g) and x := m(h).

Algebraic € Geometric Topology, Volume 24 (2024)
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Therefore

(2-7) m(g-h-g~ ") oyidip = (6(m(g)) ozidy2) - (B(x) 02id12) - (m(g™") 02idy>).
Combining (2-6) with (2-7), we get
(2-8) @1,23,4(g h-g7 1) = ou(0(m(g)) o2 id;2) - ou(B()) 02 id12) - ou(m(g ") 02 idy2).
Since

ou(0(m(g)) 02id12) - ou(m(g ") oz idy2) = ou(O(m(g)) oz idsz -m(g ") 0zid2)

ou((6(m(g))-m(g™")) 0z idy>)
= ou(m(g-g_l) 05 id12) = ou(id(1(23))4) = lg,.

the element ¢; 23 4(g -/ g~ 1) € B4 can be rewritten as
01,23,4(g-h-g7 ") =g ou(0(x)02id12) 7", where g:=ou(B(m(g))o,ids2).

Thus it remains to prove that

(2-9) ou(f(x) opidy,) € N.

For this purpose, we consider the three possible cases: 6(1) = 2, 8(2) =2 and 6(3) = 2.
e If 0(1) = 2, then ou(8(x) o2 id12) = ¢12,3,4(h) and (2-9) is a consequence of /1 € (,01_21’3’4(N).
e If 0(2) = 2, then ou(8(x) 02 id12) = ¢1,23,4(h) and (2-9) is a consequence of /1 € (pl_’;m(N).
e If 6(3) =2, then ou(6(x) 02id;2) = ¢1,2,34(h) and (2-9) is a consequence of & € gol_’;,M(N).

We proved that the element ghg™! belongs to ¢ (N) C PB3. The proofs for the remaining four

-1
1,23,4
homomorphisms @123, ¢12,3,4, ¢1,2,34 and @,34 are similar and we omit them. O

xf\;“d), where Ny is the index of Npg, in PBj, ie Ny is the least common

multiple of orders of X12NPB3, X23 NPB3’ X12X13NPB3 and X13X23 NPB3 in PB3/NPB3.

It is clear that Npg, = (

Using the identities x1Xx13 = x2_31c and x13X33 = xl_zlc involving the generator ¢ (see (A-5)) of the
center of PB3, it is easy to prove the following statement:

Proposition 2.3 Let Npg, = (x{\;‘"d) be the subgroup of PB, defined in (2-5). Then N4 coincides with

(1) the least common multiple of orders of elements x12Npg;, X23Npg; and x12x13Npg;;
(2) the least common multiple of orders of elements x1,Npg;, X23Npp; and x13x23Npp,; and

(3) the least common multiple of orders of elements x1,Npg;, X23Npg; and ¢Npg;. O
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Given N € NFlpg, (B4) and the corresponding normal subgroups Npg; and Npg,, we will now define an
equivalence relation ~y on the set of morphisms in PaB=%.

The groupoid PaB(1) has exactly one object and exactly one (identity) morphism. So PaB(1) has only
one equivalence relation.

Letn €{2,3,4} and
ys V € HomPaB(n) (Tl ’ TZ)‘

We declare that y ~y ¥ if and only if
(2-10) ou(y ™" -¥) € Nps,,.,
where Npg, := N. In other words, y ~ ¥ if and only if

y=v-n
where ou(n) € Npg, and the source of y coincides with the target of 7.
Proposition 2.4 For every N € NFlpg, (B4), ~n is a compatible equivalence relation on PaB=* in the
sense of Definition 2.1. Moreover, the assignment

N~ ~n
upgrades to a functor from the poset NFlpg,(B4) to the poset of compatible equivalence relations
on PaB=%,
Proof The first property of ~y follows from the fact that Npg, := N (resp. Npg;, Npg,) is normal in B4
(resp. B3, Bj).
The second property of ~ follows from the obvious identity

ou(y) = ou(f(y)) forall y € PaB(n) and 0 € S,,.

The proof of the last property is based on the observation that elementary operadic insertions for PaB
can be expressed in terms of the operations ? o; id;, id;0;?, and the composition of morphisms in the
groupoids PaB(3) and PaB(4).

Let n € {2,3} and n be a morphism in PaB(n) whose target coincides with its source. In particular,
ou(n) € PB,. Let us prove that, if ou(n) € Npp,,, then, for every v € Ob(PaB(m)) withn +m —1 < 4,
we have

(2-11) ou(no;idy) € PByyy—y forall 1 <i <mn,
(2-12) ou(id; o; n) € PB4 py—y forall 1 <i <m.

Let 4 = ou(n). If m = 2, then there exists 1 < j < n (resp. j € {1, 2}) such that ou(m(h) o id2) =
ou(n o; id¢) (resp. ou(idy2) oj m(h) = ou(ide o; 1)).
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Thus, if m = 2, (2-11) and (2-12) follow directly from the definitions of Npg;, Npg,, (2-4), (2-5) and the
definitions of the homomorphisms @173, ..., ¢12,...; see (A-16) and (A-17).

If m = 3, then there exist j, k € {1, 2} such that
ou(n o; idy) = ou((n0j id2) of idy2).
For example, if n € Homp,g((2, 1), (2, 1)), then ou(n 02 idy(1,3)) = ou((nozid;3) 03 idy2).

Thus (2-11) for m = 3 follows from (2-11) for m = 2. Similarly, (2-12) for m = 3 follows from (2-12)
for m = 2.

We will now use (2-11) and (2-12) to prove the last property of ~y.

Consider y1,¥1 € Homp,g(,) (71, 72) and y», > € Homp,g(m) (@1, w2). First suppose y1 ~n Vi, s0
Y1 = y1 -1 for some n € Homp,g(,) (71, 71) such that ou(n) € Npg, . It follows that

Y1oiv2 = (y1-n)oi (y2-idw,) = (y1 9 ¥2) - (N 0; idg, ).
Due to (2-11), ou(n o; idw, ) € Nps,,,,,,_, and hence ¥ o; y2 ~ y1 0; ».

Now suppose y» ~n 72, 80 2 = y» -1 for some 1’ € Homp,g () (@1, 1) such that ou(n’) € Npg,,,. It
follows that

y10i P2 = (y1-idg)) 0i (y2-1') = (1 04 y2) - (idy, i 7).
Due to (2-12), ou(id, o; ') € Np,,,,,,_, and hence y; o; ¥, ~ y1 0; ¥».
This completes the proof of the fact that ~y is indeed a compatible equivalence relation on PaB=%.
It is clear that, if N, N € NFlpg,(B4) and N <N, then NPB3 < Npg; and NPBZ = Npa,.
Thus the assignment N — ~y upgrades to a functor from the poset NFlpg, (B4) to the poset of compatible
equivalence relations. O

Later, we will need the following technical statement about NFlpg, (B4):

Proposition 2.5 (A) Forevery N € NFI(PB3), there exists K € NFlpg, (B4) satisfying the property
Kpg; < N.
(B) Forevery N € NFI(PB,), there exists K € NFlpp, (B4) such that Kpg, < N.
Proof Stronger versions of these statements are proved in Section 3.1; see Proposition 3.9. So we omit
the proof of this proposition. O

Algebraic € Geometric Topology, Volume 24 (2024)



What are GT-shadows? 2733

2.3 The set of GT—pairs GT,.(N)

Let N € NFlpg, (B4) and ~p be the corresponding compatible equivalence relation on PaB=*. Let Npg,
(resp. Npg,) be the corresponding normal subgroup of PB3 (resp. PB,) and N4 be the index of Npg,
in PB 2.

Since the groupoid PaB(0) is empty, Theorem A.1 implies that the truncated operad PaB=* is generated
by morphisms « and B shown in equation (1-2).

Moreover any relation on « and B in PaB=# is a consequence of the pentagon relation

oj id
(123))4 —————— 1((234)
idlzoy %2“
(2-13) ((12)3)4 1(2(34))
(12)(34)
and the hexagon relations
id 3,2
(12)3 22412 510y 32D 515
(2-14) al [enep
—1
123) 22928 1 30y D (43,
id 1,2,3
123) 2212 3y L2995 4y
(2-15) a=! T(l,z) (id12 02 B)
1,2
(12)3 42908 51)3 2% H 3y
Thus morphisms of truncated operads
(2-16) T:PaB=* — PaB=*/~y
are in bijection with pairs
(2-17) (m + NoZ, fNppy) € Z/NoraZ X PB3 /Npp,
satisfying in B3 /Npg, the relations
(2-18) o1 X7 £ oaxT fNppy = £ 0102(x13X23)™ Npp3
(2-19) f opx fo1x" Npp, = 0201 (x12X13)™ f Np;,
and in PB4 /N the relation
(2-20) 9234 (/)91,23,4()P123(SIN = 01,2 34(f)912,3,4(/IN.
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More precisely, this bijection sends a pair (2-17) to the morphism 7}, r:Pa B=# — PaB=*/~y of truncated
operads defined by the formulas

T, p(@):=[a-m(f)] and Ty ¢(B):=[B m(x]3)]
where m is the map from B,, to PaB(n) defined in Section A.2.

This observation motivates our definition of a GT—pair:

Definition 2.6 For N € NFlpg, (B4), the set GT,;(N) consists of pairs
(m + NordZ, fNPBS) € Z/NordZ X PB3/NPB3

satisfying (2-18), (2-19) and (2-20). Elements of GT,(N) are called GT—pairs.

We will represent GT—pairs by tuples (m, f) € Z x PB3. It is straightforward to see that, if relations
(2-18), (2-19) and (2-20) are satisfied for a tuple (m, f), then they are also satisfied for (m 4+ ¢ Nora, f 1),
where ¢ is an arbitrary integer and / is an arbitrary element in Npg,. A GT—pair in Z /Ny Z x PB3 /Npp,
represented by a tuple (m, f) € Z x PB3 will be often denoted by

[(m. /)]

For N € NFlpg,(B4) and a tuple (m, /) representing a GT—pair in GT(N), we denote by T, s the
corresponding morphism of truncated operads,

(2-21) Ty, r: PaB=* — PaB=*/~y.

It is clear that, for every n € {2, 3, 4}, the assignment ou from Section A.2 induces the obvious map
(2-22) PaB(n)/~n — Bn/Npp,, where Npg, := N.

By abuse of notation, we will use the same symbol ou for the map (2-22).

Using (2-22) together with the map m: B, — PaB(n) from Section A.2 and morphism (2-21), we define
group homomorphisms B, — B, /Npg,, B3 — B3 /Npp, and B4 — B4/N. Restricting these homomor-
phisms to PB;, PB3 and PB4, we get group homomorphisms PB, — PB,/Npg,, PB3 — PB3/Npg; and
PB4 — PB4/N, respectively. More precisely, we have the following statement:

Corollary 2.7 Suppose that N € NFlpg, (B4). For every pair (m + NowZ, fNpg;) € GTp(N), and every
n €42, 3,4}, the assignment

(2-23) T,"(g) = ouo Ty, r om(g)

defines a group homomorphism B,, — B,,/Npg, (with Npg, := N). The restriction of T;an to PB,, gives

us a group homomorphism

(2-24) Tt PBy — PBy/Neg,.
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The action of T ’54 on the generators of B, is given by the formulas
Trsj‘f(al) = o1x,N,
(2-25) Tt (02) i= 9123(/) " (0235 @123 (SN,
Tl (03) = ¢12,3,4(/) " (0355 @12,3,4(/IN.
The action of T23 - on the generators of B3 are given by the formulas
(2-26) Tp(e1) = 01xiNess and T, (02) = /=" (02X55) /Nes;.
Finally, T:”zf sends oy to o1 X7’ Npp,.
Proof It is clear that, for every two composable morphisms y1, ¥, € PaB(n)/~n, we have

(2-27) ou(yr - y2) = ou(yy) - ou(y2).

Then using (A-11) from Section A.2 and the compatibility of 7,, r with the structure of the truncated
operad we get

T,Eff(gl'gz) = ow(Ty, r ((g1-€2))) = ow(Tom, 1 (p(g2) "' (m(g1))m(g2)))
= ou(Ton, £ (0(g2) ™' (M(g1))) T, r (M(g2))) = ou(p(g2) " Ty, s (m(g1))- Ty, r (M(g2)))
= ou(p(g2) ™ Ton, r(M(g1)))-0u(Tpn, r(M(g2))) = ou(Tp, £(m(g1)))-0u(Trn, r(M(g2)))
By B,
= m’f(gl)'Tm,f(gz)s
whence TIET ' is a group homomorphism.

