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Tautological characteristic classes, I

JAN DYMARA

TADEUSZ JANUSZKIEWICZ

We discuss the formalism of tautological characteristic classes of flat bundles. Applied to PSL.2;K/,
it yields the Witt class of Nekovář. Applied to PGLC.2n;K/, the general linear groups with positive
determinant over an arbitrary ordered field, it yields (a generalization of) the Euler class.

20G10; 20J06

Introduction

Take a chain complex C� and fix the degree k. The identity map Ck! Ck can be viewed as a cochain of
degree k, with values/coefficients in Ck . Usually it is not a cocycle, but we can force it to be, dividing by
boundaries, changing coefficients to Ck=Bk . Denote the resulting cocycle by T .

Now suppose that a group G acts on C�. Clearly T is G–equivariant, in other words it is a cocycle with
twisted coefficients. We can force T to be a constant coefficients cocycle simply dividing the coefficients
further down to the biggest quotient of theG–module Ck=Bk on whichG acts trivially, called coinvariants
of G. Denote the resulting image of T by � .

Besides producing an untwisted cocycle, this construction has an additional crucial advantage: the
modules Ck , or even Ck=Bk , are usually very big, while the coinvariants .Ck=Bk/G are much smaller
and sometimes manageable.

It is of interest to go halfway in this procedure: fix a (large) normal subgroupN ofG, and take coinvariants
.Ck=Bk/N . Then T becomes a (slightly twisted by an action of G=N ) cocycle taking values in (sometime
still manageable, but bigger) module of N –coinvariants.

One has every reason to expect that this purely algebraic construction has nice functorial properties, and
that it carries a significant amount of information about C� as a G–module. Theorem 1.5 spells out the
most natural form of functoriality.

This algebraic construction needs an input. For us such an input comes from a geometry (or, as some
will undoubtedly insist, algebra), namely from the complex of geometric configurations. One takes a
homogeneous spaceG=H (for example a projective space over an arbitrary fieldK) and builds a simplicial
complex whose simplices are n–tuples of points “in general position”. The notion of general position
that we use depends on the situation, and is discussed separately in each case, but the underlying idea is
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2890 Jan Dymara and Tadeusz Januszkiewicz

uniform. In all cases the simplicial complexes that we consider have an additional crucial star property
which is discussed in Section 2. The star property makes the simplicial complex contractible in a strong,
geometric sense. The chain complex is just the complex of (alternating or ordered) simplicial chains.

In order to construct characteristic classes of flat G–bundles, we have to address the problem that the G–
action on the space of configurations is not free. But this is done in a standard way, by “Borel construction”,
that we execute on the chain level. We end up with cocycles living in a cochain complex computing
group cohomology of G (seen as a discrete group). The star property implies almost immediately that the
cohomology class of the cocycle is bounded (see Theorem 3.1). The boundedness of tautological classes
is taken with respect to the natural seminorm on the coefficient group. One should keep in mind that this
has fairly different overtones from the usual R–coefficients bounded cohomology of Gromov [1982];
compare for example Ghys [1987].

The first interesting case when this construction produces something valuable is that of PGL.2;K/ acting
on the projective line. This has been studied by Nekovář, who defined and studied the “Witt class” for
PSL.2;K/, with coefficients in the Witt ring of quadratic forms over K. It is an amazing fact that the
four-term Witt relation Œa�C Œb�D ŒaC b�C Œab.aC b/� is indeed the cocycle relation in the complex of
projective point configurations. We review this in detail in Section 7.

The main results of the present paper concern the construction and study of the “Euler class for flat
PGL.n;K/–bundles” in the case where K is an arbitrary ordered field and n is even. This class is
constructed using the general strategy outlined above. We take the PGL.n;K/–action on the simplicial
complex of generic configurations of points in Pn�1.K/, the induced action on Cn=Bn, and then we
take coinvariants with respect to the group PGLC.n;K/ of maps with positive determinant. (Note
that coinvariants with respect to the full projective group are trivial, while coinvariants with respect
to PSL.n;K/ are too large for us to handle — for PGLC.n;K/ we have a nice answer.) The resulting
tautological class eu is (an analogue of) the Euler class — for flat PGL.n;K/–bundles. It is twisted by
the homomorphism to Z=2 whose kernel consists of maps with positive determinant. The coefficients are
Z for n even and trivial for n odd (see Theorem 8.1).

One can run a parallel construction starting from the GLC.n;K/–action on the positive projective space
Pn�1
C

.K/. The resulting class euC has coefficients in a free abelian group of rank bn=2c C 1 (see
Theorem 8.1; admittedly, the computation here is somewhat heavy). Consequently, euC can be split into
components euk that are cohomology classes with Z coefficients.

We prove several results about the Euler classes eu and euC. Theorems 9.1 and 10.1 explain the relation
between various components of euC. Theorem 11.1 gives a clean formula for the Euler class of a cross
product of bundles, while Theorem 12.5 gives a cup product formula for the direct sum. In Section 13 we
discuss functoriality. In particular, we relate eu and euC in Theorem 13.1. We also compare the Euler and
Witt classes for PSL.2;K/–bundles in Theorem 13.4. Finally, in Theorem 13.6, using the cross-product
formula, we show nontriviality of our Euler classes in every even dimension.
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Further characteristic classes and more applications are postponed to subsequent papers.

Tautological classes with coefficients in Ck=Bk were defined in a forgotten paper of James Dugundji
[1958], where he also proved some results of general nature, like functoriality and universality. The paper
was forgotten, probably because the results did not help with actual calculations: modules Ck=Bk are
usually very big and unmanageable. We discovered Dugundji’s paper when we were already well into
our project. Our initial inspiration came from the papers of Nekovář [1990] and Kramer and Tent [2010],
where the idea of passing to G–coinvariants is present. With a grain of salt, one may say that the Witt
and Maslov classes are constructed in these papers in the tautological way.

Reznikov [1997] noticed that for an ordered field K one has an “Euler class” for PSL.2;K/ with Z

coefficients. In fact, this class is (a multiple of) the image of the Witt class of Nekovář under the signature
map from the Witt ring to Z, given by the ordering of K.

The plan of the paper is as follows.

In Part I we discuss the general theory: Section 1 explains definitions and functoriality of tautological
classes in a purely algebraic, abstract context; in Section 2 it is shown how actions on simplicial complexes
can lead to examples, star-property is recalled, and a method of coefficient calculation for actions on
simplicial complexes is described; Section 3 is about (automatic) boundedness of tautological classes;
and Section 4 contains a simplicial counterpart of the process of representing classes of flat bundles by
pullbacks of invariant forms via sections.

Part II is about GL.2/: in Section 6 we discuss various actions of this group with a view towards
investigating the corresponding tautological classes; in Section 7 the Witt group appears as the coefficient
group coming from the general formalism applied to the homographic action on the projective line, and
the tautological Witt class is defined.

In Part III we define Euler classes for the groups PGL.n;K/ and PGLC.n;K/, where K is an arbitrary
ordered field. In Section 8 actions of these groups on Pn�1.K/ and on Pn�1

C
.K/ are used to define

tautological Euler classes eu and euC; coefficients are calculated, and euC is decomposed into a direct
sum of classes euk (with coefficients in Z). In Section 9 we establish a general relation between the
classes euk , and in Section 10 we express all of them in terms of eu0 in a weak sense using Smillie’s
argument. In Sections 11 and 12 we show some multiplicativity properties of eu0. In Section 13 we
further investigate relations between various Euler classes (and the Witt class); we also prove that all
these classes are nontrivial (for n even).
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I Generalities

1 Algebraic tautological classes

Chain complexes Let C�D .Cn; @n/ be a chain complex of abelian groups. As usual, we putZnDker @n
(cycles) and Bn D im @n (boundaries). Let us fix an integer d and consider idCd as an element of
Hom.Cd ; Cd /— the d–cochain group of the complex Hom.C�; Cd /. This element is usually not a
cocycle — yet, if we replace the coefficient group Cd by the quotient Cd=Bd , it becomes one.

Definition 1.1 Let C� be a chain complex. The tautological cocycle T dC� is the d–cycle of the com-
plex Hom.C�; Cd=Bd / defined by the quotient map Cd ! Cd=Bd . The tautological class �dC� is the
cohomology class of T dC� in Hd .Hom.C�; Cd=Bd //.

The cochain T dC� is indeed a cocycle:

ıT dC�.c/D T
d
C�
.@c/D @cCBd D Bd :

Notice that �dC� is functorial, in the following way: Let f WC�!K� be a chain map. Then fd WCd !Kd

induces a map Cd=ker @d !Kd=ker @d , which in turn induces a map

f� WH
d .Hom.C�; Cd=ker @d //!Hd .Hom.C�; Kd=ker @d //:

There is also the map f � W Hom.K�; Kd=ker @d /! Hom.C�; Kd=ker @d / inducing

f � WHd .Hom.K�; Kd=ker @d //!Hd .Hom.C�; Kd=ker @d //:

Clearly, f ��dK� D f��
d
C�

; indeed, both these classes are represented by the same cocycle

Cd 3 c 7! fd .c/C ker @d 2Kd=ker @d :

G–chain complexes Now suppose that the complex C� is a G–chain complex, ie it is acted upon by
a group G, by chain maps. The group Cd=Bd has the induced G–module structure. The tautological
cocycle T dC� W Cd ! Cd=Bd is a G–map.

Definition 1.2 Let C� be a G–chain complex. The tautological class �dC�;G 2H
d .HomG.C�; Cd=Bd //

(cohomology with twisted coefficients) is the cohomology class of T dC� .

We have found out that the above class has also been defined and investigated in a forgotten paper of
Dugundji [1958].

The G–module Cd=Bd is usually very big. To cut it down in size we will consider its coinvariants
group Ud D .Cd=Bd /G — its largest G–trivial quotient. This group might be either too small to carry
information or too big to extract information, yet in some cases it is nontrivial and manageable.

Definition 1.3 Let C� be a G–chain complex. Let Ud (or Ud .C�/) denote the coinvariants group
.Cd=Bd /G . The tautological class �d

C�=G
2Hd .HomG.C�; Ud // is the cohomology class of T d

C�=G
; the

cocycle obtained by composing the tautological cocycle T dC� with the quotient map Cd=Bd! .Cd=Bd /G .
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Remark (1) The functor of coinvariants is right-exact [Brown 1982, II, Section 2]. Therefore,
Ud D .Cd /G=.Bd /G (strictly speaking, we divide by the image — not necessarily injective — of
.Bd /G in .Cd /G). Moreover, @ W CdC1! Cd induces a map @ W .CdC1/G! .Cd /G , and Ud can
also be described as .Cd /G=@..CdC1/G/.

(2) If N is a normal subgroup of G then there exists yet another, G=N –twisted tautological class � in
Hd

�
HomG.C�; .Cd=Bd /N /

�
.

Let us discuss functoriality. Suppose that C� is a G–complex and that K� is an H–complex. Assume
that � W G ! H is a homomorphism and that f W C�! K� is a �–equivariant chain map. The group
Ud .K�/ acquires a G–module structure via �. We have two maps,

Hd
�
HomH .K�; Ud .K�//

� f �
�!Hd

�
HomG.C�; Ud .K�//

� f�
 �Hd

�
HomG.C�; Ud .C�//

�
;

the right one induced by the f –induced coefficient map Ud .C�/! Ud .K�/. As before, it is straight-
forward to check that f ��d

K�=H
D f��

d
C�=G

— both of these classes are represented by the cocycle
Cd 3 c 7! Œfd .c/� 2 Ud .K�/.

Acyclic G–chain complexes Let us now assume that C� is an acyclic G–chain complex. By this we
mean that

(1) Cn D 0 for n < 0;

(2) C� comes equipped with an augmentation map — a G–homomorphism � W C0! Z, where Z has
the trivial G–module structure;

(3) the augmented complex

� � � ! Cn! Cn�1! � � � ! C1! C0
�
�! Z! 0! � � �

is exact.

(In other words: C� is a resolution of the trivial G–module Z.)

The tautological class �d
C�=G

can be used to define a cohomology class of the group G, as follows. Let
P� be a projective resolution of the trivial G–module Z. The cohomology groups H�.G;Ud / are defined
as cohomology groups of the complex HomG.P�; Ud / [Brown 1982, III, Section 1]. There exists a chain
map of resolutions  C� W P�! C� (respecting augmentations, ie extending by identity on Z to a chain
map of the augmented complexes). Moreover,  C� is unique up to chain homotopy [Brown 1982, I,
Lemma 7.4].

Definition 1.4 Let C� be an acyclic G–chain complex, P� a projective resolution of the trivial G–
module Z, and  C� WP�!C� a chain map of resolutions. Let  �C� WH

d .HomG.C�; Ud //!Hd .G;Ud /

be the map on cohomology induced by  C� . We define the tautological class

�dG;C� D  
�
C�
.�dC�=G/ 2H

d .G;Ud /:

These classes are functorial just as the previous ones:
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Theorem 1.5 Let C� be an acyclic G–chain complex, K� an acyclic H–chain complex, � WG!H a
group homomorphism , and f W C�!K� a �–equivariant chain map. Consider two maps

Hd .H;Ud .K�//
��
�!Hd .G;Ud .K�//

f�
 �Hd .G;Ud .C�//I

the right one induced by the f –induced coefficient map Ud .C�/! Ud .K�/. Then

���dH;K� D f��
d
G;C�

:

Proof Consider the diagram

Hd
�
HomH .K�; Ud .K�//

�
Hd

�
HomG.C�; Ud .K�//

�
Hd

�
HomG.C�; Ud .C�//

�
Hd .H;Ud .K�// Hd .G;Ud .K�// Hd .G;Ud .C�//

f � f�

�� f�

There are tautological classes �K�=H 2H
d
�
HomH .K�; Ud .K�//

�
, defined as the class of the tautological

cochain TK�=G.k/D Œk�, and a similar �C�=G 2H
d
�
HomG.C�; Ud .C�//

�
. Their images in the group

Hd
�
HomG.C�; Ud .K�//

�
coincide, since both are clearly equal to the class of T defined by T .c/D Œf .c/�.

The classes �H;K� and �G;C� are images of �K�=H and �C�=G (respectively) under the vertical maps.
Thus, to prove the theorem, we only need to check that the above diagram is commutative.

Commutativity of the right square: The vertical maps are induced by a (unique up to chain homotopy)
G–map of chain complexes P.G/�! C�. The horizontal maps are induced by the coefficient map f�.
Since these two maps act on different arguments of the Hom functor, they commute.

