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Locally equivalent Floer complexes and unoriented link cobordisms

ALBERTO CAVALLO

We show that the local equivalence class of the collapsed link Floer complex ¢ C FL° (L), together with
many Y—type invariants extracted from this group, is a concordance invariant of links. In particular, we
define a version of the invariants Y7 (¢) and v (L) when L is a link and we prove that they give a lower
bound for the slice genus g4(L).

Furthermore, in the last section of the paper we study the homology group HFL’(L) and its behavior
under unoriented cobordisms. We obtain that a normalized version of the v—set, introduced by Ozsvith,
Stipsicz and Szabd, produces a lower bound for the 4-dimensional smooth crosscap number y4(L).

57K10, 57K18

1 Introduction

Hom [2017] introduced an equivalence relation on the knot Floer complex CFK®°(K) called stable
equivalence. Namely, we say that two knots are stably equivalent if and only if their chain complexes
become filtered chain homotopy equivalent after adding some acyclic complexes. A very important result
of [Hom 2017] is that if K is concordant to K5 then the complex CFK° (K1) is stably equivalent to
CFK®°(K3), which made it possible to prove that many knot invariants coming from CFK°(K) are
indeed concordance invariants; see [Alfieri 2019; Allen 2020; Hom and Wu 2016; Kim and Livingston
2018] for some examples.

Another relation on knot Floer chain complexes was given by Zemke [2019a]: two knots K; and K> are
called locally equivalent if there exist two maps
f:CFK®(K{) > CFK®°(K;) and g:CFK*(K;)— CFK*®(K;)

which preserve the filtrations (both the Alexander and algebraic filtration) and induce filtered isomorphisms
in homology. Even though those two relations appear to be very different from their definition, we can
actually show that they coincide. We recall that this theorem was proved in the involutive setting by
Hendricks and Hom [2019].

Theorem 1.1 Let K and K5 be two knots in S3. Then CFK (K ) is locally equivalent to CFK > (K>)
if and only if they are stably equivalent.

For the purpose of this paper, the local equivalence relation has the advantage that it can be used in
the same way for links. Let us consider the chain complex ¢ CFL®°(L), defined from CFL™(L) by
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3236 Alberto Cavallo

collapsing the variables Uy, ..., U, to U and taking the tensor product with F[U, U '], where here IF
always denotes the field with two elements; see [Ozsvath and Szab6 2008; Ozsvath et al. 2015]. We
equip ¢ CFL®°(L) with a filtration %, obtained from the algebraic filtration and the (collapsed) Alexander
filtration; such an % descends to homology, so we can define the filtered group FcHFL°(L). Based on
an intuition of Alfieri [2019], we consider % as indexed by some particular subsets S of the plane, which
he calls southwest regions, satisfying the property that if (X, y) € S then each (x, y) such that x < X and
y < y isin S; a more precise definition is given later in Section 2.2.

We recall that two n—component links are concordant if there is a cobordism between them consisting
of n disjoint annuli. Then the local equivalence class of ¢ C FL® (L) and the filtered homology group
cHFL(L) are a concordance invariant in the following sense.

Theorem 1.2 Suppose that L1 is concordant to L. Then there are chain maps
cCFL*®(Ly) 2 ¢cCFL*®(Ly)

which preserve & and induce an ¥—filtered isomorphism in homology. In particular, the restrictions of
such isomorphisms give identifications

FS cHFLF (L1) =5 F5cHFLF (L2)
for every d € Z and southwest region S of 7.2.

The strategy of the proof of this result consists in decomposing a concordance into standard pieces and
then a careful usage of the maps introduced by Sarkar [2011] on grid diagrams. In fact, starting from
Sarkar’s work, we can construct maps induced by some specific cobordisms. Some of these maps were
already used by the author in [Cavallo 2018].

Remark 1.3 Zemke [2019c¢], using different techniques, also defined maps induced by (decorated) link
cobordisms, which conjecturally coincide with the ones presented in this paper. We can use such maps to
give another proof of Theorem 1.2: namely, according to [Zemke 2019¢c, Theorems A and C] every link
concordance induces a graded isomorphism in link Floer homology; while the fact that the F—filtration is
preserved follows from [Zemke 2019b, Theorem 1.4]. This argument is similar to the one in [Zemke
2019a], which proved a version of Theorem 1.2 for knots.

Theorem 1.2 allows us to define some numerical concordance invariants for links; including a generalization
of Alfieri’s Yg [2019], the v —invariant of Hom and Wu [2016] (see also [Rasmussen 2003]) and the
secondary upsilons, defined by Kim and Livingston [2018]. We briefly describe how to extract some of
these invariants.

Write ¢ C FLS° (L) for the filtered chain homotopy type of the link Floer complex of L. Once we fix a
filtered basis, we can represent such a model complex in the plane by (j, A), where j and A represent
the minimal algebraic and Alexander filtration level, respectively, and * is the Maslov grading of each
generator. We use the fact that dimp %/ SO}C%%&BS" (L) = 1—see Theorem 2.1 — and then compute
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how far we can shift the region S while being able to find a generator for such a homology class in
cCFLE(L). In this way, given a southwest region S, we associate a real number to it that we call Yg(L);
the complete definition can be found in Section 2.2.

In the case of knots, Ys(L) is a normalization of the invariant of Alfieri [2019]. This choice was made
because, say A; is the region of the plane consisting of the pairs (j, A) with At + j(2 —t) <0, we have
Y4,(K)=Tg(t) for tel0,2],

and the latter is the Y—function of Ozsvéth, Stipsicz and Szabd [Ozsvith et al. 2017a].
Moreover, since there is a unique homology class in FYU SO cHFL (L) \ FS"BeHF L, (L), the
same procedure allows us to define another family of invariants which we call Yg(L). Clearly, for

knots we have Y5 (K) = T§(K) for every S. The following proposition summarizes some of the main
properties of Y (L).

Proposition 1.4 Suppose that L, L1 and L, are links in S and L has n components. Then Ys(L) and
Y5 (L) are concordance invariants and
(1) (L) = =" (0) and t*(L) = —(Y})'(0), where the invariants t(L) and t*(L) are defined in
[Cavallo 2018];
(2) Ys(L)=7Y_s(L)and YG(L)="Y*g(L) forany S, where —S is the region obtained by reflecting
S along the line {j — A = 0};
(3) Ys(L)="Ys(—L)and Yg(L) = Yg(—L) for any S, where —L is the reverse of L;
4) Ys(L*) = —T% (L), where L* is the mirror image of L and (S is the topological closure of the
complement of the region obtained by reflecting S using the central symmetry of R? at the origin;
(5) Yr,#L,(t)=7Yr,(t)+ Y1,(t) and Tzl#Lz(t) = Tzl )+ T]’fz(t) for t €[0,2], where L1 # L,
is a connected sum of L1 and L;
©6) YrL@) = %(1 —n+o(L))-t and Y[ (t) = %(n —1+0o(L)) -t for t € [0,1] whenever L is
quasialternating and o (L) is the signature of the link as in [Gordon and Litherland 1978].

We prove that each Y5 (L) gives a lower bound for the slice genus g4(L), which as usual is defined as
the minimum genus of a compact, oriented surface ¥ properly embedded in D* such that 9% = L. We
recall that, since we can add tubes between surfaces in D# without increasing the genus, we can suppose
that any such X is also connected. Moreover, in Section 4.4 we define the notion of distance A g (m) from
the point (0, m) to the centered southwest region S, where centered means that (0, 0) € 0.5; therefore, we
have the following result.

Theorem 1.5 If L is a link in S with n components then
—Ys(L) Shss(ga(L)+n—1) and —Yg(L)<h+s(ga(L))
for every centered southwest region S of R?. In particular, for the classic Y —functions,

—Yp(t) <t(ga(L)+n—1) and —7Y;(t)<t-ga(L) fortel0,1].
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Now let us consider the southwest regions V; for k > 0, defined as the subset of the plane consisting
of the pairs (j, A) such that j <0 and A < k. We can now define the invariant v (L) as the minimum
k such that —2- V7, (k) := Yy, (L) = 0. An equivalent definition of v (L) was given in [Cavallo 2018,
Section 4]; although, the invariant was denoted by v(L) and the concordance invariance was not proven.