The second statement of the corollary follows immediately from the fact m is a right inverse of ou and
T,  acts trivially on objects of PaB.
We will now prove (2-25). The easier cases of TYE? ’ and T 22 | are left for the reader.
For the generator o, we have
T,Eff(al) = ou(Tm,f(m(ol))) = 0W(Ty, r(id(12)3 01 B)) = Uu(id(12)3 or[B 'm(xinz)]) = leqnz N.
For the generator o,, we have
Tnlzf‘f(ffz) = ow(Ty, r ((02))) = ou(Tpy, £((2,3)(id12 01 & 1) - (id(12)3 02 B) - (id12 01 @)))
= ou((2,3)(idiz o1 [m(/ ™) -@1)) - (idar2y3 02 [B- m(x7h)]) - (idi2 o1 [er - m(/)]))
= ¢123(/) " (025530123 (/IN.

Finally, for the generator o3, we have
TE (03) = 0u(Tyn, £ ((03))) = 0T, (3. 4 (@' 01 idy2) - (id(12)3 03 B) - (@ 01 1))
= ou((3.4)(m(/) " -a oy ids2) - (id(12)3 03 [B - m(xH)]) - ([ - m( )] oy idy2))
= 012,3.4(/) 7 (03x5)@12.3,4(/N. O
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Let us now use Corollary 2.7 to prove the following statement.

Corollary 2.8 Let N € NFlpg,(By), [(m, f)] € GT,(N) and ¢ be the generator of the center of PB3;
see (A-5). Then

(2-28) PB3(X 2) = x 20 Npg,, PB3 r3) =/ L3 fNpg,.

PB — 2 1 PB 2 1
(2-29) mpx13) = x0T ST forx Nes,, (€)= 2" INpg

Proof The first equation in (2-28) is a simple consequence of the first equation in (2-26).

Using the second equation in (2-26), we get

T3 (x03) = Ty3(03) = (£ 7 (02x38) )" Newy = £ (03x25") f Newy = /™ X33+ f Neg,.
Thus the second equation in (2-28) is proved.

2

Using the definition of x13 := 0 1 oy

in (2-28), we get

01 =0, Ix,3071, the first equation in (2-26) and the second equation

TPB
3(X )_ m, f(al X2301) _x12 01 j x;;"“falxlz NPB;
Thus the first equation in (2-29) is also satisfied.

To prove the second equation in (2-29), we use the formulas (2-18), (2-19), (2-26), and the identities
X13X23 = xl_zlc, X12X13 = x2_31c extensively.
T3 (©) = T2 ((0102)°) = (T, (0102))
=o01x12 /" 02X23f01X12f Loaxdl forxy S oaxT} fNes,
= o102 (x13x23) 01X 0201 (x12X13)™ ff T oaxDy fNpg,
= [Tlo102(x7; ©)"01x150201 (X33 €)™ 02X f Nesy
= f_l01ole_zmcmalx’17’20201x2_3mcm02x§”3 JS'Npg,

= c*" f71(010201020102) fNpp, = ™! Npg, . |

2.4 GT-pairs coming from automorphisms of PaB

Let N € NFlpg, (B4) and ~y be the corresponding compatible equivalence relation. Since the groupoids
PaB(n)/~n for 1 <n <4 are finite, we have a canonical continuous onto morphism of truncated operads

(2-30) Pn: PaB=* — PaB=*/~y.

Thus, given any continuous automorphism T:PaB — PaB, we can produce the morphism of truncated
operads
Tn: PaB=* — PaB=*/~y
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by setting

(2-31) Tn:=PnoT o9,
where $ is the natural embedding of truncated operads

(2-32) $:PaB=* - PaB=*.

In other words, for every continuous automorphism of PaB and every N € NFlpg,(B4), we get a GT—
pair [(m, f)] corresponding to Ty. In this situation, we say that the GT—pair [(m, f)] comes from the
automorphism T.

GT—pairs coming from automorphisms of PaB satisfy additional properties. Indeed, since $(PaB=*) is
dense in PaB=* and the morphism

PN o T:PaB=* PaBS4/~N
is continuous and onto, the morphism 7Ty is also onto.

Thus, if a GT—pair [(m, f)] comes from a (continuous) automorphism of PaB, the group homomorphisms

(2-33) T:f; : PB4 — PB4/N,
(2-34) T2 : PBs — PB3/Nps;,
(2-35) Tnlj‘f’; : PB, — PB;/Nps, .
are onto.

GT—pairs satisfying these properties are called GT—shadows. More precisely:

Definition 2.9 Let N be a finite-index normal subgroup of B4 such that N < PB4. Furthermore, let Npg,
and Npg, be the corresponding normal subgroups of B3 and B,, respectively, and let N4 be the index
of Npg, in PB;. The set GT(N) consists of GT—pairs [(m, f)] € GTy(N) for which group homomorphisms
(2-33), (2-34) and (2-35) are onto. Elements of GT(N) are called GT—shadows.
It is easy to see that homomorphism (2-35) is onto if and only if
(2-36) (2m +1) + NowZ € (Z) NowaZ) ™.
We say that a GT—pair [(m, f)] is friendly if m satisfies condition (2-36).
Due to the following proposition, only homomorphisms (2-34) and (2-35) matter.
Proposition 2.10 Let N € NFlpg, (B4), [(m, /)] € GTp(N) and T,y r: PaB=* — PaB=*/~y be the
corresponding map of truncated operads; see (2-21). The following statements are equivalent:

(1) The pair [(m, f)] is a GT—shadow.

(2) Group homomorphisms (2-34) and (2-35) are onto.

(3) The map Ty, s:PaB=* — PaB=*/~y is onto.
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Proof The implication (1) = (2) is obvious. It is also clear that if 7}, r: Pa B=# — PaB=*/~y is onto,
then group homomorphisms (2-33), (2-34) and (2-35) are onto. Thus the implication (3) = (1) is also
obvious.

It remains to prove the implication (2) = (3).

Since group homomorphism (2-35) is onto, there exists 3, € Homp,g (12, 12) such that

T, (v2) = [m(x "))
Therefore,
Tm,f(:‘g : V2) = Tm,f(:B) : Tm,f(V2) = [/3]
Since homomorphism (2-35) is onto, there exists y3 € Homp,g((12)3, (12)3) such that

Ton, £ (v3) = [m(f 1.
Therefore,

Tm,f(Ol')/3) = Tm,f(a)'Tm,f()/3) = Tm,f(a)'[m(f_l)] = [o].

Since, as a truncated operad in the category of groupoids, PaB=* is generated by 8 and «, the truncated
operad PaB=*/~y is generated by the equivalence classes [B] € PaB(2)/~y and [«] € PaB(3)/~n.

Using the fact that [8] and [«] belong to the image of T, s, we conclude that the morphism of truncated
operads T, r is indeed onto.

Since the implication (2) => (3) is established, the proposition is proved. a

2.5 The groupoid GTSh

Let N € NFlpg,(B4) and [(m, f)] € GT(N). The morphism of truncated operads
Ty r: PaB=* — PaB=*/~y

gives us the obvious compatible equivalence relation ~:

(2-37) Y1~ V2 = T (V1) = T, r(v2).

Due to the following proposition we have ~s=~ng ., where Nj, ¢:= ker(T;]?}) and N;, » € NFlpg, (By).
This will allow us to construct a groupoid GTSh with Ob(GTSh) := NFlpp, (B4). We will see that GT(N)
is the set of morphisms of GTSh with the target N and, for every morphism [(m2, /)] € GT(N), its source
is Njn,f = ker(Trf'}).
Proposition 2.11 Let N € NFlpg, (B4), [(m, f)] € GT(N) and
] . PB
N®=N;, ,:=ker(T, ") I PBy.

Then N° € NFlpg, (B4) and the compatible equivalence relation ~ coincides with ~s.
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Proof To prove the first statement, we observe that, since N € PBy, the standard homomorphism
0: B4 — S4 induces a group homomorphism p: B4/N — S4. Furthermore, using equations (2-25), it is
easy to see that the composition

Y= ,'o“oTrlz’f:B4—>S4

coincides with p. Thus N® is the kernel of a group homomorphism T ,Sj‘ i from By4 to a finite group B4/N.
Hence N?® is a finite-index normal subgroup of B4. Since we also have N°* < PB4, we conclude that
N*® e NF|PB4(B4).

Although the proof of the second statement is rather technical, the main idea is to show that group

homomorphisms T’Z Bj’l for n = 2, 3, 4 are, in some sense, compatible with the homomorphisms

©123, ¥12,3,4, ¥1,23,4, ¥1,2,34, P234, P12, P12,3, 1,23, P23.

See equations (A-18) and (A-19). This fact is deduced from the compatibility of 7}, s with the structures
of truncated operads. Then the desired second statement of Proposition 2.11 is a simple consequence of
this compatibility property of homomorphisms 7° rZB; forn =2,3,4.

Let us consider & € PB,, (for n € {2, 3}) and denote by h any representative of the coset T ;Bj'} (h) in
PB,,/Npg,,. Our first goal is to prove that, for every

0 e {{§0123,¢12,3,4,<P1,23,4,§01,2,34,</>234} ifn =23,
{@12.012,3, 01,23, 023} ifn=2,
there exists g € PBy4.1/Nps,,,, such that

(2-38) g T, (p()g = p(h) Np, .,

Indeed, let n = 3 and @ = @1 23 4. Setting n := m(/) and using the compatibility of 7, s with operadic
insertions and compositions we get

(2-39) Tin, () 02id12 = Thyy, (1 021d12).
Applying ou to the left-hand side of (2-39), we get
(2-40) ow(Ty, () 021d12) = ¢1.23,4(MNpg,,

7. PB .
where /1 is an element of the coset Tm’ ;(h) in PB3/Npg;.

As for the right-hand side of (2-39), we have

Ton,p(n02idi2) = Tou r (e 5y - m(P1.23.400) (s (503)
= T @ ) Tony (m(01.23,8(1)) - Ty (@ (0
Thus

(2-41) ou(Tin, r(n02id12)) = g7 T, 4 (p1,23.4(h)) g,

,2)3)4
where g = ou(Tm,f(a§§1(z,)3)§4))-

Algebraic € Geometric Topology, Volume 24 (2024)



2740 Vasily A Dolgushev, Khanh Q Le and Aidan A Lorenz

Combining (2-40) with (2-41), we conclude that (2-38) holds for n = 3 and ¢ = ¢; 23 4.
Let us now consider the case when n = 2 and ¢ = ¢q,.

As above, setting 17 :=m(/) and using the compatibility of 7;,, s with operadic insertions and compositions

we get

(2-42) idip 01 Th, r () = Thy, p(id12 01 ).
Applying ou to the left-hand side of (2-42), we get

(2-43) ou(idiz o1 Thy, (1)) = (012(1:;)NPB3,

where /1 is an element of the coset T:;B} (h) in PB,/Npg,.

The right-hand side of (2-42) can be rewritten as

T, (id12 01 1) = Ty, r(m(@12(h))).
Hence

(2-44) (T, £ (idi2 01 1)) = 0u(Ton, r (Wlp12(1))) = T, (@r2(h)).

Combining (2-43) with (2-44), we conclude that (2-38) holds for n = 2 and ¢ = @1, with g = Ipg, /N -
The proof of (2-38) for the remaining case proceeds in the similar way.

Let us now prove that, for every n € {2, 3, 4},

(2-45) h € Npg, = m(h) ~sid((1,2)...,

where ((1,2)... denotes 12 (resp. (1,2)3, ((1,2)3)4)if n =2 (resp. n = 3, n = 4).

For n = 4, (2-45) is a straightforward consequence of the definition of N*. So let » = 3 and /i be an

PB .
element of the coset Tm %(h) in PB3/Npg;.

Since TPB4(<P(h)) = 1 in PB4/N for every ¢ € {9123, ¥12,3,4 1,23,4, ¥1,2,34, ¥234}, €quation (2-38)
implies that

he ‘/’123('\') ﬂ‘/’lz 3, 4(N)N ¢y, 23 4NN @12, 34(N) m‘»0234(N)
In other words, e Npg, and hence T;B}(h) = 1 in PB3/Npp, Thus (2-45) holds for n = 3.

Let us now consider the case n = 2 and denote by /i an element of the coset T :lB} (h) in PB3/Npg,.

Since ¢(h) € Npg, for every ¢ € {¢12, ¢12,3. ¢1,23, ¢23} and implication (2-45) is proved for n = 3, we
conclude that
PB3(<P(h)) =1 forall ¢ €{p12,¢12,3. 91,23, ¥23}.

