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Homotopy types of suspended 4–manifolds

PENGCHENG LI

Given a closed, smooth, connected, orientable 4–manifold M whose integral homology groups can have
2–torsion, we determine the homotopy decomposition of the double suspension †2M as wedge sums
of some elementary A3

3–complexes which are 2–connected finite complexes of dimension at most 6.
Furthermore, we utilize the Postnikov square (or equivalently Pontryagin square) to find sufficient
conditions for the homotopy decompositions of †2M to desuspend to that of †M .

55P15, 55P40, 57N65

1 Introduction

Recently, research on the homotopy properties of manifolds has emerged in two directions. The first
direction is the loop homotopy of manifolds, which can be traced back to Beben and Wu’s work [6]
in 2011. After them, many people made efforts to promote the development of this project, such as Beben,
Theriault and Huang [4; 5; 15]. On the other hand, as exhibited by So and Theriault [19], the suspension
homotopy of manifolds has rich applications in some important objects of geometry and physics, such as
gauge groups and current groups. Hereafter, this research direction has been widely studied, for instance
in Huang [11; 12; 13], Cutler and So [8] and Huang and Li [14].

This paper contributes to further research on the suspension homotopy of manifolds. In the above related
literature, due to some intractable obstructions, the authors usually avoid handling 2–torsions of the
integral homology groups of the manifolds. For example, So and Theriault [19] required the 4–manifolds
are 2–torsion-free in integral homology, Huang [13] restricts to 6–manifolds with integral homology
groups containing no 2– or 3–torsions, while Cutler and So [8] and Huang and Li [14] respectively studied
the suspension homotopy of simply connected 6–manifolds and 7–manifolds after localization away
from 2.

In this paper we developed new techniques and tools in homotopy theory to obtain complete classification
of the homotopy types of suspended 4–manifolds which can have 2–torsion in homology. For instance,
we successfully apply certain homotopy properties of some A3

n–complexes (defined below) to obtain the
homotopy decompositions of †2M . Moreover, the Postnikov squaring operation (1-1) and the Pontryagin
squaring operation (1-2) appear to be powerful in the characterizations of the homotopy type of †M ; see
Section 5.
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2934 Pengcheng Li

To make sense of the introduction, we need the following notions and notation. Let G be an abelian
group and let n be a positive integer. Denote by Hn.X IG/ (resp. Hn.X IG/) the nth (singular) homology
(resp. cohomology) group of X with coefficients in G, and denote by P n.G/ the n–dimensional Peterson
space (see Neisendorfer [18]) which admits a unique nontrivial reduced integral cohomology group G
in dimension n. In particular, for integers n; k � 2, we denote by Z=k D Z=kZ the group of integers
modulo k. Recall the Peterson spaces have the cell structure

P n.k/D P n.Z=k/D Sn�1[k e
n;

which admits the obvious inclusion in�1 of the bottom sphere Sn�1 into P n.k/ and the pinch map qn
onto Sn. For each n� 3, there is a generator z�r 2 �nC1.P n.2r// satisfying the formula

qnz�r ' �nI

see Lemma 2.1, where �n W SnC1! Sn is the iterated suspensions of the Hopf map � W S3! S2. For
a homomorphism � WG!G0 of groups, ker.�/ and im.�/ denote the kernel and the image subgroups
of �, respectively.

A finite CW–complex X is called an Ak
n–complex if X is .n�1/–connected and has dimension at most

nC k. It is well known that elementary (or called indecomposable) A1
n–complexes consist of spheres

Sn; SnC1 and the Moore spaces P nC1.pr/ with p odd primes and r � 1. One may consult Zhu, Li and
Pan [24; 16; 23; 25] and Baues and Hennes [3] for more homotopy theory of such complexes. We need
the following elementary A3

n–complexes with n� 3 and r; s � 1:

C nC2� D Sn[� CSnC1 D†n�2CP 2; C nC2r D P nC1.2r/[in� CSnC1;

C nC2;s D Sn[�qnC1
CP nC1.2s/; C nC2;sr D P nC1.2r/[in�qnC1

CP nC1.2s/;

AnC3.�2/D Sn[�2 CSnC2; AnC3.z�r/D P
nC1.2r/[z�r

CSnC2;

AnC3.2r�2/D P nC1.2r/[in�2 CSnC2:

Here the first four A2
n–complexes are the elementary Chang complexes (due to Chang [7]), and the last

two spaces are the only two A3
n–complexes with the homology groups

Hn Š Z=2r ; HnC3 DH0 Š Z; Hi D 0 for i ¤ 0; n; nC 3:

Compare [2, Theorem 10.3.1]. Note that all of the above A3
n–complexes desuspend: they can be defined

for n� 2.

To deal with 2–torsions in H�.M IZ/, we shall employ the following cohomology operations. Let X be
a connected CW–complex. For each r � 1, there are unstable cohomology operations: the Postnikov
square

(1-1) P0 WH
1.X IZ=2r/!H 3.X IZ=2rC1/

and the Pontryagin square

(1-2) P1 WH
2.X IZ=2r/!H 4.X IZ=2rC1/:
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Homotopy types of suspended 4–manifolds 2935

These two operations were carefully studied by Whitehead [21; 22]. Given a cohomology operation C
which maps H r.X;AIG1/!H s.X;AIG2/ for each pair .X;A/, the suspension operation S.C / is the
composition (see [20, Section 3])

H r�1.Y IG1/
�
�!H r.†Y IG1/

C
�!H s.†Y IG2/

��1

��!H s�1.Y IG2/;

where � is the suspension isomorphism. Note that P0 is the suspension operation of P1:

(1-3) �P0 DP1� I

see [20, Theorem I(i)]. The Adem relations

Sq3 D Sq1 Sq2 and Sq3 Sq1CSq2 Sq2 D 0

yield the secondary operation ‚n based on the relation 'n�n D 0 with

(1-4)
�n D

�
Sq2 Sq1

Sq2

�
WKn!KnC3 �KnC2;

'n D .Sq1;Sq2/ WKnC3 �KnC2!KnC4;

where n� 1, Km DKm.Z=2/ denotes the Eilenberg–Mac Lane space of type .Z=2;m/. For a space X ,
the secondary operation ‚n W Sn.X/! Tn.X/ is the induced homomorphism with

Sn.X/D ker.�n/] D ker.Sq2/\ ker.Sq2 Sq1/;

Tn.X/D coker.�'n/] DH
nC3.X IZ=2/=im.Sq1CSq2/:

The secondary operation ‚n detects the map �2 D �n�nC1 W SnC2! Sn; see [9, page 96] or Lemma 2.7.
For each r � 1, the higher-order Bockstein operations