Proposition 1.6 Suppose that L, L1 and Ly are links in S3, and L has n components. Then v (L) is a
concordance invariant,

0<t(L)<vr(L)<ga(L)4+n—1 and v (Li#Ly)<vT (L) +vT(Ly).

Ozsvith, Stipsicz and Szabé [Ozsvith et al. 2017b] introduced the homology group HFL’(L) that they
called the unoriented link Floer homology group. From H FL’(L) they define the v—set of L which is a
set of 2”1 integers and is an isotopy invariant of unoriented links after a suitable normalization.

Moreover, for knots they showed that v(K), which coincides with Tx (1) and is the only element of the
v—set in this case, gives a lower bound for the 4—dimensional smooth crosscap number y4(K), which is
the minimum first Betti number of a compact surface F properly embedded in D* and such that 0F = L.
Note that this time F is not necessarily orientable (and always nonoriented).

Starting from these results, in this paper we consider a slightly different version of HFL’(L) and we
prove that it is an unoriented concordance invariant. Since it shares much information with the original
group and we only use this new version, we denote it in the same way.

We say that a collection of n disjoint annuli ¥ is an unoriented concordance between L1 and L,, which
are n—component links, if 3 is a concordance between L and L/, obtained by changing the orientation
of some components on L and L, respectively.

Theorem 1.7 The group HFL'(L1)|[%
ever L1 is unoriented concordant to L,.

O(Ll)]] is j—filtered isomorphic to HFL'(L>) [[%O’(Lz)]] when-

From Theorem 1.7 we obtain that the wideness of the v—set, |Umax(L) — Umin(L)|, and the numbers
Umax (L) — %O’(L) and vpmin(L) — %O’(L) are unoriented concordance invariants of L. Using the same
techniques in Section 4.4, we show that such invariants give lower bounds for yik)(L), a version of the
4—dimensional smooth crosscap number for links. In fact, we say that yik)(L) is defined as the minimum
first Betti number of a compact surface, properly embedded in D*, which has k connected components
and is bounded by L.

Theorem 1.8 Say the n—component link L in S3 bounds a compact, unoriented surface F, properly
embedded in D*, with k connected components. Then

Ik — 1= Umax(L) + vin(L)] < 7(L).

A corollary of this theorem is the following result, which was already proved in a different way by Donald
and Owens [2012].
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Corollary 1.9 Every quasialternating link L can bound an unoriented, compact surface F, properly
embedded in D*, only when the Euler characteristic y(F) is at most equal to one.

Theorem 1.8 gives a bound that involves the wideness of v(L). We give other inequalities in the following
theorem.

Theorem 1.10 Consider an n—component link L in S3 which bounds a compact, unoriented surface F,
properly embedded in D*, with k connected components. Then

k k
omax (L) = 20 (L) =2k —m)| <y (L) and  |umin(L) = o(1) = 12—k —nm)| <y P (1)
In particular, when k = n,
max (L) — 2o (L) < y(L)  and  [vmin(L) = Lo (L) +n—1] <y (L),

and whenk =1,
lui(L)—Lo(L) -2 —m)| <yPw)

for every v; (L) in the v—set of L.

We apply this result to the family of links L, = Tz*, i T;’i; namely, the connected sum of the mirror
of the torus link 77 4 and n torus knots 73 4. In particular, we show that {L,} for n > 0 is a family of

2—component links such that yil) is arbitrarily large.

Corollary 1.11 Given the link L, = Tz"‘,4#Tf”i, we have yiz)(Ln) =n+1 and yil)(Ln) >n forn=0.

The paper is organized as follows: in Section 2 we summarize the construction of the link Floer complex
¢CFL*(L) and we describe how to define the filtered homology group %S ¢ #%%°° (L) and the invariant
Ts(L). Moreover, we prove the equivalence between stable and local equivalence of knot Floer chain
complexes stated in Theorem 1.1. In Section 3 we prove the concordance invariance of ¢ CFL*(L).
In Section 4 we define the other T—type invariants and we prove some of their properties, including
Proposition 1.4. We also give the proof of Theorem 1.5, which describes our bound for the slice genus.
Finally, in Section 5 we introduce the group HFL’(L) and the v-set of L, showing that they give
unoriented concordance invariants. Moreover, we study their behavior under unoriented cobordisms and
we prove the lower bounds for yik)(L).
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2 Link Floer homology

2.1 Chain complex and homology

Throughout the paper we assume that the reader is familiar with the construction of the link Floer homology
chain complexes, both when links are represented with multipointed Heegaard diagrams [Ozsvath and
Szab6 2004a; 2004b; 2008] or grids [Manolescu et al. 2007; Ozsvéth et al. 2015]. We only recall the
main features.

Let us consider & = (X, «, B, w, z) a multipointed Heegaard diagram for an oriented n—component link
L in S3. The chain complex ¢ CFL>® (%) is the free F[U, U~ !]-module over the intersection points
T =Ty NTg in the symmetric power Sym(X, r, B) — see [Ozsvith and Szab6 2004a; 2008] — where IF
is the field with two elements and w and z are two n—tuples of basepoints in X; see [Ozsvath and Szab6
2008]. The differential 0~ is defined by counting pseudo-holomorphic curves on some special [Ozsvéth
and Szab6 2008] domains in Sym(X, «, 8) with Maslov index u equal to one [Lipshitz 2006; Ozsvath
and Szab6 2004b]; denote the set of such domains by m5. Then for every intersection point x we can

x=) Y mig)- U@y,

€T pema(x,y)
w(p)=1

where m(¢) € F depends also on the choice of an almost-complex structure on Sym(X, «, 8) and

write

0<nw(@) =ny,($)+---+ny,(¢) is the multiplicity of the basepoints w in ¢. Moreover, we say that
Im(UF p)=UF 0 p
forany x € T and p € cCFL*(9%).

For every x € T we can assign an absolute Z—grading, called Maslov grading [Ozsvath and Szabé 2008],
which is denoted by M (x) and can be extended to the whole complex by taking

MU p) = M(p) F2
for any p homogeneous. We then have

cCFL™® (@) = P cCFLY (@)
deZ
as [F—vector spaces; moreover, there is a map
d;:¢cCFLY (%) - ¢cCFLY (D)
for any d € Z.

The chain complex ¢ C FL°° (%) comes with a natural increasing filtration, usually denoted by the algebraic

filtration j, defined as
jIcCFL® (@) =U"-cCFL™ (%),

where cCFL™ (@) is the free F[U]-module over T. It is easy to check that the differential 9~ respects ;.
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We define the homology group

Kerd?,
CHFL®(L) = P cHFLF(L) = P ——4-.

(L) d@ (L) glmagﬂ
Since the Maslov grading and the differential only depend on w, such a group, together with the
algebraic filtration, is isomorphic to HF*(S3,n) =~ F[U,U _l]zn_l, where the n denotes the number of
basepoints in the Heegaard diagram. The filtration j descends to homology in the following way. Say
ng:Kerdy — cHFLF (L) is the quotient map; then

JIeHFLF (L) = mg(Kerd; N jTcCFL™® (D)),

which is an F—subspace of c#FZL5’(L). More specifically, we have the following theorem.

Theorem 2.1 Say the link L has n components. Then
(d+k)/2 .cpapcpoo ~
J C%J"gd (L) ~p IF(nkl)
j(d+k)/2—1c%@§£§°(L)

whenever d =k mod 2 and 0 < k < n — 1. It is zero otherwise.

Proof From [Ozsvath and Szab6 2008] we know that HF ™~ (S 3 n) has on—l generators such that exactly
(";1) of them have Maslov grading —k. Since

HFX(S?.n) =gy HF; (S*.n) @puy FIU. U,

one has o2
F2 ifn=>2,

cHFLP (L) =f | F if n =1 and d is even,
{0} if n =1 and d is odd,

and this determines the Maslov gradings.

Now we want to compute the filtration j. We note that all the generators of HF~(S>,n) have minimal
j—filtration level zero. Hence, the statement is true for j9; in fact if we substitute d = —k in then we
obtain the right distribution of the Maslov gradings. At this point, in order to prove the theorem, we only
need to observe that the multiplication by U*! drops the minimal level of the algebraic filtration by %1
and the Maslov grading by +2. |

Figure 1 shows the distribution of the Maslov grading and the minimal j-level for two- and three-
component links.

