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This paper introduces a new type of open book decomposition for a contact three-manifold with a specified
characteristic foliation F¢ on its boundary. These foliated open books offer a finer tool for studying
contact manifolds with convex boundary than existing models, as the boundary foliation carries more data
than the dividing set. In addition to establishing fundamental results about the uniqueness and existence
of foliated open books, we carefully examine their relationship with the partial open books introduced
by Honda, Kazez, and Mati¢. Foliated open books have user-friendly cutting and gluing properties, and
they arise naturally as submanifolds of classical open books for closed three-manifolds. We define three
versions of foliated open books (embedded, Morse, and abstract), and we prove the equivalence of these
models as well as a Giroux Correspondence which characterizes the foliated open books associated to a
fixed triple (M, &, F).

57K33; 37D15

1. Introduction

2. Foliations and vector fields on surfaces

3. Foliated open books

4. Local models

5. Equivalence of foliated open books

6. Operations on open books: cutting, gluing, and stabilization
7.  From foliated open books to contact three-manifolds

8. Relationship to partial open books

References

1 Introduction

3139
3144
3152
3158
3166
3172
3179
3183
3195

The simplest way to produce a manifold with boundary is to cut a closed manifold, and one goal of this

paper is to render this natural operation an effective one in the setting of contact geometry. We introduce

a new topological decomposition of a three-manifold with boundary: a foliated open book. The simplest

construction of a foliated open book is an intuitive one: under mild hypotheses, cutting a closed contact

manifold equipped with an open book along a separating surface yields a pair of foliated open books.
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Open book techniques have been responsible for significant progress in contact geometry over the last
two decades, leading to both computational and conceptual advances in the field. Open books were first
used by Thurston and Winkelnkemper [28] to prove existence of contact structures, and Giroux [13]
upgraded them as a major tool in the field with the well-celebrated “Giroux Correspondence”, claiming
that contact structures up to isotopy are described by open books up to positive stabilization. Open books
were generalized for contact manifolds with convex boundary by Honda, Kazez, and Mati¢ [14], and
Van Horn-Morris [30] defined another version of open books for contact manifolds with toroidal boundary.
In the latter, pages intersect the boundary torus in circles which give the characteristic foliation on the
boundary. Foliated open books use a similar idea; we will require the characteristic foliation on the
boundary to be “the same” as the foliation induced by the intersection of the boundary with the pages,
but we adapt the condition of Honda, Kazez, and Mati¢ [14] and require that the boundary is convex.

Our main tool for understanding the open book structure near the boundary comes from open book folia-
tions; these originate in the thesis of Bennequin [2], who used the singular foliation induced on a disc by the
angular open book decomposition of S? to distinguish contact structures on S3. These methods were later
named braid foliations and were extensively used by Birman and Menasco [5; 4; 8; 3; 6; 7]. Pavelscu [26]
revived the notion of braid foliations in general contact structures and they were further studied under the
name open book foliations by Ito and Kawamuro [15; 16; 17; 19; 18; 20; 22; 21; 24; 23].

Topologically, an open book decomposition identifies the complement of a link as a fibration, and this
partition of the manifold into the binding and pages serves to localize the twisting of the contact planes
near the binding. By definition, a contact plane field is nonintegrable, but away from the binding, the
planes are nearly tangent to the pages: it becomes forgivable to pretend the manifold is a collection of
solid tori with twisting planes, together with a foliated fiber bundle. A foliated open book extends this
fiction, decomposing a manifold with boundary into binding and pages. In this setting, however, the
pages need not have constant topology, but may evolve via saddle resolutions. The idea of an open book
adapted to a contact manifold with boundary is not new, but there are a few key differences between the
partial open books of Honda, Kazez, and Mati¢ [14] and the present foliated open books. First, we allow
arbitrarily many nonhomeomorphic page types. Second, the boundary of the manifold inherits a singular
foliation F5 whose leaves are the intersections of the pages with the boundary.

Before continuing, we offer a first example of a foliated open book.

Example 1.1 Let M be a solid torus embedded in R3 = {r, %, z} as shown in Figure 1. The foliated
open book structure on M comes from decomposing the complement of the z—axis into surfaces defined
by M N{¥ = c}.

As ¢ changes, the topology of the surfaces changes four times, where each change either joins two
components or splits one. The boundary torus inherits a singular foliation from its intersections with the
radial half-planes. This foliation has elliptic singularities along M N {r = 0} and a hyperbolic singularity
corresponding to each saddle resolution.
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Figure 1: Left: M = D?x S!in R3. Center: Selected pages S, = M N {1 = c}. Right: singular
foliation on dM. The green and blue curves in the three pictures indicate the leaves ¢ = 0 and
¥ = /3, respectively.

The singular foliation on dM is an intrinsic part of the foliated open book structure. Singular foliations
are ubiquitous in contact geometry, most prominently in the case of the characteristic foliation of a
convex surface. Above, we summarized the compatibility between an open book and a contact structure
by requiring the contact planes to be “nearly tangent” to the pages, and this translates to foliated open
books as a requirement that the characteristic foliation on the boundary “nearly agrees” with the singular
foliation induced by the pages.

A foliated open book (B, 7, ) is compatible with the contact structure & = ker « if
e a(TB)>0,
* da|,—1(, is an area form, and

e the singular foliation 75z on dM whose leaves are the level sets of 7 = 7|35 “agrees with” the
characteristic foliation .

Precise definitions appear in Section 3. Having noted some contrasts between partial and foliated open
books before the example, we now make the case that the world has room for yet another notion of
an open book; this rests on claims of naturality (not in the categorical sense) and gluing. As described
above, when a contact manifold arises as an embedded submanifold, the foliated open book structure
is immediate from that of the ambient manifold. This makes it easy to construct examples, whereas
constructing partial open books can be difficult in practice even for rather simple manifolds. Just as
cutting is intuitive, so is gluing: keeping track of 7% on the boundary allows us to glue contact manifolds
with foliated open books and get a new foliated open book. Although gluing is certainly possible with
partial open books, it is less straightforward.

Theorem 1.2 (see Theorem 6.2) Suppose that the foliated open books compatible with (M, L) and
(M R £R) induce the same foliation along their boundary. Then the contact three-manifold formed by
gluing them, (ML U MR gL UER), has a compatible honest open book decomposition that restricts to
each piece as its original foliated open book.
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1.1 Applications and results

The primary purpose for defining foliated open books is for applications requiring cut-and-paste arguments,
which are ubiquitous throughout low-dimensional topology. We anticipate further constructions of open
books for manifolds assembled from smaller pieces as well as applications to the study of support norms.

Foliated open books are inherently compatible with gluing, so by design they are the right object to define
the contact invariant in bordered Floer homology. We present this construction in [1], together with its
comparison to the gluing result of Honda, Kazez, and Matié.

It is also possible to amalgamate partial open books with foliated open books; a limited case of this
appears in the proof of Theorem 3.12, and the general construction will be explored in [25]. This is
significant not only as a bridge between different models, but importantly, as a tool for further work in
Heegaard Floer homology. Specifically, these amalgamations offer a path to characterizing the higher
multiplication maps in bordered Heegaard Floer homology using only the data of sutured Heegaard Floer
invariants, as first proposed in Zarev [31].

These advantages would be worth little, however, if foliated open books failed to be either sufficiently
precise or sufficiently broad. We prove the following results:

Theorem 1.3 (see Theorems 7.1, 7.2 and 3.12) Every foliated open book supports a unique isotopy
class of contact structure, and every contact manifold with a characteristic foliation that “agrees with” an
open book foliation admits a compatible foliated open book.

As in the case of honest and partial open books, foliated open books may be stabilized by taking a
connected sum with an open book for S3.

Theorem 1.4 (Giroux Correspondence; see Theorem 6.9) Positively stabilizing a foliated open book
preserves its compatibility with a contact structure, and two foliated open books supporting equivalent
contact structures are related by a sequence of positive (de)stabilizations.

Having said something about what foliated open books do, we return to the somewhat neglected question
of what foliated open books are. In fact, we will introduce three distinct objects: embedded foliated open
books, Morse foliated open books, and abstract foliated open books. In brief, we have the following:

e An embedded foliated open book is a pair (B, ) which could be the restriction of an honest open
book to the submanifold formed by cutting along a surface with an open book foliation without
circle leaves. See Definition 3.1.

* A Morse foliated open book is a pair (B, ) such that B is a properly embedded one-manifold
and w: M \ B — S! is a circle-valued Morse function with only boundary critical points. See
Definition 3.17.
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e An abstract open book is a tuple ({S;}, h) where S;41 is built from S; either by cutting along a
properly embedded arc or by adding a one-handle, and /: Sy, — Sg is a homeomorphism. See
Definition 3.14.

In Section 5 we describe how to transform a foliated open book of one flavor into another; having several
versions provides technical flexibility in different settings, as well as a more transparent relationship to
other open books.

The final section of the paper is devoted to the connections with partial open books. We characterize when
a foliated open book naturally gives rise to a partial open book for the same manifold, and we show these
conditions can always be achieved via stabilization. Furthermore, we show how to turn a partial open
book into a foliated open book; as one would suspect from the more detailed data on the boundary of a
foliated open book, a given partial open book may give rise to several nonequivalent foliated open books.

Theorem 1.5 (see Propositions 8.10 and 8.11) Any sufficiently positively stabilized foliated open
book for (M, &) contains a partial open book for (M, &) as a submanifold with pagewise inclusions.
Furthermore, any sufficiently positively stabilized partial open book may be obtained this way.

1.2 Organization of the paper

The paper assumes familiarity with contact structures, open books and Morse functions, but we found
it important to recall the basic terminology and results about open book foliations and characteristic
foliations in Section 2. Here we also introduce a technical definition of a “preferred gradient-like vector
field” that will be used throughout the paper. In Section 3 we introduce the three definitions of foliated
open books and, after setting up the local models in Section 4, we prove their equivalence in Section 5.
The last part of this section again introduces a technical notion: “sorted handlebodies” are the main
ingredients in understanding the relationship between partial and foliated open books. The main theorems
that make foliated open books useful are discussed in Section 6, together with a number of examples. We
prove the existence and uniqueness of the supported contact structures in Section 7. Section 8§ explains the
relationship between foliated open books and partial open books, and we use this to prove the existence
of a supporting foliated open book and a “Giroux Correspondence”.
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2 Foliations and vector fields on surfaces

Although we assume familiarity with many of the standard tools of contact geometry, this section carefully
introduces two classical singular foliations of surfaces in contact geometry: characteristic foliations and
open book foliations.

2.1 Signed foliations

Definition 2.1 An oriented singular foliation on a surface X is an equivalence class of smooth vector
fields X on X, where two vector fields are equivalent if they differ by multiplication by a smooth positive
function. Zeroes of X are the singular points and connected components of integral curves of X are
called leaves. We denote the equivalence class by F = [X].

We will often refer to an oriented singular foliation as simply a foliation. Both the zeroes and leaves
of a foliation are independent of the representative of F. Throughout the paper we will restrict to
singular foliations with isolated singularities that are either centers (C), four-prong saddles or hyperbolic
points (H), or elliptic points (E). See Figure 2.

Oriented singular foliations have two types of elliptic points: sources (E4) and sinks (E_). The leaves
that limit to hyperbolic points are called stable separatrices, while the leaves that limit from hyperbolic
leaves are called unstable separatrices. Very often, we will further require that our foliation has no circle
leaves; in this case the closures of leaves are all unions of compact intervals and the foliation has no
centers. A singular foliation is Morse—Smale if there are no leaves which connect a hyperbolic point
to a hyperbolic point. In addition to the above data, we will often assign signs (a priori, arbitrarily) to
the hyperbolic points. When | H4| = | H—|, we call a Morse—Smale foliation with this extra information
(F, H = HL U H_) a signed foliation. A signed foliation with no circle leaves can be cut along regular
leaves into square files, each of which contains exactly one hyperbolic singularity; see Figure 4.

A signed foliation inherits a family of partial cyclic orders on its hyperbolic points. Specifically, we orient
the boundary of a neighborhood of each positive (resp. negative) elliptic point positively (resp. negatively)
and this cyclically orders the hyperbolic points that have a separatrix terminating at the given elliptic
point. We say that a signed foliation is ordered if there is a cyclic total order on the hyperbolic points that
restricts to each of the partial orders induced by the elliptic points.

Figure 2: Left: hyperbolic point. Center: elliptic point (a source with outwardly oriented leaves).
Right: center.
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Figure 3: In this signed foliation on the sphere, boxes represent hyperbolic points and circles
represent elliptic points.

Example 2.2 The existence of an order does not follow from the other conditions on a signed foliation.
Figure 3 shows the singular leaves of a signed foliation which is not ordered. Indeed, the yellow shaded
negative elliptic point is connected to all but one of the hyperbolic points, giving them a partial cyclic
order. The only hyperbolic point that is not included in this cyclic order is the blue shaded hyperbolic
point. However, the two green shaded positive elliptic points give contradicting information on how this
hyperbolic point should be included in the cyclic order.

For signed foliations with no circle leaves we can define the positive graph G4+ embedded into X as the
closure of the union of stable separatrices of positive hyperbolic points. This is a graph whose vertices
are the positive elliptic points and whose edges are in one-to-one correspondence with H ; each edge
connects the two elliptic points at the ends of the stable separatrices of a single positive hyperbolic point.
See Figure 4. Similarly, one can define the negative graph G__ using unstable separatrices and negative
hyperbolic points. A dividing curve for a signed foliation (F, H = Hy U H_) is a curve which is positively

et e et e~

ht h

e et e~ et

Figure 4: The bold curves show G4 on a tile defined by a positive (left) and negative (right)
hyperbolic point, and the red curve is I'. The separatrices are labeled with «# and s, for unstable
and stable, respectively.
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transverse to the leaves of F and bounds R+ = N(G4+); as usual, N(-) denotes a neighborhood of
the indicated subset. Up to isotopy through curves with this property, we could have defined I" as the
boundary of R_ = N(G__) with the opposite orientation. In fact, up to isotopy through curves positively
transverse to F, I' is the unique curve that is positively transverse to F and separates Hy U £ from
H_ U E_. We say that I" divides the signed foliation (F, H = Hy U H_).

Definition 2.3 Two signed foliations (¥, H = Hy UH_) and (', H' = H} UH ) on X are topologically
conjugate if there is a homeomorphism v of X that takes the leaves of F to the leaves of F’, while
respecting the partition of the hyperbolic points by sign (i.e., ¥ (H+) = H)). Two ordered signed
foliations are strongly topologically conjugate if they are topologically conjugate via a homeomorphism
in the identity mapping class of X that respects the cyclic orders.

Although we have chosen to define a foliation as a vector field, the presence of an area form w on X
offers an equivalent definition as a dual one-form. Specifically, one may define an oriented singular
foliation as the kernel of a one-form 8, where tyw = f. In computations, it is often more convenient to
use one-forms, so we will assume a fixed @ and move freely between these two perspectives.

2.2 Characteristic foliation

Characteristic foliations provide natural examples of signed foliations, and here we recall some results
relevant to our paper. See [12] for further discussion.

Definition 2.4 Let j: ¥ < M be a smooth embedding of a surface X into a contact three-manifold
(M, ), and let o be some contact form satisfying ker o = £. The characteristic foliation F¢(X) = Fg is
the kernel of the pullback j*«|x.

As noted above, F¢ can equivalently be defined by the vector field X satisfying tyw = «|x. Note that
with either definition, F is well defined only up to multiplication by a positive smooth function on X. The
leaves of the characteristic foliation are immersed Legendrian curves on X, but the definition presented
above is stronger than simply identifying the leaves as sets.