(1-5) ˇr WH
�.X IZ=2/ÜH�C1.X IZ=2/

are inductively defined by setting ˇ1 as the usual Bockstein homomorphism associated to the short exact
sequence

0! Z=2! Z=4! Z=2! 0I

for r � 2, ˇr is defined on the intersection of ker.ˇi /, i < r , and takes values in the quotient by the
im.ˇi /, i < r . This is also indicated by the dashed arrow in (1-5). See [9, Section 5.2] for more details.
Note that the higher Bocksteins ˇr and the sequence ‚D f‚ngn�1 are both stable (cf [9, 4.2.2]):

�ˇr D ˇr ; �‚nC1 D‚n:

Let M be a closed, smooth, connected, orientable 4–manifold. By Poincaré duality and the universal
coefficient theorem for cohomology, the homology groups H�.M IZ/ are given by Table 1, where m; d
are nonnegative integers, and T is a finitely generated torsion abelian group. Denote the 2–primary
component of T by

T2 D

nM
jD1

Z=2rj :

Now we are prepared to state our first main theorem.

Algebraic & Geometric Topology, Volume 24 (2024)



2936 Pengcheng Li

i 0; 4 1 2 3 � 5

Hi .M IZ/ Z Zm˚T Zd ˚T Zm 0

Table 1: H�.M IZ/.

Theorem 1.1 Let M be a closed , smooth , connected , orientable 4–manifold with integral homology
H�.M IZ/ given by Table 1.

(1) Suppose that M is spin , then †2M has two possible homotopy types:

(a) If ‚.H 1.M IZ=2//D 0, then there is a homotopy equivalence

†2M '
� mW
iD1

.S3 _S5/
�
_

� dW
iD1

S4
�
_P 4.T /_P 5.T /_S6:

(b) If ‚.H 1.M IZ=2//¤ 0, then

†2M '
� mW
iD1

.S3 _S5/
�
_

� dW
iD1

S4
�
_P 4

�
T

Z=2rj0

�
_P 5.T /_A6.2rj0�2/;

where j0 is the maximum of the indices j � n such that

‚.x/¤ 0 and ˇrj .x/¤ 0 for x 2H 1.M IZ=2/:

(2) Suppose that M is nonspin. Then the suspension †iM has the following possible homotopy types:

(a) If for any u 2H 4.†2M IZ=2/ with Sq2.u/¤ 0 and any v 2 ker.Sq2/ it holds that

ˇr.uC v/D 0 and uC v … im.ˇs/ for all r; s � 1;

then there is a homotopy equivalence

†2M '
� mW
iD1

.S3 _S5/
�
_

� d�1W
iD1

S4
�
_P 4.T /_P 5.T /_C 6� :

(b) Suppose that for any u 2H 2.M IZ=2/ with Sq2.u/¤ 0 and any v 2 ker.Sq2/, it holds that

uC v … im.ˇs/ for all s � 1;

while there exist u0 2H 2.M IZ=2/ with Sq2.u0/¤ 0 and v0 2 ker.Sq2/ such that

ˇr.u
0
C v0/¤ 0 for some r � 1:

Then there is a homotopy equivalence

†2M '
mW
iD1

.S3 _S5/_
dW
iD1

S4 _P 4.T /_P 5
�

T

Z=2rj1

�
_C 6rj1

;

where j1 is the maximum of the indices j � n such that

Sq2.u0/¤ 0 and ˇr.u
0
C v0/¤ 0:
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(c) Suppose that there exist u 2 H 2.M IZ=2/ with Sq2.u/ ¤ 0 and v 2 ker.Sq2/ such that
uC v 2 im.ˇr/ for some r .

(i) If ‚.H 1.M IZ=2//D 0, then there is a homotopy equivalence

†2M '
� mW
iD1

.S3 _S5/
�
_

� dW
iD1

S4
�
_P 5.T /_P 4

�
T

Z=2rj2

�
_A6.z�rj2

/;

where j2 is the minimum of the indices j � n such that uC v 2 im.ˇrj /.

(ii) If ‚.H 1.M IZ=2//¤ 0 and T2 Š Z=2rj2 , then there is a homotopy equivalence

†2M '
� mW
iD1

.S3 _S5/
�
_

� dW
iD1

S4
�
_P 5.T /_P 4

�
T

Z=2rj2

�
_A6".z�rj2

/;

where A6".z�rj2
/ is the homotopy cofiber of z�rj2

C " � i3�
2 with " 2 f0; 1g.

(iii) If ‚.H 1.M IZ=2//¤ 0 and n� 2 (ie T2 has at least 2 direct summands), then there is a
homotopy equivalence

†3M '� mW
iD1

.S4_S6/
�
_

� dW
iD1

S5
�
_P 6.T /_A7".z�rj2

/_P 5
�

T

Z=2rj2 ˚Z=2
r
j 0

0

�
_A7.2

r
j 0

0
�2

/;

where A7".z�rj2
/D†A6".z�rj2

/, the index j2 the minimum of the indices j � n such that
uC v 2 im.ˇrj /, and j 00 is the maximum of the indices j � n with j ¤ j2 such that

‚.x/¤ 0 and ˇrj .x/¤ 0 for all x 2H 3.C' IZ=2/:

From the above complete discussion we see that when M is nonspin, the nontriviality of the secondary
operation ‚ on H 1.M IZ=2/ only affects case when uC v 2 im.ˇr/ for some r . In the last case (iii) we
made one more suspension to cancel the possible nontrivial Whitehead products in k0–invariant of the
homology decomposition of the †2M .

We also study the homotopy type of the suspension †M in terms of the Postnikov square P0 (or
equivalently the Pontryagin square P1).

Theorem 1.2 Let M be a closed , smooth , connected , orientable 4–manifold with H�.M IZ/ given by
Table 1. If the Postnikov square

P0 WH
1.M IZ=2rj /!H 3.M IZ=2rjC1/

is trivial for each j D 1; 2; : : : ; n, then the desuspensions of the homotopy decompositions of †2M in
Theorem 1.1 yield the homotopy decompositions of †M .

IfH�.M IZ/ contains no 2–torsion (ie T2D 0), then the homotopy decomposition†M '
Wm
iD1S

2_†W

(4-1) implies that the Pontryagin square

P1 WH
1.†M IZ=2rj /!H 3.†M IZ=2rjC1/

is trivial, hence so is P0 by (1-3). Hence Theorem 1.2 extends So and Theriault’s results [19, Theorem 1.1].
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However, the author didn’t find any other 4–manifolds M satisfying conditions in Theorem 1.2. This is
also why we arrange the above theorem after Theorem 1.1.

The paper is organized as follows. In Section 2 we review some homotopy theory of partial elementary
A3
n–complexes and list some technical lemmas about the Pontryagin or Steenrod square operations.

