

Algebraic & Geometric Topology Volume 24 (2024)

A simple proof of the Crowell–Murasugi theorem

THOMAS KINDRED

A simple proof of the Crowell–Murasugi theorem

THOMAS KINDRED

We give an elementary, self-contained proof of the theorem, proven independently in 1958–1959 by Crowell and Murasugi, that the genus of any oriented nonsplit alternating link equals half the breadth of its Alexander polynomial (with a correction term for the number of link components), and that applying Seifert's algorithm to any oriented connected alternating link diagram gives a surface of minimal genus.

57K10, 57K14

Every oriented link $K \subset S^3$ bounds a connected oriented surface F called a *Seifert surface*. Such F is homeomorphic to an ℓ -punctured surface of some genus g(F), where $\ell = |K|$ (here and throughout, bars count components). The *link genus* g(K) is the minimum genus among all Seifert surfaces for K.

An ordered basis (a_1, \ldots, a_n) for $H_1(F)$ determines an $n \times n$ Seifert matrix $V = (v_{ij}), v_{ij} = lk(a_i, a_j^+)$, where lk denotes linking number and a_j^+ is the pushoff of (an oriented multicurve representing) a_j in the positive normal direction determined by the orientations on F and S^3 .

The polynomial det $(V - tV^T)$, denoted by $\Delta_K(t)$, is called the *Alexander polynomial* of K. Up to degree shift, it is independent of Seifert surface and basis; see Kauffman [11] and Bar-Natan, Fulman and Kauffman [2]. Writing $\Delta_K(t) = a_r t^r + a_{r+1} t^{r+1} + \cdots + a_{s-1} t^{s-1} + a_s t^s$ with $a_r, a_s \neq 0$, we call s - r the *breadth* of $\Delta_K(t)$ and denote it by bth(K).

Given any oriented connected diagram $D \subset S^2$ of a link $K \subset S^3$, *Seifert's algorithm* yields a Seifert surface for K as follows. First, "smooth" each crossing of D in the way that respects orientation: (X - Q, Q). This gives a disjoint union of oriented circles on S^2 called the *Seifert state* of D; each circle is called a *Seifert circle*. Second, cap all the Seifert circles with disjoint, oriented disks, all on the same side of S^2 . Third, attach an oriented half-twisted band at each crossing, so that the resulting surface F is oriented with $\partial F = K$, respecting orientation. Here is an example:

The purpose of this note is to give a short, elementary, self-contained proof of the following theorem, first proven independently in 1958–1959 by Crowell and Murasugi.

^{© 2024} The Author, under license to MSP (Mathematical Sciences Publishers). Distributed under the Creative Commons Attribution License 4.0 (CC BY). Open Access made possible by subscribing institutions via Subscribe to Open.

Theorem 1 (Crowell [4] and Murasugi [14; 15]) If *F* is a surface constructed via Seifert's algorithm from a connected alternating diagram *D* of an oriented ℓ -component link *K*, then

$$g(F) = g(K) = \frac{1}{2}(bth(K) + 1 - \ell).$$

To prove Theorem 1, we will show that a Seifert matrix V for F is invertible. The next two results show that this indeed will suffice.

Proposition 2 Let *F* be a Seifert surface for an oriented ℓ -component link *K*. If $bth(K) = 2g(F) + \ell - 1$, then $g(K) = g(F) = \frac{1}{2}(bth(K) + 1 - \ell)$.

Proof Given an arbitrary Seifert surface F' for K, one may compute $\Delta_K(t)$ from any Seifert matrix for F', so $bth(K) \le \beta_1(F') = 2g(F') + 1 - \ell$. Hence $g(F) \le g(F')$.

Proposition 3 (Murasugi [17]) Let V be a real $n \times n$ matrix, and let $f(t) = \det(V - tV^T)$. If V is invertible, then the breadth of f(t) equals n.

Proof Denoting the transpose of V^{-1} by V^{-T} ,

$$f(t) = \det(V^T) \det(VV^{-T} - tI)$$

is a nonzero scalar multiple of the characteristic polynomial of the invertible matrix VV^{-T} , hence has breadth n.¹

Next, suppose that $D \subset S^2$ is a connected oriented alternating link diagram such that applying Seifert's algorithm to D yields a *checkerboard*² surface F.³ Then, since D is alternating and connected, all of the crossing bands in F are identical: either they all positive, \mathbf{X} , or they are all negative, \mathbf{M} . Let V denote a Seifert matrix for F.