Commutativity of the left square: That square is the result of applying a cohomology functor to the
diagram

K� C�

P.H/� P.G/�

f�

��

The two compositions to compare are G–maps from P.G/� to the acyclic chain complex K� (with the
G–structure induced via �). Such a map is unique up to chain-homotopy; hence the compositions are
chain-homotopic. After passing to cohomology, they become equal.

Remark 1.6 The procedure applied in Definition 1.4 to the tautological class works in greater generality,
for arbitrary coefficient groups and arbitrary classes. In Theorem 4.4 we will need the following version:
Let C� be an acyclicG–chain complex, A aG–module, T 2Zd .HomG.C�; A// anA–valuedG–invariant
d–cocycle, P� a projective resolution of the trivial G–module Z, and  C� W P�! C� a chain map of
resolutions. Let  �C� W HomG.C�; A/! HomG.P�; A/ be the cochain map induced by  C� . We define
the group cohomology class � 2Hd .G;A/ associated to T by � WD Œ �C�.T /�.
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2 Geometric complexes

Our main source of acyclic G–chain complexes is geometry. Suppose that G acts on an acyclic simplicial
complex X by simplicial automorphisms. Then the simplicial chain complex C�X is an acyclic G–chain
complex.

Definition 2.1 Let X be an acyclic simplicial G–complex. The definitions of Section 1 applied to the
acyclic simplicial G–chain complex C�X give rise to

� the coefficient group Ud D Ud .X/ WD Ud .C�X/;

� the tautological cocycle T d
X=G
WD T d

C�X=G
;

� the tautological class �d
X=G
WD �d

C�X=G
;

� the tautological group cohomology class �dG;X WD �
d
G;C�X

.

In our considerations, the G–complexes X will usually arise as restricted configuration complexes of
homogeneous G–spaces. We will typically start from a transitive G–action on a space P . We will use P

as the set of vertices of X , and span simplices of X on tuples of elements of P satisfying some genericity
conditions. (A typical example: G D SL.2;K/, P DK2 n f0g, a tuple of vectors spans a simplex if and
only if every two of them are linearly independent.) This scheme applies to many algebraic groups over
arbitrary infinite fields.

The acyclicity of these restricted configuration complexes is usually the consequence of the star-property
defined below.

Definition 2.2 [Kramer and Tent 2010] A simplicial complex X has the star-property if for any finite
subcomplex Y � X there exists a vertex v 2 X0 n Y 0 joinable with every simplex of Y (v is joinable
with a k–simplex � D Œy0; : : : ; yk� if v � � D Œv; y0; : : : ; yk� is a .kC1/–simplex in X ).

Fact 2.3 If X has the star-property, then it is acyclic.

Proof Let z D
P
a�� be a cycle in X . Let Y be the union of all simplices � that appear in z. Let v be

a vertex of X witnessing the star-property for Y . Then z D @
�P

a�v � �
�
.

For a complex X with the star-property there is another variant of an acyclic chain complex associated to
it; the (nondegenerate) ordered chain complex C o�X . The group C o

k
X is the free abelian group whose

basis is the set of all .kC1/–tuples of vertices of X that span k–simplices (in other words, the set of
ordered, nondegenerate k–simplices of X ). The boundary operator is defined by the usual formula

@Œv0; : : : ; vk�D

kX
iD0

.�1/i Œv0; : : : ; Ovi ; : : : ; vk�:

Algebraic & Geometric Topology, Volume 24 (2024)
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By the same argument as in Fact 2.3, the complex C o�X is acyclic. (Warning: for finite simplicial
complexes the nondegenerate ordered chain complex does not calculate homology correctly, eg the
complex C o� .�

1/ is not acyclic.)

If a simplicial complex is acted upon by a group G, one can use the ordered chain complex to define
the coefficient group U o

d
WD .C o

d
X=Bo

d
X/G , the tautological cocycle T d

Co�X=G
and the tautological

class �d
Co�X=G

. (If X has the star-property, one can further define the tautological group cohomology
class �d

G;Co�X
.) There is a natural epimorphic G–chain map C o�X ! C�X ; it induces an epimorphism

U o
d
! Ud . The group U o

d
is usually insignificantly larger than Ud , as we shall see.

The calculations of the groups Ud and U o
d

are often used in this paper; we now explain how they are
done. Let X .n/ be the set of nondegenerate ordered n–simplices in a simplicial complex X . Let Rn be
a set of representatives of orbits of G on X .n/. For any � 2X .n/ we denote by �R the unique element
of Rn that is G–equivalent to � . For chains we put

�P
a��

�
R
D
P
a��R.

Fact 2.4 Let X be a simplicial G–complex.

(a) The group U o
d

is the quotient of the free abelian group with basis Rd by the subgroup spanned by
f.@�/R j � 2RdC1g.

(b) The group Ud is the quotient of the free abelian group with basis Rd by the subgroup spanned by
f.@�/R j � 2RdC1g[f.t�/R� sgn.t/� j � 2Rd ; t 2 SdC1g. Moreover , in this description one can
change the range of t from the permutation group SdC1 to any generating set of this group.

The proof is based on the formula U o
d
D .C o

d
X/G=@.C

o
dC1

/G and an analogous formula for Ud . We
denote by cG the image of the chain c in the coinvariants group.

Proof We start with a general remark. Suppose that a group G acts on a set Y . Let ZŒY � be the free
abelian group with basis Y . Then ZŒY � has a natural G–module structure, and the coinvariants module
ZŒY �G is the free abelian group with basis Y=G (the orbit space of the G–action on Y ). If R� Y is a set
of representatives of G–orbits, then the bijection R 3 r 7!G � r 2 Y=G induces the natural isomorphism
ZŒR�! ZŒY=G�! ZŒY �G .

Applying this discussion to theG–action onX .n/ we see that .C onX/GDZŒX .n/�GDZŒX .n/=G�'ZŒRn�.
This isomorphism .C onX/G! ZŒRn� is clearly given by cG 7! cR. Similarly, .C onC1X/G is isomorphic
to ZŒRnC1�, which is generated by RnC1. The map @ W .C onC1X/G! .C onX/G can be interpreted as the
map ZŒRnC1� 3 c 7! .@c/R 2 ZŒRn�; its image is generated by the images of elements of RnC1, ie by
the set f.@�/R j � 2RnC1g. Part (a) is proved.

For part (b): Let K be the kernel of the epimorphism C o
d
X ! CdX . The group K is generated by

ft� � .sgn t /� j t 2 SdC1; � 2 X .d/g (one can change the range of t from SdC1 to any generating set
of SdC1). Applying the coinvariants functor to the exact sequence K! C o

d
X ! CdX ! 0 we get the

middle row of the following commuting diagram with exact rows and columns:

Algebraic & Geometric Topology, Volume 24 (2024)
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.C o
dC1

X/G .CdC1X/G 0

KG .C o
d
X/G .CdX/G 0

U o
d

Ud

0

@ @

�G

A diagram chase shows that an element of .C o
d
X/G that maps to 0 in Ud is a sum of images of elements

of KG and .C o
dC1

X/G . Consequently,

Ud ' .C
o
dX/G=.@.C

o
dC1X/G C �GKG/:

Therefore, a presentation of Ud can be obtained from the presentation of U o
d

given in (a) by adjoining
extra relations generating �GKG . These extra relations are images of generators of KG under �G , ie are of
the form .t�/G � .sgn t /�G (t 2 SdC1, � 2X .d/). Under the isomorphism .C o

d
X/G!ZŒRd � this form

maps to .t�/R � .sgn t /�R. To finish the proof we will check that .t�/R D .t�R/R. We have �R D g�
for some g 2G. This implies that t�R D g.t�/, and then .t�R/R D .g.t�//R D .t�/R.

3 Boundedness

A group cohomology class in Hd .G;R/ is called bounded if it can be represented by a bounded cocycle
c WSdBG!R (or, equivalently, a bounded G–invariant R–valued cocycle on SdEG). Here S�BG is the
singular chain complex of BG; a cocycle c is bounded if there exists M > 0 such that for each singular
simplex � W�d ! BG we have jc.�/j �M . Instead of R, one can use other groups with seminorm. In
particular, if X is a simplicial G–complex, the coefficient group U D Ud .X/ carries a natural seminorm,
induced by the `1–norm on CdX . Explicitly, for u 2 U we consider all chains

P
˛i�i 2 CdX that

represent u, and we declare the infimum of
P
j˛i j over all such chains to be juj.

Theorem 3.1 Suppose that X is an acyclic simplicial G–complex with the star-property. Then the
tautological cohomology class �dG;X 2 H

d .G;U / is bounded with respect to the seminorm discussed
above.

Proof We will construct a G–chain map ‰� W S�EG! C�X . For each n� 0 choose a free basis †n of
the freeG–module SnEG. We define‰n inductively. For each �02†0 we choose a vertex‰0.�0/2X .0/;
we extend ‰0 to S0EG by G–equivariance and linearity. Once ‰n�1 is defined, we define ‰n on †n
as follows. For �n 2†n we consider ‰n�1.@�n/D

P
�i 2 Cn�1X . By the star-property, there exists a

vertex v 2 X .0/ joinable to every �i ; we put ‰n.�n/D
P
v � �i , so as to have @‰n.�n/D ‰n�1.@�n/.

Then we extend ‰n to SnEG by G–equivariance and linearity. A straightforward induction shows that
for any singular simplex �n 2 SnEG the chain ‰n.�n/ is a sum of at most .nC 1/Š simplices.

Algebraic & Geometric Topology, Volume 24 (2024)
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The class �dG;X is represented by the cocycle T d
X=G
ı‰d . The tautological cocycle T d

X=G
has norm at

most 1 — it maps a simplex to its class in Ud , and that class has norm � 1 by definition of the seminorm.
Therefore, for any singular simplex �d in EG,

jT dX=G.‰d .�d //j � .d C 1/Š:

Remark 3.2 There is a different approach to bounded group cohomology, based on the standard
homogeneous resolution of the trivial G–module Z (see [Brown 1982, I, Section 5]). That approach is
equivalent to the one used above, as shown in [Gromov 1982, pages 48–49]; for a more detailed account
see [Löh 2010, 2.5.5]. In these references real coefficients are used, but the proof works for coefficients
in an arbitrary abelian group with seminorm.

4 Characteristic classes

A cohomology class ˛ of a (discrete) group G can serve as a characteristic class of (flat) G–bundles.
Suppose that ˛ is obtained from a G–invariant cocycle on an acyclic G–space X as in Remark 1.6. Then
it is possible to describe the characteristic class using the cocycle directly, bypassing ˛ (see Theorem 4.4).
This section is organized as follows. We start by recalling the connection between group cohomology
and characteristic classes. Next, we describe the classical de Rham version of characteristic classes of
flat bundles. Then we discuss auxiliary notions and notation and, finally, we state and prove the main
statement, Theorem 4.4. (Recall that we consider G with discrete topology, so that all G–bundles are
flat — with locally constant transition functions — and BG is K.G; 1/.)

Let ˛ 2Hd .G;A/DHd .BG;A/ be a cohomology class of a group G. The space BG is the base of a
universal principal G–bundle EG. Every principal G–bundle P over a (paracompact) base space B has
a classifying map; a map fP W B! BG such that f �P EG ' P . The map fP is unique up to homotopy.
Notice that we use f �� to denote the pullback of the bundle � via the map f , and we also use f �� and
f �T for the pullback of a cohomology class � or of a cocycle T . Though occasionally confusing, this
dual usage is standard practice in bundle theory.

Definition 4.1 The cohomology class ˛.P / WD f �P .˛/ 2H
d .B;A/ is functorial in P , and is called the

characteristic class (corresponding to ˛) of the bundle P .

In this definition the G–module A may have nontrivial G–structure. Then the groups Hd .G;A/ and
Hd .B;A/ are cohomology groups with twisted coefficients, ie with coefficients in a flat G–bundle (local
system) with fibre A. For Hd .G;A/ D Hd .BG;A/ the bundle is EG �G A; for Hd .B;A/ we use
P �G A. We have P �G AD f �P .EG �G A/, so the coefficient system used over BG pulls back to the
one used over B; therefore we get a map f �P WH

d .G;A/!Hd .B;A/.

In de Rham theory there is a construction of characteristic classes of flat bundles that does not explicitly
refer to BG. In fact, it gives an explicit cocycle representative of the characteristic cohomology class
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in terms of a section. Suppose that P ! B is a principal flat G–bundle over a manifold B , and that
! 2�d .X/ is a G–invariant closed form on a contractible G–manifold X . To these data we will associate
a class in Hd

DR.B/. We start by forming the associated bundle E D P �G X with fibre X . Then we
choose a section s WB!E; it exists and is homotopically unique because X is contractible. Now the idea
is that a section s of a flat bundle is an ill-defined —G–ambivalent — map from the base to the fibre. The
G–ambivalence is countered by theG–invariance of !, so the pullback of ! by s is well defined. Let us be
more precise. Let 'U WEjU !U �X be local trivializations of E. Composing 'U with pr2 WU �X!X

we get a map  U WEjU !X . The compositions  U ı sjU WU !X are locally defined maps; these maps
are not compatible. However, due to the G–invariance of !, the forms !U D . U ı sjU /�! 2�d .U /
are compatible and define a global closed form in �d .B/. Slightly abusing the notation we denote this
form by s�!. The cohomology class of s�! in Hd

DR.B/ is a characteristic class of the bundle P . An
alternative description is to define the global form !E on E by gluing the compatible collection of forms
 �U! 2�

d .EjU /, and then take s�!E in the standard sense. (See [Morita 2001, Chapter 2] for more
information on these classes.)

Let us pass to the simplicial setting. Let P ! B be a principal G–bundle over a �–complex B . (For a
basic discussion of �–complexes see [Hatcher 2002, Section 2.1].) Let T 2Zd .HomG.C�X;A// be an
A–valued G–invariant simplicial cocycle on an acyclic simplicial G–complex X , and let � 2Hd .G;A/

be the associated cohomology class (as in Remark 1.6). The characteristic class of P (corresponding
to � ) is the cohomology class �.P / 2Hd .B;A/ (see Definition 4.1). We will use the strategy explained
in the de Rham setting and obtain a cochain on B representing �.P / (see Theorem 4.4).

To deal with sections in the simplicial context we introduce a special family of trivializations. Let P !B

be a principal G–bundle over a �–complex B . Let X be a simplicial G–complex. Let E D P �G X be
the associated bundle with fibre X . Consider a simplex � W�! B , part of the �–complex structure. The
bundle ��P is a flat principal G–bundle over a simplex; hence it has flat sections. Any such flat section
r W�! ��P induces a trivialization of ��E ' ��P �G X — the map

��X 3 .p; x/ 7! Œr.p/; x� 2 ��P �G X

is an isomorphism, whose inverse '�;r is a trivialization. We put  �;r D pr2 ı'�;r W �
�E!X . Notice

that all possible flat sections of ��P are G–related, and that

(4-1)  �;rg D g
�1 �;r :

Moreover, if �i is a face of � (say �i D � j�.i/, where �.i/D Œe0; : : : ; Oei ; : : : ; en�), then

(4-2)  �;r j��
i
E D  �i ;rj�.i/ :

We will now use the maps  �;r to define simplicial sections.

