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Definition of the cord algebra of knots using Morse thoery

ANDREAS PETRAK

The cord algebra of a knot K is isomorphic to the string homology and the Legendrian contact homology
of K. The proof of the isomorphism of string homology and cord algebra uses a retraction of broken
strings (which are consecutive paths beginning and ending on the knot) on words in linear cords. This
suggests a reformulation of the cord algebra using linear cords, which we present. We will define a
Morse function such that the binormal linear cords of K are the critical points of degree 0, 1 and 2 of
this function. These critical points give rise to a chain complex of K. Then the cord algebra of K is the
degree zero homology of K.

57TM25, 57TM27; 5TR17

1 Introduction

The cord algebra is a knot invariant first introduced in 2005 by Lenhard Ng in [11, Definition 1.2]. The
topological definition of the cord algebra given there is inspired by the Legendrian contact homology (see
Ng [10, Definition 4.1]). Ng extended the definition in 2008 in [12, Definition 2.4] and in 2014 in [13,
Definition 4.4]. In 2013, Tobias Ekholm, John B Etnyre, Ng and Michael G Sullivan showed that the
cord algebra is isomorphic to the Legendrian contact homology in degree zero [5, Corollary 1.2]. In
2017, Kai Cieliebak, Ekholm, Janko Latschev and Ng developed in [2, Section 2.2] a noncommutative
refinement of the original definition, including a basepoint of the knot and a framing. This results in
four additional generators in the cord algebra. In [2, Theorem 1.2 and Proposition 1.3], another proof
of the isomorphism of the cord algebra to the Legendrian contact homology (in degree zero) is given.
This is done with the help of string homology by first showing the isomorphism of string homology and
the cord algebra and then the isomorphism of Legendrian contact homology and string homology. To
define the string homology (in degree zero), a chain complex is defined which contains broken strings
or 1—-parameter families of broken strings as generators in degree O or 1, respectively. A broken string
consists of pieces which are paths beginning and ending on the knot, and whose codomain alternates
between the ambient space of the knot and its conormal bundle (there is also a relation of tangent vectors
at the switching points). In the proof of the isomorphism of string homology and cord algebra, a retraction
of the broken strings on words in (linear) cords is used, where (linear) cords are linear curves in space
with start and end points on the knot. Therefore, it makes sense to describe the cord algebra with the help
of a suitable complex of (linear) cords. We will do this in this paper. For this purpose we will define a
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suitable chain complex which contains the critical points of index 0 and 1 of a Morse function in degree
0 and 1, respectively, and the four additional generators mentioned above in degree 0. Further degrees of
the chain complex are not needed. These critical points correspond to binormal (linear) cords on the knot.
In order to construct a suitable differential, we let the binormal (linear) cords of index 1 flow along their
unstable manifolds until they, taking into account four relations, reach (linear) cords of index 0. These
four relations are used in [2, Definition 2.6] to define the cord algebra, where two of them were already
defined by Ng in [11, after Definition 1.1] and a third was introduced in [12, after Definition 2.3]. We
will adapt them here only slightly to the changed concept.

We will need several results from differential topology and Morse theory. The statements and proofs can
be found in the literature referred to.

Important statements from differential topology which we will use are the transversality theorem and the
jet transversality theorem as well as the relative versions of these two theorems.

To define the cord algebra, we will consider a gradient vector field. This vector field has to satisfy
the Smale condition. For this it may be necessary to change the gradient to a pseudogradient. From
Morse theory we also need the statement that in a generic 1-parameter family of vector fields without
nonconstant periodic orbits only birth-death type degeneracies occur.

At the beginning of Section 2 we will first explain the noncommutative definition of the cord algebra
from [2]. A cord is a continuous path in space that has a start and end point on the knot K and does not
intersect the knot in any other point. We also need a basepoint on K and a framing which is a slightly
shifted copy of K. Four relations are defined which specify relations between different cords, partly taking
into account the basepoint and the framing. These relations generate an ideal $ in a noncommutative

unital ring 54, where s is generated by homotopy classes of cords and four other generators A+, *1

modulo the relations A- A"l =1"1. 1 = M'M_l = M_l

Cord(K), is then defined as the quotient ring s/ 9.

-uw=1and A-u = p-A. The cord algebra of K,

In Section 2.1 we will use chords and a (slightly different definition of) framing to be able to define the
cord algebra using Morse theory. A chord of K is a straight line in space with start and end points on
the knot, ie a special kind of cord. A framing is now a smooth map that assigns a unit normal vector to
each point of the knot. The four relations from the original definition of the cord algebra are adapted
accordingly. We’ll look at the energy function E: K x K — R, (x,y) — %|x — y|?, and change it to a
Morse function. The critical points of Morse index 1 of this Morse function are binormal chords whose
unstable manifolds are one-dimensional. These chords are moved along their unstable manifolds and,
taking into account the relations, generate an ideal / in an R—algebra Cy which is generated by critical
points of index 0. Here R = Z[A*!, u*1] is the commutative ring over Z which is generated by A, A™1,
and =1 modulo the relations A - A7 = p- !
Cord(K) :=Cy/1I.

= 1. We then define in Section 2.3 the cord algebra as
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In Section 2.1, we discuss, for a generic representative of the knot, various properties of the subsets of
chords (viewed as subsets of K x K via the end point map) where one of three special things happen:

¢ one of the end points coincides with the basepoint,

o the chord intersects the knot in its interior,

¢ the chord intersects the framing.
In the definition of the cord algebra we use the Seifert framing as a canonical framing. To determine the
cord algebra of a knot, however, it is easier to use the blackboard framing. In order to obtain the cord

algebra with respect to the Seifert framing, certain transformations must be applied. We will discuss these
transformations in Section 2.4.

In Section 2.5 we will determine the cord algebras for the unknot and the right-handed trefoil knot.

The main result of this paper is:
Theorem 1.1 The cord algebra defined in terms of Morse theory (see Definition 2.30) is a knot invariant.

The proof of Theorem 1.1 will be given in Section 3. We consider two knots K¢ and K; which are
connected by a smooth isotopy of knots. So it must be shown that the cord algebras of the two knots
are the same. First of all, it is necessary to note that in the course of the isotopy there are only a finite
number of knots that are not generic. Therefore, we can assume that only one nongeneric knot occurs
during the isotopy and show that the cord algebra does not change in the course of the isotopy. Since
there are several cases of degeneracies, we have to go through all these cases. Furthermore, we will also
show that the cord algebra does not change in the course of the isotopy if no nongeneric knot occurs.

In Section 4 we will prove that the definition of the cord algebra using Morse theory is isomorphic to the
topological definition given in [2, Definition 2.6].

Acknowledgements

A thousand thanks to Kai Cieliebak for many inspiring conversations.

2 Definition of the cord algebra

The cord algebra is a knot invariant developed only a few years ago [11; 12; 13]. In [2, Definition 2.6] a
noncommutative refinement of the original definition is presented. This refined version is briefly explained
in the following. For this we need the terms framing and cord. However, in Section 2.1 we will use
chords (instead of cords) and a slightly different definition of framing to define the cord algebra using
Morse theory.

Remark 2.1 For the purpose of this overview we use the following interpretation of framing:
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Figure 1: Relations for cords. Here K is depicted in black, K’ in gray, and cords are drawn in red.
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Let K C R3 be a knot of length L and y: [0, L] — R3 be an arclength parametrization of K. Let
v:[0, L] — S? be a smooth map, where v(¢) is a unit normal vector to K at the point y(¢) for all ¢ € [0, L].
Let & > 0 be small enough such that the strip {y(t) +av(¢) : t € [0, L], « € [0, €]} has no self-intersections.

A framing of K is the set K’ := {y(t) + ev(¢) : t € [0, L]}.

Let K C R3 be an oriented knot equipped with a framing K’. Choose a basepoint * on K and a
corresponding basepoint * on K’ (in fact only the basepoint on K’ will be needed).

Definition 2.2 A cord of K is a continuous map «: [0, 1] — R3 such that «([0,1]) N K = & and
a(0),a(1) € K’ \ {*}. Two cords are homotopic if they are homotopic through cords.

We now construct a noncommutative unital ring & as follows: as aring, o is freely generated by homotopy

il, modulo the relations

classes of cords and four extra generators A+, i

AAat=At A=p-p t=ptopn=1, A-p=p-A.
Thus, o is generated as a Z-module by (noncommutative) words in homotopy classes of cords and
powers of A and u (and the powers of A and  commute with each other, but not with any cords).
Definition 2.3 The cord algebra of K is the quotient ring

Cord(K) =/9,

where $ is the two-sided ideal of s generated by the relations shown in Figure 1.
Remark 2.4 [2, Remark 2.7] The relations in Figure 1 depict cords in space that agree outside of the
drawn region (except in (iv), where either of the two cords on the left-hand side of the equation splits into
the two on the right). Thus, the second relation states that appending a meridian to the beginning or end of

a cord multiplies that cord by w on the left or right; u is also called meridian. The third relation imposes
that crossing the basepoint multiplies the cord by A from the left or right; A is also called longitude. The
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Figure 2: Equivalent representation of the fourth relation.

fourth relation is equivalent to the relation shown in Figure 2. Applying the second and fourth relation in
a suitable way to a contractible cord ¢, we get the equation

(c—(1—=p)c=0.

The first relation means that the expression in the brackets already vanishes.

2.1 The energy function for generic knots

In this paper we want to define the cord algebra using Morse theory. For this we need a framing as above.
In contrast to the original definition, we will use chords instead of cords.

Definition 2.5 Let K C R3 be a knot of length L and y: [0, L] — R3 be an arclength parametrization
of K.

(i) A framing of K is a smooth map v: [0, L] — S2, where v(¢) is a unit normal vector to K at the
point y(¢) for all € [0, L].

(i) Given a Seifert surface for a knot K, a Seifert framing is a framing such that the normal vector
v(t) is tangent to the Seifert surface and pointing inwards for all ¢ € [0, L].

Remark 2.6 Assume that j vanishes nowhere. A framing can also be understood as amap v: S' — S by
representing v(¢) for each ¢ € S in local coordinates of the normal plane N(¢) = span(j (), y(t) X j(t))
at the point y(¢).

Given a knot K, we take a look at the set of framings of K modulo homotopy:
{framings of K}/~ = C(S!, S/~ =m1(§)) = Z.

As a consequence, the Seifert framing is unique up to homotopy, since the linking number of K and a
copy of K which is shifted slightly in the direction of the Seifert framing is always zero.

Let K C R3 be a generic oriented knot of length L and y: [0, L] — K be an arclength parametrization
of K. Also, let K be equipped with a framing. For this we use the Seifert framing (obtained by the Seifert
algorithm) as a canonical framing. To facilitate the determination of the cord algebra of a knot, however,
we will use a different framing. This and the necessary transformations to obtain the cord algebra with
respect to the Seifert framing will be discussed in Section 2.4. Furthermore, we choose a basepoint *
on K.

Definition 2.7 Let K C R3 be a knot (or a link). A chord of K is a curve a € C2([0, 1], R3) such that
a(0),a(1) € K and & = 0, ie « is a straight line in R starting and ending on the knot.
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Figure 3: A chord c intersects the framing. Left: ¢ intersects the framing at its starting point.
Right: ¢ intersects the framing at its endpoint.

The space of these chords can be canonically identified with K x K by associating to each chord its
endpoints on K: for s, ¢ € [0, L],
c=(y@s).y1) e KxK

is a chord with starting point y(s) and endpoint y(¢). The space K x K can be canonically identified with
the torus 72 by using the identification S! = R/LZ. The start and endpoint of a chord ¢ = (y(s), y(t))
can be identified with s € S! and ¢ € S!, respectively, and thus we can simply write

c=(s,t).

We also assign an orientation to each chord: a chord ¢ = (y(s), y(¢)) is oriented from its start y(s) to its
endpoint y(z).

Definition 2.8 Let K C R3 be an oriented knot of length L equipped with a framing v. Let y : [0, L] — R3
be an arclength parametrization of K. Let N(r) C R? be the normal plane to K at the point y(z) and
7z R3 — N(t) be the orthogonal projection onto N(z). Let ¢ = (s,¢) € K x K be a chord of K.

We say c intersects the framing if one of the following conditions is satisfied (see Figure 3):

o ms(y(t)—y(s)) = av(s) for an o > 0 (c intersects the framing at its starting point), or

o m:(y(s)—y(t)) = av(t) for an o > 0 (¢ intersects the framing at its endpoint).

Remark 2.9 From this definition it follows that if a chord (s,¢) € K x K intersects the framing, so
does the reverse oriented chord (¢, s). Thus, the set of chords intersecting the framing is symmetric with
respect to the involution on K x K that interchanges the factors.

Remark 2.10 Let ¢ > 0 be such that the strip {y(t) +av(t) :t €[0, L], @ €[0, £]} has no self-intersections,
ie the map
[0,L]x[0,e] = R?, (t,@) = y(t) +av (),
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is injective. In diagrams we will draw the set K’ := {y(¢) +ev(z) : ¢ € [0, L]} to visualize the framing; K’
is also called framing. An intersection of a chord with the framing according to Definition 2.8 corresponds
approximately to an intersection of the chord with the set K’ if the curvature of K’ is not too strong in
a neighborhood of this intersection. Also, there can be very short chords that do not intersect K’, but
intersect the framing according to Definition 2.8. Therefore, K’ is to be understood only as visualization
of the framing. In order to determine intersections of chords with the framing, it may be necessary to use
the above definition.

Let
E:Kx K —R, (x,y)|—>%|x—y|2,

be the energy function on the space of chords, where x and y, as described above, are the start and
endpoint, respectively, of a chord (cf [2, Section 7.4]). Using the parametrization y we can write

E(s,1) = 3ly(s) =y ().
Furthermore, we will need the following subsets of K x K:
e Let S C K x K be the set of chords that intersect the knot K in their interior.
e Let FF C K x K be the set of chords that intersect the framing. Since F is symmetric with respect
to the diagonal in K x K according to Remark 2.9, F' can be split into
F=F'UF¢®

where F* and F°€ are the sets of chords that intersect the framing at their start and endpoint,

respectively. Then
F¢={(s,t) e KxK:(t,s) € F*}.

e let B C K x K be the set of chords that begin or end at the basepoint *. If we choose a
parametrization with y(0) = %, then B = (K x {0}) U ({0} x K).

Lemma 2.11 [2, Lemma 7.10] For a generic knot K C R3 the following holds for the space K x K of
chords (see Figure 4):

(i) E attains its minimum O along the diagonal, which is a Bott nondegenerate critical manifold; the
other critical points are nondegenerate binormal chords of index 0, 1 and 2.

(i) The subset S C K x K of chords meeting K in their interior is an immersed curve with boundary
consisting of finitely many chords tangent to K at one endpoint, and with finitely many transverse
self-intersections consisting of chords meeting K twice in their interior.

(iii) The negative gradient —V E is not pointing into S at the boundary points.
The proof of this lemma is given in [2].

From now on, we assume that the representative of the knot has been chosen to have the properties listed
in Lemma 2.11.
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Figure 4: The space K x K of chords.
Remark 2.12 The Morse Bott function E can be converted into a Morse function by adding a smooth
function f: K x K — R to E that satisfies the following properties:

(1) f has exactly two critical points along the diagonal of K x K, a minimum m and a maximum M .
(i1) Outside the diagonal, the function f is smoothly extended in such a way that it vanishes outside a

small neighborhood of the diagonal, especially at all other critical points.

In the following, we assume that £ is a Morse function since this can be achieved by adding an arbitrarily
small perturbation f.

Remark 2.13 The set S is obviously symmetric with respect to the diagonal in K x K: if the chord
(s, t) intersects the knot in its interior, so does the reverse oriented chord (¢, s); the same also holds for
the boundary of S. So dS can be split into

S =09°SUd*S
where 0°S and 0°S are the sets of chords that are tangent to K at their start and endpoint, respectively.

Lemma 2.14 For a generic knot K and a generic framing v: S' — S? the following holds for the space
K x K of chords:

The set F* C K x K of chords that intersect the framing at their starting point is a one-dimensional
submanifold with boundary and 0F* = 05S.

The proof of this lemma is given in the appendix.

Remark 2.15 Lemma 2.14 implies that F* has no self-intersections. Since F is symmetric, an analogous
statement holds for F¢. So the self-intersections of F are the intersections of F* and F¢. These are
either located on the diagonal of K x K or occur in pairs symmetrically to the diagonal and contain the
chords that intersect the framing at their start and endpoint.
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Figure 5: Perturbation of the knot in a neighborhood of p such that the chord k does not intersect
the knot in its interior anymore.

Definition 2.16 Let K be a knot and E: K x K — R be the energy function that has been perturbed to a
Morse function as described above. Denote by Crity (E) the set of critical points of Morse index k of the

function E.

Lemma 2.17 For a generic knot K, a generic basepoint and a generic framing, the following holds for

the space K x K of chords:
Critp 1 N(BUFUS)=9

where Critg,1 := Critp U Crity.

