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A simple proof of the Crowell–Murasugi theorem

THOMAS KINDRED

We give an elementary, self-contained proof of the theorem, proven independently in 1958–1959 by
Crowell and Murasugi, that the genus of any oriented nonsplit alternating link equals half the breadth of
its Alexander polynomial (with a correction term for the number of link components), and that applying
Seifert’s algorithm to any oriented connected alternating link diagram gives a surface of minimal genus.

57K10, 57K14

Every oriented link K � S3 bounds a connected oriented surface F called a Seifert surface. Such F is
homeomorphic to an `–punctured surface of some genus g.F /, where `D jKj (here and throughout, bars
count components). The link genus g.K/ is the minimum genus among all Seifert surfaces for K.

An ordered basis .a1; : : : ; an/ for H1.F / determines an n�n Seifert matrix V D .vij /, vij D lk.ai ; a
C
j /,

where lk denotes linking number and aCj is the pushoff of (an oriented multicurve representing) aj in the
positive normal direction determined by the orientations on F and S3.

The polynomial det.V � tV T /, denoted by �K .t/, is called the Alexander polynomial of K. Up to
degree shift, it is independent of Seifert surface and basis; see Kauffman [11] and Bar-Natan, Fulman
and Kauffman [2]. Writing �K .t/D ar tr C arC1trC1C � � �C as�1t s�1C ast s with ar ; as ¤ 0, we call
s� r the breadth of �K .t/ and denote it by bth.K/.

Given any oriented connected diagram D � S2 of a link K � S3, Seifert’s algorithm yields a Seifert
surface for K as follows. First, “smooth” each crossing of D in the way that respects orientation: ,

. This gives a disjoint union of oriented circles on S2 called the Seifert state of D; each circle is
called a Seifert circle. Second, cap all the Seifert circles with disjoint, oriented disks, all on the same
side of S2. Third, attach an oriented half-twisted band at each crossing, so that the resulting surface F is
oriented with @F DK, respecting orientation. Here is an example:

The purpose of this note is to give a short, elementary, self-contained proof of the following theorem, first
proven independently in 1958–1959 by Crowell and Murasugi.
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Theorem 1 (Crowell [4] and Murasugi [14; 15]) If F is a surface constructed via Seifert’s algorithm
from a connected alternating diagram D of an oriented `–component link K, then

g.F /D g.K/D 1
2
.bth.K/C 1� `/:

To prove Theorem 1, we will show that a Seifert matrix V for F is invertible. The next two results show
that this indeed will suffice.

Proposition 2 Let F be a Seifert surface for an oriented `–component link K. If bth.K/D2g.F /C`�1,
then g.K/D g.F /D 1

2
.bth.K/C 1� `/.

Proof Given an arbitrary Seifert surface F 0 for K, one may compute �K .t/ from any Seifert matrix
for F 0, so bth.K/� ˇ1.F

0/D 2g.F 0/C 1� `. Hence g.F /� g.F 0/.

Proposition 3 (Murasugi [17]) Let V be a real n� n matrix, and let f .t/D det.V � tV T /. If V is
invertible , then the breadth of f .t/ equals n.

Proof Denoting the transpose of V �1 by V �T ,

f .t/D det.V T / det.V V �T
� tI/

is a nonzero scalar multiple of the characteristic polynomial of the invertible matrix V V �T , hence has
breadth n.1

Next, suppose that D � S2 is a connected oriented alternating link diagram such that applying Seifert’s
algorithm to D yields a checkerboard2 surface F .3 Then, since D is alternating and connected, all of the
crossing bands in F are identical: either they all positive, , or they are all negative, . Let V denote
a Seifert matrix for F .

Lemma 4 With the preceding setup , if the crossing bands in F are positive , then any nonzero x 2Zˇ1.F /

satisfies xT V x > 0; if the crossing bands in F are negative , then any such x satisfies xT V x < 0. Hence ,
in either case , V is invertible.

Here is a self-contained proof. A shorter argument, using Greene [9], follows.