Section 3 introduces the main analysis methods adopted in this paper, including a useful criterion to
determine the homotopy type of suspensions and the matrix method to determine the homotopy type
of homotopy cofibers of certain maps. Section 4 simply analyses the homology decomposition of the
suspension †M . In Section 5 we utilize the methods developed in Section 3 to give a detailed discussion
on the homotopy decompositions of our suspended four-manifolds. At the end, we prove Theorems 1.1
and 1.2, respectively.

Acknowledgements The author would like to thank Jianzhong Pan for some helpful discussion on
Proposition 5.2. The author was partially supported by the National Natural Science Foundation of China
grant 12101290.

2 Some technical lemmas

In this section we recall some homotopy groups of mod 2r Moore spaces and prove some lemmas about
the Pontryagin or Steenrod square operations.

Throughout, all spaces X; Y; : : : are based connected CW–complexes, and ŒX; Y � is the set of based
homotopy classes of based maps from X to Y. We identify a map f with its homotopy class in notation.
For composable maps g and f , denote by gf or g ıf the composition of g with f . Unless otherwise
specified, CX denotes the reduced mapping cone of a space X , and Cf denotes the homotopy cofiber of
a given map f WX ! Y . For a cyclic group G, we write Ghxi to mean x is a generator of G.

2.1 Some homotopy theory of mod 2r Moore spaces

Let n; k � 2. There is a homotopy cofibration for the mod k Moore space P n.k/:

Sn�1
k
�! Sn�1

in�1
���! P n.k/

qn
�! Sn;

where in�1 and qn are the canonical inclusion and projection, respectively. Recall that if 2 doesn’t
divide k, then

�n.P
n.k//D �nC1.P

n.k//D 0 for all n� 3:

For each r; s � 1, let �r W Z! Z=2r be the reduction mod 2r with 1r D �r.1/, let �rs W Z=2
r ! Z=2s be

the homomorphism given by

(2-1) �rs .1r/D

�
1s if r � s;
2s�r1s if r < s:

Algebraic & Geometric Topology, Volume 24 (2024)
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For each n� 3, there exists a map (with n omitted in notation)

B.�rs / W P
nC1.2r/! P nC1.2s/

such that
Hn.B.�

r
s //D �

r
s and †B.�rs /D B.�

r
s /:

Moreover, B.�rs / satisfies the relation formulas (cf [3])

(2-2) B.�rs /in D

�
in if r � s;
2s�r in if r � s;

and qnC1B.�
r
s /D

�
2r�sqnC1 if r � s;
qnC1 if r � s:

Note that a multiple t˛ (written also as t �˛) of an element ˛ 2 �k.X/ coincides with the composite ˛ ı t .

Lemma 2.1 Let r � 1 and n� 3 be integers.

(1) �n�1.P
n.2r//Š Z=2rhin�1i.

(2) �3.P
3.2r//Š Z=2rC1hi2�i, �nC1.P nC1.2r//Š Z=2hin�i.

(3) There are isomorphisms

�nC1.P
n.2r//Š

�
Z=4hz�1i if r D 1;
Z=2hz�ri˚Z=2hin�1�2i if r � 2;

where z�r satisfies the formulas

(2-3) z�r D B.�
1
r /z�1; qnz�r D �; 2z�1 D in�1�

2:

(4) Dually, there are isomorphisms

�n.P nC2.2r//Š

�
Z=4hx�1i if r D 1;
Z=2hx�ri˚Z=2h�2qnC2i if r � 2;

where x�r satisfies the formula

x�r inC1 D �n; 2x�1 D �
2qnC2:

Proof (1) The isomorphism holds by the Hurewicz theorem.

(2) By [2, bottom of page 19, top of page 20], it holds that

�n.P
n.2r//Š

�
�.Z=2r/Š Z=2rC1 if nD 3;
Z=2r ˝Z=2 Š Z=2 if n� 4:

Here �.Z=2r/ is the Whitehead quadratic group; see [2] or [21]. The composite in�1� is clearly a
generator of �n.P n.2r//.

(3) By [2, Proposition 11.1.12], �4.P 3.2r// is isomorphic to the stable homotopy group �s4.P
3.2r//,

whose generators and the relations (2-3) refer to [3].

(4) The isomorphisms and the relation formulas follow by (3) under the Spanier–Whitehead duality:

�n.P nC2.2r//Š �nC2.P
nC1.2r//:

Algebraic & Geometric Topology, Volume 24 (2024)
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For simplicity we still denote z�r W SnC1 ! P n.2r/ the iterated suspensions of the generator z�r of
�4.P

3.2r//. Combining (2-2) and (2-3), we have:

Corollary 2.2 Let r; s � 1. There hold relations

B.�rs /z�r D

�
z�s if s � r;
2r�sz�s if s � r:

2.2 Whitehead’s quadratic functor

Recall the Whitehead quadratic functor
� W Ab! Ab

on the category Ab of abelian groups [21; 1]. The functor � is characterized by the following property:
a function ' W G ! G0 between abelian groups is called quadratic if '.x/ D '.�x/ and the function
G �G ! G0 with .x; y/ 7! '.xC y/� '.x/� '.y/ is bilinear. For each abelian group G, there is a
universal quadratic function


 D 
G WG! �.G/

such that for any quadratic function ' WG!G0, there is a unique homomorphism '� W �.G/!G0 such
that 'D'�ı
 . It follows that for a homomorphism � WG!G0, there is a unique induced homomorphism
�.�/ W �.G/! �.G0/ such that �.�/ ı 
G D 
G0 ı�. The universal quadratic function 
 D 
G induces
the bilinear pairing

(2-4) Œ1; 1� WG˝G! �.G/; Œ1; 1�.x; y/D 
.xCy/� 
.x/� 
.y/:

Lemma 2.3 (cf [2]) Let G be an abelian group and let n� 0.

(1) For the cyclic group G D Z=n we have

�.Z=n/Š Z=.n2; 2n/;

where Z=0 D Z and .n2; 2n/ is the greatest common divisor. The group is generated by 
.1n/
with 1n D 1CnZ.

(2) For any x 2G, there holds 
.nx/D n2
.x/.