Therefore, equation (2-38) implies that
h € 15 (Nps;) N7y 5 (Np;) Ny 53 (Npp;) N33 (Nesy).
In other words, he Npp, and hence T, PB2 (h) =1 in PB,/Npp,. Thus implication (2-45) holds for n = 2

as well.
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Let us now prove that, for every n € {2, 3,4} and /& € PB,,,

(2-46) m(h) ~s id((1,2).. = he Nngn.

Again, for n = 4, (2-46) is a straightforward consequence of the definition of N°. So let # € PB3.

Since m(h) ~5 id(j 2)3, 7, n};]?} (h) is the identity element of PB3/Npg,. Hence, equation (2-38) implies
that (/1) € N for every ¢ € {9123, ¢12,3,4. ¢1,23,4, ¥1,2,34. ¢234}, Or equivalently /1 € Npp..

Similarly, if 2 € PB, and m(%) ~; id;,, then T;B} (h) is the identity element of PB,/Npp,. Hence,
equation (2-38) implies that T;B; (¢(h)) = 1 in PB3/Npp, for every

@ €{p12, ¥12,3, 1,23, Y23},
or, equivalently,

m(p(h)) ~sid(1,2)3 Torall ¢ € {¢12, 0123, 91,23, Y23}
Since implication (2-46) is already proved for n = 3, we conclude that
@(h) € Npg,  forall ¢ € {12, 9123, ¢1,23, P23}
Thus 4 € Nf)Bz and (2-46) is proved for n = 2.
Letn € {2, 3,4}, t € Ob(PaB(n)), n € Autp,g(t) and /s := ou(n) € PB,. Our next goal is to prove that
(2-47) heNpg = n~sid;.

Since T}, r is compatible with the action of the symmetric groups, we may assume, without loss of
generality, that the underlying permutation of 7 is the identity permutation in Sy,.

Therefore

(2-48) N =af . m)alD

and hence T, r(n) = id; if and only if T, r(m(h)) = id((,2)..; the latter is equivalent to m(s) ~s
id((1,2)...-

Thus (2-47) is a consequence of implications (2-45) and (2-46).

Finally, let us use (2-47) to prove the statement of the proposition.

Let y, ¥ € PaB(n) (with n € {2, 3,4}) and 7 be the source of both morphisms. Clearly, y ~,  if and

only if 1 ~4 id¢, where n =y~ 1. 7.

Thus, due to (2-47), ¥ ~, 7 if and only if ou(y~!-¥) € Npg, - ad
Proposition 2.11 has the following important consequences:
Corollary 2.12 For every GT—shadow [(m, )] € GT(N),

e |PB4:N°| =|PB4:N|,

* |PB3: Ny, | = |PBj3 : Npp,|, and

Ngra = Nora, or equivalently, Npp . = Npg,. .
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Corollary 2.13 For every GT—shadow [(m, f)] € GT(N) the morphism T,, r: Pa B=* - PaB=*/~y of

truncated operads factors as
PaB=*

l x}
TlSOm
PaB=*/~ns — " paBS =4/~
where Pys is the canonical projection and T ,insom is an isomorphism of truncated operads.
The assignment [(m, f)]|— T lso}n gives us a bijection from the set
PB
{{m, /)] € GT(N) [ N* =ker(T,, ")}
to the set Isom(PaB=*/~ys, PaB=*/~\) of isomorphisms of truncated operads (in the category of

groupoids).

Proof Due to Proposition 2.10 and the definition of the equivalence relation ~;, we have the commutative
diagram of morphisms of truncated operads

PaB=*

T,z
l leOnl

PaB=*/~y — s PaB=* /oy,
with T,‘;OJ‘P being a bijection’ on the level of morphisms.

Thanks to Proposition 2.11, the equivalence relation ~4 coincides with ~ys. Hence T;jo}n is a morphism

of truncated operads

(2-49) TooR: PaB=*/~ns =5 PaB=*/~y.

Let us denote by S,i;"}’: PaB=*/~n — PaB=*/~ys the inverse of T,i;"}“ (viewed as a map of morphisms)
and show that S ;;0? is compatible with the composition of morphisms and with the operadic insertions.

As for the compatibility with operadic insertions, we have

w1l oi ral) = SpPH(TaF (7)) 0i TR ([72)) = SplF (T (71] 0 [72])
[Vl]ol [72] = SpF (1)) oi Sp7([va))
for any [y,] € PaB(n)/~n, [y2] € PaB(k)/~n and k <4,1 <i <n <4.

The compatibility of S}‘;"? with the composition of morphisms is proved in a similar fashion.
Let us now consider an isomorphism of truncated operads

T0m: PaB=* /s =5 PaB=*/~y.
"We tacitly assume that Trlr:"}“ acts as the identity on the level of objects.
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Pre-composing 7°™ with the canonical projection Pys : PaB=% — PaB=%/~ys we get an onto morphism
T :=T°Mo%Pys of truncated operads. Since T is uniquely determined by a GT—shadow [(m, /)] € GT(N)
such that ker(7T° ZB;) = N?, we conclude that the assignment [(m, f)] — Tri;"}“ is indeed a bijection

(2-50) {[((m. /)] € GT(N) | N® = ker(T;*f;)} =, Tsom(PaB=*/~ys, PaB=*/~y).

Corollary 2.13 is proved. |

Let us now observe that the assignment
(2-51) Hom(N, N) := Isom(PaB=%/~%, PaB=%/~y)

upgrades the set NFlpg, (B4) to a groupoid. The set of objects of this groupoid is NFlpg, (B4) and the set
of morphisms from N to N is the set Isom(PaB=%/~x, PaB=%/~y) of isomorphisms of truncated operads
(in the category of groupoids). Morphisms of this groupoid are composed in the standard way.

The second statement of Corollary 2.13 allows us to tacitly identify (2-51) with the set
{l(m, )] € GT(N) | ker(T,,*#) = N}.

We will use the identification in the remainder of this paper and we denote by GTSh the resulting groupoid
of GT=shadows.

The following proposition gives us an explicit formula for the composition of morphisms in GTSh.

Proposition 2.14 Let NV, N and N® be elements of NFlpg, (B4) and
[(m1. /)] € Homersn (N NP, [(m2, f2)] € Homersn (NP, NP
Then their composition [(m3, f>)]o[(m1, f1)] is represented by the pair (m, f') where

(2-52) mi=2mymy+my +my and NS = NS TR ().

mz, f2
Proof Let [(my, f>)] € GT(N®) and [(m;, f1)] € GT(N®), where
N .= ker(Tizlzj‘fz) and ND .= ker(Trl:l]?j‘fl).
In other words, the GT—shadow [(11, f1)] (resp. [(m2, />)]) is a morphism from N to N® (resp. a
morphism from N® to N®)) in GTSh.

By Corollary 2.13, we have the diagram of morphisms of truncated operads

PaB=*

(2-53) Pnm

isr)mf isr)mf
< my.j1 < ma.Jf2 <
PaB=*/~na) ———— PaB=*/ ~y@) ————— PaB=*/~\»

where the vertical arrow is the canonical projection.
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Formula (2-52) is obtained by looking at the image of the associator [] € PaB=*/ ~n (resp. the braiding
[B] € PaB=*/~y)) under Trinsg,fz o Trirf?,fl‘ For [a], we have

Ton, (@) = T30 (T30 [o]) = T30, (T g3 (@) = T ([ - m( f1)])

= Ty fo (@ W(f1) = Ty, 15(@) - Ty 1, (m(£1))
= [a-m()]- (T, (/1) = la-m(f)],

where f is any representative of the coset szl%)3 . T;i” 5 (f1) in PB3/ N1(>?1’3)3-

Similarly, computing 73, r(B), it is easy to see that m = 2mm +m + m, mod N® m|

ord *
Remark 2.15 Later we will see that it makes sense to focus only on GT—shadows that can be represented
by pairs (m, f) with
(2-54) f € Fy <PBj.
Let us call such GT-shadows practical.

Using (2-28) and (2-52), for the composition [(m, f)]:=[(m3, f2)]o[(m1, f1)] of practical GT—shadows
[(m,, f2)] and [(mq, f1)] we get the formulas

m:=2mimy +my + my,

fxop) = £, y) AP Hx ) TyEm L (x ).

Due to this observation, practical GT—shadows form a subgroupoid of GTSh.

(2-55)

Remark 2.16 The authors do not know whether there exists N € NFlpg, (B4) and an onto morphism of
truncated operads PaB=* — PaB=%/~y that cannot be represented by a pair (m, f) € Z x F,.

2.5.1 The virtual cyclotomic character Let us observe that to every N € NFlpg, (B4) we assign the
(finite) cyclic group
PBy/(x 1) = Z/ NowZ,

where N4 is the index of Npp, in PB,. Moreover, if [(m2, )] is a morphism from K to N in the groupoid
GTSh, then both N and K give the same quotient PB,/ (xﬁ”"“) of PB,, ie Ky = Norg.

Proposition 2.14 implies that the assignment N — Z / NoqZ upgrades to a functor Cheycior from GTSh to
the category of finite cyclic groups. More precisely:

Corollary 2.17 Let [(m, f)] be a morphism from NV to N in the groupoid GTSh. The assignments
2-56) N — PBz/NPBZ, [(Wl, f)] = Chcyclot(ma f) € Aut(PB2/N1(>%)2)’

Chcyclot(ma f)(XIZNl(Dé)z) = x12£n+1 ngé)z’

define a functor Cheyclor from the groupoid GTSh to the category of finite cyclic groups.
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Proof Since, for every GT shadow [(m2, f)], 2m+ 1 represents an invertible element of the ring Z/ N (2) Z,

ord
Cheyelot(m, f) is clearly an automorphism of PB;/ N%)z =PB,/ Ngg)z.

Thus it remains to show that Cheyclor is compatible with the composition of GT—shadows.

For this purpose, we consider two composable GT—shadows: [(m, f1)] € Homgrsn(ND, N®) and
[(m2, f>)] € Homgrsh (N3, NG)).

Since N(U, N® and NG belong to the same connected component of GTSh, Nl%)z = Nl%)z = Nl%)z or

equivalently, No(rld) = No(r? = No(r?i). So let us set Npp, := NI(D}3)2 and Nyq:= N, (1)

ord *
Let [(m, f)]:=[(m2, f2)]o[(m1, f1)].

Due to the first equation in (2-52), m = 2mmy + m1 + m, mod Ny4. Hence

_ 202mimat+mi+mz)+1 _ JAmima+2mi+2my+1
Cheyetot(m, f)(x12NpB,) = X7, NpB, = X, Npg

@Cmi+1)2ma+1) (2m1+1)N 2my+1
12 PBz)

2

=Xis NPBZ :(X

= Cheyclot (M2, f2) © Cheyelot (M1, f1) (X12NpB,).
Thus Cheyelor 18 indeed a functor from GTSh to the category of finite cyclic groups. |

We call the functor Cheyclor the virtual cyclotomic character. This name is justified by the following
remark.

Remark 2.18 Let N € NFlpg,(B4), g € Gg and [(m, )] be the GT—shadow in GT(N) induced by the
element in GT corresponding to g. Then

(&N,
(2-57) Cheyelot(m, ) (x12Npg,) = xi(zg "

where x: Gg — 7% ~ Aut(Z) is the cyclotomic character and x(g)n,,, represents the image of x(g) in
AW(Z/NowaZl) = (Z./ NoraZ)™ . Equation (2-57) follows from the discussion in [27, Example 4.7.4 and
Remark 4.7.5]. See also [16, Proposition 1.6].

""Npg, ,

2.6 Charming GT-shadows

Recall that PB3 is isomorphic to F, x Z where the F,—factor is freely generated by x1; and x,3 and the
Z—factor is generated by the central element ¢ given in (A-5). This implies that PB 3 Fy x Z. Due to
the following proposition, the action of GT on PBj (viewed as the automorphism group of (12)3 in PaB)
respects this decomposition:

Proposition 2.19 For every (continuous) automorphism T of PaB=4 its restriction to the subgroup
ﬁz < 1553 gives us an automorphism8 of /F\z

defined by the formulas
(2-58) T(x) = x2" 1 and YA"(y) = f_lyz’thlfA.

8In fact, some specialists like to define GT as a certain subgroup of continuous automorphisms of I?z.
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The restriction of T to the central factor Z of @3 gives us the continuous automorphism of Z defined
by the formula

(2-59) YA‘(c) = 2+l
Proof Due to Proposition 2.5, the action of T on PB 3 is determined by the group homomorphisms

T,’}:PB; —PBy/Nps,, where N € NFipg, (By).

corresponding to GT—shadows [(m, f)] that come from T.