Definition 4.2 Let B be a �–complex, X a simplicial G–complex, P ! B a principal G–bundle, and
E D P �G X the associated bundle over B with fibre X . A section s W B!E is called simplicial if for
every simplex � W�! B from the �–structure of B , and for any  �;r W ��E!X as described above,
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the composition  �;r ı s ı� W�!X is an affine map of � onto some simplex of the simplicial structure
of X — possibly onto a simplex of dimension smaller than dim� (the composition s ı� defines a section
of ��E because, for p 2�, we have .��E/p DE�.p/).

Remark A simplicial section in uniquely determined by its values at the vertices of the base.

A twisted cochain in C d .B;A/ assigns to a simplex � W �! B a value in .P �G A/�.e0/ — the fibre
of the coefficient bundle over the initial vertex of � . This value extends to a (unique) flat section of
��.P �G A/D �

�P �G A. A flat section of that bundle can be described as Œr; a�, where r is a section
of ��P and a 2 A. For each g 2G the pair Œrg; g�1a� defines the same section; therefore one can also
describe sections as continuous (locally constant) G–maps ��P ! A— or G–maps from the G–torsor
of flat sections of ��P to A.

Definition 4.3 Let B be a �–complex, X a simplicial G–complex, P ! B a principal G–bundle, and
EDP �GX the associated bundle over B with fibreX , s— a simplicial section ofE. Consider a simplex
� W�! B from the �–structure of B and flat sections r of ��P . Then the expression T . �;r ı s ı �/ is
G–equivariant in r (due to (4-1) and the fact that T is a G–map). The formula

s�T .�/D Œr; T . �;r ı s ı �/�

defines the cochain s�T 2 C d .B;A/ (with twisted coefficients).

(The image of the map  �;r ı s ı � is a simplex in X , on which we put the orientation corresponding
under this map to the standard orientation of the standard simplex; we interpret the argument of T as that
oriented simplex. If the image of  �;r ı s ı � has dimension smaller than d , we interpret the argument
of T as the zero chain.)

Remark The fact that s�T is a cocycle will follow from the proof of the next theorem.

Theorem 4.4 Let T be an A–valued G–invariant cocycle on an acyclic simplicial G–complex X . Let
� 2Hd .G;A/ be the associated group cohomology class (as in Remark 1.6). Let P ! B be a principal
(flat) G–bundle over a �–complex B . Let s W B ! P �G X be a simplicial section. Then the class
�.P / 2Hd .B;A/— the characteristic class of P corresponding to � — is represented by the simplicial
cocycle s�T 2Zd .B;A/.

Proof The total space EG of the universal principal G–bundle EG! BG is contractible (it is also the
universal cover of BG). The G–action on EG is free. Therefore, the singular chain complex S�EG is
a projective (in fact, free) resolution of the trivial G–module Z. Moreover, .S�EG/G ' S�BG. Let
‰D‰C�X W S�EG!C�X be a resolution map from S�EG to the simplicial chain complex of X . This
map induces the map ‰� W HomG.C�X;A/! HomG.S�EG;A/, and

� D Œ‰�T � 2Hd .HomG.S�EG;A//DHd .G;A/:
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Let f D fP W B ! BG the a classifying map of the bundle P , and let F W P ! EG be a G–bundle
map covering f . Then �.P /D f �� D Œf �‰�T �. Let us describe the cocycle f �‰�T explicitly. This
cocycle should assign to any simplex � W�! B (from the �–structure of B) a value in .P �G A/�.e0/;
as explained in the paragraph preceding Definition 4.3, the choice of that value is equivalent to the choice
of a G–map from the G–set of flat sections r of ��P to the G–module A. Suppose that r W�! ��P is
a (flat) section. Then F ı r is a singular simplex in EG. The map r 7! T .‰.F ı r// 2 A is a G–map
(since each of F , ‰ and T is a G–map); it defines the value of the cochain f �‰�T (representing �.P /)
on the simplex � ,

(4-3) f �‰�T .�/D Œr; T .‰.F ı r//�:

The cochain f �‰�T depends on several choices:

(1) One can choose the space BG— within the homotopy type.

(2) One can choose f W B! BG— within the homotopy class.

(3) One can choose ‰— all resolution maps are possible.

Our strategy is to exploit these choices to ensure that f �‰�T D s�T .

Let †.B/ be the set of all simplices � forming the �–structure of B .

Lemma 4.5 One can choose the space BG and the map f such that

(a) f �EG ' P (ie f is a classifying map of P );

(b) all the maps f ı � for � 2†.B/ are pairwise distinct.

Proof For dimension d let md be the barycentre of the standard simplex �d . For each � 2†.B/ we put
p� D �.mdim� /. Then we choose a collection of pairwise different points .x� /�2†.B/ in BG. (If BG is
too small for that, we change it by wedging it with a contractible space of sufficiently large cardinality.)
Finally, we perform a homotopy of f (inductively over skeleta) to ensure f .p� /D x� .

Let f WB!BG be a classifying map of P satisfying the conditions of Lemma 4.5. Let F W P !EG be
a G–bundle map covering f (the composition of an isomorphism P ! f �EG with the canonical map
f �EG!EG).

Lemma 4.6 One can choose the resolution map ‰ W S�EG! C�X such that f �‰�T D s�T .

Proof Let us discuss how ‰ may be constructed. For each n � 0 choose a free basis †n of the free
G–module SnEG. Define ‰n inductively. The base case is ‰�1D idZ WZ!Z, with Z connected to the
resolutions by the augmentation maps @ W S0EG! Z, @ W C0X ! Z. Once ‰n�1 is defined, calculate —
for every � 2†n — the cycle ‰n�1.@�/. Since C�X is acyclic, this cycle is a boundary of some n–chain;
pick one such chain and define it to be ‰n.�/. A crucial remark is that if, for some � 2 †n and some
n–simplex � in X , we have ‰n�1.@�/D @� , then we may put ‰n.�/D � . Once ‰n is defined on †n, we
extend it to SnEG by G–equivariance and linearity.
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For each .� W�! B/ 2†.B/ choose a flat section r.�/ W�! ��P . Composing this section with the
canonical bundle map ��P !P , and then with F WP !EG, we get a singular simplex F ı r.�/ in EG.
We denote this simplex by Af ı � — it is a lift of f ı � . All the lifts Af ı � are pairwise G–inequivalent,
because all f ı� are pairwise distinct. Therefore we may choose the free bases †n such that they contain
all the lifts Af ı � (for � 2†.B/). We would like to define

(4-4) ‰.Af ı �/D  �;r.�/ ı s ı �:
To be able to do that we need to check that

(4-5) ‰.@.Af ı �//D @. �;r.�/ ı s ı �/:
Let �i D � j�.i/, where�.i/D Œe0; : : : ; Oei ; : : : ; en� with nD dim � . (Strictly speaking, we should also use
an extra map identifying �.i/ with the standard simplex. We will ignore this in order not to overburden
the notation.) We have

(4-6) @.Af ı �/D
nX
iD0

.�1/i .Af ı �/j�.i/:

Observe that .Af ı �/j�.i/ is a lift of f ı .� j�.i//; therefore .Af ı �/j�.i/ D .Af ı �i / � g.i/ for some
g.i/ 2G. By induction on the dimension we know that

‰..Af ı �i / �g.i//D g.i/�1‰.Af ı �i /D g.i/�1. �i ;r.�i / ı s ı �i /D  �i ;r.�i /g.i/ ı s ı �i ;
the last equality following from (4-1). We may finally write

(4-7) ‰.@.Af ı �//D
nX
iD0

.�1/i �i ;r.�i /g.i/ ı s ı �i :

On the other hand,

(4-8) @. �;r.�/ ı s ı �/D

nX
iD0

.�1/i �;r.�/ ı s ı �i :

Notice that s ı �i is a section of ��i E (where E D P �G X ); therefore (4-2) applies and yields

(4-9)  �;r.�/ ı s ı �i D  �i ;r.�/j�.i/ ı s ı �i :

The flat sections r.�/j�.i/ and r.�i / of the G–bundle ��i P are G–related: r.�/j�.i/D r.�i / �g for some
g 2 G. Recall that, for any � 2 †.B/, the singular simplex Af ı � is the composition of r.�/ with a
G–bundle map ��P !EG. It follows that .Af ı �/j�.i/D .Af ı �i / �g; therefore gD g.i/. Consequently,

(4-10)  �i ;r.�/j�.i/ ı s ı �i D  �i ;r.�i /g.i/ ı s ı �i :

Putting (4-8), (4-9) and (4-10) together we get

(4-11) @. �;r.�/ ı s ı �/D

nX
iD0

.�1/i �i ;r.�i /g.i/ ı s ı �i :
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Comparing this with (4-7) we obtain (4-5). We may therefore define‰ so that (4-4) holds for all � 2†.B/.
Then, for d–dimensional � we get

f �‰�T .�/D
�
r.�/; T

�
‰.F ı r.�//

��
D Œr.�/; T .‰.Af ı �//�D Œr.�/; T . �;r.�/ ı s ı �/�D s�T .�/:

Lemma 4.6 implies f �‰�T — a cocycle representing �.P /— is equal to s�T ; proving Theorem 4.4.

Remark In our applications of Theorem 4.4 the coefficients will be either untwisted or only mildly
twisted (eg a GL.2;K/–module A which is trivial as an SL.2;K/–module).

5 Homological core

Consider an acyclic simplicial G–complex X , the associated coefficient group Ud and the tautological
cohomology classes �X=G 2Hd .HomG.C�X;Ud // and �G;X 2Hd .G;Ud /.

Question Is it possible to represent these tautological classes by cocycles with coefficients in a proper
subgroup of Ud ?

In general, there is a candidate subgroup. The coefficient group Ud D .CdX/G=@.CdC1X/G has a
natural homomorphism @ W Ud ! .Cd�1X/G (induced by the usual @ W CdX ! Cd�1X ).

Definition 5.1 The homological core hUd of the group Ud is the kernel of the map @ WUd ! .Cd�1X/G .

The following theorem states a weaker property then asked for above, but is quite general.

Theorem 5.2 Let X be an acyclic simplicial G–complex. Let �G;X 2 Hd .G;Ud / be the associated
tautological class , and let z 2Hd .BG;Z/ be a homology class. Then h�G;X ; zi 2 hUd .

Proof The map @ W Ud ! .Cd�1X/G of coefficient groups induces horizontal maps in the commutative
diagram

Hd .HomG.C�X;Ud // Hd
�
HomG.C�X; .Cd�1X/G/

�
Hd .G;Ud / Hd .G; .Cd�1X/G/

@�

@�

The class �X=G 2Hd .HomG.C�X;Ud // is mapped to 0 by @�. Indeed, the class �X=G is represented by
the tautological cocycle given by TX=G.�d /D Œ�d �. Let t 2HomG.Cd�1; .Cd�1/G/ also be tautological:
t .�d�1/D Œ�d�1�. Then

.@�TX=G/.�
d /D @Œ�d �D Œ@�d �D t .@�d /D .ıt/.�d /;

that is, @�TX=G D ıt ; hence @��X=G D 0.

It now follows from the diagram that @��G;X D 0 as well. Therefore, @h�G;X ; zi D h@��G;X ; zi D 0.
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II GL.2 ; K/

In this part we describe some results of Nekovář [1990] from our point of view. This provides a perfect
illustration of the general method.

6 Review of possible actions

The first example where the general approach from Part I gives something interesting is G D GL.2;K/.
To proceed we need a simplicial action of G on a complex X with desired properties, one of them being
high transitivity. Such X can be constructed by taking as the vertex set a homogeneous space G=S for
some S and studying the notion of “generic k–tuple”. In GL.2;K/ we have the following interesting
subgroups.

(1) If S D
�
1
0
�

�

�
, then G=S DK2nf0g. A tuple is generic if it consists of pairwise linearly independent

vectors. The action of GL.2;K/ is effective and transitive on generic pairs. We will discuss this
case later.

(2) If S D
�
�

0
0
�

�
, then G=S D .P1.K/� P1.K// n� (where � is the diagonal). Generic k–tuples

are tuples of pairs .pi ; qi / with all the points pi and qj distinct. Here even the action on pairs is
not transitive, because the cross-ratio .p1; q1; p2; q2/ is preserved. The action of GL.2;K/ is not
effective; it factors through PGL.2;K/.

(3) If S D
�
�

0
�

�

�
, then G=S D P1.K/. The action factors through PGL.2;K/. Generic k–tuples are

tuples of distinct projective points. The action is triply transitive.

In the first two examples our approach yields very big groups of coefficients. We can compute them
(and we do so in the S D

�
1
0
�

�

�
case), but we cannot say much about them. In the third case transitivity

is higher; hence the coefficient group is smaller and easier to understand. We do the computation in
detail (following Nekovář). Actually in this case something interesting happens: while PGL.2;K/ acts
transitively on triples, the large normal subgroups PSL.2;K/ acts transitively on pairs, while its orbits on
triples are indexed by PK= PK2 — the group of square classes. This gives an untwisted cohomology class
for PSL.2;K/ and a (slightly) twisted cohomology class for PGL.2;K/.

Now we proceed with the description of the S D
�
1
0
�

�

�
case. We do not discuss the S D

�
�

0
0
�

�
case.

GL.2 ; K/–action on nonzero vectors Consider the GL.2;K/–action on GL.2;K/=
�
1
0
�

�

�
'K2 n f0g.

We declare a tuple of nonzero vectors in K2 to be generic if its elements are pairwise linearly independent.
The complex X has k–simplices spanned on generic .kC1/–tuples.

The action of GL.2;K/ is transitive on 1–simplices. However, the action of its large normal subgroup
SL.2;K/ does have an invariant: .v; w/ 7! det.v; w/ 2 PK. Thus, we have a potentially nontrivial 1–
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dimensional cocycle, with coefficients in a quotient of ZŒ PK�. However, any given generic triple can be
normalized by an element of SL.2;K/ to

(6-1)
��

1

0

�
;

�
0

a

�
;

�
�x=a

y

��
with nonzero a, x and y; the three determinants are a, y and x. To get the coefficient group we have to
divide ZŒ PK� by relations hai � hxiC hyi, for all nonzero a, x and y. The resulting coefficient group is
trivial, hence so is the cocycle.