2.3 Squaring operations

For an abelian group G, the Pontryagin square

P1 WH
2.X IG/!H 4.X I�.G//

is a quadratic function with respect to the cup product `:

(2-5) P1.�x/DP1.x/; P1.nx/D n
2P1.x/; P1.xCy/DP1.x/CP1.y/C Œ1; 1��.x ` y/;

where Œ1; 1�� is induced by the coefficient homomorphism (2-4). The Pontryagin square is natural with
respect to maps X ! Y between spaces and with respect to homomorphisms G!G0 between groups.
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Let X be an A2
2–complex and let

C4.X/
d
�! C3.X/

d
�! C2.X/

be its cellular chain complex. Represent a cohomology class x 2H 2.X IG/ by a cocycle yx WC2.X/!G,
which induces a unique homomorphism

zx WH2.X/D C2.X/=dC3.X/!G;

and therefore a unique homomorphism

�.zx/ W �.H2.X//! �.G/:

By the universal coefficient theorem, there is an isomorphism

� WH 2.X IH2.X//
Š�! Hom.H2.X/;H2.X//:

Let �2 2H 2.X IH2.X// be given such that �.�2/ is the identity on H2.X/. By [1, Chapter I] we know
that the Pontryagin square

P1 WH
2.X IG/!H 4.X I�.G//

is completely determined by the Pontryagin element

P1.�2/ 2H
4.X I�.H2.X///

in the sense that there holds an formula

P1.x/D �.zx/�.P1.�2//;

where �.zx/� is induced by the coefficient homomorphism.

Let Cr.t�/ be the homotopy cofiber of t � i2� W S3! P 3.2r/, where r � 1 and t 2 Z=2rC1. Note that
Cr.t�/ is an A2

2–polyhedron and has the A2
2–form

(2-6) f D .t�; 2r/ W S3 _S2! S2;

ie Cr.t�/ is the homotopy cofiber of the attaching map f between spheres.

Lemma 2.4 Let t 2 Z=2rC1 and r � 1. The Pontryagin square

P1 WH
2.Cr.t�/IZ=2

r/!H 4.Cr.t�/IZ=2
rC1/

is trivial if and only if t D 0.

Proof Let �2 2H 2.Cr.t�/IZ=2r/ be the generator which corresponds to the identity on H2.Cr.t�//.
By [1, Chapter I, Proposition 7.6] and the A2

2–form (2-6), the Pontryagin element P1.�2/ is represented
by the cocycle

t ��.�r/
 D �.�r/.t
/ W Z
t

�! �.Z/

�.�r /
���! �.Z=2r/:

Note that �.�r/
 D 
�r represents a generator of H 4.Cr.t�/I�.Z=2r// by the universal coefficient
theorem. Then it follows by Lemma 2.3 that P1 D 0 if and only if t D 0.

Algebraic & Geometric Topology, Volume 24 (2024)



2942 Pengcheng Li

Recall that the Steenrod square

Sq2 WHn.�IZ=2/!HnC2.�IZ=2/

is a stable cohomology operation such that Sq2.x/D x2 for any cohomology class x of dimension 2;
see [10, Section 4.L].

Lemma 2.5 (cf [24]) For any n� 3, the Steenrod square

Sq2 WHn.C IZ=2/!HnC2.C IZ=2/

is an isomorphism for each (elementary) Chang complex C .

Lemma 2.6 For each n� 2 and r � 1, the Steenrod square

Sq2 WHnC1.AnC3.z�r/IZ=2/!HnC3.AnC3.z�r/IZ=2/

is an isomorphism.

Proof By (2-3) there is a homotopy commutative diagram of homotopy cofibrations (in which rows and
columns are all homotopy cofibrations):

� Sn Sn

SnC2 P nC1.2r/ AnC3.z�r/

SnC2 SnC1 C nC3�

in

z�r

qnC1 d

�

It follows that d� W Hk.C nC3� IZ=2/! Hk.AnC3.z�r/IZ=2/ is an isomorphism for k D nC 1; nC 3.
The isomorphism in the lemma then follows by Lemma 2.5 and the commutative square

HnC1.C nC3� IZ=2/ HnC3.C nC3� IZ=2/

HnC1.AnC3.z�r/IZ=2/ HnC3.AnC3.z�r/IZ=2/

Sq2

Š

d�Š d�Š

Sq2

2.4 Higher-order cohomology operations

Recall the secondary cohomology operations

(2-7) ‚n W Sn.X/! Tn.X/

based on the relation 'n�n D 0 of (1-4), where

Sn.X/D ker.�n/] D ker.Sq2/\ ker.Sq2 Sq1/;

Tn.X/D coker.�'n/] DH
nC3.X IZ=2/=im.Sq1CSq2/:
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Lemma 2.7 Let n� 2 and r � 1. For X D AnC3.�2/ or AnC3.2r�2/, the secondary operation ‚n acts
nontrivially on Hn.X IZ=2/; that is ,

0¤‚n WH
n.X IZ=2/!HnC3.X IZ=2/:

Proof For X D AnC3.�2/ or AnC3.2r�/, we compute that

Sn.X/DH
n.X IZ=2/Š Z=2 and Tn.X/DH

nC3.X IZ=2/Š Z=2:

The proof of ‚n ¤ 0 for X D AnC3.�2/ refers to [9, page 96]. There is a homotopy cofibration

Sn
inı2

r

���! AnC3.�2/
j
�! AnC3.2r�/;

which induces the commutative square

Hn.AnC3.2r�/IZ=2/ HnC3.AnC3.2r�/IZ=2/

Hn.AnC3.�2/IZ=2/ HnC3.AnC3.�2/IZ=2/

j�Š

‚n

j�Š

‚n¤0

Thus ‚¤ 0 for X D AnC3.2r�/.

The higher-order Bocksteins (1-5)

ˇr WH
n.X IZ=2/ÜHnC1.X IZ=2/

are helpful to detect torsion elements of H�.X IZ/ or H�.X IZ/.

Lemma 2.8 (cf [17, pages 173 and 61]) The following statements hold :

(1) The higher Bockstein ˇr detects the degree 2r map on Sn; in other words , for each r � 1, there is
exactly one nontrivial higher Bockstein

ˇr WH
n�1.P n.2r/IZ=2/!Hn.P n.2r/IZ=2/:

(2) For each r � 1, elements of H�.X IZ=2/ coming from free integral homology class lie in ker.ˇr/
and not in im.ˇr/.

(3) If z 2 HnC1.X IZ/ generates a direct summand Z=2r for some r , then there exist generators
z0 2Hn.X IZ=2/ and z00 2HnC1.X IZ=2/ such that

ˇr.z
0/D z00 and ˇi .z

0/D ˇi .z
00/D 0 for i < r:

3 Analysis methods

In this section we list some auxiliary lemmas that simplify the proof arguments in the next section. These
lemmas appear to be applicable to other similar problems as well, so we leave them in a separate section.
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We say that a map f WX!Y is homologically trivial if the induced homomorphism f� WHi .X/!Hi .Y /

is trivial for each i .