Combining this observation with equations (2-28) and the second equation in (2-29) and using the fact
that ¢ is a central element of PB3, we conclude that the restrictions of T to F, and to Z give us group
homomorphisms

(2-60) f‘|A :Fy—>F, and 7A“|A:Z—>Z
Fa Z
respectively.

Since the restrictions of the inverse of 7" to F, and to Z give us inverses of the two homomorphisms in

(2-60), respectively, the homomorphisms in (2-60) are indeed automorphisms.
Explicit formulas (2-58) and (2-59) are consequences of equations (2-28) and the second equation

in (2-29). m|

If a GT—shadow [(m, f)] comes from an automorphism of PaB then it satisfies further conditions. The
following definition is motivated by these conditions.

Definition 2.20 Let N € NFlpg, (B4). A GT—shadow [(m, f)] € GT(N) is called genuine if it comes from
an automorphism of PaB. Otherwise, [(m, f)]is called fake. Further, a GT—shadow [(m, )] € GT(N) is
called charming if

e the coset f'Npg, can be represented by f; € [F2, F2], and
¢ the group homomorphism
(2-61) T2 = T3 |e, : Fa— Fa/(Npgy NFy)
is onto.
Since the intersection Npg; N F» plays an important role, we will denote it by Nf,,

(2—62) NF2 = NPB3 N Fz.

Clearly, the kernel of the homomorphism Tan I F2 —F2/NF, coincides with Ni ) and [F2 :Ng, [=|F2: N, |
for every charming GT—shadow [(m, f)].

Let us prove that:
Proposition 2.21 Every genuine GT—shadow is charming.
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Proof Let N € NFlpg,(B4) and [(m, f)] € GT(N) be a genuine GT—shadow. The element f € PB3 can
be written uniquely as

f=gd.
where g € F,, k € Z and c is defined in (A-5).
Since Npg, is a normal subgroup of finite index in PB3, the subgroup N, := Npg,; N F; is normal in F;

and it has a finite index in F,. Similarly, the subgroup Nz := Npp, N Z has a finite index in Z. Therefore,
the subgroup Ng, x Nz is normal and it has finite index in PBj.

Due to Proposition 2.5, there exists K € NFlpg, (B4) such that Kpg; is contained in Nr, X Nz. Since
[(m, f)]is a genuine GT—shadow, there exists (71, f1) € Z x PB3 such that (i711, f) represents the same
GT—shadow [(m, f)]in GT(N) and [(m1, f1)] € GT(K).

Thus, without loss of generality, we may assume that m = m and f = f1, ie [(m, )] € GT(K).

Using relation (2-18), we have

—1 -1
o1x15f 02X53 fKpey = [ 0102(x13X23)" Kpgs;.
Next, using (A-5) and the fact that ¢ is a central element of B3, we get that

m+

Moy o g (x12, %23)01x™ g (x12, X23) T oax T g (x12, x23)¢ K € Kpp,.

Using equations in (A-6) from Section A.1, we deduce that

m+

—1_—1 —-1_-—1 —-1_—1 —1 — k
anzg(xm X12 C,X12)(x23 X12 c)mg(x23 X12 C,X23) ng,g(x127x23)C € Kpg,

or

-1 -1 -1 -1 —-1_—1 —1 k
anzg(xnxlz,x12)(x23x12)mg(x23x12»X23) X%g(xlz,xﬂ)c € Kpp;.

Since Kpg, is a subgroup of Ng, X Nz, we have ck e Nz C Npg;. Hence fc_kNpB3 = g(x12,x23)Npg;,
and so the GT—shadow has a representative of the form (m, f) where f € F,.

It remains to show that

e [(m, f)] can be represented by a pair (m, f;) with f; € [F;, F;], and

¢ the homomorphism (2-61) is onto.

Since homomorphism (2-61) does not depend on the choice of the representative of the GT—shadow
[(m, f)], we first prove that this homomorphism is indeed onto.

Due to Proposition 2.19, we have the following commutative diagram:

. TR, L

F, —25 F

i @N
T TFZ l 2

Fo —5 Fy/Ng,
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Since F; is dense in ﬁz, we get that the composition @\)NFz o ]A"|E2 o1 is surjective, whence we conclude
Fy .

T m, £ 1S onto.

Let us now prove that [(m2, /)] can be represented by a pair (m, f ) with f € [Fa, F3].

Let g be the least common multiple of the orders of x12Nf, and x23Ng, in F5/NF, and ¥x: PB4y — Sy,
Yy PB4 — Sy be the group homomorphisms defined by equations

Ux(x12) :=(1,2,...,9), ¥x(x23) = ¥x(x13) = ¥x(x14) = ¥x(X24) = ¥x(x34) :=idg,,,
Uy(x34) = (1,2,...,9), Vy(x12) = ¥y(x23) = ¥y(x13) = ¥y(X14) = ¥y (x24) :=idg,,

respectively.
Let K be an element of NFlpg, (B4) such that
(2-63) K < NnNker(yx) Nker(yy).

Since [(m, f)] is a genuine GT—shadow, there exists a GT—shadow [(m11, f1)] € GT(K) such that (my, f1)
is also a representative of [(m, f)]. We can assume, without loss of generality, that f; € F,.

Applying equation (2-20) to f; we see that
(2-64)  f7 ' (x13x23.x34) /1 (X12. X23X24) f1(X23. X34) 1 (X12X13, X24X34) f1 (X12, X23) €K.
Inclusions (2-63) and (2-64) imply that
Ve (/7' (X13X23, X34) /17 (X 12, X23X24) f1(X23. X34) /1 (X12X13, X24X34) /1 (X12, X23)) = ids, .
Yy (f " (orsxas, x34) f7 (Y12, X23X24) £1(X23, X34) f1(X 1213, X24%34) f1(X12. X23)) = ids, .

Hence the sum sy of exponents of x1; in f; and the sum s,, of exponents of x,3 in f; are multiples of g,
ie x;* € N, and x,,” € NE,.
Thus (m, flxl_zs x xz_;y) is yet another representative of the GT—shadow [(m2, f)] in GT(N) and, by con-

struction, f1x7,*x,;" € [F2, Fa]. -

The following statement can be found in many introductory (and “not so introductory”) papers on the
Grothendieck—Teichmiiller group GT. Here, we deduce it from Proposition 2.21.

Corollary 2.22 For every (m, f )e GT, f belongs to the topological closure of commutator subgroup
of ’|52.

Proof It suffices to show that, for every N € NFI(F5), the element @N( f ) € F»/N can be represented by
f1 € [F2,F3]. Let us observe that N x (¢} € NFI(PB3).
Due to Proposition 2.5, there exists K € NFlpg, (B4) such that Kpg, < N x (c). Clearly, Kr, < N.

Since the pair (@31(Orcl (m), QA)KFZ (f)) is a charming GT—-shadow in GT(K), the element QA)KFZ (f) € Fy/Kg,
can be represented by f; € [F», F3]. Since Kp, < N, the same element f; € [F,, F»] represents the coset
PN (f) € Fz/N. O
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Let us denote by GTP(N) the subset of all charming GT—shadows in GT(N), and prove that GT(N) can
be safely replaced by GTV(N) in all the constructions of Section 2.5. More precisely:
Proposition 2.23 The assignment
(2-65) Homg g, (N, N) := {[(m, f)] € GTY(N) | N = ker(TPB4)} for N,N € NFlpg, (B4)
upgrades the set NFlpg, (B4) to a subgroupoid GTSh of GTSh.
Proof Let[(my, f1)] eHomGTSho(N(l), N and [(m,, f>)] eHomGTSho(N(z), N®)). The GT-shadows
[(m1, f1)]and [(m,, f>)] are charming so we may assume, without loss of generality, that /1, /> € [F,, F3].
Due to Remark 2.15, the composition [(m12, f2)]o[(m1, f1)] is represented by a pair (i, f) with

[ = HAETTL 000y ).
Since fi, f> € [F2, F3], it is clear that f also belongs to [F», F»].

Since T2 ,: g F2—Fa/ NG is the composition of the onto homomorphlsm T, F2  fiFa—>F/ N® and
isom ,

the isomorphism TFZ’ o fy :Fy/ N® — F, / NG| the homomorphism 7' F2 m.f is also onto.
We proved that the subset of charming GT—shadows is closed under composition.

To prove that the subset of charming GT—shadows is closed under taking inverses, we start with a charming
GT—shadow [(m, f)] € Hom 1g,©(N°, N) and assume that /" € [F», F,]. Let [(72, )] € HomgTsp(N, N°)
be the inverse of [(m2, /)] in GTSh. In other words,

2mm +m +m =0 mod Ny,
PB
/T, 3(f) 1pB3 /Npg ;-

Our goal is to show that the coset f~ Npg; can be represented by g € [F», F3].

(2-66)

Since f~! belongs to [F,, F,], we have

f7 =lg11. &12llg21. 8221+ - [gr1. &r2).
where each g;; € F; and [g1, g2] := glgzgl_lgz_l.
Since the homomorphism T F2 mof : F» — F2/NE, is onto, for every g;; there exists g;; € F, such that
mf(glJ) = g;jNF,. Hence, for
g =811, 81211821, 8221 - [&r1. &r2] € [F2. F2l.

we have TPB3 (g) /" 'Npg,, or, equivalently,

(2-67) fTPB3 (g) 1PB3/NP33 :

Combining (2-66) with (2-67) we conclude that g~ ! f belongs to the kernel of T° PB} PB; — PB3/Npg;.
Thus, due to Proposition 2.11, g also represents the coset f Npg; .

Since, by construction, g € [F», F;], the desired statement is proved. O
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3 The Main Line functor (¥ and GT

In this section, we use (charming) GT—shadows to construct a functor MM¥ from a certain subposet of
NFlpg, (B4) to the category of finite groups. We prove that the limit of the functor M< is isomorphic to
the Grothendieck—Teichmiiller group GT.

3.1 Connected components of GTSh?, settled GT—shadows and isolated elements of
NFlpp,(B4)

Since the set NFlpg, (B4) is infinite, so is the groupoid GTSh®. Moreover, the groupoid GTSh® is highly
disconnected. Indeed, if N and N are connected by a morphism in GTSh®, then they must have the same

index in PBy4.

For N € NFlpg, (B4), we denote by
GTSh(N)

the connected component of N in the groupoid GTShY. Clearly, an element N of NFlpg .(By) is an object
of GTShY _(N) if and only if there exists [(m, f)] € GTY(N) such that

conn
N = ker(T;B}‘;).

We call objects of the groupoid GTShY (N) conjugates of N.

conn

Since GTO(N) is a finite set for every N € NFlpg, (B4), it is easy to show that:

Proposition 3.1 For every N € NFlpg, (B4), the (connected) groupoid GTShY (N) is finite. O

conn

To establish a more precise link between (charming) GT—shadows and the group GT, we will be interested
in a certain subposet of NFlpg, (B4). Let us start with the following definition:

Definition 3.2 Let N € NFlpg,(B4) and [(m, f)] € GTY(N). A charming GT—shadow [(m, f)] is called
settled if its source N° coincides with N, ie ker(7" 24 f) = N. An element N of the poset NFlpg,(By) is
called isolated if every GT—shadow in GTV(N) is settled.

Clearly, a GT—shadow [(m, f)] € GTP(N) is settled if and only if [(#2, /)] is an automorphism of the
object N in the groupoid GTShY. Moreover, an element N € NFlpg +(By) is isolated if and only if the
groupoid GTShY (N) has exactly one object. In this case, GTY(N) is the group of automorphisms of the

conn

object N in the groupoid GTSh®.

The following proposition gives us a simple way to produce many examples of isolated elements of
NFlpg,(B4).
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Proposition 3.3 For every N € NFlpg, (B4), the normal subgroup

(3-1) NH = ﬂ K

KeOb(GTShY. (N))

conn

is an isolated element of NFlpg,(B4).
Proof Let [(m, f)] € GTY(N¥) and N* be the source of the corresponding morphism in GTSh®,
je N#9 .= ker(T;B}).

Since N* < K, the same pair (m, ) € Z x F, represents a GT—shadow in GTY(K). Moreover, the
homomorphism from PB4 to PB4 /K corresponding to [(m, f)] € GTY(K) is the composition Pyt KO TnP;Bj‘i
of T;]i‘} with the canonical projection

Pyt : PBa/N* — PBy/K.

Let 7 € N, let /i € PB4 be a representative of T, ;B}(h) and let K® be the source of the GT—shadow
[(m, )] € GTO(K), ie K® := ker(Pys x 0 T;B;).