2.2 The Alexander and the F—filtrations

In the same way as the Maslov grading, we can assign to every x € T another absolute Z—grading: the
Alexander grading A(x), which also is extended to ¢ CFL®° (%) by taking

AUE p) = A(p) F 1
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Figure 1: Maslov gradings and algebraic filtration for 2— (left) and 3—component links (right).
The algebraic level j is on the x—axis and the Maslov grading is on the y—axis.

for any p homogeneous. We recall that in [Ozsvaith and Szabd 2008] the Alexander grading is introduced
as a multigrading 4 (x) = (A1(x), ..., A,(x)); in this paper we define A(x) := A1 (x) +---+ An(x).

In this case, the differential 3~ does not preserve A(x); for this reason we introduce the Alexander filtration.
Let us consider the IF[U |-subspace #*c C FL°° (%) generated by all the elements p in ¢ CFL® (%) such
that A(p) <s. The dfiltration is an increasing filtration like j and it is such that

2-1) {0} = A2cCFLY (@) C++- C A’ cCFLY (@) = cCFLY (%),

which follows from [Ozsvath and Szabé 2008]; moreover, it is again easy to show that it is preserved
by 0~. Note that § and s depend on d.

We define & for now as a double-increasing filtration. More specifically, we say that
F'ScCFL® (@) = j'eCFL® (@) NA*cCFL™® (@)

and clearly 0™ also respects %. We now extend the F—filtration on the homology group, in the way that it
is indexed by southwest regions of the lattice Z? (resp. the plane R?), using an idea of Alfieri [2019].
A southwest region S C Z? (resp. R?) is a subset of Z? (resp. a topological submanifold of R?) such
that if (£,5) € S then s <5 and ¢ <7 imply (¢, s) € S. Moreover, we require S to differ from & and Z?
(resp. R?).

Consider again the map 7, : Kerd; — cHFLT (L). Define
Kerd; ¢ =Kerd; N Span{F ¢ CFLY (D) | (t.s) € S} :=Kerd; N Q?SCCFLZC’(QD).

Then we say that
FS HFLT (L) = mg(Kerd g) C cHFLT (L)
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A

7'

(t9)

Figure 2: The southwest region W;  is the subset {(j, 4) | j <t or A <s} of R2.
for any d € Z. Note that the level F"* corresponds to the southwest region V; s = {(j, A) | j <t, A < s},
while j? := FUSH and of* := FASS} correspond to {(j, A) | j <t} and {(j, A) | A < s} respectively.
The filtration & is increasing in the sense that if S; C S are two southwest regions then

FSHFLL (L) C FS2eHFLP(L).

Moreover, it has the following property.
Proposition 2.2  Fix an integer d, denote by W; s the southwest region in Figure 2 and take V; g as before.
Then there exists a pair (¢, s) such that @SC%@SE? (L) = {0} for every southwest region S C W; 5.
Furthermore, there is another pair (¢', s") such that @Tc%@ifgo (L) = c#FLJ (L) for every southwest

regionT D Vypr s.

Proof Since cCFL>® (%) is finitely generated as an IF[U, U ~!]-module, cCF L% (D) is a finite-dimen-
sional F—vector space. Then there are integers A, the minimal Alexander level containing a generator
of cCFLZ (%), and B, the same considering algebraic levels, by (2-1). If we choose 7 < B and s < A
then %W’JCCFLZO(QZ)) =~ {0} and so 9WZ~SC%@$2° (L) is also zero. The first claim now follows from
the fact that & is an increasing filtration; for the second one we reason exactly in the same way. |

From [Ozsvath and Szabé 2008] we have the following important theorem.

Theorem 2.3 (Ozsvath and Szabé) The F—filtered chain homotopy type of ¢ C FL°° (%), together with
the Maslov grading, is a link invariant of L, where 9 is a Heegaard diagram for L.

For simplicity, from now on we may denote our chain complex by ¢ C FLS° (L), implicitly referring to any
of the representatives of the filtered chain homotopy type. This result guarantees that also the F—filtration
on cHFLL is a link invariant, justifying our notation.
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We call a graded isomorphism F between the homology groups of two links L and L, a filtered
isomorphism if F and its inverse F~! both preserve the filtration %. This is equivalent to say that F
restricts to isomorphisms

FS HFLT (L1) =F F° cHFLT (L)
for every d € Z and southwest region S of Z2.

When L and L, are isotopic links, Theorem 2.3 implies that ¢ CFL®(Ly) is locally equivalent
to cCFL*(L,), following the notation of Zemke [2019a]. This means we can find chain maps
f:cCFL®®(L1) - ¢CFL®°(L3) and g: cCFL*°(L3) — ¢CFL®(L1) which both preserve ¥ and
induce F—filtered isomorphisms between ¢ #FF£>°(L1) and cHFL>°(L>).

Corollary 2.4 Suppose that the link L is isotopic to the link L, in S3. Then there is a local equivalence
between cCFL®°(L1) and cCFL*°(L,).

Note that we can assume f to be a chain homotopy equivalence, but in general a local equivalence is
not necessarily an F—filtered chain homotopy equivalence. This would happen if the chain homotopies
between f and its homotopy inverse also preserve %.

We call a southwest region S of R? centered if (0,0) belongs to the boundary 35 of S. Consider
Sk ={(t.s) eR* | (t + 3k,s + 3k) € S},

where k € R. We define the invariant Yg(L) as follows. Given a centered southwest region S of R?, we

say that
Ys(L) := max{k € R | F5k cHFLP (L) D F SV cHFLL(L)}.

We recall that the F-level {j < 0} coincides with the level j® of the algebraic filtration. Note
also that Theorem 2.1 implies dimp ¢cHFLG°(L) > 1 for links with three or more components, but
dimp Ft/ SO}C%%&BS" (L) is always equal to one. For this reason, in the definition of Y, we need the
region S not only to contain a generator of the total homology in Maslov grading zero, but also that
such an element is homologous to one which lives in the algebraic level ;.

Corollary 2.5 The real number Y(L) is a link invariant for every southwest region S of R2.
Proof This follows immediately from Proposition 2.2 and Corollary 2.4. |
2.3 Duality and mirror images

Let us start this subsection with a Heegaard diagram % for an oriented link L in S3. As we recalled in
Section 2.1, from % we obtain the chain complex (¢ CFL® (%), 07~). We now define the corresponding
dual complex (¢ CFL*>(%)*, d;) as follows.

The space c CFL*®(%)* as an F[U, U ~!]-module is isomorphic to
(2-2) Homp g y—17(cCFL™® (@), F[U, U™)).
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A A

' A

Figure 3: The dotted boundary in the picture on the right is not part of ¢S

If x is an intersection point then its dual x* is the functional which sends x into 1 and the other intersection
points into 0; and this implies p* € cCFL>®(%)* can be defined by F[U, U ~!]-linearization of the dual
of the intersection points. More specifically, we say that

cCFLY (9)* := (cCFL%;(2))* = {p* € cCFL*®(%)* | 1 € p*(¢cCFL; (%)) implies m = —d }..

Notice that
¢CFL®(@)* =g @) cCFLY (%)*.
dezZ

but c CFL®(%)* 2r Homp (¢ CFL%®(%),TF). In particular, U*! p* := (UT! p)* and thus
MU' p*) = M(UT' p)*) = -MUT'p) = —M(p) F2= M(p*) 2
as expected.

We can also define the dual filtration #*. In order to do this, we introduce the concept of inverse ¢S
of a southwest region S in Z? (resp. R?). We take ¢S as the complement of the image of S under the
symmetry centered in the origin of the plane; see Figure 3 for an example.

Lemma 2.6 If S is a southwest region then (S is also a southwest region.