Lemma 4 With the preceding setup, if the crossing bands in *F* are positive, then any nonzero $\mathbf{x} \in \mathbb{Z}^{\beta_1(F)}$ satisfies $\mathbf{x}^T V \mathbf{x} > 0$; if the crossing bands in *F* are negative, then any such \mathbf{x} satisfies $\mathbf{x}^T V \mathbf{x} < 0$. Hence, in either case, *V* is invertible.

Here is a self-contained proof. A shorter argument, using Greene [9], follows.

Proof Assume without loss of generality that the crossing bands in *F* are positive. Among all oriented multicurves in *F* that represent x, choose one, α , that intersects the crossing bands in *F* in the smallest

¹The converse is also true. Indeed, if *V* is singular, then choose an invertible matrix *P* whose first column is in the nullspace of *V*. Then det $(P^T VP - t(P^T VP)^T) = det^2(P) \cdot f(t)$ has the same breadth as f(t). Further, the first column of $P^T VP$ is **0**, so only constants appear in the first row of $P^T VP - t(P^T VP)^T$. Hence, the breadth is less than *n*.

²That is, each Seifert circle bounds a disk in S^2 disjoint from the other Seifert circles.

³Such a diagram is either *positive* or *negative* and is called *special alternating*.

possible number of components. Then, for each crossing band X in F, $\alpha \cap X$ will consist of a (possibly empty) collection of coherently oriented arcs. Therefore,

(1)
$$\mathbf{x}^T V \mathbf{x} = \operatorname{lk}(\alpha, \alpha^+) = \sum_{\operatorname{crossing bands } X} \frac{|\alpha \cap X|^2}{2} \ge 0.$$

Moreover, the inequality in (1) is strict, or else α would be disjoint from all crossing bands, hence nullhomologous (since *D* is connected). It follows that *V* is nonsingular, or else we would have $Vz = \mathbf{0}$ for some nonzero vector *z*, giving $z^T V z = 0$.

Alternatively, denote the Gordon–Litherland pairing [8] on F by $\langle \cdot, \cdot \rangle$. Since D is alternating and connected, this pairing is definite; see Greene [9] or Murasugi [16]. Thus,

$$\mathbf{x}^T V \mathbf{x} = \operatorname{lk}(\alpha, \alpha^+) = \frac{1}{2} \operatorname{lk}(\alpha, \alpha_+ \cup \alpha_-) = \langle \mathbf{x}, \mathbf{x} \rangle \neq 0.$$

To complete the proof of Theorem 1, we need one more definition and lemma. The Murasugi sum, also called generalized plumbing, is a way of gluing together two spanning surfaces along a disk so as to produce another spanning surface. We will prove that if Seifert surfaces F_1 and F_2 have invertible Seifert matrices, then any Murasugi sum of F_1 and F_2 also has invertible Seifert matrix (and conversely).

Definition 5 For i = 1, 2, let F_i be a Seifert surface in a 3-sphere S_i^3 , and choose a compact 3-ball $B_i \subset S_i^3$ that contains F_i such that

- (i) $F_i \cap \partial B_i$ is a disk U_i whose boundary consists alternately of arcs in ∂F_i and arcs in int (F_i) ,
- (ii) $|\partial U_1 \cap \partial F_1| = |\partial U_2 \cap \partial F_2|$, and
- (iii) the positive normal along U_1 (using the orientations on S_1^3 and F_1) points *into* B_1 , whereas the positive normal along U_2 points *out of* B_2 .

Choose an orientation-reversing homeomorphism $h: \partial B_1 \to \partial B_2$ such that $h(U_1) = U_2$ and $h(\partial U_1 \cap \partial F_1) = cl(\partial U_2 \cap int(F_2))$.⁴ Then $F = F_1 \cup_h F_2$ is a Seifert surface in the 3-sphere $B_1 \cup_h B_2$. It is a *Murasugi* sum or generalized plumbing of F_1 and F_2 , denoted by $F = F_1 * F_2$.

