Download this article
 Download this article For screen
For printing
Recent Issues

Volume 25
Issue 2, 645–1264
Issue 1, 1–644

Volume 24, 9 issues

Volume 23, 9 issues

Volume 22, 8 issues

Volume 21, 7 issues

Volume 20, 7 issues

Volume 19, 7 issues

Volume 18, 7 issues

Volume 17, 6 issues

Volume 16, 6 issues

Volume 15, 6 issues

Volume 14, 6 issues

Volume 13, 6 issues

Volume 12, 4 issues

Volume 11, 5 issues

Volume 10, 4 issues

Volume 9, 4 issues

Volume 8, 4 issues

Volume 7, 4 issues

Volume 6, 5 issues

Volume 5, 4 issues

Volume 4, 2 issues

Volume 3, 2 issues

Volume 2, 2 issues

Volume 1, 2 issues

The Journal
About the Journal
Editorial Board
Subscriptions
 
Submission Guidelines
Submission Page
Policies for Authors
Ethics Statement
 
ISSN 1472-2739 (online)
ISSN 1472-2747 (print)
Author Index
To Appear
 
Other MSP Journals
A simple proof of the Crowell–Murasugi theorem

Thomas Kindred

Algebraic & Geometric Topology 24 (2024) 2779–2785
Bibliography
1 J E Banks, Homogeneous links, Seifert surfaces, digraphs and the reduced Alexander polynomial, Geom. Dedicata 166 (2013) 67 MR3101161
2 D Bar-Natan, J Fulman, L H Kauffman, An elementary proof that all spanning surfaces of a link are tube-equivalent, J. Knot Theory Ramifications 7 (1998) 873 MR1654637
3 P R Cromwell, Homogeneous links, J. Lond. Math. Soc. 39 (1989) 535 MR1002465
4 R Crowell, Genus of alternating link types, Ann. of Math. 69 (1959) 258 MR99665
5 D Gabai, The Murasugi sum is a natural geometric operation, from: "Low-dimensional topology" (editor S J Lomonaco Jr.), Contemp. Math. 20, Amer. Math. Soc. (1983) 131 MR718138
6 D Gabai, The Murasugi sum is a natural geometric operation, II, from: "Combinatorial methods in topology and algebraic geometry" (editors J R Harper, R Mandelbaum), Contemp. Math. 44, Amer. Math. Soc. (1985) 93 MR813105
7 E Giroux, N Goodman, On the stable equivalence of open books in three-manifolds, Geom. Topol. 10 (2006) 97 MR2207791
8 C M Gordon, R A Litherland, On the signature of a link, Invent. Math. 47 (1978) 53 MR500905
9 J E Greene, Alternating links and definite surfaces, Duke Math. J. 166 (2017) 2133 MR3694566
10 J Harer, How to construct all fibered knots and links, Topology 21 (1982) 263 MR649758
11 L H Kauffman, The Conway polynomial, Topology 20 (1981) 101 MR592573
12 T Kindred, Checkerboard plumbings, PhD thesis, University of Iowa (2018)
13 C Livingston, A H Moore, KnotInfo: table of knot invariants, online database (2024)
14 K Murasugi, On the genus of the alternating knot, I, J. Math. Soc. Japan 10 (1958) 94 MR99664
15 K Murasugi, On the genus of the alternating knot, II, J. Math. Soc. Japan 10 (1958) 235 MR99664
16 K Murasugi, Jones polynomials and classical conjectures in knot theory, II, Math. Proc. Cambridge Philos. Soc. 102 (1987) 317 MR898151
17 K Murasugi, Knot theory and its applications, Birkhäuser (1996) MR1391727
18 M Ozawa, Essential state surfaces for knots and links, J. Aust. Math. Soc. 91 (2011) 391 MR2900614
19 B Ozbagci, P Popescu-Pampu, Generalized plumbings and Murasugi sums, Arnold Math. J. 2 (2016) 69 MR3460043
20 C V Quach Hongler, C Weber, On the topological invariance of Murasugi special components of an alternating link, Math. Proc. Cambridge Philos. Soc. 137 (2004) 95 MR2075044