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The braid indices of the reverse parallel links of alternating knots

YUANAN DIAO

HUGH MORTON

The braid indices of most links remain unknown as there is no known universal method for determining
the braid index of an arbitrary knot. This is also the case for alternating knots. We show that if K is
an alternating knot, then the braid index of any reverse parallel link of K can be precisely determined.
Specifically, if D is a reduced diagram of K, vC.D/ (resp. v�.D/) is the number of regions in the
checkerboard shading of D for which all crossings are positive (resp. negative) and w.D/ is the writhe
of D, then the braid index of a reverse parallel link of K with framing f , denoted by Kf , is given by the
precise formula

b.Kf /D

8<:
c.D/C 2C a.D/�f if f < a.D/;

c.D/C 2 if a.D/� f � b.D/;

c.D/C 2� b.D/Cf if f > b.D/;

where a.D/D�v�.D/Cw.D/ and b.D/D vC.D/Cw.D/.

57K10, 57K31

1 Introduction

The determination of the braid index of a knot or a link is known to be a challenging problem. To date
there is no known method that can be used to determine the precise braid index of an arbitrarily given
knot/link. This is also the case when we restrict ourselves to alternating knots and links, although the
braid indices of many alternating knots and links can now be determined. For example, all 2–bridge links
and all alternating Montesinos links; see Diao, Ernst, Hetyei and Liu [6] and Murasugi [13]. However,
we prove a somewhat surprising result: the braid index of any reverse parallel link of an alternating knot
can be precisely determined. Furthermore, the formula can be derived easily from any reduced diagram
of the alternating knot.

Here we study the reverse parallel links of alternating knots. A reverse parallel link of a knot consists
of the two boundary components of an annulus A embedded in S3 with the said knot being one of the
components and such that the two components are assigned opposite orientations. Let K and K0 be the
two components of a reverse parallel link induced by an annulus A. Following the convention that has
been used in the literature (such as by Nutt [15] and Rudolph [16]), we shall call the linking number f
between K and K0 when they are assigned parallel orientations the framing of K. We note that a reverse
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C � �C

Figure 1: Left: the crossing with respect to a checkerboard shading. Right: the crossing sign with
respect to the orientation of the knot.

parallel link of K with framing f is denoted by K �f A in [15] and by BdA.K; f / in [16]. The framing
is independent of the orientation of K, and the ambient isotopy class of A in S3 depends only on K

and the framing. Therefore, the reverse parallel links of K are characterized by the framing f . Since
our results (and proofs) only depend on the framing, not the actual annulus A, we shall introduce a new
notation Kf for the reverse parallel link of K with framing f . Keep in mind that the framing f is the
linking number of the two components of Kf with parallel orientations, and hence the linking number
of Kf itself is �f .

For a given knot diagram D with a checkerboard shading, a crossing can be assigned a C or a � sign
relative to this shading, as shown on the left side of Figure 1. This is not to be confused with the crossing
sign with respect to the orientation of the knot which is used in the definition of the writhe of D, as shown
on the right side of Figure 1.

Now let K be an alternating knot with a reduced diagram D. It is known that in such a case crossings
of D are all positive with respect to one checkerboard shading of D and are all negative with respect to the
other checkerboard shading of D. Furthermore, if we let vC.D/ be the number of shaded regions in the
shading with respect to which all crossings are positive, and v�.D/ be the number of shaded regions in the
complementary shading with respect to which all crossings are negative, then vC.D/Cv�.D/�2D c.D/

where c.D/ is the number of crossings in D; see Kauffman [9]. From D we can also obtain its so-called
blackboard reverse parallel annulus (resp. framing), which provides a good reference for other choices
of annuli (resp. framings) as the other choices come from this one by adding either right-handed or
left-handed twists. If the writhe of D is w.D/, then the framing of the blackboard reverse parallel is
also w.D/. If k right-handed (resp. left-handed) twists are added between the two components, then the
resulting reverse parallel has framing w.D/C k (resp. w.D/� k). See Figure 2 for an illustration.

