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The Burau representation and shapes of polyhedra

ETHAN DLUGIE

We use a geometric approach to show that the reduced Burau representation specialized at roots of unity
has another incarnation as the monodromy representation of a moduli space of Euclidean cone metrics on
the sphere, as described by Thurston. Using the theory of orbifolds, we leverage this connection to identify
the kernels of these specializations in some cases, partially addressing a conjecture of Squier. The 4–strand
case is the last case where the faithfulness question for the Burau representation is unknown, a question
that is related eg to the question of whether the Jones polynomial detects the unknot. Our results allow us to
place the kernel of this representation in the intersection of several topologically natural subgroups of B4.

20F36, 57K20; 57R18

1 Introduction

We consider two representations of groups arising in low-dimensional topology. First is the (reduced)
Burau representation of braid groups

ˇn W Bn! GLn�1.ZŒt˙�/

that has been studied for almost a century [5]. Second is a monodromy representation of punctured sphere
mapping class groups coming from a geometric structure on the moduli space of Euclidean cone spheres,

� Ek WMod.S0;mI Ek/! PU.1;m� 3/;

as described by Thurston in [22]. It has been found using algebraic techniques that these seemingly
disparate representations are quite closely related in that the latter is, in a sense, a specialization of the
former; see McMullen [18] and Venkataramana [24]. Our first theorem is a slight rephrasing of those
results, which we will establish via geometric means. See the beginning of Section 2 for an introduction
to the terminology of Euclidean cone metrics used in the following statement.

Theorem 1.1 (the Burau representation and polyhedra monodromy) Fix a choice of curvatures Ek, which
is to say a tuple of real numbers Ek D .k1; : : : ; km/ with each 0 < ki < 2� and

Pm
iD1 ki D 4� . Suppose

further that n of these curvatures are equal , say k1 D � � � D kn with n�m�1, and write k� 2 .0; 2�/ for
this common value. Set q D exp.i.� � k�//. Then the diagram

Bn ˇn.Bn/ GLn�1.ZŒt˙�/

Mod.S0;mI Ek/ PU.1;m� 3/ PGLm�2.C/

��

ˇn

ev.�q/

�

�Ek
�
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commutes , where ˇn is the n–strand (reduced ) Burau representation , � Ek is the monodromy representation
of the moduli space of cone metrics , �� is the map on mapping class groups induced by an inclusion of an
n–times marked disk � WDn ,! S0;m, and ev.�q/ is a slight alteration of an evaluation map to be defined
in Definition 3.3.

In the case where mD nC 1 and Dn is included into an .nC1/–times punctured sphere, the evaluation
map mentioned in this theorem really is just an evaluation. This allows us to realize the “specialized”
Burau representation ˇ.�q/, where the formal variable t is evaluated at a given unit complex number �q,
as one of these polyhedral monodromy representations.

Corollary 1.2 Let Ek D .k1; : : : ; knC1/ be as in Theorem 1.1 with k� D k1 D � � � D kn. Write q D
exp.i.� � k�// Then the diagram

Bn GLn�1.C/

Mod.S0;nC1I Ek/ PU.1; n� 2/ PGLn�1.C/

��

ˇ.�q/

�Ek
�

commutes , where Mod.S0;nC1I Ek/ is the subgroup of the mapping class group of the .nC1/–times
punctured sphere that preserves the .nC1/st point and may freely permute the other points.

This yields a containment ker.ˇ.�q//� nclBn
. zS/ � h�ni, where zS is a lift of a normal generating set for

ker.� Ek/ and �n 2 Bn is the full-twist braid on n–strands that generates the center of the braid group.

In the statement, and in the rest of the paper, the notation nclG.S/ indicates the normal closure of a set S
inside of a group G. We will also write �p 2 Bn for a full twist about a curve surrounding p points in the
n–punctured disk. Any two such twists are conjugate in the braid group.

In his influential paper [21], Squier briefly considered the specializations of the Burau representation at
roots of unity. He made a conjecture about the form that the kernels of such specializations would take.
We cannot verify Squier’s conjecture in the form that he stated it,1 but using Corollary 1.2 we are able to
identify the kernel of these specializations in several cases.

Theorem 1.3 (Burau at roots of unity) Suppose q is a primitive d th root of unity and denote by
ˇ.�q/ W Bn! GLn�1.C/ the specialization of the Burau representation at t D�q. Then we have

(1) ker.ˇ.�q//D nclBn
.�d ; �

j
n�1/ � h�

`
ni

for the following values of n, d , j , and `:

n 4 5 6 7 8 9 10

d 5 6 7 8 9 10 12 18 4 5 6 8 4 5 3 4 3 3 3

j 1 1 14 8 6 5 4 3 1 5 3 2 4 2 1 2 6 3 2

` 5 3 7 4 9 5 3 9 4 2 3 8 2 5 6 4 3 2 3

1See Section 6 for a discussion on this point.
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Here � 2 Bn denotes one of the half-twist generators of Bn (all of which are conjugate), �n�1 2 Bn
denotes a full twist on a curve surrounding n� 1 points in the punctured disk (all of which are conjugate),
and �n 2 Bn denotes the full twist on the boundary of the punctured disk (which generates the center
of Bn). In a case with j D1, we mean that the kernel is ncl.�d / � h�`ni with no power of �n�1.

We can also use this method to identify the kernel of ˇ.�q/ in all cases with nD 3 and d � 7. The result
is given in Theorem 5.4 and corrects the statement of Funar and Kohno [13, Theorem 1.2].