Since N# < K®, we have
(3-2) Pz (T () = lpp, /.
The identity (3-2) implies that h € K for every K € Ob(GTShY (N)) and hence h € NE. Therefore,

conn

T ;?}(h) = lpp, /n# Or equivalently, /1 € NS,

We proved that

(3-3) NF < NP,

Since these subgroups have the same index in PB4, inclusion (3-3) implies that N#s = N#,

Since we started with an arbitrary GT—shadow in GTO(N¥), we proved that N¥ is indeed an isolated

element of NFlpg, (B4). |

Remark 3.4 In all examples we have considered so far (see Section 4 on selected results of computer
Q

conn

experiments), GTShy . (N) has at most two objects. Hence equation (3-1) gives us a practical way to

produce examples of isolated elements of NFlpg, (B4).

Let us denote by

(3-4) NFlpg,(Ba)
the subposet of isolated elements of NFlpg, (By4).

Since N* < N for every N € NFlpg +(By4), Proposition 3.3 implies that:

Corollary 3.5 The subposet NFIgﬁf‘ed(BA;) of NFlpg, (By) is cofinal. In other words, for every element N
of NFlpg, (By), there exists K € NFIiﬁgl‘:‘ted(B‘;) such that K < N. O
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Although Corollary 3.5 implies that the poset NFIi,Sg{fted(B‘;) is directed (it is a cofinal subposet of a
directed poset), it is still useful to know that the intersection of two isolated elements of NFlpg, (B4) is an
isolated element of NFlpg, (B4):

Proposition 3.6 For every NV, N e NFIiglaed(B,),

N(l) N N(Z)

is also an isolated element of NFlpg,(By).

Proof K := N NN® is clearly an element of NFlpg, (B4). So our goal is to prove that K is isolated.

Let [(m, f)] € GTO(K), and let K® be the kernel of the homomorphism 7’ ’ZB}: PB4 — PB4 /K.

Recall that Py ya) (resp. Py y@ ) is the canonical homomorphism from PB4/K to PB4/N(1) (resp. to
PB4/N®). Since K < N and K < N@| the pair (m, f) also represents a GT—shadow in GTY(N(D)

and a GT—shadow in GTY(N®)). Moreover, the compositions PN © T:;l?j‘,‘ and Py y@ © T:;iﬁ are

the homomorphisms PB4, — PB4/ N® and PB4 — PB4/ N@ corresponding to these GT—shadows in
GTOP(NM) and GTY(N®), respectively.

Let us now consider 4 € K®. Since T YEB Jﬁ (h) = 1pp, /K, We have

(3-5) Q)K,N(l) o Tnl;]?j;(h) = 1PB4/N(“ and QPK,N(Z) o T’E{B;(h) = 1PB4/N(2)'

Since N(U', N@ are both isolated, identities (3-5) imply that # € N and 7 € N®. Hence 4 € K.
Since we showed that K® < K and both subgroups have the same (finite) index in PB4, we have the desired

equality K® = K. |

Recall that, for every isolated element N € NFlpp, (B4), the set GTY(N) is a finite group. More precisely,
GTY(N) is the (finite) group of automorphisms of N in the groupoid GTSh®. Let us denote this finite
group by ME(N), and prove that:

Proposition 3.7 The assignment
N = MEL(N)

isolated

upgrades to a functor M from the poset NFIgg | (B4) to the category of finite groups.

Proof Let K <N be isolated elements of NFlpg, (B4). Our goal is to define a group homomorphism
(3-6) MLk N MLK) — MEL(N)

and show that, for every triple of nested elements N < N@) < N®) of NFIsgted(By),

(3-7) MEy2) N3 0 ML) y@ = MENa) N3 -
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For this proof, it is convenient to identify GT—shadows [(m, )] € GTY(K) with the corresponding onto
morphisms 73, r: PaB=* — PaB=%/~ of truncated operads. So let [(m, /)] € GTY(K) and T}y, s be the
corresponding morphism.

Recall that %k y denotes the canonical onto morphism of truncated operads
PN PaB=/ ~ — PaB=*/~y.
Composing Pk n with T, s we get an onto morphism
P © T, i PaB=* — PaB=Y/ ~y,
and hence an element of GTV(N).
We set
(3-8) MEN(T o, 1) = Pr,NO Th, £

To prove that M  is a group homomorphism from ME(K) to ME(N), we recall that, since K is isolated,
every onto morphism of truncated operads T : PaB=* — PaB=*/~ factors as

PaB=*

| N

lSOm

PaB= W~«4——%Pa8 4~k

Let us now show that, for every onto morphism of truncated operads 7': PaB=* — PaB=%/~y, the
following diagram commutes:
PaB=*

w| T

T isom

(3-9) PaB=%/~k I oS =4/

@K,Nl @K.Nl
4 ( N o T)l\Om 4
PaB=%/~n —— PaB= '/ ~N

Since the top triangle of (3-9) commutes by definition of 75°™, we only need to prove the commutativity
of the square. Let y € PaB=* and [y« (resp. [y]n) be equivalence classes of y in PaB=%/~ (resp. in

PaB=*/~y). Since T*"([y]k) = T'(y), (Pxn o T)*"([yIn) = Prn o T(y) and P n(y]k) = [¥Ins
we have

Prno T ([ylk) = Prno T(¥) = (Prno T ([¥In) = (Prn o T o P n (v k).
Thus (3-9) indeed commutes.
Now let 77 and 7> be onto morphisms (of truncated operads)
Ty, Tr: PaB=* — PaB=*/~.
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Since
T o T: PaB=* — PaB=%/~

is the composition of 77 and 75 in GTShY and

(Pun o T o (Pyn o Tr): PaB=* — PaB=*/~y
is the composition of Pk yo 71 and Pk no T3 in GTShO, our goal is to prove that
(3-10) Prn o (T 0 Ty) = (P 0 T1) ™™ o Py o T).
Due to commutativity of (3-9), for 7 = 77 we have

PunoTEMo Ty = (P o T1) ™o Py o T

Thus equation (3-10) indeed holds and we proved that MLk  is a group homomorphism.
Let us now consider isolated elements N(1) < N < NG of NFlpg,(B4). Since

PN NG = Py N3 © Py N@ s

we have
ME @) & o ME 1) @ (T, r) = PN N3 OPN) N@ 0 T, f =Py N3 0 T, 1 = ME ) NGB (Tom, 1)
for every [(m, f)] € GTO(ND).

Thus the desired identity (3-7) holds and the proposition is proved. a

We call the functor® ML the Main Line functor.

In the next section, we will prove the following theorem:

Theorem 3.8 The (profinite version) GT of the Grothendieck—Teichmiiller group is isomorphic to

lim(MZL).
3.2 Proof of Theorem 3.8

We will need the following auxiliary statements:

Proposition 3.9 (A) Forevery N € NFI(PB3), there exists K € NFIipsglfted (B4) satisfying the property
Kpe; < N.

(B) Forevery N € NFI(PB,) there exists K € NFI53!(B,) such that Kpg, < N.

90ne of the authors of this paper is trying to live in the sequence of suburbs of Philadelphia called the Main Line. The functor
MEZ is named after this beautiful sequence of suburbs.
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Proof Let N € NFI(PB3) and ¥ be a group homomorphism from PBj to .S, such that ker(y) = N.
Using relations (A-3) on the generators of PBy, it is easy to show that the equations
V) =y, Ys) =), ¥xs) = yxs).
V(x14) = ¥ (x24) = ¥(x34) = ids,.
define a group homomorphism 1; PB4 — S;.
Moreover, the kernel of 1; satisfies the property

075 (ker()) = N.
Hence

G-11) @ (ker(¥)) Ngpy 5 4 (ker(¥) Ny s 4 (ker(¥) Ny} 54 (ker(V)) N 33y (ker(¥)) < N.

Let N be the normal subgroup of PB4 obtained by intersecting all normal subgroups of PB4 of index
|PB, : ker(y/)|. Since N is a characteristic subgroup of PBy of finite index (in PB4), we have

N € NFlpg, (Bs).

Furthermore, due to Corollary 3.5, there exists an isolated element K of NFlpp, (B4) satisfying the property
K <N. Combining K < N with N < ker(y) and (3-11), we deduce that

Kpe; < N.
Thus the desired statement (A) is proved.

Just as for statement (A), we start with a group homomorphism « : PB, — S}, whose kernel coincides
with N.

It is easy to see that the equations
R(x12) i=k(x12), K(x23):=k(x12)"", K(x13):=ids,, R(x14) =R(x24) = R(x34) :=ids,,.
define a group homomorphism k: PB4 — S,.
The kernel of i satisfies the property
(3-12) 013 (9155 (ker(%))) = N.

Let N be the normal subgroup of PB4 obtained by intersecting all normal subgroups of PB4 of index
|PB, : ker(%)|. Since N is a characteristic subgroup of PB4 of finite index (in PBy4), we have

N € NFlpg, (Bs).

As above, there exists an isolated element K of NFlpg, (B4) satisfying the property K < N. Combining
K < N with N < ker(%) and (3-12), we deduce that

Kpe, < N.

Thus statement (B) is also proved. O
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Proposition 3.9 allows us to produce a more practical description of PaB=*4. To give this description, we
isolated

note that the assignment K — PaB=* /K upgrades to a functor from the poset NFlpg, (B4) to the category
of truncated operads in finite groupoids. Indeed, for every pair K; < K, of elements of NFIipsgfted (B4) we
have the obvious morphism of truncated operads

Pk, Ky PaB=Y ~, > PaB=Y/ ~,.
Moreover, for every triple K; < K, < K3 of elements of NFI}?gilted(Bél), we have Pk, k; 0Pk, Ky = Pk, Ks-
Let us denote by
(3-13) PaB=*

the limit of this functor.

More concretely, Is;é(n) consists of functions

yiNFISRdBy) — || PaB(m)/~«
KENFIR ! (B4)
satisfying these two conditions:
* For every K € NFIg!(By), y (K) € PaB(n)/~«k.
« For every pair K; <Ky in NFIRI(By), Pk, i, (¥ (K1) = y (Ky).

Since for every pair K; < K, of elements of NFIisglj‘ted (B4) we have

Pri k2 © Py = Prcy.
the assignment
V() (K) :=Pk(y) for y € PaB(n)

defines a morphism of truncated operads
(3-14) W: PaB=* — PaB=*.
Let us prove:

Corollary 3.10 The morphism WV in (3-14) is an isomorphism of truncated operads in the category of
topological groupoids.

Proof Since the compatibility with the structures of truncated operads and the composition of morphisms
is obvious, it suffices to prove that ¥ is a homeomorphism of topological spaces.

Let 7, / be objects of PaB(n) and 71, 7, € Homp,g(z, ') such that ¥ () = W(y,) or equivalently, for
every K € NFISgd(By),
V(@R )

is the identity automorphism of 7 in PaB(n)/~k.
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Thus, due to Proposition 3.9, the image of 5 1.9 in PB,,/N is the identity element for every N € NFI(PB,,).
Therefore 75 1.9, is the identity element of PB,, and hence

V1 =7
We have proved that W is one-to-one.

Lety € I5;I§(n), and let T and 7’ be the source and the target of y, respectively. Let A be any isomorphism
from 7 to t/ in PaB(n). By abuse of notation, we will use symbol A for its obvious image in P/aTS(n) and
in Isgﬁ(n).
Due to Proposition 3.9, there exists an element he PB, such that
(3-15) Pr(h) = (A" y)(K) forall K € NFIsg™(B,).
Equation (3-15) implies that W(A - lAz) = y. Thus we have proved that W is onto.
Since, for every K € NFI}Eﬁf‘ed(B‘;), the composition of W with the canonical projection
PaB=* — PaB=*/~k

coincides with the continuous map

@)KZ P/JBE“ d PaB§4/~K,
we conclude that W is continuous.

Since W is a continuous bijection from a compact space PaB=* to a Hausdorff space PaB=*, W is indeed
a homeomorphism. |

Due to Corollary 3.10, we can safely replace PaB=* by PaB=* in all further considerations. We will also
use the same symbol $ (resp. Py forK e NFI}fglfted(B‘;)) for the canonical embedding .9 : PaB=* — PaB=*

and the canonical projection P : PaB=% — PaB=%/~.

Recall that, for every T eGTandK € NFlggfted(B‘;), the formula Tk := P o T o $ defines an onto
morphism of truncated operads PaB=% — PaB=* /K. Since K is an isolated element of NFlpp,(By4),
Corollary 2.13 implies that the onto morphism 7k factors as

(3-16) T = TM o Py,
where T, f(S"m is an isomorphism of truncated operads
TEom: PaB=* /K =5 PaB=*/K

and P is the canonical projection PaB=* — PaB=*4/K.
Proposition 3.11 For every T € GT and for every K € NFIngted(B‘;), the following diagram commutes:
(3-17) @KJ @Kj

Tki<som
PaB=*4/~k —— PaB=%/~k
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Proof By definition of Tffom, PyoT o $(y) = T&S‘)m o P (y) for every y € PaB=*.
Hence
(3-18) ProT(9(y)) = TS o Pr(9(y)) forall y e PaB=*.