At regular points, the leaves of F¢ are tangent to 7, % N &, oriented so that the vectors evaluating
positively under « on 7, X coorient the leaves. The singular points are exactly the points where 7,2 =§&,.
A singular point is positive (resp. negative) if the orientations of 7, ¥ and &, agree (resp. disagree). We
will see below that this sign agrees with the sign already defined for elliptic points, and that characteristic
foliations have no centers. Depending on the sign of a singular point, £d(a|x) = d(a|¢) = da|g; note
that do is nondegenerate, as « is a contact form. This means, again depending on the sign of the singular
point, that +d(«|x) is an area form on X. Thus the isolated singular points of ¢ can only be elliptic or
hyperbolic. The sign of elliptic points is positive for sources and negative for sinks. Moreover, this sign
convention for hyperbolic points automatically makes characteristic foliations signed.
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One may recognize the one-forms that arise as characteristic foliations:

Theorem 2.5 (Giroux [12]) A one-form 8 on a surface X is the restriction of some contact form for
some embedding of ¥ in some contact manifold if and only if +dp is an area form at the singular
points. |

We distinguish an important class of surfaces in a contact manifold: those whose neighborhoods have
I—invariant contact structures. A contact vector field is a vector field X whose flow preserves the contact
structure £, and an embedded surface X is convex if there is a contact vector field transverse to it. Convex
surfaces are naturally equipped with dividing curves I' = {p | X, € §,} and in fact, the existence of
dividing curves for a characteristic foliation detects convexity:

Theorem 2.6 (Giroux [11]) An embedded surface X is convex if and only if there is a curve I" that
divides B = «|y. |

The usual definition of the “dividing curve” of F¢ in contact geometry is at first glance slightly stronger
and begins with a fixed vector field X' which represents F¢. We require that X is positively transverse
to I'; that there exists an area form Q such that I' = {divg X' =0}; and that Ry is {£ divg X > 0}. We
will see in the following that the two notions for dividing are equivalent, but until then we denote the
stronger, divergence-dependent definition by “geometrically divide”, and our original, X}, € &, definition
by “topologically divide”.

In order to translate the definition of geometric dividing curves to the world of one-forms, fix X and
choose B’ = 1xQ, a form which defines the same foliation F¢. Then the characteristic foliation F¢ is
geometrically divided by T if and only if I" = {d’=0} and B’|r orients I". In this case R is defined
by {+dB’ > 0}. The equivalence of the two notions of dividing now follows from the following lemma.

Lemma 2.7 If the characteristic foliation F¢ is topologically divided by I', then it has a representative
one-form B’ such that T’ = {df’=0}.

Proof Though this statement is standard in contact geometry, we recall the proof for later use. Starting
from an arbitrary one-form f defining F¢, we will look for A’ in the form B’ = gf, for some positive
function g. Let A = [—e¢, ¢] X I" be a neighborhood of I" with coordinates («, v), so that F¢ is given by du
and I' = {u=0}.

Choose a Morse function /1 on ¥ whose gradient flow with respect to some metric directs Fg and that

satisfies the following conditions:
o I'=h71(0),
o A=h"1[—¢¢], sothat h = u, and

e Ju orients the level sets of A.
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Such a Morse function exists by [27, Theorem B], and we use it to define g = 4% + 1 — 2¢. Assuming
that & < %, the function g is indeed positive on X, B/(TT) = gB(du) > 0, and

+dp = +dg A B+ gdp.

The second term on the right vanishes away the singular points and is a positive multiple of a volume
form near the singular points. As for the first term, we have dg = 2/ dh. Recall that the gradient vector
field of / directs Fg, so dh A > 0 and the sign of /2 is £ in R4. This proves that =d’ > 0 everywhere
on R, as required. |

Remark 2.8 In the proof above, g = h> +1—2¢ <1—¢ < 1 on A. We will use this in Lemma 4.2.

From now on we will generally not distinguish the two notions of dividing, although this may require us
to change the defining one-form in order to assume that some I" is geometrically dividing. For example,
Lemma 4.2 will require a specific choice of one-form.

One can also give a local model for the contact structure in the neighborhood of X as follows. As above,
let A= N(I") = [—¢, ] x I" with the given coordinates. Then the contact structure on X x /(z) is given
as follows:

Proposition 2.9 (Giroux [11]) Suppose that F¢ is (geometrically) divided by I with respect to the
representative B’. Then there is a function f: X — [—1, 1] such that

—1 _
. /TNED =R
e on A, [ depends only on u and is a monotonically decreasing function of u,
e f710)=T, and
e o= p'+ fdzisacontact formon X x I. O

2.3 Open book foliations

There is another foliation related to contact structures, the open book foliation introduced first in the
context of the angular open book for the standard contact structure in S in [2] and then later generalized
in [26] and [15]. Let X be a surface, this time embedded in a manifold M equipped with an open
book (B, ). After a C*°—isotopy of X, one may assume that X is transverse to B. Define E = BN X
to be the set of elliptic points. After possibly applying a further C *°—isotopy of X, we may assume that
7 =m|g: 2\ E — S!is a circle-valued Morse function with at most one critical point on each level.
For any such surface, the open book foliation is defined in [15] as the level sets of 7. In order to align
this with our use of the word foliation, we will define an equivalence class of vector fields whose integral
curves are the level sets of 7. In this setting, a leaf of the foliation is a connected component of a level set.

Consider the one-form d7 on ¥\ E and recall that an elliptic point e € E has a neighborhood D2 (r, %)

where 7 = +1. Define y = j:\Ilgﬁ(rZ—l) d7 +d7, where \Iliﬁ

for r < ¢e/4, equals 0 for r > ¢/2, and is strictly monotonically decreasing on [¢/4, ¢/2]. Extend y by O on e.

is a smooth bump function that equals 1
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Up to multiplication by a smooth positive function, y does not depend on any of the above choices. The
signs of the elliptic points of F5 come from the signs of the intersections of the oriented binding B
with X, while each hyperbolic point inherits a sign when we compare the orientation of the level sets
of 7 with the orientation of . Thus we recover a signed foliation, but with further structure —including
a cyclic total order on the hyperbolic points — coming from the map 7. We summarize the relationship
between this data in the next definition.

Definition 2.10 An open book foliation on an oriented surface X is an ordered signed foliation
(F =[y], H= H4+ U H_) and a function 7 that satisfy the following conditions:

(1) Letting E denote the set of elliptic singularities of 7, 7: X\ E — S! is a circle-valued Morse
function with only index 1 critical points exactly at H.

(2) There is at most one critical point for each critical value of 7.

3) On X\ N(E),y =dT7.

(4) Near each elliptic point, y = :I:\Iljﬁ (r2—1)d7 + d7 as described above.

(5) The partition of E into E4+ U E_ is induced by the orientation of ¥ and F.

We denote an open book foliation on X by (Fz,7, H = Hy U H_).

If a surface is embedded in a manifold with an open book, then it inherits an open book foliation, but this
definition allows us to define an open book foliation on an abstract surface. This is justified by the following
somewhat vague statement, a more precise version of which is proved as Propositions 4.1 and 4.3.

Theorem 2.11 Suppose that (Fz, 7, H = H1 U H_) is an open book foliation on ¥. Then there exists
a manifold M with open book decomposition (B, ) such that 3 embeds into M and the inherited open
book foliation on X agrees with the original one. Furthermore,  is determined up to diffeomorphism on
a neighborhood of X by the requirement that |y, induces (F5,7, H = H-U H).

Restricting the open book (B, ) to N(X) of X produces an explicit local model for a product neighbor-
hood of ¥; see Corollary 4.6. Whenever a surface is already embedded in a manifold with an open book,
however, we assume that (Fz, 7, H = Hy U H_) is the induced open book foliation.

A relationship between open book and characteristic foliations is proved in [15]:
Proposition 2.12 [15, Theorem 2.21] If X is a surface in (B, 7) with open book foliation Fz with no

circle leaves, then there is a contact structure £ supported by (B, ) such that F3 is strongly topologically
conjugate to F. |

Remark 2.13 The original proof of [15] claims only topological conjugacy, but in fact the stronger
condition follows from their argument. In this case, the order on ¢ may be chosen after the fact to ensure
that it agrees with that of F3.
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Remark 2.14 For an open book foliation, d(d7) = 0 holds everywhere, while for characteristic
foliations Fg, dB # 0 holds at the hyperbolic points. Since we define foliations as one-forms (or
equivalently, as vector fields), this is the strongest compatibility of foliations that one might hope for;
contrast this to Remark 2.22 in [15], where foliations are viewed only as collections of leaves. Taking
the latter point of view, one may ensure that selected leaves of the two foliations coincide away from a
neighborhood of the hyperbolic points, but it remains unclear if this can be extended to all leaves.

2.4 Gradient-like vector fields

When the leaves of a singular foliation arise as the level sets of a function, the gradient vector field
with respect to some metric has the same singular points but is otherwise transverse to the leaves. In
the absence of a designated metric, one may consider gradient-like vector fields, which share many of
the same properties. More formally, a vector field X on a cobordism M is gradient-like for m if X is
positively transverse to the level sets of 7 away from the critical points; X is tangent to the vertical
boundary; and X can be described via the standard Morse model near the critical points. See [9] for
details. The Morse function 7 has such a gradient-like vector field if and only if the critical points of
agree with the critical points of 7 |gps.

For a fixed gradient-like vector field defined on a manifold with boundary, let W*(h) (resp. W (h))
denote the stable (resp. unstable) submanifold of a critical point /. If the critical point / lies on the
boundary, let w? (%) and w* (/) denotes the critical submanifolds of the restriction of the gradient-like
vector field to dM. Equivalently, w*(h) = W¥(h) N dM and w"(h) = W*(h) N oM.

Given an oriented surface X with a circle-free open book foliation (Fz, 7, H = H+ U H_), we define a
special class of gradient-like vector fields for 77 which are characterized by the relationship between their
flowlines and the leaves of F5. These will play an important role in Section 8.3. We begin by setting
some notation and constructing an example, before stating Definition 2.15 at the end of the section.

As noted in Section 2.1, the surface ¥ naturally decomposes into quadrilateral tiles, each of which contains
precisely one hyperbolic point and whose boundary consists of regular leaves connecting elliptic point
corners. Let V7 be a vector field whose flowlines on such a tile are shown in Figure 5. (Since we are
only interested in the qualitative behavior of the flowlines near the critical points, we are free to assume
the required coordinate model.)

More precisely, V7 vanishes exactly at the singular points of F%, is positively transverse to the level
sets of 7, and rotates infinitely many times positively (resp. negatively) near the positive (resp. negative)
elliptic points. By construction, w* (/) and w* (&) connect the same pairs of elliptic points as did the
separatrices of /1 in F5. Away from the elliptic points, the flowlines of V7 are “close” to the level sets
of 7 in the sense described next.
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—~ +

Figure 5: The flow of V7 on a tile.

For “closeness”, we further require that there is a small ¢ > 0 and a small neighborhood N of the elliptic
points such that for any hyperbolic point 4 with 77 (h) = t,

o w¥(h)\ N intersects 7~ !(¢) only for t € [tj, — &, t;];

o w¥(h)\ N intersects 71 (¢) only for t € [t} t; + €].
The hyperbolic points of F% inherit a cyclic order from the codomain of 77, and we can partially recover

this order from the vector field constructed above. (We refer the reader to Figure 6.) To explain this
relationship, we compare Fz—separatrices and Vi —separatrices. Consider the set of hyperbolic points of a

Figure 6: The order of the positive (resp. negative) hyperbolic points connected to a fixed elliptic
point is encoded in the order that their stable (resp. unstable) separatrices first intersect the regular
leaf 771 (0). Each figure shows two tiles which share a regular leaf along the boundary. On the
left, the intervals I+ and /_ on a regular leaf are thickened.

Algebraic € Geometric Topology, Volume 24 (2024)



3152 Joan E Licata and Vera Vértesi

fixed sign with Fz—separatrices to some chosen elliptic point. Then the order in which the Vz—separatrices
from this set hit any regular leaf for the first time agrees with the restriction of the original cyclic order to
this subset of hyperbolic points. In Section 8, we will require exactly this property from the gradient-like
vector field for 7.

Definition 2.15 A gradient-like vector field V7 for Fz is preferred if the following properties hold:

e For each regular time ¢ and for each component I of 7~ !(¢) with 0] = {ey,e_}, there exist
disjoint subintervals /4 and /_ such that /4 contains e4 U | J,(w*(h) N 1) and I_ contains
e—UlJy(w"(h)NI).

¢ For positive hyperbolic singularities /1, i, with critical values 0 < 7w (h1) < 7 (hy) < 1, the first
intersection of w’(/,) with 14 is closer to e, than the first intersection of w* (A1) with 1.

e For negative hyperbolic singularities /11, h, with 0 < 7 (h1) < 7 (h;) < 1, the first intersection of
w(h,) with I_ lies closer to e than the first intersection of w*(4) with 7_.

Definition 2.15 lists properties satisfied by the vector field Vi constructed above, proving the next lemma.
Lemma 2.16 Any open book foliation admits a preferred gradient-like vector field. |

In Section 8 we will consider the question of when a preferred Vi defined on M may be extended
“nicely” to the interior of M.

3 Foliated open books

In Section 3.1 we introduce the central object of the paper, embedded foliated open books. We provide
some examples of embedded foliated open books and define the compatibility between these and contact
structures. At the end of the section, we introduce two variations: abstract open books and Morse foliated
open books. These offer increased flexibility and perspective, and the rather technical proofs relating these
notions are deferred until Section 5. Suppose throughout that M is a smooth oriented three-manifold
with boundary.

3.1 Embedded foliated open books

The key object of this paper — a foliated open book —is motivated in part by trying to understand the
result of cutting an open book (B, i) along an embedded surface that admits an open book foliation with
no circle leaves.

Definition 3.1 An embedded foliated open book is a pair (Be, m.), where B, is an oriented properly
embedded one-manifold in M and the function 7,: M \ B, — S! is a regular function such that the
following hold:

(1) The restriction 7, = .|z is an S'—valued Morse function.
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(2) The closure S; of each level set m, 1(¢) is a cornered surface with boundary B, U T, 1(¢) and
corners E = B, N7, (1).

(3) 7. has a unique critical point for each critical value.

(4) The level sets of 7, have no circle components.
Remark 3.2 From item (4) it follows that the critical points of 7, can only be of index 1.

Remark 3.3 If we would like to allow an open book to be cut along a nonseparating surface, then we
replace (3) with the less restrictive condition that the restrictions of 7, to individual components of dM
have a unique critical point for each critical value. All the statements of the paper are true for this extra
restriction, but it makes notation more complicated.

Example 3.4 Suppose X is a surface embedded in a closed manifold M with an open book (B, ), and
suppose that the open book foliation F% has no circle leaves. Then the restriction of 7 to each component
of the closure of M \ X is an embedded foliated open book.

Example 3.5 More generally, one may consider a surface ¥ with boundary X = T transverse to the
pages of (B, ). In this case the open book foliation Fz on X points transversally out of or into T,
depending on whether component of 7" in question is positively or negatively transverse to the pages.
After cutting along such a X, the boundary of M \ X is the double of X and the foliation is the union
along T of F5 with its negatively oriented copy.

After cutting along an embedded X, the new components of the boundary retain open book foliations in
the sense of Definition 2.10. In this case, the signs of the hyperbolic points are induced by their signs as
singularities of the embedded X, but the same reasoning assigns signs to hyperbolic singularities on the
boundary of any embedded foliated open book.

Choose a gradient-like vector field V. for m.; this is the only point in this paper where we consider
gradient-like vector fields which can be transverse to the boundary. Let H denote the set of hyperbolic
singularities of 77, where V. points out of M, let H_ be the set of hyperbolic singularities of 7, where
Vi points into M, and let E4 U—FE_ = B, N dM. We assume these signs in the next statement; the
proof follows immediately from the definitions just introduced.

Proposition 3.6 Suppose that B, is a properly embedded one-manifold in M and wo: M \ B, — S'is a
regular function. Then (Be, 7¢) is an embedded foliated open book if and only if (Fz,, e, H=H{UH_)
is an open book foliation on M with no circle leaves. |

Interestingly, even item (2) in Definition 3.1 is forced on 7, by the conditions on F%, near the elliptic
points.
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In some settings, we will not want to distinguish circle-valued functions that are just reparametrizations
of each other, so we introduce an equivalence relation that makes sense in the context of surfaces with
open book foliations as well as open books of various sorts.

Definition 3.7 Two (embedded foliated) open books (B, ) and (B’, ') are reparametrizations if there
exist neighborhoods N (B) and N (B’) and a diffeomorphism p: S' — S such that

(1) for each component B; of B or B, the designated neighborhood intersects each page in a subsurface
homeomorphic to B; x I, and

(2) on the complement of the designated neighborhoods, 7’ = po .
p g g 4

Two open book foliations are reparametrizations if there exist neighborhoods N(E) and N(E’) and a
diffeomorphism p: S! — S such that on the complement of the neighborhoods of the elliptic points,
7' =pom.

This notion of equivalence is a reasonable one to consider for several reasons. Readers familiar with
abstract open books will recognize it as an unavoidable indeterminacy in a manifold constructed from
the abstract data (S, /), although it is often not stated explicitly. It will be useful to have the flexibility
to reparametrize open books when we state gluing theorems in Section 6.2, and in some cases we are
concerned only with the combinatorics of the ordered signed foliation on a surface, rather than the full
data of an open book foliation.