Whether or not the Burau representation is faithful is a natural question to ask. At present, the answer
is unknown only in the nD 4 case, and this question has direct connections to the question of whether
the Jones polynomial detects the unknot; see Bigelow [3] and Ito [14]. An element of the kernel of ˇ4
must also lie in the kernel of every specialization. Thus Theorem 1.3 as a direct corollary restricts the
kernel of ˇ4 to live in the intersection of several topologically natural normal subgroups of the braid
group. One should note however that the intersection of these finitely many subgroups is still nontrivial
by Long [16, Lemma 2.1], so this alone is not enough to establish faithfulness.

Corollary 1.4 (narrowing ker.ˇ4/) Let ˇ4 WB4!GL3.ZŒt˙�/ denote the reduced Burau representation
of the 4–strand braid group. Then

ker.ˇ4/� nclB4
.�d ; �`3/ � h�

`
4i

for powers d , j , and ` as indicated in the table in Theorem 1.3. All eight of these normal subgroups have
infinite index in B4.

In fact all of the normal subgroups of braid groups given by Theorem 1.3 have infinite index in their
respective braid groups. We comment on the relationship between this and some remarkable work of
Coxeter [9] in Section 6.

Some history and context The question of the faithfulness of the Burau representation has persisted
since the representation was first defined nearly a century ago; see Burau [5]. Faithfulness is easily shown
for n D 2, and 3 (see eg Birman [4, Theorem 3.15]). Faithfulness for other cases remained open for
several decades. Squier put forth two conjectures [21, (C1) and (C2)] that, if both true, would yield
the faithfulness of the Burau representation. However, Moody found the Burau representation to be
nonfaithful for n� 10 [19], and this result was quickly lowered to n� 6 by Long and Paton [17]. A few
years later, Bigelow found a simpler example of an element in the kernel of ˇ6 and furthermore found
that the Burau representation is not faithful for nD 5 [1]. Funar and Kohno proved Squier’s conjecture
(C2) in [13], so we know, for all n� 5, that Squier’s conjecture (C1) is false for almost all (even) values
of d . As of the writing of this article, the faithfulness question is only open in the nD 4 case.

Braid groups are already known to be linear by another representation, the Lawrence–Krammer repre-
sentation. See Krammer [15] for an algebraic treatment of this result and Bigelow [2] for a topological
proof. Yet the faithfulness of the Burau representation, especially in the nD 4 case, is still of interest
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due to its connection with the Jones polynomial in knot theory. Nonfaithfulness of ˇ4 implies that the
Jones polynomial fails to detect the unknot; see Bigelow [3] and Ito [14]. There has been work on the
n D 4 question in the last few decades. For instance, a computer search by Fullarton and Shadrach
shows that a nontrivial element in the kernel of ˇ4 would have to be exceedingly complicated [12],
suggesting faithfulness. On the other hand, Cooper and Long found that ˇ4 is not faithful when taken
with coefficients mod 2 and with coefficients mod 3 [7; 8].

Thurston’s work in [22] was a geometric reframing of the monodromy of hypergeometric functions
considered by Deligne and Mostow in [10]. The algebrogeometric approach to studying these monodromy
representations has continued, notably in work of McMullen [18] and Venkataramana [24]. The analysis
of Euclidean cone metrics on surfaces was extended by Veech [23] and is still today an active area of
research in low-dimensional topology and dynamical systems.

Organization The rest of the paper is organized as follows:

� Section 2 introduces Euclidean cone metrics on the sphere, and we construct explicit complex projective
coordinates on the moduli space.

� In Section 3, we prove Theorem 1.1 and Corollary 1.2, which allow us to relate the Burau representation
at roots of unity with the monodromy representation of the moduli spaces of Euclidean cone metrics. Our
proof uses the complex projective coordinates defined in Section 2.

� In Section 4, we gather several results about the complex hyperbolic geometry of the moduli space
and facts about geometric orbifolds.

� In Section 5, we prove Theorem 1.3, identifying the kernel of the Burau representation at some roots
of unity. This uses Corollary 1.2 with the results of Section 4. We also present the application of these
ideas to the ˇ3 case in Section 5.2.

� Section 6 contains a discussion of limitations of this work and several possible future directions and
connections that I hope can spark further research with these techniques.
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2 Euclidean cone metrics on S 2

Here we recall the moduli space of Euclidean cone metrics on the sphere. We describe local coordinates
on the moduli space into complex projective space. The construction is used in the proof of Theorem 1.1
in Section 3.

Following [22], we consider Euclidean cone metrics on the sphere. Such a metric is flat everywhere
on the sphere away from some number of singular cone points b1; : : : ; bm. Around each cone point bi
one sees some cone angle not equal to the usual 2� that one finds around a smooth point. Define the
curvature ki at bi to be the angular defect of the cone point. The Gauss–Bonnet theorem applies with
this notion of curvature to give

Pm
iD1 ki D 4� .

Thurston considers only those cone metrics which are nonnegatively curved,2 ie all ki > 0. Fixing a tuple
of positive real numbers Ek D .k1; : : : ; km/ with 0 < ki < 2� and

Pm
iD1 ki D 4� , Thurston considers the

moduli space of Euclidean cone metrics on the sphere with curvatures Ek up to orientation-preserving
similarity. We denote this space by M. Ek/.