The action of GL.2;K/ on generic triples of vectors has a complete invariant in PK � PK � PK: the triple of
pairwise determinants. The resulting coefficient group is the quotient of ZŒ PK � PK � PK� by the relation�

be�cd

a
; e; c

�
�

�
be�cd

a
; d; b

�
C .e; d; a/� .c; b; a/D 0

(all entries assumed nonzero). We skip the details, as they are not dissimilar to ones in the calculation
presented later, and the result is not especially meaningful.

GL.2 ; K/–action on projective line Consider the GL.2;K/–action on GL.2;K/=
�
�

0
�

�

�
' P1.K/. We

declare a .kC1/–tuple of projective points generic if they are pairwise distinct; we span k–simplices on
such tuples. Thus, the complex X is the (infinite) simplex with vertex set P1.K/.

The GL.2;K/ (in fact, PGL.2;K/) action on X is transitive on 2–simplices. However, the SL.2;K/–
action on 2–simplices has an invariant with values in PK= PK2 — the set of square classes. Our procedure
will produce a cocycle with constant coefficients (in a quotient group of ZŒ PK= PK2�) for PSL.2;K/, and
with twisted coefficients for PGL.2;K/. We discuss this in detail in the next section.

The cross-ration is a complete invariant of (ordered) 3–simplices, ie of 4–tuples of distinct points in
P1.K/, under the action of PGL.2;K/. Thus, our approach yields a 3–cocycle with coefficients in
ZŒ PK n f1g�=I , where I is the subgroup spanned by�

�.�� 1/

�.�� 1/

�
�

�
�� 1

�� 1

�
C

�
�

�

�
� Œ��C Œ��

with �;� 2 PK n f1g and �¤ �. This is related to the dilogarithm function; we do not pursue it further
(but see eg [Bergeron et al. 2014]).

7 Action on triples of points in the projective line

In this section we consider the action of G D PSL.2;K/ on the projective line P D P1.K/, for an infinite
field K. We define X as the (infinite) simplex with vertex set P ; in other words, we span simplices
of X on tuples of generic (ie pairwise distinct) points in P . The complex X has the star-property and is
contractible. To the induced action of G on X the formalism of Part I (see Definition 2.1) associates the
coefficient group U2, the tautological cocycle T , and a tautological cohomology class of G.

Theorem 7.1 The group U2 is isomorphic to W.K/, the Witt group of the field K.
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Let us briefly recall the definition of W.K/ (for details see [Elman et al. 2008, Chapter I]). The isometry
classes of nondegenerate symmetric bilinear forms over K form a semiring, with direct sum as addition
and tensor product as multiplication. Passing to the Grothendieck group of the additive structure of this
semiring we obtain the Witt–Grothendieck ring yW .K/. The Witt ring W.K/ is the quotient of yW .K/
by the ideal generated by the hyperbolic plane — the form with matrix

�
0
1
1
0

�
. Both rings have explicit

presentations in terms of generators and relations; see [Elman et al. 2008, Theorems 4.7 and 4.8].

Proof of Theorem 7.1 We apply Fact 2.4.

Generators We need to find the orbits of the G–action on the set of generic triples of points in P . We
denote by Œv� the point in P determined by the vector v 2K2; for v D

�
a
b

�
we shorten

��
a
b

��
to
�
a
b

�
.

Lemma 7.2 Every generic triple .Œu�; Œv�; Œw�/ of points in P is G–equivalent to a triple of the form

t� D

��
1

0

�
;

�
0

1

�
;

�
1

�

��
; where �D det.u; v/ det.v; w/ det.w; u/:

Triples t� and t� are equivalent if and only if �=� 2 PK2 (the set of squares in PK).

Proof There exists g 2 SL.2;K/ such that guD
�
1
0

�
, and gv D

�
0



�
for 
 D det.u; v/. Then

gw D

�
˛

ˇ

�
D ˛

�
1

ˇ=˛

�
for some ˛; ˇ 2 PK, so

g W .Œu�; Œv�; Œw�/ 7!

��
1

0

�
;

�
0




�
;

�
˛

ˇ

��
D

��
1

0

�
;

�
0

1

�
;

�
1

�

��
for �D ˇ=˛. Notice that

(7-1) �D
ˇ

˛
D

ˇ̌̌̌
1 0

0 


ˇ̌̌̌
�

ˇ̌̌̌
0 ˛


 ˇ

ˇ̌̌̌�1
�

ˇ̌̌̌
˛ 1

ˇ 0

ˇ̌̌̌
D det.gu; gv/ det.gv; gw/�1 det.gw; gu/

D det.u; v/ det.v; w/�1 det.w; u/:

Notice that the stabilizer of
��
1
0

�
;
�
0
1

��
in SL.2;K/ consists of diagonal matrices of the form

�
˛�1

0
0
˛

�
.

Such a matrix maps t� to��
˛�1

0

�
;

�
0

˛

�
;

�
˛�1

˛�

��
D

��
1

0

�
;

�
0

1

�
;

�
1

˛2�

��
D t˛2�:

The last claim of the lemma follows. Finally, the class in PK= PK2 of � given by (7-1) is the same as the
class of det.u; v/ det.v; w/ det.w; u/.

The lemma and Fact 2.4 imply that U2 is the quotient of ZŒ PK= PK2� by two sets of relations (boundary
relations and alternation relations). The generator of ZŒ PK= PK2� corresponding to t� (and the image of
this generator in U2) will be denoted by Œ�� and called the symbol of the triple.
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Alternation relations The transposition of the first two points of a triple maps t� to��
0

1

�
;

�
1

0

�
;

�
1

�

��
;

which can be transformed by
�
0
�1

1
0

�
to��

1

0

�
;

�
0

�1

�
;

�
�

�1

��
D

��
1

0

�
;

�
0

1

�
;

�
1

���1

��
:

Since Œ���1�D Œ��� in PK= PK2, the resulting relation can be written as �Œ��D Œ���. Next, consider the
transposition of the last two vectors of a triple; this transposition maps t� to��

1

0

�
;

�
1

�

�
;

�
0

1

��
;

which can be transformed by
�
1
0
���1

1

�
to��

1

0

�
;

�
0

�

�
;

�
���1

1

��
D

��
1

0

�
;

�
0

1

�
;

�
1

��

��
:

Again, we get �Œ��D Œ���.

Boundary relations A generic quadruple of points in P can be G–transformed to��
1

0

�
;

�
0

1

�
;

�
1

�

�
;

�
1

�

��
;

where genericity is equivalent to �;� 2 PK, �¤ �. The boundary of the corresponding 3–simplex is the
alternating sum of four triangles — triples obtained from the quadruple by omitting one element. We
calculate the symbols of those triples:

Omit
�
1
0

�
:
�ˇ̌̌̌
0 1

1 �

ˇ̌̌̌
�

ˇ̌̌̌
1 1

� �

ˇ̌̌̌
�

ˇ̌̌̌
1 0

� 1

ˇ̌̌̌�
D Œ.�1/ � .���/ � 1�D Œ����.

Omit
�
0
1

�
:
�ˇ̌̌̌
1 1

0 �

ˇ̌̌̌
�

ˇ̌̌̌
1 1

� �

ˇ̌̌̌
�

ˇ̌̌̌
1 1

� 0

ˇ̌̌̌�
D Œ� � .���/ � .��/�D Œ��.���/�.

Omit
�
1
�

�
: Œ��.

Omit
�
1
�

�
: Œ��.

The relation is
Œ����� Œ��.���/�C Œ��� Œ��D 0:

Putting aD ��� and b D �, we may rewrite this as

Œa�C Œb�D ŒaC b�C Œab.aC b/�:

The relation holds for all a; b 2 PK that satisfy aC b ¤ 0. This set of relations, plus the alternation
relation Œ�a� D �Œa�, gives the classical description of the Witt group W.K/; see [Elman et al. 2008,
Theorem 4.8].
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Definition 7.3 The tautological second cohomology class of the group G D PSL.2;K/ with coefficients
in U2 DW.K/ associated (as in Definition 2.1) to the action of G on X will be called the Witt class and
denoted by w 2H 2.PSL.2;K/;W.K//.

Remark 7.4 (1) Let T be the tautological (W.K/–valued) cocycle associated to the G–action on X .
From the proof of Theorem 7.1 it is useful to extract the following explicit formula for the value of
T on a 2–simplex inX determined by a triple of pairwise linearly independent vectors u; v;w 2K2:

(7-2) T .Œu�; Œv�; Œw�/D Œdet.u; v/ det.v; w/ det.w; u/�:

(2) One can see from the proof of Theorem 7.1 that the ordered coefficient group U o2 is isomorphic to
the Witt–Grothendieck group yW .K/ of the field K.

(3) The space P D P1.K/ and the complex X are acted upon by the larger group PGL.2;K/. As a
result, the Witt class can be interpreted as a twisted cohomology class of PGL.2;K/. The twisting
action of PGL.2;K/ on W.K/ is easy to see from the formula for � in Lemma 7.2; the class of
g 2 GL.2;K/ acts on the symbol Œ�� mapping it to Œdet.g/ ���.

(4) For K DR we have W.R/' Z. The isomorphism, called the signature map, maps Œ�� to C1 for
�>0 and to �1 for �<0. The pullback of the Witt class to SL.2;R/ is a class inH 2.SL.2;R/;Z/;
we will relate it to the usual (topological) Euler class (see Theorem 13.4 and Fact 13.5).

(5) ForKDQ the Witt group has a large torsion part which is a direct summand. Computer calculations
(using the computer algebra system FriCAS) indicate that the corresponding part of the Witt class
is nontrivial.

It is possible to give an explicit formula for a cocycle representing the Witt class. We use the standard
homogeneous resolution (see [Brown 1982, II, Section 3]) to describe group cohomology; W.K/–valued
2–cocycles are then represented by functions G �G �G!W.K/.

Theorem 7.5 Let us fix an arbitrary nonzero vector u 2K2. The map

(7-3) G �G �G 3 .g0; g1; g2/ 7! Œdet. Qg0u; Qg1u/ det. Qg1u; Qg2u/ det. Qg2u; Qg0u/� 2W.K/

is a cocycle representing the Witt class w 2H 2.PSL.2;K/;W.K//. (By Qgi we denote an arbitrary lift of
gi 2 PSL.2;K/ to SL.2;K/. The senseless symbol Œ0� is interpreted as 0.)

Proof It is straightforward to check that the maps

(7-4) ‰n W .g0; : : : ; gn/ 7!

�
.Œ Qg0u�; : : : ; Œ Qgnu�/ if the points Œ Qgiu� are pairwise different;
0 otherwise;

defines a G–chain map from the homogeneous standard resolution of G to C�X . (The only subtle case
is when Œ Qgiu� D Œ Qgju� for exactly one pair of indices i; j . Then ‰n�1@.g0; : : : ; gn/ has two nonzero
summands — however, these summands cancel in the alternating chain complex C�X .) Composing ‰2
with the tautological cocycle T given by (7-2) we obtain the statement of the theorem.
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III Euler class for ordered fields

In this part we define and investigate Euler classes for general linear and projective groups over arbitrary
ordered fields.

8 Tautological Euler classes: computation of coefficients

Let K be an ordered field. Let G DGL.n;K/; we will also consider the following closely related groups
(where we put PK DK n f0g and KC D f� 2K j � > 0g):

PG WD PGL.n;K/DG=f�I j � 2 PKg;

PCG WD PCGL.n;K/DG=f�I j � 2KCg;

GC WD GLC.n;K/D fg 2G j detg > 0g;

PGC WD PGLC.n;K/DGC=f�I 2GC j � 2Kg;

PCGC WD PCGLC.n;K/DGC=f�I j � 2KCg:

The natural maps between these groups are summarized in the diagram

GC PCGC PGC

G PCG PG

The defining action of G on Kn induces actions of PCG on PC and of PG on P ; here

PC WD Pn�1C .K/D .Kn n f0g/=KC; P WD Pn�1.K/D .Kn n f0g/= PK;

where the multiplicative groups KC and PK act on Kn by homotheties.

Next we define simplicial complexes X and XC by spanning simplices on generic tuples of points in
P and PC, respectively. We call a tuple .Œv0�; : : : ; Œvk�/ generic if every subsequence of .v0; : : : ; vk/
of length � n is linearly independent. Ordered fields are infinite, therefore these complexes have the
star-property and are contractible. The complex X is acted upon by PG, and XC by PCG. We restrict
these actions to PGC and to PCGC and we apply the formalism of Part I. We put

U WD Un.X/; UC D Un.XC/

(see Definitions 2.1 and 1.3), and we define the Euler classes as tautological classes

(8-1) eu WD �nPGC;X 2H
n.PGC; U /; euC WD �nPCGC;XC 2H

n.PCGC; UC/:

Notice that PGC is a normal subgroup of PG. Therefore the group U carries the structure of a PG–
module, and the class eu can also be considered as a twisted PG–class. (See the second remark after
Definition 1.3.) Similarly, the class euC can be regarded as a twisted PCG–class.

Our first goal is to compute U and UC, as abelian groups and as PG– and PCG–modules.
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Theorem 8.1 Let U (resp. UC) be the coefficient group associated to the action of PGLC.n;K/
(resp. PCGLC.n;K/) on the complex of generic tuples of points in Pn�1.K/ (resp. Pn�1

C
.K/). Then

U '

�
0 if n is odd;
Z if n is even;

UC ' Zbn=2cC1:

The PGL.n;K/– and PCGL.n;K/–structures are given by

Œg� �uD

�
u if detg > 0;
�u if detg < 0;

.g 2 GL.n;K//:

Proof Both calculations are based on Fact 2.4. We denote by .e1; : : : ; en/ the standard basis of Kn.

Calculation of U Nondegenerate ordered simplices of X correspond to generic tuples of points in P .

Lemma 8.2 The action of PGC on the set of generic .nC1/–tuples of points in P has one orbit for n
odd and two orbits for n even.

Proof Let p D .p1; : : : ; pnC1/ be a generic .nC1/–tuple of points in P . There is an element g 2 G
(unique up to scaling) that maps p to the standard tuple e D

�
Œe1�; : : : ; Œen�;

�Pn
iD1 ei

��
. If n is odd then

det.�g/D� det.g/; therefore g may be chosen in GC. It follows that in this case PGC acts transitively
on the set of generic .nC1/–tuples. For n even, all elements g mapping p to e have determinants of
the same sign. This sign is a PGC–invariant of p that we call the sign of p and denote by sgn.p/.
Generic tuples of the same sign are PGC–equivalent: if sgn.p/D sgn.p0/, gp D e and gp0 D e, then
g�1g0p0 D p and sgn det.g�1g0/DC1.