Proof According to Lemma 2.11(i), Critg ; is a finite set. The sets B, F and S can be considered

separately from each other:
If Critg,; NB # o, an arbitrarily small shift of the basepoint is sufficient to achieve Critg,; NB = @.

If Critg,; NF* # &, let k € Critg,; NF*. If the framing is changed in an arbitrarily small neighborhood of
the starting point of the chord k by an arbitrarily small perturbation, k no longer intersects the framing at
its starting point. Thus, also the reverse oriented chord, which was an element of F¢, does not intersect the
framing at its endpoint anymore. This procedure is necessary only finitely many times because Critg,1 NI
is finite.

If Critg,; NS # @, let k € Critg,; NS and p be the intersection point of k with the knot in the interior
of k. If the knot is changed in an arbitrarily small neighborhood of p by an arbitrarily small perturbation
in a suitable direction (see Figure 5), k no longer intersects the knot in its interior. Since Critg,; NS is
finite, only finitely many such perturbations have to be made. |

From now on, we assume that the representative of the knot has been chosen such that it satisfies the
statement of Lemma 2.17, the energy function £ is a Morse function according to Remark 2.12 and the
framing satisfies Lemma 2.14.

We will show more generic properties of the function E. For this it may be necessary to perturb the
function E with the help of the (jet) transversality theorem, ie to vary E in the function space C" (T2, R)
for an n > 0. Such a variation can be considered as the addition of another smooth function g: K x K - R
to E. Denote by

Eg:=E+¢g

Algebraic € Geometric Topology, Volume 24 (2024)
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the perturbed function. The function g can always be chosen so that it is arbitrarily small (in the C"
sense) (according to the (jet) transversality theorem) and vanishes in a small neighborhood of the diagonal
in K x K and small neighborhoods of all critical points of E (since E does not have to be perturbed
in these neighborhoods, because the properties shown in Lemmas 2.20 and 2.23 for generic knots are
already satisfied on the diagonal and because, according to Lemma 2.17, Critg.; N(BU F U §) = @).
Thus, all critical points remain unchanged, ie the following holds for k =0, 1, 2,
Crity (Eg) = Critg (E).
Likewise, the sets S, F' and B do not change, since the knot itself is not changed.

We will consider the flow ¢* of the negative gradient —V E, in the perturbed case the flow g3 of —V Eg.
The stable and unstable manifolds of a critical point k of E are

WSk)={xeT?: lim ¢*(x)=k}, W k)={xeT?: lim ¢*(x)=k},
s—>—+00 §—>—00
respectively. Similarly, the stable and unstable manifolds of critical points k of Eg are denoted by Wy (k)
and W' (k), respectively.

To be able to show some generic properties of the function Eg, we need the following statement: if we
perturb the unstable manifold of a critical point of index 1 a little bit, we can find a function g such that
the perturbed unstable manifold is realized by the flow of the negative gradient of the function Ez. First,
we show the following lemma.

Lemma 2.18 (Cieliebak and Volkov [4, Lemma 3.7]) For all §, ¢ > O there exists a smooth function
x: R — [0, 1] such that
(i) x is nondecreasing on R_ and nonincreasing on R 4,
(i1) x is constant 1 in a neighborhood of 0,
(iii) y is constant 0 on R \ (-6, §),

(iv) forall x € R, we have |xy'(x)| < &.

Proof We consider the function f: [0,8] — R defined by x — elog(§/x). Notice that f satisfies
xf'(x) =—e, f(§) =0and f(8e~1/¢) = 1. Now shift the function max( f, 1) slightly to the left, extend
by O to the right, smoothen it and mirror it on the y—axis. This gives us the function y we are looking
for. O

Lemma 2.19 lLeta,b,c,d e Rwitha<0<bandc <d. Let f € C*®([c,d], (a,b)) be a function
such that

(i) flc)=f(d)=0,

(i) for1 <k < oo, we have f®(c) = f®(d) = 0.
Let f: [c,d] = (a,b) x[c,d], y = (f(¥),y), be the graph of f over the y—axis, and let g: R?> — R,

(x,y) — y, be the projection to the second coordinate.

Algebraic € Geometric Topology, Volume 24 (2024)
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Figure 6: Adjustment of the level sets. Left: im( f ) as a graph over the y—axis and the level sets
of g. Right: changed level sets.

Then there exists a function g: R? — R such that
g=g on R*\((a,b)x(c,d)),
im(f) = {5((0.d)): 0 <5 <7},
where qog is the flow along the vector field —V g and (pf;((O, d)) = (0,c).
Proof Figure 6, left, shows im( f ) and the level sets of g in R := [a, b] X [c, d]. We now want to change

g on R to g so that the level sets of g are perpendicular to im( f~ ) (see Figure 6, right), but outside of R
coincide with the level sets of g. To do this we use a diffeomorphism

®:R—> R, (x,y)(x,y+¥(x,y)),
where W € C*°(R, R) satisfies
(1) W¥(x,y)=0forall (x,y) € dR,
(i) ¥(f(»).y)=0,
(i) F¥ (S ) ==f").

With this function ® we set
gi=god L

Thus, the level sets of g are as required. The flow of the negative gradient runs perpendicular to the level
sets and is unique. So we have

im(f) = {95((0,d)):0<5 <7}
with 7 > 0 where (pz;(((), d)) = (0,c¢).
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It remains to show that such a function W exists so that ® is a diffeomorphism. We choose

Y:R—->R, (x,y) > =M= fONx(x—f).
where y: R — R is a smooth cutoff function with the properties
@ x©0)=1,
(i) supp x C [-6, 8], where § > 0 must be chosen so thata + 6 < f(y) <b—¢6 forall y € [c,d],
(iii) |zyx'(z)] <eforall z € R and an ¢ > 0, which will be determined more precisely later.

According to Lemma 2.18, such a function y exists for any §, ¢ > 0. All properties required for W are
satisfied. Moreover,

0
%(x, Py === fONxE=FON+S )21 (x=F ) +(f )= fFON A (x=f (1))

>0

>~ = FONA=FODI= 1 N> (= N = F DI
The first term in the last line does not vanish only if |x — f(y)| < §. After possibly decreasing &,

| "D (x—=FONx(x—=f(y))] < % can be achieved. Additionally, we can get |(x— f () ' (x—f(»))| <.
So by choosing & small enough, we can achieve |(f/())?(x — f(V) ¥ (x — f(¥))| < % Altogether,

%_‘f(x, y) > —1 can be guaranteed for all (x, y) € R.

Now we can show that the above defined function ® is a diffeomorphism. First, we consider

1 0
D ® = .
() (%—fﬁ(x, DRES 1o y))
Since 1 + %—\)I:(x, y) >0 forall (x,y) € R, D(x,,)® is an isomorphism for all (x, y) € R.
It also follows from 1 + %—\;'(x, y) > 0 that the map y + y + W(x, y) is strictly increasing. Thus, ® is
injective.
Since ® is continuous and ®|yz = id, the surjectivity of ® follows.

Thus, @ is a diffeomorphism and this proves the lemma. |
Now the following generic properties of the function Eg can be shown:

Lemma 2.20 For a generic function g the following holds for the space K x K of chords:

(i) For all critical points k of the function Eg of index 1, W' (k) h B, Wg'(k) 0 S, and Wg' (k) h F*
as well as W' (k) M F¢. (Note that there is no condition on avoiding the intersections of F*S
and F¢))

(ii) For all critical points k of the function E¢ of index 1, W' (k) N dS = @, Wy'(k) N 0F = &, and
W' (k) N Sa = & where Sy C S is the set of self-intersections of S.

(iii) For all critical points k of the function Eg of index 1, W' (k)NBNS =& and W' (k)N FNS = 2.

(iv) There is no trajectory along the vector field —V E4 between two critical points of index 1.
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Figure 7: Neighborhoods of critical points k and k' of index 1 and 0, respectively, and the unstable
manifold of k.

I

Remark 2.21 The set of self-intersections of F' does not have to be considered, because at these finitely
many points a chord is multiplied by w or ™! from the left and from the right. This is not a problem.
The set S must be avoided because at these points a chord would be divided into three parts. However,
this situation is not covered by any relation.

Proof According to Lemma 2.17, we have Critg,; N(B U S U F) = &. Thus, there exist open neighbor-
hoods Uy, of all k € Critg,; such that Uy N (B U S U F) = @. Consequently, for all k € Crity,
We(kynT)h (BUSUF),

where U := Uk/ecmo , Ugr. We shrink U to U such that U C U holds for the closure U. Then in the
following it is sufficient to perturb W' (k) to ng‘ (k) for all k € Crit; on the subset Wy'(k) \ U with the
help of the relative version of the jet transversality theorem (see Hirsch [7, Theorem 2.8] and Golubitsky
and Guillemin [6, Corollary 4.12(b)]), so that

Wg (k)N (U\U) =Wg'(k)yn(U\U)
and

(WE(k)\U)h (BUS U F).

To prove (i) and (ii), let k be a critical point of index 1 and f € C®°(R, T?) such that f is a parametrization
of one of the two flow lines which make up W' (k). Let I C R be the compact interval for which

im(fr) =Wg'(k)\U
(see Figure 7). Now suppose Wp'(k) NS # @ and p € Wp'(k) N S.
Case 1 If p € dS, then we construct a map f: R — T2 as follows:

o flrv = flryr-

e 0§ is a submanifold of 7. Using the relative version of the transversality theorem (Golubitsky and
Guillemin [6, Corollary 4.12(b)]) we can perturb f|; in the space C"(I, T?), for n big enough, to
amap f |7 such that f|; hdS and im(f|;) N (T \U) =im(f|;) N (T \ U).
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Thus, we get f M 3S. It follows that f_l(aS) = @ since codim(dS C T2) = 2. In suitable local
coordinates im( ) can be represented as a subset of the y—axis in R2. Since f can be chosen arbitrarily
close to f, we can guarantee that in these coordinates f is a graph over the y—axis. According to
Lemma 2.19, there exists a function g for which Wg:‘ (k)yNU =Wg'(k)NU and Wg:‘ ()\U =im(f]7).
Thus, we get ng‘(k) Nnas =o.

Case 2 Since the set S> C S of self-intersections of S is finite according to Lemma 2.11(ii), it follows
analogously to case 1 that Wé‘ k)yNS, =2.

Case3 If p e S:=8 \ (05 U S3), then the set of all 1—jets from R to 72 is
JUR,T?) =R xT? xR2.

Consider the map
hR—JUR,T?), (@ f(), f(©).

We construct a map f :R — T2 as follows:

o flrv = flru-

e The tangent bundle T'S is a submanifold of 7(T2) = T2 x R2. So R x T'S is a submanifold of
R x T(T?) = R x T? x R2. Using the relative version of the jet transversality theorem (see [6,
Corollary 4.12(b); 7, Theorem 2.8]) we can perturb f|; in the space C"(I, T?), for n big enough,
to a map f|1 such that im(f|1) NW\U) =im(f|;)N (U \U) and ﬁ|1 M TS with the map };|1,
t (¢, f(t), f(t)), which is also perturbed.

Thus, we get h h R xTS. From codim(R x TS CRx T(TZ)) = 2 it follows that ﬁ_l(R X T§) = .
So im( f )M S since for all 7 € R with f (t) e S we have f (t) ¢ Tf(t)§ . In suitable local coordinates
im( f) can be represented as a subset of the y—axis in R2. Since f can be chosen arbitrarily close to f,

we can guarantee that in these coordinates f~ is a graph over the y—axis. According to Lemma 2.19, there
exists a function g for which ng‘ (k)\U =im(f|7) and Wé‘ K)NU =W (k)NU.

Altogether, we get Wy (k) M S.

Since Crit; is a finite set, finitely many (arbitrarily small) perturbations suffice to guarantee transversality
to S for all unstable manifolds of critical points of index 1.

The proof of the statements Wy' (k) h B, Wg'(k) th F*, W' (k) th F¢ and W' (k) N OF = & is analogous
to that of the statements W' (k) M S and Wg'(k)nas = o.

The two statements of (iii) can be shown by similar transversality arguments as before.

For (iv), let k be a critical point of index 1 and f € C®(R, T?) with im(f) = W' (k). According to
Lemma 2.11(i), Crit; is a submanifold of 72 with codim(Crit; C T?) = 2. Therefore, the statement

follows analogously to (ii). O
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Figure 8: Relations for chords moving along the vector field -V E.

1 modulo the

Let R := Z[A*!, u®1] be the commutative ring over Z, generated by A, A~ 11 and pu~
relations A - A~1 = - u~! = 1. Let C; be the Z—vector space generated by Crit; (E) and Cy the
noncommutative R—algebra generated by Crito(E), ie A and ; commute with each other, but not with any
elements of Critg(F). These in turn do not commute at all. In the following we will let flow chords along
the negative gradient —V E. It can happen that a chord converges to a point, intersects the basepoint or
the framing or intersects the knot in its interior. For these cases we define the relations in Figure 8. There
the knot K is drawn in black, the framing K’ in gray and the chords in red. Analogous to Remark 2.4,
only the relevant parts of the knot are drawn in the pictures. The diagrams each show a small region
of the knot. The first line refers to any contractible chord. In the second, third and fourth relation, the
diagrams agree outside the drawn region. In the fourth line, the first two diagrams show a chord that runs
once over and once under a strand of the knot. At the transition from the first to the second diagram, or
vice versa, with the help of a homotopy, the chord intersects the knot. At this point, the chord is split
into two parts, which is shown in the other two diagrams. All diagrams are to be understood as objects
in three-dimensional space. Therefore, relation (iv) is for example equivalent to the relation shown in
Figure 9.

Assume a chord ¢ € Wy 1= kecriyy, We (k) C K x K. If ¢ is split into two parts according to relation (iv)
during the movement along the negative gradient —V Eg, both parts and the original chord flow further
along —V E. Each of these chords may be split again according to relation (iv), and so on.

Lemma 2.22 For a generic function g the following holds for the perturbed function Eg: the recursive
splittings as described above can happen only finitely many times, ie relation (iv) is applied only finitely

SRS

Figure 9: Equivalent representation of relation (iv).

many times.
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Proof (1) Lemma 2.11(iii) implies that there exists a neighborhood U C K x K of the finitely many
chords 0§ that are tangent to K at one endpoint and an & > 0 with the property that each chord in U N S
decreases in length by more than ¢ under the flow of —V E, before it meets S again, and the same
holds for the longer chord resulting from the splitting according to relation (iv). On the other hand, if
a string s € S\ U is split at its intersection with the knot, both pieces are shorter than s by at least a
fixed length § > 0 since s can be neither tangent nor “almost” tangent to K. In total, each piece will be
at least min(e, §) shorter than the original chord. Since its length is finite, however, only finitely many
intersections can happen (see [2, proof of Proposition 7.14]).

(2) According to Lemma 2.20(i), we have W, M S for a generic function g. It follows that there exist
only finitely many intersections of W, with § since W is compact. The chords arising from splitting
at these intersections according to relation (iv) are, according to (1), at least min(e, §) shorter than the
original chords. Let k € Crity. At the first intersection of W' (k) with S, starting from k in one of the
two possible directions, the chord is split into two chords k1 and k». If k1 lies now on W' (k), nothing
more has to be done, because Wy' (k) is already transverse to S. Otherwise the trajectory of k along
the negative gradient —V E¢ can be perturbed outside of Wy'(k) according to Lemma 2.19 such that this
trajectory becomes transverse to S. This is possible because Wy'(k) and the trajectory of ky are disjoint
outside the critical points.

The same procedure is used for k. If k2 is neither on Wp'(k) nor on the trajectory starting at k; that
may have been perturbed, we perturb the trajectory starting at k, with the help of Lemma 2.19 outside of
W¢' (k) and the trajectory starting at k; so that it becomes transverse to S.

All other intersections of W' (k) with S are handled in the same way; likewise the unstable manifolds of
all other chords from Cerit;.

Since W, has only finitely many intersections with S, the use of relation (iv) also results in a finite
number of chords. The ¢ from (1) may change due to the necessary perturbations of g. But since the
perturbed function is arbitrarily close to g, the new ¢ is arbitrarily close to the original one. Therefore, it
can be achieved that all resulting chords are still at least min(e, §) shorter than the original chords.

The newly created chords are now handled in the same way as the unstable manifolds of the critical points,
and the function g may be perturbed accordingly. Since the trajectories of these chords are transverse
to S, they intersect S only finitely many times. This process is continued as long as further intersections
of a trajectory with S occur and relation (iv) is applied. Since each chord has finite length and becomes
shorter at a splitting by at least min(e, §), this process ends after finitely many steps and the function g
has to be adapted only to finitely many trajectories, which are pairwise disjoint outside the critical points.

All in all: relation (iv) is used only finitely many times. a

Now we can show further properties of a generic function Eg:
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Let k € Crit;. Denote by Wg" (k) the “extended” unstable manifold of k, ie all flow lines of chords arising
from the iterative splitting according to relation (iv).