There is a natural map from M. Ek/ to (a finite cover of) the usual moduli space of conformal structures
on the punctured sphere by simply taking the conformal class of a flat cone metric. There is also an
inverse map inspired by the Schwarz–Christoffel mapping of complex analysis. Thurston uses this idea
to show that the moduli space M. Ek/ is actually orbifold-isomorphic to the moduli space of conformal
structures on m–punctured spheres with punctures labeled by the ki [22, Proposition 8.1]. This more
classical moduli space is a complex orbifold of dimension m� 3. The orbifold fundamental group of the
moduli space is Mod.S0;mI Ek/, the group of mapping classes of the m–punctured sphere that preserve the
labeling by curvatures.

Thurston shows directly that the moduli space of cone metrics has complex dimension m� 3 by giving
local CPm�3 coordinates on M. Ek/ in terms of cocycles on the sphere with twisted/local coefficients.
Schwartz gave a more geometric interpretation of these coordinates in [20]. In brief, we have the following:

Lemma 2.1 [20] The moduli space M. Ek/ of Euclidean cone metrics on the sphere with m cone points
of curvatures k1; : : : ; km is a complex projective orbifold of dimension m� 3.

Taking a similar approach to Schwartz, we describe more concrete complex projective coordinates. This
specific construction is for the sake of our calculation in the proof of Theorem 1.1.

2.1 Local CP m�3 coordinates

A CPm�3 structure on moduli space is encoded by a developing map

dev W T . Ek/!CPm�3:

2A theorem of Alexandrov implies that every such metric arises uniquely as the intrinsic length metric on the boundary of a
convex polyhedron in Euclidean space.
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Figure 1: A marked Euclidean cone metric on the sphere and the complex coordinates measured
from the boundary of the developing image of a flat disk in the sphere.

Here T . Ek/ is the Teichmüller space of Euclidean cone metrics on the sphere up to scaling with curvatures Ek,
which is the universal cover of the moduli space M. Ek/. We describe the map dev in a few steps.

� A point in Teichmüller space is a flat cone sphere X and an isotopy class of homeomorphisms
f W S0;m ! X from the m–times marked sphere S0;m D .S2; fb1; : : : ; bmg/ such that f .bi / 2 X is a
cone point of curvature ki . The isotopy is taken relative to the cone points, and the metric on X is only
considered up to scaling.

� A Euclidean developing arises as follows. There is a disk D � S0;m such that

D\fb1; : : : ; bmg D @D\fb1; : : : ; bmg D fb1; : : : ; bm�1g;

and b1 through bm�1 are arranged counterclockwise in order around @D. Abusing notation, we also
write b1; : : : ; bm for the images of these points in X . Since f .D/�X has no cone points in its interior
and is simply connected, it has an isometric immersion (a developing map) to the Euclidean plane
d W f .D/! E2. This map is only defined up to orientation-preserving planar isometries.

� Complex coordinates come from the positions of the cone points in E2 �C, namely the tuple

.d.b1/; : : : ; d.bm�1// 2Cm�1:

These points are well defined up to isotopy of f , since the isotopy is relative to the cone points. If we instead
record the differences zi Dd.biC1/�d.bi /, i D 1; : : : ; m�2, then we get a point .z1; : : : ; zm�2/2Cm�2

that is well defined up to a translation of d . The last coordinate zm�1Dd.b1/�d.bm�1/ can be recovered
from the rest; see Figure 1.
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� Finally, projectivization is required because we can modify d further by a rotation or real scaling (X
was only defined up to scaling). This means we have to mod out by the action of C�, which is to say we
get a well-defined point Œz1 W � � � W zm�2� 2CPm�3.

All of the choices in the construction are accounted for, and we get a well-defined assignment .X; Œf �/ 7!
Œz1 W � � � W zm�2�. This defines dev W T . Ek/! CPm�3 and descends to a complex projective structure on
moduli space.

3 The Burau representation and polyhedra monodromy

In this section, we show that specializing the Burau representation to roots of unity yields (a portion of)
the monodromy representation of Thurston’s moduli space of Euclidean cone metrics.

Considering cone metrics with curvatures Ek D .k1; : : : ; km/, the mapping class group of interest is the
subgroup of the m–punctured sphere mapping class group which preserves the labeling of points by
their curvatures. Points labeled with the same curvature may be interchanged. We denote this group by
Mod.S0;mI Ek/.

If k1 D � � � D kn with n � m, then there is an action of the n–strand braid group Bn!Mod.S0;mI Ek/.
Theorem 1.1 says that something akin to a specialization of the Burau representation appears in the
monodromy representation of Mod.S0;mI Ek/ from Thurston’s work. To connect the representations in the
general case, which involves mapping between matrix groups of different dimensions, we need to define
the evaluation map GLn�1.ZŒt˙�/! PGLm�2.C/ used in the statement of the theorem.

Definition 3.1 Define a map v WGLn�1.ZŒt˙�/! .Z.t//n�1 to the free module over the field of rational
functions by sending a matrix A to the column vector

v.A/D
1

1�tn
.In�1�A/.1� t; 1� t

2; : : : ; 1� tn�1/>:

One can show that this map is a crossed homomorphism.3 We use it to define an affine extension�.�/ W GLn�1.ZŒt˙�/! GLn.Z.t// by

zAD

�
A v.A/

0 1

�
:

One can show that this map is a group homomorphism.

We would like to evaluate this matrix at a complex number, but it might be possible that one of the entries
of v.A/ is undefined at the desired evaluation. Conveniently, this is never the case for matrices in the
image of the Burau representation.

3The derivation of the formula for v.A/ comes from our understanding of the topological meaning behind the Burau representation.
To keep the topic of this work contained, we simply present the formula here and comment on its utility in the course of the proof
of Lemma 3.2.
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Lemma 3.2 For any A 2 ˇn.Bn/ one has zA 2 GLn.ZŒt˙�/, ie the matrix zA has coefficients in the ring
of Laurent polynomials rather than the field of rational functions.