The case of n odd is now straightforward. The image of any n–simplex of X in .CnX/PGC is one and
the same generator of that cyclic group. The boundary of an .nC1/–simplex of X is an alternating sum
of an odd number of n–simplices; hence its image in .CnX/PGC is again that generator. It follows that
U D 0 for n odd.

Suppose now that n is even. Lemma 8.2 and Fact 2.4 imply that U is the quotient of the free abelian
group with two generators by two sets of relations (boundary relations and alternation relations). The
generators correspond to (representatives of) PGC–orbits on the set of generic .nC1/–tuples of points
in P ; explicitly, we choose

(8-2)
�
Œe1�; : : : ; Œen�;

� nX
iD1

ei

��
and denote it by ŒC� or ŒC1�, and

(8-3)
�
Œe1�; : : : ; Œen�1�; Œ�en�;

�� n�1X
iD1

ei

�
� en

��
and denote it by Œ�� or Œ�1�. We call ŒC� and Œ�� symbols.
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The group Z2 generated by ŒC� and Œ�� is isomorphic to .C onX/PGC . The image in this group of
an ordered n–simplex of X corresponding to a generic .nC1/–tuple p D .p1; : : : ; pnC1/ of points in
P is Œsgn.p/�. In practice, the sign can be calculated as follows: let pi D Œvi � for vi 2 Kn, and let
vnC1 D

Pn
iD1 ˛ivi ; then

(8-4) sgn.p/D sgn.det.v1; : : : ; vn/ �˛1 � � �˛n/

(this is the sign of the determinant of the matrix mapping .v1; : : : ; vnC1/ to
�
e1; : : : ; en;

Pn
iD1 ei

�
; that

matrix is the inverse of the product of the matrix with columns .v1; : : : ; vn/ and the diagonal matrix with
diagonal entries .˛1; : : : ; ˛n/).

The alternation relations all reduce to �ŒC�D Œ��. Indeed, it is straightforward to check that transposing
two neighbouring elements in (8-2) or (8-3) changes the sign of the tuple.

We now discuss the boundary relations. We observe that any ordered nondegenerate .nC1/–simplex
of X — corresponding to a generic .nC2/–tuple of points in P — can be mapped by an element of PGC
to

�D

�
Œe1�; Œe2�; : : : ; Œen�1�; Œsen�;

�� n�1X
iD1

ei

�
C sen

�
;

�� n�1X
iD1

biei

�
C sbnen

��
:

Here s D˙1 and bi 2K; genericity means that bi ¤ 0 and bi ¤ bj . We have

(8-5) @�D

nC2X
jD1

.�1/j�1Œsj �;

where sj is the sign of the tuple obtained from � by omitting the j th element. We have snC2 D s and
snC1 D s sgn

�Q
bi
�
. We claim that, for j < nC 1,

(8-6) sj D .�1/
j s sgn

�
bj
Y
i¤j

.bi � bj /

�
:

Indeed, for j < n we have

sgn det
�
e1; : : : ; Oej ; : : : ; en�1; sen;

n�1X
iD1

ei C sen

�
D .�1/n�j s D .�1/j s;

n�1X
iD1

biei C sbnen D bj

� n�1X
iD1

ei C sen

�
C

X
i¤j;n

.bi � bj /ei C .bn� bj /sen;

while for j D n we have

sgn det
�
e1; : : : ; en�1; ysen;

n�1X
iD1

ei C sen

�
D s D .�1/ns;

n�1X
iD1

biei C sbnen D bn

� n�1X
iD1

ei C sen

�
C

n�1X
iD1

.bi � bn/ei :
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Putting (8-5) and (8-6) together, we get

(8-7) @�D

nX
jD1

.�1/j�1
�
.�1/j s sgn bj

Y
i¤j

sgn.bi � bj /
�
C .�1/n

�
s sgn

�Y
i

bi

��
� Œs�:

We will show that this relation is trivial, ie that all the symbols cancel. We can assume s DC1; the case
s D�1 will automatically follow. Indeed, changing s flips all the symbols: ŒC1�$ Œ�1�, and trivially
transforms a trivial relation to a trivial relation.

Let us artificially put bnC1 D 0; then we may rewrite (8-7) more uniformly as

(8-8) @�D

nC1X
jD1

.�1/j�1
�

sgn
� j�1Y
iD1

.bj � bi /

nC1Y
iDjC1

.bi � bj /

��
� ŒC1�:

Let � 2SnC1 be the permutation ordering the numbers (indices) in the same way that the sequence b does:
�.i/ < �.k/() bi < bk . We put inv.j /D #fi j .i � j /.�.i/��.j // < 0g (the number of inversions of
� in which j is involved). Then our relation is

(8-9)
nC1X
jD1

.�1/j�1Œ.�1/inv.j /�� ŒC1�:

Lemma 8.3 .�1/inv.j /
D .�1/�.j /�j .

Proof If exactly k of the indices smaller than j are mapped by � to indices larger than �.j /, then
�.j /� j C k of the ones larger than j have to be mapped to values smaller than �.j /. Then

inv.j /D kC �.j /� j C k � �.j /� j .mod 2/:

Thus, inv.j / is odd if and only if j and �.j / differ in parity. Since the number of even j ’s is equal
to the number of even �.j /’s, this difference in parity appears equally often in each of the two forms:
.j; �.j //D .odd; even/ and .j; �.j //D .even; odd/. In (8-9), pairs of the first kind lead to summands
CŒ��, while pairs of the second kind give �Œ��. Thus, all the appearances of the symbol Œ�� cancel. It
follows that the sum adds up to ŒC�, which is cancelled by the extra term.

We have shown that the boundary relations are trivial. It follows that U is the quotient of Z2 by the
alternation relations, ie U ' Z. The PG–structure description follows from the formula

sgn.gp/D sgn.detg/ � sgn.p/;

valid for g 2G and all generic .nC1/–tuples p of points in P .

Calculation of UC A generic n–tuple of points in PC can be lifted to n linearly independent vectors
in Kn. The matrix M with columns given by these vectors is well defined up to multiplication on the
right by diagonal matrices with positive entries on the diagonal. The sign of detM is thus an invariant of
the tuple (the sign of the tuple); it is also a GC–invariant of the tuple (detgM D detg � detM D detM
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for g 2GC). In fact, this sign is the full GC–invariant: the tuple of vectors is transformed to the standard
basis by M�1 if detM > 0, and to the basis .e1; : : : ; en�1;�en/ by M�1 with negated lowest row if
detM < 0. We have shown the following statement.

Lemma 8.4 The action of GC on the set of generic n–tuples of points in PC has two orbits , detected by
the sign of the tuple.

We now consider the GC–action on the set of generic .nC1/–tuples. The symbol of such a tuple
.p1; : : : ; pnC1/ is defined to be a sequence of nC1 signs, ŒsI s1; : : : ; sn�. Here s is the sign of .p1; : : : ; pn/.
To get the other signs, we first lift each pi to a vector vi . Then we express vnC1 in terms of the other vi ,
vnC1D

Pn
iD1 anvn. Finally, si D sgn ai (genericity implies ai ¤ 0). Clearly, the symbol is GC–invariant.

Lemma 8.5 Two generic .nC1/–tuples of points in PC are GC–equivalent if and only if they have the
same symbol.

Proof Let the tuples be .pi / and .qi /, with symbol ŒsI s1; : : : ; sn�. Then a lift of .pi / is equivalent to�
e1; : : : ; en�1; sen;

nX
iD1

aiei

�
for some ai 2 PK, while a lift of .qi / is equivalent to�

e1; : : : ; en�1; sen;

nX
iD1

biei

�
for some bi 2 PK; moreover, si is the (common) sign of ai and of bi (for i < n; and sn is the common
sign of san and sbn). These two representing tuples of vectors are projectively related by the diagonal
matrix with positive diagonal entries bi=ai .

The following observation describes the G–action on symbols and allows us to determine the PCG–
structure on UC.

Fact 8.6 The symbol of a generic .nC1/–tuple is G–equivariant : if g 2G and detg < 0, then the tuples
.pi / and .gpi / have the opposite leading symbol sign s, and coinciding remaining symbol signs.

It follows from Lemma 8.5 that the group UC is the quotient of the free abelian group spanned by symbols
by alternation and boundary relations. We first deal with the alternation relations.

Alternation relations The symbol ŒsI s1; : : : ; sn� is represented by the tuple�
e1; : : : ; sen;

n�1X
iD1

siei C ssnen

�
:

Suppose that this tuple is permuted; what happens to the symbol? Since permutation commutes with
“linear map applied to each element”, we may and will assume sDC1— in our arguments, but not in the
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final statements. We first treat the case of a permutation � that fixes the last element. Then the symbol of
the permuted tuple is Œsgn � I .s��1.i//�. We get the “usual permutation relation”

ŒsI .si /�D sgn �Œs sgn � I .s��1.i//�:

Now let us consider the transposition of k and nC 1. The new leading sign is

det
�
e1; : : : ; ek�1;

nX
iD1

siei ; ekC1; : : : ; en

�
D sk :

We also have

ek D sk

nX
iD1

siei C
X
i¤k

.�sksi /ei ;

so that the total symbol after transposition is

ŒskI �sks1; : : : ;�sksk�1; sk;�skskC1; : : : ;�sksn�:

The “transposition relation” is thus

ŒsI .si /�D�ŒsskI �sks1; : : : ;�sksk�1; sk;�skskC1; : : : ;�sksn�:

In words: If the kth sign is C, then we can flip all the other signs (except the leading sign); the resulting
symbol will be equal to minus the original. If the kth sign is �, we get ŒsI .si /�D�Œ�sI .si /�.

There is a difference between the cases nD 2 and n > 2. In the latter case, for any sequence of n signs
there exists a stabilizing transposition; therefore, any sequence of n signs can be ordered (put in the form
CC � � � ��) by an even permutation. Let us begin with the case n > 2.

The case n > 2 As already mentioned, in this case one can use the usual permutation relation to order
the nonleading signs of a symbol without changing the leading sign. To shorten the notation, we will
use aC for ŒCICC � � � � �� (a plus signs after the semicolon), and a� for Œ�ICC � � � � �� (a plus
signs after the semicolon). For example, when nD 3, we put 0C D ŒCI����, 2C D ŒCICC�� and
2� D Œ�ICC��. The transposition relation (with sk D C1) gives a˙ D �.n� aC 1/˙ (for a > 0).
Picking sk D�1 in the transposition relation we get aC D�a�— for a < n, but nC D�n� also holds,
due to nC D�1C D 1� D�n�. To summarize:

Lemma 8.7 Let n > 2. Let AD faC j 0� a � bn=2cg. The quotient of the group .C onXC/PCGC by the
set of alternation relations is the free abelian group with generating set A for n even; for n odd it is the
direct sum of the free abelian group generated by A and a Z=2 generated by

�
nC1
2

�C.

(The extra Z=2–summand appearing for n odd will eventually get killed by the boundary relations.)

The case n D 2 There are eight symbols. The usual permutation relation for � D .12/ gives

(8-10) ŒCICC�D�Œ�ICC�; Œ�I�C�D�ŒCIC��; Œ�IC��D�ŒCI�C�; ŒCI���D�Œ�I���:
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The transposition relation (for � D .23/) is ŒsI s1; s2�D�Œss2I �s2s1; s2�. This gives

(8-11) �Œ�ICC�D Œ�I�C�; �ŒCIC��D Œ�IC��; �ŒCI�C�D ŒCICC�; ŒCI���D�Œ�I���:

We see that all the (signed) symbols appearing in the first three equalities of (8-10) and (8-11) are identified.
In particular, ŒC;C��D ŒCI�C�, so the a˙ notation still makes sense. Also, the relations aCC a� D 0
and 1CC 2C D 0 can be read off from the ones displayed above. Therefore the conclusion of Lemma 8.7
holds for nD 2.

Boundary relations We will show that they all follow from the alternation relations (with the exception
of
�
nC1
2

�C
D 0). Let us calculate the boundary of an .nC1/–simplex of XC represented by a generic

.nC2/–tuple of vectors. Such a tuple of vectors can be transformed by an element of GC to

�D

�
e1; : : : ; en�1; sen;

nX
iD1

siei ;

nX
iD1

sibiei

�
:

The genericity condition (assuming s D C1) is that all bi nonzero and pairwise different. (This will
follow from the calculation of @�.) If s D �1, we can transform the tuple by an orientation changing
linear map; this will change all leading signs in @�, and not touch the other signs. Thus, we will assume
s DC1— and then double the set of the resulting boundaries by changing the leading signs. If we omit
ej (i � n) from �, then the sign of the determinant of the standardizing matrix is the same as that of

det
�
e1; : : : ; ej�1; ejC1; : : : ; en;

nX
iD1

siei

�
D .�1/n�j sj :

The other signs can be read off from
nX
iD1

sibiei D
X
i¤j

.sibi � sibj /ei C bj

nX
iD1

siei :

The total symbol (for j omitted) is thus Œ.�1/n�j sj I .si sgn.bi � bj //i¤j ; sgn bj �.

Omitting the .nC1/st element gives ŒC1I .si sgn bi /�.

Omitting the .nC2/nd element yields ŒC1I .si /�. So, finally,

@�D

nX
jD1

.�1/j�1Œ.�1/n�j sj I.si sgn.bi�bj //i¤j ;sgn bj �C.�1/nŒC1I.si sgn bi /�C.�1/nC1ŒC1I.si /�:

Let us rewrite this boundary relation. We put (artificially) bnC1 D 0 and snC1 D �1. Then we have
sgn bj D snC1 sgn.bnC1� bj /, si sgn bi D si sgn.bi � bnC1/ and .�1/n�.nC1/snC1 DC1, so

@�D

nC1X
jD1

.�1/j�1Œ.�1/n�j sj I .si sgn.bi � bj //i¤j �C .�1/
nC1ŒC1I .si /�

D

nC1X
jD1

.�1/n�1Œsj I .si sgn.bi � bj //i¤j �C .�1/
nC1ŒC1I .si /�;
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where the last equality uses aCD�a�. Thus, we need to deduce from our alternation relations (assuming
snC1 D�1 and bnC1 D 0) that

nC1X
jD1

Œsj I .si sgn.bi � bj //i¤j �C ŒC1I .si /i¤nC1�D 0:

We see that we may change the order of summation to follow the order of the bi . Indeed, the above
summation can be phrased in an index-free way as follows. We have a set of nC1 numbers, each with an
attached sign (one of these pairs being 0 with �). For each element x of the set we form the corresponding
symbol ks , where s is the sign attached to the element x, and k is the number of positive expressions
of the form t .y � x/, where y runs through our set (and y ¤ x) and t is the sign attached to y. Finally,
there is an extra summand `C with ` counting all the positive signs.