Figure 2: The blackboard reverse parallel of the .2; 5/ torus knot with two left-handed twists
added. The framing of the resulting reverse parallel link (with the added twists) is thus 5C.�2/D3.
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Our main result is the following theorem:

Theorem 1.1 Let K be an alternating knot and D a reduced diagram of K. Let c.D/, w.D/, vC.D/
and v�.D/ be as defined above. Then the braid index of Kf , denoted by b.Kf /, is given by the formula

(1-1) b.Kf /D

8<:
c.D/C 2C a.D/�f if f < a.D/;

c.D/C 2 if a.D/� f � b.D/;

c.D/C 2� b.D/Cf if f > b.D/;

where a.D/D�v�.D/Cw.D/ and b.D/D vC.D/Cw.D/.

We can summarize Theorem 1.1 pictorially in terms of the blackboard reverse parallel of D:

� The blackboard reverse parallel has braid index c.D/C 2.

� The braid index remains c.D/C 2 after adding up to vC.D/ right-handed twists, or up to v�.D/
left-handed twists.

� Each further right or left-handed twist increases the braid index by 1.

So for example, since v�.D/D 2 and vC.D/D 5 for the .2; 5/ torus knot, the braid index for the reverse
parallel shown in Figure 2 is c.D/C 2 D 7. Adding one further left-handed twist would increase the
braid index to 8, while we would still have braid index 7 after adding up to 5 right-handed twists to the
blackboard parallel.

We shall establish (1-1) by proving that the right side expression is both a lower bound and an upper
bound for the b.Kf /. The lower bound is obtained by the Morton–Franks–Williams inequality, while the
upper bound is established by direct construction.

2 The lower bound

In this section, we shall prove the following theorem:

Theorem 2.1 Let Kf be the reverse parallel link of an alternating knot K with framing f and D a
reduced diagram of K. Then

(2-1) b.Kf /�

8<:
c.D/C 2C a.D/�f if f < a.D/;

c.D/C 2 if a.D/� f � b.D/;

c.D/C 2� b.D/Cf if f > b.D/;

where a.D/D�v�.D/Cw.D/ and b.D/D vC.D/Cw.D/.

2.1 The Homfly and Kauffman polynomials

Before proving this theorem we note some properties of the Homfly and Kauffman polynomials of a link L.

The Homfly polynomial PL.v; z/ 2ZŒv˙1; z˙1� of an oriented link L is determined by the skein relations

v�1PLC � vPL� D zPL0 ;

Algebraic & Geometric Topology, Volume 24 (2024)
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where L˙ and L0 differ only near one crossing as shown below, and takes the value 1 on the unknot:

LC D ; L� D ; L0
D :

The Kauffman polynomial FL.a; z/ 2 ZŒa˙1; z˙1� for an unoriented link L is defined in [10]. Again it
takes the value 1 on the unknot.

When an extra distant unknotted component O is adjoined to the link L to make LtO , each polynomial
changes in the following simple way:

PLtO.v; z/D
v�1�v

z
PL.v; z/; FLtO.a; z/D

�
aCa�1

z
� 1

�
FL.a; z/:

Define the extended Homfly polynomial EP by

(2-2) EPL.v; z/D
v�1�v

z
PL.v; z/D PLtO.v; z/

and the extended Kauffman polynomial EF by

(2-3) EFL.a; z/D
�

aCa�1

z
� 1

�
FL.a; z/D FLtO.a; z/:

Remark This extended normalization is often used in the context of quantum invariants, where it allows
for more natural specializations of the knot polynomials. It is also more useful in that context to use the
Dubrovnik variant of the Kauffman polynomial in place of F .

By plugging in LD � on both sides of (2-2) and (2-3), the extended polynomials can be thought of as
taking the value 1 on the empty link �.

2.2 Bounds from the Homfly and Kauffman polynomials

The Morton–Franks–Williams inequality [7; 11] gives a lower bound for the braid index b.L/ of the
link L in terms of the v–spread of the Homfly polynomial PL.v; z/ or its extended version. Explicitly

(2-4) b.L/� 1C 1
2

sprv PL.v; z/D
1
2

sprv EPL.v; z/:

The a–spread of the Kauffman polynomial is shown by Morton and Beltrami [12] to give a bound for the
arc index ˛.L/. Explicitly this is

spra FL.a; z/� ˛.L/� 2:

Bae and Park [1] showed that the arc index ˛.L/ is bounded above by c.L/C2, that is, ˛.L/� c.L/C2.
Combining these results shows that

(2-5) spra FL.a; z/� c.L/:

2.3 A congruence result

Rudolph [16] relates the Kauffman polynomial of a link L with the Homfly polynomial of the reverse
parallels of L.