Lemma 3.1 [10, Theorem 4H.3] Suppose that X is a simply connected space of dimension N . Write
Hi DHi .X/. Then there is a sequence X2 �X3 � � � � �Xm of subcomplexes Xj of X such that

(1) i� WHj .Xn/ŠHj .X/ for j � n and Hj .Xn/D 0 for j > n,

(2) X2 DM2.H2/ and XN DX ,

(3) there is a principal homotopy cofibration

Mn.HnC1/
kn
�!Xn

in
�!XnC1!MnC1.HnC1/

with kn homologically trivial.

Note that we have the canonical inclusions Xn �Xn �XnC1, where Xk denotes the k–skeleton of X .
The map kn above is called the nth k0–invariant, and plays a key role in the homology decomposition
of X . For instance, kn is null-homotopic if and only if Xn 'Xn�1 _Mn.HnX/.

Lemma 3.2 Let f W
Wm
iD1Ai !

Wn
jD1Bj be a map which induces trivial homomorphism in cohomology

groups with coefficients in abelian groups G and G0. Let

f| D p| ıf and f{;| D f| ı i{ D p| ıf ı i{ ;

where i{ W A{!
Wm
iD1Ai and p| W

Wn
jD1Bj ! B| are respectively the canonical inclusion and projection ,

with 1� { �m and 1� | � n.

(1) If H�.Cf IG/ contains no nontrivial cup products , then so do H�.Cf|
IG/ and H�.Cf{;|

IG/

for all { and | .

(2) If the cohomology operation O WHk.Cf IG/!H l.Cf IG
0/ is trivial , then so are the operations

O| WH
k.Cf|

IG/!H l.Cf|
IG0/ and O{| WH

k.Cf{|
IG/!H l.Cf{|

IG0/:

where O| and O{| are the cohomology operation of the same type as O.

Proof (1) The statement (1) is due to [19, Lemma 4.2].

(2) By the proof of [19, Lemma 4.2], for any integer k � 0 and any coefficient group G there are
monomorphisms

d�| WH
k.Cf|

IG/!Hk.Cf IG/

and epimorphisms

d�{| WH
k.Cf|

IG/!Hk.Cf �{|
IG/:
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Consider the commutative diagrams

Hk.Cf IG/ Hk.Cf|
IG/ Hk.Cf{;|

IG/

H l.Cf IG
0/ H l.Cf|

IG0/ Hk.Cf{;|
IG0/

O

d�|

O|

d�{;|

O{;|

d�| d�{;|

It follows that O| is the restriction of O, and O{| is induced by O| . Thus if O is trivial, so are O| and O{;| .

The following lemma is useful to determine the homotopy type of a suspension; see [14, Lemma 6.4] or
[19, Lemma 5.6].

Lemma 3.3 Let S f
�!

�Wn
iD1Ai

�
_B

g
�! †C be a homotopy cofibration of simply connected CW–

complexes. For j D1; : : : ; n, let pj W
W
iAi!Aj be the canonical projection onto the wedge summand Aj .

Suppose that each composition
fj W S

f
�!

W
i
Ai

pj
�! Aj

is null-homotopic. Then there is a homotopy equivalence

†C '
nW
iD1

Ai _D;

where D is the homotopy cofiber of the composition S f
�!

�W
iAi

�
_B

qB
�! B , with qB the obvious

projection.

Let X D†X 0 and Yi D†Y 0i be suspensions, for i D 1; 2; : : : ; n. Let

il W Yl !
nW
jDi

Yi and pk W
nW
iD1

Yi ! Yk

be, respectively, the canonical inclusions and projections, for 1� k; l � n. By the Hilton–Milnor theorem,
we may write a map f WX !

Wn
iD1Yi as

f D

nX
kD1

ik ıfkC �;

where fk D pk ıf WX ! Yk and � satisfies †� D 0. The first part
Pn
kD1 ik ıfk is usually represented

by a vector
uf D .f1; f2; : : : ; fn/

t :

We say that f is completely determined by its components fk if � D 0; in this case, write f D uf .
Let h D

P
k;l ilhlkpk be a self-map of

Wn
iD1Yi which is completely determined by its components

hkl D pk ı h ı il W Yl ! Yk . Write

Mh WD .hkl/n�n D

0BB@
h11 h12 � � � h1n
h21 h22 � � � h2n
:::

:::
: : :

:::
hn1 hn1 � � � hnn

1CCA :
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Then the composition law h.f Cg/' hf C hg implies that the product

Mh.f1; f2; : : : ; fn/
t

given by the matrix multiplication represents the composite h ıf . Two maps f D uf and g D ug are
called equivalent, and we write

.f1; f2; : : : ; fn/
t
� .g1; g2; : : : ; gn/

t ;

if there is a self-homotopy equivalence h of
Wn
iD1Yi , which can be represented by the matrixMh, such that

Mh.f1; f2; : : : ; fn/
t
' .g1; g2; : : : ; gn/

t :

Recall that the above matrix multiplication refers to elementary row operations in matrix theory; and
note that the homotopy cofibers of the maps f D uf and g D ug are homotopy equivalent if f and g
are equivalent.

The following lemma serves as an example of the above matrix method.

Lemma 3.4 Define X by the homotopy cofibration

S4
.f1;f2;:::;fn/

t

��������!

nW
jD1

Vj �!X;

where fj W S4! Vj for j D 1; : : : ; n.

(1) If Vj D S3 for j D 1; 2; : : : ; n and fj0
D � for some j0, then there is a homotopy equivalence

X ' C 5� _
W
j¤j0

S3:

(2) If Vj DP 4.2rj / for j D1; 2; : : : ; n, and fj D i3� for some j , then there is a homotopy equivalence

X ' C 5rj1
_

W
j¤j1

P 4.2rj /;

where j1 Dmaxf1� j � n j fj D i3�g.