We may thus renumber the bi and the si (in the same way) so as to have b1 > b2 > � � � > bn > bnC1,
with an unknown b equal to zero and the corresponding s equal to �1 and omitted in the extra summand
ŒC1I .si /�. Let us now consider two consecutive summands (numbered j and j C 1). They differ at most
by the leading sign, sj versus sjC1, and by the j th nonleading sign, sjC1 sgn.bjC1�bj /D�sjC1 versus
sj sgn.bj � bjC1/D sj . Substituting all four possible combinations of .sj ; sjC1/ we get:

Claim Two consecutive summands are of one of the forms

.a˙; a�/; .aC; .aC 1/C/; .a�; .a� 1/�/:

Suppose that k of the si are positive. Then the extra summand is kC, while the first and the last one
depend on .s1; snC1/ and are:

s1 snC1 first last
C C .n� kC 1/C .k� 1/C

C � .n� kC 1/C k�

� C .n� k/� .k� 1/C

� � .n� k/� k�

We can append the extra summand kC to the sum (while keeping the rule of the claim) and get summation
starting from .n� kC 1/C or .n� k/� and ending at kC. Then we start cancelling consecutive pairs
.a˙; a�/ (except that we do not cancel the first and the last element) until the sequence becomes monotone
(possibly except the first or the last pair). If the final monotone sequence runs from .n� kC 1/C to kC

then the terms pairwise cancel (first with last, second with last-but-one, etc) if n is even, and 1
2
.nC 1/ is

left if n is odd. If the sequence starts with .n�k/�, we may put an extra pair ..n�kC1/C; .n�kC1/�/
at the beginning of the sequence, to reduce to the former case — except when k D 0. If k D 0, we get a
sequence running from n� to 0C, ie .n�; .n� 1/�; : : : ; 1�; 0�; 0C/. The first n terms cancel in the same
manner as before, and 0�C 0C D 0.
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Finally, since the set of permutation relations is invariant under the “exponent sign” flip (a˙$ a�), the
boundary relations obtained from � with s D�1 are dealt with in the same way.

Fact 8.6 and the relation a� D�aC imply the remaining claim (the one describing the PCG–structure
on UC), completing the proof of Theorem 8.1.

Remark 8.8 Let T be the tautological (U –valued) n–cocycle associated to the PGC–action on X , and
let TC be the tautological (UC–valued) n–cocycle associated to the PCGC–action on XC. From the
proof of Theorem 8.1 it is useful to extract the following explicit description of these cocycles.

(a) Let n be even; then U 'Z is generated by the symbol ŒC�. Suppose that � D .Œv1�; : : : ; ŒvnC1�/ is
an n–simplex of X . Then vnC1 D

Pn
iD1 ˛ivi for some ˛i 2 PK. We have (see (8-4))

T .�/D Œsgn.det.v1; : : : ; vn/ �˛1 � � �˛n/�:

(Recall that Œ��D�ŒC�.)

(b) Recall that UC'Zbn=2cC1 with free generating set ADfaC j aD 0; : : : ; bn=2cg (see Lemma 8.7).
Suppose that � D .Œv1�; : : : ; ŒvnC1�/ is an n–simplex of XC. Then vnC1 D

Pn
iD1 ˛ivi for some

˛i 2 PK. To � we assign an .nC1/–tuple of signs ŒsI s1; : : : ; sn�, where s D sgn det.v1; : : : ; vn/
and si D sgn˛i . Next we put TC.�/D aC (if s DC1 and a of the si are C1) or TC.�/D a� (if
s D�1 and a of the si are C1). Finally, we express the symbol in term of the elements of A using
the relations aC D�a� and a˙ D�.nC 1� a/˙ (for a > 0).

Definition 8.9 The splitting of UC D
Lbn=2c
kD0

ZkC into cyclic summands generated by the elements kC

(0� k � bn=2c) induces the corresponding splittings of cocycles and cohomology classes:

TC D
M

Tk; Tk 2Z
n.HomPCGC.C�XC;Z//I

euC D
M

euk; euk 2H
n.PCGC;Z/I

�C D
M

�k; �k 2H
n.HomPCGC.C�XC;Z//:

(In the last formula, �C (�k) is the cohomology class of TC (Tk).)

Remark 8.10 Suppose that K <L is a field extension, and that on K and on L there are compatible field
orders. Then we have the group embedding � W PCGC.K/! PCGC.L/, and the natural �–equivariant
simplicial complex embedding XC.K/!XC.L/ inducing a coefficient group map f WUC.K/!UC.L/.
But, in our field-independent description of UC (see Theorem 8.1 and Remark 8.8) the map f is
represented by the identity. Applying Theorem 1.5 to these data we obtain ��euC.L/D euC.K/— the
Euler class euC is stable under ordered field restriction. It follows that all euk are also stable. Analogous
arguments show the same stability statement for eu.

Remark 8.11 It follows from Theorem 3.1 that the classes eu, euC and euk are bounded.
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9 Relation between the classes euk

The classes euk defined in Definition 8.9 are related.

Theorem 9.1
bn=2cX
kD0

.n� 2kC 1/euk D 0.

Proof We will see that this relation holds already in Hn.HomPCGC.C�XC;Z// for the classes �k . To
prove it, we will find a cochain c 2 C n�1.HomPCGC.C�XC;Z// such that

(9-1) ıc D

bn=2cX
kD0

.n� 2kC 1/Tk

in C n.HomPCGC.C�XC;Z//. The boundary map

@ W .CnXC/PCGC ! .Cn�1XC/PCGC

factors as the composition of the projection .CnXC/PCGC ! .CnXC=BnXC/PCGC D UC and a map
@0 W UC! .Cn�1XC/PCGC . Each Tk also factors — as the composition of the same projection and the
projection T 0

k
of UC on the kC–summand. Recall that .Cn�1XC/PCGC Š Z (with generator ŒC�; see

Lemma 8.4). We now consider a generator aC of UC and determine @0.aC/. Let

va D e1C � � �C ea � .eaC1C � � �C en/I

then .e1; : : : ; en; va/ determines a simplex in XC representing aC. We have

@0.aC/D @Œe1; : : : ; en; va�

D

nX
jD1

.�1/jC1Œe1; : : : ; Oej ; : : : ; en; va�C .�1/
nŒe1; : : : ; en�

D

nX
jD1

.�1/jC1.�1/n�j Œe1; : : : ; va; : : : ; en�C .�1/
nŒC�

D

aX
jD1

.�1/nC1ŒC�C

nX
jDaC1

.�1/nC1Œ��C .�1/nŒC�

D .�1/n..1� a/ŒC�� .n� a/Œ��/D .�1/n.n� 2aC 1/ŒC�:

Let c 2C n�1.HomPCGC.C�XC;Z//DHom..Cn�1XC/PCGC ;Z/ be defined by c.ŒC�/D .�1/n. Then
.c ı @0/.aC/D c.@0aC/D .n� 2aC 1/D

Pbn=2c
kD0

.n� 2kC 1/T 0
k
.aC/ holds for each aC. Formula (9-1)

follows.
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10 The Smillie argument

The Smillie argument (see [Gromov 1982, Section 1.3]) can be used to show that the classes euk are
proportional in a weak sense.

Theorem 10.1 For any h2Hn.BPCGC;Z/ (or h2Hn.BPCGC;Z=m/ for m odd ) and any k�bn=2c,

heuk; hi D .�1/
k
�nC1
k

�
heu0; hi:

If n is odd , then heuk; hi D 0 for all k.

Proof It is well known that there exists a finite simplicial complex Y , a simplicial cycle Z 2Zn.Y;Z/
(or in Zn.Y;Z=m/), and a map f W Y ! BG, such that f�ŒZ�D h. Let P D f �EPCGC (the pullback
of the universal bundle over BPCGC). Then

heuk; hi D heuk; f�ŒZ�i D hf
�euk; ŒZ�i D heuk.P /; ŒZ�i

for each k. We will use Theorem 4.4 to compute heuk.P /; ŒZ�i. Let E DP �PCGC PC be the associated
bundle.

Pick a generic section s W Y .0/!E. Genericity means that the values of the section at the vertices of any
n–simplex of Y , viewed as points in PC via a flat trivialization of E over that simplex, form a generic
tuple of points. Such a section can be picked vertex-by-vertex. At a vertex y the genericity conditions
mean that a certain finite union of proper projective subspaces of Ey is prohibited; since the ordered
field K is infinite, that union does not fill out Ey and a generic choice is possible. Any generic section s
determines a simplicial section of the associated XC–bundle over Y , and then Theorem 4.4 may be
applied.

For any function � WY .0/!f˙1gwe can form a modified section �s WY .0/!E defined in the obvious way:
if s.v/D .p; Œq�/ (for some q 2Kn n f0g), then .�s/.v/D .p; Œ�.v/q�/. Every section �s is again generic.
Theorem 4.4 gives euC.P /D Œ.�s/�TC�, and coefficient splitting allows us to deduce euk.P /D Œ.�s/�Tk�;
both formulae hold for all functions �. For a given n–simplex � of XC we will average the expression
h.�s/�Tk; �i over all possible functions �.

Let � D .v1; : : : ; vn; vnC1/ be one of the n–simplices of Y . Let us choose a flat section r of P
over � , and let s.vi / D Œr; Œqi ��, for qi 2 Kn n f0g. We denote by s�� the n–simplex of XC given by
.Œq1�; : : : ; Œqn�; ŒqnC1�/. This definition depends on the choice of r , but different choices lead to simplices
equivalent under the PCGC–action. The expression hTk; s��i is well defined and equal to hs�Tk; �i.
Let �D sgn det.q1; : : : ; qn/, and let qnC1 D

P
i�n aiqi . Suppose that exactly ` of the coefficients ai are

positive — so that the symbol of s�� is `�.

For any function � we have .�s/�� D .Œ�1q1�; : : : ; Œ�nqn�; Œ�nC1qnC1�/, where �i D �.vi /. We wish to
determine all functions � such that hTk; .�s/��i ¤ 0. This will happen if and only if the decomposition
�nC1qnC1 D

P
i�n bi�iqi has either k or nC 1� k positive coefficients bi .
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Let us first focus on the case of �nC1 D C1 and k positive bi ’s. We will represent the appropriate
functions � in the form �0�00; the idea is that �0 makes all the nonleading signs negative, while �00 changes
k of them to C. In more detail: �0nC1 D C1 and �0i D � sgn ai for i � n, while �00 is arbitrary with k
negative and n� k positive values (plus �00nC1 DC1). For such �0 and �00 the symbol of .�0�00s/�� is k˙,
where the exponent is

Q
i�n �

0
i

Q
i�n �

00
i � sgn det.q1; : : : ; qn/D .�1/`.�1/k�. There are

�
n
k

�
appropriate

functions �.

For �nC1 DC1 and nC 1�k positive bi ’s we get
�

n
nC1�k

�
D
�
n
k�1

�
possibilities, yielding .nC 1�k/˙,

with the exponent equal to .�1/`.�1/nC1�k�D�.�1/n.�1/`.�1/k�.

If �nC1 D�1 the analysis is analogous. The difference is that �0 should now be �0i D sgn ai ; therefore,
the only change is .�1/n�` instead of .�1/` in the final exponent sign formulae.

Putting these together, we get (with N D #Y .0/)�
Tk;

X
�

.�s/��

�
D

�
Tk; 2

N�.nC1/

��n
k

�
k.�1/

`.�1/k�
C

� n

k�1

�
.nC1�k/�.�1/

n.�1/`.�1/k�

C

�n
k

�
k.�1/

n�`.�1/k�
C

� n

k�1

�
.nC1�k/�.�1/

n.�1/n�`.�1/k�

��
D 2N�.nC1/

�
Tk;

��n
k

�
..�1/`.�1/k�C.�1/n�`.�1/k�/kC

�

� n

k�1

�
..�1/n.�1/`.�1/k�C.�1/n.�1/n�`.�1/k�/.nC1�k/C

��
D 2N�.nC1/

�
Tk;

��n
k

�
.1C.�1/n/.�1/`.�1/k�kC

�

� n

k�1

�
.1C.�1/n/.�1/n.�1/`.�1/k�.nC1�k/C

��
:

For n odd, this is zero. Thus, we assume n even; then the coefficients in the above expression add up to

2N�n
��n
k

�
C

� n

k�1

��
.�1/k.�1/`�D 2N�n

�nC1
k

�
.�1/k.�1/`�:

Similarly, if nC 1� ` of the coefficients ai are positive, we get

2N�n
�nC1
k

�
.�1/k.�1/nC1�`�:

In both cases, the result can be expressed as

2N�n
�nC1
k

�
.�1/kh.�1/`T`; s��i:

Since on any s�� exactly one of T` is nonzero, we can rewrite this formula as

2N�n
�nC1
k

�
.�1/k

X
`

h.�1/`T`; s��i;
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with summation over `� n=2. Let us summarize:�X
�

.�s/�Tk; �

�
D 2N�n

�nC1
k

�
.�1/k

X
`

h.�1/`s�T`; �i:

It follows that X
�

.�s/�Tk D 2
N�n

�nC1
k

�
.�1/k

X
`

.�1/`s�T`:

Now recall that, by Theorem 4.4, each .�s/�Tk is a cocycle representing the cohomology class euk.P /.
Therefore

2N euk.P /D 2
N�n

�nC1
k

�
.�1/k

X
`

.�1/`eu`.P /:

Comparing this formula for k D 0 and for any other value of k we get the following lemma (which may
be regarded as a variant of Theorem 10.1).

Lemma 10.2 Let P be a flat principal PCGC–bundle over a finite simplicial complex Y that has N
vertices. Then

2N euk.P /D 2
N .�1/k

�nC1
k

�
eu0.P /:

Evaluating both sides of the formula from the lemma on ŒZ� concludes the proof of Theorem 10.1.

Corollary 10.3 Let P be a PCGLC.n;K/–bundle over an even-dimensional manifold M n. Then any
triangulation of M has at least 2njheu0.P /; ŒM �ij simplices of dimension n.

Proof Pick a generic section s, over the given triangulation, of the associated bundle with fibre PC. Then,
by Theorem 10.1, jhs�Tk; ŒM �ij D jheuk.P /; ŒM �ij D

�
nC1
k

�
jheu0.P /; ŒM �ij. Since jhs�Tk; �ij � 1 and

the supports of the cocycles s�Tk are pairwise disjoint, the number of n–simplices of the triangulation is
at least

bn=2cX
kD0

jhs�Tk; ŒM �ij D jheu0.P /; ŒM �ij �

bn=2cX
kD0

�nC1
k

�
D 2njheu0.P /; ŒM �ij:

11 Cross product of Euler classes

It will be convenient to put Œn�D f0; 1; : : : ; ng. We will use groups GLC.n;K/ for varying n; therefore
we denote UC by Un;C in this and the next section.