Proof The mirror image of S is a northeast region. The complement of a northeast region is a southwest
region; in fact, if (x, y) € ¢S and (¥, y) ¢ ¢S with X < x and y < y then (X, y) belongs to the northeast
region (¢tS)¢, which means that (x, y) is also in (¢.5)¢. This is a contradiction. |

The dual filtration is defined as
(F)ScCFLP (@)* := AmFScCFL®,(%) = {p* € cCFLY(@)* | p*(F*ScCFL*, (%)) = 0}

for any southwest region S. We observe that if S” C S then ¢S C ¢S” and so Ann FS" « Ann F*S. This
means that * is still an increasing filtration.
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The only missing part in the dual complex is the differential. We introduce 90, as follows. For every
x* € cCFL®(@®)* and y € cCFL*®(9),

(0, x™)(y) =x*(07y).
Moreover, we take 0, (Up*) = U -9, p*.

Lemma 2.7 The map 0, is a differential, drops the Maslov grading by 1 and preserves the filtration F*.

Proof First,

0y (0 X™(y)) = (0,x™)(07y) =xT(0 03" y) =0=0()
for any y € ¢ CFL®(%). For the second claim, suppose p* € cCFL(%)*. Then 3, p*(q) = p* (0™ ¢q),
soif g € cCFLi°d+1(QZ)) then 07q € cCFL>,(9). In addition, if r ¢ cCFLSod_H(Qb) is homogeneous
then 0, p*(r) = 0 and this implies

0 p* =0, p*lccFrL>,, @€ (cCFLZ, ()" =cCFLZ | (D)".
Finally, suppose that p* € (%*)SCCFLZO(QD)* for a southwest region S. Then p*(%‘SCCFL‘f’d (@))=0.
If g € #ScCFL™® %) then (37 p*)(q) = 0, since 3~q € FSc CFL®, (%), which implies that
d+1 * d
3, p* € AmFScCFL®, (@) = (F*)ScCFLY | (D)*. O

We can now prove that the dual complex we have just defined is related to the complex obtained from a
Heegaard diagram of the mirror image of L. We denote by 6;[[«] the graded complex given by €,;_,.

Theorem 2.8 If (cCFL® (%), d7) is the chain complex associated to a Heegaard diagram % for L then
there is a diagram 9%, representing the mirror image L™ of L, such that

(cCFL™®(%*),05.) = (cCFL®(@)*,97)[[1 —n]]

as F—filtered, graded chain complexes.

Proof If % = (X,a, 8, w,z) then ¥* = (—X, «, B, w, z). This identifies the domain ¢ € 7, (x, y) with
—¢ € ma(y, x); see [Ozsvath and Szab6 2008; Ozsvith et al. 2017a]. Moreover, using the formula in
[Lipshitz 2006] it is easy to check that ¢ and —¢ have the same Maslov index. The identification that
proves the theorem is x — x*, extended U —equivariantly to the whole complexes, where x* denotes the
dual of x as before. We first show that such a map is indeed a chain map:

(35* (x))*(t) — Z Z m(¢) - Unw(¢)y*(t) — Z m(e) - Unw(qﬁ)’

Y€T ¢pemr(y,x) pem(2,x)
w(g)=1 w(@)=1
0y (x* (1) = x*(071) = x*( > D, m@): U"w("’)y) = Y m@)-U™?,
YyeT ¢ema(t,y) pems(t,x)
w(@)=1 nig)=1

which holds for every generator ¢ of ¢ CFL® (%), and so the claim is proved.
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Figure 4: The complex ¢ CFL>(T3,3) is on the left and ¢ CFL (T} ;) on the right. Both chain
complexes are pictured ignoring the U-action. Black, white and gray dots represent Maslov
gradings 1, 0 and —1 respectively.

Now we argue that our identification correctly shifts the Maslov and Alexander gradings. Suppose that
M (x) = d. Then by definition it is M4 (x*) = —d. We observe that by [Ozsvith and Szab6 2008],
M(x) = M(y) = p(¢) —2nw($) = n(—¢) = 2nw(—¢) = Max(y™) — Mo« (x™)

with ¢ € m(x, ), and then Mg is reversed as a relative grading, which means Mg (x) = —d + ¢ with
¢ € Z. Now we use the fact that the Maslov grading is always normalized in the way that the top grading,
where the total homology is nontrivial, is zero [Ozsvath and Szab6 2008]. This gives ¢ = 1 —n as wanted.

Finally, consider x such that A(x) = s. As before, using the relation

A(x) = A(y) = nz($) —nw(4)
whenever ¢ € 5 (x, y) and the fact that the Alexander grading is always symmetric, we find Ag= (x) = —s.
We use the definition of %* to recover
Ax(x*) =min{a € Z | x* € (A*)*cCFL*(%)*}

=min{a € Z | x*(4™* " Le CFL®(@)) = 0}

=-max{a € Z | x ¢ A* e CFL® (@)}

=-min{a € Z | x € A*cCFL*® (%)}

= —g. O

Note that the identification in Theorem 2.8 also gives that the homology group of the mirror image of L
is the dual of the homology group of L, where the latter group is defined exactly as in (2-2). Furthermore,
as an example in Figure 4 we show the filtered chain complexes for the positive and the negative trefoil.

2.4 Local and stable equivalences of knot Floer chain complexes

Hom [2017] introduced a different equivalence relation for the complexes CFK*°(K) = ¢cCFL*(K),
when K is a knot. More specifically, we say that the Floer complexes associated to the knots K; and K>
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are stably equivalent if we have an J—filtered chain homotopy equivalence
CFK*®(K1)® A~ CFK*(K,)® B,

where A and B are acyclic chain complexes; in other words, Hx«(A) = H«(B) = {0}. Here we recall
[Hendricks and Hom 2019, Corollary 3.2], which shows that the notion of stable equivalence coincides
with the one of local equivalence, in the case of knots.

Lemma 2.9 (Hendricks and Hom) If CFK®°(K) is locally equivalent to CFK*°(Q) = F[U, U_l](o)
then
CFK®(K) ~TF[U, U ") @ 4,

where A is acyclic.

Thanks to the following result, we can see the local equivalence relation that we defined for link Floer
complexes in Section 2.2 has a natural generalization to links of the stable equivalences introduced by
Hom.

Proof of Theorem 1.1 If our chain complexes are stably equivalent then, in order to define the local

equivalence, we just have to take the restriction of the filtered chain homotopy equivalence and its inverse.
Conversely, let us suppose that f: CFK®°(K;) > CFK®(K>3) and g: CFK*°(K,) - CFK®° (K1)
define a local equivalence. Then

f®1d f’
CFK® (K1) ® CFK®(K»)* <—E CFK™®(K,) ® CFK®(K2)* <_T> F[U, U0

where both the pairs of chain maps give local equivalences. The existence of f’ and g’ can be proved in
the same way as in [Zemke 2019a, Lemma 2.18].

By Lemma 2.9,
CFK®(K2) ® CFK®(K2)* ~F[U, U ) & 4,
CFK® (K1) ® CFK®(K2)* ~F[U, U o) ® B,
where A and B are acyclic. Therefore,
CFK®(K)® A~ CFK®(K;) ® (CFK®(K2) ® CFK®(K,)*)
~ CFK®(K;) ® (CFK®(K{)  CFK®(K»)*) ~ CFK®(K,) ® B. O

It is important to observe that when L is a link with n components and 7 is at least two, the chain
complex cCFL*°(L)®cCFL®(L)* is not locally equivalent to the complex ¢ CFL*(()y,) representing
the unlink. In fact, these groups have different dimensions as F[U, U ~!]-modules. Furthermore, in
Section 4.3 we give an example of a link L for which such a chain complex is not locally equivalent to
any cCFL*®°(Oy) form € N.

Algebraic € Geometric Topology, Volume 24 (2024)



Locally equivalent Floer complexes and unoriented link cobordisms 3249
3 Concordance

3.1 Canonical form of oriented link cobordisms

The definition of link cobordism is standard in literature; in particular, for this paper the reader might
find helpful to look at [Cavallo 2018; Sarkar 2011]. We only recall that we always assume the connected
components of a smooth cobordism ¥ — S3x 1, from Lj to Lo, to have boundary on both the links.

Given a surface X as before, we assume for now that ¥ is oriented; we study unoriented cobordisms only
in the last section of the paper. Then 3 consists of four elementary pieces, three of them corresponding
to a critical point in the cobordism: birth, band and death moves; while the fourth is a link isotopy, which
represents a piece with no critical point. Band moves come in two types: split, if the move turns one

component into two, and merge moves, when two components are joint into one.