Notation For Laurent polynomials A D
P

ai;jv
izj and B D

P
bi;jv

izj 2 ZŒv˙1; z˙1� we write
AŠZ2

B when ai;j Š bi;j mod 2 for all i and j .
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In the case of a knot K, Rudolph’s theorem for the reverse parallel Kf can then be stated very cleanly in
terms of the extended polynomials.

Theorem 2.2 [16, congruence theorem] EPKf
.v; z/� 1ŠZ2

v�2f EFK .v
�2; z2/:

2.4 Alternating knots

We can apply these bounds to the case of alternating knots, starting from observations of Cromwell [3]
about their Kauffman polynomial.

For any knot K with a diagram D, write the Kauffman polynomial FK .a; z/ of K as

(2-6) FK .a; z/D a�w.D/
X
i;j

ai;j aizj :

In this form the coefficients ai;j are only nonzero in the range ji jC j � c.D/.

Cromwell extends work of Thistlethwaite [17] to identify two nonzero coefficients ai;j which realize
the maximum possible a–spread c.D/ for FK .a; z/ in the case of an alternating knot K with reduced
diagram D.

Theorem 2.3 [3] Let K be an alternating knot and D a reduced diagram of K. Then ai;j D 1 in the
two cases i D 1� vC.D/, j D c.D/C i and i D v�.D/� 1, j D c.D/� i .

Corollary 2.4 We have spra FK .a; z/D c.D/, and ai;j D 0 in (2-6) unless 1�vC.D/� i � v�.D/�1.

Proof By Theorem 2.3 spra FK .a; z/� v�.D/�1� .1�vC.D//D c.D/, while spra FK .a; z/� c.D/

by (2-5).

Now set

(2-7) BD.a; z/D aw.D/ EFK .a; z/D
�

aCa�1

z
� 1

�X
i;j

ai;j aizj :

Then spra BD.a; z/D spra FK .a; z/C 2D c.D/C 2. Furthermore, if we write

(2-8) BD.a; z/D
X
i;j

bi;j aizj ;

then bi;j D 0 unless �vC.D/� i � v�.D/ by Corollary 2.4.

The two critical monomials a�vC.D/zc.D/�vC.D/ and av�.D/zc.D/�v�.D/ in BD.a; z/, which correspond
to i D�vC.D/ and i D v�.D/, respectively, both have coefficient bi;j D 1, by Theorem 2.3. We will use
these critical monomials in finding a lower bound for the v–spread of the extended Homfly polynomial of
the reverse parallels of D.

Theorem 2.5 gives a simple formula to calculate the extended Homfly polynomial of KkCf in terms of
the polynomial of Kk .

Theorem 2.5 For any f and k we have

v2f .EPKkCf
.v; z/� 1/D EPKk

.v; z/� 1:
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Proof While this is in effect shown by Rudolph [16, Proposition 2(5)] it is easy to give a direct skein
theory proof. It is enough to prove it in the case f D 1. Now KkC1 is given from Kk by adding one
extra twist in the annulus, as shown:

Kk D K ; KkC1 D K :

With the reverse parallel orientation on the strings, apply the Homfly skein relation at one of the crossings
in the diagram for KkC1. Since this is a negative crossing, KkC1 plays the role of L�. Switching the
crossing gives

LC D K D K DKk ;

while the smoothed diagram

L0
D K

is simply an unknotted curve.

The skein relation, in the form
EPLC D vz EPL0 Cv2 EPL� ;

then gives

EPKk
D vz

v�1�v

z
C v2 EPKkC1

D 1� v2
C v2 EPKkC1

:

Thus
v2.EPKkC1

�1/D EPKk
�1:

We can now specify a lower bound for the v–spread of the extended Homfly polynomial of the parallels
Kw.D/Cf as f varies.