Note that there are generally many ways to form a Murasugi sum between two given surfaces. As an aside, we mention that the Murasugi sum construction extends easily to unoriented surfaces, and that both the oriented and unoriented notions of Murasugi sum are natural operations in many respects; see Gabai [5; 6], Ozawa [18], Ozbagci and Popescu-Pampu [19] and Kindred [12]. Here is one such respect:

Lemma 6 Given a Murasugi sum $F = F_1 * F_2$ of Seifert surfaces with Seifert matrices V, V_1 and V_2 , respectively, V is invertible if and only if both V_1 and V_2 are.

⁴It follows that $h(cl(\partial U_1 \cap int(F_1))) = \partial U_2 \cap \partial F_2$.

Algebraic & Geometric Topology, Volume 24 (2024)

Proof Write $V = (v_{ij})$. We may assume that V is taken with respect to a basis $(a_1, \ldots, a_r, b_1, \ldots, b_s)$ for $H_1(F)$, where (a_1, \ldots, a_r) is a basis for $H_1(F_1)$ and (b_1, \ldots, b_s) is a basis for $H_1(F_2)$. Then V is a block matrix of the form $V = \begin{bmatrix} V_1 & A \\ B & V_2 \end{bmatrix}$. In fact, we claim that B = 0, ie

(2)
$$V = \begin{bmatrix} V_1 & A \\ 0 & V_2 \end{bmatrix}.$$

To see this, let $\alpha_j \subset F_1$ represent a_j and let $\beta_i \subset F_2$ represent b_i for arbitrary $1 \le j \le r$ and $1 \le i \le s$. Then $v_{ij} = \text{lk}(\beta_i, \alpha_j^+) = 0$ because, using the notation and setup from Definition 5, $\alpha_j^+ \subset \text{int}(h(B_1))$ and $\beta_i \subset B_2$. From (2), we have det(V) = det(V_1) det(V_2),⁵ so the result follows.

Now we can prove Theorem 1:

Proof of Theorem 1 Let F be a surface constructed via Seifert's algorithm from an alternating diagram D of an oriented link K. Then F is a Murasugi sum of checkerboard Seifert surfaces from connected oriented alternating link diagrams.⁶

Lemma 4 implies that all of these checkerboard surfaces have invertible Seifert matrices, so Lemma 6 implies that *F* has an invertible Seifert matrix *V*. Since *K* has ℓ components, the size of *V* is $\beta_1(F) = 2g(F) + 1 - \ell$. Thus, by Propositions 2 and 3,

$$g(F) = g(K) = \frac{1}{2}(bth(K) + 1 - \ell).$$

The preceding proof shows, more generally:

Theorem 7 Let *F* be a Seifert surface for an oriented ℓ -component link *K*. If *F* is a Murasugi sum of checkerboard surfaces from connected oriented alternating link diagrams, then $g(K) = g(F) = \frac{1}{2}(bth(K) + 1 - \ell)$.

In particular, an oriented connected link diagram is called *homogeneous* if it is a **-product*, ie *diagram-matic Murasugi sum*, of special alternating link diagrams. By definition, Theorem 7 applies to all such diagrams (cf [3] Corollary 4.1):

Corollary 8 If *F* is constructed via Seifert's algorithm from a **homogeneous** diagram of an ℓ -component oriented link *K*, then $g(F) = g(K) = \frac{1}{2}(bth(K) + 1 - \ell)$.

We note another consequence of Lemma 6, in combination with:

Theorem 9 (Harer's conjecture [10]; Corollary 3 of [7]) Any fiber surface in S^3 can be constructed by plumbing and de-plumbing Hopf bands.

⁵This is due to the formula det $V = \sum_{\sigma \in S_{r+s}} \operatorname{sign}(\sigma) \prod_{i=1}^{r+s} v_{i\sigma(i)}$ and the pigeonhole principle.

⁶Indeed, *D* is a *-product of special alternating diagrams: see [1, Definition 2.37 and Remark 2.38]. For an explicit construction, see [20, page 98].