For the purpose of this paper, it is more useful to consider what we call extended birth and death moves.
These are the composition of a birth and a merge move and of a split and a death move respectively;
see Figures 8 and 11. In addition, we call a forus move the composition of a split move with a merge
move which rejoins together the newly created components; see Figure 6. Hence, if L; has n; fori =1,2
components, while ¥ has k connected components and genus g(X), then the canonical form of X is the
composition (up to isotopies) of b extended birth moves, n; —k merge moves, g(X) torus moves, 1, —k
split moves and d death moves in this specific order. This implies that ¥ can be arranged as shown in
Figure 5; see [Cavallo 2018].

When L1 and L, both have n components, 3 is a concordance if it is the union of n disjoint annuli ¥;,
which means that each X; is a knot concordance between the i components of the two links. From
Figure 5 we immediately see that in the case of a concordance there are no torus moves (g(X) = 0). This
means that the canonical form of a concordance can be decomposed into three standard pieces: extended
birth moves, isotopies and extended death moves.

Figure 5: Canonical form of oriented cobordisms between two links.
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T

Figure 6: A torus move corresponds to two consecutive band moves on the same component.

In this section we define maps which relate the chain complexes of the links, this time constructed using
grid diagrams, before and after each of these moves. Of course we do not need to study the isotopy
cobordism; in fact, in this case Theorem 2.3 and Corollary 2.4 already tell us that the complexes are
filtered chain homotopy equivalent and that in particular there exists a local equivalence. The strategy we
follow is the same as [Cavallo 2018].

3.2 Overview on grid diagrams

A grid diagram D of an oriented n—component link L in S3 is a grid of grd(D) x grd(D) squares,
representing the fundamental domain of a torus, together with a set of O—markings O ={01, ..., Ogq(p)}
and one of X-markings X = {X1, ..., Xgq(p)}, such that there are exactly one O and one X in every
column and every row. Moreover, we choose a nonempty subset sOQ which consists of at most one
O-marking for each component of L. We call these O—markings special and the others normal.

The link L can be drawn in D by connecting the O’s with the X’s on a row and the X’s with the O’s on
a column, specifying an orientation on L. Vertical lines always overpass the horizontal lines.

The chain complex cCFL®(D) is an F[V7, Vl_l, s Vs V,;l, U, U~ ']-module, where
grd(D)—1=2m=grd(D)—n

is the number of normal Q-markings, and is freely generated by the grid states S(D). The differential is
given by
0 x = Z Z Vlol(’) .. VmOm(r) ) U0(r)y
yeS(D) reRect®(x,y)

for any y € S(D), where O; (r) is equal to one if the normal Q-marking O; € r and zero otherwise, and
O(r) is the number of special O—markings in r. The set Rect® denotes some special rectangles in D;
see [Ozsvith et al. 2015] for details. As in Section 2.1 we extend the differential to c CFL°°(D) by
taking 8_(Vii1p) = VijEl -0” p foreveryi =1,...,m and p in the complex. The variables V; are all
homotopic to U so our homology group still has a natural structure of an IF[U, U ~!]-module.
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Figure 7: A grid diagram representing the unlink (),. The red circles denote the special O—markings.

The Maslov and Alexander gradings are also combinatorially defined from D [Ozsvith et al. 2015] and
each variable drops them by 2 and 1 respectively; while to define the j—filtration we need to specify that
the level 7 is generated by the elements in

Vil...Vimyt.cCFL™(D),

where i1 +-+-+ iy +1 = —t and cCFL™ (D) is the free F[V1, ..., Vi, Ul-module over S(D). With
this definitions in place we have the following theorem of [Manolescu et al. 2007]; see also [Sarkar 2011].

Theorem 3.1 (Manolescu, Ozsvath, Szab6 and Thurston) The si—filtered chain homotopy type as an
F[U, U~'1-module of ¢CFLL (D) coincides with the one of ¢ CFLL (%) together with the Maslov
grading and the algebraic filtration, where D is a grid and 9 is a Heegaard diagram for L. In particular, if
D1 and D5 represent isotopic links then c CFL°(D1) is locally equivalent to cCFL(D3).

The way the filtered homology group ¢c#F¥°°(L) is defined and how the filtration ¥ descends into
homology are the same as in the previous section.

Remark 3.2 More precisely, Theorem 3.1 tells us that cCFLS° (D) is si—filtered, but not necessarily
Ffiltered chain homotopy equivalent to ¢ C FL$®(D;), while all the maps induced by link isotopies
preserve the algebraic filtration; in the sense that, say mj and m are the numbers of normal O-markings
in Dy and Dy, the image of V,' --- V"' U?.¢ CFL(Dy) is contained in V! --- V" Ul .c CFLZ (D)
when m; <mj or Vli1 ‘e V,ZZZ Uitimy+1t=Fim . CFL(Dy) when my > m for every (m; +1)—tuple
of integers (i1, ...,im,.i). We call this relation between cCFL3°(D;) and cCFLS°(D3) (or between
the complexes given by a grid and a Heegaard diagram for the same link) an almost filtered chain homotopy
equivalence and it implies that the complexes are locally equivalent, as stated in Theorem 3.1.

Figure 7 shows a grid diagram for the two-component unlink (). We conclude this subsection with a
lemma that we need for later.

Lemma 3.3 Given a grid diagram D for a link, we can always change the X—markings to obtain another
diagram D’ which represents an unlink.

Proof We apply the following algorithm. Let us shift the rows of D until there is a special O—marking in
the top row (remember that D is the fundamental domain of a torus); then, starting from this Q—marking
denoted by O1, we put an X—marking just below O;. We keep doing this procedure with the O—markings
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Figure 8: An extended birth move, corresponding to a 0—handle attachment followed by a 1—
handle (left). The picture on the right shows only the component of ¥ where the O—handle appears.

in the row below, unless we reach an O; such that O; 4 (in the row below) is special. Note that this can
happen also when i = 1. In this case we put the new X—marking in the same column of O;, but not in the
row below while in the row where the previous special Q—marking appeared.

When it happens that two consecutive rows j and j + 1 both have special O—markings on them, we put
the X—marking in the same square of O; and we continue the algorithm from O; 1. At some point we
reach the lowest row; in this case, we assume the next row is the very top row (which contains a special
O-marking) and we put X accordingly.

The reader may shift the rows back to the original ordering; in any case, it is easy to check that the new
diagram D’ represents an unlink and the number of components coincides with the number of the special
O-markings in D. a

3.3 Extended birth moves

Let us study the concordance 3 given as in Figure 8: we first need a suitable choice of grid diagrams D;
fori =1,...,4, representing the links that appear in the extended birth move at the times shown in the
picture. Second, we define maps by: D1 — D, and by : D3 — Dy; the first map represents the disjoint
union of L with an unknot, while the second one the merge move that we need in order to join the new
component to L. Note that the diagrams D, and D3 present isotopic links; then the corresponding chain
complexes are related by an almost filtered chain homotopy equivalence, as in Theorem 3.1, and thus
they are locally equivalent.

Let us start with by: the merge move is described by the diagram fragments in Figure 9, where we
assumed that no special O—markings were on the new unknotted component. More explicitly, we are
picking the diagram D3 in the way that it contains the fragment on the left in Figure 9, while Dy is
the resulting diagram after applying the move. At this point we define D} and D} as the grid diagrams
obtained by applying the algorithm in Lemma 3.3 to D3 and D4. This means that they are both diagrams
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Figure 9: Band move in a grid diagram.

(the same ones!) for O),, where 7 is the number of components of L and L,, with the O—markings in
the same position as in D3 and Dy.

Since the differential and the j—filtration do not depend on the position of the X-markings as we see
from their definition in Section 3.2, and this holds also for the Maslov grading [Ozsvéth and Szab6 2008;
Ozsvith et al. 2015], the identity map

Id: cCFL™®(D}) — ¢ CFL*®(D})

is a chain map, which clearly induces a graded isomorphism in homology and preserves the algebraic
filtration.

Proposition 3.4 The map b, :=1d: cCFL®°(D3) — ¢cCFL°(D4) preserves the Maslov grading and
the F—filtration and induces an isomorphism in homology.