Since the image $(PaB=*) of PaB=* in PaB=* is dense in PaB=* and the target PaB=%/~x of the
compositions Pk o T and T}ijom o Pk is Hausdorff, identity (3-18) implies that diagram (3-17) indeed
commutes. O

Proof of Theorem 3.8 Let K and K be elements of NFlggf‘ed(BQ such that K < K and Pi  be the
canonical projection from PaB=%/ ~i to PaB=%/~k. Furthermore, let Tk and Tz be onto morphisms
from PaB=* to PaB=4/K and PaB=%/K, respectively, coming from T eGT.

Since @K = @\)R K © P, the diagram

PaB=* — s PaB= =4~k

\M

PaB=%/~k
commutes. Hence the assignment T+ {TK}KeNH;E?ed(B‘l) gives us a map
(3-19) GT — lim(M%).
Let us show that the map (3-19) is a group homomorphism.
Indeed, let 7, T e GT, put T:=TWoT®@ andletKe NFIIS"lath (B4). Using Proposition 3.11, we get
ProT =PoTWoT® = iomyG o 7@ = p1):isom o 7(2).isom o G,
On the other hand, @’K oT = T&S‘)m o @K and hence
(3-20) Tisom o Gy = T 0m o 2-isom o G,
Since @’K: PaB=*4 — PaB=* /~k is onto, identity (3-20) implies that
T,ifom _ Tél),isom o TéZ),isom.
Thus the map (3-19) is indeed a group homomorphism.
Our next goal is to show that homomorphism (3-19) is one-to-one and onto.
To prove that (3-19) is one-to-one, we consider T € GT such that Tk coincides with the canonical projection
PaB=* — PaB=*/~k for every K € NFI53“!(By).
Hence, for every y € PaB=*, we have

ProT(9(y)) =ProI(y) forall Ke NFISg 2 (By).
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This means that the restriction of 7" to the subset $(PaB=*%) C PaB=* coincides with the restriction of
the identity map id: PaB=% — PaB=* to the subset $(PaB=*%). Since the subset $(PaB=*) is dense in
PaB=* and the space PaB=* is Hausdorff, we conclude that 7" is the identity map id: PaB=* — PaB=*.

Thus the injectivity of (3-19) is established.

Note that an element of lim(M) is a family {g}zom}KeNFI{,Sglmea(B@ of isomorphisms of truncated operads
4

TR PaB=Y/ ~i =5 PaB=Y/~k

satisfying the following property: for every pair K < K in NFI}Eglated (B4), the diagram
gisom
PaB=4/~y —— PaB=%/~
(3-21) Y| | #ex
gigom

PaB=4/~y —— PaB=/~g

commutes.
Due to commutativity of (3-21), the formula
(3-22) T()(K) 1= T (y (K))
defines a morphism of truncated operads in groupoids T:PaB=* — PaB=4.
To prove that T is continuous, we need to show that the composition
P o T:PaB=* — PaB=*/~k
is continuous for every K € NFI3(By).
By definition of 7" in (3-22),
(3-23) ProT =T™o Py forevery K € NFIESH(By).

Since I i,zom is an automorphism of the (finite) groupoid PaB=*/~x equipAped with the discrete topology
and Pk is continuous, identity (3-23) implies that the composition Pk o 7" is indeed continuous.

Thus equation (3-22) defines a continuous endomorphism of the operad PaB=4,

To find the inverse of 7', we denote by Efi,éom the inverse of J Eom for every K € NFI},Sglfted (B4). Then it

is easy to see that the formula
S()(K) = SR (v (K)

defines the inverse of 7.
The proof of surjectivity of (3-19) is complete. O
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Let us consider K, N € NFlpg, (B4) with K < N and a pair (m, /) € Z x F; that represents a GT—shadow
in GTY(K). Clearly, the same pair (m, f) also represents a GT—shadow in GTY(N). In other words, if
K <N, then we have a natural map

(3-24) GTO(K) — GTY(N).
It makes sense to consider this map even if neither K nor N are isolated.

Definition 3.12 We say that a GT—shadow [(m, )] € GTY(N) survives into K if [(m, f)] belongs to the
image of the map (3-24). In other words, there exists (1, f1) € Z x F, such that [(my, f1)] € GT(K),
mi = m mod Noq and f1Ng, = f'Ng,.

The following statement is a straightforward consequence of Proposition 3.3 and Theorem 3.8.

Corollary 3.13 Let N € NFlpg,(B4) and [(m, f)] € GTY(N). The GT-shadow [(m, f)] is genuine if
and only if [(m, f)] survives into K for every K € NFlpg,(B4) such that K < N. |

4 Selected results of computer experiments

In the computer implementation [4], an element N of NFlpg, (B4) is represented by a group homomor-
phism v from PB4 to a symmetric group such that N = ker(). Each homomorphism ¢ : PB4 — Sy is,
in turn, represented by a tuple of permutations

(4-1) (212.823. 813 814. 824, 834) € (S4)°
satisfying the relations of PBy; see (A-3).
It should be mentioned that, in [4], we consider only practical GT—shadows; see Remark 2.15. In particular,

throughout this section, GT(N) denotes the set of practical GT—shadows with the target N. Clearly, every
charming GT—-shadow is practical.

Table 1 presents basic information about 35 selected elements

(4-2) NO ND NG e NFlpg, (By).
For every N® in this list, the quotient F,/ N,(:iz) is nonabelian. Table 1 also shows NO(Q = |PB;: Nl(fgz [,
the size of GT(N(i)) (ie the total number of practical GT—shadows with the target N)) and the size of
GTO(N(i)). The last column indicates whether N@ is isolated or not.

Q

For every nonisolated element N in the list (4-2), the connected component GTSh( .

(N) has exactly two
objects. More precisely,

e N@ is a conjugate of N® and N® nN@ = N9,

e NUD js a conjugate of NUO and N0 qNOD = N@4)|

o NI jsa conjugate of N and N1O A N7 = NGO,

e N@NDijsa conjugate of N6 and N2 N NG = NGY,
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For NG GT(NGD) has 588 elements. To find the size of GT(NGD), the computer had to look at
A~ 9-108 elements of the group F,/ Ngl). For the iMac with the processor 3.4 GHz, Intel Core i5, it took
over nine full days to complete this task.

For N©32), GT(N(32)) has 800 elements. To find the size of GT(N(3 2)), the computer had to look at over
9.10° elements of the group F,/ NSZZ). For the iMac with the processor 3.4 GHz, Intel Core i5, it took
almost 10 full days to complete this task.

Remark 4.1 Recall that the definition of an isolated element of NFlpg, (B4) (see Definition 3.2) is based
on charming GT—shadows. In principle, it is possible that there exists an isolated element N € NFlpg, (B4)
for which GT(N) has a nonsettled element. We did not encounter such examples in our experiments.

4.1 Selected remarkable examples

For the 19" example N9 jn Table 1, the quotient F»/ N'(:129) has order 7776 = 2°-3°. Due to the similarity
between this order and the historic year 1776, we decided to call the subgroup N!?) the Philadelphia
subgroup of PB4. This subgroup is the kernel of the homomorphism from PB4 to Sy that sends the
standard generators of PB4 to the permutations

812 = (17 3v2)(4’6’ 5)’ 823 .= (1’4’9)(277’ 6)’ 813 = (13 7, 5)(3’ 6’9)’
g14:=(2,6,7)(3,8,5), g24:=1(1,8,6)(3,4,7), g34:=(1,2,3)(7,9,8),

(4-3)

respectively.

Since N9 is isolated, GT(NU9) is a group. We showed that GTV(NU9) is isomorphic to the dihedral

2

group D¢ = (r,s | r®, s2,rsrs) of order 12. We also showed that the kernel of the restriction of the

virtual cyclotomic character to GTY(N(19)) coincides with the cyclic subgroup (r) of order 6.

The last element N4 in (4-2) has the biggest index 762, 048 = 2°.3%.72 in PB,. This subgroup is the
kernel of the homomorphism from PB4 to Sg that sends the standard generators of PB4 to

g12:=(1,3,5,7,9,2,4,6,8)(10,12, 14,16, 18,11, 13, 15, 17),
g23:=(1,3,7,8,2,4,9,6,5)(10,15,17, 11,12, 16, 18, 14, 13),
g13:=(1,3,8,5,4,9,2,6,7)(10,11, 15,17, 13, 12, 18, 14, 16),
g14:=(1,3,7,8,2,4,9,6,5)(10,15,17, 11, 12, 16, 18, 14, 13),
g24:=(1,7,6,2,4,8,9,3,5)(10, 15,14, 11, 16, 18, 12, 13, 17),
g34:=(1,3,5,7,9,2,4,6,8)(10,12, 14,16, 18,11, 13, 15, 17),

(4-4)

respectively. We call this subgroup the Mighty Dandy.
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Due to Proposition 3.3, the Mighty Dandy is an isolated element and hence GTY(N#)) is a group. This

is what we showed about this group:

GTY(NGY) has order 486 = 2-35.

The kernel Kers4 of the restriction of the virtual cyclotomic character to GTO(N(“)) is an abelian

subgroup of order 81 = 34; in fact, Kers4 is isomorphic to %g x %,.

GTP(NGY) is isomorphic to the semidirect product
(%2 xZE3) X (9 x%9).

The Sylow 3—subgroup Syl of GTO(N(“)) is a nonabelian group of order 3 = 243; Syl is a normal
subgroup of GTY(NGY) and it is isomorphic to the semidirect product

2{3 X (2{9 X 229)

Although every element N in the list (4-2) has the property |F; : Ng,| > |PBy4 : N|, there are examples
N € NFlpg, (B4) for which |[PB4 : N| is significantly bigger than the index |F, : N, |.

One such example was suggested to us by Leila Schneps. Leila’s subgroup N¥ of PBy is the kernel of a

homomorphism from PB4 to S;30 and it can be retrieved from one of the storage files in [4]. Here is

what we know about N¥:

The index of N¥ in PB, is 22° - 312 = 285315214 344 192.

The index of Ny, in PB3 is 2!2-3% = 2985984

The index of N, in F5 is 21035 = 248 832.

Nt =12

The order of the commutator subgroup of F,/ Ngz is 26.33 = 1728.
There are only 48 = 2# -3 charming GT—shadows for N¥.

N is an isolated element of NFlpg +(B4) and hence GTO(N¥) is a group.

We found that the group GTO(N“%) is isomorphic to the semidirect product

(4-5)

%2 X (%2 X%z X%z thui?,),

where the nontrivial element of %, acts on

(4-6)

By X%y X %y x %3 = (a]a®) x (b|b?) x (c|c?) x (d|d?)

by the automorphism

ar—b, br—a, c¢r—c, d—d L.

The restriction of the virtual cyclotomic character to GTY(N¥) gives us the group homomorphism

GTOINY) — (Z/12Z)%,

and the kernel of this homomorphism is the subgroup of (4-6) generated by ab, ¢ and d.
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i | IPBa:NO| R iND | (/N F/NDT NG IGTIND) |GTOND)|  isolated?
0 8 16 2 4 4 4 True
I 8 16 2 4 8 4 True
2 12 36 4 3 18 6 True
3 21 63 7 3 36 12 False
4 21 63 7 3 36 12 False
5 24 288 8 6 72 12 True
6 24 144 4 6 72 12 True
7 48 144 4 6 72 12 True
8 60 1500 60 5 100 20 True
9 60 900 4 15 360 24 True
10 72 144 18 4 16 8 False
11 72 144 18 4 16 8 False
12 108 972 27 6 72 12 True
13 120 6000 60 10 400 40 True
14 147 441 49 3 216 72 True
15 168 8232 168 7 294 42 True
16 168 1344 168 4 64 32 False
17 168 1344 168 4 64 32 False
18 180 13500 60 15 600 40 True
19 216 7776 216 6 72 12 True
20 240 6000 60 10 400 40 True
21 324 8748 108 9 486 54 True
22 504 40824 504 9 486 54 True
23 504 24696 504 7 294 42 True
24 648 1296 162 4 32 16 True
25 720 54000 240 15 1800 120 True
26 1512 40824 504 9 486 54 False
27 1512 40824 504 9 486 54 False
28 2520 63000 2520 5 200 40 True
29 2520 45360 2520 6 144 48 True
30 | 28224 225792 28224 4 512 256 True
31 | 181440 8890560 181440 7 588 84 True
32 | 181440 9072000 181440 10 800 160 True
33 | 181440 40824000 181 440 15 >1800 120 True
34 | 762048 20575296 254016 9 >4374 486 True

Table 1: The basic information about selected 35 compatible equivalence relations.
4.2 Is there a charming GT-shadow that is also fake?