Theorem 2.6 Let K be an alternating knot with reduced diagram D. The framed reverse parallel
Kw.D/Cf has the following lower bound for the v–spread of its extended Homfly polynomial :

sprv EPKw.D/Cf
.v; z/�

8<:
2.vC.D/�f / if f < �v�.D/;
2.vC.D/C v�.D// if � v�.D/� f � vC.D/;
2.f C v�.D// if f > vC.D/:

Proof Since K is an alternating knot with reduced diagram D, Theorem 2.2 shows that

(2-9) BD.v
�2; z2/D v�2w.D/ EFK .v

�2; z2/ŠZ2
EPKw.D/

.v; z/� 1:

In BD.v
�2; z2/D

P
bi;jv

�2iz2j there are two critical monomials v�2iz2j , one with i D�vC.D/ and
j D c.D/�vC.D/, and the other with i D v�.D/ and j D c.D/�v�.D/, where bi;j D 1. By (2-9) there
are two corresponding critical monomials v�2iz2j in EPKw.D/

.v; z/�1 whose coefficients are congruent
to bi;j , and hence are odd. One term has v–degree �2v�.D/ and the other has v–degree 2vC.D/.

Algebraic & Geometric Topology, Volume 24 (2024)
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By Theorem 2.5 we have

v2f EPKw.D/Cf
.v; z/D .EPKw.D/

.v; z/� 1/C v2f :

The v–spread of EPKw.D/Cf
.v; z/ is the same as the v–spread of .EPKw.D/

.v; z/�1/Cv2f . In this Laurent
polynomial consider the appearance of the two critical monomials along with the monomial v2f . Unless
one of the two critical monomials v2vC.D/z2c.D/�2vC.D/ and v�2v�.D/z2c.D/�2v�.D/ in BD.v

�2; z2/

is v2f they will each still have odd coefficients, and the v–spread will be at least 2.vC.D/C v�.D//.

If f < �v�.D/ or f > vC.D/ the monomial v2f has even coefficient in EPKw.D/
.v; z/� 1 since it has

coefficient 0 in BD.v
�2; z2/. In this range of f it then has nonzero coefficient in .EPKw.D/

.v; z/�1/Cv2f .
This gives the lower bound 2.vC.D/�f / when f <�v�.D/, and 2.v�.D/Cf / when f > vC.D/ for
sprv EPKw.D/Cf

.v; z/.

To complete the proof of Theorem 2.6 it remains to deal with the cases where v2f is one of the two critical
monomials v2vC.D/z2c.D/�2vC.D/ and v�2v�.D/z2c.D/�2v�.D/ in BD.v

�2; z2/. In the first case this
means that f D vC.D/ and 0D c.D/� vC.D/. Then f D c.D/D vC.D/D n and D is the reduced
diagram of the .2; n/ torus knot. In the other case �f D c.D/D v�.D/D n. Hence D is the reduced
diagram of the .2;�n/ torus knot.

In the .2; n/ case we need to show that the coefficient of v2n in .EPKw.D/
.v; z/�1/Cv2n is nonzero. In

Theorem 2.7 we show that this coefficient is 2 by showing that v2n has coefficient 1 in EPKw.D/
.v; z/,

where Kw.D/ is the blackboard reverse parallel of D.

The .2;�n/ case follows directly by considering the polynomial of the mirror image.

The detailed calculation for the special case of the .2; n/ torus knot will now be shown.

Theorem 2.7 The blackboard reverse parallel Kn of the .2; n/ torus knot K satisfies

EPKn
.v; z/D v2n

C

X
i<2n;j

ai;jv
izj :

Proof We can draw a diagram of Kn as the closure of a 4–strand tangle with two upward and two
downward strings, as shown:

Algebraic & Geometric Topology, Volume 24 (2024)
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It is more convenient to place the upward pair of strings on the left at the top and bottom, and write Kn

as the closure of the tangle T n, where

T D :

We use the skein relations in the form

v�1
� v D z

to write the closure of T n as a linear combination of the closures of simpler tangles.

Notation The 4–strand tangle U evaluates to the extended Homfly polynomial of its closure, which we
write as ev.U / 2 ZŒv˙1; z˙1�.

Remark Evaluation is linear on tangles and respects the skein relations. It is a sort of trace function in
that ev.AB/D ev.BA/.

Our first step is to expand T as a combination of the tangles

�1 D ; �3 D ; hD and H D ;

and their products when placed one above the other.

Remark By using the skein relations we are in effect working in a version of the mixed Hecke algebra
H2;2.v; z/ spanned by tangles with two upward and two downward strings [8].