Lemma 2.23 For a generic function g the following holds for the function Eg, the space K x K of
chords and all chords ¢ € Wé‘ (k) for all k € Crity:

() @g(c)h B, pz(c) M S, and gg(c) h F fors > 0.
(ii) For all s > 0, we have (pz, (c)NadS =, (pg, (¢)NJF = &, and <p§ (c) NS, = @ where S» is the set
of self-intersections of S.
(iii) Foralls >0, we have ga(c)NBNS =@ and gz (c)NFNS =2.
(iv) c¢(BUFUS).
(V) lims— o0 ¢ () ¢ Crity, ie no such chord runs along —V E to a critical point of index 1.

(vi) ¢ ¢ Crity fork =0,1,2.

Proof The statements (i)—(v) follow analogously to the proofs of Lemmas 2.17 and 2.20, since Crit; is a
finite set and relation (iv) is applied only finitely many times according to Lemma 2.22.

For (vi), according to Lemma 2.22, the set of all such chords c is a finite set; likewise Crity is finite for
k =0, 1, 2. Therefore, the statement can be reached by a small perturbation g, analogous to the proof of
Lemma 2.20(i1). O

2.2 Representation of knots as closed braids

Every knot can be represented as a closed braid (Livingston [8, Section 7.3]). To define the chord algebra
of a knot, we draw the knot as a closed braid along an ellipse in the following way:

The braid should be positioned in such a way that the binormal chords do not intersect the knot in their
interior. This can be achieved by arranging the strands of the braid one above the other, ie from the
drawing plane, with each strand being placed above a slightly larger ellipse than the one below. In addition,
the strands should have a very small distance from each other. This ensures that no unwanted binormal
chords are created that run from the area of the crossings of the knot to “opposite” strands. In order to be
able to distinguish the strands in the diagram well, however, they are drawn with larger distance. They
are also numbered from the outside to the inside.

By an arbitrarily small perturbation it can be achieved that the torsion vanishes only at finitely many
points.

All crossings of the knot are drawn in a quarter of the ellipse so that they lie between two endpoints of
the main axes. In the remaining three quarters the strands run parallel to each other. In Figure 10 this is
shown by the example of the right-handed trefoil knot, equipped with the Seifert framing. The knot is

drawn in black and the framing in gray.
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S

J

Figure 10: Critical points of the function E on the right-handed trefoil.

The nontrivial binormal chords are, as is easy to see, the chords that run parallel to the main axes of the
ellipse, as well as the very short chords that connect the strands together. However, the way of drawing
the knot produces a one-dimensional critical submanifold for the latter. By a small perturbation of the
knot this can be cleared up in such a way that exactly two critical points arise, one of the index 0, marked
with s, and one of the index 1, marked with S. In addition, if there are more than two strands, there may
be other short binormal chords between the strands in the area of the crossings. In the case of more than
two strands, they are placed in such a way that the arrangement as shown in Figure 11 is achieved. This
guarantees that the very short chords connecting the strands do not intersect the knot in their interior.
To ensure that no binormal chord intersects the framing, a small perturbation of the framing may be
necessary. Another small perturbation of the framing may be necessary to satisfy the conditions listed in
Remark A.1 (these conditions are necessary for the proof of Lemma 2.14).

The trivial binormal chords are all points on the diagonal of K x K, ie chords which start and end at the
same point on K. As mentioned in Remark 2.12(i), the energy function is perturbed such that we get
exactly two critical points along the diagonal: one minimum, denoted by m (which has Morse index 0),
and one maximum, denoted by M (which has Morse index 1).

1 e LA
2 e * 2
3 e 3

n—1 e * n—1
n e e n

Figure 11: Arrangement of n strands in the cross section.
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Figure 12: Critical points in K x K for the knot K in Figure 10. Left: labeling of the critical
points. Right: gradient flow —VE.

In Figure 10 the critical points, ie the binormal chords, are distinguished by color:

¢ C(ritical points of index 0 are marked green, in this example m and s.

e Critical points of index 1 are marked red. Here, M, S and the chords labeled with k; ;. The
indexing means that the chord runs from strand i to strand j. In order to determine on which
strand an endpoint of the chord lies, one moves, starting from this endpoint, along the knot until
one reaches the numbering of the strands. The yellow mark must not be exceeded. The numbering
is therefore unique.

e Critical points of index 2 are marked blue, here /; ;. These are only mentioned for the sake of
completeness and will not be required further.

Since the knot K is parametrized by y, we get a canonical orientation of the knot, which is marked by
an arrow. The position of the basepoint is chosen as shown in Figure 10. This choice ensures that no
binormal chord has the basepoint as its start or endpoint.

Each chord ¢ = (s,1) € K x K can also be assigned an orientation as described above: c is oriented from
s to t. If we consider the orientation, all chords that are not on the diagonal of K x K occur in pairs: once
with orientation in one direction and once with reverse orientation. In order to indicate the orientation of
a chord in its labeling, another index is introduced, which is noted in the upper right of the name. Denote
by ¢% = (s’, t) the chord ¢ for which s” < ¢ holds, and by ¢’ = (s, ¢’) the chord ¢ with ¢’ < 5. For example,
in Figure 10 kil is the longest chord of index 1 with orientation from top to bottom. This indexing is not
necessary for points on the diagonal of K x K, because then we have s = ¢, the corresponding chords
have vanishing length and occur only once.
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K x K

s
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Figure 13: Wrong position of M.

Figure 12 shows the same critical points as Figure 10, but here their positions are shown on K x K 2= T2,
On the left side the critical points are labeled with their names. The arrows on the right indicate the
direction of the gradient flow of the function E.

The figure shows that the position of M on the diagonal can be chosen almost arbitrarily: M must not
be chosen in such a way that the gradient flow of a critical point of index 1 runs in the direction of M,
as shown in Figure 13. If M is placed as shown in Figure 13, the Smale condition is not satisfied (see
Audin and Damian [1, Section 2.2.b]).

S is positioned analogously.

For all other critical points the Smale condition is satisfied because the unstable manifolds of points of
index 2 and the stable manifolds of points of index 0 are already two-dimensional. So the tangent spaces
at these manifolds are two-dimensional and the transversality is ensured.

Thus, —V E represents a gradient field that satisfies the Smale condition.

2.3 Definition of the cord algebra

Before defining the cord algebra of K, we will first define a map D: (K x K)\ A — Cy, where the
exceptional set A C K x K contains all points ¢ € K x K that satisfy at least one of the following
properties:

(1) ceCrita(E)U (UkeCritl(E) Ws(k)) U Critg(E),
(2) ce(SUFUB),
(3) ¢*(c) h B,g*(c) h F, or ¢*(c) h S for s >0,
4) ¢*(c)NaS #3,¢°(c)NIF # &, or p*(c) NSy # @ for s > 0,
(5) ¢*(c) € S for an s > 0 and one of the properties (1) to (4) is true for one of the chords resulting
from (possibly multiple) splitting according to relation (iv).
So now we can define the map D as

D:(KxK)\A— Cy, c+>3(c)+8(c).
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Figure 14: Movement of c; along the gradient flow.

The two maps d and § are described below:
First, let d be the map

:(KxK)\A—Co, c—> > nlc.d) A uPrareub,
d eCritg(E)
where

e n(c,d) € {0, 1} is the number of trajectories along the vector field —V E from ¢ to d;

* 1,2, B1, B2 € Z are such that the intersections with the framing or the basepoint occurring during
the movement of the chord ¢ along —V E are taken into account according to relations (ii) or (iii),

respectively.

The map 9 is well defined since each point ¢ € (K x K) \ A4 lies on exactly one trajectory along the vector
field —V E. This trajectory ends at a critical point of index 0, so there is exactly one d € Crito(E) with
n(c,d) =1, and we have n(c,d) = 0 for all other d € Critg(E). The exponents a1, oz, 1 and B, are
uniquely determined by the relations (ii) and (iii).

To illustrate the procedure for determining d(c) for a chord ¢ € (K x K) \ A, we will consider two
examples. The movement of the chord along the gradient flow is indicated by the orange arrows in the
figure.

Example 2.24 We want to determine d(cq) with ¢ as in Figure 14. During its movement, the chord
neither intersects the basepoint nor the framing and ends at m, so it is contractible. According to relation (i),
we get

dc1) =1—p.

Example 2.25 In the second example we want to determine d(c») with c¢5 as in Figure 15. The movement
of the chord is again indicated by orange arrows. As can be seen from the figure, the chord first intersects
the framing at its endpoint, which results in a multiplication by p from the right according to relation (ii),
and then at its starting point (results in multiplication by ;¢ ~! from the left). Then the endpoint of the
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S

Figure 15: Movement of ¢, along the gradient flow.

chord crosses the basepoint in the direction of the orientation of the knot, which, according to relation (iii),
yields a contribution of -A~!. At the crossings of the knot, the chord first intersects the framing twice at
its endpoint (yields -t ~2), then twice at its starting point (yields u?-), and finally twice at its endpoint
(yields - =2). Then the chord runs without further intersections to the chord s’ of index 0. So, in total,

1 3

8(6‘2) — /‘LZI’L_ St,LLA_l,bL_sz_z — Mst/\—lu_

because A and  commute with each other, but not with s’.

We now discuss the map §. When determining d(c) for a chord ¢ € (K x K) \ A it may happen that the
chord intersects the knot K in its interior during the movement along the gradient flow. Let P be the set
of all these intersections. According to relation (iv), at each p € P the chord is split into two chords, ¢p,1
and cp >, which are multiplied by each other. Since the algebra Cyp is not commutative, the order of the
factors must be chosen according to the orientation of c¢. Let ¢, be the first and ¢, > be the second part
in the direction of the orientation of ¢. Then we determine 13(01,,1) and 13(01,,2). Now we can define the
map § recursively:

§:(KxK)\A—>Cy, cr> Z sign(c, p)k“‘(p),u’g‘(p)13(cp,l)ﬁ(cpsz)k”(l’)uﬂz(l’),
pEP
where

e a1(p),a2(p), B1(p), B2(p) € Z are analogous to the above definition such that the intersections
with the framing or the basepoint occurring during the movement of the chord ¢ along —V E up to
the point p are taken into account according to the relations (ii) and (iii), respectively, and

e sign(c, p) € {—1, 1} is the sign in front of the product of the resulting chords obtained by applying
relation (iv) to the chord ¢ at the intersection point p.

Remark 2.26 When splitting ¢ into the chords cp 1 and ¢ > the exact position of the framing relative to
the two chords, as shown in relation (iv), must be taken into account. For this it may be necessary to
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Figure 16: Determination of §(c3).

bend the framing a little bit in one direction. Then the framing is brought back to its original position,
and one of the parts ¢, 1 or ¢p > is intersected and multiplied by w or w1 from left or right according to
relation (ii).

The map § is well defined:

¢ When determining ﬁ(c) for a chord ¢ € (K x K) \ A4 relation (iv) is applied only finitely many
times according to Lemma 2.22. Thus, both the sum and the recursion depth are finite.

e The way in which the exceptional set A is constructed prevents the resulting chords from being in
A when a chord is split according to relation (iv).

Example 2.27 We look again at ¢, from Figure 15 to determine 6(c5). Together with the result from
Example 2.25 we get ﬁ(cz). If ¢, is moved along the negative gradient, there is a single intersection with
the knot in the interior of the chord at point p. There relation (iv) is applied and the chord is split into
€2,p,1 and ¢2 p 2, as shown in Figure 16. The position of the framing relative to the chord ¢> , > results
from the representation of relation (iv) in Figure 9. This figure also shows sign(cz, p) = —1. According
to Example 2.25, we get a1 (p) = a2(p) = 0 because the chord ¢» does not cross the basepoint before
reaching the point p, and with relation (ii) we get 81(p) = —1, B2(p) = 1 because the chord intersects
the framing once at its starting point and once at its endpoint. Thus, we get

8(c2) =—p! ﬁ(CZ,p,l)ﬁ(Q,p,Z):“
and we have to determine 13(02, p,1) and ﬁ(cz, p.2):

The chord ¢3, 1 intersects the framing once at its starting point and twice at its endpoint, but not the
basepoint or the knot in its interior, and then runs to the chord s’. Thus, the application of relation (ii)
results in

D(ca,p,1) = ps' ™2
For the chord ¢2, 5> we get, according to the relations (i), (ii) and (iii),
Iea,po) =p A=A ™ =a"p 2 =27t
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Figure 17: Determination of §(c2,p,2).

and we get an intersection of the chord with the knot in its interior at the point g. There the chord is split
into the parts ¢2 5.2 4,1 and ¢2 2. 4.2 as shown in Figure 17. Since these two chords have no intersections
with the knot in their interior during their movement along the gradient flow, we get

8(c2,p2) = = ' D(c2,p2,4.1)D(€2,p2.9.2)
— _M—l (MMZSSM—Z)(MZSIM—ZM—ZA—I) — _MZSSSIA—IM—4.
Now we can determine §(c2):
8(c2) = = ' D(ca,p1) D(c2,p o)1t
— _M—I(MSIM—Z)(A—IM—Z _ A_lpb_l —//LZSSSI)L_IM_“)//L
= s AT AT T2 4 st s T A T e 3
Together with the result from Example 2.25, we get
D(ca) = 3(c2) +8(c2) = ps' A 2 =" A 3 4 s A7 2 - shsSs a3,

This example clearly shows that even for simple knots K determining D(c) for a chord ¢ € (K x K) \ A
can be laborious and has to be done very carefully.

To define the cord algebra of a knot K, we first choose two points k-, k— € W¥ (k) for each critical point
k € Crity (E) as follows:

We move k a little bit in the direction of its unstable manifold. Choose a point k4 near k such that none
of the sets S, F, and B intersect the unstable manifold of k between k and k4. Analogously choose k_
on the other side of k. Examples to illustrate the choice of k4 and k_— are shown in Figure 18, on the
left-hand side as chords on the knot and on the right-hand side as points in K x K.

Now we define the linear map D on generators:
D:Ci — Co, k> D(ky)—D(k-).

Note that D is well defined up to a sign, since the roles of k. and k_ can be interchanged. But this is not
a problem for the definition of the cord algebra as we will see in Remark 2.31.
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O

k_

Figure 18: Choice of k+ and k_.

Example 2.28 We want to determine D (k}] 1) for the chord kt .1 of the right-handed trefoil knot as in
Figure 10. As can easily be seen, (k7 ;)+ can be chosen as the chord ¢y in Figure 14 and (k7 ;) can be
chosen as the chord c; in Figure 15. With the above results we get

D(k§ ) =D(c1)—D(c2) =1—p—pus' A 3 45 27 3 = A7 2 —shsSsi a7 3
because the chord ¢ does not intersect the knot in its interior during its movement along the negative

gradient.

Remark 2.29 On the diagonal of K x K there are exactly two critical points, m of index 0 and M of
index 1 (see Remark 2.12). Both sides of the unstable manifold of M, which corresponds to the diagonal
A in K x K, end at m. According to relation (i), we have m = 1 — . To determine D (M), we select
M~ and M_ as shown in Figure 19. Since the set S’ does not intersect the diagonal, we get

§(My) = 8(M_) = 0.

But the diagonal intersects B and possibly F'. When determining d(M ) the relations (ii) and (iii) must
therefore be taken into account. Since the starting point and the endpoint of the chord M coincide, both
intersect the basepoint and the framing. In the example of Figure 19 the following therefore holds:

M) =21 — WA =1—p
and, depending on the exact course of the framing (ie depending on how relation (ii) is applied),
IM-)=p(l—wp~ =1—p or dM-_)=p"'A—pwp=1-pn.
The same result is obtained if the diagonal intersects the set F' several times.

These considerations are independent of the concrete knot. Therefore, we get that in total the following
holds for all knots:

D(M)=D(My)~D(M-)=(1—p)~(1~p)=0.
By an analogous consideration we get for a chord ¢, whose trajectory runs close enough to the diagonal
and ends at m (see Figure 19); also here both start and endpoint of the chord intersect the basepoint or
the framing if at all such an intersection takes place. Therefore, d(c) = 1 — p follows here as well.

Algebraic € Geometric Topology, Volume 24 (2024)



2996 Andreas Petrak

KxK

F4 M,

M_

Fe

m

Figure 19: Determination of D(M).

If the trajectory of a chord runs close enough to the diagonal in K x K, the further intersections of this
trajectory with B and F can be ignored.

Now we can define the cord algebra of a knot:

Definition 2.30 Let K C R3 be a generic oriented knot, equipped with a Seifert framing and a basepoint.
The cord algebra of K is

Cord(K) := Co(K)/ Ik,
where Ix = (D(C1(K))) C Co(K) is the two-sided ideal generated by the image of C;(K) under the
map D.

Remark 2.31 As mentioned before, D is well defined up to a sign. But as can be seen in Definition 2.30,
we get the same result in the quotient, regardless of which chord we designate with k4 and k_. Therefore,
the cord algebra of a knot is well defined.