Proof Recall (see eg [4, Chapter 3]) that under the reduced Burau representation, the half-twist generator
�i acts as

ˇn.�i /D Ii�2˚

0@1 0 0

t �t 1

0 0 1

1A˚ In�i�2
for 1 < i < n� 1, while

ˇn.�1/D

�
�t 1

0 1

�
˚ In�3 and ˇn.�n�1/D In�3˚

�
1 0

t �t

�
:

A straightforward computation gives that v.ˇn.�i //D.0; : : : ; 0; 0/ for iD1; : : : ; n�2, and v.ˇn.�n�1//D
.0; : : : ; 0; 1/. We remark that the effect of the affine extension then is nothing more than to take the matrix
ˇn.�i / 2 GLn�1.ZŒt˙�/ to the matrix ˇnC1.�i / 2 GLn.ZŒt˙�/.

So the lemma holds for each ˇn.�i /. Since GLn.ZŒt˙�/ is a subgroup of GLn.Z.t// and the ˇn.�i /
generate the image ˇn.Bn/, the lemma follows.

Since the matrices in the image of the Burau representation have Laurent polynomial coefficients, we
can specialize the formal variable t to any nonzero complex number and obtain a matrix with complex
coefficients.

Definition 3.3 Let �q 2 C be a nonzero complex number and let m � n C 1. Define the map
ev.�q/ W ˇn.Bn/! PGLm�2.C/ by the composition

ˇn.Bn/
�.�/
��! GLn.ZŒt˙�/

.�/˚Im�2�n
���������! GLm�2.ZŒt˙�/

t 7!�q
����! GLm�2.C/� PGLm�2.C/:

In the casemDnC1, we interpret the second map .�/˚I�1 as deleting the last row and column of a matrix.

Remark 3.4 In the case mD nC 1, the second map serves to undo the effect of the first. Thus the map
ev.�q/ factors through the evaluation of the Burau representation:

ˇn.Bn/� GLn�1.ZŒt˙�/
t 7!�q
����! GLn�1.C/� PGLn�1.C/:

This observation is the basis of the proof of Corollary 1.2.

Now we have the algebraic setup required to prove Theorem 1.1.

Proof of Theorem 1.1 We will verify that the diagram

Bn ˇn.Bn/

Mod.S0;mI Ek/ PU.1;m� 3/ PGLm�2.C/

��

ˇn

ev.�q/

�Ek
�
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bi
biC1

zi�1 zi

ziC1

k�

��.�i /

biC1
bi

d d

Figure 2: The action of ��.�i / on the disk in S0;m, indicated with polka dots, is depicted on the
top. On the bottom is the effect on the developing image, with the outline of the original disk
superimposed on the right for comparison.

commutes on a generating set for the braid group. In particular, we will use the n� 1 Artin generators
�1; : : : ; �n�1 2Bn�Mod.Dn/ that swap two points in the n–times marked disk with a counterclockwise
half-twist.

Label the marked points of S0;m as b1; : : : ; bm and consider cone metrics which have curvature ki at
bi for each i . The n points b1; : : : ; bn can be freely permuted by mapping classes since they have the
same curvature k� D k1 D � � � D kn, and so there is an inclusion of surfaces � WDn ,! S0;m sending the n
marked points of a marked disk Dn to the points b1; : : : ; bn. We write �i for the generator of Bn, the
counterclockwise half-twist on Dn that swaps the points ��1.bi / and ��1.biC1/.

Now we compute the action of ��.�i / on the complex projective coordinates as constructed in Section 2.1.
Recall that our construction was to take a disk in a cone sphere X on whose boundary lay the cone
points b1; : : : ; bm�1 and to look at the differences z1; : : : ; zm�2 between those points under a developing
map to C. Applying a half twist ��.�i / changes that disk as indicated in the top of Figure 2, and we
consult the bottom of the figure for the effect on the developing image. The computation is done for one
particular choice of homotopy class of disk in the cone sphere, but the induced action on the coordinates
is independent of the chosen disk.

Algebraic & Geometric Topology, Volume 24 (2024)
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The arc between bi and biC1 is taken to itself with reverse orientation on the cone sphere, but from within
the disk it is approached from the opposite side, around the cone point bi . Thus the developing image of
this arc is rotated clockwise by the angle deficit/curvature at bi , which is k�, and is then reflected. This
means zi is mapped to �exp.�ik�/zi D exp.i.��k�//zi under the monodromy representation of ��.�i /.
Similarly, zi�1 maps to zi�1 � exp.i.� � k�//zi , and ziC1 maps to zi C ziC1. All other coordinates
are fixed.

So writing q D exp.i.� �k�//, we see that the coordinates z1; : : : ; zm�2 are transformed linearly via the
matrix

� Ek.��.�i //D Ii�2˚

0@ 1 0 0

�q q 1

0 0 1

1A˚ Im�i�3
for 1 < i < n�1, with appropriate modifications for the cases i D 1 and i D n�1 as necessary. Evidently
this is the image of the Burau representation ˇn.�i / after our modified evaluation map ev.�q/. Since the
diagram commutes when applying the various maps to any �i 2 Bn and the �i generate the braid group,
we have the desired result.

In the casemD nC1, the evaluation map ev.�q/ is truly an evaluation of the Burau representation (rather
than the evaluation of the affine extension of the representation). This is the basis for Corollary 1.2.