The crossing circled here in

T D

is a negative crossing, so we can use the skein relation at this crossing in the form

D v�2
� v�1z :

Then

T D D v�2
� v�1z D v�2�1�3� v

�1z�1�3hD C CC�;

where for convenience we set C D c1c3 D .v
�1�1/.v

�1�3/ and � D .�zv/h.

Then T n D .C CC�/n. Now C and � do not commute, so we write

(2-10) T n
D C n

C .C�/nC
X

0<k<n

C r1�C r2� � � �C rk�C r ;

where ri � 1, r � 0 and r C
P

ri D n.

Algebraic & Geometric Topology, Volume 24 (2024)
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We can estimate the contribution of these terms to the evaluation of T n.

� The evaluation of C n only contributes terms up to v–degree 4, by Proposition 2.9.

� The terms in the large sum with weight k in � evaluate to terms of v–degree at most 2k. Without
changing the evaluation we can assume that r D 0, since we can cycle C r from the end to the beginning
of the product and amalgamate it with C r1 . The contribution of these terms with k < n to the evaluation
of T n is shown in Proposition 2.10 to have degree no more than 2k (and thus at most 2n� 2) in v.

� The most important contribution comes from the evaluation of .C�/n, which gives v2n, and no other
terms with v–degree 2n or larger, as stated in Proposition 2.8.

Before making detailed calculations we note some useful properties, which can be quickly checked
diagrammatically:

�1H D �3H; H�1 DH�3; H D h�1�
�1
3 h;

D ı where ı D v�1�v

z
; h2

D ıh; h�1hD h:

Here are some consequences for our use of c1 D v
�1�1, c3 D v

�1�3, C D c1c3 and � D .�zv/h, which
follow algebraically:

� c1 D c�1
1
C zI and c3 D c�1

3
C zI (the skein relation, where I stands for the identity tangle).

� �c1c�1
3
� D .�zv/2hc1c�1

3
hD .zv/2H .

� �2 D .�zv/ı� D .v2� 1/� .

� �c1� D v
�1.�zv/2h�1hD�z� .

� �C� D �.c1c�1
3
C zc1/� D .zv/

2H � z2� .

Proposition 2.8 The extended polynomial of the closure of .C�/n is v2n plus lower terms in v for n> 1,
and 1� v�2 when nD 1.

Proof When nD 1 we have C� D .�zv�1/�1�3h. Now �1�3h closes to a single unknotted curve, so C�

evaluates to �zv�1ı D 1� v�2.

For n> 1 write

.C�/n D C.�C�/.C�/n�2
D .zv/2CH.C�/n�2

� z2C�.C�/n�2:

The evaluation of the second term has v–degree at most 2n� 2, by induction on n, so any monomials of
larger v–degree must come from the first term.

Now HhD ıH and H�1hDH . We can then write

HC� DH.c1c�1
3 C zc1/� DH� C zHc1� D .�zv/.ıC zv�1/H D .v2

� 1� z2/H:

So the first term expands to

.zv/2CH.C�/n�2
D .zv/2.v2

� 1� z2/n�2CH:

Algebraic & Geometric Topology, Volume 24 (2024)
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Now CH D c1c�1
3

H C zc1H DH C zv�1�1H . The closure of H is two disjoint unknotted curves, and
�1H closes to one unknotted curve. These evaluate to ı2 and ı, respectively. The first term then evaluates to

.v2
� 1� z2/n�2.ı2.�zv/2� z2.�zvı//D .v2

� 1� z2/n�1.v2
� 1/:

This contributes a single term v2n and no further terms of v–degree larger than 2n� 2.

The skein relation, in the form c2
1
D I C zc1, allows us to write cr

1
recursively as a linear combination

of c1 and the identity tangle I ,
cr

1 D ar .z/I C br .z/c1;

with coefficients which are polynomials in z only. Similarly

cr
3 D ar .z/I C br .z/c3:

We can then expand C r as a linear combination of I , c1, c3 and c1c3, with coefficients in ZŒz�. Explicitly

C r
D .ar I C br c1/.ar I C br c3/:

Proposition 2.9 The term C n in the expansion of T n provides terms of degree at most 4 in v, in the
evaluation.