Corollary 10 If *F* is an oriented fiber surface spanning an ℓ -component link $K \subset S^3$ and *K* has the boundary orientation from *F*, then

$$g(F) = g(K) = \frac{1}{2}(bth(K) + 1 - \ell).$$

We close by considering knots K with $g(K) > \frac{1}{2} \operatorname{bth}(K)$. The simplest such knots have 11 crossings. There are seven of them [13]: the Conway knot 11n34 has genus three, as do 11n45, 11n73 and 11n152, while the Kinoshita–Terasaka knot 11n42 has genus two, as do 11n67 and 11n97. Lemma 6 implies that if one takes a minimal genus Seifert surface for any one of these knots and de-plumbs (ie decomposes it as a nontrivial Murasugi sum),⁷ then at least one of the resulting factors will have a singular Seifert matrix. Also, by Theorem 1 of [6], all of these surfaces will have minimal genus. This raises the following natural problem.

Problem 11 Characterize or tabulate those Seifert surfaces F which

- (i) have minimal genus,
- (ii) do not de-plumb,⁸ and
- (iii) have singular Seifert matrices.

Interestingly, for each of the four aforementioned 11–crossing knots of genus three, de-plumbing a minimal genus Seifert surface gives three Hopf bands and the planar pretzel surface $P_{2,2,-2,-2}$, which has Seifert matrix

$$\begin{bmatrix} 2 & -1 & 0 \\ -1 & 0 & 1 \\ 0 & 1 & -2 \end{bmatrix},$$

and doing this for any of the three aforementioned 11-crossing knots of genus two gives one Hopf band and a surface of genus one that has Seifert matrix

$$\begin{bmatrix} 0 & 1 & 0 \\ 1 & 0 & -2 \\ 0 & -1 & 0 \end{bmatrix}$$

See Figure 1. Another simple example of the type of surface referenced in Problem 11 is the planar pretzel surface $P_{4,4,-2}$, which has Seifert matrix

$$\begin{bmatrix} 4 & -2 \\ -2 & 1 \end{bmatrix}$$

In particular, each of these simplest examples spans a link of multiple components.

Question 12 Does there exist a *knot* K that satisfies $g(K) > \frac{1}{2} bth(K)$ and has a minimal genus Seifert surface F that does not de-plumb?

⁸That is, any decomposition of F as a Murasugi sum $F = F_1 * F_2$ has F_1 or F_2 as a disk.

Algebraic & Geometric Topology, Volume 24 (2024)

⁷Beware: surfaces may admit distinct de-plumbings; see Kindred [12]. Still, Lemma 6 implies that this sentence is true for *any* de-plumbing of such a surface.

Figure 1: De-plumbing Hopf bands from minimal genus Seifert surfaces for the knots 11n67 and 11n73.

Acknowledgements Thank you to the students in topics courses I taught at University of Nebraska– Lincoln and Wake Forest University, especially John Tolbert, for engaging with these arguments and ideas.

References

- J E Banks, Homogeneous links, Seifert surfaces, digraphs and the reduced Alexander polynomial, Geom. Dedicata 166 (2013) 67–98 MR Zbl
- [2] **D Bar-Natan**, **J Fulman**, **L H Kauffman**, *An elementary proof that all spanning surfaces of a link are tube-equivalent*, J. Knot Theory Ramifications 7 (1998) 873–879 MR Zbl
- [3] PR Cromwell, Homogeneous links, J. Lond. Math. Soc. 39 (1989) 535–552 MR Zbl
- [4] R Crowell, Genus of alternating link types, Ann. of Math. 69 (1959) 258–275 MR Zbl
- [5] D Gabai, *The Murasugi sum is a natural geometric operation*, from "Low-dimensional topology" (S J Lomonaco, Jr, editor), Contemp. Math. 20, Amer. Math. Soc., Providence, RI (1983) 131–143 MR Zbl
- [6] D Gabai, *The Murasugi sum is a natural geometric operation*, *II*, from "Combinatorial methods in topology and algebraic geometry" (J R Harper, R Mandelbaum, editors), Contemp. Math. 44, Amer. Math. Soc., Providence, RI (1985) 93–100 MR Zbl
- [7] E Giroux, N Goodman, On the stable equivalence of open books in three-manifolds, Geom. Topol. 10 (2006) 97–114 MR Zbl