2.4 Change of framing

In the definition of the cord algebra the knot K is equipped with the Seifert framing. However, the
determination of D(C;(K)) is more convenient if a framing v is used instead of the Seifert framing such
that the associated set K’ is a vertically shifted copy of K. For this purpose the strands of the knot are
arranged one above the other and each strand is drawn over a slightly larger ellipse than the one below as
described above. Then K’ as a copy of K can be moved vertically upwards by an & > 0 which is small
enough such that the strip spanned by K and K’ has no self-intersections. For each s € S! then v(s) is the
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A—B
°
1

°

2

Figure 20: Blackboard framing.

unit normal vector pointing from the origin of the normal plane N(s) in the direction of the intersection
of N(s) with K’. In the diagram, however, the framing is drawn slightly outside the corresponding strand
in order to clearly distinguish it from the strand. Such a framing is called a blackboard framing. In
Figure 20 the right-handed trefoil knot with the blackboard framing is shown on the left side; on the right
side a section through the knot from A to B with view direction in the direction of the arrow. This kind
of representation ensures that the chords corresponding to critical points in K x K do not intersect the
framing.

Using this framing we can now determine D(C;(K)) as described above. However, the following
adjustments will have to be made in order to get the cord algebra with respect to the Seifert framing:

To change the framing, n additional windings of the framing around the knot K are added. If we look in
the direction of the orientation of the knot, these additional windings run in a mathematically positive
or negative direction (ie counterclockwise or clockwise, respectively) around the knot and are taken
into account with a sign +1 or —1, respectively. So we have n € Z. If we have determined D(C1(K))
for a framing K, we get D(C1(K)) for a framing K/ by applying various transformations. The first
transformation is A +— A", where n is the number of additional windings, with sign, of K, compared
to K i (see [2, after Remark 2.3]). This results from the following consideration: the additional windings
will first be added near the basepoint; thus, when crossing the basepoint each chord gets the factor ;1 +"

/\:I:l

according to relation (ii) in addition to the factor according to relation (iii).

These additional windings change the linking number of the knot and its framing and we get
k(K, K5) =1k(K,K})—n

since the addition of a winding in the positive direction around the knot creates two additional left-handed
crossings, and thus decreases the linking number by 1. Let K| = K l’) be the blackboard framing of the
knot K and K/, = K& be the Seifert framing. Then we have n = 1k(K, Kl/:) since 1k(K, K&) = 0. Thus,
the first transformation is given by

A AplREK)
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5
shifting the additional windings Seifert framing

Figure 21: Changing from the blackboard framing to the Seifert framing in the example of the
right-handed trefoil knot.

We want to achieve a Seifert framing which is obtained by the Seifert algorithm (for example see Figure 21,
bottom right). In the final step of the Seifert algorithm, the Seifert circles are connected by twisted bands.
So we shift the added windings along the knot such that these windings match the twisted bands. It
can happen that one of these windings intersects a generator of Co(K) at its start or endpoint. These
intersections must now be taken into account in further transformations according to relation (ii), as
explained in the following example.

Example 2.32 For the right-handed trefoil knot K we have 1k(K, K 1/7) = 3. Thus, the first transformation

is
A Al

If the three windings of the framing added in the neighborhood of the basepoint are moved to the correct
places, ie to the crossings of the knot, one of these windings intersects the chord s during the movement,
ie the chords s° and s’ if the orientation is taken into account; see Figure 21. According to relation (ii),
the further transformations are

S ulsS, st st
Remark 2.33 The blackboard framing may have to be changed by a small perturbation in such a way
that the assumptions of Remark A.1 for a generic framing are satisfied.
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2.5 Examples: unknot and right-handed trefoil

Example 2.34 First, we want to determine the cord algebra of the unknot U. We draw the unknot with
the blackboard framing and choose a basepoint as shown in Figure 22. Let R = Z[A*!, u*1] be the ring
as described above. The critical points of index 0 and 1, and thus Cy and Cy, can be easily determined
from the figure:

rel._(i)

Co = (m)r (1—-pw)r=R, Cy= (MK Kk')g.

Since the two nontrivial chords of index 1, k* and k?, when moving along the gradient flow, intersect
neither the framing nor the knot in their interior, relations (ii) and (iv) need not be considered. The image
of Cy under D is therefore very easy to determine:

D(M)=0 (see Remark 2.29),

D(k*) =1—p—(1=mwa ",

D(k") = —(1—p) + A(1 - p),

No transformation is necessary at the transition to the Seifert framing. Thus, in the quotient Cy/ 1, where
I = {D(C1)) is the two-sided ideal generated by C; under the map D, we get the only relation

A-Dp-1)=0
and hence

Cord(U) = Z[A=!, u® /(A = 1) (e —1)).

Example 2.35 To determine the cord algebra of the right-handed trefoil (also called Torus(3, 2)), the
knot is equipped with the blackboard framing and a basepoint is chosen; see Figure 23. The critical points
of index 0 and 1 can be determined from the figure. As before, R = Z[A*!, u*1]. We get

_ s Lt _ s t s t Ky t s t S t
Co = (mas S )R, C = (M’S AN 1,1,k1,1, 1,2,k1,2akz,l,kz,l,kz,z,kz,ﬁZ-

Figure 22: The unknot equipped with the blackboard framing.
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Now we can get the image of C1 under the map D by applying D to the generators of Cy:

D(M)=0 (see Remark 2.29),
D(S*) = ="+ pus' T I = =% 4 pus' AT 2,
D(St) = _St +A«/¢L/¢LSSH,_1 = _st +A,U/2SS/J,_17

Dk} ) =0—p) = (ups' u ™27 = s 17 N (A= AT — s T T s 7 T IATh)
e — AT 2 s AT 2 = st AT T st sSstAT u2,

D(ki ) =—(1—p) +Apps’ ™ ™ + A=) + Apps® ™ s ™ ™ st ™!

= 14+pu+A?s w2+ apsS = APt At T s T S

1 1 1

D(ky 5) = —ps® + (1= ) + (uus' " 0™+ (L= s’ w ™ Dps’ u™ = —ps® + 1=+ ps' p s 1™t

Dki)=s'u ' —(A—w) —ps'n ™ (ups* ™ u ™ —pps* ™ w0 —p) =5 w1+ p+ps's*ut,
D(k3 1) = pus® — (1= A" —pps ™ ™ s’ = A1

—ps* (s T T AT = s T TN (= AT st T T s T T ATY))
— MSS —A_l +A—1M+M2ssstk—lﬂ—2 +//Lssﬂstx—1“—2
_ Msss’)t_lu_z + Mssst/\_lu_l + ,ussstsss’)k_l,u_z,
D(ky ) =—s"u + 21— p) + Apps’up " s !

+ (s 1 T A = ) s T s T T st ) s
1

-1
=_SIM—1+A_AM+AM2SSM—1StM—2_’_AMZSSM—ZSZM—I_}_Aussﬂ—lstu—

1 1.¢t,,—1

_AMZSSM—IStM—l+Auzssu—lszu— SS/'L_ st

1

D(k3 5) = (1— ) — (ppes® ™ ™t = pupus® ™ ™ (1 = )

—ps* N (=) — s ™ T (s T = st T (1= )

1 Sotos,,—1

=1—p— > pst Tt — s — pstst st

D(k3p) = (=) +pps'n ™ pt + (1= pps’'n™ n™

t,,—1

+ (A=) + (ups' ™ w7+ A= pps’ ™ ™ Hus' n™)s' 1

— e p s s st 4 st s s L

According to Example 2.32, the transformations to change from the blackboard framing to the Seifert

framing are

A Aaud, S ulst st e st

If these transformations are applied to the above results, the formulas for D(S*), D(S*), D(k} o) and
D(ki’z) in the quotient Cy/{D(C1)) result in the equations

(2-1) —u S s AT =0,
(2-2) —s'pu+ Apts Tt =0,
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i

S

Figure 23: The right-handed trefoil equipped with the blackboard framing.

(2-3) —s*+l—p+pus'p s =0,
(2-4) st—1+pu+ups'sSu~t =0.
Therefore,

(2-5) 2-1) = 5" =p 21t
(2-6) (2-2) <= s' =AptsSu?

In the quotient only one generator exists because s’ can be expressed by a term with s°. For simplicity, in
the following we denote s by s. If we now eliminate s* from (2-5) and (2-6), we get

sap® = Aubs.
We put (2-6) into (2-3) and (2-4) and get the relations

2

l—p—s+Alsu 3™ =0, —1+p+Au*su™2 +ap’su2su~ ! =0.

If the transformations are applied to the remaining results from D(Cy), the resulting equations do not
yield new relations. All in all,

Cord(Torus(3,2)) = (s)r/ (SAuC—Apuls, 1—pu—s+Ap’spu s ™, =1+ p+Au*su 2+ A’ su2spu™h).

3 The cord algebra as a knot invariant

The cord algebra in its original definition, as explained at the beginning of Section 2, is a knot invariant [2,
Remark 2.22]. Now we will prove that the cord algebra in our definition using Morse theory is also a
knot invariant. So we have to show that for generic knots Ko and K; for which there exists a smooth
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isotopy (Kr)refo,1] of knots,
Cord(Kp) = Cord(K1).

So let Ko and K1 be two knots that are connected by a smooth isotopy (K ),e[o,1] of knots. For all
r €[0,1] let y,: [0, L,] — R3 be an arclength parametrization of K, such that the map r + y,(0) is
continuous. Let ¥, (0) be the basepoint of K. Thus, the set B = (S! x{0)U ({0} xS C T? = K, x K,
is the same for all K. Denote by S; C K, x K, and F, C K, x K, the sets S and F, respectively, with
respect to the knot K. Likewise, let E,: K, x K, - R, (x,y) — %|x — |2, be the energy function with
respect to the knot K, let X, : K, x K, — R2, (s,t)—>—VE,(s,t), be the associated gradient vector field
on K, x K, let ¢ be the flow of X, and let W/ (k,) and W}¥ (k) be the stable and unstable manifold,
respectively, of a critical point k, of the function E,. Furthermore, let D,: (Kr x Kp)\ Ar — Co(Ky)
and D, : C1(K;) = Co(K;) be the maps belonging to K, where A, C K, x K, is the exceptional set
belonging to K.

3.1 Preparations for the proof of Theorem 1.1

First, we need that only finitely many knots in this isotopy are nongeneric. These finitely many knots
each violate exactly one of the properties shown in Lemmas 2.17, 2.20 and 2.23 for generic knots or at
these knots pairs of critical points appear or disappear. This statement is formulated in the following
lemma. This lemma can be proven by extending the arguments used in the lemmata mentioned above to

l—parameter families of knots and energy functions.

Lemma 3.1 For a generic smooth isotopy (K ),e[o,1] of knots, where Ko and K are generic, the

following holds:
(i) K, is generic for allr € [0,1]\ {r1,...,rp} foran n € N and for {ry,...,r,} C [0, 1].
(ii) Fori €{l,...,n} the knot K, is generic except for the occurrence of exactly one of the following
phenomena:

(1) Wi(k) th B for a critical point k of index 1, and W (k) is tangent to B at most of order 1.

(2) Wii(k) th Sy, for a critical point k of index 1, and W (k) is tangent to Sy, at most of order 1.

(3) Wi(k) th F,, for a critical point k of index 1, and W (k) is tangent to Fy; at most of order 1.

4) Wi (k)N oSy, # @, and thus W;! (k) NOF;; # @ according to Lemma 2.14, for a critical point
k of index 1.

(5) W,‘i‘ (k) NSy, # @ for a critical point k of index 1, where S» », C Sy, is the set of chords that
intersect the knot K, twice in their interior.

(6) Wp(k)NBNS,, # @ fora critical point k of index 1.

(7) Wi(k) N Fy, NSy, # @ for a critical point k of index 1.

(8) k € B for a critical point k of index 0 or 1.

(9) k € S,, fora critical point k of index 0 or 1.

(10) k € F;, for acritical point k of index 0 or 1.
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(11) There exists a trajectory between two critical points of index 1 along the vector field =V E,.

(12) One of the cases (1) to (10) holds for a chord which is generated by the application of re-
lation (iv) (where in the statements (1) to (7) the unstable manifolds are to be replaced by
trajectories along the vector field —V E,, starting at this chord).

(13) A chord which is generated by the application of relation (iv) runs along the vector field —V E .,
to a critical point of index 1.

(14) Creation/cancellation of a pair of critical points of index 0 and 1 or of index 1 and 2.

Remark 3.2 In this 1-parameter family of gradient vector fields only degenerations of birth-death type
occur (see Cieliebak and Eliashberg [3, Lemma 9.7]). Therefore, case (i1)(14) is the only one dealing
with degeneracies of the family of vector fields.

To show that the cord algebra is a knot invariant, we first need the following lemma:

Lemma 3.3 For a generic knot K the following holds:

Let q € (K x K) \ A, where A is the exceptional set defined at the beginning of Section 2.3. Then there
exists an open neighborhood V C K x K of g with ﬁ(x) = 5(q) forall x e V.

Proof Since K is generic, all properties from Lemmas 2.17, 2.20 and 2.23 are satisfied.

There exist only finitely many critical points of index 0. Denote these by g1,...,g, forann € N.
Then there exist €1,...,&, > 0such thatforalli =1,...,n,
(3-1) lim ¢°(x)=g; forall x € By, (gi),
§—>00
(3-2) Bas; (§) N(SUBUF) = 2.

We can achieve (3-1) since dim W¥(g;) = 2, and (3-2) can be achieved since g; ¢ (S U B U F) (according
to Lemma 2.17) and this is an open condition.

Since ﬁ(q) € Co(K) according to the assumption, we have g € W*(g;,,) forani, € {1,...,n}. Therefore,
a Ty > 0 exists with
¢T(q) € Be,, (gi,)-

The solution of a differential equation depends continuously on the initial conditions. So,
(3-3) VT <00 Ve>038(T,e) >0Vxe Kx K Vse[0,T] |x—q|<§ = |o*(x)—¢°(q)| <e.

Choose T' = T, and ¢ = ¢;,. Then, according to the statement (3-3), there exists a 84 > 0 such that, for
all x € Bg, (q),

(3-4) 9T (x) € Bag, (i,)-

So far, we’ve shown that each x € Bs_(g) flows along the vector field X = —VE to the same critical
point of index 0 as ¢, namely to g;, .

To prove the lemma, we have to consider the four relations that we need to determine D(g):
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Relation (i): Due to the properties (3-1) and (3-4) relation (i) does not lead to different results when
determining ﬁ(x) for all x € Bs,, (q)-

Relation (ii): Let Fy:={x € F :3T > 0: ¢T (q) = x}. Since K is generic, we have ¢*(¢) h F and
|Fg| <oo. Solet Fy ={f1,..., fmp} foranmp € Ng. For j =1,...,mF let Ty, be the time for which
0177 (q) = fj. Because of ¢*(q)  F, there exists an ¢z > 0 with the following properties:

(i) Forall j =1,...,mp and all x € Bs,(q) there exists at most one 7}, > 0 such that
(3-5) 9777 (x) €Bep (/) NF,
ie the trajectory starting at x intersects F in B (f;) at most once.
(ii) For all x ¢ (U}"L Be-(fj))NF,

(3-6) min |¢*(q) —x| <ep = x ¢ F,
seR
ie outside of B¢ (fj), F is no closer than ¢ to the trajectory starting from q.

Forall j =1,...,mF there exists, according to statement (3-3) with 7' = Tfj. and e = ¢f, a (Sf/. >0
such that for all x € Bs, (g),
J

Ty.
@ 77 (x) € Bg (f))-
So after reducing Jy; if necessary, for all x € Bs / (q),
¢*(x) €Bgp(fj)NF foran s> 0.
Let 6 F := min; Sfj.
Relation (iii) can be treated analogously to relation (ii). With a corresponding notation (B instead of F
and b instead of f) we get §p := min; &p, .

Relation (iv): Let S5 :={x € S: ¢*(¢) = x foran s > 0} C K x K. According to Lemma 2.22, there
exist only finitely many intersections of ¢*(¢) and S, ie |Sy4| < co. Solet Sy = {q1,....qms} for an
mg € Ny. For all g; € Sy let Ty, > 0 be the time for which <pT“-/' (9) = q;. Let S, C S be the (according
to Lemma 2.11(i1) finite) set of self-intersections of .S, ie the set of chords that intersect K twice in their

interior.

Then there exists an eg > 0 such that forall j =1,...,mg,

(3-7) Beg(gj)NAS = o,

(3-8)  Beg(g)NS> =2,

(3-9) for all x € Bs, (¢), there exists at most one 7}, x > 0 such that goT/"X (x) € Bgg(gj) NS,

ms
(3-10) for all x ¢ ( U Bgs(qj)) NS, we have m£|¢s(q)—x| <egs = x¢8.
s€
Jj=1

Such an g exists since

() ;NS =o,
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Figure 24: Splitting of a chord according to relation (iv).

(i) S;NS =0,

(i) ¢°(q) M S,

(iv) ¢°(q)NS = Sg and ¢°(q) h S.
and (i)—(iii) are open conditions.