Proof We have

C n
D a2

nI C anbn.c1C c3/C b2
nc1c3 D a2

nI C anbnv
�1.�1C �3/C b2

nv
�2�1�3:

Now I closes to four unknotted curves evaluating to ı4, �1 and �3 close to three unknotted curves
evaluating to ı3, and �1�3 closes to two unknotted curves evaluating to ı2. The term C n then contributes
a2

nı
4C 2anbnv

�1ı3C b2
nv
�2ı2 to the evaluation. Since ı D .v�1� v/z�1, and an and bn depend only

on z, these terms have v–degree at most 4.

To complete our proof of Theorem 2.7 we show that the evaluation of the remaining terms in (2-10) has
v–degree at most 2n� 2:

Proposition 2.10 The evaluation of

C r1� � � �C ri � � � �C rk�

with ri � 1 has terms of degree at most 2k in v.

Proof We proceed by induction on the number of exponents ri for which ri > 1.

When ri D 1 for all i this follows from Proposition 2.8.

Otherwise we can cycle the terms in the product without changing its evaluation, and arrange that
rk D r > 1. Then

�C r� D a2
r �

2
C ar br�.c1C c3/� C b2

r �C� D a2
r .v

2
� 1/� � 2zar br� C b2

r �C�:

So
C r1� � � �C rk� D .a2

r .v
2
� 1/� 2zar br /C

r1� � � �C rk�1� C b2
r C r1� � � �C rk�1�C�:
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These expressions both have one fewer term C ri for which ri > 1, so by our induction hypothesis the
evaluation of C r1� � � �C rk�1�C� has terms of degree at most 2k in v while C r1� � � �C rk�1� has terms
of degree at most 2k � 2. With the coefficient a2

r .v
2� 1/� 2zar br adding 2, in this case all terms in the

final evaluation have degree at most 2k in v. This establishes the proposition.

Now all the terms in (2-10) have been dealt with, and Theorem 2.7 for the evaluation of the reverse
blackboard parallel of the .2; n/ torus knot follows.

The proof of Theorem 2.6 is then complete. We can now prove Theorem 2.1, which was the goal of this
section.

Proof of Theorem 2.1 Using the Morton–Franks–Williams bound (2-4) in Theorem 2.6 immediately
gives the lower bound for the braid index of Kw.D/Cf as

b.Kw.D/Cf /�

8<:
vC.D/�f if f < �v�.D/;
vC.D/C v�.D/ if � v�.D/� f � vC.D/;
f C v�.D/ if f > vC.D/:

Replacing f by f �w.D/ then gives

b.Kf /�

8<:
vC.D/�f Cw.D/ if f �w.D/ < �v�.D/;
vC.D/C v�.D/ if � v�.D/� f �w.D/� vC.D/;
f �w.D/C v�.D/ if f �w.D/ > vC.D/:

Now vC.D/C v�.D/D c.D/C 2, so after setting a.D/Dw.D/� v�.D/ and b.D/Dw.D/C vC.D/

this lower bound becomes

b.Kf /�

8<:
c.D/C 2C a.D/�f if f < a.D/;

c.D/C 2 if a.D/� f � b.D/;

c.D/C 2� b.D/Cf if f > b.D/;

which is the formula (2-1) claimed in Theorem 2.1

3 The upper bound

In this section, we shall prove the following theorem, which provides us the desired upper bound for the
braid index of Kf .

Theorem 3.1 If Kf is a reverse parallel link of an alternating knot K with framing f and D is a reduced
diagram of K, then

(3-1) b.Kf /�

8<:
c.D/C 2C a.D/�f if f < a.D/;

c.D/C 2 if a.D/� f � b.D/;

c.D/C 2� b.D/Cf if f > b.D/;

where a.D/D�v�.D/Cw.D/ and b.D/D vC.D/Cw.D/.
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Figure 3: Left: a grid diagram for the figure-eight knot with ˛ D 6 arcs. Right: the resulting braid template.

Proof It suffices to show that braid presentations of Kf can be constructed with the number of strings
given in the theorem.

Nutt [15] constructs reverse string satellites of a knot K using an arc presentation for K with ˛ arcs. In
its simplest form, Nutt’s construction gives an ˛–string braid presentation of the reverse parallels Kf for
˛C 1 consecutive values of f .