- [8] CM Gordon, RA Litherland, On the signature of a link, Invent. Math. 47 (1978) 53–69 MR Zbl
- [9] JE Greene, Alternating links and definite surfaces, Duke Math. J. 166 (2017) 2133–2151 MR Zbl
- [10] J Harer, How to construct all fibered knots and links, Topology 21 (1982) 263-280 MR Zb1
- [11] L H Kauffman, The Conway polynomial, Topology 20 (1981) 101–108 MR Zbl
- [12] T Kindred, Checkerboard plumbings, PhD thesis, University of Iowa (2018) Available at https:// doi.org/10.17077/etd.yv1nlfcz
- [13] C Livingston, A H Moore, *KnotInfo: table of knot invariants*, online database (2024) Available at knotinfo.math.indiana.edu
- [14] K Murasugi, On the genus of the alternating knot, I, J. Math. Soc. Japan 10 (1958) 94–105 MR Zbl
- [15] K Murasugi, On the genus of the alternating knot, II, J. Math. Soc. Japan 10 (1958) 235–248 MR Zbl
- [16] K Murasugi, Jones polynomials and classical conjectures in knot theory, II, Math. Proc. Cambridge Philos. Soc. 102 (1987) 317–318 MR Zbl
- [17] K Murasugi, Knot theory and its applications, Birkhäuser, Boston, MA (1996) MR Zbl
- [18] M Ozawa, Essential state surfaces for knots and links, J. Aust. Math. Soc. 91 (2011) 391–404 MR Zbl
- [19] B Ozbagci, P Popescu-Pampu, Generalized plumbings and Murasugi sums, Arnold Math. J. 2 (2016) 69–119 MR Zbl
- [20] C V Quach Hongler, C Weber, On the topological invariance of Murasugi special components of an alternating link, Math. Proc. Cambridge Philos. Soc. 137 (2004) 95–108 MR Zbl

Department of Mathematics, Wake Forest University Winston-Salem, NC, United States

kindret@wfu.edu

www.thomaskindred.com

Received: 10 October 2022 Revised: 9 February 2023

ALGEBRAIC & GEOMETRIC TOPOLOGY

msp.org/agt

EDITORS

PRINCIPAL ACADEMIC EDITORS

John Etnyre	
etnyre@math.gatech.edu	ka
Georgia Institute of Technology	École Polyteo

Kathryn Hess kathryn.hess@epfl.ch École Polytechnique Fédérale de Lausanne

BOARD OF EDITORS

Julie Bergner	University of Virginia jeb2md@eservices.virginia.edu	Robert Lipshitz	University of Oregon lipshitz@uoregon.edu
Steven Boyer	Université du Québec à Montréal cohf@math.rochester.edu	Norihiko Minami	Yamato University minami.norihiko@yamato-u.ac.jp
Tara E Brendle	University of Glasgow tara.brendle@glasgow.ac.uk	Andrés Navas	Universidad de Santiago de Chile andres.navas@usach.cl
Indira Chatterji	CNRS & Univ. Côte d'Azur (Nice) indira.chatterji@math.cnrs.fr	Thomas Nikolaus	University of Münster nikolaus@uni-muenster.de
Alexander Dranishnikov	University of Florida dranish@math.ufl.edu	Robert Oliver	Université Paris 13 bobol@math.univ-paris13.fr
Tobias Ekholm	Uppsala University, Sweden tobias.ekholm@math.uu.se	Jessica S Purcell	Monash University jessica.purcell@monash.edu
Mario Eudave-Muñoz	Univ. Nacional Autónoma de México mario@matem.unam.mx	Birgit Richter	Universität Hamburg birgit.richter@uni-hamburg.de
David Futer	Temple University dfuter@temple.edu	Jérôme Scherer	École Polytech. Féd. de Lausanne jerome.scherer@epfl.ch
John Greenlees	University of Warwick john.greenlees@warwick.ac.uk	Vesna Stojanoska	Univ. of Illinois at Urbana-Champaign vesna@illinois.edu
Ian Hambleton	McMaster University ian@math.mcmaster.ca	Zoltán Szabó	Princeton University szabo@math.princeton.edu
Matthew Hedden	Michigan State University mhedden@math.msu.edu	Maggy Tomova	University of Iowa maggy-tomova@uiowa.edu
Hans-Werner Henn	Université Louis Pasteur henn@math.u-strasbg.fr	Nathalie Wahl	University of Copenhagen wahl@math.ku.dk
Daniel Isaksen	Wayne State University isaksen@math.wayne.edu	Chris Wendl	Humboldt-Universität zu Berlin wendl@math.hu-berlin.de
Thomas Koberda	University of Virginia thomas.koberda@virginia.edu	Daniel T Wise	McGill University, Canada daniel.wise@mcgill.ca
Christine Lescop	Université Joseph Fourier lescop@ujf-grenoble.fr		-