Table 1 shows that the set GTY(N) of charming GT-shadows corresponding to a given N € NFlpg +(Bs)
is typically a proper subset of GT(N). For example, for the Philadelphia subgroup N!?), we have 72
GT-shadows and only 12 of them are charming.
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Due to Proposition 2.21, every noncharming GT—shadow is fake. Thus, for a typical N from our list of
35 elements of NFlpg,(B4), we have many examples of a fake GT—shadows. For instance, GT(NU)
contains at least 60 fake GT—shadows.

It is more challenging to find examples of charming GT—shadows that are fake. At the time of writing,
we did not find a single example of a charming GT—shadow that is also fake.

Here is what we did. In the list (4-2), there are exactly 24 pairs (N, N()) with i # j such that
NG < N

For each such pair, we showed that every GT—shadow in GTY(N®D) survives into N, ie the natural
map GTO(NU )) — GTO(N(i)) is onto. We also looked at other selected examples of elements K < N in
NFlpg, (B4) in which N belongs to the list (4-2) and K is obtained by intersecting N with another element
of (4-2). In all examples we have considered so far, the natural map GTO(K) — GTO(N) is onto.

4.3 Versions of the Furusho property and selected open questions

Two versions of the Furusho property are motivated by a remarkable theorem which says roughly that, in
the prounipotent setting, the pentagon relation implies the hexagon relations. For a precise statement, we
refer the reader to [2, Theorem 3.1] and [10, Theorem 1].

We say that an element N € NFlpg, (By4) satisfies the strong Furusho property if:

Property 4.2 For every fNg, € F/Ng, satisfying pentagon relation (2-20) modulo N, there exists
m € Z such that

e 2m + 1 represents a unit in Z/ NoqZ, and

e the pair (m, f) satisfies hexagon relations (2-18) and (2-19).
Furthermore, we say that an element N € NFlpp, (B4) satisfies the weak Furusho property if:

Property 4.3 For every fNf, € [F2/Nf,, F2/Nf,] satisfying pentagon relation (2-20) modulo N, there
exists m € Z such that

e 2m + 1 represents a unit in Z/ NoqZ, and

e the pair (m, f) satisfies hexagon relations (2-18) and (2-19).

Using [4], we showed that the following 11 elements of the list (4-2)
4-7) N(l), N(Z), N(3), N(4), N(G), N(7), N(9), N(IO)’ N(ll)’ N(14), N(24)
satisfy Property 4.2 and the remaining 24 elements of (4-2) do not satisfy Property 4.2.
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For instance, for the Philadelphia subgroup N9, N, (19) = 6 and there are 216 elements f N(lg)
Fao/ N(19) that satisfy the pentagon relation modulo N(lg) However, for only 36 of these 216 elements,
there ex1sts m € {0,1,...,5} such that 2m + 1 represents a unit in Z/6Z and the pair (m, /') satisfies
hexagon relations (2-18) and (2-19) (modulo N](D%;S)).

Using [4], we also showed that the 13 elements of the list (4-2)
(4-8) N(O), N(l), N(Z)’ N(3), N(4), N(S), N(G), N(7), N(9)’ N(IO)’ N(ll)’ N(14), N(24)

satisfy Property 4.3, and the remaining 22 elements of (4-2) do not satisfy Property 4.3.

For instance, for the Mighty Dandy NG4),| N, O(rf’j“) =9 and there are 4096 elements!® in [F, / N,(:324) ,Fa/ N,(:324)]
that satisfy the pentagon relation modulo NG9 However, for only 243 of them does there exist some
m € {0,1,...,8} such that 2m + 1 represents a unit in Z /97 and the pair (m, f') satisfies hexagon

relations (2-18) and (2-19) (modulo NI%?)-

We conclude this section with selected open questions. Most of these questions are motivated by our
experiments [4].

Question 4.4 Let N € NFlpp, (By4) and (m, f) € Z xF, be a pair satisfying (2-18), (2-19), (2-20) (relative
to ~n). Recall that, due to Proposition 2.10, if the group homomorphisms TPB; and T PB} are onto then

so is the group homomorphism

TZB;: PB, — PB4/N.

Using [4], the authors could not find an example of a pair (m, f) e 7 x F, for which T B4

m, f is onto
but T™® } is not onto or T3 is not onto. Can one prove that, if T f is onto, then so are the group

homomorphisms TPB} and T PB}"

Question 4.5 Is it possible to find an example of a nonisolated N € NFlpg, (B4) for which the connected

component GTShY _(N) has more than 2 objects? In other words, is it possible to find N € NFlpp,(B4)

conn
that has > 2 distinct conjugates?

Question 4.6 Is it possible to find K, N € NFlpg, (B4) such that K < N and the natural map
GTY(K) — GTY(N)

is not onto? In other words, can one produce an example of a charming GT—shadow that is also fake?

Question 4.7 Is it possible to find N € NFlpg, (B4) for which F;/Ng, is nonabelian and we can identify
all genuine GT-shadows in the set GTP(N)?

Note that, if F, /NF, is abelian, all charming GT—shadows can be described completely and they are all
genuine. (See Theorem B.2 in Appendix B.)

10For the iMac with the processor 3.4 GHz, Intel Core 15, it took over 52 hours to find all these elements.
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Appendix A The operad PaB and its profinite completion

The operad PaB of parenthesized braids is an operad in the category of groupoids and it was introduced!
by D Tamarkin in [28].

In this appendix, we give a brief reminder of the operad PaB and its profinite completion. For a more
detailed exposition, we refer the reader to [9, Chapter 6].

A.1 The groups B, and PB,,

The Artin braid group B, on 7 strands is, by definition, the fundamental group of the orbifold
Conf(n,C)/Sy,
where Conf(n, C) denotes the configuration space of #n (labeled) points on C, ie
Conf(n,C):={(z1,...,zp) €C" | z; # z; if i # j}.

It is known [17, Chapter 1] that B, has the presentation

—1 =1 .cy; -1 _—1,—1 :
(A-1)  (o01,02,...,0n—1|0i0j0; o; if [i — j| = 2,0i0i+10i0;  ,0; 0; . for1 <i <n-2),

where o0; is the element depicted below:

AN
N\

1 i—1 1 i+1 i42 n
Recall that the pure braid group PB,, on n strands is the kernel of the standard group homomorphism
p: By — S). This homomorphism sends the generator o; to the transposition (i,7 4 1).

For 1 <i < j <n, we denote by x;; the elements of PB, given by
A-2 R T 2571 . 571
(A-2) Xij = 0j—1"""0i+10; 041" 0j_q,

and recall [17, Section 1.3] that PB,, has the presentation

PB, = ({xij}1<i<j<n | relations)

with the relations

Xij ifs<iori<r<s<j,
A3)  x i = 4 o=t
rs “vijovrs — X v —1 1 f . < < .
XpjXsjXijXg; Xy ifr=i<s<j,

—1,-1 —1,—1
XerSJx . Xs lexSJXerS] er

ri Xsj ifr<i<s<j.

1A very similar construction appeared in the beautiful paper [1] by D Bar-Natan.
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For example, the standard generators of PB3 are

(A-4) X1a = (712, Xa3 1= 022, X13 1= 0201202_1.

The element

(A-5) € 1= X23X12X13 = X12X13X23 = (0102)° = (0201)°

has infinite order; it generates the center of PB3; and the center of Bj.

The elements x1, and x,3 generate a free subgroup in PB3. Thus PBj is isomorphic to F; x Z.
A direction calculation shows that

(A-6) ol_lx2301 = X13, 02_1x1202 = x2_31x1_2lc, 02_1x1302 = X13.

A.2 The groupoid PaB(n)

Objects of PaB(n) are parenthesizations of sequences (t(1), 7(2), ..., t(n)) where t is a permutation Sy,.
For example, PaB(2) has exactly two objects (12) and (2 1) and PaB(3) has 12 objects:

(12)3, (21)3, (23)1, (32)I, (31)2, (13)2, 1(23), 2(13), 2(31), 3(21), 3(12), 1(32).

To define morphisms in PaB(#), we denote by p the obvious projection from the set of objects of PaB(n)

p(@3)]) = (; : f) .

For two objects 7; and 7, of PaB(n), we set

(A-7) Homp,g (71, 72) := p~ ' (p(r2) "' op(z1)) C By,

where p is the standard homomorphism B, to Sj,.

onto S,. For example,

For instance, Homp,g(2(31), (31)2) consist of elements g € B, such that

123
p(g)=(3 ) 2)-

An example of an isomorphism from 2(31) to (31)2 in PaB(3) is shown below:

(3 1) 2
AN \/

The composition of morphisms in PaB(n) comes from the multiplication in B,. For example, if n
is the element of Homp,g(71, 7) corresponding to & € B, and y is the element of Homp,g(77, 73)
corresponding to g € B, then their composition y -7 is the element of Homp,g(7y, 73) corresponding
to g - h. We use - for the composition of morphisms in PaB and the multiplication of elements in braid
groups.
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By definition of morphisms, we have a natural forgetful map
(A-8) ou: PaB(n) — By,.

This map assigns to a morphism y € PaB(n) the corresponding element of the braid group B;,. Moreover,
since the composition of morphisms in PaB(n) comes from the multiplication in B,,, we have

ou(y =) = ou(y) - ou(n)
for every pair y, n of composable morphisms.

The isomorphisms o € PaB(3) and B € PaB(2) depicted as
1

1
\ and o= J
(1 2

1 2

2 3
3

as in (1-2) play a very important role. We call 8 the braiding and « the associator. Note that, although o

~—~—

pi=

corresponds to the identity element in B3, it is not an identity morphism in PaB(3) because (12)3 # 1(23).

The symmetric group S, acts on Ob(PaB(n)) in the obvious way. Moreover, for every 8 € S, and
v € Homp,g(,) (71, 72), we denote by 6(y) the morphism from 6(z;) to 6(t) that corresponds to the
same element of the braid group B, ie

(A-9) ou(f(y)) = ou(y).

For example, if 8 = (1, 2) € S; then

2 (1 3)
o - / J
(2 1) 3

For our purposes, it is convenient to assign to every element g € B, the corresponding morphism
m(g) € PaB(n) from (.. (1,2)3)...n) to (.. (i1,i2)i3) ...in), where iy := p(g)~' (k). It is easy to see
that the map

(A-10) m: B, — PaB(n)

defined in this way is a right inverse of ou; see (A-8).

It is also easy to see that, for every pair g1, g, € B, we have

(A-11) m(g1-g2) = p(g2)~ (m(g1)) - m(g2).
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For example, for 01,0, € B3, m(o7) =idy; o1 B and

(1 3) 2

X
L

(1 2) 3

m(oy) =

The composition m(c;) - m(oq) is not defined because the source of m(o,) does not coincide with the
target of m(o). On the other hand, the source of (1,2)(m(o,)) coincides with the target of m(o;) and
(1,2)(m(02)) - m(o1) = m(02-01).

A.3 The operad structure on PaB

We already explained how the symmetric group Sy acts on the groupoid PaB(#). Furthermore, it is easy
to see that {Ob(PaB(n))},>1 is the underlying collection of the free operad (in the category of sets)
generated by the collection T with

12,21} ifn=2
T = {11222
o} otherwise.
Thus the functors
(A-12) o;: PaB(n) x PaB(m) — PaB(n +m — 1)

act on the level of objects in the obvious way.
For example,
(23)10512:=((23)4)1, 2107 (23)1:=4((23)1), 2(3(14)) 03 1(32) :=2((3(54))(16)),

where we use the gray color to indicate what happens with the inserted sequence. For instance, in the
third example, 1(32) > (3(54)).