Proof of Corollary 1.2 In the case mD nC 1, Remark 3.4 tells us that the commutative diagram in
Theorem 1.1 factors as

Bn ˇn.Bn/ GLn�1.ZŒt˙�/

GLn�1.C/

Mod.S0;nC1I Ek/ PU.1; n� 2/ PGLn�1.C/

��

ˇn

ˇ.�q/

�

t 7!�q

�Ek
�

which gives the commutative diagram in the statement of the corollary. Thus an element of ker.ˇ.�q//
must lie in the kernel of the composite map

Bn
���!Mod.S0;nC1I Ek/

�Ek
�! PU.1; n� 2/:

The inclusion of the punctured disk � WDn ,! S0;nC1 induces a surjective map of mapping class groups
�� WBn� Mod.S0;nC1I Ek/ whose kernel is the central subgroup h�ni generated by the full-twist braid (see
eg [11, Proposition 3.19]). If ker.� Ek/D nclMod.S0;nC1I

Ek/.S/, then a product of conjugates of elements of
S �Mod.S0;nC1I Ek/ lifts to a product of conjugates of elements of zS � Bn. Lifts differ by the kernel
of ��, so the kernel of the composition � Ek ı �� equals nclBn

. zS; �n/ D nclBn
. zS/ � h�ni, the last equality

following because the full twist �n is central in the braid group.
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4 The completion of moduli space and orbifolds

In this section we gather several results that we will leverage in combination with Corollary 1.2 to restrict
the kernel of the Burau representation. First, we recall Thurston’s results about the metric completion of
the moduli space of Euclidean cone metrics. Then we gather facts about orbifold fundamental groups
and the monodromy representations of geometric orbifolds. Orbifold structures will allow us to exactly
identify the kernels of the representations � Ek .

Lemma 2.1 says that M. Ek/ is a complex projective orbifold, yielding a monodromy representation
� Ek WMod.S0;mI Ek/! PGLm�2.C/. But in fact there is an extra piece of information we have, a hermitian
form on the complex coordinate space whose diagonal part A WCm�2!R simply measures the area of
a Euclidean cone sphere whose developing map (before scaling) yields the coordinates z1; : : : ; zm�2 2C.
Since acting by mapping classes only changes the choice of disk in a Euclidean cone sphere X and not the
underlying geometry ofX , we see that our monodromy representation lands in the unitary group of the area
form, ie � Ek WMod.S0;mI Ek/!PU.A/. Thurston gave a geometric method to find the signature of this form:

Lemma 4.1 [22, Proposition 3.3] The area form A has signature .1;m� 3/.

And so PU.A/�PU.1;m�3/ is the group of holomorphic isometries of complex hyperbolic space CHm�3.
Therefore M. Ek/ is in fact a complex hyperbolic orbifold. As Thurston explains, the complex hyperbolic
metric is not complete. The metric completion M. Ek/ is obtained by adding several strata: lower-
dimensional moduli spaces corresponding to the collision of groups of cone points whose curvatures sum
to less than 2� . Around each (real) codimension-2 stratum where two cone points collide there is a cone
angle in the complex hyperbolic metric. Thurston examines the geometry of these strata:

Lemma 4.2 [22, Proposition 3.5] The cone angle around a codimension-2 stratum of M. Ek/ where
cone points of curvature k1 and k2 collide is

(i) � � k� when k� D k1 D k2, and

(ii) 2� � .k1C k2/ when k1 ¤ k2.

In general, the completion of the moduli space of Euclidean cone metrics has the structure of a complex
hyperbolic cone manifold. We won’t go into the particulars of cone manifolds, but we note that in certain
cases the completed moduli space is actually a complex hyperbolic orbifold.

Lemma 4.3 [22, Theorem 4.1] If the cone angles around all codimension-2 strata of M. Ek/ are integral
submultiples of 2� , then the metric completion M. Ek/ is a complex hyperbolic orbifold. A codimension-2
stratum with cone angle 2�=d is an orbifold stratum of order d .

Corollary 1.2 allows us to understand the kernel of the specialized Burau representation because the
monodromy representation � Ek has a kernel that is quite explicit thanks to orbifold theory.
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First, the proof of [6, Theorem 2.9] and the paragraph following it tell us how to find the orbifold
fundamental group of the completed moduli space when this space has an orbifold structure:

Lemma 4.4 [6, Theorem 2.9] Suppose the completed moduli space M. Ek/ is a complex hyperbolic
orbifold. Then the kernel of the map

Mod.S0;mI Ek/D �orb
1 .M. Ek//� �orb

1 .M. Ek//

is the normal closure of powers of loops around the added codimension-2 strata of M. Ek/, the power being
the order of the given stratum.

And then, as a special case of [6, Theorem 2.26], we have the following:

Lemma 4.5 [6, Theorem 2.26] Suppose the completed moduli space M. Ek/ is a complex hyperbolic
orbifold. Then the monodromy representation of the completed moduli space �orb

1 .M. Ek//!PU.1;m�3/
is faithful.

5 The kernel of Burau at roots of unity

In this section, we explain how Corollary 1.2 and the results gathered in Section 4 can be used to identify
the kernel of the Burau representation specialized at certain roots of unity. In particular, we will prove
Theorem 1.3 and Corollary 1.4.

Our analysis uses the 94 choices of curvatures Ek enumerated by Thurston [22] for which the completion
of the moduli space of Euclidean cone metrics M. Ek/ is a complex hyperbolic orbifold. In these cases, we
know exactly the kernel of the monodromy representation � Ek WMod.S0;mI Ek/! PU.1;m� 3/. Searching
Thurston’s list of orbifolds allows us, via the commutative diagram of Corollary 1.2, to restrict the kernel
of the associated specialization of the Burau representation. First we demonstrate how our method applies
in the nD 6 case and verify it with a certain braid already known to lie in the kernel of ˇ6.