Proof Assume without loss of generality that the crossing bands in F are positive. Among all oriented
multicurves in F that represent x, choose one, ˛, that intersects the crossing bands in F in the smallest

1The converse is also true. Indeed, if V is singular, then choose an invertible matrix P whose first column is in the nullspace
of V . Then det.PT VP � t.PT VP /T /D det2.P / �f .t/ has the same breadth as f .t/. Further, the first column of PT VP is 0,
so only constants appear in the first row of PT VP � t.PT VP /T . Hence, the breadth is less than n.
2That is, each Seifert circle bounds a disk in S2 disjoint from the other Seifert circles.
3Such a diagram is either positive or negative and is called special alternating.
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possible number of components. Then, for each crossing band X in F , ˛\X will consist of a (possibly
empty) collection of coherently oriented arcs. Therefore,

(1) xT V x D lk.˛; ˛C/D
X

crossing bands X

j˛\X j2

2
� 0:

Moreover, the inequality in (1) is strict, or else ˛ would be disjoint from all crossing bands, hence
nullhomologous (since D is connected). It follows that V is nonsingular, or else we would have V zD 0
for some nonzero vector z, giving zT V zD 0.

Alternatively, denote the Gordon–Litherland pairing [8] on F by h � ; � i. Since D is alternating and
connected, this pairing is definite; see Greene [9] or Murasugi [16]. Thus,

xT V x D lk.˛; ˛C/D 1
2

lk.˛; ˛C[˛�/D hx;xi ¤ 0:

To complete the proof of Theorem 1, we need one more definition and lemma. The Murasugi sum, also
called generalized plumbing, is a way of gluing together two spanning surfaces along a disk so as to
produce another spanning surface. We will prove that if Seifert surfaces F1 and F2 have invertible Seifert
matrices, then any Murasugi sum of F1 and F2 also has invertible Seifert matrix (and conversely).

Definition 5 For i D 1; 2, let Fi be a Seifert surface in a 3–sphere S3
i , and choose a compact 3–ball

Bi � S3
i that contains Fi such that

(i) Fi \ @Bi is a disk Ui whose boundary consists alternately of arcs in @Fi and arcs in int.Fi/,

(ii) j@U1\ @F1j D j@U2\ @F2j, and

(iii) the positive normal along U1 (using the orientations on S3
1

and F1) points into B1, whereas the
positive normal along U2 points out of B2.

Choose an orientation-reversing homeomorphism h W@B1!@B2 such that h.U1/DU2 and h.@U1\@F1/D

cl.@U2\ int.F2//.4 Then F D F1[h F2 is a Seifert surface in the 3–sphere B1[h B2. It is a Murasugi
sum or generalized plumbing of F1 and F2, denoted by F D F1 �F2.

Note that there are generally many ways to form a Murasugi sum between two given surfaces. As an
aside, we mention that the Murasugi sum construction extends easily to unoriented surfaces, and that
both the oriented and unoriented notions of Murasugi sum are natural operations in many respects; see
Gabai [5; 6], Ozawa [18], Ozbagci and Popescu-Pampu [19] and Kindred [12]. Here is one such respect:

Lemma 6 Given a Murasugi sum F D F1 �F2 of Seifert surfaces with Seifert matrices V, V1 and V2,
respectively, V is invertible if and only if both V1 and V2 are.

4It follows that h.cl.@U1 \ int.F1///D @U2 \ @F2.
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Proof Write V D .vij /. We may assume that V is taken with respect to a basis .a1; : : : ; ar ; b1; : : : ; bs/

for H1.F /, where .a1; : : : ; ar / is a basis for H1.F1/ and .b1; : : : ; bs/ is a basis for H1.F2/. Then V is
a block matrix of the form V D

�
V1

B
A
V2

�
. In fact, we claim that B D 0, ie

(2) V D

�
V1 A

0 V2

�
:

To see this, let j̨ � F1 represent aj and let ˇi � F2 represent bi for arbitrary 1� j � r and 1� i � s.
Then vij D lk.ˇi ; ˛

C
j /D 0 because, using the notation and setup from Definition 5, ˛Cj � int.h.B1//

and ˇi � B2. From (2), we have det.V /D det.V1/ det.V2/,5 so the result follows.