See inside back cover or msp.org/agt for submission instructions.

The subscription price for 2024 is US \$705/year for the electronic version, and \$1040/year (+\$70, if shipping outside the US) for print and electronic. Subscriptions, requests for back issues and changes of subscriber address should be sent to MSP. Algebraic & Geometric Topology is indexed by Mathematical Reviews, Zentralblatt MATH, Current Mathematical Publications and the Science Citation Index.

Algebraic & Geometric Topology (ISSN 1472-2747 printed, 1472-2739 electronic) is published 9 times per year and continuously online, by Mathematical Sciences Publishers, c/o Department of Mathematics, University of California, 798 Evans Hall #3840, Berkeley, CA 94720-3840. Periodical rate postage paid at Oakland, CA 94615-9651, and additional mailing offices. POSTMASTER: send address changes to Mathematical Sciences Publishers, c/o Department of Mathematics, University of California, 798 Evans Hall #3840, Berkeley, CA 94720-3840.

AGT peer review and production are managed by EditFlow[®] from MSP.

PUBLISHED BY mathematical sciences publishers
nonprofit scientific publishing
https://msp.org/
© 2024 Mathematical Sciences Publishers

ALGEBRAIC &

& **GEOMETRIC TOPOLOGY**

Volume 24

Issue 5 (pages 2389–2970) 2024

Formal contact categories	2389
Benjamin Cooper	
Comparison of period coordinates and Teichmüller distances	2451
IAN FRANKEL	
Topological Hochschild homology of truncated Brown–Peterson spectra, I	2509
GABRIEL ANGELINI-KNOLL, DOMINIC LEON CULVER and EVA HÖNING	
Points of quantum SL _n coming from quantum snakes	2537
DANIEL C DOUGLAS	
Algebraic generators of the skein algebra of a surface	2571
RAMANUJAN SANTHAROUBANE	
Bundle transfer of L -homology orientation classes for singular spaces	2579
Markus Banagl	
A reduction of the string bracket to the loop product	2619
KATSUHIKO KURIBAYASHI, TAKAHITO NAITO, SHUN WAKATSUKI and TOSHIHIRO YAMAGUCHI	
Asymptotic dimensions of the arc graphs and disk graphs	2655
KOJI FUJIWARA and SAUL SCHLEIMER	
Representation stability for homotopy automorphisms	2673
ERIK LINDELL and BASHAR SALEH	
The strong Haken theorem via sphere complexes	2707
SEBASTIAN HENSEL and JENNIFER SCHULTENS	
What are GT–shadows?	2721
VASILY A DOLGUSHEV, KHANH Q LE and AIDAN A LORENZ	
A simple proof of the Crowell–Murasugi theorem	2779
THOMAS KINDRED	
The Burau representation and shapes of polyhedra	2787
ETHAN DLUGIE	
Turning vector bundles	2807
DIARMUID CROWLEY, CSABA NAGY, BLAKE SIMS and HUIJUN YANG	
Rigidification of cubical quasicategories	2851
PIERRE-LOUIS CURIEN, MURIEL LIVERNET and GABRIEL SAADIA	
Tautological characteristic classes, I	2889
JAN DYMARA and TADEUSZ JANUSZKIEWICZ	
Homotopy types of suspended 4-manifolds	2933
Pengcheng Li	
The braid indices of the reverse parallel links of alternating knots	2957
YUANAN DIAO and HUGH MORTON	