Download this article
 Download this article For screen
For printing
Recent Issues

Volume 25
Issue 2, 645–1264
Issue 1, 1–644

Volume 24, 9 issues

Volume 23, 9 issues

Volume 22, 8 issues

Volume 21, 7 issues

Volume 20, 7 issues

Volume 19, 7 issues

Volume 18, 7 issues

Volume 17, 6 issues

Volume 16, 6 issues

Volume 15, 6 issues

Volume 14, 6 issues

Volume 13, 6 issues

Volume 12, 4 issues

Volume 11, 5 issues

Volume 10, 4 issues

Volume 9, 4 issues

Volume 8, 4 issues

Volume 7, 4 issues

Volume 6, 5 issues

Volume 5, 4 issues

Volume 4, 2 issues

Volume 3, 2 issues

Volume 2, 2 issues

Volume 1, 2 issues

The Journal
About the Journal
Editorial Board
Subscriptions
 
Submission Guidelines
Submission Page
Policies for Authors
Ethics Statement
 
ISSN 1472-2739 (online)
ISSN 1472-2747 (print)
Author Index
To Appear
 
Other MSP Journals
Points of quantum $\mathrm{SL}_n$ coming from quantum snakes

Daniel C Douglas

Algebraic & Geometric Topology 24 (2024) 2537–2570
Bibliography
1 F Bonahon, H Wong, Quantum traces for representations of surface groups in SL2(), Geom. Topol. 15 (2011) 1569 MR2851072
2 K A Brown, K R Goodearl, Lectures on algebraic quantum groups, Birkhäuser (2002) MR1898492
3 D Bullock, C Frohman, J Kania-Bartoszyńska, Understanding the Kauffman bracket skein module, J. Knot Theory Ramifications 8 (1999) 265 MR1691437
4 L O Chekhov, M Shapiro, Log-canonical coordinates for symplectic groupoid and cluster algebras, Int. Math. Res. Not. 2023 (2023) 9565 MR4597214
5 D C Douglas, Classical and quantum traces coming from SLn() and Uq(𝔰𝔩n), PhD thesis, University of Southern California (2020)
6 D C Douglas, Quantum traces for SLn() : The case n = 3, J. Pure Appl. Algebra 228 (2024) 107652 MR4717274
7 V V Fock, L O Chekhov, Quantum Teichmüller spaces, Teoret. Mat. Fiz. 120 (1999) 511 MR1737362
8 V V Fock, A B Goncharov, Cluster 𝒳–varieties, amalgamation, and Poisson–Lie groups, from: "Algebraic geometry and number theory" (editor V Ginzburg), Progr. Math. 253, Birkhäuser (2006) 27 MR2263192
9 V V Fock, A B Goncharov, Moduli spaces of local systems and higher Teichmüller theory, Publ. Math. Inst. Hautes Études Sci. 103 (2006) 1 MR2233852
10 V V Fock, A B Goncharov, Dual Teichmüller and lamination spaces, from: "Handbook of Teichmüller theory, I" (editor A Papadopoulos), IRMA Lect. Math. Theor. Phys. 11, Eur. Math. Soc. (2007) 647 MR2349682
11 V V Fock, A B Goncharov, Moduli spaces of convex projective structures on surfaces, Adv. Math. 208 (2007) 249 MR2304317
12 V V Fock, A B Goncharov, Cluster ensembles, quantization and the dilogarithm, Ann. Sci. Éc. Norm. Supér. 42 (2009) 865 MR2567745
13 D Gaiotto, G W Moore, A Neitzke, Spectral networks and snakes, Ann. Henri Poincaré 15 (2014) 61 MR3147409
14 M Gekhtman, M Shapiro, A Vainshtein, Poisson geometry of directed networks in a disk, Selecta Math. 15 (2009) 61 MR2511199
15 W M Goldman, The symplectic nature of fundamental groups of surfaces, Adv. in Math. 54 (1984) 200 MR0762512
16 W M Goldman, Invariant functions on Lie groups and Hamiltonian flows of surface group representations, Invent. Math. 85 (1986) 263 MR0846929
17 A Goncharov, L Shen, Quantum geometry of moduli spaces of local systems and representation theory, preprint (2019) arXiv:1904.10491
18 N J Hitchin, Lie groups and Teichmüller space, Topology 31 (1992) 449 MR1174252
19 L Hollands, A Neitzke, Spectral networks and Fenchel–Nielsen coordinates, Lett. Math. Phys. 106 (2016) 811 MR3500424
20 R M Kashaev, Quantization of Teichmüller spaces and the quantum dilogarithm, Lett. Math. Phys. 43 (1998) 105 MR1607296
21 C Kassel, Quantum groups, 155, Springer (1995) MR1321145
22 G Kuperberg, Spiders for rank 2 Lie algebras, Comm. Math. Phys. 180 (1996) 109 MR1403861
23 F Labourie, Anosov flows, surface groups and curves in projective space, Invent. Math. 165 (2006) 51 MR2221137
24 G Martone, Positive configurations of flags in a building and limits of positive representations, Math. Z. 293 (2019) 1337 MR4024589
25 D Mumford, J Fogarty, F Kirwan, Geometric invariant theory, 34, Springer (1994) MR1304906
26 C Procesi, The invariant theory of n × n matrices, Advances in Math. 19 (1976) 306 MR0419491
27 J H Przytycki, Skein modules of 3–manifolds, Bull. Polish Acad. Sci. Math. 39 (1991) 91 MR1194712
28 G Schrader, A Shapiro, Continuous tensor categories from quantum groups, I: Algebraic aspects, preprint (2017) arXiv:1708.08107
29 G Schrader, A Shapiro, A cluster realization of Uq(𝔰𝔩𝔫) from quantum character varieties, Invent. Math. 216 (2019) 799 MR3955710
30 A S Sikora, Skein theory for SU(n)–quantum invariants, Algebr. Geom. Topol. 5 (2005) 865 MR2171796
31 W P Thurston, Three-dimensional geometry and topology, 1, 35, Princeton Univ. Press (1997) MR1435975
32 V G Turaev, Algebras of loops on surfaces, algebras of knots, and quantization, from: "Braid group, knot theory and statistical mechanics" (editors C N Yang, M L Ge), Adv. Ser. Math. Phys. 9, World Sci. (1989) 59 MR1062423
33 E Witten, Quantum field theory and the Jones polynomial, Comm. Math. Phys. 121 (1989) 351 MR0990772