Theorem 11.1 LetE andE 0 be GLC.n;K/– and GLC.k;K/–bundles over simplicial complexesX and
X 0 respectively. Let E �E 0 be the product bundle over X �X 0. For any simplicial cycles z 2Zn.X;Z/
and z0 2Zk.X 0;Z/,

(11-1) heu0.E/; zi � heu0.E 0/; z0i D heu0.E �E 0/; z � z0i:

Proof We first explain the general strategy of the proof. We may and do assume that X D supp z and
X 0 D supp z0. We triangulate X �X 0 subdividing each product of simplices � � � 0 in a standard way (to

Algebraic & Geometric Topology, Volume 24 (2024)



2922 Jan Dymara and Tadeusz Januszkiewicz

be recalled later). It is also convenient to treat E, E 0 and E �E 0 not as principal bundles, but as vector
bundles; eg the fibre Ex will be an n–dimensional vector space over K. We pick generic sections s of E
and s0 of E 0, and combine them to a section S of E �E 0. To ensure genericity of S we impose stronger
than usual, weird-looking genericity conditions on s and on s0. The section s induces a simplicial section
sC of the associated Xn;C–bundle, where Xn;C is the complex of generic tuples of points in Pn�1

C
.K/.

Then, by Theorem 4.4, we get cocycles s�
C
TC and s�

C
T0 representing euC.E/ and eu0.E/. For each

n–simplex � in X we have hs�
C
TC; �i D k˙ for some k; if k D 0 then hs�

C
T0; �i D ˙1, otherwise

hs�
C
T0; �i D 0. Similarly, we have cocycles s0�

C
T0 and S�

C
T0 representing eu0.E 0/ and eu0.E �E 0/.

Suppose that z D
P
� n�� and z D

P
� 0 n� 0�

0; then z� z0D
P
�;� 0 n�n� 0 �� ��

0, where � �� 0 denotes
the chain representing the standard subdivision of the product of simplices. We have

heu0.E/; zi D
X
�

n� hs
�
CT0; �i; heu0.E 0/; z0i D

X
� 0

n� 0hs
0�
CT0; �

0
i;

heu0.E �E 0/; z � z0i D
X
�;� 0

n�n� 0hS
�
CT0; � � �

0
i:

Thus, to establish the theorem it is enough to show that

(11-2) hs�CT0; �i � hs
0�
CT0; �

0
i D hS�CT0; � � �

0
i:

We do this step-by-step. In Corollary 11.4 we show that if the left-hand side of (11-2) is zero, then so is
the right-hand side. In Corollary 11.5 we show that if the left-hand side is nonzero, then in the chain
� � � 0 there is a unique summand (unique .nCk/–simplex) on which S�

C
T0 evaluates to ˙1. Finally, in

Lemma 11.6 we check that the sign of that evaluation is consistent with (11-2).

We proceed to the details. First we pick a generic section s of E over X .0/. The genericity condition is as
follows. For each `–simplex � D .x0; : : : ; x`/ of X (` < n), the vectors .s.x0/; : : : ; s.x`// are linearly
independent. For each n–simplex � D .x0; : : : ; xn/, if

Pn
iD0 ˛is.xi /D 0 is a nontrivial linear relation

(projectively unique, because of the previous condition), then
Pn
iD0 ˛i ¤ 0. To make sense of these

conditions we choose a (flat) trivialization of E over � .

This kind of section can be chosen vertex-by-vertex. Let X .0/ D .x1; x2; : : : ; xN /. First, we choose any
nonzero s.x1/2Ex1 . When s.x1/; : : : ; s.xi�1/ have been chosen, we choose (flat) trivializations over all
simplices with vertex xi . If � D .xi ; y1; : : : ; y`/ is an `–simplex of X (` < n) such that s.y1/; : : : ; s.y`/
have already been chosen, we use the trivialization of E over � to transport all s.yj / to Exi . There, these
vectors span a linear subspace E�i of dimension ` < n. We have to ensure s.xi / …E�i in order to fulfill
the first genericity condition for � .

Next, for each simplex � D .xi ; y1; : : : ; yn/ with s.y1/; : : : ; s.yn/ already chosen we pick a (flat)
trivialization of E over � and use it to transport the s.yj / to vectors s�j 2Exi . Then we form an affine
subspace

E�i D f˛1s
�
1 C � � �C˛ns

�
n j ˛1C � � �C˛n D 1g:

We have to choose s.xi / outside of this subspace in order to fulfill the second genericity condition for � .
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A linear space over an ordered (hence infinite) field is not a union of finitely many proper affine subspaces.
Therefore, s.xi / can be suitably chosen. By induction, there exists a generic section s of E over X .0/.

With the section s we associate a collection of scalars A. For each n–simplex � D .x0; : : : ; xn/ of X
let
Pn
iD0 ˛is.xi /D 0 be the linear relation with

Pn
iD0 ˛i D 1 (in some trivialization of E over �). For

every proper nonempty subset of Œn� we sum the corresponding ˛i ’s. The set A is the collection of all
such sums (over all n–simplices).

Now, analogously, we choose a generic section s0 of E 0 over X 0.0/. It has its own collection of scalars A0.
We want A and A0 to be disjoint. To this end, we perform the above section-choosing procedure
for E 0 with supplementary restrictions. Suppose that we are at step i , choosing s0.x0i /. There is a
collection of proper affine subspaces in E 0x0

i
that we need to avoid; we now describe an additional

finite collection, that will enforce our extra “joint genericity” condition. Let � 0 D .x0i ; y
0
1; : : : ; y

0
k
/ be

a k–simplex of X 0, such that s0.y0j / are already chosen, and let s�
0

j be s0.y0j / transported to E 0x0
i

via a
chosen trivialization of E 0 over � 0. For any generic (in the previous sense) s0i D s

0.x0i / there is a unique
relation ˇ0s0i C

Pk
jD1 ǰ s

� 0

j D 0 satisfying
Pk
jD0 ǰ D 1. Pick an ˛ 2A and a proper nonempty J � Œk�;

we want to ensure that
P
j2J ǰ ¤ ˛. Let us express this as a restriction for the possible position of s0i .

Suppose that s0i D
Pk
jD1
j s

� 0

j , and that
P
j2J ǰ D ˛. Let us express ǰ in terms of the 
j . By the

original genericity requirement we know that � WD �1C
Pk
jD1
j ¤ 0; therefore

�
1

�
s0j C

kX
iD1


i

�
s�
0

j D 0;

so ˇ0 D�1=� and ǰ D 
j =� . Thus, the condition
P
j2J ǰ D ˛ can be rewritten in terms of the 
j

(putting 
0 D�1):
P
j2J 
j =� D ˛, or

P
j2J 
j D ˛� , or finally

kX
jD0

.˛� ıJ .j //
j D 0:

Since J is proper and nonempty, regardless of the value of ˛ the set of vectors
Pk
jD1 
j s

� 0

j for 
j
satisfying this condition forms a proper affine subspace of E 0x0

i
. (The two special suspect cases, J D f0g

with ˛ D 0 and J D f1; : : : ; kg with ˛ D 1, are easily seen to be impossible.) Thus, the extra genericity
conditions produce a new finite collection of proper affine subspaces to avoid, so that it is possible to
fulfill them.

Assume then that we have chosen jointly generic (in the above sense) sections — s of E and s0 of E 0. We
now form a generic section S of E�E 0 over .X�X 0/.0/ by S.x; x0/D .s.x/; s0.x0//. To claim genericity,
we need to describe the (standard) triangulation of X �X 0. We choose some total orders on X .0/ and
on X 0.0/, and order each simplex of X .n/ and of X 0.k/ accordingly. Let � D .x0; : : : ; xn/ 2 X .n/, and
let � 0 D .x00; : : : ; x

0
k
/ 2 X 0.k/. Let x.i;j / D .xi ; x0j /. We form the n� k integer grid — with vertex set

Œn�� Œk� and edges connecting pairs that differ on exactly one coordinate and exactly by 1. Shortest paths
from .0; 0/ to .n; k/ will be called admissible. (“Shortest” is equivalent to “going right or up at each
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step”.) For each admissible path 
 W ŒnC k�! Œn�� Œk� we span an .nCk/–simplex �
 in � � � 0 on the
vertices .x
.j / j j 2 ŒnCk�/. It is well known that the set of all such �
 triangulates � �� 0 (see [Gelfand
and Manin 2003, I.1.5]).

We will call an .nC1/–tuple of vectors in an n–dimensional vector space linearly generic, if every n of
them are linearly independent.

Lemma 11.2 Vectors .v0; : : : ; vn/ are linearly generic if and only if there is a projectively unique linear
relation

Pn
iD0 ˛ivi D 0, and the coefficients in this relation are all nonzero.

Proof (() If some n of the vi ’s were linearly dependent, a nontrivial linear relation between them could
be extended — by adding 0 times the remaining vector — to a nontrivial relation with coefficient 0.
This is a contradiction.

()) For dimensional reasons, there is a nontrivial linear relation between the vi ’s; if some of its
coefficients were 0, it would give linear dependence of a proper subset of the vi ’s. If the relation
was not projectively unique, one could form a linear combination of two nonproportional relations
and obtain a nontrivial relation with coefficient 0.

Observe that for a linearly generic tuple .v0; : : : ; vn/, the class Œ.v0; : : : ; vn/� in Un;C is 0˙ if and only
if all the coefficients in the linear relation

Pn
iD0 ˛ivi D 0 are of the same sign.

Now we will tackle the question of genericity of the section S (of E � E 0 over .X � X 0/.0/). Let
� D .x0; : : : ; xn/ 2 X

.n/ and � 0 D .x00; : : : ; x
0
k
/ 2 X 0.k/. Using trivializations of E over � and of E 0

over � 0, we identify each Exi with the same vector space V (Š Kn/, and each E 0x0
j

with W (Š Kk/.
Thus, we put vi D s.xi / 2 V , wj D s0.x0j / 2W , V.i;j / D .vi ; wj /D S.x.i;j // 2 V ˚W . We would like
to show that for each admissible path 
 the vectors .V
.j / j j 2 ŒnC k�/ are linearly generic. There are
unique scalars ˛i and ǰ such that

nX
iD0

˛ivi D 0;

nX
iD0

˛i D 1;

kX
jD0

ǰwj D 0;

kX
jD0

ǰ D 1:

Let Au D
Pu
iD0 ˛i and Bs D

Ps
jD0 ǰ . For a given path 
 , let us arrange these two sequences into one:

Cj D

�
Ai if 
.j /D .i;�/ and 
.j C 1/D .i C 1;�/;
Bi if 
.j /D .�; i/ and 
.j C 1/D .�; i C 1/:

We put CnCk D An D Bk D 1 and C�1 D 0.

Lemma 11.3 There is a projectively unique linear relation between the vectors .V
.j / j j 2 ŒnC k�/. If
we require that the sum of coefficients be 1, this relation is

nCkX
jD0

.Cj �Cj�1/V
.j / D 0:

If all Au and Bs are distinct , all coefficients of this relation are nonzero.
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Proof First, let us prove the formula. Projecting onto the first factor we get

(11-3)
nX
iD0

� X
j2�i

.Cj �Cj�1/

�
vi D 0;

where �i D fj 2 ŒnCk� j 
.j /D .i;�/g (similarly, we put � i D fj 2 ŒnCk� j 
.j /D .�; i/g). We have
�i D fu; uC 1; : : : ; uC `g for some integers u, `. ThereforeX

j2�i

.Cj �Cj�1/D CuC`�Cu�1 D Ai �Ai�1 D ˛i :

Consequently, (11-3) becomes
Pn
iD0 ˛ivi D 0. Similarly, the projection onto W is 0. Thus, the relation

stated in the lemma holds.

Suppose now that
PnCk
jD0 „jV
.j / D 0 is a linear relation with

PnCk
jD0 „j D 1. Projecting onto the first

factor, we get
Pn
iD0 �ivi D 0, where �i D

P
j2�i

„j . Since
Pn
iD0 �i D

PnCk
jD0 „j D 1 and the vectors

vi are linearly generic, we know that �i D ˛i . Thus,X
j2�i

„j D ˛i :

Similarly, X
j2�i

„j D ˇi :

Since each j is the largest element of exactly one set �i or � i , these equations recursively and uniquely
determine all the „j .

Consequently, a linear relation between the V
.j / with nonzero sum of coefficients is projectively unique.
This implies that there is no nontrivial relation with sum of coefficients 0— if it existed, it could be added
to the one with sum of coefficients 1, contradicting the uniqueness of the latter.

The last claim of the lemma follows directly from the formula.

Corollary 11.4 Suppose that the class Œ.v0; : : : ; vn/� in Un;C, or the class Œ.w0; : : : ; wk/� in Uk;C, is
not 0˙. Then , for every admissible path 
 , the class Œ.V
.j / j j 2 ŒnC k�/� in UnCk;C is not 0˙.

Proof The assumption can be interpreted as ˛i < 0 for some i , or ǰ < 0 for some j . In each case
one of the sequences .Au/ or .Bs/ is not increasing; therefore, independent of 
 , the sequence .Cj / is
not increasing. Consequently, the relation between the V
.j / (as in the lemma) cannot have all positive
coefficients, while it does have some since their sum is 1. Hence the claim.

Corollary 11.5 Suppose that the class Œ.v0; : : : ; vn/�D 0˙ in Un;C, and the class Œ.w0; : : : ; wk/�D 0˙

in Uk;C. Then there is a unique admissible path 
 such that Œ.V
.j / j j 2 ŒnC k�/�D 0˙ in UnCk;C.

Proof The sequences .Au/ and .Bs/ are increasing. There is a unique 
 such that .Cj / is increasing as
well — then Œ.V
.j / j j 2 ŒnC k�/�D 0˙. For other 
 we conclude as in the previous corollary.
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Now we know that (11-2) holds up to sign. To finish the proof it remains to work out the relation between
the signs that appear in the exponents in Corollary 11.5, and to check that this relation is consistent
with (11-2). The cycle z � z0 contains a triangulated version of the product � � � 0, for � 2 supp z and
� 0 2 supp.z0/, in the form

P

 sgn.
/�
 . The summation is over all admissible 
 . The sign sgn.
/ equals

.�1/A.
/, where A.
/ is the area of the part of the grid that lies under the image of 
 . In particular, if 

goes along the lower edge and the right-hand edge of the grid, the sign is C1. If we change 
 by moving
one 
.j / to the opposite vertex of a 1� 1 square — and get an admissible 
 0— then sgn.
 0/D� sgn.
/.