Example 5.1 (the case of n D 6 and d D 4) To obtain a containment on the kernel of the Burau
representation, we appeal to a particular moduli space of cone structures. Consider the choice of
curvatures Ek D 2�.1; 1; 1; 1; 1; 1; 2/ � 1

4
. The completion of the moduli space M. Ek/ is formed by adding

two codimension-2 strata. One stratum corresponds to the collision of two cone points of curvature 2� � 1
4

,
and by Lemma 4.2 the cone angle around this stratum is ��2�

�
1
4

�
D2� � 1

4
. The other stratum corresponds

to the collision of a cone point of curvature 2� � 1
4

with the one of curvature 2�
�
2
4

�
, and the cone angle

here is again 2� � 2�
�
1
4
C
2
4

�
D 2� � 1

4
. Since these angles are submultiples of 2� , Lemma 4.3 says that

M. Ek/ is an orbifold. The added strata are orbifold strata both of order 4.

Now pick two mapping classes: � 2Mod.S0;7I Ek/ that exchanges two cone points of equal curvature
with a half-twist, and � 2Mod.S0;7I Ek/ that performs a full twist of a pair of points of distinct curvatures.
Then � and � represent the �orb

1 –conjugacy classes of loops around the added orbifold strata. Lemmas 4.4
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Figure 3: The same curve encircles either one puncture in the disk and the puncture outside of the
disk, or n� 1 punctures in the disk. So the full twist � 2Mod.S0;nC1I Ek) about this curve lifts to
the twist �n�1 2 Bn about n� 1 points.

and 4.5 give that the monodromy representation � Ek W Mod.S0;7I Ek/! PU.1; 4/ has kernel exactly the
normal subgroup nclMod.S0;7I

Ek/.�
4; �4/. The evident inclusion of a 6–punctured disk � W D6 ,! S0;7

induces a surjective map of mapping class groups �� W B6 � Mod.S0;7I Ek/ whose kernel is the central
subgroup h�6i (see eg [11, Proposition 3.19]).

Conflating notation, the mapping classes �; � 2Mod.S0;7I Ek/ lift to a half-twist generator � 2 B6 and a
full twist on five strands �5 2 B6; see Figure 3. So by Corollary 1.2 we have

(2) ker.ˇ.�q//� nclB6
.�4; �45 / � h�6i

for q D exp
�
2�i � 1

4

�
a primitive 4th root of unity.

Any braid in the kernel of the Burau representation ˇ6, before specialization, must also lie in the kernel
of any specialization. So (2) also gives a containment on ker.ˇ6/. There is in fact a not-too-complicated,
nontrivial braid known to lie in the kernel of ˇ6, found by Bigelow [1]. The containment (2) implies that
this braid is trivial if we allow ourselves the extra relations that �4 D �45 D �6 D 1. See Figure 4 for a
computation verifying this conclusion.

5.1 Proof of the main theorem

Following Example 5.1, we have the geometric reasoning we need to prove the theorem under consideration
in this section.

Proof of Theorem 1.3 First we note that one of the containments necessary to establish (1) can be
established by pure computation, which we now show. Again, we let � 2 Bn denote one of the half-twist
generators of the braid group, �n�1 2Bn a full twist on a curve surrounding n�1 points in the punctured
disk, and �n 2Bn the full twist on the boundary of the disk. One can show that, up to conjugacy, we have

ˇ.�d /D

�
.�t /d 1� t C t2� � � �C .�t /d�1

0 1

�
˚ In�3; ˇ.�

j
n�1/D

E
t .n�1/j In�2; ˇ.�`n/D t

n`In�1;
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Figure 4: Bigelow’s 6–strand braid [1, Figure 4] is nontrivial in B6, but it is trivial given the extra
relation �4 D 1. We use this relation to replace �3 with ��1 in the shaded areas of Bigelow’s
braid (left), isotope (center left), and trivialize instances of �4 (center right) to obtain a trivial
braid (right).

where �.�/ WGLn�2.ZŒt˙�/!GLn�1.Z.t// is the affine extension from Definition 3.1. Explicitly, we have

ˇ.�
j
n�1/D

0BBB@ t .n�1/j
1� t .n�1/j

1� tn�1

0B@ 1� t
:::

1� tn�2

1CA
0 1

1CCCA :
When t is evaluated at �q for q 2 C a primitive d th root of unity, it is evident that ˇ.�d / evaluates to
the identity. For all of the cases n, d , and j indicated in the table of Theorem 1.3, with j <1, one can
verify that �q is an ..n�1/j /th root of unity and not an .n�1/th root of unity. Thus ˇ.�jn�1/ evaluates to
the identity in all of these cases.