From now on we will refer to embedded foliated open books by the triple (B,, ., F5,) to emphasize
the open book foliation on the boundary. Unless otherwise specified, we will consider 7, and F5, up to
reparametrization.

Given a manifold M whose boundary has an open book foliation (F5, 7, H = H- U Hy), we say that
an embedded foliated open book (Be, me, F7,) for M is compatible with the pair (M, Fz) if Fz, = F5.
In general we call an oriented three-manifold M together with an open book foliation on dM that is
defined up to reparametrization a three-manifold with foliated boundary. To simplify the notation, we
will denote this by (M, F5), rather than the more precise (M, Fi).

Two three-manifolds with foliated boundary (M, F5) and (M’, F5/) are diffeomorphic if there is a
diffeomorphism v : M — M’ that restricts on the boundary to a diffeomorphism of the open book
foliations F to F5/. If M = M’ and v is an isotopy, we say that (M, Fz) and (M, F5/) are isotopic
three-manifolds with foliated boundaries.

Two embedded foliated open books (Be, 7¢, Fz,) for (M, Fz,) and (B, 7}, ]-"7’?6) for (M’, Fz;) are
diffeomorphic if there is a diffeomorphism v : (M, Fz,) — (M, F5,) that takes B to B, and 7,0 = 7.
If M = M’ and v is isotopic to the identity, then we say that the embedded foliated open books
(Be, e, Fz,) and (B, ), ]—'7/76) are isotopic to each other.

Examples of foliated open books are given in Section 6.3 and in Corollary 4.6. The interested reader is
advised to review these now for better intuition.
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3.2 Compatible contact structures
Foliated open books, like their partial and closed cousins, are intended as a tool to study contact manifolds.

Definition 3.8 Given a contact manifold (M, §) with boundary, let F¢ denote the characteristic foliation
on dM. The embedded foliated open book (B, me, Fz,) strictly supports the contact structure & = ker o if

(1) da is a positive area form on the interior of each page S (=1 1),
(2) a>0onTB, and

(3) between each pair of consecutive singular values there exists a regular value #; such that 7~1(#;) is
Legendrian away from an arbitrarily small neighborhood of each hyperbolic point.

Remark 3.9 By Lemma 2.7, I" (geometrically) divides the characteristic foliation. Thus dM is automat-
ically convex.

When a contact structure is strictly supported by an open book, the hyperbolic points of the characteristic
foliation inherit a cyclic order from .. However, the combinatorics of the original characteristic foliation
may not completely determined this cyclic order. In order to define a more flexible notion of supported
contact structures, we order the hyperbolic points of F¢ on dM as in Section 2.1.

Definition 3.10 Fix a contact manifold (M, &) with ordered characteristic foliation F¢ on dM. The
embedded foliated open book (B, 7e, Fz,) supports the contact structure £ if there exists a strictly
supported contact structure £ such that £ is isotopic to & through a path of contact structures whose
characteristic foliations are strongly topologically conjugate to Fz,.

In Section 7.2 we will prove the following:
Theorem 3.11 Any embedded foliated open book supports a unique contact structure.
We prove the converse in Section 8.5:

Theorem 3.12 Let (M, &, F¢) be a contact manifold such that F¢ is strongly topologically conjugate to an
open book foliation F5 with no circle leaves. Then there is a foliated open book (B, wt, ) supporting &.
In particular, 0B = Ex U—E_andw: M \ B — S! is an extension of 7.

The following example shows that the circle-free condition is essential for the claim that a supported
contact structure always exists.

Example 3.13 Suppose that S is a component of a page of a foliated open book which is topologically a
disc, so that 0.5 is a circle component of a leaf of the open book foliation on the boundary. Since F¢ and
F% on 0M are strongly topologically conjugate by definition, we may isotope S so that the characteristic
foliation has a circle C bounding a disc. By construction, this circle is Legendrian.
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Since C comes in an interval of Legendrian circles in F3, its linking number with a Legendrian push-
off — and hence, its Thurston—Bennequin number —equals 0. On the other hand, we will show in
Proposition 7.3 that the restriction of any supported contact structure to a handlebody associated to a
sequence of consecutive pages is tight, which contradicts the existence of the overtwisted disc .S.

3.3 Abstract foliated open books

The discretized version of an embedded foliated open book is an abstract foliated open book. This is a
combinatorial object, and it specifies a manifold with foliated boundary only up to diffeomorphism. Here
we present an independent definition for abstract foliated open books, one which will be unsurprising for
readers familiar with other types of open books. We defer an explanation of the equivalence between
abstract and embedded foliated open books to Section 5, after we have introduced an intermediate object,
called Morse foliated open books, in Section 3.4.

Definition 3.14 An abstract foliated open book is a tuple ({S;
boundary1 d0S; = B Uq; and corners at £ = B N«; such that

_l,h) where S; is a surface with
(1) for all i, «; is a union of intervals, and
(2) the surface S; is obtained from S;_; by either

e (add) attaching a one-handle along two points {p;_1,¢i—1} € &j—1, Or

¢ (cut) cutting S;_; along a properly embedded arc y;_; with endpoints in «;—; and then

smoothing; see Figure 7.

Furthermore, /: S,; — Sy is a diffeomorphism between cornered surfaces that preserves B pointwise.

Note that the operations add and cut are opposites of each other: if S ad, 57 along p and ¢, then
NN along the cocore of the new one-handle, and vice versa. When we would like to specifically
identify the attaching sphere or arc, we will record it under the arrow, as below.

Definition 3.15 Two abstract foliated open books ({S; }l *o- 1) and ({S] }IZk/O, h') are diffeomorphic to
each other if kK = k’ and there is a sequence of cornered diffeomorphisms {; : S; — S/ 1k i—1 all of which
agree on B, satisfy y;(B) = B’, and are compatible with the handle attachments and cutting:

e ifS;_; %) S;, then S;_, %) S/, where y/_| = ¥i_1(yi—1) and ¥; is the restriction of ¥;_;

tOSiCSi 1s
dd add
o if a—) hen S/ her restr n n
Sict grgy Si> then S;_y 7———————= S, where y; restricts as ¥;—; on S;—; and

maps the attached handles to each other, and
o W= Woohowz_kl-

Next, we define an operation that allows us to freely choose which page is indexed as Sy. This is more
than merely notation, as our definition requires the monodromy to be a homeomorphism of this page.

By a slight abuse of notation we denote the “constant” part of the boundary of S; by B for all ;.
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Figure 7: The cutting and adding operations on successive pages are inverses of each other.

Definition 3.16 The shift of an abstract open book ({S; }l 0: 1) is

S A1) = ({51, 82, ... Sok. ST3 ),
where

e if Sy % S, then S7 is defined by the relation S, —> S| and /" is the restriction of /1 to S7;

Yo
e if Sy 1%30) Sy, then S| is defined by the relation Sy * S{ and /' is h extended by

) ! B~ (po).h ™" (90)
the identity on the added one-handle.

An r—fold iteration of the shift operation is called an r—shift, and denoted by ({S; [r]}IZkO, h[r]). One can

analogously define r—shifts for » < 0.

As we will see, the above two moves preserve the diffeomorphism type of the defined three-manifolds
with foliated boundary. Two abstract foliated open books are conjugates of each other if they are related
by a finite sequence of diffeomorphisms and shifts.

3.4 Morse foliated open books

To conclude this section, we introduce a final type of foliated open book. Morse foliated open books form
a bridge between embedded foliated open books and abstract foliated open books. Their utility arises
from the fact that— in contrast to embedded foliated open books — the S '—valued function defining the
pages of M has the same critical points as its restriction to dM. Thus the boundary critical points have
stable and unstable manifolds embedded as submanifolds of M. A Morse foliated open book may be
obtained from an embedded foliated open book by slightly modifying 7, near the boundary, a procedure
described in detail in Section 5.1. The pages of embedded foliated open books and Morse foliated open
books are essentially the same, and we will not distinguish between them once we have clarified their
relationship.

Definition 3.17 A Morse foliated open book for M is a pair (B, 7m), where By, is an oriented properly
embedded one-manifold in M and the function 7,: M \ By, —> S I'is an S'-valued Morse function
such that

(1) the level sets of 7, = 7, |9a¢ have no circle components,

(2) the closure S; of each level set 7,,,! (¢) is an embedded cornered surface with boundary B, U7, (¢)
and corners £ = B, N 77,;1 (1),

(3) all the critical points of 7, are on dM,
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(4) 7, is Morse function with the same critical points as 7,,, and

(5) the restriction of 7, to each component of dM has a unique critical point for each critical value.

Remark 3.18 It follows from condition (1) that the critical points of 77,, have index 1. Condition (4)
implies that the critical points of 7, have index 1 or 2 and that 7, has a gradient-like vector field Vi,
that is tangent to dM. All gradient-like vector fields for 7, will automatically be assumed to have this
property.

As in the case of an embedded foliated open book, the boundary of a Morse foliated open book naturally
inherits an open book foliation F% . In this case, 0B, = E4 U—E_, and H is the set of index 2
critical points of m,,, while H_ is the set of index 1 critical points of 7.

Just as for embedded open books we can define diffeomorphism and isotopy of Morse foliated open books.
Morse foliated open books and embedded foliated books are distinguished only in a neighborhood of the
singular points of the open book foliation on the boundary of the manifold, so the definitions of supported
contact structures and stabilization can be extended verbatim to Morse foliated open books.

4 Local models

This is a technical section that may be skipped at first reading. As a start, we provide a neighborhood
theorem for open book foliations on surfaces in Section 4.1, and we construct an explicit model for this
neighborhood in Section 4.2. Taken as a whole, this section lays the groundwork for moving between
embedded, Morse, and abstract foliated open books. Such freedom will be extensively employed in the
rest of the paper, and the reader may wish to survey the results in Section 5, which describe the precise
notions of equivalence between the various types of foliated open books.

4.1 Neighborhood theorem

The key theorem extends the usual neighborhood theorems for characteristic foliations to open book
foliations.

Proposition 4.1 (neighborhood theorem) Let (B, ) and (B’, ") be open books for the three-manifolds
M and M, respectively. Let ¥ < M and X' < M’ be embedded surfaces with induced open book
foliations (Fz, 7, H= Hy U H_) and (F%, 7', H' = H', U H_). Suppose that there is a diffeomorphism
Y X — X that takes the two open book foliations to each other; i.e., Y (E) = E', 7’ oy = 7, and
V(Hy) = H . Then there are neighborhoods N = N(X) and N’ = N(X') and an extension of { to
W: N — N’ such that

() w(B)="8,

2) 7oV =,

(3) W(BNN)= B'NN'and ¥ maps the trivialization of N(B) N N = (B N N) x D? in which
7 =¥ to the trivialization of N(B') N N’ = (B’ N N') x D? in which n’ = 9.
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Proof Let us first describe local models around the points of ¥ C M. For each point p € 3 we will give
a neighborhood DIE x I in M with coordinates adapted to (B, 7). These coordinates are chosen by a
repeated use of the implicit function theorem, and both the neighborhood DJ% and the interval I might
shrink as we make our additional choices.

In the neighborhood of a regular point p of the foliation F5 we can choose local coordinates (u, v, z) on M
so that v =7 — 7 (p), ¥ = {z=0} with orientation (du, dv) and coorientation dz, and the foliation F is
directed by du. We call such a coordinate system in a neighborhood that only contains regular points
of F5 an adapted coordinate system. The set of adapted coordinates in a given neighborhood U is convex.

Around an elliptic point e € E+ of F5, we know that B h ¥ at e € E, and N(B) = B(p) x D?(r, ).
In these coordinates, ¢ = (¢, 0, 0), and in a sufficiently small neighborhood we can write ¥ N N(B)
as the graph of a function f: {go} x D> — R that fixes {¢o} x {0}. Since X is transverse to B we have
df # dg at the origin of {pg} x D?, so the implicit function theorem allows us to choose coordinates
(z= f —¢, r, ). In these coordinates X = {z = 0}, B is oriented by dz, ¥ is cooriented by +0dz, and
T =79.

In a neighborhood of a hyperbolic point h € Hy, the function 7 = 7|y is Morse with an index 1 critical
point /2. By the Morse lemma and since the differential of 7 in the /—direction is nonzero, we can apply the
implicit function theorem and choose coordinates (x, y, z) so that ¥ = {z=0} and 7 — 7 (h) = z— y? + x2.
The surface X is cooriented by +0z and F5 is directed by y dx + x dy.

As a next step we consider the intersections of these coordinate systems. First, choosing sufficiently small
neighborhoods ensures that the neighborhoods of elliptic and hyperbolic points described above are all
disjoint.

If g is a regular point in the neighborhood of another regular point p with a coordinate system (u, v, z) as
above, then we can write ¢ = (1¢, vg, 0) and construct a new adapted coordinate system

(M/, U/,Z/) = (T/l —Up,V— UO7Z)'

Let p = (0, rg, ¥9) # (0,0, 0) be a regular point on X in the neighborhood of e € E1. Then w(p) =
and the coordinates
W' V', 2) = (£(r —r0), ¥ — o, £2)

give an adapted coordinate system around p.

Similarly, let p = (xg, y9,0) # (0,0, 0) be a point on X in the neighborhood of & € Hy. Then
W' V. 2) = (xy = xopo. (2= y2 +x2) = (—y2 + x3). £2)

gives an adapted coordinate system in a neighborhood of p.

Finally, using these local models for 73 and ]:7,7 we can define local maps that take the corresponding
coordinate systems to each other. Then we can use a partition of unity to construct a global map
W: N — N’ from the local ones. Near the elliptic points, the map brings the coordinate systems for the
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elliptic points to each other, so v satisfies conclusion (3). Conclusion (1) is automatically satisfied by
the construction. As for conclusion (2), we need to check that 7’ o W = 7. This is certainly true for
the local maps and for the construction of ¥ used their convex combinations. In the above change of
coordinate systems, the value of & was implicit in the system, so we can assume that we only need to
take the convex combination of adapted coordinate systems in the neighborhood of regular points. These
form a convex set, thus the value of 7’ o W is unchanged while taking their convex combination. O

In order to give an explicit model for the open book in N(X), the next subsection constructs a simple
open book for a ¥-bundle over a circle with a prescribed open book foliation on ¥ x {0}.

4.2 Prescribing open book foliations on surfaces

In this section we will show that every circle-free open book foliation (Fz,7, H = H+ U H_) on a
surface X is in fact induced by an embedding of X into an open book.

As (Fz,7, H= Hy U H_) is circle-free, we can construct a dividing curve I" and see that 7|p: ' — S'!
k

is a covering of degree n, where n = |E1| = |E_|. Let {I';};_, be the set of connected components of I
and let n; be the degree of 77 |r,. Note that n = Z;{:l n;. Then, just as in Section 2.2, we can choose local
coordinates (u,v) on A; = N(I';) so that T = n;v, I' = {u = 0}, and du directs the level sets 71 (¢).
Define A = UA; = N(I') and R’jE = R4 \ A. Next we construct a characteristic foliation on X that is

also divided by T'.

Lemma 4.2 (approximating F5 by F¢) LetI'(Fz) be the dividing curve and R (F3) the corresponding
positive and negative regions of the open book foliation (F5, 7, H = Hy U H_). Then there is a one-form
B that agrees with d 7 away from a small neighborhood of the singular points and +df > 0on EL U Hy.
The foliation F¢ defined by B is a characteristic foliation, it has the same singular points as d 7, and away
from a neighborhood of H, it has the same leaves.

Moreover, we can choose a representative 8’ = gf8 so that I' = {dp’ = 0} and R+ = {*df’ > 0}, where
g is a positive function and g < 1 on A.

Proof For the first statement we start with the one-form y as in Section 2.3 and modify it in the
neighborhood of the hyperbolic points of F5. Recall that an elliptic point ¢ € E 4 has a neighborhood
D§/4(r, ) where y = 4r2 d?. Thus at e we have +=df = 2r dr A d?¥, which is a positive multiple of a
volume form.

In a neighborhood of a hyperbolic point 4 € H., we can chose local coordinates so that 7 = x2 — y2.