Lemma 11.6 Suppose that Œ.v0; : : : ; vn/�D 0s and Œ.w0; : : : ; wk/�D 0s
0

. Then

Œ.V
.j / j j 2 ŒnC k�/�D sgn.
/ � 0ss
0

for the 
 from the previous corollary.

Proof We choose orientations of the bundles E and E 0; we get induced orientations of V , W and
V ˚W . With respect to some positively oriented bases of V and W we have sgn det.v0; : : : ; vn�1/D s
and sgn det.w0; : : : ; wk�1/D s0. We will show that for every admissible 
 the sign formula

sgn detB.V
.j / j j 2 ŒnC k� 1�/D sgn.
/

holds, where the determinant is calculated with respect to the basis

B D ..v0; 0/; : : : ; .vn�1; 0/; .0; w0/; : : : ; .0; wk�1//:

(This claim implies the lemma.)

First, for the 
 with A.
/D 0, the determinant isˇ̌̌̌
ˇ̌̌̌
ˇ̌̌̌
ˇ̌̌̌
ˇ

1 0 � � � 0 a0 a0 � � � a0
0 1 � � � 0 a1 a1 � � � a1
:::

:::
:::

0 0 � � � 1 an�1 an�1 � � � an�1
1 1 � � � 1 1 0 � � � 0

0 0 � � � 0 0 1 � � � 0
:::

:::
:::

0 0 � � � 0 0 0 � � � 1

ˇ̌̌̌
ˇ̌̌̌
ˇ̌̌̌
ˇ̌̌̌
ˇ
;

where all ai are negative (vnD
Pn�1
iD0 aivi ). To calculate it, we use lower rows to cancel all the ai except

the ones in the .nC1/st column. Then we use the left columns to cancel all the remaining ai — this
increases the .nC1; nC1/–entry. The result is now lower-triangular and positive on the diagonal.

Now let us consider the change of the determinant as 
.j / moves across a 1� 1 square. This changes
one column. That column, and the neighbouring ones, are

. : : : ; .vi ; wj /; .viC1; wj /; .viC1; wjC1/; : : : /$ . : : : ; .vi ; wj /; .vi ; wjC1/; .viC1; wjC1/; : : : /:

Algebraic & Geometric Topology, Volume 24 (2024)



Tautological characteristic classes, I 2927

The change, up to sign, can be performed by two column operations:

�.vi ; wjC1/D .viC1; wj /� .vi ; wj /� .viC1; wjC1/:

Since every admissible 
 can be obtained by such operations from the one with A.
/ D 0, the sign
formula holds for all admissible paths.

This completes the proof of Theorem 11.1.

12 Cup product of Euler classes

Let E be a (flat) GLC.n;K/–bundle over a simplicial complex X . We will often trivialize this bundle
over simplices of X ; to facilitate the use of such trivializations we introduce the following convention.
Let � D .x0; : : : ; x`/ be a simplex of X . We put E� WD Ex0 , and we use any (flat) trivialization of E
over � to isomorphically identify all the other Exi with E� . Thus, if s WX .0/!E is a section, we write
s.x0/; : : : ; s.x`/ 2E� .

Definition 12.1 A section s WX .0/!E is called positive, if for every simplex � D .x0; : : : ; x`/ of X
there is a functional �� 2E�� such that �� .s.xi // > 0 for i D 0; : : : ; `.

If a GLC.n;K/–bundle E over X admits a generic positive section s, then heu0.E/; zi D 0 for every
cycle z 2 Zn.X;Z/. Indeed, for every simplex � 2 X .n/ we have s�� ¤ 0˙ in Un;C, since the values
of s at the vertices of � do not admit a linear relation with all positive coefficients — by positivity of s. It
turns out that (over a cycle) every positive section can be perturbed to a generic positive section.

Lemma 12.2 If a GLC.n;K/–bundle E over a finite simplicial complex X admits a positive section ,
then it admits a generic positive section.

Proof Let s be a positive section, as witnessed by functionals �� 2E�� (� 2X .n/). We will construct,
vertex-by-vertex, a new generic section s0, positive with respect to the same collection of functionals. We
order the vertices of X , and we start with s0.x0/D s.x0/. Suppose that s0.x`/ have already been chosen
for `< i . Put V DExi . When choosing s0.xi / in V , in order to ensure genericity, we need to avoid a finite
collection of affine hyperplanes, say defined by equations . j .v/D j̨ /j2J (where  j 2 V �, j̨ 2K).
Also, for each n–simplex � with vertex xi , we need to ensure that �� .s0.xi //> 0 (we identify E� with V ).
Let w 2 V be such that  j .w/¤ 0 for all j 2 J ; such w exists, since V is not the union of finitely many
hyperplanes .ker j /j2J . We will find suitable s0.xi / in the form v.˛/ WD s.xi /C˛w, for some scalar ˛.
First, observe that the equation  j .v.ˇ// D j̨ has a unique solution ǰ D

�
j̨ � j .s.xi //

�
= j .w/.

Let B WDminf ǰ j ǰ > 0g. The condition �� .v.ˇ// > 0, ie �� .s.xi //Cˇ�� .w/ > 0, is equivalent to
ˇ > ��� .s.xi //=�� .w/ (if �� .w/ > 0) or to ˇ < ��� .s.xi //=�� .w/ (if �� .w/ < 0). We know that
ˇ D 0 satisfies all these inequalities. Therefore, the scalar M WDminf��� .s.xi //=�� .w/ j �� .w/ < 0g
is positive. We put ˛ WD 1

4
min.B;M/ and s0.xi /D v.˛/.
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Corollary 12.3 Let E and E 0 be GLC.n;K/– and GLC.k;K/–bundles over simplicial complexes X
and X 0, respectively. For any simplicial cycles z 2Zn�`.X;Z/ and z0 2ZkC`.X 0;Z/, where ` > 0,

heu0.E �E 0/; z � z0i D 0:

Proof We may and do assume that X D supp z and X 0 D supp z0. Let s be a generic section of E. For
dimensional reasons, the values of s at the vertices of any simplex � of X are linearly independent;
therefore, a functional �� can be chosen that evaluates to 1 on each of them. Thus, s is positive. Now
define S W .X � X 0/.0/ ! E � E 0 by S.x; x0/ D .s.x/; 0/. Then, for any simplices � 2 X .n�`/ and
� 0 2X 0.kC`/, and any .nCk/–dimensional simplex �
 in the standard triangulation of � � � 0, we may
put ��
 D �� ı�E . Then, for every vertex .x; x0/ of �
 we have

��
 .S.x; x
0//D ��

�
�E .s.x/; 0/

�
D �� .s.x// > 0:

Therefore, S is a positive section of E �E 0 over supp z � z0. By the lemma above, there exists a generic
positive section, and that implies the asserted vanishing.

Corollary 12.4 Let E and E 0 be GLC.n;K/– and GLC.k;K/–bundles over simplicial complexes X
and X 0 respectively. For any simplicial cycle Z 2ZnCk.X �X 0;Z/,

heu0.E/� eu0.E 0/; Zi D heu0.E �E 0/; Zi:

Proof Indeed, by Künneth’s formula, an integer multiple of Z is homologous to a combination of cycles
of the form z�z0; for the latter, the formula holds either by the previous corollary, or by Theorem 11.1.

Theorem 12.5 Let E and E 0 be GLC.n;K/– and GLC.k;K/–bundles over a simplicial complex X .
For any simplicial cycle z 2ZnCk.X;Z/,

heu0.E/[ eu0.E 0/; zi D heu0.E˚E 0/; zi:

Proof Let � WX !X �X be the diagonal map. Then

heu0.E/[ eu0.E 0/; zi D h��.eu0.E/� eu0.E 0//; Œz�i

D heu0.E/� eu0.E 0/;��Œz�i D heu0.E �E 0/;��Œz�i

D h��eu0.E �E 0/; Œz�i D heu0.��.E �E 0//; Œz�i

D heu0.E˚E 0/; zi:

13 Comparison of Euler and Witt classes

We use the functoriality theorem (Theorem 1.5) to compare various tautological classes that we have
constructed. We begin with eu and euC.

Euler classes We assume n is even. There is a natural map PC ! P ; it induces a simplicial (non-
degenerate) map f WXC!X . The groups PCGC and PGC acting on XC and X (respectively) are also
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related by the natural projection homomorphism � W PCGC! PGC. The map f is �–equivariant, and
induces a coefficient group map f W UC! U . Theorem 1.5 applies and gives the diagram

Hn.PGC; U /
��
�!Hn.PCGC; U /

f�
 �Hn.PCGC; UC/:

Recall that U ' Z and UC ' Z.n=2/C1. The map f W UC ! U can be described explicitly using
Remark 8.8. The generator aC of UC is represented by the simplex .Œe1�; : : : ; Œen�; Œva�/, where

va D e1C � � �C ea � .eaC1C � � �C en/:

The image of this simplex in X determines in U the symbol Œsgn.det.e1; : : : ; en/ � .�1/n�a/�D Œ.�1/a�.
Therefore, f .aC/D Œ.�1/a�D .�1/aŒC�. It follows that the induced map on cohomology,

f� WH
n.PCGC; UC/!Hn.PGC; U /;

maps euC D
L
a eua to

P
a.�1/

aeua. Theorem 1.5 implies the following result.

Theorem 13.1 Let � W PCGC! PGC be the natural projection homomorphism. Then

��euD
n=2X
aD0

.�1/aeua:

A (flat) PCGC–bundle P over Y determines a PGC–bundle P 0 over Y . As is usual in such cases, we
put eu.P / WD eu.P 0/ 2Hn.Y;Z/.

Corollary 13.2 Let P be a (flat) PCGLC.n;K/–bundle over an oriented closed n–manifold M . Then

heu.P /; ŒM �i D 2nheu0.P /; ŒM �i:

Proof Using Theorems 10.1 and 13.1, we calculate

heu.P /; ŒM �i D

� n=2X
kD0

.�1/keuk.P /; ŒM �

�

D

n=2X
kD0

.�1/kheuk.P /; ŒM �i

D

n=2X
kD0

.�1/k.�1/k
�nC1
k

�
heu0.P /; ŒM �i D 2nheu0.P /; ŒM �i:

Remark 13.3 For nD 2, Theorem 9.1 gives 3eu0C eu1 D 0. Theorem 13.1 now implies ��euD 4eu0,
ie in this case Corollary 13.2 can be strengthened to equality in H 2.PCGLC.2;K/;Z/— there is no
need to evaluate on cycles.

Witt class In Section 7 we discussed the action of PSL.2;K/ on P1, on the associated complex X , and
the resulting Witt classw2H 2.PSL.2;K/;W.K//. In Section 8 we considered the action of PGLC.2;K/
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on the same spaces, and the resulting cohomology class eu 2H 2.PGLC.2;K/;Z/. Theorem 1.5 may be
applied to the identity map � WX !X and the injection homomorphism � W PSL.2;K/! PGLC.2;K/.
Before stating the result we compute the coefficient map � WW.K/!Z. The symbol Œ�� is represented by
the triple t� D

��
1
0

�
;
�
0
1

�
;
�
1
�

��
. To find the symbol of t� in U2.X;PGLC.2;K// we write�

1

�

�
D 1 �

�
1

0

�
C� �

�
0

1

�
:

Then, using Remark 8.8, we get �
sgn

�ˇ̌̌̌
1 0

0 1

ˇ̌̌̌
� 1 ��

��
D Œsgn.�/�:

Therefore, the map � WW.K/! Z is just the signature map � , given by �.Œ��/D sgn.�/. The diagram is

H 2.PGLC.2;K/;Z/
��
�!H 2.PSL.2;K/;Z/ ��

 �H 2.PSL.2;K/;W.K//

and the theorem is as follows.

Theorem 13.4 Let � W PSL.2;K/! PGLC.2;K/ be the standard inclusion. Then

��euD ��w:

Furthermore , the pullback of this class to SL.2;K/ is equal to 4eu0.

The last claim of the theorem follows from Remark 13.3.

Nonvanishing Consider a flat vector SL.2;R/–bundleE over a closed oriented surface†. The (classical,
topological) Euler class eut .E/ of E (more precisely, the Euler number heut .E/; Œ†�i) can be computed
as the signed number of zeroes of a generic section of E; generic means transversal to the zero section.
Consider now a triangulation Y of †. Let s W Y .0/!E be a generic section over the set of vertices of Y .
Here genericity means that for every 2–simplex � of Y the values of s at the vertices of � are pairwise
linearly independent (as usual, we compare them using a flat trivialization of E over � ). The section s can
be affinely extended to each simplex of Y . Together, these extensions define a generic section of E over †
in the previous, classical sense. Moreover, the zeroes of this extended section occur exactly in simplices �
on which s�T0 (the cocycle representing eu0.E/; see Remark 8.8 and Definition 8.9) is nonzero, and the
sign of the zero in � is equal to s�T0.�/. These arguments prove the following statement.

Fact 13.5 Let E be a flat SL.2;R/–bundle over a closed surface †. Then

heu0.E/; Œ†�i D heut .E/; Œ†�i:

We will now prove that all the Euler classes constructed in this paper are nonzero (for n even).

Theorem 13.6 Let K be an ordered field and let n be even. Then the Euler classes eu, euC and all euk
are nonzero.
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Proof Recall that an ordered field contains Q as a subfield, and the order restricted to Q is standard. Due
to field restriction stability of our classes (see Remark 8.10) it is enough to show the theorem for K DQ.

Assume first that n D 2. Recall that over a closed oriented surface † of genus g � 2 there are flat
vector SL.2;R/–bundles E with nontrivial Euler class eut (see [Milnor and Stasheff 1974, Appendix C]).
Moreover, Takeuchi proved that SL.2;Q/ can be used as the structure group of such bundles (see [Takeuchi
1971]); let us call such examples (flat SL.2;Q/–bundles with nontrivial eut ) Takeuchi bundles. Fact 13.5
implies that the Euler class eu0 is nonzero for Takeuchi bundles. Theorem 10.1 and Corollary 13.2 imply
that also eu1 and eu are nontrivial for them.

For larger even nD 2k we consider the Cartesian product Y of k copies of †, and over Y the product
bundle E�k of k–copies of a Takeuchi bundle E. Then Theorem 11.1 shows that

heu0.E�k/; ŒY �i D heu0.E/; Œ†�ik ¤ 0:

Again, it follows from Theorem 10.1 and Corollary 13.2 that all euk as well as eu are nontrivial on E�k.
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