Finally, the matrix ˇ.�`n/ evaluates to .�q/n`In�1. The values ` indicated in the table are exactly given as
`D2d=gcd.2d; .dC2/n/, which is the order of the unit complex number .�q/n in the multiplicative group
of unit complex numbers. So ˇ.�`n/ evaluates to the identity for all of the cases given in the table. Thus

nclBn
.�d ; �

j
n�1/ � h�

`
ni � ker.ˇ.�q//:

For the reverse inclusion, we appeal to the geometry of the moduli space of polyhedra and use the
same strategy as Example 5.1. The appendix of [22] points us to several choices of curvatures Ek for
which the completed moduli space M. Ek/ is an orbifold. In the cases Ek D .k1; : : : ; kn; knC1/ where
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k1 D � � � D kn D k�, Corollary 1.2 comes into play to give a restriction on ker.ˇ.�q//. Here we give our
table again, with an extra row giving the number of the relevant entry in Thurston’s appendix:

n 4 5 6 7 8 9 10

d 5 6 7 8 9 10 12 18 4 5 6 8 4 5 3 4 3 3 3

j 1 1 14 8 6 5 4 3 1 5 3 2 4 2 1 2 6 3 2

` 5 3 7 4 9 5 3 9 4 2 3 8 2 5 6 4 3 2 3

# 55 2 77 47 84 9 75 48 5 54 1 44 4 50 16 3 14 12 11

For example, entry number 44 in Thurston’s appendix gives EkD 2�.3; 3; 3; 3; 3; 1/ � 1
8

. One added orbifold
stratum in the moduli space, corresponding to a half twist � on two points of the same curvature, has
cone angle � � 2�

�
3
8

�
D 2� � 1

8
. The other added orbifold stratum, corresponding to a full twist � on

two points of distinct curvature, has cone angle 2� � 2�
�
3
8
C
1
8

�
D 2� � 1

2
. So by Lemmas 4.4 and 4.5,

the kernel of � Ek W Mod.S0;6I Ek/! PU.1; 3/ equals nclMod.S0;6I
Ek/.�

8; �2/. Since � lifts to a half-twist
generator � 2 B5 and � lifts to a full twist on four strands �4 2 B5, Corollary 1.2 gives

ker.ˇ.�q//� nclBn
.�8; �24 / � h�5i

when q D exp
�
i
�
� � 2� � 3

8

��
D exp

�
2�i � 1

8

�
is a primitive 8th root of unity.

Since conjugates of �8 and �24 are already in the kernel of ˇ.�q/ by computation and

`D 2d=gcd.2d; .d C 2/n/D 8

is the order of .�q/8, which is the smallest power of �5 in the kernel of ˇ.�q/, we get the slightly
stronger restriction

ker.ˇ.�q//� nclBn
.�8; �24 / � h�

8
5 i:

This establishes the equality in Theorem 1.3. The other cases with j <1 are similar.

For the four cases in the table with j D1, one finds that knCknC1 � 2� . In these cases, the completion
M. Ek/ has no stratum added corresponding to the mapping class � , and so ker.� Ek/ is just given as
nclMod.S0;nC1I

Ek/.�
d /. The rest of the proof is the same.

Remark 5.2 For three of the four cases in the table with j D1, the image of �n�1 2 Bn under ˇ.�q/
in fact has infinite order. In other words, �jn�1 … ker.ˇ.�q// for any j . However, in the case nD 4 and
d D 5 we see that ˇ.�q/.�3/ has order 10. Our results thus imply that �103 2 nclB4

.�5; �54 /. This aligns
with [9, Section 11], which establishes the order of the central element in the group B3= ncl.�5/ (among
similar results).

Remark 5.3 For the cases .n; d/D .5; 6/, .7; 4/, and .4; 10/, the relevant choice of curvatures for the
above proof has all curvatures equal: k1 D � � � D kn D knC1. In these cases, the relevant moduli space
is a finite cover of the moduli space considered by Thurston, the cover in which the .nC1/st point is
distinguished. One can check that in these cases the full twist on the nth point and .nC1/st point still
corresponds to an orbifold stratum rather than just a cone stratum.
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In the same vein, the observant reader will find that we have neglected to use Thurston’s entry number 10,
which has Ek D 2�.1; 1; : : : ; 1/ � 1

6
with 12 cone points of equal curvature. This corresponds to the case

.n; d/D .11; 3/ in our context. However here, the cover of the moduli space that distinguishes the 12th point
is no longer an orbifold. The stratum corresponding to the twist � has cone angle 2��2�

�
1
6
C
1
6

�
D2�

�
2
3

�
.

So we cannot say for certain what the kernel of the representation � Ek is in this case.

Thinking of the broader context here, recall that the nD 4 case is the last remaining case in which we do
not know whether the Burau representation is faithful. Theorem 1.3 gives us the restriction on ker.ˇ4/ of
Corollary 1.4.

Proof of Corollary 1.4 Any element in the kernel of ˇ4, before specialization, is an element of the
kernel of every specialization. So ker.ˇ4/ � ker.ˇ.�q// for any q. In particular, the eight entries of
Theorem 1.3 with nD 4 give restrictions on ker.ˇ4/.

For the statement about infinite index, note that the quotientB4= ncl.�d ; �j3 ; �4/ is the orbifold fundamental
group of some M. Ek/ in the cases of interest. Part of [22, Theorem 0.2] is that M. Ek/ is a complex
hyperbolic orbifold of finite volume. Therefore, the orbifold fundamental group of this space must be
infinite and so the map B4 � Mod.S0;5I Ek/� �orb

1 .M. Ek// has a kernel of infinite index. The normal
subgroup nclB4

.�d ; �
j
3 / � h�

`
4i, with a higher power of �4, is a subgroup of this kernel.

5.2 Burau3 at roots of unity

Thurston’s appendix does not list choices of curvatures Ek with four cone points because there are infinitely
many such choices for which the completion M. Ek/ is a CH1

�RH2 orbifold. In fact, there are infinitely
many such Ek D .k1; k2; k3; k4/ satisfying k1 D k2 D k3, inviting us to include a 3–strand braid group.
Using the same method as in the proof of Theorem 1.3, we have the following:

Theorem 5.4 Let q be a primitive d th root of unity for d � 7. Then

ker.ˇ3.�q//D nclB3
.�d / � h�`3i;

where `D 2d=gcd.12; d C 6/ is the order of the unit complex number .�q/3.