Proof In order to prove the claim we have to show that the map induces a graded isomorphism in
homology and that preserves the two filtrations j and «. The first two properties only depend on the
O-markings so they hold because b, is defined as the identity map; we only need to show that

by (45 CFL®(D3)) C A*c CFL™(Dy).

This can be checked by proving that Ap, (x) < Ap,(x) for every x € S(D3). Note that this is not obvious,
even if b, is the identity; in fact, this time we need to consider the X—markings in their original position,
not like in D} and D}, and the Alexander grading depend on the X ’s. Hence, we need to use a result of
Sarkar [2011, Section 3.4], which gives us exactly what we need. O

We now want to define 1. We suppose D1 has an X in the top-right corner; then we use the move in
Figure 10. Of course the new doubly marked square is not a special @-marking. We consider the filtered

NE-stabilization map
sNE: cCFL® (D) — ¢CFL*®(D>)

defined in [Manolescu et al. 2007; Ozsvéth et al. 2015; Sarkar 2011]. Stabilizations relate isotopic links;
therefore, such a map is an almost filtered chain homotopy equivalence for Theorem 3.1 and thus a local
equivalence.

Algebraic € Geometric Topology, Volume 24 (2024)



3254 Alberto Cavallo

& X

— D2 52
D, D\ Xy

X O

Figure 10: Birth move in a grid diagram. In the diagram D,, the top right X—marking X, in D;
does not appear.

We say that by := sNE: ¢cCFL*®(D1) — ¢ CFL> (D). This makes sense because the stabilization maps,
in the filtered setting, are independent of the position of the X—markings. Hence, we have the following
proposition.

Proposition 3.5 The map b1: cCFL*°(D1) — ¢cCFL®(D3) preserves the Maslov grading and the
F—filtration and induces an isomorphism in homology.

Proof We cannot argue that b, is an s{—filtered chain homotopy equivalence, because the X—markings
in D, are different with respect to the ones in 52. On the other hand, we still have that it is a chain
homotopy equivalence and preserves the j—filtration; in fact, as in Proposition 3.4 these two properties
ignore the X ’s. Therefore, we just need to show that Ap, (sNE(x)) < Ap, (x) for every x € S(Dy). This
follows from another result of Sarkar [2011, Section 3.4]. O

Going back to the concordance X, we obtain the following theorem.
Theorem 3.6 There is a map by : cCFL*° (D) — cCFL®°(D4), which preserves the Maslov grading
and the %—filtration and induces an isomorphism
b3 cHFLX(L1) — cHFL®(Ly).

In particular, this means that

bE(FS cHFLY (L1)) C FS cHTFLF (Lo)
for every d € 7. and southwest region S of 7.
Proof We have that by, = by ob o by, where b is the almost filtered chain homotopy equivalence between
the complexes given by D, and D3. Then the statement follows from Theorem 3.1 and Propositions 3.4

and 3.5, because each piece of the map induces a graded isomorphism in homology and preserves the
filtration %. O

3.4 Extended death moves and invariance

An extended death cobordism is described in Figure 11. If ¥ < §3 x [ is such a cobordism between two
n—component links L; and L, then X*, the same cobordism seen in the ambient manifold S 3 % I with
reversed orientation, can be considered an extended birth cobordism from L3 to LT. Then we can prove
the following proposition.
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( 0

Figure 11: An extended death cobordism, corresponding to a 2-handle attachment together with
a l-handle.

Theorem 3.7 There is amap dy: cCFL*° (L) — ¢CFL®(L,) which preserves the Maslov grading
and the F—filtration and induces an isomorphism in homology.

Note that, since c CFLZ’(D) is usually not a finite dimensional IF—vector space when D is a grid diagram,
we cannot directly apply Theorem 2.8 in this case, although this can be done after more work.

Proof Denote by cCFL(L;) the filtered chain homotopy type of the complexes associated to L;. By
Theorems 2.8 and 3.1, the dual complex ¢ CFL®°(L;)* represents the almost filtered chain homotopy
type of cCFL*(D/).

We use Theorem 3.6 to say that, up to composing with some j—filtration preserving s{—filtered chain
homotopy equivalences, we can suppose the existence of a map by+: cCFL*(Ly)* — cCFL*®(L1)*
which has all the property we want. If we take bx+ 4 as the dual of this map then

bsx x: ¢cCFL®(L1) — ¢CFL*®(L3)

preserves the filtration % and induces precisely a graded isomorphism in homology; this is because the
definition of the dual complex in Section 2.3 implies that ¢ C FL®°(L)** has a natural identification with
c¢CFL®°°(L) for every link L.

We conclude by saying that dx, := by~ 4 again up to composition with some j—filtration preserving
Afiltered chain homotopy equivalences. a

Now with this theorem set we can prove one of the main results of the paper.

Proof of Theorem 1.2 After applying Theorems 3.6 and 3.7, by considering the maps induced by a
concordance ¥ from L to L,, we obtain a graded isomorphism F, between the homology groups, such
that F(FS cHFLF (L1)) C FS cHFLY (L), which gives

(3-1) dimp F5 cHFLP (L1) < dimp F° cHFLT (L2).
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Figure 12: The centered southwest regions Aq (left), A; (middle) and A, (right) of R2.

In order for F to be a filtered isomorphism we also need that it restricts to an isomorphism on each level
of the Ffiltration. To see this we take another concordance ¥’ from L, to L and, in the same way as

before, we get the opposite inequality with respect to (3-1). O

We now show that the Y—type invariants are indeed concordance invariants. In order to prove this fact,
we only need that the F—filtered isomorphism type of the homology group is a concordance invariant.

Theorem 3.8 The real number Y (L) is a concordance invariant for every centered southwest region S
in R2.
Proof By Theorem 1.2,

FHh HFLP(L1) D FUSBHFLP (L)) <= FSkcHFLL (Ly) D FISVeHFLP(Ly)

for every k € R, since L is concordant to L;. By definition, this immediately implies Ys(L1) = Ys(L2)

for every southwest region S. a

4 Upsilon-type invariants

4.1 Definition of Y ¢ (L) and the Y —function for links

In Section 2.2 we saw that Ft/ so}c%%iﬁgo (L) is isomorphic to F for every link. Using Theorem 2.1 we

can also argue that
GO cgeFL (L)

—n

FUSBeHFL2 (L) ~

FIF,

where 7 is the number of components of L. Then, for a given centered southwest region S C R?, we can
define

TH(L) := max{k € R | FSkcHFLL (L) ¢ FIS"VenFL2, (L)}
Theorem 1.2 implies that Yg(L) is also a concordance invariant. Moreover, we observe that, for knots,
T* coincides with T.
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Figure 13: The complex ¢ CFL*° (T3 3) on the left and cCFL°°(T3/,3) on the right. The 2 on
the central staircase is the multiplicity of the subcomplex. White, gray and brown dots represent
Maslov gradings 0, —1 and —2 respectively, while black dots represent the others.

In [Ozsvith et al. 2017a] the Y—invariant is described as a piecewise linear function Yg (¢):[0,2] — R
such that Yg (2 —1t) = Yk (¢) for every knot K and ¢. We call this function the classical Y—invariant. In
the case of links we give a similar definition, which can be seen as a particular case of Ts.

Consider the centered southwest region
Ar={(j.A)eR*[A-2t+j(1-1r) <0}

for t € [0, 2]; see Figure 12. It can be shown—see [Alfieri 2019] —that Y4, (K) = Yk (¢) for every
knot K. Moreover, we define

Yr(t):=Ya,(L) and Y}(1):= T} (L)

for every link. The reader can easily check that these R—valued functions are piecewise linear and
YL (0) = Y/ (0)=0.

Example 4.1 In Figure 13 we show the chain complexes for the (3, 3)—torus link, which can be computed
from the Heegaard diagram in Figure 14. We write 73 3 when we orient the three components in the same
direction, while T3/’3 denotes the same link with the orientation reversed on one component. From this
picture we can easily compute the Y—functions:

, t ift €0, 1],
Ty, (1) =0 ifr€[0.2], ry, (0= %Z—Z ift €[1,2]
—31 if 1 € [0, 2], ,
_ . 2 4 _ —t ift e [O, 1],
Y1350 =12 ifre[3.5l  Trn,0= %—2+z ifr el,2].
—6+3r ifre(3.2], ’
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Figure 14: A Heegaard diagram for the link 73 3. The a—curves are red, while the B—curves are blue.