Proof (1) If there is a unique fj0
D �, the statement clearly holds. We may assume that f1 D � and

fi D "i � �, with "i 2 f0; 1g. Then0BB@
1 0 � � � 0

�"2 1 � � � 0
:::
:::
: : :

:::
�"n 0 � � � 1

1CCA
0BB@

�

"2 � �
:::

"n � �

1CCA'
0BB@
�

0
:::
0

1CCA :
It follows that there exists a self-homotopy equivalence eS of

Wm
jD1S

3 such that

eSf � .�; 0; : : : ; 0/
t ;
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and hence there is a homotopy equivalence

X D Cf ' CeSf ' C
5
� _

mW
jD2

S3:

(2) The statement clearly holds if there is a unique j such that fj D i3�. Let j1 be defined in the lemma.
If there is an index j2 such that

fj2
D i3� 2 �4.P

4.2rj2 //;

then the matrix multiplication �
1P 0

�B.�rs / 1P

��
i3�

i3�

�
'

�
i3�

0

�
implies .fj1

; fj2
/t � .fj1

; 0/t . By induction, it follows that there exists a self-homotopy equivalence eP
of
Wm
jD1P

4.2rj / such that

eP ı .f1; f2; : : : ; fn/
t
' .0; : : : ; 0; i3�; 0; : : : ; 0/

t ;

where i3� in the latter vector lies in the j th
1 position. Thus we have a homotopy equivalence

X D Cf ' C
5
rj1
_

W
j¤j1

P 4.2rj /:

4 Homology decomposition of †M

By Table 1 and [19, Lemma 5.1], there is a homotopy equivalence

(4-1) †M '
� mW
iD1

S2
�
_†W;

where W is a CW–complex with integral homology given by Table 2. By Lemma 3.1 and Table 2, there
are homotopy cofibrations

(4-2)
dW
iD1

S2 _P 3.T /
k3
�! P 3.T /!W3;

mW
iD1

S3
k4
�!W3!W4; S4

k5
�!W4!†W;

where k3; k4; k5 are homologically trivial maps. Let T2 D
Ln
jD1Z=2rj be the 2–primary component

of T and write T D T2˚T¤2. For each k � 3, there are homotopy equivalences (cf [18])

P k.T /' P k.T2/˚P
k.T¤2/'

� nW
jD1

P k.2rj /
�
_P k.T¤2/:

i 0; 4 1 2 3 � 5

Hi .W / Z T Zd ˚T Zm 0

Table 2: H�.W IZ/.
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Lemma 4.1 There is a homotopy equivalence

W3 '
� dW
iD1

S3
�
_P 3.T /_P 4.T /:

Proof By (4-2), there is a homotopy cofibration� dW
iD1

S2
�
_P 3.T /

f
�! P 3.T /!W3;

where f is a homologically trivial map with its two components of the types

f S1 W
� dW
iD1

S2
�
,!
� dW
iD1

S2
�
_P 3.T /

f
�!P 3.T / and f T2 WP

3.T /,!
� dW
iD1

S2
�
_P 3.T /

f
�!P 3.T /:

Here the arrows ,! denote the obvious inclusions. Clearly f S1 and f T2 are both homologically trivial. Set
T D

Ll
kD1 p

rk

k
with pk primes. Then the Hurewicz isomorphism �2.P

3.T //ŠH2.P
3.T // implies

that both f S1 and the composite

ST D
lW

kD1

S2
j
�! P 3.T /

f T
2
�! P 3.T /

are null-homotopic, where j is the canonical inclusion. Let

mT D
W
k

p
rk

k
W ST ! ST

be the attaching map of P 3.T /. There is a homotopy commutative diagram of homotopy cofibrations

ST � †ST

ST P 3.T / P 3.T /_†ST

P 3.T / P 3.T / Cf T
2

mT i2ı.†mT /

0

i

f T
2

in which rows are columns are homotopy cofibrations. It follows that

Cf T
2
' P 3.T /_P 4.T /;

and hence there is a homotopy equivalence

W3 '
dW
iD1

S3 _Cf T
2
'

� dW
iD1

S3
�
_P 3.T /_P 4.T /:

Lemma 4.2 There is a homotopy equivalence

W4 '
� dW
iD1

S3
�
_P 4.T /_Cg2

for some homologically trivial map g2 W
Wm
iD1S

3! P 3.T /. Moreover , there is a homotopy equivalence

†W4 '
� dW
iD1

S4
�
_P 4.T /_P 5.T /_

mW
iD1

S5:

Algebraic & Geometric Topology, Volume 24 (2024)



Homotopy types of suspended 4–manifolds 2949

Proof By (4-2) and Lemma 4.1, there is a homotopy cofibration

mW
iD1

S3
g
�!

� dW
iD1

S3
�
_P 3.T /_P 4.T /!W4;

with g a homologically trivial map. The map g is determined by the following components:

g1 W S
3
!

mW
iD1

S3
g
�!

� dW
iD1

S3
�
_P 3.T /_P 4.T /!

dW
iD1

S3! S3;

g2 W S
3
!

mW
iD1

S3
g
�!

� dW
iD1

S3
�
_P 3.T /_P 4.T /! P 3.T /;

g3 W S
3
!

mW
iD1

S3
g
�!

� dW
iD1

S3
�
_P 3.T /_P 4.T /! P 4.T /:

Here the unlabeled maps are the obvious inclusions and projections. The maps g1; g2; g3 are all ho-
mologically trivial. The Hurewicz theorem implies that both g1 and g3 are null-homotopic. Then by
Lemma 3.3 we get the first statement.

To prove the second homotopy equivalence, it suffices to show that if f W S4! P 4.T / is homologically
trivial, then f is null-homotopic. Consider the following homologically trivial components of f :

f1 W S
4 f
�! P 4.T /! P 4.T¤2/;

f
j
2 W S

4 f
�! P 4.T /! P 4.T2/! P 4.2rj / for j D 1; 2; : : : ; n:

The map f1 is clearly null-homotopic, because �4.P 4.pr// D 0 for odd primes p. Observe that
W4 D†W

4 is a suspension, the Steenrod square Sq2 acts trivially on H 2.W4IZ=2/. By Lemma 3.2(2),
Sq2 acts trivially on H 3.C

f
j

2

IZ=2/. Since �4.P 4.2rj //Š Z=2hi3�i (Lemma 2.1), we may set

f
j
2 D "j � i3�; where "j 2 Z=2:

Note that the homotopy cofiber of i3� 2 �4.P 4.2rj // is the Chang complex C 5rj , by Lemma 2.5 we then

get that "j D 0, or equivalently f j2 is null-homotopic for each j D 1; 2; : : : ; n. Thus f is null-homotopic,
by Lemma 3.3.

5 Proofs of Theorems 1.1 and 1.2

By (4-2) and Lemma 4.2, there is a homotopy cofibration

S5
h
�!

� dW
iD1

S4
�
_P 4.T /_P 5.T /_

mW
iD1

S5!†2W;

where h a homologically trivial map, T Š T2˚ T¤2 with T2 Š
Ln
jD1Z=2rj . Since �5.P 4.pr// D

�5.P
5.ps//D 0 for any odd primes p, Lemma 3.3 indicates that there is a homotopy equivalence

(5-1) †2W ' P 4.T¤2/_P
5.T¤2/_

� mW
iD1

S5
�
_C' ;
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where ' W S5 !
�Wd

iD1S
4
�
_ P 4.T2/ _ P

5.T2/ is a homologically trivial map. The map ' has the
following three types of components:

'1 W S
5 '
�!

� dW
iD1

S4
�
_P 4.T2/_P

5.T2/! S4;

'
j
2 W S

5 '
�!