An arc presentation of K on ˛ arcs provides a grid diagram for K made up of ˛ vertical arcs joined
by ˛ horizontal arcs such that the horizontal arcs can only pass under the vertical arcs. Convert this to a
braid template by the following procedure. First we extend each horizontal arc (from the points where
it is connected to vertical arcs) left and right. If an extended arc runs into a vertical arc, then we make
it pass under the vertical arc. Notice that each vertical arc now ends in a > at its top and in a ? at its
bottom. We then “thicken” each vertical arc slightly to create an empty 2–braid box as shown in Figure 3.
In this construction, the horizontal arcs at a > or ? of a vertical arc will meet the vertical sides of the
corresponding braid box, while any intermediate horizontal arcs pass entirely underneath the braid box.

We can now place a single positive or negative crossing in each braid box, with strings running from left
to right, connecting the horizontal arcs that meet the boundary of the box. The other horizontal arcs either
do not pass through this crossing, or will pass under it. This gives an ˛–string closed braid which is a
link with two components. Furthermore, one can verify that this closed braid is ambient isotopic to a link
within a tubular neighborhood of the grid diagram such that each component runs parallel to K but with
opposite orientations. That is, the resulting closed braid presents Kf for some framing f .

Write f D a for the framing which arises when all the crossings used in the braid boxes are positive.
If k of the boxes are filled with negative crossings instead, then we have framing f D aC k, so with all
crossings negative we have f D aC˛ D b, say.

In the case that f < a or f > b, we can present Kf as a closed braid on ˛C � strings for f D a� � or
f D bC � (� � 1) by adding � extra suitably chosen arcs to the grid diagram. This gives us an upper
bound for b.Kf /,

(3-2) b.Kf /�

8<:
˛C a�f if f < a;

˛ if a� f � b;

˛Cf � b if f > b;

with b D aC˛.
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An alternating knot K has an arc representation with c.D/C 2 arcs [1], so we can set ˛ D c.D/C 2

in (3-2). It remains to show that aD a.D/ and b D b.D/ in this case.

By our lower bound calculation (2-1), Kf cannot be presented as a braid on ˛ D c.D/C 2 strings if
f < a.D/ or f > b.D/. Now Ka and Kb are each presented by an ˛–string braid, so a � a.D/ and
b � b.D/. Thus b D c.D/C 2C a� c.D/C 2C a.D/D b.D/, giving

b D b.D/; aD a.D/

in (3-2).

We end our paper with the following remarks:

Remark If one desires to use the linking number l of Kf in the formulation of b.Kf / instead of the
framing f , then the formulation can be easily obtained by substituting f by �l in (1-1). Specifically, (1-1)
becomes

(3-3) b.Kf /D

8<:
c.D/C 2C a0.D/� l if l < a0.D/;

c.D/C 2 if a0.D/� l � b0.D/;

c.D/C 2� b0.D/C l if l > b0.D/;

where a0.D/ D �vC.D/�w.D/, b0.D/ D v�.D/�w.D/ and l D �f is the linking number of Kf .
The corresponding formulation of (2-1) matches the one given in [5]. We need to point out that the
lower bound formula derived in [5] uses a graph-theoretic approach on the Seifert graphs of D and Kf

constructed from the blackboard reverse parallel of D. However, that approach only works for the special
alternating knots, namely those alternating knots which admit a reduced alternating diagram in which the
crossings are either all positive or all negative.

Remark The general question of finding the braid index for a satellite of a knot K with some form of
reverse string pattern has been considered by Birman and Menasco [2]. Our reverse parallels, along with
Whitehead doubles, are the simplest such satellites. Nutt [15] draws on [2] to give lower bounds for the
braid index in terms of the arc index of K, as well as the upper bounds which we have used. Coupled with
the later work of Bae and Park [1], this would provide our result without the use of Rudolph’s congruence.

Some descriptions given by [2] were later found to be incomplete, with Ka Yi Ng [14] providing details
of the missing cases. Nutt’s lower bound argument needs the analysis in [2] which shows that the arc
index of K is a lower bound for the braid index of any reverse string satellite of K. We have not been
able to confirm how well the arc index analysis in the original paper extends to Ng’s extra cases.

Remark Theorem 1.1 allows us to settle the long-standing conjecture that the ropelength of an alternating
knot K is at least proportional to its crossing number. This statement is a consequence of [4, Theorem 3.1]
and the fact that the ropelength of K is bounded below by a (fixed) constant multiple of the ropelength
of Kf for some f . The more general case of an alternating link with two or more components remains open.
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