Therefore, the following holds for j =1, ...,mg: according to statement (3-3) with T =T, and ¢ = ¢,
there exists a §7; > 0 such that, for all x € Bg 0 (q),

T,
@ % (x) €Beg(gy).
Let 65 :=min; Jg;.

Every x € S\ Sy splits according to relation (iv) in two chords x! and x? — see Figure 24 —and we can
see that

o x! has the same starting point as x,

o x2 has the same endpoint as x,

o the endpoint of x! is the starting point of x2.

Now consider the maps
W:S\S, > KxK, x#x!,

Wy: S\ S —> K xK, X > x2.
For j =1,...,mg, let

W1 = Wi(Bes(g/)NS). W2 i= Wa(Beg () N S).

which are well defined since B¢ (¢;) NS> = @. In addition, they are connected sets, since the sets
Bes(g7) NS are connected, the above observation concerning the start and endpoints of x! and x2 holds,
and K is smooth. See also Figure 25.
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t
K()XK()
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Sj- —Zj T lIqul \/\
Bss(CIj)
\Ilqu
l‘Jz=tj T 751,2
S
0 si=s!  tl=s? Lo s

Figure 25: Splitting of chords according to relation (iv).

Now consider the sets W, ! and \Iquz under the gradient flow analogous to the consideration of Bg,_(g)
under the gradient flow where q} = W(g;) and ql2 = W5(q;), respectively, take the role of g. Again, the
relations (1) to (iv) must be taken into account. Thus, fori = 1,2 and j =1,...,mg we get, analogous
to the above considerations,

* Og4 iIF such that for all x € Bg, PF (q J) N \Ifq , we have that ¢*(x) and (p (q ') intersect the set F
for s > 0 so that relation (ii) produces the same result with respect to u*

e 4y i such that for all x € ng s J) N lI/q , we have that ¢°(x) and ¢ (q ') intersect the set B
for s > 0 so that relation (ii1) produces the same result with respect to AEL

e 84 ” forki =1,...,m! > with mk, s € N, where q ki denote the intersections of ¢ (q ), for s > 0,
with S, such that for all x € By ah g (q J) N \Ilq © (x) intersects S in an ¢ S—nelghborhood of q ki
exactly once, but not within an ¢ S—tube around ¢ (q ') outside these neighborhoods.

According to Lemma 2.22, this process ends after finitely many steps.

Fori =1,2let gq}-_ = min{Sqi.,F,(Sq;’B,Sq;’l,... i }. Let 8ql > 0 be such that

) q m
Be ,(g))NSC w7l (B; ,(Wi(g))n ‘quz:)-
J qj

We next prove that Wy and W, are injective. Suppose W1 is not injective. Then there exist x, y € §\ S»
with x # y and W (x) = W;(y), ie x! = y!. Thus, x and y have the same starting point and a common
intersection point with the knot in their interior. But since x # y, there are only the two possible positions
shown in Figure 26. It follows that x € S, or y € S5, but this contradicts the definition of W;. Similarly,
the injectivity of W5 can be shown.
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Figure 26: Possible positions of the chords x and y.

We get W71 (B, (Wi(g;)) N \Ifq;) C Beg(g;) by the definition of Wyi and the injectivity of ¥ and W,
J
and thus Bei (¢;) NS C Beg(g))-
J

According to statement (3-3) with 7' =T}, and e =¢_; , there exists a § ; > 0 such that for all x € B , (¢),
J i

i,
q4
J 95

Ty:
©' Y(x)€e Bsqi- (g))-

J
The same procedure is used for all intersections q;. ki’ fori =1,2, j=1,...,mg and ki = 1,..., mg;
the §’s obtained thereby having to be pulled back by multiple applications of W;~ 1 and statement (3-3)
into the set Bs, ().

In total we get the finite set A = {84,841,...,8%5,8411,...,Sql ,Sq%, . ,8q2 ,...}. Let § :=min A
A A mg mgs

and V := B (q). Then we have D(x) = D(q) for all x € V because of the properties (3-1) and (3-2) and

the construction of §. a

3.2 Proof of Theorem 1.1

Now we can prove the main result of this paper.

Proof of Theorem 1.1 We consider a generic smooth isotopy (K ),¢[o,1] of knots where Ko and K
are generic, and want to show that Cord(Ky) = Cord(K1). Therefore, we will look at all the cases listed
in Lemma 3.1. Since there are, according to Lemma 3.1, only finitely many nongeneric knots during this
isotopy, we can simplify notation by considering a generic isotopy (Kr),e[—¢,¢], € > 0, such that

¢ in case (i) of Lemma 3.1 K is generic for all r € [—¢, €];

e incase (ii) of Lemma 3.1 K, is generic for all r € [—¢, €] \ {0} and K satisfies exactly one of the
cases (i1)(1)—(i1)(14).

First, we construct isomorphisms which we will need in cases (i) and (ii)(1)—(ii)(13). Let
ng ;= |Crito(Ko)| and nq:=|Crit;(Kp)|.
Since no critical points appear or disappear (in the cases (i) and (ii)(1) to (ii)(13)), for all r € [—¢, ¢],
|Crito(Ky)| =no and |Crit;(K;)| = n.
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So for r € [—e¢, €] let
Crito(K,) = {g}.....g"} and Crit;(K,) ={k},... k'}.

Now we define the sets
Critg_g’g] = U {ryx{gl,... gm0} C[—e ] x T2,

r€[—es,e]

crit) ©i= | <kl kM C e el x T2

re
r€[—e,e]

Since the isotopy is smooth, we can number the critical points such that the maps
Wo: [—e, ] x Critg(K—;) — Critg_g’s], (r, gi_g) > gi for i =1,...,no,
Wy [—e, g] x Crit; (K—¢) — Crit[l_g’a], (r, kia) — k£ fori=1,...,nq,

are continuous with respect to the first component. For all r € [—¢, ] we define the linear maps ®q , and

®; , on generators by
®@o,r: Co(K—¢) = Co(Kr),
gigl—ﬂlfo(r,gi_g):gi, i=1,...,np,
Ail s A,il
uEl o g
CD],ri C] (K_a) —> C1 (Kr),
ki v Wy (r k) =kl, i=1,...,n1.
For all r € [—¢, €] we extend @, to an algebra homomorphism. Obviously, ®¢ , and ®; , are isomor-

phisms for all r € [—e, €].
For each ki, rel—eel,i=1,...,ny1,choose k£’+, ki’_ eWH (kﬁ) to determine Dr(ki). Choose T < 0o
such that foralli =1,...,n1,

j i j l;
of (kb 4) e B, (¢0): g (k§_) e B,i;(20),

where the eé" and ef{ are chosen such that the properties (3-1) and (3-2) are satisfied. This must also
hold for all chords created by splitting a chord according to relation (iv) during its movement along the
unstable manifold of k.. Since, according to Lemma 2.22, these are only finitely many chords and all
chords which are moved along the gradient flow reach a B & (gf)) after finite time, such a T exists. After
possibly increasing 7 it can be achieved that for all » € [—¢, €], i = 1,...,n1, and matching &’ and ei"
(since [—¢, &] x T2 is compact),

o (k1) €B i (g8, ol (k.)€ B 1 ()).
Lemma 3.3 implies that there exists a § > 0 such that forall i = 1,...,n; and all x € B; (ké 1)
Do(x) = Do(kl ).
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Let £ > 0 be small enough that for all r € [—¢, €] the properties (3-5) to (3-10) required in the proof
of Lemma 3.3 are satisfied (which are formulated there for ¢f, ¢g and £g). Such an & exists since
the required properties are open and [—e, ] is compact. The starting times are always 5o = 0. Since
the solution of a differential equation depends continuously on the initial conditions and the function,
there exists a § > 0 with § < § such that forall i = 1,...,n; and all x € T2 with |x —kf) 4| <éand
X, (x) — Xo(x)| <8 forall s € [0, T, ’

7 () — w5 (kg )| < .
If £ is chosen small enough, it follows that for alli = 1,...,n; and all r € [—e¢, €],
Dy (ki) = ®or0 Dok, ).
So we get, foralli =1,...,ny and all r € [—¢, g],
Dy (ki) = ®g,r 0 D_g(k ) = @,y 0 D_g 0 By 1(kD).

Therefore, we have in case (i)
D, =®g,0D_¢0 d>1_1r

Thus, where (M) means the ideal generated by the set M,
Cord(Ky) = Co(Kr)/Ir
= CO(Kr)/<Dr(C1 (Kr))>
= @, (Co(K—))/(@o,r 0 D—s 0 DT (C1(K;)))

= o, (Co(K—e))/(Po.r 0 D_(C1(K_)))

D @, (Co(K_e)/ (D—e(C1(K_e))))

= qDO,r (CO (K—s)/l—s)
= q)O,r (COI‘d(K_E))
=~ Cord(K_¢).

Equality (1) holds since @, is an algebra isomorphism for all r € [—¢, €].
So in case (i) the cord algebra remains the same up to a canonical isomorphism.

Now we assume that K, is generic for all r € [—¢, €] \ {0} and K satisfies exactly one of the cases (ii)(1)
to (ii)(14) of Lemma 3.1. We want to show that Cord(K_) = Cord(K;) in each of these cases. Without
loss of generality, we can number the critical points such that in the cases (ii)(1) to (ii)(10) ké is the critical
point of index 1 that is mentioned in these statements. The above consideration concerning D,(ki) only
holds fori = 2,...,n1 and we have to look at Dr(k}). Furthermore, in the cases (ii)(8) to (ii)(10) we
number the critical points such that g(l) is the critical point of index O that is mentioned in these statements.
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W (k}
kl A W_ue(klg) kglnL & ( a)

C—g d_g

K_xK_, Ko x Ky Kex K,

Figure 27: The unstable manifold of the chord ké is tangent to B.

Case (iD(1) (W' (ké) th B) We consider the situation as in Figure 27. The following consideration

1

holds analogously for the other possible situations: direction of the flow from the right to the left, k, _,

and W' (ké) tangent to ({0} x K¢) C B.

For r € [—¢, €] choose ¢, and d, as in Figure 27. Then for & small enough we get on the one hand
ﬁg(dg) =®pc0 B_S(d_g) and on the other hand D, (cr) = D, (dy) for all r € [—¢,0) and

Dr(cr) = Dr(d)AA™ (rel. (iii))
= ﬁr (dr)

for all r € (0, ¢], since the endpoint of the chord intersects the basepoint once in the reversed direction of
the orientation of the knot and once in the direction of the orientation of the knot. Thus, we get

Ds(k;) =®pe0D_g0 ®1_’}9(k;)
It follows that

Dy =dg 0D _god7}.

By the analogous computation as in case (i) with r = ¢ we get Cord(K;) = Cord(K_).

Case (ii)(2) (W' (ké) th So) We consider the situation as in Figure 28. The chords labeled hi, for
i = 1,2,3, lie on the unstable manifold of k! such that @l (krl,+) =hi,t; >0,and t; > tjifi > j. (We
will use this notation in the following cases, too.) For r € (0, €] the chord intersects the knot in its interior
at two different times when flowing along the negative gradient, and we get ¢!, ¢2, d}! and d? by the
application of relation (iv). According to Lemma 3.1, we can assume that there is no critical point between
¢! and d! and between ¢? and d?, otherwise we would have also the case (ii)(13), but this would be a

Figure 28: The unstable manifold of the chord ké is tangent to Sp.
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Wy (0) WD)
K0>(K0 KEXKg

hy

Ky

Figure 29: The unstable manifold of the chord k(} intersects 0Sg and 0Fy.

contradiction to this lemma since only one of these cases occurs at any one time. So if ¢ is chosen small
enough, we have D, (chH = ﬁr(d}) and D, (c?) = ﬁr(drz) for r > 0. Thus, we get

D,(h)) = D, (h?) + D, (c})Dr(c?) (rel. (iv))
=D, (h}) = Dr(d})Dr(d?) + Dr(c})Dr(c})  (rel. (iv))
= Dr(h}).

As in case (ii)(1) we get Dg(ksl) = Pp.0D_;o0 @I};(ksl), D¢ = Ppeo0D_;o0 <I>1_}3 and thus by the
analogous computation as above Cord(K;) = Cord(K_,).

The other possible situations are to be treated analogously.

Case (iD(3) (W' (k ) h Fy) Analogous to case (ii)(1) with relation (ii) instead of relation (iii), ie /,L
instead of A1,

Case (ii)(4) ( W”(k )N dSo # & and W' (k ) N dFy # &) We consider the situation as in Figure 29.
As we can see from the figure, we get Dr(hl) L B, (h3)u_1 for r <0 and D, (h3) L p, (cHyu for
r > 0. If ¢ is chosen small enough, we have Dr(hf) =&, 0 D_, (h3,). Now we can compute for r > 0:

Dy(h}) = Dy(h})+ Dr(c})Dr(c}) (rel. (iv))
=Dy (h}) + Dy ()™ (1= p)  (rel. (D)
=D, ()"
=@, 0D_e(h> ) !
= @, 0 D_(hL,).

As in case (ii)(1) we get Dg(kg) = ®g.0D_ 0P (kl) Dg = ®p, g0 D0 d7 and thus by the
analogous computation as above Cord(K,) = Cord(K_g).

The other possible situations are to be treated analogously.
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W' (kg )
K()XKO K8XK8

h(l) h% h(3)
Ko

Figure 30: The unstable manifold of the chord k) intersects S5 o.

Case (ii)(5) (W”(k )N S2,0 # @) We consider the situation as in Figure 30. As in case (ii)(2) we can
assume that there are no critical points in the shown region. The small horizontal arrows indicate the
direction in which the chords move along the gradient vector field. From the figure we get

—8( zs)
D¢ (b?)

LG 17 A D
IV UTID_o(c3,), De(a?) = De(d?),
1. 1A A N
rel (i) W Dy(ad), De(b}) = De(c)).

If ¢ is chosen small enough, then
De(c}) = ®oc0D_g(cl,). De(d?)=oc0D_(d2,). De(d})=Poso0D _s(de,),
De(cd) = ®oc0D_(c,). De(hl) = Po0D_o(h2,).
Now we can compute
Doe(hl) =" Doy(h,) = D-o(cl)D-s(c2,)
“LY D (h2,) 4+ Dos(d2) Doo(d2,) = Dol )™ Doolc2,),

De(h}) ™2 Do(h2) + De(d}) De(d?)
LY Be(h®) = De(c))De(c2) + De(d}) De(d?)
LY Do (h2) — Do) (1™ De(c2) — T De(a) De(a2)) + (De(d2) — De(b}) D (b2)) De(d?)

= De(h3) = De(cHw™ De(c?) + Do (b)) De(b2) D(d2) + De(d?) De(d?) — De(b}) De(h2) Do (d?)
= ®g 0 (D_e(h®,) = D_o(c! )™ D_s(c?,) + D_s(d,) D_(d?,))

= ®g.0D_o(h',).

As in case (ii)(1) we get Ds(kgl) =®g 0D _0d] (kl) and D, = &g 0 D_ 0 d] , and thus by the

analogous computation as above, Cord(K;) = Cord(K_s).

ls’
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N BNS, |
B B ° B\BNS:
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W (k) W' (ko) Weike)
K_ . xK_, Ky x Ky K, x K,
H
hy g hg nl h? n: o hiohg
&
KO Ks

Figure 31: The unstable manifold of the chord k(} intersects B N Sp.

The other possible situations are to be treated analogously.

Case (ii)(6) (W' (ké) N BN Sy # @) We consider the situation as in Figure 31. As in case (ii,2) we
can assume that there are no critical points in the shown region. If ¢ is chosen small enough, then

De(cl)y = ®gcoD_c(cl,), De(cd)=®pe0D_c(c?,), De(hd)= Dgco0D_g(h>,).

Now we can compute

D_¢(h',) = D_g(h3 )A7! (rel. (iii))
=D_s(h> JA™ = D_g(c! ) D_s(c2 A" (rel. (iv)),

De(hg) = De(h3) — De(c}) De(c?) (rel. (iv))

= De(h)A™" = De(c}) De(cHA™! (rel. (iii))

= B0 (D_e(h> A = D_g(ct,) D_s (2 A7)
= @0 D_(hL,).

As in case (ii)(1) we get Ds(kg) =dPgso0D_;o0 CDZL(k;) and Dg = $gc0D_go0 @i}?, and thus by the
analogous computation as above, Cord(K,) = Cord(K_;).

The other possible situations are to be treated analogously.