To define the action of the functor o; on the level of morphisms, we proceed as follows: given y € PaB(n),
y € PaB(m) and 1 <i <n, we set g := ou(y) and g := ou(y); we compute the source and the target of
y o; ¥ using the rules of operad {Ob(PaB(k))}x>1. Finally, to get the element of B, ,,— corresponding
to y o; ¥, we replace the strand of g that originates at the position labeled by i by a “thin” version of g.
For example,

(3 1) 2 1 2 (4 1) (2 3)

P %

2 (3 1) 2 1 (3 2) (4 1)

For a more precise definition of operadic multiplications on PaB we refer the reader to [9, Chapter 6].
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The (iso)morphisms « and f satisfy the pentagon relation

aozidyo

(1(23))4 1((23)4)
idlzoyy id\lzoja
(A-13) ((12)3)4 1(2(34))
aoqidya aozid
\’ (12)(34) /

and the two hexagon relations

Bojidin (1,3,2)a
(12)3 22112 549y 2D 39y,

(A-14) o J T(z,s)(idlzol B)
idi202 8 2,3)a”!
1(23) 22228 130y 2202 (43y0

05 id 1,2,3
123) 222192, gy 2D 5y
(A-15) o a2 6o

idip 0 1,2
(12)3 22228 o1y3 22 H a3

It is known [9, Theorem 6.2.4] that:!2

Theorem A.1 As the operad in the category of groupoids, PaB is generated by morphisms « and f
of (1-2). Moreover, any relation on « and 8 in PaB is a consequence of (A-13), (A-14) and (A-15).

A.4 The cosimplicial homomorphisms for pure braid groups in arities 2, 3, 4

The collection {PB, },>1 of pure braid groups can be equipped with the structure of a cosimplicial group.
For our purposes we will need the cofaces of this cosimplicial structure only in arities 2, 3 and 4.

Let 71 and 1, be objects of PaB(n) which differ only by parenthesizations, ie p(z1) = p(r,). For such

objects, we denote by O(;Z the isomorphism from t; to 7, given by the identity element of B,. For
1(23) (12)3

(12)3 and o~ ! is precisely o1 23)

example, the associator « is precisely o

Using the identity morphism id;, € PaB(2), the maps ou, m (see (A-8) and (A-10)) and the operadic
insertions, we define the following maps from PB3 to PB4 and the maps from PB; to PBj:

@123(h) ;== ou(idiz oy m(N)), @12,3,4(h) := ou(m(h)oyidy2),
(A-16) @1,2,34(h) ;== ou(m(h) o3id12),  ¢234(h) := ou(idi 0 m(h)),
®1,23,4(h) := ou(m(h) oz id;7),

12 A very similar statement is proved in [1]. See Claim 2.6 in loc. cit. It goes without saying that Theorem A.1 can be thought of
as a version of Mac Lane’s coherence theorem for braided monoidal categories.
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@12(h) :==ou(idiz oy m(h)),  @23(h) := ou(id2 0oy m(h)),
@12,3(h) :=ou(m(h) oridi2), @1,23(h) := ou(m(h) oz idy2).

Proposition A.2 The equations in (A-16) (resp. in (A-17)) define group homomorphisms from PB;
(resp. PB,) to PB4 (resp. PB3).

(A-17)

Proof Let us consider the map ¢; 23,4: PB3 — PBy4. For elements £, he PB3, we set
y:i=m(h) and 7:=m(h).
Since PaB is an operad in the category of groupoids, we have
(v -¥)o2id1a = (y 02idy2) - (¥ 021d12).
Hence
¢1,23.4(h) - 91,23.4(h) = ou(y 03id12) - ou( 02 id12) = ou((y 02id12) - (¥ 02 id12))
= ou((y - ¥) 02id12) = ¢1,23,4(h - h),
where the last identity is a consequence of y -y = m(h - }7).
The proofs for the remaining eight maps are very similar and we leave it to the reader. |

Since all nine maps in (A-16) and (A-17) are group homomorphisms, they are uniquely determined by
their values on generators of PB; and PB4, respectively. It is easy to see that

¢123(x12) = X712, ¢123(x23) = X123, ®123(x13) = X713,
P234(x12) = X123, ©234(x23) = X34, ©234(X13) = X24,
(A-18) ®12,3,4(X12) = X13X23,  ©12,3,4(X23) = X34, ©12,3,4(X13) = X14X24,

©1,23,4(X12) = X12X13,  ©1,23,4(X23) = X24X34, ©1,23,4(X13) = X124,
®1,2,34(X12) = X12, ©1,2,34(X23) = X23X24,  ©1,2,34(X13) = X13X14,

(A-19) P12(x12) = X12,  @23(X12) = x23,  @12,3(x12) = X13X23,  @1,23(X12) = X12X13.
A.5 The profinite completion PaB of PaB

Let % be a connected groupoid with finitely many objects and G be the group that represents the
isomorphism class of Aut(a) for some object a of 4. We tacitly assume that the group G is residually
finite. Following [5], an equivalence relation ~ on % is called compatible if:

(1) y1 ~ y, implies the source (resp. the target) of y; coincides with the source (resp. the target) of y;.

(2) y1 ~yp implies y1 -y ~ Y-y and T -y ~ T - ¥, (if the compositions are defined).

(3) The set G/~ of equivalence classes is finite.

It is clear that, for every compatible equivalence relation ~ on %, the quotient §/~ is naturally a finite
groupoid (with the same set of objects).
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Compatible equivalence relations on § form a directed poset and the assignment ~ — 4/~ gives us
a functor from this poset to the category of finite groupoids. In [5], the profinite completion G of the
groupoid 4 is defined as the limit of this functor.

In [5], it was also shown that compatible equivalence relations on 4 are in bijection with finite-index
normal subgroups N of G. This gives us the following “pedestrian” way of thinking about morphisms in
@(a, b): choose!? A € §(a, b), then every morphism in y € @(a, b) can be uniquely written as

y =A-h,
where /1 € G.

In [5], we also proved that the assignment % G upgrades to a functor from the category of groupoids to
the category of topological groupoids. Moreover, this is a symmetric monoidal functor.

Thus, “putting hats” over PaB(#n) for every n > 0 gives us an operad PaB in the category of topological
groupoids.

Appendix B Charming GT-shadows in the abelian setting: examples of
genuine GT-shadows

Let us prove the following statement:

Proposition B.1 For N € NFlpg, (B4), the following conditions are equivalent:

(a) The quotient group PB4 /N is abelian.
(b) The quotient group PB3/Npg, is abelian.
(c) The quotient group F,/Ng, is abelian.

Proof Implications (a) = (b) and (b) = (c) are straightforward, so we leave them to the reader.

Let us assume that the quotient group F, /N, is abelian. Then the images of x1, and x,3 in PB3/Npg,
commute. Furthermore, since the image of ¢ in PB3 /Npg, is obviously in the center of PB3/Npg, and
PB3; = (x;2, x23. ¢), we conclude that the quotient group PB3 /Npg, is also abelian.

To show that the generators X;; := x;;N for 1 <i < j < 4 of PB4/N commute with each other, we
consider the group homomorphisms from PB3 to PB4 given by formulas (A-18).

Note that, for every homomorphism ¢: PB; — PBy, in the set

(B-1) 10234, 012,3,4, P1,23,4- ©1,2,34 V2345

we have Npp,; =< ¢~ 1(N) < PBj;. Therefore, since the quotient PB3/ Npg; is abelian, the quotient
PB;3 /¢~ 1(N) is also abelian.

134(a, b) is nonempty because 4 is connected.
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Applying these observations to every ¢ in (B-1), we deduce that:

e The elements X3, X23, X13 commute with each other.
e The elements X53, X34, X24 commute with each other.
e The elements X;3X33, X34 and X14X24 commute with each other.
e The elements X3, X23X24 and X;3X14 commute with each other.

e The elements X4, X12X13 and X,4X34 commute with each other.
Using these observations one can show that [X;;, Xx;] = 1pp,/n for every pair in the set

HGE D) (DY 1<i<j <4 1=k < <4} = {(1.2). (.4} {(1.3). .9} {2.3). (1.4},
Luckily, due to (A-3), we have

X12X34 = X34X12, X23X14 = X14X23, x1_31x24x13 = [x14,x_o,4]x24[x14,x34]_1.

Thus all generators X;; of PB4/N commute with each other. O
If one of the three equivalent conditions of Proposition B.1 is satisfied then we say that we are in the
abelian setting.

We can now prove the following analog of the Kronecker—Weber theorem:

Theorem B.2 Let N € NFlpg, (B4). If the quotient group PB4 /N is abelian, then
(B-2) GTON) = {(m + NoraZ, 1) | 0 < m < Nyrg— 1, ged(2m + 1, Nowa) = 1},

where 1 is the identity element of F5/ Nf,. Furthermore, every GT—shadow in (B-2) is genuine.

Proof Since 1 can be represented by the identity element of F,, every element of the set
(B-3) Xy = {(m + NordZ»T) | 0<m < Non—1, ng(zm + 1, Nowa) = 1}
satisfies the pentagon relation (2-20).

For every element of Xy, the hexagon relations (2-18) and (2-19) boil down to

(B-4) 01x7502x%5 Npg; = 0102(x13X23)™ Npg;,
(B-5) 02x%5 01X75 Npp; = 0201 (X12X13)" Npg;.

Equation (B-4) follows easily from the identity
02_1X1202 = X2_31X13X23
and the fact that the quotient PB3/Npg; is abelian.
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Similarly, equation (B-5) follows easily from the identity

04 1962301 = X13
and the fact that the quotient PB3/Npg, is abelian.

We proved that every element of Xy is a GT—pair for N. Moreover, since 2m + 1 represents a unit in the
ring Z/ NoraZ, every GT—pair in Xy is friendly, ie the group homomorphism Trl:lBl2 :PBy — PB,/Npp, is
onto.

Due to (2-28) and the second identity in (2-29), for every m € Z we have
PB PB PB
T, i (x12) = X7 Npg;, T, 7 (x23) = x50 Npg;, T, 7()= >+ Npg,.

Since the orders of the elements x1,Npg;, X23Npp; and ¢Npg, divide Noq and 2m + 1 represents a unit
in Z/NowdZ, all three cosets x12Npg;, X23Npp; and cNpg, belong to the image of T;Bf. Thus, due to
Proposition 2.10, every element of Xy is a GT—shadow.

Furthermore, every GT—shadow in Xy is charming. The first condition of Definition 2.20 is clearly
satisfied and the second one follows from the fact that 2m + 1 represents a unit in Z/NyqZ and the
orders of the elements x1,Ng,, x23NE, divide Nyq.

Since the inclusion GTO(N) C X\ is obvious, the first statement of Theorem B.2 is proved.
Let us now show that every GT—shadow in GTY(N) is genuine.

By Remark 2.18 and the surjectivity of the cyclotomic character, we know that, for every A € (Z / NoZ)*
there should exist at least one genuine GT—shadow [(m, )] € GTY(N) such that

(B-6) 2m4+1=A.
Let us assume that N is odd. In this case 2 € (Z./ NoraZ))* and hence, for every fixed xe (Z/ NoraZ),
equation (B-6) has exactly one solution /1 € Z/ Ny Z.

Since, for every A € (Z/ NoraZ) ™, we have exactly one GT—shadow (772, 1) in GTY(N) such that 2/ +1 = A,
the surjectivity of the cyclotomic character implies that every GT—shadow in GTY(N) is genuine.

The case when Nog = 2k (for k € Z>1) requires more work. In this case, equation (B-6) has exactly
two solutions for every A€ (Z / ZkZ)X. More precisely, if 2im + 1 = X then the solution set for (B-6) is
{im,im + k).
The proof of the desired statement about GTY(N) is based on the fact that the integers 2m + 1 and
2m + 2k + 1 represent two distinct units in the ring Z/4kZ.
Let K be an element of NFlpg, (B4) such that

e K=<N,

e PB4/Kis abelian, and

o 4k divides K() = |PB2 . Kszl.
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One possible way to construct such K is to define a group homomorphism v : PB4 — S, by the formulas
B-7) Yxij):=(1,2,...,4k) forall 1 <i < j <4,
and set K := N Nker(y).
Since the natural group homomorphism
(Z)KoZ)* — (Z]4kZ)™

is onto, there exist A % A, in (Z/ Ko Z)* whose images in (Z /4k Z)* are the two distinct units represented
by 2m + 1 and 2m + 2k + 1, respectively.

Therefore there exist genuine GT—shadows [(711, 1)] and [(m, 1)] in GTY(K) such that
2mi+1=A; mod Ky and 2mj,+ 1= A, mod K.
Consequently, m; and m, satisfy these congruences mod 4k :
2mi+1=2m+1mod4k and 2m,+1=2m+ 2k + 1 mod 4k.

Thus the images of the genuine GT—shadows [(m21, 1)] and [(m15, 1)] in GT(N) are [(m2, 1)] and [(m +k, 1)].
O

Remark B.3 In the abelian setting, every charming GT—shadow comes from an element of Gg. The
authors do not know whether there is a genuine GT—shadow (in the nonabelian setting) that does not come
from an element of Gg. Of course, if such a GT—shadow exists then the homomorphism (1-1) is not onto.
(Some mathematicians believe that, in modern mathematics, there are no tools for tackling this question.)
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