Proof Take k1Dk2Dk3D��2�=d and k4D�C3�=d . With EkD .k1; k2; k3; k4/, the same argument
as in the proof of Theorem 1.3 gives the result. Namely, the completion of the moduli space M. Ek/ has one
orbifold stratum added, corresponding to a half twist � , of cone angle �� .��2�=d/D 2�=d . Note that
in this case one has k3C k4 > 2� , so there is no added stratum corresponding to the mapping class � .

This theorem corrects [13, Theorem 1.2], which is incorrect in the cases when d is a multiple of 3. I would
like to note that the correct result was evident in the course of the arguments of that paper. Additionally,
when stated in this form, it is clear that Theorem 5.4 combines with their result [13, Theorem 2.1] to give
a new proof of the faithfulness of ˇ3.
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6 Future directions

My original motivation for developing these results was to use Thurston’s moduli space of polyhedra
to place restrictions on the kernel of the Burau representation. Perhaps the restrictions we have found
in Corollary 1.4 can be combined with other results about the kernel of ˇ4 to prove faithfulness of the
representation, or to narrow down a search for a nontrivial element of the kernel. The connections with
Squier’s conjectures yield other questions and future directions.

A mismatch between our results and Squier’s conjecture Squier conjectured that the kernel of ˇ.�q/
would be equal to ncl.�d / for any n and for q any d th root of unity [21, (C1)]. From the results of [13]
and the typical nonfaithfulness of Burau [1], we know that for any n� 5 this conjecture is false for almost
all even values of d . The form we have acquired in Theorem 1.3 for the finitely many special cases of
ker.ˇ.�q// certainly looks more complicated than Squier’s very simple normal generating set. It would
be interesting to see in which cases the normal subgroup ncl.�d ; �jn�1/ � h�

`
ni is or is not equal to ncl.�d /,

ie to see when Squier’s conjecture is correct as originally stated. Part of investigating this question could
be a calculation along the lines of Figure 4.

The case with more than nC1 cone points One restriction in this work is that we have only considered
choices of curvatures Ek D .k1; : : : ; km/ with m D nC 1. There are two reasons for this. First, taking
mD nC 1 allows us to identify the kernel of the composite map

Bn
���� Mod.S0;nC1I Ek/

�Ek
�! PU.1; n� 2/

in terms of ker.� Ek/ because the map of mapping class groups �� is surjective. When m > nC 1, the
induced map on mapping class groups is injective (and not surjective) [11, Theorem 3.18],

Bn
��,�!Mod.S0;mI Ek/

�Ek
�! PU.1;m� 3/;

but I was unable to rigorously identify the preimage of ker.� Ek/ in Bn in this case. I would like to see
how to identify the kernel in this case and whether it could give any more information about the Burau
representation.

Second, the condition m D nC 1 tells us that the “evaluation map” in Theorem 1.1 is actually an
evaluation, and so we can place the evaluation of the Burau representation in the commutative diagram as
in Corollary 1.2. When m> nC 1, this is not the case. It is not hard to find braids b 2 Bn and roots of
unity q for which ˇ.b/jtD�q is trivial while ev.�q/.ˇ.b// is not. For instance, powers of the full-twist
braid exhibit this behavior. So it is not immediately clear to me how the moduli space of polyhedra could
be used to place restrictions on ker.ˇ.�q//, aside from the cases explored in this paper.

Similar results for the Gassner representation To get further mileage out of Thurston’s list, one might
consider the Gassner representation of the pure braid group

Gn W PBn! GLn�1.ZŒt˙1 ; : : : ; t
˙
n �/;
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which specializes to the Burau representation by sending ti to t for all i . See [4, Chapter 3] for a
construction. Since the Gassner representation is defined on a subgroup of the braid group and takes
values in a larger matrix group, one might expect it to be “more faithful” than the Burau representation.
Yet it is not known whether or not Gn is faithful for any value of n� 4. A version of Theorem 1.1 for the
Gassner representation exists, for instance in [24] via an algebraic approach. A geometric or topological
construction would be desirable along the lines of our Theorem 1.1, though our method of proof would
be much more cumbersome in this context due to the more complicated generating set of the pure braid
group. Yet armed with a version of Theorem 1.1 and Corollary 1.2 for the Gassner representation, more
of Thurston’s 94 moduli spaces could help to identify the kernels of some specializations of various Gn.
Though finitely many restrictions on kerGn could never establish faithfulness alone (see [16, Lemma 2.1]),
perhaps this could shed some light on the faithfulness question for these representations.

Relationship with some remarkable work of Coxeter In [9], Coxeter investigated the quotients of
braid groups defined by Bn.d/DBn= ncl.�d /. For nD 2, the quotient is a finite cyclic group. For d D 2,
the quotient is isomorphic to the symmetric group on n letters. For all but five other choices of .n; d/,
the quotient Bn.d/ is an infinite group. Coxeter established infiniteness in these cases using hyperbolic
geometry, and I think this is along the lines of the argument for infinite index in the proof of Corollary 1.4.
The five sporadic cases of .n; d/ for which Bn.d/ is finite correspond to the Platonic solids, and Coxeter
gave a remarkable formula for the order of Bn.d/ in terms of the combinatorics of the associated Platonic
solid. Coxeter proved his formula by individually computing the orders of these five quotient groups and
checking that the formula works in each case. I hope that the geometric perspective of the moduli spaces
considered here might give more insight into — and perhaps a more revealing proof of — Coxeter’s result.
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