� dW
iD1

S4
�
_P 4.T2/_P

5.T2/! P 4.T2/! P 4.2rj /;

'
j
3 W S

5 '
�!

� dW
iD1

S4
�
_P 4.T2/_P

5.T2/! P 5.T2/! P 5.2rj /;

where j D 1; 2; : : : ; n and the unlabeled maps are the obvious projections.

Proposition 5.1 If Sq2.H 4.†2W IZ=2//D 0, then the homotopy type of †2W is determined by the
secondary operation ‚ of equation (2-7) and the higher Bockstein ˇr . Explicitly , if ‚.H 3.C' IZ=2//D0,
then there is a homotopy equivalence

C' '
� dW
iD1

S4
�
_P 4.T2/_P

5.T2/_S
6:

Otherwise we have

C' '
� dW
iD1

S4
�
_P 4

� T2

Z=2rj0

�
_P 5.T2/_A

6.2rj0�2/;

where j0 is the maximum of the indices j satisfying

‚.x/¤ 0 and ˇrj .x/¤ 0 for all x 2H 3.C' IZ=2/:

Proof By assumption and (5-1), Sq2 acts trivially on H 4.C' IZ=2/, and hence so does Sq2 on
H 4.C'1

IZ=2/ and H 4.C'j

k
IZ=2/ for each k D 2; 3 and j D 1; 2; : : : ; n, by Lemma 3.2(2). It follows

by Lemmas 2.5 and 2.6 that '1 and 'i3 are null-homotopic, and

'
j
2 D yj � i3�

2 for all yj 2 Z=2 and j D 1; 2; : : : ; n:

By Lemma 2.7, the coefficients yj can be detected by the secondary operation ‚. There are possibly
many such indices j ; however, similar arguments to those in the proof of Lemma 3.4 show that there
exists a homotopy equivalence e of P 4.T2/ such that

e.'12 ; '
2
2 ; : : : ; '

n
2 /
t
' .0; : : : ; 0; '

j0

2 D i3�
2; 0; : : : ; 0/t ;

with j0 described in the proposition. The proof is then completed by applying Lemma 3.3.

Proposition 5.2 Suppose that Sq2.H 4.†2W IZ=2//¤ 0. Then the homotopy types of C' or †C' can
be characterized as follows:
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(1) Suppose that for any u 2H 4.†2M IZ=2/ with Sq2.u/¤ 0 and any v 2 ker.Sq2/, it holds that

ˇr.uC v/D 0 and uC v … im.ˇs/ for all r; s � 1:

Then there is a homotopy equivalence

C' '
� d�1W
iD1

S4
�
_P 5.T2/_P

4.T2/_C
6
� :

(2) Suppose that for any u 2H 4.†2M IZ=2/ with Sq2.u/¤ 0 and any v 2 ker.Sq2/, it holds that

uC v … im.ˇs/ for all s � 1;

while there exist u0 2H 4.†2M IZ=2/ with Sq2.u0/¤ 0 and v0 2 ker.Sq2/ such that

ˇr.u
0
C v0/¤ 0 for some r � 1:

Then there is a homotopy equivalence

C' '
� dW
iD1

S4
�
_P 5

�
T2

Z=2rj1

�
_P 4.T2/_C

6
rj1
;

with j1 the maximum of indices j such that

Sq2.u0/¤ 0 and ˇrj1
.u0C v0/¤ 0:

(3) Suppose that there exist u 2H 4.†2M IZ=2/ with Sq2.u/¤ 0 and v 2 ker.Sq2/ such that

uC v 2 im.ˇr/ for some r � 1:

(a) If ‚.H 3.C' IZ=2//D 0, then there is a homotopy equivalence

C' '
� dW
iD1

S4
�
_P 5.T2/_P

4

�
T2

Z=2rj2

�
_A6.z�rj2

/;

with j2 the minimum of the indices j such that uC v 2 im.ˇrj /.

(b) If ‚.H 3.C' IZ=2//¤ 0 and T2 Š Z=2rj2 , then

C' '
� dW
iD1

S4
�
_P 5.T2/_P

4

�
T2

Z=2rj2

�
_A6".z�rj2

/;

where A6".z�rj2
/ is the homotopy cofiber of z�rj2

C " � i3�
2 with " 2 f0; 1g.

(c) If ‚.H 3.C' IZ=2//¤ 0 and T2 has at least two direct summands , then

†C' '
� dW
iD1

S5
�
_P 6.T2/_P

5

�
T2

Z=2rj2 ˚Z=2
r
j 0

0

�
_A7".z�rj2

/_A7.2
r
j 0

0
�2

/;

where A7".z�rj2
/ D †A6".z�rj2

/, the index j2 the minimum of the indices j � n such that
uC v 2 im.ˇrj /, and j 00 is the maximum of the indices j � n; j ¤ j2 such that

‚.x/¤ 0 and ˇrj .x/¤ 0 for all x 2H 3.C' IZ=2/:

Algebraic & Geometric Topology, Volume 24 (2024)



2952 Pengcheng Li

Proof By the Hilton–Milnor theorem and Lemmas 2.1 and 2.7, we can put

(5-2) ' D

dX
iD1

xi � �C

nX
jD1

yj � i4�C

nX
kD1

zk � z�rk
C

nX
lD1

wl � i3�
2
C �;

where � is a linear combination of Whitehead products in �5.P 4.T2//.

By Lemmas 2.5 and 2.6, the condition Sq2.H 4.†2W IZ=2// ¤ 0 enforces that at least one of these
coefficients xi ; yj ; zk is nonzero.

(1) Under the conditions in (1), we deduce from Lemma 2.8 that u comes from a free integral homology
class. It follows that

yj D zk D 0 and xi D 1 for some i

in the expression (5-2). By Lemma 3.4(1), we may assume that there is exactly one index i such that
xi D 1. Consider the homotopy type of the map�

�

i3�
2

�
W S5! S4 _P 4.2rj0 /:

Clearly we have an equivalence �
�

i3�
2

�
�

�
�

0

�
:

After composing with self-homotopy equivalences of
�Wd

iD1S
4
�
_P 4.T2/_P

5.T2/, we may assume that
the above xi is the unique nonzero coefficient, which completes the proof of the homotopy equivalence
in (1) by Lemma 3.3.

(2) The arguments are similar to (1). The conditions (2) imply that

xi D zk D 0 and yj D 1 for some j;

while Lemma 3.4(2) guarantees that we may assume that there is exactly one such j , which is equal to j1,
as described in the proposition. By Lemma 2.1(4), we have

.i3x�rj1
/.i4�/D i3.x�rj1

i4/�D i3�
2;

hence �
i4�

i3�
2

�
�

�
i4�

0

�
:

Thus we may assume that all coefficients wl D 0 and the homotopy equivalence in (2) then follows.