Thus y =d7 =2xdx —2ydy and d*7 =0. Let B =d7 :I:\Ilg/zxdy. Then, as d‘llg/z =0atr =0,

at 1 we have that £df = dx A dy, a positive multiple of the volume form.
Extend the one-form on X\ N (H) as d7 to obtain a one-form 8 satisfying the conditions of the first claim.
Without the assumption g < 1 on A, the second statement is standard in contact geometry; the stronger

statement is Remark 2.8 after the proof of Lemma 2.7. O
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We use the function f from Proposition 2.9 and the one-form 8’ = gf from Lemma 4.2 to construct
both a contact structure and an open book for a X—bundle over S!. Consider the product ¥ x R with
the contact structure defined as the kernel of the one-form o’ = B’ + fdz. Let B’ = E x R, where the
orientation of {e¢} x R is given by +0z for ¢ € E. Consider the function

7 =%+ fz:TxR—>S!,

where adding f(p)z(p) € R to 7 (p) € S! (for p € ) indicates translation by the image of f(p)z(p)
in the quotient S! = R/Z.

We would like to glue X x {0} to X x {/} for some / € N to get an open book and a contact structure for a
T-bundle over S'. As f'=+1on R/, wehave n’(x,0)=7n’(x,/) on R/,. On 4; = N(I';) =T x[—¢, €],
with coordinates (u,v) chosen as in Lemma 4.2, we have 7/(u,v,l) — n’(u,v,0) = If(u,v), where
f(u, v) is independent of v and monotonically decreases from 1 to —1 in u. This means that each level set
of 7’| sy restricted to A; consists of n; parallel curves connecting the points (—¢, v) with (¢, v+2//n;).
When 2/ is divisible by 7;, the endpoints of each component therefore have the same v coordinate, as
v parametrizes S! = R/Z. And in fact, the curve intersects an arbitrary {v = ¢} segment positively
2l /n; € Z times.

Set / = lem{n ,-}f.‘zl and define a diffeomorphism

V= ﬁ pilim,

i=1
where Dr; is the right-handed Dehn twist along I';. Let My, (X) = X x[0,/]/(¥(x),0) ~ (x, ) be the
mapping torus of . Then 7/(x,0) = 7’ (¥ (x),/) on S' and 7’ descends as 7 to My, () \ B, where
B=B/~.
Notice, too, that since f depends only on u and the Dehn twists were along the v—direction in the A;, the
one-form &’ descends to My, as a one-form «, giving a contact structure £ on My,.

Proposition 4.3 (open book for (My,,£)) Via the construction above, any F5 determines an open book
decomposition (B, i) for M.,. Moreover, (B, i) supports the contact structure § = ker a.

Before proving the above proposition, we reformulate what it means for an open book decomposition to
support a contact form.

Lemma 4.4 Let B be a (positively) transverse knot in (M, § = ker &) and suppose that the fibers of the
map w: M \ B — S! are Seifert surfaces for B. Then the pair (B, i) is an open book supporting the
contact form « if and only if dmw A da > 0. m|

The proof is straightforward and is left to the reader.
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2 Y i v

u S u

Figure 8: Local models for the open book of Lemma 4.4. The blue surfaces are pages of (B, ),
while the red surfaces are fibers X x {¢}. The model near a hyperbolic point, which is not shown,
is a blue hyperboloid intersecting a horizontal red plane.

Proof of Proposition 4.3 In a neighborhood of B the function 7 restricts as £( + z), so we see that
77 1(¢) indeed enters N (B) as a Seifert surface. If we evaluate @ on TB = +09z we get o(+9z) =1 > 0,
as needed.

For the second step, by Lemma 4.4 it is sufficient to show that dw A da > 0 on My, \ B. Since « is a
contact form, o A da > 0, yielding

(B + fdz)A(dB +df ndz) =dz A (B Adf + fdB’) > 0.
This in turn is equivalent to the condition that wg = B’ Adf + fdpB’ is an area form on X.
We compute dr A do:
d7+zdf + fdz)n(dB' +df ndz) =dzA(dT ANdf + fdB).

Thus we require that ’ = d7 Adf + fdp’ is an area form on X. To check this, we compare the given
form to the area form wq given by the contact condition and substitute B’ = gf:

o' = wo+ (d7T —gB) Adf.
In the following we will prove that (d7 — gf) A df > 0, which implies that o’ > 0.
On R/_ the differential df is 0, thus " = wy, so it is indeed an area form.
On A, we have 8 = d7, so we have
(d7 —gB)Ndf =(1—g)dm ndf.

Recall that on 4, f depends only on u and is decreasing, while 7 depends only on v and is increasing.
Thus d7 A df is an area form, and as g < 1 on A4, sois (1 — g) d7w A df, as desired. O

The pages of (B, i) are /[—fold covers of X\ E via the map from 7~ !(¢) — X\ E defined by (x, z) > x.

Example 4.5 Cutting the above construction at ¥ x {0} gives a contact three-manifold (X x [0, /], ),
with a compatible embedded foliated open book that is the restriction of (B, ). We illustrate this in
specific case where F% on the torus is as given in Figure 1. In the resulting foliated open book, each page
is a copy of the original surface, but cut open along a different leaf of F%; representative pages are shown
in Figure 9.
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Figure 9: Representative pages in the foliated open book constructed by applying Example 4.5 to
the foliation of the torus given by Figure 1.

In order to see why Figure 9 shows the correct pages, Figure 10 indicates how a given leaf embeds in
¥ x [0, 1]. Note that away from 4 = N(I"), each leaf is covered exactly once. This builds up surfaces
homeomorphic to R as ¢ varies, and these are joined across 4 by vertically twisting bands.

Corollary 4.6 (local model) Suppose that ¥ is an embedded surface in a three-manifold M with an
open book (B, ) that induces an open book foliation (Fz, 7, H = H_U H4) on X with no circle leaves.
Then X has a neighborhood N(X) =~ ¥ x [-n,n] so that 1 = 7 + fz, where f is the function from
Proposition 2.9 that is =1 on R/, and monotonically increasing inu on A = N(I).

Remark 4.7 This local model for X x[—n, n] is itself a foliated open book which appears as a submanifold
of an open book containing the surface ¥ with the induced open book foliation.

Notice that the induced open book foliations on the nearby surfaces X x {z} are strongly topologically
conjugate to F5. One can also understand the restrictions of each page 7! (¢) to N(X); the pages are
homeomorphic to the surfaces 7~ ![t —n, ¢ +n]N R’ and — (@t —n.t +n]N R") glued together with
a twisted band. If the interval [t — 7, 4+ 1] contains only regular values of 7, then 71 () N N(X) is
just a union of |E 4| = |E_| strips; each strip is a rectangle in N(X) with a pair of its opposite sides
embedded into X x {—n} and X x {n}. If [t —n, ¢ + n] contains a singular value, then one component of

+ - ++ — ++ - ++ - ++ - +
= -

- +
— e —>\—‘/\< —> = Z
-y B4 -
- +

+ - ++ ++ - ++ -
Figure 10: The red curves indicate how the page (7")~!(0) intersects selected surfaces ¥ x {t}
when Proposition 4.3 is applied to the foliated torus from Figure 1. On each surface X x {¢}, the

blue region is R4 and the white region is R_. The r—values shown lie in [O, %]

Algebraic € Geometric Topology, Volume 24 (2024)



3164 Joan E Licata and Vera Vértesi

a7 1(t) N N(X) is a “cross”, embedded as a saddle surface. The intersection 7z~ ! () N N(X) is singular

when ¢ £ 7 is a singular value.

4.3 Expansion

In order to understand the relationship between Morse and embedded open books, we will modify our
local model by introducing canceling pairs of critical points. Let 3 be an orientable surface embedded
in a three-manifold M whose open book structure induces an open book foliation F5 on X. The above
corollary provides a local model for a neighborhood X x [—n, n] C M, which we take as the starting point
for the next result.

Proposition 4.8 (expansion) Let (B, 7e) be the embedded foliated open book for ¥ x [—n,n] C M
described in Corollary 4.6. Then there is an S '—valued Morse function r’: £ x[-n, 7]\ B — S so that
the following hold:
(1) 7’ is C%—close to r and agrees with 7 outside ¥ x [—e¢, €], for some sufficiently small & < 1.
(2) For any hyperbolic point h € Hy of Fz, the function nt’ has a pair of canceling critical points
p}jf =hx{te}e Xy =% x{te}.
(3) The index ofp;l*L € X4 is 2 if the signs of h and X1 agree, and 1 otherwise.
(4) 7’ has no other critical points.
(5) Each function 7' |x 4 Is Morse, and the union of their critical points is the set of critical points of .
(6) 7’ defines an open book foliation (.7-";':,, 7'ls, . H x{*e} = Hy x{xe} U H_ x{£e}) on T4 that
is strongly topologically conjugate to F5. O

Condition (5) implies that there is a gradient-like vector field for 7/ that is tangent to both X4 and X_.

Proof Let z’ be the interval coordinate and u and v the surface coordinates in the local model for
3 X [-n, n] as in Corollary 4.6. For sufficiently small z’, the surfaces X x {z’} have induced open book
foliations that are strongly topologically conjugate to F5. We will modify 7 near the singular points of
F%. For simplicity, we give the explicit computation only for # € H, but the modification near negative
hyperbolic points is similar.

First, reparametrize the I coordinate by z, where z/ = z3 4 pz for some p > 0. Note that z € [-¢, {],
where (3 4+ p¢ = 1. Now define a path of functions 7y that agrees with 7 outside of a three-ball
neighborhood B3 (/) of each hyperbolic point 4 € H and that is defined on B.(h) as

g = (1 =W (M) + V¢ ), (r)(7 +z22—s2)=F+22 +z(p—(s + )Y, (1)

As before, W? /2 is a smooth bump function equal to 1 for r < /2 and 0 for r > &, where r? = u? +v* +z2
is the three-dimensional distance from / in B2. Clearly 7_, = 7, and we will show that

e g is a regular function for s < 0;

e 1y is non-Morse only for s = 0, with an embryonic critical point at each hyperbolic point of F;
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e for s > 0, s is Morse with two canceling critical points of index 1 and 2 associated to each
hyperbolic point /& of F5.

In order to prove the preceding claim, in the following we determine the critical points of m for a fixed s.
Away from D3 (h), the function 7y = 7 and thus it is regular, while its differential on D2 (h) is

dﬂs—dﬂ+(32 +p— (s—i—,o)\Ds/z) z(s—i—,o)af\llg/2

For r > ¢ the ¥—component of d 7y equals d7 # 0, and thus d g # 0. In the thickened sphere defined
by F ={e/2 <r < &}, observe that the coefficients of du and dv in d7 are 2u and —2v, respectively;
thus their proportion is u : —v. However, in z(s + p) d ¥ /2 dr the proportion of the coefficients of du
and dv is u : v. If in their sum both coefficients are 0, we must have # = v = 0. Thus the possible critical
points of 7 in F are all of the form (0, 0, z) with £/2 < z < ¢. At these points, the dz coordinate of the
equation d g = 0 simplifies to

3224 p— (s + p) W), —z(s + p)dE ), = 0.

On F we have 322 > ¢2 /4, while |p— (s + ,0)\118/2| can be bounded above by £2/8 if we choose both s
and p small. As for the third term,

—z(s + ,O)d\Ifg/2 < 2s(s +p)K,

where K = maxg/4<,<¢/21—d WV} y ,} > 0. Thus if we choose |5 + p| sufficiently small we can ensure that
this third term is less than &2 /8, and it follows that d g is nonzero on F.

For r < ¢/2 we have dmy = d7 + (3z%> — s)dz. Thus for \/s/_3 < g/2, there are critical points at
z=44/5/3.

In summary, for sufficiently small p, |s| > 0, the function 7y is Morse. It is regular whenever s < 0, it has
an embryonic critical point at the hyperbolic points /, and it has a pair of canceling index 1 and 2 critical
points for each hyperbolic point /2 on the surfaces ¥ x {4 \/s/_3}

In the following we will examine the singularities and the leaves of the foliation induced by gy on

3 z9)

3 x {z}. Notice that if we restrict s to X X {z}, then we get a function 7 + C (for C = z
in B3
of 75| £x{z} on B3 o/2 UX\ Bg’ . From the previous computation we see that 7TS|EX{Z} has no critical points
in F = {g/2 <r <e&}. The fibers of 4(¢) on F N X connect the level sets 7! (a) on D> o/4 O the fibers
of 7(a—(p+s)z) of T\ |, D§ /2 This means that if we choose both |z| and |p + 5| sufficiently small,

the foliation induced by 75 |5} Will be strongly topologically conjugate to .

Now fix s >0, p > 0 sufficiently small so that the results above hold. Set 7’ = 7y and X4+ = Z x{+£/s/3}.
The computation above shows that the restriction of 7’ to X is Morse, since the original F5 was an

o/2 and 7 + C’ (for C’ = z3 + pz) outside B3 /2> thus the level sets of 7 agree with the level sets

open book foliation. Since the level sets of 7’|, are strongly topologically conjugate to F%, there are
no other critical points of 7'|x - as required for item (5). O

Corollary 4.9 The function 7’ from Proposition 4.8 induces a Morse foliated open book on each
component of M cut along ¥ 4. O
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4.4 Local models for Morse foliated open books

The techniques above may be adapted to the case of Morse foliated open books. We carefully state the
result we will rely on in the next section, but leave the analogous proof to the reader.

Given three-manifolds M and M’ with properly embedded one-manifolds B and B’, respectively, suppose
that 7: M \ B — S' and n/: M’ \ B’ — S! are circle-valued Morse functions. Let ¥ < M and
Y/ <> M’ be embedded surfaces with induced open book foliations (Fz,7, H = H4+ U H_) and
(F%, 7', H = H, U H.) with no circle leaves; we require further that 7 and 7" have gradient-like vector
fields tangent to the surfaces ¥ and X’ and thus any hyperbolic points of these open book foliations
coincide with critical points of the corresponding Morse functions on the ambient manifold. Note that we
allow X to embed into M or M’ as the boundary.

Proposition 4.10 (Morse neighborhood theorem) If there is a diffeomorphism ¥ : ¥ — ¥ that takes
the two open book foliations to each other, then there are one-sided neighborhoods N+ = N4 (X) and
N = N+(X') and an extension of Y to W1 : N+ — N such that

() ¥+(B) =5,

2) m=n"0V,
(3) Wi(BNNi)= B'N N, and the trivialization of N(B) N N+ = (BN Nx) x D? in which w =9
maps to the trivialization of N(B') N N = (B' N N) x D* in which ' = ¥. O

We consider one-sided neighborhoods for two reasons. First, if the surfaces containing the critical points
lie in the interior of M, we will in practice always cut along them; we thus require the local models only
after cutting. Second, if we restrict to one-sided neighborhoods, then proof of Proposition 4.1 may be
modified to prove Proposition 4.10 simply by selectively replacing z by +z2 when constructing adapted
coordinate systems near hyperbolic points.

5 Equivalence of foliated open books

In this section, we use the local models constructed in Section 4 to relate embedded, abstract, and Morse
foliated open books. After this section, we will move freely between these different notions of foliated
open books and use whichever is most convenient.

5.1 From embedded to Morse and back

Away from a neighborhood of the boundary, embedded foliated open books and Morse foliated open
books are indistinguishable. In this section, we apply results from the previous section to show how to
transform one type to the other.
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Starting first with an embedded foliated open book & = (Be, me, F7,), identify M with X x {0} in
3 X [—n, 0], half of the standard neighborhood constructed in Proposition 4.1. Define the Morse foliated
open book M(€) = (B, n’, Fz/) on M \ T x [—¢, 0] to be the result of first modifying 7, to 7" as in
Proposition 4.8 and then removing ¥ x [—eg, 0].

Similarly, suppose that M = (By,, mm, F5,,) is a Morse foliated open book, and identify dM with X x {0}
in the standard half-neighborhood X x [—7, 0] from Proposition 4.10. Define the embedded foliated open
book £(M) = (B, , Fz) on M \ ¥ x[—n/2, 0] to be the result of removing ¥ x [—»/2, 0].

Proposition 5.1 With the notation above:
(1) M(E) is a Morse foliated open book. Furthermore, there is a diffeomorphism
YETMIM — M\ Z x[—¢,0]

that takes the bindings and the pages of the two foliated open books to each other. In particular, for
any contact structure £ supported by £, the contact structure Y& ~ME& is supported by M(£).

(2) E(M) is an embedded foliated open book. Furthermore, there is a diffeomorphism
YyMZE M > M\ T x[—1n.0]

that takes the bindings and the pages of the two foliated open books to each other. In particular, for
any contact structure £ supported by M the contact structure Y€ £ is supported by £(M).

(3) The embedded foliated open books £ and £(M(E)) are diffeomorphic.
(4) The Morse foliated open books M and M (E(M)) are diffeomorphic.