Now we can prove Theorem 1:

Proof of Theorem 1 Let F be a surface constructed via Seifert’s algorithm from an alternating diagram
D of an oriented link K. Then F is a Murasugi sum of checkerboard Seifert surfaces from connected
oriented alternating link diagrams.6

Lemma 4 implies that all of these checkerboard surfaces have invertible Seifert matrices, so Lemma 6
implies that F has an invertible Seifert matrix V. Since K has ` components, the size of V is ˇ1.F /D

2g.F /C 1� `. Thus, by Propositions 2 and 3,

g.F /D g.K/D 1
2
.bth.K/C 1� `/:

The preceding proof shows, more generally:

Theorem 7 Let F be a Seifert surface for an oriented `–component link K. If F is a Murasugi sum
of checkerboard surfaces from connected oriented alternating link diagrams , then g.K/ D g.F / D
1
2
.bth.K/C 1� `/.

In particular, an oriented connected link diagram is called homogeneous if it is a �–product, ie diagram-
matic Murasugi sum, of special alternating link diagrams. By definition, Theorem 7 applies to all such
diagrams (cf [3] Corollary 4.1):

Corollary 8 If F is constructed via Seifert’s algorithm from a homogeneous diagram of an `–component
oriented link K, then g.F /D g.K/D 1

2
.bth.K/C 1� `/.

We note another consequence of Lemma 6, in combination with:

Theorem 9 (Harer’s conjecture [10]; Corollary 3 of [7]) Any fiber surface in S3 can be constructed by
plumbing and de-plumbing Hopf bands.

5This is due to the formula det V D
P
�2Sr Cs

sign.�/
QrCs

iD1 vi�.i/ and the pigeonhole principle.
6Indeed, D is a �–product of special alternating diagrams: see [1, Definition 2.37 and Remark 2.38]. For an explicit construction,
see [20, page 98].
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Corollary 10 If F is an oriented fiber surface spanning an `–component link K � S3 and K has the
boundary orientation from F , then

g.F /D g.K/D 1
2
.bth.K/C 1� `/:

We close by considering knots K with g.K/ > 1
2

bth.K/. The simplest such knots have 11 crossings.
There are seven of them [13]: the Conway knot 11n34 has genus three, as do 11n45, 11n73 and 11n152,
while the Kinoshita–Terasaka knot 11n42 has genus two, as do 11n67 and 11n97. Lemma 6 implies that
if one takes a minimal genus Seifert surface for any one of these knots and de-plumbs (ie decomposes it as
a nontrivial Murasugi sum),7 then at least one of the resulting factors will have a singular Seifert matrix.
Also, by Theorem 1 of [6], all of these surfaces will have minimal genus. This raises the following natural
problem.

Problem 11 Characterize or tabulate those Seifert surfaces F which

(i) have minimal genus,

(ii) do not de-plumb,8 and

(iii) have singular Seifert matrices.

Interestingly, for each of the four aforementioned 11–crossing knots of genus three, de-plumbing a
minimal genus Seifert surface gives three Hopf bands and the planar pretzel surface P2;2;�2;�2, which
has Seifert matrix 24 2 �1 0

�1 0 1

0 1 �2

35 ;
and doing this for any of the three aforementioned 11–crossing knots of genus two gives one Hopf band
and a surface of genus one that has Seifert matrix240 1 0

1 0 �2

0 �1 0

35 :
See Figure 1. Another simple example of the type of surface referenced in Problem 11 is the planar
pretzel surface P4;4;�2, which has Seifert matrix�

4 �2

�2 1

�
:

In particular, each of these simplest examples spans a link of multiple components.

Question 12 Does there exist a knot K that satisfies g.K/ > 1
2

bth.K/ and has a minimal genus Seifert
surface F that does not de-plumb?
7Beware: surfaces may admit distinct de-plumbings; see Kindred [12]. Still, Lemma 6 implies that this sentence is true for any
de-plumbing of such a surface.
8That is, any decomposition of F as a Murasugi sum F D F1 �F2 has F1 or F2 as a disk.

Algebraic & Geometric Topology, Volume 24 (2024)



2784 Thomas Kindred

de-plumb

1 band

isotope
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Figure 1: De-plumbing Hopf bands from minimal genus Seifert surfaces for the knots 11n67 and 11n73.
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