Finally, we show that the classical T—invariants do not determine the J—filtered isomorphism type of
cHFEL®(L). In fact, take the knot K = Ty 5 # T2"‘,3;2,5 # Tz"‘,5 whose homology is shown in Figure 15,
where 73 32,5 is the (2, 3)—cable of 7> 5. Kim and Livingston [2018] proved that Yg (t) = Y (¢) = 0 for
every ¢ € [0, 2]. On the other hand, it is easy to check that Yy, (K) = —2, where Vo ={(a,b) |a <0, b <0},
while Yy, (O) =0.

4.2 Symmetries

In this subsection we study some of the main properties of the Y—invariants. We start from this proposition
from [Ozsvath and Szab6 2008].

A

A A
3
2 O

Y Y
1 “« P
0 AN /‘I: g
1 4 j
Y A\

-2 «—0
-3
—4 3| -2/-1(0 1 2 3

Figure 15: The acyclic summand of the chain complex CFK*(K), with K = Ty s # T 3., s #7155
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Proposition 4.2 (Ozsvath and Szabd) The F—filtered chain homotopy type c C FL®°(L) of a link Floer
complex is independent of the (global) orientation of L.

In particular, we can identify the homology group of a link L and its reverse.

Corollary 4.3 There is an F—filtered isomorphism ¢HFLP°(L) < ¢HFL*°(—L). In particular,
Ys(L) = Ys(—L) and Yg(L) = Yg(—L) for every centered southwest region S of R2.

We remind the reader that this result is not true if we reverse the orientation only on some of the components
of L, as we saw in the previous subsection with the link 773 3.

Say —S is the southwest region obtained from S after applying the reflection r of the plane with respect
to the line {4 — j = 0}. We prove the following property.

Theorem 4.4 We have Ys(L) = Y_g(L) and Yg(L) = Y* (L) for every centered southwest region
S of R2. In particular, one has Yz .(t) = Yr.(2—1t) and Y} (t) = Y/ (2—1) forevery t € [0,2].

Proof Since a chain complex for —L is obtained by switching the role of w and z in a Heegaard diagram
for L, and then of the filtrations s and j, Corollary 4.3 tells us that ¢ C FL°(L) is symmetric under r up
to homotopy. Moreover, this symmetry is chain homotopic to the identity by [Sarkar 2015, Lemma 4.6]
and the claim follows.

For the second part of the statement, we just need to observe that the reflected southwest region —A;
corresponds to Ap—;. O
With this theorem set, from now on we consider the Y—functions as defined on [0, 1], since their values

on [1, 2] are then determined automatically.

Now we want to study the relation between the Y ’s of L and its mirror image. We recall that, in Section 2.3,
we defined ¢S as the complement of the region obtained from S by applying a central symmetry. Then
we say that (S is the topological closure of ¢S.

Proposition 4.5 For an n—component link L,
Ts(L*) = =T%(L)
for every centered southwest region S of R2. In particular, we obtain Y« (t) = =Y/ (t) for every
t €0, 1] and for a knot K one has Y5 (K*) = —Y;5(K).
Proof We apply Theorem 2.8 to argue that there is an identification
FS cHFLL(L*) < (F*)S cHFLL [(L)* = Ann FS cHF LS, (L)
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Figure 16: The centered southwest region 7 in the picture is such that T = (T.

that preserves the containment relations. Hence, we only need to use the definition of Y':
Ts(L*) = max{k € R | F*kcHFLP(L*) D FI SV e FLL(L*)}
= max{k € R | Ann FSkcHFLX (L) D Ann FUS"VegF L2 (L)}
= max{k € R | FC)~*cHFLL (L) c FVS"VegFee (L))
= —min{k € R | FDeHFLL (L) ¢ FIUSTUVenFee, (L)}
= —max{k € R | F5kcHFLL (L) ¢ FISVeqFe® (L)} = ~YA(L)
for every centered southwest region S in R2.

The third claim is trivial, while for the second one we note that 14, = A, for every ¢ € [0, 1]. O

We observe that the southwest regions A; are not the only S such that 1S = S as we see from Figure 16.

Let us recall that the homology group ﬁF\L(L) (resp. ?@(L)) is defined as the bigraded homology of
the associated graded object (resp. the sd—filtered graded homology) of the complex C/‘Ii(L), given by
setting U = 0 in cCFL®°(L); see [Cavallo 2018; Ozsvath and Szab6 2008] for details.

Lemma 4.6 If a cycle in F<0% ¢ CFL%(L) is a generator of the homology group cHF£>°(L), and its
homology class has minimal j —level zero, then its projection to @(L) is a generator of H#FL(L).

Proof By [Rasmussen 2003, Lemma 4.5] we know that, up to changing basis, the complex ¢ CFL%° (L)
is such that the differential of the bigraded object associated to fﬁ(L) is zero. Therefore, if we pick a
generator with minimal j—level zero then its projection cannot be zero in ?@(L), because clearly it
would be homologous to an element of U - F/ <% cCFL®(L) = FUS"UcCFL®(L). O

We use the mirror image symmetry to prove the following proposition. We assume the reader to be
familiar with the definition of the concordance invariants t(L) and t*(L), given in [Cavallo 2018].
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Figure 17: A positive staircase (left), a negative staircase (middle) and an acyclic square (right).
The acyclic subcomplex of c CFL® (L), when L is as in Theorem 4.8, is the direct sum of acyclic

squares.

Proposition 4.7 For a link L,
(L) = —TL(O) and t*(L)= —(TZ)/(O).

Furthermore, each slope of Yr(t) and Y;(t) is an integer s such that the Alexander grading sub-
group I-m*,s (L) is nonzero, and if tg € (0, 1) is a point where the slope changes from s to s, then
to € Z/|s2 —s1| and |s2 —s1| > 2.

Proof We prove the first part of the statement. We take ¢ € [0, ) with & very small and we show
that for such ¢’s one has Y (¢) < —t - t(L). Suppose that the homology class of x is a generator of
%{1<°}c%%§£3°(L). By Lemma 4.6, X, the projection of x to C/F\LO,*(L), is a generator of ?@O(L).
Hence, assuming Y7 (¢) > —t - (L) contradicts the fact that (L) is the minimum s{—level s such that
A5 ?@0 (L) has dimension one; see [Cavallo 2018].

We now show that Y7,(¢) = —t - t(L). In fact, the same argument we used before also shows that
Y/.(t) <—t-t*(L*)fort €[0, ¢) and then — Y (t) < —t(—7(L)) from Proposition 4.5 and the symmetry
properties of t*; see [Cavallo 2018]. This proves the claim; in fact, the version for the Y *—function can

be proved applying Proposition 4.5.
The second part of the proposition follows from the same proof of [Ozsvith et al. 2017a, Proposition 1.4]

and [Feller et al. 2019, Observation 2.2]. O

Using this result we immediately compute the Y—functions for the Hopf links H+. In fact Hy is a
nonsplit 2-component link that bounds an annulus in S3. Since HFL detects the Thurston norm [Ni 2009,
Theorem 1.1], this implies that ﬁF\L*,s (H4) is nonzero only when s = —1,0, 1 and then Yg , and T};i
are determined by the r—invariants, which are computed in [Cavallo 2018, Corollary 3.7]. Therefore,

Y, (t)=—t, Yy (t)=t and T}'}+ &)=Yy _(t)=0
for every ¢ € [0, 1].
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We conclude this subsection by stating a result of Petkova [2013] that allows us to determine ¢ CFL®°(L)
for every nonsplit alternating link. We recall that an n—component link L is HFL—thin if its homology
group I-md,s (L) is supported on the line s = d + %(n —1—0(L)), where o (L) is the signature of L.

Theorem 4.8 (Petkova) Suppose that the link L has n components and it is HFL—thin. Then the chain
complex c CFL> (L) is given as the direct sum of some F[U, U ~1]-subcomplexes as in Figure 17. More
specifically, for every

se{iin—1-0o(L)—k} withk=0,....,n—1,

we have (";1) positive (resp. negative) staircases when s is positive (resp. negative). Moreover, the
acyclic subcomplex is determined by

XHFLL) (0™ =Y (1) dimp HFLg (L) t* = (¢1/2 =17 V/2)= 1y (12 =712,
deZ

where V[ (z) is the Conway normalization of the Alexander polynomial of L.