Proof For the proof of item (1), recall from Proposition 4.8 that 7’ has exactly two critical points
for each hyperbolic singularity of F%,, and only one of each pair survives as a boundary critical point
of M(€). Thus n’ satisfies the conditions of Definition 3.17. The required diffeomorphism will be
constructed as composition ¢g o ¢X41, where ¢¢ and ¢ are each diffeomorphisms from the respective
foliated open books to the common manifold &€ \ (-7, 0]. Let ¢ < n’ < n be a real number such that
7 =7’ on ¥ x[—n, —n'], again viewed inside the neighborhood of the boundary in £ and M (€). Choose
diffeomorphisms ¢, that map X x [—n, 0] (respectively, X x [—n, —¢]) to X x [-n, —1']. Away from the
critical points, these may be chosen to restrict to each page as an isotopy to a proper subpage; since
the open book foliation on X x {z} is strongly topologically conjugate to the open book foliation on the
boundary of each of £ and M(£), the induced isotopy of plane fields takes a supported contact structure
to a supported contact structure.

For item (2), we observe first that the restriction of , to the complement of the boundary of M is regular,
and as the induced open book foliation F% is strongly topologically conjugate to F%, , the conditions of
Definition 3.1 are satisfied. The proof of the second half of the claim proceeds as in the proof of item (1),
via a composition of isotopies from the original manifolds to a common submanifold.

The proofs of items (3) and (4) proceed as the second half of item (1). O
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5.2 From Morse to abstract and back

Suppose that (B, 7m, Fz,,) is a Morse foliated open book for (M, F5) and fix a gradient-like vector
field Vi, for 7,,. Let M’ be the three-manifold formed by blowing up B to S' x B. Extend 7, to M’
continuously, now calling the extension 7. A local model near the binding allows us to assume that
Vo = 9t on the blown-up S x B boundary component; here, ¢ parametrizes S'. Let {h,-}l.zi , be the set
of critical points of 7 with corresponding critical values ¢} = w(hy) <--- <t); = m(hyy) with respect
to the cyclic order on S!. Choose regular points {ti}izi o Sothattg <tf <ty <--- <t © <k <lo. Let
S; = 7w~ 1(¢;). This means that S; is a surface with cornered boundary (B x {t;}) U«;, where o; = 7~ 1(t;)
and the corners are E x {t;} = (B x {t;}) N ;. As we are working in the blow-up of M, S; is closed.

If h; is an index 2 critical point of m, then its stable manifold W (h;)® intersects S;_; in a properly
embedded arc yl.tl with endpoints on «;—;, and S; is obtained from S;_; by cutting along yl.tl and

smoothing. In the notation of Definition 3.14, we have S;_1 yc%) Si.

i—1
If h; is a critical point of index 1, then its stable manifold W(/;)® = w(h;)*® intersects S;_1 in two points

{pi=1,qi—1} € ®j—1, and S; is obtained from S;_; by gluing a one-handle along this attaching sphere. In
add

the notation of Definition 3.14, we have S;_1 i Si-
1—1>41—

The flow of the gradient-like vector field gives a diffeomorphism /: S, — Sp that is constant on B.

Proposition 5.2 (from Morse to abstract) With the notation from above:

(1) Any Morse foliated open book M = (B, . Fx,,) and choice of gradient-like vector field Vi,
determines an abstract foliated open book A = ({S;}, h) as above.

(2) If Vry,, and V'm,, are both gradient-like vector fields for r,,, then the corresponding abstract
foliated open books A = ({S;},h) and A’ = ({S;}, h) are diffeomorphic.

(3) If some reparametrization of the Morse foliated open book M" = (B, 1,,, F;, ) is diffeomorphic
to M = (Bm, Tm, Fr,,), then the corresponding abstract foliated open books A and A’ (for any
choices of gradient-like vector field) are conjugate to each other.

Proof The proposition is a consequence of the construction above. For the first claim, we see that the
critical submanifolds of a fixed critical point determine a pair of abstract pages related by a single handle
addition or deletion. In order to assemble these pairs into an abstract open book, it remains to identify the
two copies of S; associated to the critical points ¢ and ti*+1 ,
gradient-like vector field. Although the choice of gradient-like vector field could change the arcs y;_;

but this is accomplished by the flow of the

or the attaching points p;_1 and ¢;_1, the diffeomorphism types of the pages S; remain the same; this
establishes the second claim. The last claim is simply the translation of reparametrization (specifically, by
rotation) to the abstract setting. O

In the rest of this subsection we describe how to use abstract foliated open books to build up a three-
manifold with foliated boundary together with a Morse foliated open book.
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|

Figure 11: The cobordism between S;_; and S;, shown before smoothing the attached half-
handles. The shaded regions are in the foliated boundary. Left: an index-one boundary critical
point corresponding to half a one-handle or the “add” operation. Right: an index-two boundary
critical point corresponding to half a two-handle or the “cut” operation.

To each handle addition and deletion, we associate a cornered handlebody H;. We first consider the case

add
of S;_{ ——
=1 pi 1.gi1

boundary one-handle to S;_; x I. See Figure 11.

S;. Define H; to be the cornered handlebody obtained by attaching a three-dimensional

By construction, H; is a cornered cobordism between S;_; and S;; thus H; is a handlebody with
boundary 0H; = —S;—1 U V; U S;, and with codimension-one corners at d(—S;—1) U dS; U (£ x ) and
codimension-two corners at £ x 0. The vertical boundary V; is the union of two types of components:

¢ products of cornered circles with the interval 7;

¢ a (cornered) pair of pants P;.

Components of the first type correspond to components of d.S;_; which are preserved in 0.5;, while the
second type is associated to the handle addition.

In the case of S;_4 % Si, the cobordism H; may be built up analogously. In this case, we attach a three-
dimensional boundary two-handle to the thickened S; along y;_1; this turns the previous construction
upside down and the boundary and corners may be identified analogously. Each handlebody H; is

naturally equipped with a Morse function =; : H; — I with the following properties:
o mil-s;_, =0;
° 7Ti|Si =1
¢ 7; has a gradient-like vector field V; that is tangent to V; and to the /—component at B x [;

¢ 1; has a unique critical point with critical value % and this is located on the pair-of-pants component
of the boundary. The index is 1 in the case of handle addition and 2 in the case of saddle resolution.

We may glue the pairs (H;, ;) along the S; via the identity and glue S,; to Sy via /i to get a three-
manifold M’ with boundary. After rescaling, the maps 7; glue to a map 7: M — S' = R/Z. Finally,
collapse B x S! to B to obtain the three-manifold M = M ({S;}, /). Then = restricts as a map
w: M\ B— S! and level sets of 7 = |y, induce a foliation F5 on M. Note that different choices
of m; and scaling yield different parametrizations of Fz; thus abstract foliated open books describe
diffeomorphism classes of three-manifolds with foliated boundaries (M, F). The discussion above can
be summarized by the following proposition.
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Proposition 5.3 With the notation and definitions from above:

(1) Any abstract foliated open book A = ({S;}, h) defines, up to diffeomorphism, a three-manifold
(M (A), F(A)) with foliated boundary and a Morse foliated open book

M(A) = (B (A). tm(A), Fin(A))

which is compatible with it.

(2) Suppose that the abstract foliated open books A and A’ are conjugate to each other. Then the above
diffeomorphism-types of manifold with Morse foliated open book (B, (A), 7tm (A), Fm(A)) and
(Bn(A), (A, Fm(A)) are the same.

(3) For any abstract foliated open book, A(M(A)) is equivalent to A.
(4) For any Morse foliated open book, M(A(M)) is diffeomorphic to M.

The foliation F5 can be described directly from the data of an abstract open book. The regular leaves
of Fz are o x {t} fort € (¢, tl.*+1), and each leaf is an interval that connects elliptic points. Each singular
leaf corresponds to a critical value ¢*.

The discussion above allows us to state the obvious definition of a contact structure supported by an
abstract open book.

The next definition is stated using the notation introduced above.

Definition 5.4 The abstract foliated open book A = ({S;}, &) supports the contact structure £ on M (A)
if the Morse foliated open book (B, (A), tm(A), Fz,,(4)) supports &.

Together with the statements of Proposition 5.1 we have the following equivalence for a fixed diffeomor-
phism class of three-manifolds (M, F) with foliated boundary:

{abstract FOBs}  {embedded FOBs} {Morse FOBs}
conjugacy diffeomorphism diffeomorphism

From now on we will move freely between these notions, using whichever is most convenient in our

discussion.

5.3 Sorted handlebodies

In this final subsection, we further examine the relationship between Morse and abstract foliated open
books. The key definition of a sorted foliated open book will be important in Section 8. Throughout
this section, we will consider a Morse foliated open book equipped with a fixed preferred gradient-like
vector field V7T on the boundary, and we indicate this choice by the tuple (B, , F5, V7). (Recall that
“preferred” was defined in Definition 2.15.)

Algebraic € Geometric Topology, Volume 24 (2024)



Foliated open books 3171

Figure 12: Left: Sy from the sorted abstract foliated open book from Example 6.13, shown with
its two yi+ curves. Right: in the corresponding Morse foliated open book, the shaded region
shows Ry and the white region shows Sg \ Rp.

As in Section 5.2, let M’ denote the manifold formed by blowing up B into S x B. We denote the fibers
7~ 1(¢) in M’ by Sy, and we note that these are closed and disjoint. Assume that = 0 is a regular point
of 7, and let M denote the formal closure of M’ \ So, which is a cobordism between Sy and S;. We
call a gradient-like vector field Vor on M \ B preferred if it extends V7, and a preferred vector field
induces a vector field— still denoted by V.r —on M . In the following we will work exclusively in M’
or M . Informally these are the submanifolds one obtains when gluing together some or all consecutive
handlebodies H; of the previous section.

In the definition below, assume that ¢ < ¢’ are regular values for 7: M' — S 1
Definition 5.5 The submanifold ;H; := 7~1(¢,t') is sorted if the stable and unstable manifolds of

critical points of V|, g, are disjoint in ;H,/. The Morse foliated open book (B, 7, F5, V) is sorted if
M is a sorted submanifold.

We identify M with ¢ H, and the statements below hold for f = 0 and ¢’ = 1, as well.

Remark 5.6 The fact that Vi is preferred forces an order on the stable and unstable submanifolds near
the boundary, which may obstruct this disjointness. See Example 5.9.

Definition 5.7 Define ;R, C ;Hy to be the minimal V|, H,,—invariant subset of ;Hy/ containing a
cornered neighborhood of dM N ,Hy that is disjoint from [¢, #'] x int(B). Define R = oR; C M and let
R; = RN §;. See the right-hand picture in Figure 12 for an example of Ry.

Since the critical points of |, g,, all lie on dM, the invariant subset ; R, must contain all the critical
submanifolds W (h) and W*(h) for critical points / with critical value between ¢ and ¢’. This implies
that the complement of ; R, is a product:

Lemma 5.8 Suppose that (B, 7, Fz, V) is a sorted Morse foliated open book. Then ;H; \ ;R is
diffeomorphic to the product (S; \ R;) x [t,].

The subsets S; \ R; are isotopic for all values of t.

Proof The restriction of Vi to ;H; \ ;R has no critical points, so the flow of Vi defines a diffeomor-
phism between level sets. O
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N
Figure 13: In S5, the specified endpoints cannot be connected by disjoint sorting arcs, so the
foliated open book is not sorted.

The discussion in the previous subsection allows us to characterize sorted open books in the abstract
setting, as well.

When a preferred Vi is fixed, the critical submanifolds define a collection of curves on each regular
page in ;Hy. We call these cutting and cocore arcs sorting arcs. Slightly abusing notation, we will
let )/,é’E denote a sorting arc associated to /1 on any page. With no further conditions on Vz imposed,
observe that these arcs may intersect each other, and after passing a critical point whose corresponding
submanifold intersects another critical submanifold, some arcs may be cut. If /i is a positive hyperbolic
point in a foliated open book, then we write W*(hz) NSy = )/l,;F on all pages S; for t < w(hy); if hy is a
negative hyperbolic point, then W* (i) NSy =y, on all pages S; for ¢ > m(hy).

When A = ({S;}, h) is the abstract open book associated to a Morse foliated open book as in Proposition 5.2,
we may record the sorting arcs yki on the abstract pages; we denote the associated abstract foliated open
book by ({S;i}, i, {)/,é’E }) when we want to keep track of this extra data, in parallel with the quadruple
used for a sorted Morse foliated open book. Similarly, we may write ; H; for the handlebody constructed
from the abstract pages Sy with k € {i,i 4+ 1,..., j}. This notation will be used in Proposition 7.4 and
again in Proposition 8.11.

When (B, nr, Fz, V1) is a sorted Morse foliated open book, the sorting arcs on the associated abstract
open book ({S;}, /1, {y,ﬁc }) are disjointly embedded, and vice versa. As the next example shows, requiring
a Morse foliated open book to be sorted may bound the Euler characteristic of the pages from above.

Example 5.9 The foliated open book for the solid torus introduced in Example 1.1 is not sorted, as
shown in Figure 13. Definition 2.15 dictates the order of the attaching spheres and endpoints of the
cutting arcs along each component of o, and we see that as ¢ increases, it becomes impossible to connect
pairs of blue and green dots by disjoint arcs in the interior of the page. Example 6.13 shows a sorted
foliated open book for the same F%.

6 Operations on open books: cutting, gluing, and stabilization

In this section, we describe natural operations on open books of various sorts. An initial cutting result
was presented in Example 3.4, and here we extend this to consider the contact structure supported by an
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open book cut along a surface with an open book foliation. We also explain how our focus on boundary
foliations simplifies gluing, and we use this to define stabilization for embedded foliated open books and
Morse foliated open books. We also discuss stabilization for abstract open books, which is analogous to
the operation familiar from closed manifolds.

6.1 Cutting

One of the key advantages of foliated open books is that they are natural structures with respect to cutting
and gluing.

Theorem 6.1 (cutting) Given a three-manifold M with an open book (B, 1), suppose that an embedded
surface ¥ admits an open book foliation F5 with no circle leaves. Then there is a contact structure &
on M supported by (B, ) such that the restriction of & to the closure of each component of M \ X
is strictly supported by the embedded foliated open book obtained as the restriction of (B, ) onto the
closure of this component.

In fact, this result and others in this section apply equally well when the ambient manifold is a partial or
foliated open book rather than an (honest) open book; our choice to state them narrowly avoids excessive
and unpleasant notation.

Proof The proof is a modification of the standard Thurston—Winkelnkemper construction of a contact
form supported by an abstract open book (S, /). Identify the given M with the manifold built from
an open book (S, /2) and choose a collection of regular values ZI.T so that each two consecutive singular
t—values are separated by a distinguished regular value.

We will outline the construction first and then execute it to ensure the desired properties. Given a family
of one-forms f; on S x {t} interpolating between By and /*By and C any sufficiently large constant,
ac = B + C dt yields a contact structure supported by (S, /7). We will choose both the interpolating
path and the constant C with additional care. These choices will ensure that the specified leaves of the
open book foliation lie near Legendrian curves and that nearby, the Reeb foliation of ¢ is directed by 0d;.
We will then push the leaves of the open book along the Reeb vector field until the intersection of the
chosen pages with X are Legendrian; ensuring that the Reeb vector field remains transverse to the page
throughout the deformation ensures that ¢ remains supported.

In order to proceed, pick § > 0 and choose a metric on the manifold. For each of the distinguished regular
values tl.T, we require that 8; is constant in an open §—interval around tl.T. Each choice of sufficiently
large C determines a supported contact form, and hence a characteristic foliation F¢ . on X; choose C
large enough so that the distance in the /—direction between the leaves of F¢. and F% that coincide near
the positive elliptic points is less than §/2. To see that this is possible, observe that the distance between
leaves of the two foliations is bounded by the angle between §¢ and S;' along S;' N X, integrated over
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the length of this curve. Increasing the value of C shrinks the angle, making precise the intuition that a
large C pushes the contact planes “close” to the pages.

In [15], local models show that after possibly enlarging C further, one may ensure the singular points of
the two foliations agree. The constraints on 8; imply that away from B N X, the Reeb vector field of «¢ is
directed by d; for pages in the §—intervals. Since a¢ is supported by (S, /), the curves {p} x (t;r -6, t; *6)
are transverse to the pages of the open book. We may therefore push the pages along these curves,
preserving transversality, until S;* N X agrees with a leaf of F¢.., and thus becomes Legendrian.

The restriction of £ is strictly supported by the restriction of the open book on this component, as desired. O

This cutting can also be understood in the abstract setting. For ease of notation, we further restrict our
attention to the case when X is connected and separates M into My U Mp.