(3) The conditions (3) imply that

zk � 1 .mod 2/ for some k:

By Lemma 3.4, we may firstly assume that

x1 D � 2 Z=2; xi D 0 for i > 1;

yj0
D " 2 Z=2; yj D 0 for j ¤ j0:
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Note that .�; "/¤ .1; 1/, because �
�

i4�

�
�

�
�

0

�
W S5! S4 _P 5.2r/:

By the relation q4z�rk
D � in (2-3), we have�

�

z�rk

�
�

�
0

z�rk

�
and

�
i4�

z�rk

�
�

�
0

z�rk

�
:

It follows that zk � 1 .mod 2/ implies that � D "D 0. By Corollary 2.2 we have�
1 0

�B.�rs / 1

��
z�r
z�s

�
'

�
z�r
0

�
for r � s:

Thus up to homotopy we may assume that xi D yj D 0 and there exists exactly one zk0
� 1 .mod 2/

with k0 D j2 as described in the proposition.

If ‚.H 3.C' IZ=2//D 0, then Lemma 2.7 implies that wl D 0 for all l . The first homotopy equivalence
in (3) then follows by Lemma 3.3.

If ‚.H 3.C' IZ=2//¤ 0, by Lemma 2.7 we have wl ¤ 0 for at least one l � n. It reduces to considering
the homotopy type of the homotopy cofiber of the component

'2 W S
5
! P 4.T2/:

Note that when composing a self-homotopy equivalence of P 4.T2/ to get zj2
, it happens that wj2

D 0 or
wj2
D 1.

If nD 1 and T2 ŠZ=2rj2 , the second homotopy equivalence in (3) then follows by Lemma 3.3. If n� 2,
there are indices l ¤ j2, then similar arguments to that in the proof of Proposition 5.1 show that there is
an equivalence

.i3�
2; : : : ; i3�

2; : : : /t � .0; : : : ; 0; i3�
2; 0; : : : ; 0/t ;

where the unique i3�2 appears at the maximal j 00 among indices l � n, with l ¤ j2, such that

‚.x/¤ 0 and ˇr
j 0

0

.x/¤ 0 for all x 2H 3.C' IZ=2/:

Thus we get a homotopy equivalence C'2
' C'02C�

, where

'02 D .0; : : : ; 0; z�rj2
C " � i3�

2; 0; : : : ; 0; i3�
2; 0; : : : ; 0/t :

After one suspension the possible Whitehead product � becomes trivial. Thus we get

†C'02
' P 5

�
T2

Z=2rj2 ˚Z=2j
0
0

�
_A7".z�rj2

/_A7.2
r
j 0

0�2/;

and therefore †C' '
�Wd

iD1S
5
�
_P 6.T2/_†C'02

.
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Proof of Theorem 1.1 It is well known that a closed, smooth, connected, orientable 4–manifold M is
spin if and only if the Steenrod square Sq2 acts trivially on H 2.M IZ=2/. The homotopy types of †2M
in Theorem 1.1 then are obtained by (4-1), (5-1) and Propositions 5.1 and 5.2.

Next, we give a proof of Theorem 1.2. By (1-3), there hold equivalence relations

P0.H
1.M IZ=2r//D 0 () P1.H

2.†M IZ=2r//D 0:

Lemma 5.3 If the Pontryagin square P1 acts trivially on H 2.†M IZ=2r/, then so does P1 on
H 2.W4IZ=2r/.

Proof By Lemma 3.1 and the universal coefficient theorem for cohomology, the canonical inclusion
i WW4!†W induces isomorphisms

i� WH 2.†W IZ=2r/ Š�!H 2.W4IZ=2
r/ and i� WH 4.†W IZ=2rC1/ Š�!H 2.W4IZ=2

rC1/:

If P1 acts trivially on H 2.†M IZ=2r/, then so does P1 on H 2.†W IZ=2r/, by (4-1). The commutative
diagram

H 2.†W IZ=2r/ H 4.†W IZ=2rC1/

H 2.W4IZ=2r/ H 4.W4IZ=2rC1/

i�Š

P1D0

i�Š

P1

then implies P1 D 0 on the second row.

Lemma 5.4 If the Pontryagin square P1 acts trivially on H 2.†M IZ=2rj / for each j D 1; 2; : : : ; n,
then there is a homotopy equivalence

W4 '
� dW
iD1

S3
�
_

� mW
iD1

S4
�
_P 3.T /_P 4.T /:

Proof By Lemma 4.2 there is a homotopy equivalence

W4 '
� dW
iD1

S3
�
_P 4.T /_Cg2

for some homologically trivial map g2 W
Wm
iD1S

3! P 3.T /. It suffices to show the homologically trivial
component

g2 W S
3
! P 3.T /

is null-homotopic. By Lemma 3.3, it suffices to show that the components

g
j
2 W S

3 g2
�! P 3.T2/

pj
�! P 3.2rj /

are null-homotopic for each j D 1; 2; : : : ; n.
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Since �3.P 3.2r//Š Z=2rC1, for all j D 1; 2; : : : ; n we may set

g
j
2 D tj � i2�

for some tj 2 Z=2rjC1. The assumption and Lemma 5.3 imply that the Pontryagin square

P1 WH
2.W4IZ=2

rj /!H 4.W4IZ=2
rjC1/

is trivial. By the universal coefficient theorem for cohomology, gj2 induces trivial homomorphism in
mod 2rj or mod 2rjC1 cohomology, and hence by Lemma 3.2(2), the Pontryagin square

P1 WH
2.Cgj

2
IZ=2rj /!H 4.Cgj

2
IZ=2rjC1/

is trivial for each j . Then it follows by Lemma 2.4 that tj D 0, or equivalently gj2 is null-homotopic for
each j D 1; 2; : : : ; n.

Proof of Theorem 1.2 By Lemma 5.4 and (4-2), there is a homotopy cofibration

S4
k5
�!W4 '

� dW
iD1

S3
�
_

� mW
iD1

S4
�
_P 3.T /_P 4.T /!†W;

with k5 homologically trivial. Since �4.P 3.pr//D �4.P 4.pr//D 0, Lemma 3.3 implies that there is a
homotopy equivalence

†W '
� mW
iD1

S4
�
_P 3.T¤2/_P

4.T¤2/_C� ;

where � W S4 !
�Wd

iD1S
3
�
_ P 3.T2/ _ P

4.T2/ is a homologically trivial map. Compare (5-1). The
discussion on the homotopy type of†W is totally parallel to that of†2W in the proofs of Propositions 5.1
and 5.2. The proof is then completed by (4-1).
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