Case (ii)(7) (W' (ké) N FoNSo # @) Analogous to case (ii)(6) with relation (ii) instead of relation (iii),
ie u*! instead of A%,

Case (ii)(8) (a) (gé € B) We consider the situation as in Figure 32. The red and blue trajectories
are unstable manifolds of critical points of index 1 or trajectories starting at chords that are generated
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gL, 1

oq
™ —

K e xK_, Ko x Ko K. x K

Figure 32: The critical point g§ of index 0 intersects the basepoint.

by splitting according to relation (iv). According to Lemma 2.22, there are only finitely many such
trajectories. In K¢ none of the red and blue trajectories is tangent to B, otherwise we would also have
case (ii)(1) or (i1)(12) of Lemma 3.1, but this would be a contradiction to this lemma since only one of
these cases occurs at any one time. If ¢ is chosen small enough, we can guarantee the following: In K_;
all of the blue trajectories intersect B in a small neighborhood of glg, but none of the red ones, and in
K, all of the red trajectories intersect B in a small neighborhood of g}, but none of the blue ones. It
follows that in K_, we have a contribution of gls along the red trajectories and of gls)t_l along the
blue trajectories. In K, we have a contribution of g! A along the red trajectories and of g} along the blue
trajectories. So we can construct the canonical isomorphism

Cord(K—;) = Cord(Ky,),
glo = g,
gi£+—>g£, i=2,...,np,
)L:H s )kil,
st
The other possible situations are to be treated analogously.

(b) (ké € B) We consider the situation as in Figure 33. If ¢ is chosen small enough, then

De(kly)=®oe0D_c(kl, ). De(kl_)=®o,s0D_c(k!, ).

\ W (k) W (kg)

TN B B ki

AN 3 \ "
W (kL \
K_xK_; Ky x Ky K, x K,

Figure 33: The critical point k, of index 1 intersects the basepoint.
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Now we can compute
De(kg) = Deky ) = Deke )
= Dok} ) — De(kl )2~ (rel. (iii))
= ®ge0 (D_s(k!, )= Dk, )1
= @0 (D—e(kl, )A—De(kl, 27"
= o0 ((De(kl, 1) — D_e(kl, NA7Y)  (rel (iii))
= ®ge0(D_s(kL )17
= (®o,c0 D—e(kL A"
With this result we get, where R = Z[A*!, 1 *1] is the commutative ring as described above and (M)
is the ideal generated by the set M,
Cord(K) = Co(Ke)/ ¢
= Co(Ke)/{De({he. ... k")), De(ke)) R
= Co(Ke)/(®o,c0 D—e({kZ,, ... KLL}), o0 D—e (k1A' )R
= Co(Ke)/(Po,s 0 D—s({k2,, ... kL}), @0, 0 D_e(kL,)) R
= Co(Ke)/(®o,e0 D—e({kl,, ... . k2L}))R
= ®g,c(Co(K—¢))/ Po,e(I—¢)
= ®gc(Co(K—g)/I—¢) (since Do is an algebra isomorphism)
= ® +(Cord(K_,))
=~ Cord(K—_¢).
The other possible situations are to be treated analogously.

Case (ii)(9) (a) (g(l) € So) We consider the situation as in Figure 34. The trajectories drawn in the
upper figures are unstable manifolds of critical points of index 1 or trajectories starting at chords that
are generated by splitting according to relation (iv). According to Lemma 2.22, there are only finitely
many such trajectories. In K¢ none of these trajectories is tangent to So, otherwise we would also have
case (ii)(2) or (ii)(12) of Lemma 3.1, but this would be a contradiction to this lemma since only one of

these cases occurs at any one time. If ¢ is chosen small enough, we can guarantee that (in the example of
Figure 34):
e In K_; all of the “lower” (red and brown) trajectories intersect S_ in a small neighborhood of
gls, but none of the “upper” (blue and purple) ones.
¢ In K_, we get for the chords that are split off from the “lower” trajectories according to relation (iv):
D_¢(cl,) = D_s(d!,) and D—c(c2,) = D—c(d2,).

* In K, all of the “upper” trajectories intersect S, in a small neighborhood of g}, but none of the
“lower” ones.
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Figure 34: The critical point g§ of index 0 intersects the knot in its interior.
¢ In K, we get for the chords that are split off from the “upper” trajectories according to relation (iv):
De(a}) = Dg(b}) and Dy(a2) = Do (b?).

¢ Furthermore, we get ﬁg(a;) =Py 0 ﬁ_s(cls) and ﬁg(ag) =dp 0 13_8(038).

It follows that in K_, we have a contribution of gle along the “upper” trajectories and of
1 A 1\H 2
g_g - D—s(c—a) D—S(c—a)
along the “lower” trajectories according to relation (iv). In K, we have a contribution of
ge + De(a})De(a}) = g} + ®o,6 0 (D_(cl) D_g(c?,))

along the “upper” trajectories and of g, along the “lower” trajectories. So we can construct the following

canonical isomorphism:
Cord(K—;) = Cord(Kj),

glg = g; + ﬁs(a;)ﬁs(ag),
gl gl i=2,...n
A:I:I — A:tl
puE s it

The other possible situations are to be treated analogously.

(b) (ké € So) We consider the situation as in Figure 35. As before, we can assume, according to
Lemma 3.1, that the only critical point in the shown region is k,l. If ¢ is chosen small enough, then

De(d}) = ®g 0 D_g(cl,). De(d?) = ®g e 0 D_g(c2,).
D\s(]g;A-) = Pg0 ﬁ—s(klg,+)» ﬁs(kgl,—) = Pg0 ﬁ—s(lglg,—)'
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%

Kk L klkL ke

Ko K

Figure 35: The critical point k) of index 1 intersects the knot in its interior.

Now we can compute

De(k}) = Dy(k} ) —De(k} )
= De(k} 1) —De(d}) De(d?)—De(k} ) (rel. (iv))
= ®g,c0(D—s(k!, )=D_(cl)D_e(c?,)—D_o(kL, ))
= ®o,0(D—e(kl, 1)~ D—e(cl,) D_s(c?)—(D—e(kl, _)—D_s(cL) D_s(c?,))) (rel. (iv))
= q)O,so(ﬁ—s(kls,—}—)_ﬁ—e(kle,—))
= g oD _g(kL,).

As before we get D, (ksl) =Pgso0D_;o0 qu_,z(kgl), D;=®g,0D_0 <I>1_£ and thus by the analogous
computation as above Cord(K;) =~ Cord(K_;).

The other possible situations are to be treated analogously.

Case (ii)(10) (k € Fy for a critical point k of index 0 or 1) Analogous to case (ii,8) with relation (ii)
instead of relation (iii).

Case (ii)(11) (there exists a trajectory between two critical points of index 1 along the vector field —V Ej)
We consider the situation as in Figure 36. According to Lemma 3.1, we have k2 ¢ (B U S, U F;) for
all r € [—¢, ¢]. Since this is an open property, we can choose neighborhoods U, of every k2 such that
UrN(BUS,UF,) =@. For all r € [—¢,¢] choose ¢, € W (k!) N U,. If ¢ is small enough, we get
Dy(cy) = Dr(k2,) for r <0 and D,(c;) = Dy(k2_) for r > 0. If W (k{) intersects B, Fo, or So
between ké’ 4 and co, we can choose & small enough such that W,* (krl) intersects B, F,, and S, for all r

K_xK_, Ko x Ky K, x K,

Figure 36: The unstable manifold of the chord k; ends at the critical point k3 of index 1.
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in the same way between k! r+ and ¢,. That means, while computing D, (kr L) we get the same result
up to the point ¢, for all r € [—e¢, g]. So without loss of generality we can assume D, (k )= D, (cr).
Therefore, we get

D_e(kl, )= Dok, ;). Delky) = De(kZ).
If ¢ is small enough, then
Do(k? ) =@oc0D o(k2, ;). De(k?_)=PoeoD o(k2, ). De(k}_)=®oc0D okl ).
With this we can compute the ideal

(De(Cr(Ke))R = (De(kd). De({kZ. ... kI )R
=(D (k)+D(k2)D({k kPR
= (De(k} 1) = De(k} )+ De(kZ ;) — Do(kZ_). De({kZ.... . kI )R
=(D g(k +) De(kl ). De({kZ. ... . kI D)k
= (®g,e0 (D_s(k?, 1) — D_e(kl, ). P00 D_s({k,.....k" ))&
= (Do, 0 (Dg(kl, ) —D_c(kl, ). o0 D_o({k2,.....k" ))&
= (@o,c 0 D_g(kl,), oo D_o({k2,..... k"L ))r
= (@o,c 0 D_o(C1(K—-¢)))R.

It follows that
Cord(Kg) = @g,¢(Cord(K_;)) = Cord(K_;).

The other possible situations are to be treated analogously.

Case (ii)(12) (one of the cases (ii)(1) to (ii)(10) holds for a chord which is generated by the application
of relation (iv) (where in the cases (ii)(1) to (ii)(7) the unstable manifolds are to be replaced by trajectories
along the vector field —V E, starting at this chord)) Analogous to the cases (ii)(1) to (ii)(10).

Case (ii)(13) (a chord which is generated by the application of relation (iv) runs along the vector field
—VEy to a critical point of index 1) Analogous to case (ii)(11).

Case (ii)(14) (creation/cancellation of a pair of critical points of index 0 and 1 or of index 1 and 2) It
suffices to consider the creation of a pair of critical points since the other case corresponds to the inverse

isotopy.

(a) Creation of a pair of critical points of index 0 and 1. So let K¢ x K¢ contain a critical point p of
birth type of index 0. For the definition of a critical point of birth/death type see [3] after the proof of
Lemma 9.3. Note that the index of p is defined in the same way as the Morse index of a critical point,
ie the maximal dimension of the subspace on which the quadratic form v — Hess, E (v, v) is negative
definite.
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U_, Uop U

u p/1q v k:»—

K . xK_, Ko x Ky K. x K,

Figure 37: Creation of a pair of critical points of index 0 and 1.

Since Ky is generic with one exception, the proofs of the Lemmas 2.17, 2.20 and 2.23 also work for p
and Wy'(p). With a similar transversality argument as in these lemmata we can show that p does not lie

on the unstable manifold of a critical point of index 1.

We can choose neighborhoods U, and coordinates such that we can represent the situation as in Figure 37
(see [3, proof of Lemma 9.6]). Here, g, and k. in the right figure are nondegenerate critical points of
index 0 and 1, respectively. Since we get two additional critical points during the isotopy, we have to
modify the linear maps ®g , and P, a little bit:

Let
ng .= |Crit0(K—a)| and np:= |Crit1(K—a)|.

Then for all r € [—&,0) we have
|Crito(K,)| =no and |Crit;(K;)| =ny
and for all r € (0, g] we have

|Critg(K7)| =no+1 and |Crit;(K;)| =n1+ 1.

So let . o ]
&, 8"} if r € [—¢,0),
Crito(K,) = 1{gp.---. 80", p} ifr=0,
{gh,....gr% g} ifre(0,e,
. (el ok if r € [—¢,0],
Crit1 (K;) =
rity (Kr) {{k},...,k;’l,k,} if r € (0, ¢].

Now we define fori =0, 1,
critt *i= | {r} xCriti (Ky) C [~e. 6] x T,
r€[—e,e]
Since the isotopy is smooth, we can number the critical points so that the maps

Wy : [—e, ] x Critg(K—-) — Critg_s’s], (r, gi_s) > gi, i=1,...,ng,

W s [—&. ] x Crit) (K_) — Critl = (k) kL, i=1.....n,
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are continuous with respect to the first component. For all r € [—¢, €] we define the linear maps ®¢ , and

@1, on generators by

®or: Co(K—g) = (gr..... 8"°)R.
gial—ﬂlfo(r,gi_g) =g£, i=1,...,no,
/\il |—>/\i1,
Mﬂ:l Hﬂil»

Dy Cr(K_g) > (k}. ... kM) z,
ki v Wy (r k) =kl, i=1,....n.

For all r € [—¢, €] we extend g, to an algebra homomorphism. Obviously, ®¢ , and ®; , are isomor-
phisms for all r € [—e¢, €].

By the same consideration as above, it follows that for &€ small enough,
De(kl 1) = ®oc0D_s(k’, 1)
foralli =1,...,n1. Thus, we have foralli =1,...,n1,
De(kl) = @gs0 D_o(k',) = Pg 0 D_go ® 4 (kL).

Now we choose g € Wy'(p) such that {¢j(g) : s <0} N (S U F U B) = &. Analogous to the above
consideration it can be shown that there exists an open neighborhood U of (0, g) in [—¢, €] x T2 such
that for all (r, x) € U,

Pp,00 @a’} oD, (x)= ﬁo(q).

For ¢ small enough we can assume that we have U N ({r} x T?) # @ for all r € [—¢,¢]. Choose
u € UN ({—e} x T?). Also choose k¢ + and k¢ — to determine Dy (k). Without loss of generality, k¢ +
and k. _ can be chosen as shown in Figure 37. If the orientation of the knot is reversed, k. 4 and k¢ —
are swapped and the sign of D.(k.) changes. However, nothing changes in the quotient. Then we get

©,0(D—s(1)) = Do(q) = 0,00 Py + (D (ke 1))
In addition we get
ﬁs(ka,—) = g

since dim W7 (g¢) = 2 and g lies arbitrarily close to k, for ¢ sufficiently small. Therefore, it follows that

De(ks) = De(ke,+) — De(ks,—) = @o.e(D—s(u) — ge.
Further, we get
Co(Ke) = (qDO,s(CO(K—s))’gs)R, Ci1(K,) = <q>1,s(cl (K—s))7ks>Z-
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U_, Uop U,

~
™
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4

K ¢ xK_, Koy x Ko K x K,

Figure 38: Creation of a pair of critical points of index 1 and 2.

Now we can compute
Cord(Ks) = Co(Ks)/ I
= Co(Ke)/(De(C1(Ky)))
= Co(Ke)/(De(thy, ... k7'}), De(ke))
= (@0,6(Co(K—¢)). ge) R/ (®0,c © D—g 0 OTL({kDL. ... k1)), Dy(ke))
= (®0,e(Co(K—¢)). ge) R/ (Po,e 0 D_s({k!,. ... k"L}), Do c(D_s(u)) — g

= (®0,:(Co(K—¢)), ge) R/ (Po,e(I—¢), Do (D (1)) — ge)

(2 CDO’S(C() (K_g))/qDO,s(I—s)

D @, (Co(K—e)/I—c)

= ®g ¢ (Cord(K_¢))
=~ Cord(K—_¢).

Equality (1) holds because on the one hand we have ﬁ_g(u) € Co(K_;) and on the other hand we have,
in the quotient, g, = CIDO,E(IS_S(u)). It follows that (g,;) C @ (Co(K—¢)). Equality (2) holds because
®g ¢ is an algebra isomorphism.

(b) Creation of a pair of critical points of index 1 and 2. So let Ko x K¢ contain a critical point p of
birth type of index 1.

With a similar transversality argument as before we can show that p does not lie on the stable or unstable
manifold of a critical point of index 1.

We can choose neighborhoods U, and coordinates such that we can represent the situation as in Figure 38
(see [3, proof of Lemma 9.6]). Here, k. and /. in the right figure are nondegenerate critical points of
index 1 and 2, respectively. We can divide K, x K, into open subsets bounded by “broken” trajectories
(see [1, Figure 3.1]) such that K, x K, is the union of the closures of these open sets. Figure 39
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Figure 39: Broken trajectories and position of the critical point p of birth type of index 1.

~
~

8r

shows this schematically on the left, where [/, krl, kf and g, are critical points with Ind(/,) = 2,
Ind(k}!) = Ind(k?) = 1, and Ind(g,) = 0. These open subsets are of the form

{x e K, x K, :sl_i)rgo @y (x) = gr ands_lir_noo oy (x) =1}

A “broken” trajectory starts at a critical point of index 2, runs along a stable manifold of a critical point
of index 1 to that point, then on the unstable manifold of that point to a critical point of index 0.

So p lies in such an open subset of Ko x Ky, as shown in Figure 39 on the right. Thus, it is obvious that
the trajectories starting from k. + and k. _ end at the same critical point g, of index 0. If these trajectories
intersect the sets S¢, F¢, and B in the same way (as well as all flow lines resulting from the application of
relation (iv)) such that ﬁg(k€’+) = D, (ke,—), we get Dg(kg) =0, and therefore Cord(K_,) = Cord(Ky).

If this is not the case, we perturb the 1-parameter family (£ ), ¢[—¢,¢ Of energy functions with the help
of Lemma 2.19 such that we get the 1-parameter family (E;),e[—¢ ] With the following properties (see
also Figure 40):
(i) E',=E_;and E[ = E,.
(i) The flow lines starting at p are arbitrarily close to each other, so they run inside a §—tube for a
§>0.
(iii) The flow lines starting at k;’ 4 and k; _ run also within a §—tube for all r € (0, &) where 0 < & < ¢;

£ is chosen such that the energy functions E|. are generic for all r € [—£, £] \ {0}.

Now we choose § small enough such that the flow lines starting at ké’ " and ké’_ intersect the sets Sz, F;
and B in the same way (and also all flow lines that result from the application of relation (iv)). We now
determine the cord algebras for the knots K, r € [—¢, €] with respect to the energy functions E., except
in the finitely many cases where K, is nongeneric, and get:

(i) Forr € [—¢,0) and r € (&, €] the cases (ii)(1) to (ii)(13) from Lemma 3.1 may occur. We have
shown already that the cord algebra does not change in these cases.

(ii) For r € (0, &) the cord algebra does not change since only generic energy functions occur.