As in Proposition 4.8, we first modify 7 to 7’ in a model neighborhood X X [, n] so that canceling
critical points are created on X x {¢e}. Remove X x (g,¢) to get Morse foliated open books on
M{ = M\ X x (e,—n] and Mg = Mg\ X x[n, ¢). Then we construct the abstract foliated open books
({kS’iL}l.zi1 ,hT) and ({SiR}fil , h’®) corresponding to (BN M JT/|M£) and (BN M7, 7r’|M;e). Note that
the two Morse foliated open books have pairs of critical points with the same critical values, but always
of opposite type (i.e., one each of index 1 and 2). Then the number k of sequentially distinct pages in the

two abstract foliated books is the same.

Moreover, through the two deformation retractions that recover the embedded foliated open book pages
from the Morse foliated open book pages, we can identify the boundaries cxiR and aiL with each other
(through 7~ 1(#;) N ), and we will call this simply «;. With this identification, we can view each «; as
a properly embedded separating arc in S, rather than as two parallel arcs ocl.R and ozl.L. Similarly, we

may view y;_; as embedded on Sl.lil Cc Sor SI.L_1 cS.If SiL_1 %) SiL, then Silil a;f—il) SiR, and

vice versa. In this case, /L and 4R are just the restrictions of /4 to S2Lk and SZI;, respectively. This
perspective allows us to formulate cutting solely in terms of the cutting arcs o; on S, as follows.

Given an abstract open book (S, /1) for M, define a sequence of cutting arcs as a set of properly embedded
2k

separating arcs {o; }7%

o for some k, so that

e h(agk) =, and

e ;4 is obtained from «; by surgery along an arc y; that intersects ¢; only at its boundary. (This
means that ;4 is the smoothing of ¢; \ dy; and two parallel copies of y;.) See Figure 14.

o o
Then S\«o; =S l.R us I.L, where S l.R and S l.L are cornered surfaces and the boundary orientation of SiL
(resp. Sl.R) recovers the orientation of «; (resp. —«;). The diffeomorphism / restricts to Ssz and Sﬁ( as
L R
hy;, and h3 =
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PX Si1

Figure 14: The red S and the blue S’ are separated by the bold a,. Note that p is an embryonic
critical point.

6.2 Gluing

The cutting operation for abstract open books can be reversed to glue abstract foliated open books with
compatible boundaries. As above, for notational convenience we restrict to the case of gluing two abstract
foliated open books along their respective connected boundaries to obtain an (honest) open book.

Let ({SI.L }lzi 0’ hL) and ({SiR }lzi 0’ h®R) be abstract foliated open books, and assume that there is an
orientation-reversing pairing ¥ of the corners B~ and dB® such that

t . . dd .
. Sﬁl LN SI.L if and only if Sl.lil N SiR, and vice versa;

e the components of ozl.L_ , containing the attaching sphere (for the handle or for the cutting arc)

on SiI; | have endpoints on dBL which are paired with the endpoints of the components of oziR
containing the attaching sphere on S l.R.

.. L R . . . . L R
The final condition allows us to glue the pages S;~ and S;* along orientation-reversing maps ¥; : ;" — o;

that extend 1 so that the core of a handle added to yield SI.L is identified with the cutting arc of S ,-Ii 1> and
vice versa. This yields a well-defined page S = SiL Uy, Sl.R, and the monodromy / = hL U 1R gives an

honest abstract open book.

Translating the above to embedded open books and using Theorem 6.1 gives the following result:
Theorem 6.2 (gluing) Suppose that the embedded foliated open books (BL,nL) and (BR, x®)
define the three-manifolds with foliated boundary (M L, Fzr) and (M R F5R), and assume that there

is an orientation-reversing diffeomorphism ¢ : M — 0Mg that takes the foliation F; 1 to (a possible
reparametrization of) F,zry.

Then there are contact structures £~ and £R® compatible with (BL, 7L) and (BR, p(7®)), respectively,
such that £ = gL Ug £R is a contact structure & on the glued-up manifold M = M T Up MR which is
compatible with the glued-up honest open book

L R L R
(B,]T)=(B Ugl, B m=m U‘P|3ML\EL p(r ))
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Obviously, cutting is the inverse operation for gluing.

Remark 6.3 The gluing theorem easily generalizes to the case when the resulting manifold has a partial
or foliated open book, rather than an honest open book. However, the statement does not generalize to
self-gluing, since the required reparametrization cannot be done globally. Self-gluing is therefore only
possible if ¢ maps one foliation to the other without reparametrization.

6.3 Examples

The cutting theorem allows us to construct many examples for foliated open books. The next two examples
are Darboux balls embedded in the standard contact structure with the angular open book.

Example 6.4 Figure 15, left, shows a foliated open book for the ball with a unique homeomorphism-type
of page. The complement of B3 in the open book with disc-like pages for S? is a diffeomorphic foliated
open book.

Example 6.5 Figure 15, right, shows the ball from Example 6.4 after a finger move is performed. The
2
i=0’

map is still the identity. The complement of ({Sl?el}fzo, id) in (D2, id) is again conjugate to ({S ;61}1.2:0, id).

associated foliated open book ({Sl.te]} id) has two distinct homeomorphism-types of pages, while the

The pages in the examples above do not define partial open books. In the first case, there is a single
homeomorphism-type of page, and in the second, the “big” page cannot be built up from the complement
of the “small” page by adding one-handles.

Example 6.6 In this example, we identify two embedded foliated open books as submanifolds of the
open book (By, o) associated to the Hopf fibration on S*. For §3 = {|z|> + |w|?> = 1} C C?, the
binding By is the set {zw = 0} = {z = 0} U {w = 0} oriented by dw and 9z on the respective components,
and the map 7 is given by mg(w, z) = zw/|zw|. The pages of this open book are annuli, and (By, 77¢)
supports the standard tight contact structure on S3.

D D
D D

So Sy AY)

Figure 15: Left: a ball intersecting the binding once. Right: a ball intersecting the binding twice.
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Figure 16: Cutting along the sphere shown on the left separates S into a pair of distinct foliated
open books. The center figure shows the pages of the associated abstract foliated open books, and
the open book foliation on the cutting sphere is shown on the right.

Consider the arc yg = {Imz = 0, zw/|zw| = 1} on the page S| = JTO_I (1). Let N(yy) denote a three-
dimensional neighborhood of y; that intersects pages 7! (¢) in a rectangle for t € (1 —¢,1+¢) and in a
pair of half discs containing 0y for ¢ € (1 + ¢, 1 —¢). The open book foliation has a pair of hyperbolic
singularities on 77! (1 % &) as shown in Figure 16.

The foliated open book for N(yy) may be identified with the foliated open book ({Sl?el}l.zzo, id) from
Example 6.5, but the foliated open book for S3 \ N(yy) is distinct. This open book will be the key to

defining stabilization in Sections 6.4 and 6.5.

6.4 Stabilization of embedded foliated open books

Naturally, we would like to understand the relationship between embedded foliated open books that
support the same contact structure. As is the case with other versions of open books, foliated open books
admit an operation called stabilization that preserves the contactomorphism class of the supported contact
structure. Although stabilization in other contexts is often defined in terms of abstract open books, we
present it here in the embedded setting as application of the gluing results above; the abstract version is
discussed immediately afterward in Section 6.5.

Let (Be, 7e, Fr,) be an embedded foliated open book for M and let y be an arc properly embedded
in some page JTeT(Z) As in Example 6.6, let N(y) denote a three-dimensional neighborhood of y that
intersects nearby pages in a single disc and other pages in a pair of discs near dy. This choice implies that
up to reparametrization, the open book foliation on d/V(y) matches the open book foliation on dN (yp).

Definition 6.7 The (positive) stabilization of (B,, 7.) along y is the manifold formed by gluing the
foliated open books S3\ N(yo) and M \ N(y) along their boundary two-spheres.

This operation is a refinement of the connect sum that respects the open book structures on the two
manifolds; it also defines positive stabilization for (honest) open books. As every change happens in the
interior of the contact three-manifold, the following is an immediate consequence:
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Proposition 6.8 Any positive stabilization of (B., ., Fz,) supports the same contact structure as
(Be, e, ‘7:7?(’)'

Note that as stabilization is defined as a strictly interior operation, the definition above may be applied
verbatim to Morse foliated open books. Negative stabilization may be defined the same way by using the
open book given induced by the function zi/|zi| on S3.

Moreover, in Section 8.6 we will prove the following result.

Theorem 6.9 (Giroux Correspondence for foliated open books) Any pair of foliated open books
supporting (M, &, F¢) are isotopic after a sequence of positive stabilizations.

The proof of this theorem will rely on the proof of the analogous statement for partial open books.?
6.5 Stabilizing abstract foliated open books

It will be convenient to stabilize abstract foliated open books without invoking the equivalence of
Proposition 5.2, so we conclude this section with a reformulation of stabilization adapted to the abstract

case.

Definition 6.10 Given an abstract open book ({S;}, /), let y be a properly embedded arc in S, whose
endpoints p, ¢ lie on B C dS,. The stabilization along y is defined as follows:
(1) First perform an r—shift of ({S;}, #) to ({Si[r]}, h[r]).
(2) Define a new abstract foliated open book (S [r]}?ﬁ o-1'[r]) by
e Si[r] = Si[r]U H, where H is a one-handle with attaching sphere p U ¢, and
» I'[r]= Dyoh[r], where Dj is a right-handed Dehn twist along the circle formed by the r—shift
of y and the core of H; here, /[r] also denotes its extension to H by the identity.
(3) Perform a (—r)-shift to obtain ({S/}, 4’), where S/ is still obtained from S; by a handle attachment
along p and q.

Remark 6.11 The shift is indeed necessary in the definition in order to obtain an object invariant under
conjugation, as in some cases the arc y cannot be “found” on the original Sj.
Proposition 6.12 (equivalence of stabilizations) The various definitions of stabilization are consistent:

(1) Any stabilization of a Morse foliated open book can be realized as a stabilization of a corresponding
abstract foliated open book.

(2) Any stabilization of an abstract foliated open book induces a stabilization of a corresponding Morse
foliated open book.

The result follows from Definitions 6.10 and 6.7.

2The argument implicitly uses the proof of Giroux Correspondence for (honest) open books, and it does not give an independent
proof for Giroux Correspondence in the classical case.
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D9

Figure 17: A stabilized abstract foliated open book for the solid torus from Example 1.1.

Example 6.13 As an example, we will stabilize the solid torus seen in Examples 1.1 and 5.9. Figure 17
shows a sequence of pages which differ from the pages of Example 1.1 by the addition of a handle
connecting the two components of the original binding. At each step, the bold curve is either the arc
that is cut along to yield the next page or the cocore of the handle that was attached in the step from the
previous page. We record cutting arcs on all previous pages and cocores of added arcs on all subsequent
pages, and with the opposite convention, we record the endpoints of these sorting arcs by bold dots on
the boundary. Note that as the arcs are disjoint, the foliated open book is now sorted.

The correct identifications between successive pages may be realized by horizontal translation in the
figure, and the left-hand side is identified with the right by a right-handed Dehn twist along the core of
the annulus.

7 From foliated open books to contact three-manifolds

In this section we prove the fundamental existence and uniqueness results that ensure foliated open books
are useful tools for studying contact manifolds.

7.1 Existence of supported contact structure

Having established the connection between abstract foliated open books and embedded foliated open
books, we are ready prove the existence of a supported contact structure. This is easiest in the abstract
setting.

Theorem 7.1 Any abstract foliated open book strictly supports a contact structure.

Proof Let ({S;}, #) be an abstract foliated open book. The basic idea of the proof is to find an (honest)
abstract open book (S, 4’) for a closed three-manifold so that ({S;}, /) embeds into it pagewise and / is
the restriction of /4’ to S,j. Then we construct the contact three-manifold corresponding to (S’, 2’) and
use the cutting result (Theorem 6.1) to get a contact structure supported by ({S;}, /).

The condition that F5 does not contain circles translates to each «; being a union of intervals. We will
find a surface S’ and embeddings ¢; : S; < S’ which satisfy the following properties:

e For all i, the map ¢; embeds B in a fixed B’ C 9S".
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e For all 7, the map ¢; properly embeds (;, de;) into (S’, dB’).

cut

o IfS; 4 T Si, then ¢;—1(S;—1) \ t: (S;) is diffeomorphic to a neighborhood of ¢;_; (y;—1) with a
pair of 0pp0$1te edges in ;1 (o;) and the other pair of edges in ¢; (®;).

o IfSi W) S;, then ¢; (S7) \ t;—1(S;j—1) is diffeomorphic to a rectangle with a pair of opposite

edges in ;1 (;—1) and the other pair of edges in ¢; (&;).

We construct S” inductively as follows. Start with any S such that Sy embeds into it and satisfies the first
two conditions for i = 0. Now assume that we have defined ¢; and S J/ for j < so that all the conditions
are satisfied for j <i. If S; is related to S;_{ by cutting along the arc y , then we can set S = S/_
and keep all the embeddings; then define (; = t;_1|s, . If, on the other hand, S; is related to S;_4 by a
one-handle addition, then we would like to realize the one-handle addition inside S l’ . This means that
we need a path y;_; in S/, \ t;—1(S;—) connecting the attaching points of the handle. If there is such
a path, then we keep S7 = S; ', and let the image of ; be the union of the image of ¢;_; and a tubular
neighborhood of y/_,. If there is no such path, then we add a handle to S;_, to connect the two regions
of S l.’_l \ t;—1(S;—1) containing the attaching points. Here we use the fact that none of the components of
Sl./_1 \ t;j—1(S;—1) is disjoint from the boundary, which follows from the fact that o;_; has no circles. Call
the new surface S/. To complete the inductive step, compose all embeddings with the obvious inclusion
t: S i/—l — Si/ and let ¢; (S;) extend ¢;—1(S;—1) by an embedding which maps the additional handle to a
neighborhood of y;.

Consider the embeddings to: So < S,, and t,,: S, < S,,. The compositions ¢’ Lohotn:th(Sy) — 10(So)
might not be extendable to a diffeomorphism of S, but by embedding S;, into a yet larger surface S’, we
may assume that the composition extends to the desired diffeomorphism 4’: S” — S’.

The embeddings ¢; determine a submanifold M corresponding to the abstract foliated open book ({S;}, /)
in the manifold M’ corresponding to the open book (S’, 4’). By Theorem 6.1 there is a contact structure &
compatible with (S’, ') that restricts to M as a contact structure strictly supported by ({S;}, 1), as
needed. |

7.2 Uniqueness of supported contact structure

In this subsection we show that an abstract foliated open book supports a unique contact structure.

Theorem 7.2 Any two contact structures supported by (B, w, Fr) are isotopic through a family of
contact structures with strongly topologically conjugate characteristic foliations on the boundary.

It suffices to show that two strictly supported contact structures are isotopic, and the proof will proceed
as follows. We will decompose M as a union of handlebodies H; and argue that each H; has a unique
tight contact structure compatible with a prescribed class of characteristic foliations on its boundary,
up to contactomorphism fixing the boundaries. Second, we will show that any strictly supported contact
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structure restricts to a tight contact structure on each H;. The structure of this argument follows [29], and
together, these statements imply the desired uniqueness.

We begin by blowing up the transverse curve B to B x S'!; a strictly supported contact structure & on M
induces a contact structure & on the blown-up M. Because £ is strictly supported by the foliated open
book, hyperbolic points are separated by regular leaves of F,. Cut M’ along the corresponding pages.
The resulting cornered handlebodies are diffeomorphic to the H; that appeared when building a manifold
from the data of an abstract foliated open book in Section 5.2, so we will use the notation introduced
there.

The boundary of H; is separated into two pages, S;—; and S;, together with the vertical component
Vi =(BxI)UW;. Here, W; consists of rectangles «; X I coming from the unchanged intervals «;, together
with a “saddle” component corresponding to the two components of «; that change. The characteristic
foliation on B x S' C M’ is given by the parallel circles {b} x S! for b € B, and thus by {b} x I on the
B x I components of dHj.

The open book foliation on W; is given by the level sets of 7;. By assumption, the leaves of the
characteristic foliation are isotopic to the leaves of F, so W; is a convex surface whose dividing curve I"
may be obtained as the boundary of the neighborhood of the positive graph G for either Fg; or Fz,.

Note, too, that since ker « is supported by the open book, the Reeb vector field R is transverse to the
pages. As R, is a contact vector field, the pages (in particular, the S;’s on the boundary) are convex with
empty dividing sets.