(i) Since D}(k}) = ﬁé(ké,+) — l’jé(ké’_) = 0, the cord algebra stays the same for all r € (0, ].
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K_xK_, Ky x Ky K, x K,
P koY
—
y e E—— A
L

—
, K.
p &

- lé

Figure 40: Perturbation of the 1-parameter family of energy functions.

It remains to be shown that the cord algebra does not change at the transition over r = 0. For this we use

the linear maps as described above:
Do, : Co(K_z) — Co(Ky),
gié'_)lpo(rvgl_é):g:w i:l’~-~’n07
/’\:I:l — A:I:l
pE st
@y, Cr(K_g) — (kL ... k"),
kg Wy(r k' )=k, i=1,....ny,
where r € [—£, £]. By the same consideration as above, it follows that for & small enough,

D(kY) = g0 D! (k' ;) = Bgz0 D ;o ®7 L(kL)

foralli =1,...,n;. Now we can compute
Cord(K;) = Co(Kz)/I;
= Co(K3)/(D3(C1(K3)))
= Co(Kg)/ (DL ... KE"}). DL(KD)
—r

= Co(Kg)/(Dy(ky, ... k;'D)
= ®g,3(Co(K_3))/(Pgs0 D_go @] 1(tky,....k:'})
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= @g,:(Co(K_3))/(Po,s 0 D_s(C1(K_3)))

= Dg,2(Co(K_3))/ Po,s(1-2)

= Do s(Co(K_3)/13)

= @ s(Cord(K_¢))

=~ Cord(K_j3). m]

4 Isomorphism of the topological definition of the cord algebra and the
definition using Morse theory

In this section we will prove that our definition of the cord algebra is isomorphic to the topological
definition given in [2, Definition 2.6].

Theorem 4.1 Cordtopological(K ) == Cordporse (K)-
Proof That our definition of the cord algebra agrees with the usual one in the literature follows from
results in [2] which we now recall. There is a chain of isomorphisms

Cord(K) = Ho(X, D) = Ho(Zp1, D) = Ho(Zyin, D)
where the first isomorphism is [2, Proposition 1.3]. The proof of the second and third isomorphism will
be given below. Here Cord(K) denotes the topological definition of the cord algebra. ¥ denotes the space

of broken strings, ie words of alternating Q—strings (in R3\ K) and N—strings (in N \ K for a tubular

neighborhood N of K), and
Yiin C Epl cX

denote the subspaces whose Q—strings are linear and piecewise linear, respectively. The differential is
given by
D=0+

where 0 is the singular boundary operator, and § = §g + 3 is defined by decomposing Q— and N —strings,
respectively, when they intersect K in their interior.

Proposition 4.2 Ho(X,D) = Ho(Zp1, D).

Proof We have
Ho(Z, D) = Co(X)/im D(C1(X)).

The image of D is a two-sided ideal in Co(X) (see [2, the third paragraph before Proposition 2.2]). Thus,

we can write
Ho(X, D) = Co(2)/(im D(C1(%))).

As a consequence, we have to define

Ho(Zp1, D) := Co(Zp1)/(im D(C1(Zp1)))
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to get an isomorphism. We extend the maps i,; and [Fp to maps

ip: Ho(Zp1. D) < Ho(X, D), € Co(Sp) > ipB.
and N
Fo: Ho(2, D) — Ho(Zp, D), B € Co(X) > Fop.

From Foip, = 1 [2, Proposition 7.1(1), first statement] it follows that Iﬁofpl =1.
To prove ;plFO =1, we take a B € Cy(X). From [2, Proposition 7.1(i), second statement], it follows that
iplFof — p = DHop.

Since the right-hand side is an element of D(C; (X)), we get

inFoB —p = 0. O
Analogously, we can prove

Ho(X%p1, D) = Ho(Zhin, D).
In order to compute Ho(X1in, D), in [2, the paragraph preceding Proposition 7.14] the following operations
are introduced for i =0, 1 and a large T > 0:
ST Ci(Bm) = Ci(Zm).  HT: Ci(Zin) = Cit1(Shin)-

Here for B € C;(Zyin) the chains f7 8 and HT B defined by moving the Q—strings in B for time T,

respectively for times in [0, 7], under the negative gradient flow of the energy functional £: K x K — R.
The N-strings are dragged along without creating new intersections with K.

Applying [2, (7.6) and (7.8)] to fT and HT yields operations
FT: Ci(Zin) = Ci (i), H': G (Siin) = Ci1(Ziin).
defined by

00 d
]FT — Z de’ de — Z(HT(S)ifT(SHT)d_i,
d=0

i=0
oo
H' =Y "HI. H] =HT@GHT)?
d=0

By [2, (7.9)] they satisfy the relations
DH{ =FJ -1, H{D+DH] =F] 1.

This implies that
Ho(Zyin) = im Fl /(im DFT).

By definition of IFOT and ]FlT , for T sufficiently large we have

imFl = Co, imDFI = D(C)
where

o C;is the nc-algebra generated by index i binormal chords connected by N —strings fori =0, 1;
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e D:Ci — Cy is defined like our boundary operator D: C1(K) — Co(K), with the difference that
the contributions from intersections with the framing and the basepoint are ignored and instead
N —strings are dragged along without intersecting K.

Pulling tight the remaining N —strings, recording their intersections with the framing and the basepoint
and then removing them, yields the isomorphism

im FL /(im DFT) = Co(K)/ Ik

where the right-hand side is our definition of the cord algebra. Combined with the isomorphisms above
this yields the desired isomorphism

Cord(K) = Co(K)/Ix. |

5 Final remark

Finally, we will briefly compare the topological definition of Ng’s cord algebra with our definition using
Morse theory.

The original version of the cord algebra is easy to define. However, when calculating the cord algebra
for a given knot the following must be considered: if one has found several generators and relations, it
is still to be shown that no further generators or relations exist; this proof must be given for each knot
individually.

The definition of the cord algebra with the help of Morse theory is very complex, since first some properties
of generic knots and a generic framing are to be shown, and then the boundary map is to be defined. As
can be seen in the examples, the determination of the individual relations is also laborious and must be
carried out very carefully. However, since there are only finitely many critical points of index 1, one has
surely found all relations and generators, as soon as one has determined the boundary map for each of
these critical points.

Appendix Proof of Lemma 2.14

Remark A.1 Let K be a knot of length L and y: S! =~ R/LZ — R3 be an arclength parametrization
of K. Assume j(s) # 0 for all s € S'. In the proof of the lemma it is used that the framing v satisfies
the following conditions:
(1) v(s) # 0 at all points y(s) for which a chord exists that is tangent to K at y(s). According to
Lemma 2.11, these are only finitely many points.
(i) Consider the map ii: S! — S2, s+ §(s)/|7(s)|. For all points y(s) with v(s) = 7i(s), we have
v(s) # n(s).
(iii) For two particular finite sets Ry, R» C K x K, which are described in more detail in the proof, we
have FSN(R1URy) = @.
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Figure 41: Local model of K in a neighborhood of a boundary point of S

Proof of Lemma 2.14 Let K be a knot and y: S! — R3 be an arclength parametrization of K. Assume
7(s) #0 forall s € ST. Let v be a framing of K.

(1) Let (p,q) € dS be a chord that is tangent to K at the point p = y(s). We can assume that y(s)
points in the direction of the chord (p, q), otherwise we can reparametrize. We choose local coordinates
(x,,z) in R3, where the x—axis points in the direction of the chord (p, g), therefore in the direction
of y(s), the y—axis points in the direction of }(s), and the z—axis points in the direction of y(s) x y(s)
such that we have p = (0,0,0) and ¢ = (1, 0,0). Then K near p can be written as a graph over the x—axis
(with y = kx2 4+ O(x3) and z = O(x?)) and near ¢ as a graph over the z—axis (with x = 1 + O(z?) and
y = 0(z?)). There 2« # 0 is the curvature of K at p (see [2, in the proof of Lemma 7.10]). Note that «
is always positive due to our choice of the local coordinates. So we can assume a local model of K near
p and ¢q (see Figure 41):

K can be written near p as a graph over the x—axis,

and near g as a graph over the z—axis,

x=1, y=0.

Thus, chords in a neighborhood of (p, ¢) can be written as (s(x),#(z)) € K x K such that

X 1
y(s(x) = [xx*>| and y(r(z))=]0
0 z

With this we have
p=y(s(0)) and g =y((0)).

The normal plane at the point y(s(x)) near p is

—2Kx 0
N(x) = {v eR3: (v, ;—xy(s(x))> = O} = span 1 ,10
0 1
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With
—2KkXx 0
a(x) = 1 and B:=1]0
0 1
we get
N(x) = span(x(x), B).
Thus,
1—2x) (—2Kx
(y((2)) —y(s(x)), a(x)) = <(—Kx2 , 1 )> = —2ux + 2kx? —kx? = kx? =2k,
z 0

l—x\ (O
(r(@(2)) —y(s(x)), B) —<(—Kx2 . O)>—z.
z 1

We define the map

n:D*((p.q) \{(p.q)} > S,
((y((2)) — y(s(x).a(x)). (y(1(2) = y(s(x)). B)) _ (kx®—2kx,2)

COM ) = (@) — 6 a). (@) — 76, A T6a? —2ex, 2]

Now we set x (1) = cosu and z(u) = sinu for u € [0, 2] and consider the map

n: st — st

2 _
u > n(s(xw)), 1(z(w))) = IEZ;EZ; — iziEZ; EEZ;;

2

(k cos”u — 2k cosu, sinu)

"~ |(k cos? u — 2k cos u, sin )|

_ ((cosu —2)k cosu, sinu)

"~ |((cosu —2)k cosu, sinu)|’
The mapping degree of 1 can be determined immediately:
deg(n) =1,
ie (p, q) is a boundary point of F* and hence we have shown 0°S C dF*.

Let us now consider a framing

a(x)

V) =4l

+b(x)p
with a?(x) + b%(x) = 1. Then

S a(x)\ B 1 Kkx2 — 2K x
(s(x).1(2)) € F* = (b(x)) =n(s(x),1(2)) = (ex? — 26x)% 1+ 22)3 ( z )
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If the two equations are squared, both yield the same equation
(A-1) b2 (x)(kx? —2kx)? = a?(x)z>.

Case 1 (a(0),b(0) # 0 or, equivalently, a(0),5(0) # +1) Then there exists a neighborhood of 0 with
a(x), b(x) # 0 for all x in that neighborhood. In this neighborhood, (A-1) can be solved for zZ and z
can be written as a function of x:

b2 (x)(kx? —2kx)?
2 —
=T e

In addition, it must hold that

sign(z(x)) S sign(b(x)), where sign(b(x)) is constant in a neighborhood of x =0,
sign(kx? — 2k x) L sign(a(x)), where sign(a(x)) is constant in a neighborhood of x = 0.

It follows that
x>0 for a(0) <0,

x <0 for a(0)>0.

Thus, in a neighborhood of (p, ¢), F* is a smooth curve with boundary point (p, q).

Case 2 (h(0) =0 or, equivalently, a(0) = £1) From (A-1) it follows immediately z = 0 and it must
hold that

sign(kx? — 2kx) < sign(a(x)), where sign(a(x)) is constant in a neighborhood of x = 0.

It follows that
x>0 for a(0)=-1,

x <0 for a(0)=1.

Thus, in a neighborhood of (p, g), F* is also a smooth curve with boundary point (p, g).

Case 3 (a(0) = 0 or, equivalently, »(0) = +1) From (A-1) it follows immediately x = 0 (the second
solution x = 2 is not relevant since x is only considered in a small neighborhood of 0) and it must hold
that

sign(z) = sign(b(x)), where sign(b(x)) is constant in a neighborhood of x = 0.

It follows that
z>0 for b(0) =1,

z<0 for b(0) =—1.
Thus, in a neighborhood of (p, ¢), F* is also a smooth curve with boundary point (p, g).
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FS
(p.q)
Fs KxK

Figure 42: F* C K x K in a neighborhood of the chord (p, g).

According to condition (i) from Remark A.1, we have v(s(0)) # 0 because the chord (p, g) is tangent
to K at p = y(s(0)). Since b(0) = +1, and thus b reaches a maximum or minimum, we get b’(0) = 0.
So a’(0) # 0 is satisfied. Using this and L’Hospital’s rule, we can compute

. 4x2
1 2 = —.
20570 = oy
It follows that
2K

)}I_I’)I’IOZ(X) = sign(b(0)) O]
This means that F¥ can approach the chord (p, ¢) in K x K very close, but in this case does not pass
through this chord. Together with the above, this results in a picture like the one in Figure 42.

So far we have only considered a local model of K and neglected the terms of higher order. These must
now be taken into account in a further step. However, we will not carry out this consideration here in
detail, but only note the following:

Let p = y(so) and ¢ = y (o). Now we only look at chords with starting point y(s) for s € (so —¢, S0 + €)
and endpoint y(¢) for ¢ € (to — 8, o + &), where ¢ and § have to be chosen sufficiently small. The above
calculations will then be carried out again, taking into account the higher-order terms. In the course of
the calculations, ¢ and § may have to be reduced several times in order to guarantee that the terms of
higher order are small enough. Compare also the proof of Lemma 7.10 in [2].

(2) Now we consider the behavior of F' near the diagonal A C K x K. Let p = y(s) € K. We choose
coordinates (x, y, z) as in (1) such that (y(s), y(s), y(s) x (s)) is a basis of this coordinate system. Thus,
K can be considered as a graph over the x—axis with y = xx? and z = 0. So, the normal plane at the
point y(s(x)) is, as in (1),
—2Kkx 0
N(x) = span(x(x), ) where a(x) = 1 and B=1{0
0 1

We define the following map, which is the projection onto the normal plane N(x) and a normalization:

(v, a(x)/la)]), (v, B))

SR3 ¢! — ’
ny:R S"CN(x), v |((v, a(x)/|a(x)]), (v, B))]
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DK
<

Figure 43: F C K x K in a neighborhood of the chord (p, p).

Let (x1, x2), where x1 # X2, be a chord in a neighborhood U of the chord (p, p) € A; see Figure 43.
Then

X2 — X1
nx, (¥(s(x2)) = y(s(x1))) = nxy | | x5 —xf
0-0
_ (“2kxx1 + 26cx? + kx5 —kx?,0) _ (k(x2—x1)%,0) (1.0)
|(=2kx2x1 + 26x7 + kx5 —kx2,0)|  [(k(x2 —x1)2,0)] T

In the local coordinates of N(0) the following holds: ¥ (s(0))/|y(s(0))| = (1,0). As a consequence, if
v(0) = (1,0) € N(0), we have v(x) # (1,0) in a neighborhood of x = 0 according to condition (ii) from
Remark A.1, and so we get

FSﬂU={(X1,X2)€UiX1 =0, x2 # x1}.

The set F'* is not defined on the diagonal because there the projection of a chord onto the normal plane is
the zero vector. However, we can extend F* in a canonical way on the diagonal (see Figure 43):

FNU ={(x1,x3) €U :x; =0}.

Assumption (ii) from Remark A.1 is necessary for the following reason: if v(x) = (1, 0) in a neighborhood
of x =0, dim F* = 2 would follow because every chord in that neighborhood would intersect the framing.

Also here we will not carry out the consideration of the terms of higher order. However, this is to be
realized analogous to the above consideration.
(3) It remains to show that F'S\ (dS U A) is a one-dimensional submanifold.
We define the maps vy, v, € C®(S1, S?) by
V(s) y(s) Xy (s)
vi(s)=-"—= and wvp(s)=-"—"—7—.
7 ()] [7(s) x ¥ ()|
Thus, we have (y(s), v1(s), v2(s)) as an orthonormal basis of R3 for all s € S'. So the framing can be
written as
p: ST 82 s a(s)vi(s) + az(s)va(s),

where (a1,az) =:a € C*®(S!, S1). We define the map
a:S' > Stx St s> (s.a(s)).
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the starting point of the chord and a normalization:

yu) —y(t), v1(t)

We also define the following map, which is the orthogonal projection of a chord onto the normal plane at
)
(u) —y (1), v2(1))
)
)

(i
‘( y() —y (), vi(t) )
yu) —y(t), va(t)

This map is well defined since the boundary of S and the diagonal are excluded. According to Definition 2.8,

(
A:T?\ (@S UA)— S, (t,u)—~ 2
(

a chord (¢, u) intersects the framing at its starting point if and only if 7(¢, u) = a(¢). We consider the map
n:T?\(ASUA)— S'x S, (t,u) — (t,7(,u)).

We want to show that a is transverse to n. This holds if and only if the map
axn:STx(T?\(0SUA)) — (S'xSHx (ST xSY), (s.t,u)— (a(s),n(t,u)) = (s,a(s),t,7i(t,u)),
is transverse t0 A(g1yg1)x(s1xS1), Where

Asixsx(sixst) = 15.1.1.0) € (STx S x (S x 81 1 (5.1) = (. v)}
is the diagonal in (S! x S1) x (S! x S1). The tangent space at points of this diagonal is
0

1

0 1
T(s,t,5,0) A(S1xS1)x(S1xS1) = span o

0 1

In addition,

1 0 0
aGs) 0 0
D(s,t,u)(axn): E)) 1 O

0 @) P

The derivatives of @ and 7 each have two components, but can be regarded as real-valued by the
identification S = R/Z. The matrix is to be understood in this sense. Furthermore,

(axn)(s,t,u) e A(SIXSI)X(SIXSI) < s=t,a(s) =n(t, u).

Thus, a x n is transverse to the diagonal A(g1,g1)x(s1xs1) if and only if for all points (s,7,s,7) in
(ST x S x (St x ST with (s,¢,5,1) = (a xn)(s, s, u) the following holds:

1 0 1 0 0
1| |aes) 0 0 o
Pty foll o I 1 | o =R"
0 1 0 g—’;(s, u) g—Z(s, u)
This is satisfied if
: on . on on
(A-2) a(s) # —n(s, u) or als) = —n(s, u) and —n(s, u) #0.
ds as ou
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Assuming this, (a x n)_l(A(Slel)x(Slel)) is a one-dimensional submanifold of S x (T2\ (0S U A))
since codim(A (g1 s1yx(s1x51) C (STx S x (ST x §')) = 2. The following holds:
(@xn) N(Asixsiyxsixsty) = {(s.1,u) 1a(s) = n(t,u)}
={(s.1,u) : (s,a(s)) = (1,7 (1, u))}
={(s,5,u) 1 (s.a(s)) = (s, (s, u))}.

The latter set can be considered as
{(s,u) € T>\ (3S U A) :d(s) = ii(s,u)},
ie the set of all chords that intersect the framing at its starting point. As a consequence,

FS\(SUA)C K x K

is a one-dimensional submanifold.

Together with the results from (1) and (2) the following holds: F® C K x K is a one-dimensional
submanifold with boundary and 0F* = 9°S.

So it remains to show that condition (A-2) holds generically. For this we want to show the following:
(i) Mp:={(s.u): %(s, u) =0} C T2\ (3S U A) is a one-dimensional submanifold.
(i) Let Mz := {(s,u):a(s) =fi(s,u).a(s) = P(s.u)} € T2\ (3S U A). Then M1 N M, = 2.
Proof of these two statements:

(i) In Figure 44 we can see that

By e 000 =)
ou ou

€ span(y(s). 7i(s, u))
<> y(u) € span(y(s). (s, u))
= (Y. a(s,u) xy(s)) =0
= (y). (y(u) —y(s)) xy(s)) =0
= (y(s) xy),yu)—y(s)) =0.
We define the maps (for k£ big enough)
[CESLR) X (TP\N@SUA) =R, (y,5,u) = (7(5) x (), y(u) =y (5)),
friT>\@SUA) =R,  (s,u) > f(y,5,u).
We want to show that 0 is a regular value for f,. First, we show that the map
D(ysuyf: CH(ST R xR* > R
is surjective for all (y, s, u) with f(y,s,u) =0:

Let (y, s, u) be such that f(y,s,u) = (y(s) x y(u), y(u) —y(s)) = 0.
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< y(u)

K
P70 A
Kb
y(s) y(s)
N(s)

Figure 44: The chord (s, u) with the first and second derivatives of the parametrization y at the
start and endpoint of the chord and 7 (s, u).

We assume that D, ) f is the zero map and determine Dy, ) f - (7.5, 1):

0
V(.50 = (76 <700, Y00~ YD),

)

%()/,S,u)'ﬁ = ()/(S)X)/(M), y(u)—y(s))ﬁ,

d . .

%(%S,u)'? = (P()xy @), y@) —y(s)) +{y(s) xy (), y @) —y(s)) + (y(s) x y (), 7 (u) =y (s)).

Since (y(s) x y(u), y(u) —y(s)) = 0, we can also write

0
a—i(% s.u) = ((7(s) + Ap(s)) x p(u), y(u) — y(s)),

0
(0 = (706) % () + 1300, 700~ )

for any A, u € R.

Assuming y(u) — y(s) = 0, it follows that s = u and hence (s, u) € A. However, this is excluded by the
definition of f.

Assuming (y(u) —y(s)) || y(u), it follows that the chord (s, u) is tangent to K. Thus, we have (s, u) € 9S.
However, this is also excluded by the definition of f. The case (y(u) — y(s)) || y(s) is analogous.
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Assume that y(s), y(s) and y(u) are linearly independent. The set

A={F () +Ay(s)) xy(u) : A € R}

describes a straight line with 0 ¢ A. So span(A) is a plane through the origin with span(A4) L y(u). Thus,

(T + A7) xy ). y) —y(s)) =0V AeR = (y(u)—y(s)) [ y(w).

It follows that (s,u) € dS. This is a contradiction to the definition of f. So y(s), y(s) and y(u) are
linearly dependent and we get

y(u) = A17(s) + A2p(s) with 11,42 € R
since J(s) and y(s) are linearly independent. It follows that the set
{FE)+ A7) xy) : A e Ry = {(AA1 — A2)y(s) x ¥ (5) : A € R}

is a straight line through the origin. Since

af " . .
g V8 = {7 () + Ay () x y (). y () =y (5)) =0
for all A € R according to the assumption, it follows that

y(u) —y(s) € span(y(s), ¥ (),
hence
y(u) —y(s) = A3Y(s) + Aap(s) with 23,14 €R.

Now we can rewrite the three summands of g—f(y, s,u)-y:
Y

(P(5) x 7). y() = y(5)) = (hads — A1 Aa) (¥ (s) x (5), P(5)),
(7(5) x P). y () = y(5)) = —A3(7(s) x §(5). P (),
(7(s) x Y (). P () — P()) = Ay (7(s) X §(5). P (u) — P (s)).
All in all, with A := AsA3 — A1 A4 we get
%
dy
We have A3 # 0, otherwise y(u) — y(s) = Aqp(s), ie (s,u) € dS. So we can choose p such that

(v, 5,u) - P = (y(5) X P(5), AP () — A3p () + A1 (P (u) — P(5))).

f(u) =p(s) X y(s) and f(s) = p(u) — p(s) = 0. With this choice we have
If .
- (r.s.0)- 7 # 0
4
and therefore the map D, ) f is not the zero map. Hence D, s ,) f is surjective.

Thus, 0 is a regular value for f and f~!(0) is a Banach manifold (see McDuff and Salamon [9, proof of
Theorem 3.1.6] which is based on an infinite dimensional version of Sard’s theorem). The projection map
pry: f71H0) = C k (S, R3), for k big enough, is smooth. According to the Sard—Smale theorem, almost
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My = £,71(0)

(5.20) ! V fy(s,u)

N

Figure 45: A point (s, u) € M with %(s, u)=0.

all points in C k(ST R3) are regular values for pry, so the parametrization y of K is generically a regular
value. Thus, prl_1 (y) € f£71(0) is a Banach submanifold and 0 is a regular value for fy (see [9, proof of
Theorem 3.1.6]). So M1 = fy_1 (0) is a one-dimensional submanifold and the assertion (i) is shown.

(ii) Let (s,u) € M;.

(a) First, we consider the case
a
ﬁ(s, u) =0,
du

ie in a neighborhood of s the set M cannot be written as a graph over the s—axis; see Figure 45. To
simplify the notation we define the function g, := df, /du. So,

Sy (s.u) = () X P (0). y () = p(5) = O}
gy(s.u) = (7(5) X 7). y(u) = () = 0
{ y(s) € span(y (), y (u) = y(s)) }

7 () € span(p(s). y () — 7 () “"E" span(i (). y () — y(s))

{ P(s) = u1y ) + pa(y () —y(s)), p1.p2 €R, 1 # 0}
Y() = p3y ) + paly() —y(s)), us, ua €R, us #0

where 1 must not vanish, otherwise we have (s, u) € S, and (4 must not vanish, since y (1) and y (u)

are linearly independent.
We define the function
hy: T2\ @S UA) =R, (s.u) > (fy (5.1). gy (s.10)),

and want to show that h;l ((0,0)) is a finite set for generic knots. This holds if D,y is surjective for
all (s, u) with Ay (s,u) = (0,0). Let (s,u) € T?\ (3S U A) with hy (s, u) = (0,0). Then

Do :(W(s)xy'(u),y(u)—y(s)) /Ls()’/'(S)X)?(u),V(u)—)/(S)))
(507 0 e {y ) x (), y(u) — y(s)) ) °
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So D s,u)hy is surjective, ie det(D s q)hy) # 0, if and only if
(F(s) x pu), y(u) —y(s)) #0 and (y(u) x ¥ (), y(u) —y(s)) # 0,
since 1 # 0.

First, we look at {y(u) x ¥ (u), y(u) —y(s)). We will need the torsion of the knot at the point y(u). Recall
that for all u € S! the torsion t(u) € R is the unique real number for which b(u) = 7(u)n(u) holds,
where i1(u) := y(u)/|y(u)| and b(u) := p(u) x in(u). We calculate

|7 ) 1?¥ ) — (7 (), 7)) 7 ()

b(u) = y(u) x

HOE ’
and then we can write
G
t(u)y(u) = yu)xy(u)— Wy(u) X y(u).
Therefore,
(7 0) % 5 (). y0) — y(5)) = 70) (7 00). y ) — y(s)) + % (7 u) x ). y(a0) — y(5))

=0 since  (u) €span(y (u),y (u)—y (s))
= 1) (P ), y(u) —y(s)).
According to the above consideration, we have y(u) € span(y(u), y(u) — y(s)). Besides, y(u) and y (u)

are linearly independent. Therefore,

y(u) —y(s) € span(y(u), y(u)),
and thus
y(u) —y(s) = usyu) + uey ), ps, ue €R, us #0,

where (5 must not vanish, otherwise the chord (s, #) would be tangent to K. It follows that

T)(§ (), y () = y(5)) = T@) {7 ), us7 W) + ey (W) = v ps|y ).

This expression does not vanish if t(u) # 0. For a generic knot t(u#) = 0 holds for only finitely many
ue St Solet {ui:i=1,...,N,} C S for an N, € N, be the set of points for which 7(2;) = 0 holds.
Consider the set

Ry := (s,u) e My : %(s,u) =0,7(u) =0
={(s,u) e T>\ (*SUA): hy(s,u) =0,7(u) =0}
={(s,i1;) e T*\ (*SUA): hy(s,u;) =0,7 €{l,..., Ny}}.

We can choose open neighborhoods of d°.S and the diagonal of K x K of which we already know that
F¥ is a submanifold within these neighborhoods. Let U be the union of these neighborhoods. Thus, it
suffices to consider the set

Ry:= RN (T?*\U).
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S0 N
Figure 46: The set R; is finite.

We now argue that R is a finite set. We have M = fy_1 (0). Therefore, for all (s,u) € fy_l (0), we have
V fy(s,u) L My. If (s,u;) € My, then

%(s, u;)=0

ou
according to the assumption. So M; is tangent to the straight line {(s,u) : s = const} at the point
(s,u;) € Ry; see Figure 46. Since the set {u; :i = 1,..., Ny} C S1 is finite, no further point in R
can be contained in a sufficiently small neighborhood of (s, i;). Therefore, R is a discrete set. Since
M N (T?\U) is compact, R is finite. In the example of Figure 46 we have (sg, ii2), (so. upn,) € Ri1.

Now let’s look at the entry

d
%(s, u) = (§(s) x (), y(u) — y(s))

in D4 y)hy. According to the assumption, we have f (s,u) = (y(s) xy(u), y(u) —y(s)) = 0. It follows
that

0
g(& u) = ((y(s) + Ay () x y(u), y(u) — y(s))
for all A € R. Assume 5
ﬁ(s, u)=0.
as
Then we get, as in (i),
y(u) —y(s) = A3¥(s) + Aap(s), A3, Age €R, A3 #0.

Thus, we can write

0= fy(s.u) =A3(y(s) xy(u),7(s)) and 0= gy(s.u) =A3(p(s) xJ ), 7(s)),

or, since A3 # 0,
(Y(s)xym),7(s)) =0 and (y(s) xy(u),y(s)) = 0.
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Therefore,
y(u), ¥ (), y(u) —y(s) € span(y(s). ¥ (s)).
We define the maps (for k big enough)
3 (y(s)x7(s),y(u))
f:CHSL R X (TP\(0SUA) - R?, (y,5,u) (y(s)x7(s), ¥ (u)) :
{(y(s)x7(s), y(u) —y(s))
f,,:Tz\(BSUA)—>R3, (s,u) = f(y,s,u).

We want to show that 0 is a regular value for f;, First, we show that the map
Deysayf: CF (ST, R xR? - R3
is surjective for all (y, s, u) with f()/, s,u)=0:

Let (y, s, u) be such that f(y, s,u) = 0. Let (§,0,0) € Ck(S1, R3) x R2. We determine

F oo of .
D(y,s,u)f (7,0,0) = W()/,s,u)q/

(P(5) X F(s) + 7(5) x P(5), 7 () + (7 () x F(5), P ()
=| PO xFE) +76) xP6), Fa) + (7(s) x F(5), P ()
(P(s) X F(5) + 7(5) x P(5), y () — y(5)) + (7(5) X F (), P(u) = P(s))
If we choose 71, ¥2, and P3 such that );/i (s) = )7, (s)=0,fori =1,2,3, and

« P1(u) = p(s) x §(s) and y1 () = P1(u) — P1(s) = 0, we get

. [7(s) x 7(s)|?
Dysuyf - (71,0,0) = 0 :
0

o P2(u) = 7(s) x §(s) and P2 (u) = P2 (u) — Pa(s) =0, we get

0
Dysay f - (72,0,0) = | 17(s) x ()2 | ;
0
o P3(u) —P3(s) = (s) x ¥(s) and P3(u) = p3(u) = 0, we get
0

Diysayf - (73,0,0) = 0
[7(s) x 7 ()2

Since |y (s) x j(s)|? # 0, the surjectivity results from any linear combination of these three choices.
Thus, 0 is a regular value for f and f ~1(0) is a Banach manifold (see [9, proof of Theorem 3.1.6]). The
projection map pry : f ~1(0) - C*(S',R3), for k big enough, is smooth. According to the Sard—Smale
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theorem, almost all points in C k(S 1, R3) are regular values for pry, so the parametrization y of K is
generically a regular value. Thus, prl_1 (y) C f ~1(0) is a Banach submanifold and 0 is a regular value
for fy (see [9, proof of Theorem 3.1.6]). It follows that f}_l(O) = ¢, ie for a generic knot we have

(P(s) xy(u),y(u) —y(s)) # 0 in case (a).
Now we choose some open neighborhoods as follows:

¢ According to (1), around the finitely many points 0°.S, F* is a smooth curve with endpoint in 9°§.
So we can choose open neighborhoods of these finitely many points of which we already know
that within these neighborhoods F* is a one-dimensional submanifold with boundary. Let Uys g be
the union of these neighborhoods.

e According to (2), there exists an open neighborhood U of the diagonal in K x K such that F¥NUa
is a one-dimensional submanifold.

e We can choose the framing such that F* N Ry = & since Ry depends only on the knot and is finite.
So there exist open neighborhoods Uy ). of all points (s, u); € Ry such that for all i, we have
F*NUgu), = 9. Let Ug, := U; Uy, -

Let U := Ug, UUysg U Ua. We define the map

According to the above, D(S,u)ﬁy is surjective for all (s, u) with ﬁy (s,u) = (0,0). So the set

Rz := 1,1 ((0,0))

is finite since 72\ U is compact.
We choose the framing so that FS N Ry = @.

(b) Since R is finite, ie ]
ﬁ(s, u)=0
ou

for only finitely many (s,u) € My, M; \ R» can be split into finitely many disjoint subsets M ;, for
i=1,..., Ny, with Np, € N, each of which is connected, such that forall i =1, ..., Np,, M1, can
be written as a graph over the s—axis; ie

My; ={(s,u;i(s)):s € Ui},

where U; C S is open, u;: U; — R is smooth, and lims_, /1 (50, u; (s)) = (0,0) for s € dU;. We
define the set
My, :={s € U :a(s) = g1(s).d(s) = ga(s)} C S" =R/Z
with
g1: St = St s (s, u(s)),

A

g2 st R, s a—rsl(s, u(s)).
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The set of all 1—jets from S! to S! is

JUS s =8 x ST xR.

Furthermore,

Li:={(s.81(5), 82(5)) :5 € U} C J (ST, 8T)

is a submanifold, since L; is a graph over the s—axis, with codim(L; C J1(S!, S!)) = 2. We can perturb

a in the space C*(S!, S1), for k big enough, so that the map

h: ST JUSLSY, s> (s.d(s).a(s)),
Nm

1S transverse to Ui:]l L; (see [7, Theorem 2.9]). So we get

NM] NM]

My = | J MUi:h_l( g Li):@

i=1 i=1

since codim(My C S1) = 2.

Thus, the condition (A-2) is satisfied and this proves the lemma. O
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