This discussion establishes part of the following proposition:

Proposition 7.3 A contact structure & strictly supported by (B, 7, ) induces a tight contact structure &;
on H; with the decorations described above. Furthermore, up to isotopy fixing 0 Hj, there is a unique tight
contact structure on H; with these boundary decorations.

Proof The tightness of &; follows from gluing (Theorem 6.2) and Torisu’s theorem [29, Theorem 1.1]
as follows. Suppose that &’ is a supported contact structure on (B, 7, F). Then, adapting the proof of
Theorem 7.1, we can construct a second foliated open book (B”, ", F) supporting £” so that the two
foliated open books glue together into a closed contact manifold (M, §") supported by the open book
(B’, #’). Then Torisu’s work implies that & restricted to any submanifold is tight. Since H; is a subset of
the blowup at B, it must also be tight.

For uniqueness, we will smooth the boundary of H; (in the interior of H; and arbitrarily close to dH;) in
order to obtain a handlebody H; with convex boundary and dividing curve I'; which is determined by
the decoration on dH;. Since the contact structure on a collar neighborhood of dH; is determined by the
characteristic foliation on dH;, it suffices to show that there is a unique tight contact structure compatible
with the dividing curve T'; on 0H/.
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Figure 18: Smoothing corners in H;. The first figure shows a part of dH; near B x I. The second
figure shows the characteristic foliations, the third one is the picture after merging S;—; with .S;
and smoothing the corners, with the dividing curves indicated with red. The fourth picture depicts
the dividing curve after completing the smoothing.

In the above description, all components of dH; were convex except B x I. In a neighborhood of each
component of B x I, we connect —S;_1 to S; via a nearby convex surface F; that has a one-component
dividing curve which is parallel to B. See the third picture of Figure 18.

The above process allows us to smooth out the codimension-two corners as well, leaving a three-
manifold Hl.” whose boundary consists of two convex surfaces, F; and a smoothed W;, that intersect in a
Legendrian curve L. See the third picture of Figure 18.

Recall that W; is convex and that the dividing curve I' C W; is the boundary of a neighborhood of the
stable separatrices of the positive hyperbolic points. In the blown-up picture of the boundary, the positive
elliptic points correspond to the intervals E4 x I; as usual, 0B = —E_ U E_. Each product component
of W; contains a vertical component of I" of the form { p} x I, where p is a point on «;_; close to £ 4. The
saddle component contains the same vertical dividing curve if S; is obtained from .S;_; by a one-handle
addition (as in this case the corresponding hyperbolic point is negative), but the dividing curve is as shown
in Figure 19 if S; is obtained from S;_; by cutting along an arc y;_;.

In summary, the Legendrian curve L intersects I' on F; once at every component corresponding to £ X 1,
while on S; it intersects I" near the points £y x {0, 1} on «;—; and «;, respectively. See, again, the third

-

picture in Figure 18.

Figure 19: The smoothed I' intersects a decomposing disc twice on a cornered handlebody
associated to a positive hyperbolic point.
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Next we can apply standard smoothing along the Legendrian curve L to obtain the handlebody H/ with
dividing curve I'; as seen in Figure 19.

Finally, we will prove that H] has a unique contact structure by describing a disc decomposition of H
such that the boundary of each disc D intersects I'; in two points. As a first case, assume that the
hyperbolic point on W is negative, so that S; is obtained from S;_; by a one-handle addition. Then
choose arcs {a;} properly embedded into S;_; with endpoints on «;_; that cut up each component
of S;_1 into discs, and let D; be the (smoothed) a; x I. After the smoothing on the fourth picture of
Figure 18, it is clear that the boundary of each Dj; intersects I'; in two points.

This suffices to cut the tight H into tight balls, proving the proposition in the case of a negative hyperbolic
point. In the case of a positive hyperbolic point, we may first choose arcs a; on S; that cut up S; into
discs and again take D; = a;j x I to complete the proof. |

This also finishes the proof of Theorem 7.2.

In the proof of Proposition 8.11, we will require the extension of this approach to a concatenation of
multiple H; handlebodies, or equivalently, to a handlebody cut from M’ by regular pages separated by
multiple hyperbolic singularities. For simplicity, we will again use the notation of abstract foliated open
books. Recall Definition 5.5.

Proposition 7.4 Any sorted submanifold ;Hy supports a unique tight contact structure compatible with
the boundary decorations described above.

The argument is a minor extension of the analysis above.

Proof Recall from Lemma 5.8 that any pair of pages in the sorted ;H,, cut along their respective sets
of sorting arcs, are diffeomorphic after smoothing; we view this surface as a minimal page that persists
for all 7.

As seen in Figures 18 and 19, each critical submanifold W¥(Ahy) and W¥(h_) intersects the dividing
curve I' associated to a smoothed ;H;/ twice. After decomposing along these discs, the result is a product
cobordism, which may be further decomposed along discs guided by arcs {a;} that cut the minimal page
into discs, as above. O

8 Relationship to partial open books

Partial open books offer a well-established tool for studying contact manifolds with convex boundary,
and in this section, we explore the connections between partial open books and foliated open books.
Section 8.1 describes how to build an abstract foliated open book from the data defining an abstract partial
open book, while Section 8.2 reverses the process and constructs an abstract partial open book from an
abstract foliated open book. In each case, some conditions on the initial open book are imposed, and
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we show in Section 8.3 that these can be achieved via positive stabilization. These constructions are not
inverses, as the construction of a foliated open book from a partial one allows some choice. Nevertheless,
Section 8.4 shows that these transformations preserve the supported contact structure. Section 8.5 applies
the relationship between partial and foliated open books to prove another existence result: if (M, §) is a
contact manifold with an ordered characteristic foliation, then there is a compatible foliated open book
(Theorem 3.12). Finally, we prove a Giroux Correspondence for foliated open books in Section 8.6.

8.1 Foliated open books from partial open books

The intuition behind transforming a partial open book into a foliated open book is straightforward; in a
partial open book, a large change in Euler characteristic is concentrated at two pages, where the S and P
handlebodies meet. For appropriate S and P, this may be distributed as a sequence of small changes
across many pages to yield a foliated open book.

We begin with a topological condition describing when a surface may be built up from a subsurface by
successive attachment of one-handles. Note that this relationship appears in the definition of an abstract
partial open book [10].

Lemma 8.1 Suppose that S is a surface with nonempty boundary and X is a nonempty subsurface
with cornered boundary such that each component of X is either contained in 0.5 or is polygonal with
alternating edges in 01X N dS and X \ dS. Then S can be built up from X by successive attachments of
one-handles if and only if the boundary of any component of S \ X intersects X in at least two intervals.

Proof For the “if” direction, note first that each handle that creates a new component of S \ X must
attach directly to X, so the number of interval components of 9.5 N dX on the new component (i.e., the
added handle) is two. No subsequent one-handle attachments can decrease the number of components of
dX N dS on the boundary of any connected component of S \ X.

For the “only if” direction, we describe the cocores of the handles which build S up from X. Fix a
connected component C of S\ X. We can simplify the topology of C by cutting along arcs with boundary
on dS \ dX. Each cut turning C to C’ is along an arc which is the cocore of a one-handle which attaches
to C’ to yield C.

Suppose that successive cutting yields a region C” that is polygonal with 2n edges, for some 7 > 2. Then
we can add an additional n — 1 > 1 cutting arcs with endpoints on dC” \ dX, parallel to all but one of the
components of 3S N dX on dC”. This yields a collection of bigons, each with one edge in .S N dX and
the other disjoint from X. Taken collectively in the original surface, the cutting arcs are the cocores of a
set of handles that build C up from X. O

If S and X are as in the above lemma, we say that .S can be built up from X. With this phrasing, we
recall that the definition of an abstract partial open book (S, P, /) requires that S can be built up from
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S\ P. To create foliated open books, however, we need that .S’ can be built up both from P and /(P).
This property can be achieved by positive stabilization:

Lemma 8.2 Any partial open book (S, P, h) may be positively stabilized to some (S”, P”, h"") with the
property that S” can be built up from P” and from h(P").

Proof In a partial open book stabilization (S, P, ) — (S’, P’, i), the added one-handle becomes part
of P’, so choosing the attaching sphere to have at least one component on 9.5 \ dP implies that

10P" N (3S’\ 9P")| > [P N (DS \ 9P)|.

Iterating, we eventually stabilize to a partial open book (S”, P”, h’") with the property that each component
of 38"\ dP” meets 0P” in at least two intervals. Thus S” can be built up from P”, as desired. One may
similarly stabilize to ensure that S” is also built up from /(P”). O

Suppose now that P = (S, P, &) is a partial open book such that S may be built up from P and /(P).
This is equivalent to the statement that S may be cut either along a set of properly embedded arcs {5l.+ }f.‘zl
to yield P, or along a set of arcs {8]._ }5.‘=1 to yield /(P). These arcs are the cocores of the handles added
in the building-up construction.

Set § = S} and define S]:Jrj = S,7:+j_1 \5;r for j € {1,...,k}. Similarly, define S,f_j = S,f_jﬂ \67
for j € {l,...,k}. This yields a collection of abstract pages {S ,-}l.zi o that are related to each other by
gluing (for i < k) and cutting (for k < i). By construction, Sz7> r = P and So = h(P), thus we can define
h? tobe h|p: S}, = P — h(P) =Sy C S. Itis clear that this data defines a foliated open book, but
the indexing of the cutting arcs is arbitrary, and different choices will yield distinct foliated open books.
We would like to ensure that this process yields a sorted foliated open book. As a first step, we apply a

k—shift so that the “big” page is now Sy.

Interpreting an indexed set of cutting arcs {Sii} as the intersections of stable critical submanifolds with Sy,
we must verify the conditions of Definition 2.15. If the intersections are not properly ordered, then
reindexing the arcs or performing handle slides may correct this. Alternatively, one may positively
stabilize the original partial open book so that no interval of oy = .Sy \ B contains an endpoint of more
than one § arc. The ordering conditions are then trivially satisfied, so the resulting foliated open book is
sorted with respect to a preferred gradient-like vector field.

Definition 8.3 A partial open book (S, P, h) is sufficiently stabilized if S may be built up from P and
from A (P), and furthermore, if there is a choice of associated cutting arcs that yields an abstract foliated
book A(P) = ({S lp }, h7) that is sorted with respect to a preferred gradient-like vector field. For any such
choice of cutting arcs {8?}, we say that A(P) = ({Sip 1, h") is an abstract foliated open book induced by
the sufficiently stabilized partial open book P = (S, P, h).

We will show in Section 8.4 that this induced foliated open book is associated to the “same” contact
three-manifold with boundary.
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8.2 Partial open books from foliated open books

Transforming a foliated open book into a partial open book requires more effort than the reverse process,
and it relies on the Morse model of a foliated open book to define a “minimal” page that can play the role
of P and a “maximal” page that can play the role of S. As in the previous construction, some carefully
chosen preliminary stabilizations may be required before this is possible. This section relies heavily on
the discussion of sorted foliated open books from Section 5.3.

We will prove the following result in Section 8.3:

Proposition 8.4 Any foliated open book A = ({S;}, h) may be positively stabilized to a sorted foliated
open book.

As an illustration, consider Examples 5.9 and 6.13, which show how the (unsorted) foliated open book
introduced in Example 1.1 may be stabilized to a sorted foliated open book.

Suppose, assuming Proposition 8.4, that A = ({S;}, &, {y,j: }) is a sorted foliated open book for (M, &, Fz).
Set SA =S, and let P = m, where Ry is the subsurface of Sy from Definition 5.7. See Figure 12.
Lemma 5.8 implies that P embeds in each S; as subsurface. Define ¢ to be the map which embeds P+
into Sy, and set it = hou.

Definition 8.5 Given a sorted foliated open book A = ({S;}, &, {)/kjE 1), the associated triple is P(A) =
(S4, PA, ).

2k
i=1

h') with the property that the

Proposition 8.6 Given a sorted abstract foliated open book A = ({S;} h, {)/ki}) with at least one

2k

of k >0 or [0M| > 1, there exists a positive stabilization A" = ({S/}7X,,

associated triple P(A") = (S, P, ha) is a partial open book.

We call a foliated open book as above sufficiently stabilized, and the obtained partial open book P(.A) an
associated partial open book.

Proposition 8.6 is a partner to Lemma 8.2, in the sense that these assert the existence of procedures for
turning partial open books into foliated open books and vice versa. In fact, Proposition 8.11 will show
that these are the correct procedures, in that they preserve the supported contact structure. The proof
of Proposition 8.6 rests on a pair of lemmas (Lemmas 8.8 and 8.9), which will be proven in the next
subsection.

Remark 8.7 The hypotheses k > 0 or [0M| > 1 in Proposition 8.6 eliminate only the case of a
foliated open book whose unique boundary component is a sphere with the “trivial” foliation whose
only singularities are a pair of elliptic points. Gluing a trivial foliated open book for a Darboux ball
(Example 6.4) to M yields a closed manifold with an open book decomposition. Much of the machinery
in this section is building towards a proof of a Giroux Correspondence for foliated open books, but we
note that the classical Giroux Correspondence applies in this case. We thus ignore the k =0, [0M | =1
case in what follows.
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8.3 Sorting via stabilization

Propositions 8.4 and 8.6 each assert that an abstract foliated open book may be stabilized to achieve some
given property. In order to prove these claims, it will be useful to identify a subsurface of the foliated
boundary which is isotopic to Ry = N(G+).

We assume a preferred gradient-like vector field V7 on dM and its extension Vr on M. Recall that
w*(h) and w*(h) are the stable and unstable flows of Vi corresponding to the critical point /. Fix a
regular time ¢ = 0, and set w® (%)’ to be the subinterval of w* (/) that contains / and intersects 71 (0)
exactly at its two endpoints. Set

Ry =770, n]ul N’ (hs)),
ht

where 7 is sufficiently small to ensure the leaves of 7 1[0, 5] are all regular. Then we claim the following:

Lemma 8.8 R C dM is isotopic to R/, C dM in dM. If the foliated open book is sorted, then R is
isotopic to S\ P4 in M.

Proof Each of these regions is a neighborhood of a graph whose vertices are the positive elliptic points,
and each edge connects the same pair of positive elliptic points.

Because V7 is preferred, the stable separatrices w® (/4 ) intersect each interval /4 C 7~ !(0) in the same
cyclic order as the separatrices of F5 which terminate at the positive elliptic point at the end of /4. See
Figure 20. Taking the union of the neighborhood of 7 together with the separatrices recovers the original
the cyclic order; this may be seen by retracting the 0-leaf to the positive elliptic point and bringing the
endpoints of the separatrices along.

Now suppose that the foliated open book is sorted, and recall the construction of the associated triple

(S, PA, h™). For each positive hyperbolic point, the arc w®(h;)’ can be pushed down to Vi+ C Sp along

the half-disc W*(h;). Extending these “pushes” to an isotopy with support o R; gives an isotopy of R/,

onto S4\ P4, as desired. m|
o

Figure 20: R/, in the star of a positive elliptic point.
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Having defined the triple associated to a sorted foliated open book, Lemma 8.9 is a first step towards
showing that (S, P4, i) meets the topological conditions to define an abstract partial open book.

Lemma 8.9 Suppose that (S, P4, h**) is the triple associated to some sorted foliated open book. Then
no component of P\ 9S4 is a circle.

In fact, Lemma 8.9 is a corollary of Lemma 8.8.

Proof Components of P\ 95 are homeomorphic to components of R’ \ 7~'(0). When R/,
deforms to R on dM, the boundary of R, maps to I' and 771(0) maps to I’ N 771 (0). Recall from
Section 4.2 that 7| is a covering of S'!. Thus every component of I intersects 7! (0), and it follows
that "\ #~1(0) can have no circle components. |

Now we are ready to prove Proposition 8.6:

Proof of Proposition 8.6 Suppose that A = ({S;}, 1) is a sorted foliated open book with k > 0. We will
find a positive stabilization A" = ({S}}, 1") with the property that in the associated triple (S, Pa’, ha),
the surface S 4 can be built up from each of Py, ha(Py), S’ \ Pu and SA\ sy (Py) by successive
attachment of one-handles.

As a first step, observe that any positive stabilization of the original foliated open book induces a positive
stabilization of the associated triple, where the latter will be defined exactly as in the case of an abstract
partial open book. Stabilizing the original foliated open book at Sy adds a one-handle to Sy, and
hence, S, with the attaching sphere lying completely on B. The stable manifolds which cut out P
from S remain disjoint from this handle, so the entire handle becomes part of P+, and the monodromy
changes by the appropriate Dehn twist; this stabilizes the triple (S, P4, h*).

Note that we may achieve only a restricted class of partial open book stabilizations this way. In the case
of an abstract partial open book, there are no restrictions on the location of the attaching sphere, but each
time a component of the attaching sphere lies on 9.5\ 9B, a pair of new intersections between B and M
is created. Although this preserves the dividing set, and hence, the partial open book, up to the relevant
notion of equivalence, this represents a fundamental change in the foliated boundary by introducing a
new pair of elliptic points. In what follows, therefore, we consider only stabilizations of the triple along
attaching spheres on B = 35** N d P*; any such stabilization may be achieved by a stabilization of the
original foliated open book at Sy.

Returning to the statement of the lemma, we note that Lemma 8.9 implies d P \ 9S* consists only
of intervals. We will show that there exists a sequence of stabilizations along 9 P** N S that ensures
the resulting S 4+ may be built up from each of the specified subsurfaces, and we then show that once
this property is achieved for a pair (S 4, X), it persists for the images of the pair under any further
stabilizations.
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First, we observe that as P and h(P*) are defined by cutting S along arcs, it is immediate that S
may be built up from P and i (P+). This also implies that if k > 0, then |0 P4 N 9S4| > 2.

According to Lemma 8.1, S* can be built up from S\ P exactly when the boundary of each component
of P intersects the boundary of S**\ P in at least two intervals. When we stabilize, each added
one-handle becomes part of P, so we may stabilize until P is connected. In the case, the observation
of the previous paragraph ensures that S can be built up from S\ P* whenever k > 0.

Now consider a map 4*: P4 — S that is the identity near 9 P4 N 9.S*. After stabilizing, we are free to
assume that #(P) is also connected, so the stabilized S can be built up from the stabilized S\ 7 (P*)
as above.

Finally, we consider the case k = 0, when the entire boundary consists of spheres, each of which
has the trivial foliation with two elliptic points. Suppose first that [0M | > 1. Since the topology of
the page remains constant for all ¢, the page is connected and the unique component of P satisfies
|0PA|N]3(SAN\ PAY| = [oM] > 1. i

Now we prove Proposition 8.4, the claim that any foliated open book may be positively stabilized to be
sorted.

Proof of Proposition 8.4 Recall from Section 5.3 that each sorting arc y,ét on §; can be understood as
the intersection between the page S; and the (un)stable submanifold of the critical point h,“f with respect
to a preferred gradient. If these arcs are disjoint, then the foliated open book is sorted by definition. On
the other hand, when the stable and unstable submanifolds of two critical points intersect, then these arcs
might become disconnected on the pages. In the following, we will consider sorting arcs in a nonsorted
foliated open book only on the pages where these arcs are still connected.

Given an abstract foliated open book ({S;}, &) for a three-manifold M with foliated boundary, we will
show that it admits a sorted stabilization ({S/}, /', {)/Iét/}).

Let j be the least index such that the sorting arcs are not disjoint on S;. Then )/j+ intersects one or more
Y~ arcs; let k denote the largest index such that y,~ N yj+ # . We will define a stabilization at S; to
remove this intersection; the process will introduce no new intersections, so inductively, it suffices to
prove the proposition.

As in the definition of abstract stabilization, choose an arc y on S; that connects to B near the endpoints
of yj+, follows «; to the endpoints of )/j+, and then runs parallel to yj+ except for one intersection in
the interior of yj+. The hypotheses on V7 ensure that y is disjoint from all sorting arcs while it runs
along o, and it intersects )/j+ exactly once. See the first picture of Figure 21.

Now perform the stabilization along y. Consequently, y;” undergoes a right-handed Dehn twist for each
i < j, removing the targeted intersection point. Note that this may remove other intersection points,
as well, but it cannot introduce new intersections between sorting arcs, so it may be repeated until the
foliated open book is sorted. O
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Figure 21: Stabilizing the abstract foliated open book along y removes intersections between
sorting arcs.

8.4 Preservation of the contact structure

In this section we prove that the operations turning partial to foliated open books and vice versa preserve
the contactomorphism-type of the associated contact structures.

Proposition 8.10 Suppose that the partial open book P = (S, P, h) is sufficiently stabilized and let
A(P) = ({Si73 1, h?)) denote an induced foliated open book. Then (M (P), £(P)) is contactomorphic to
(M (A(P)), E(A(P)).

As partial open books only define contact structures up to contactomorphism and gluing “/—invariant”
contact structures to the boundary, this statement is as strong as it could be with the given definitions.

We first prove the converse, which reads as follows:

Proposition 8.11 Suppose that the foliated open book A = ({S;}, h) is sufficiently stabilized and let
P(A) = (S4, PA, h') denote the associated partial open book. Then (M (A), £(.A)) is contactomorphic
to (M(P(A)),§(P(A)).

Proof We start by cutting each of the contact manifolds (M (A), E(A)), (M (P(A)),E(P(A))) into a
pair of cornered handlebodies which have convex boundary and isotopic dividing sets after smoothing.
The contact structures supported by the foliated and partial open books, respectively, restrict to each
handlebody as the unique tight contact structure compatible with this decoration, so it suffices to show
that the smoothed handlebodies coming from each structure have matching dividing curves.

For (S4, P4, hY), we consider the handlebody S x [—%, —%] and its complement in M (P(A)),

(SAx[-5.0])u@Ax[0, 1) U (S x[-1,-2])/~.

Just as in the proof of Theorem 7.1 we may embed each of these inside the product S’ x I, one of
the handlebodies used to construct the open book for an associated closed manifold. The tight contact
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Figure 22: Smoothing the handlebodies in (S APA RAY.

structure on this restricts to a tight contact structure on each of our handlebodies, and we examine the
induced dividing curves, applying standard disc decomposition arguments to show that there is a unique
tight restriction.

Near the binding, we proceed exactly as in Proposition 7.3. Smoothing the edges .S* x {—%} or
9S4 x {—%} creates a right-turning dividing curve; see the final image in Figure 18. However, when
smoothing (9 P4 x {0}) N (S x {0}) or (AP x {1}) N (SA x {—1}), the dividing curve turns left. See

Figure 22.

In the case of the foliated open book ({S;}, /), we choose the two handlebodies to be the sorted o Hj_o = M
and a product 1, H, = Sy x I. Recall that . H;_, was studied in Proposition 7.4 (as M), and we can
construct the dividing set on d(; H1—.) as in the proof of Proposition 7.3. Comparing the result to
Figure 22, one sees that the resulting dividing sets are isotopic to the dividing set on o H{_,, as desired.
In the case of each of the product handlebodies, the standard proof applies. O

Proof of Proposition 8.10 Recall from the discussion after Lemma 8.2 that if we start with a sufficiently
stabilized partial open book P and construct the foliated open book A(P) = ({S lp 1, h7), we can choose the
cutting arcs and their order so that the foliated open book is automatically sorted at S 83 . The construction
of Section 8.2 then recovers the partial open book P without further stabilization, so the result follows
from Proposition 8.11. |

8.5 Existence of foliated open books

In this subsection we continue working with the notation established in Section 5.3. Beginning with a
sufficiently sorted Morse foliated open book, recall that the subsurfaces S; \ R; are diffeomorphic for all
and that the associated partial open book is defined by considering Ry C Sy = S*.
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Figure 23: R;t C S; may be isotoped through M to Q,jE C 0M (blue) and connected by twisted
bands (red).

In fact, all of the R; can be read off from F3:

Lemma 8.12 For a sufficiently stabilized Morse foliated open book M = (B, , F5, V1), the diffeo-
morphism type of the subsurfaces R; depends only on F3.

The proof of this lemma is essentially a generalization of Lemma 8.8:

Proof Fix a regular time ¢. Since V7 is preferred, each leaf I of 7~!(¢) contains disjoint subintervals
Iy CIsuchthatey € Iy and I'N y,ﬁc C I+. Define the subsets Rfc of R; by
RS = N(Ul+ u U y;r) and R; = N(UI_ v U yj_).
e+ 7 (hj)elz,1] e— 7 (h;)el0,¢]
Thus R, \ (R;r U R}") is just a union of strips S = N(/ \ (/4 U 1-)).
As a next step we will push these subsets RtjE to the boundary of M. Let & be an index 2 critical point
with 7 (hj) = tjf“ €[z, 1]. Then WS (hj) C =~ 1[0, l}"] is a cornered disc with boundary yj+ Uw?*(hj)’, where
again w®(h;)’ denotes the stable manifold of /; with respect to Vi on 7 1[0, t;‘]. (This employs the same
slight abuse of notation as in Section 5.3.) Then we can isotope yj+ through W¥(h;) to w*(h;)’. In the
neighborhood of dM we can “turn up” the half-neighborhood of 7. in S; into an upper half-neighborhood
N4(I4+) C 77 Ut,t + €], keeping the corners. These two isotopies combine to an isotopy of R} into
of =UnN+apu |J  N@ ).
et 7(hy)elt,1]
Observe that the orientation of Q;r agrees with the orientation of dM. Similarly, we can push R into
or =Un-tHhu {J N (k).
e— 7 (h-)€l0,1]
where N_(I_) is a lower half-neighborhood of 7_ in 7~ ![¢ — &, #]. The orientation of Q7] is opposite to
the orientation of dM.

To recover the surface R;, we must isotope the strips Sy to connect Qti. This can be done via a twist
that keeps 71 (¢) N Sy fixed. See Figure 23. This construction allows us to reconstruct R, from the

foliation F%, proving the statement.

For the critical values, R;= is the degenerate surface between R;+_, and R+ 4. O
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Recall that the union of the R; in M, denoted by R, is a Vr—invariant neighborhood of the union
of dM \ (B x I') and the stable and unstable critical submanifolds. Since each critical submanifold is
a cornered disc with half its boundary on dM, the submanifold R can be compressed inside M to a
neighborhood of dM and R, N dM recovers the foliation F5 cut open at ¢ = 0. As usual, we choose
regular times separating the critical points 0 =ty <] <--- < t;k <ty =1, and we write R; = Ry;.
Then up to diffeomorphism, the set { R;} contains all the information about R and R;. In fact, this is the
data needed to describe a partial foliated open book, which is an amalgamated foliated and partial open
book; we examine these objects and their applications in a future paper [25].

As motivation for the following, imagine trying to recover M (A) from M (P(A)), where P(A) is the
partial open book associated to the sufficiently stabilized .A. We will try to mimic the gluing required
for this, but in the case of a partial open book not necessarily obtained from a foliated open book. More
precisely, we will describe how to glue R along dR \ dM to the boundary> of S x [—1,0]U P x [0, 1]/~
for some partial open book (S, P, i) while respecting the foliations coming from R; and P x {¢t}. To
move forward, we examine a further property of the original gluing which will be a key to the general case.

The dividing curve I'(P(A)) on (M (P),£(P), [ (P)) is obtained as (354 \ dP*) U (P4 \ 0S4). Thus
954\ dP* intersects each component I'; of I' in |[; N 7~1(0)| intervals. The next lemma ensures that
we may prescribe these intersections for a partial open book.

Lemma8.13 Let (M, &, F¢) be a contact manifold and assume that F is strongly topologically conjugate
to an open book foliation F5 without circle leaves. Then there is a partial open book (S, P, h) supporting
£ so that 3S \ 0P intersects each component T; of T in |I; N 771 (0)| intervals.

The proof of this lemma is a strengthening of the proof of Lemma 8.9.

Proof Recall from [14, Theorem 1.1] that the construction of a partial open book requires a polygonal
decomposition K" of dM, where K’ is a Legendrian graph and the boundary of each two-cell of M \ K’
intersects I" in exactly two points. Any such decomposition (with some additional choices explained in [14])
gives a partial open book decomposition for (M, &, T') in which 05 \ dP intersects each component T’
of I in |I'; N K| intervals.

Define K’ = G4+ UG__ U 7~ 1(0). Then we clearly have |I; N K’|=|T; N 7~1(0)|. So we need only
verify that K’ is the one-skeleton of a polygonal decomposition. For this we need each component of
dM \ K’ to be a disc whose boundary intersects I" in two points.

Since the graph G411 is the spine of R4, the components of R \ G141 are all annuli. And as each
component of I intersects 7 1 (0), the components of R+ \ (G++ U 771(0)) are rectangles D+ with a
3Here, and in the rest of the paper, we construct the manifold from the data of a partial open book using the equivalences

(x, 1) ~ (h(x),—1) and (x,t) ~ (x,t") for x € dS and ¢, ¢’ € [-1, 0]. This yields a manifold diffeomorphic to the one formed by
further collapsing dP \ 0.5 x [0, 1] to a collection of intervals.
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pair of opposite sides in 7! (0) and the other two sides in I" and G++. The domains of M \ K’ are
obtained by gluing together two such rectangles D4 and D_ along their common boundary in I'. This
gives a polygonal domain D intersecting I" in two points, as required. |

Now we are ready to prove the existence result stated as Theorem 3.12.

Proof of Theorem 3.12 Let I' be the dividing curve for F¢ and F%. By Section 8.5, we can find a
partial open book P = (S, P, h) for (M, £&,T") so that in the identification ' = (3.5 \ dP) U (dP \ 95),
I'; intersects P \ S in exactly |7 ~1(0) N I';| intervals.

Construct as above the surfaces R; for F5. Define

SF = PUspvasouar i1 Ris
where the identification of dP \ S with dR; \ 7! (#;) respects the components of I';.
To define the map hP: :S? Y fk we have to move between the different identifications of 5(7; and S fk:
Sy =PURy @ PURy=PU(S\P)=S,
S =PURy = PUR_ =h(P)U(S\h(P)) =S.

Under these identifications, fzp| p:=h: P §. Similarly, fzp| R, 1s defined as the embedding into S
after we identify Ry with R_.

Since R; is obtained from R;_; by cutting or gluing, and since the rest of §l7> and :S’? \ R; = P are
unchanged, the tuple A(P) = ({S7}, ") defines a foliated open book.

Notice that A(P) = ({§Z7j }, ]’1‘7:) is sufficiently stabilized and the partial open book associated to it is
exactly P. This means that the contact three-manifold supported by .A(P) is contactomorphic to M (P).
Furthermore, the foliation on dM (A(P)) comes from R;, so Fe (A(P)) is strongly topologically conjugate
to Fz. There is thus a contactomorphism between M and M (A(P)), and the image of the abstract
foliated open book defines an embedded foliated open book on (M, &, F), as required. |

8.6 Proof of Giroux Correspondence

The results in this section so far have described a sequence of modifications that may be made to partial
and foliated open books via stabilization. Here, we apply these to prove the Giroux Correspondence for
foliated open books, which appeared earlier as Theorem 6.9.

Proof of Theorem 6.9 Suppose that A = ({S;}, /) and A" = ({S/}, 1)) are abstract foliated open books
for the same (M, &, F¢). We may assume that each is sufficiently stabilized and that it is possible to
define the corresponding partial open books P(A) = (SA, PA, i) and P(A') = (SA, PA, h*A). As
described in the previous section, we can recover the original abstract foliated open books A and A’ from
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the partial open books by gluing the R; determined by the foliation to the pages. Recall that this gluing
is associated to an identification of P4\ dS4" with dR; \ ' (#;). This determines an identification of
dPA\ 9S4 with 9PA" \ 9S4, which we will keep in mind as we proceed.

Using [10], the partial open books P(A) and P(A") may be constructed from a Legendrian one-skeleton K
and K’ as described in [14]. These graphs intersect dM on I', and the intersections K* N T are related to
aPA \ S A* respectively. Using the identification in the previous section, fix an identification of the
endpoints of K and K’ and assume that in a small neighborhood N (dM) =~ dM x I, the graphs K and K’
are each of the form | J(p;j x I) for some p; € I'. Now apply the argument of [14] to find a common
refinement of the Legendrian graph, with the modification that K and K’ already agree near N (dM).
This yields a common stabilization of the two partial open books while preserving the Legendrian graphs
in N(dM). This ensures that dP \ 0.5 is constant during the process, so at each stage we can define the
corresponding abstract foliated open book by gluing R;. Since all the added edges were internal, they
may be realized as stabilizations of the foliated open books. |

Notice that in the above argument all foliated open books were obtained from partial open books, and
thus were automatically sorted. Consequently, we get a stronger Giroux Correspondence:

Theorem 8.14 (Giroux Correspondence for sorted foliated open books) Any pair of sorted foliated
open books supporting (M, &, F¢) are isotopic after a sequence of positive stabilizations. Moreover, each
of the intermediate foliated open books in this sequence is sorted.
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