Note that quasialternating links (and then nonsplit alternating links) are I-TF\L—thin; see [Cavallo 2018;
Ozsvith et al. 2015]. In Figure 18 we show a Whitehead link and its corresponding complex.

4.3 Connected sums and disjoint unions

It follows from the work of Ozsvédth and Szab6 that the chain complex for a connected sum of the links
L and L5 is given by the tensor product between the ones of L and L.

Theorem 4.9 (Ozsvith and Szab6) Given two links L1 and L;, denote by L1 #; j L, the connected
sum performed on the i — and j—component of L and L, respectively. Then

CCFLOO(Ll #i,j L2) = CCFLOO(Ll) ®IF[U,U_1] CCFLOO(Lz).

In particular, the complex c CFL®° (L1 # L,) does not depend on i and j .

Since F[U,U™!] is a principal ideal domain, using the Kiinneth formula and Theorem 2.1 on the
identification in Theorem 4.9 gives
FUSO cHF L (L1 # Ly) p FYUSOHFLP (L) @F FYUSVcHFLL (Ly)
and
FUSOcHFLS, ., (L1#L2) N FUSOeHFLL, (L1) o FUSOHFLY, (L2)
FUS Ve HFLL (Li#Ly) " FUSUeHFLT, (Ly) © FUSDHFLY, (Ly)

2—ni1—ny
where n; is the number of components of L; and we recall that ny + n, — 1 is the one of L1 # L.

Furthermore, if the homology classes of x; are generators for %/ SO}C%@&BS" (L;) then [x1 ® x3] is
a generator of the homology group gl s()}c%")d?ifgc’(Ll # L5). In the same way, if y; is such that
[yi] is a generator of c%?%éEC{‘lnl_(Li), with minimal j-level zero, then [y; ® y»] is a generator of
cHFL

—n,(L1#L>) and its minimal algebraic level is again zero.
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Figure 18: The complex ¢ CFL*> (W) (right) of the Whitehead link W (left).

We can now study how the Y—invariants behave under connected sums. For every centered southwest

region S of R? we define
env(S) ={(j,A4) € R? | j =a1 +az and A = by + by where (a;,b;) € S fori =1,2}.

Clearly, the region env(S) is still a southwest region (unless it coincides with the whole R?) and
S Cenv(S). Moreover, we take h(S) € Z=o U {+00} as

inf{k e N | S_; Denv(S)}

and we state the following proposition.

Proposition 4.10 Let us consider a link L; with n; components for i = 1,2 and S a centered southwest

region of R%. Then
Ys(L1#La) = Ys(L1) + Ys(L2) —h(S),

T;(Ll #1L,) = T;(Ll) + T;(Lz) —h(S).

In particular, if S = env(S) then the Y ’s and Y *’s are superadditive under connected sums.

Proof The proof of the two inequalities is exactly the same; hence, we only do the first one. From what
we said at the beginning of the subsection we can take x and y, such that their homology classes are
generators of @{j“}c%%ﬂfgo(Li) for i = 1,2, in the region Sy (1;) = Sy,;, and we obtain that [x ® y]
is a generator of %USO}C%@&?(M #L,)and x® y € FVE)n +72¢CFLGP(L1#L3). Therefore, from
the definition of 4 (S) it follows that

env(S)y, +y, C Sy1+y2—h(S)

andx®y € %SV1+V2—”(S)CCFL8°(L1 # L), proving the inequality. m|
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Figure 19: The centered southwest region 7 is such that 4(7") = 0.

There are examples of southwest regions S with 2(S) # 0 and Y is not superadditive. Take the region
V1 ={(j.A) €eR?|j <0,A <1}, then

—4 =Ty, (T23#7T2,7) < Ty, (T2,3) + Ty, (T2,7) =0+ (=2) = 2.
Corollary 4.11 If a centered southwest region S is such that 1S = S and h(S) = 0 then
Ts(L1#La) = Ys(L1)+ Ys(L2) and Yg(L1#La)=Yg(L1)+ Yg(L2)
for every pair of links L and L,. In particular, this holds for the classical I functions.
Proof By Propositions 4.5 and 4.10,
Ys(L1)+ Ys(L2) —h(S) < Ys(L1#Ly) < Ys(L1)+ Ys(L2) +h(S).

The claim follows by using the assumption that 4(S) = h(1S) = 0. The same proof works for T*. O

We observe that there are centered southwest regions, different from the A;’s, for which A(S) = 0 and
their Y—invariants are superadditive; see Figure 19.

Example 4.12 By Corollary 4.11, for the positive and negative Hopf link one has Yg #g_(f) = —f and
T}"IJF#H_ (t) =t for every t € [0, 1]. In particular, we have an example when c CFL*° (L) ® cCFL®°(L*)
is not locally equivalent to the chain complex of an unlink; in fact, it is Y, = 0 for every m € N.

The disjoint union of two links can be seen as a special connected sum. In fact, the link L; U L5 is
isotopic to L1 # ()2 # L,, where the two connected sums are performed on different components of the
unlink O)s.
Proposition 4.13 The chain complex of the link L1 U L, is given by
CCFLOO(Ll ULy)x~ CCFLOO(Ll #L5) ®]F[U,U_1] CCFLOO(Oz)
> cCFL®(L1#Ly)®cCFL*™(L1#L>)[1],

where [[ - ]| denotes a shift in the Maslov grading.
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Proof It is easy to compute that cCFL((O2) = F[U, U_l](o) @ F[U, U_l](_l). Hence, the claim
follows from Theorem 4.9. |

Note that, since the chain complex for the connected sum is independent of the choice of the components,
cCFL°®(L1U L) =cCFL*®((L1#L>)U()); in other words, there is an identification between the
chain complexes for the disjoint union and the link obtained by adding an unknot to any connected sum
of L1 and L.

Corollary 4.14 Given two links L and L»,
Ts(Ll ULy = Ts(Ll #Lz) and T;(Ll (] Lz) = T;(Ll #Lz)

for every southwest region S of R2.
Proof This follows immediately from Theorem 2.1 and Proposition 4.13. O

4.4 Slice genus

Suppose that a link L has n components and bounds a smooth, compact, oriented surface > < D* with
genus g(X) and k connected components. Then, after removing k open disks from it, we can see X as a
smooth cobordism between the k—component unlink () and L. If we look at the canonical form of link
cobordisms described in Section 3.1 then X is such that, from left to right, there are no merge moves, the
torus moves are g(X) in total and there are exactly n — k split moves. Other than these, the cobordism X
might have pieces representing concordances, which induce local equivalences as shown in Section 3.

The goal of this subsection is to study how much the Y—invariants of L differ from zero (Ys((O,) =0
for every S) when L bounds a surface 3 as before. We use grid diagrams like in Section 3.

Let us start from the torus move; see Figure 6. We define a map ¢ as the identity between the grid
diagram representing the link before the move and the one obtained by applying Figure 9 twice. Such a
map is a chain map, induces a graded isomorphism in homology and preserves the j—filtration by the
same argument in Section 3.3: since the links before and after the moves have both k components, the
corresponding diagrams have the same (O—markings (both normal and special). Previously we used a
result of Sarkar [2011] to show that b, is s—filtered of degree zero. Since now we are composing the
same map twice, but the first time the number of components is increasing, this is no longer true. In fact,
the map ¢ is s{-filtered of degree 1; see [Sarkar 2011, Section 3.4].

Now we study the split moves as in the left side of Figure 20. We may want to define a map s in a similar
way as what we do for 7: using the same procedure for the map b,, but this is not possible. In fact, the
link L5 has one more component than L1, so the number of special Q—markings is different and s would
not be a chain map. To avoid this problem, before applying the split move we add a disjoint unknot to L
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Figure 20: A split move. The two cobordisms in the picture are isotopic in S3 x I after capping the unknot.

Ly

and after the split move we connect sum the unknot to the component without special Q—markings. This
is pictured on the right side of Figure 20. In this way, we can define a map

$2: ¢cCFLP (D1 UQ) — ¢CFL(Dy),
where D; is a grid diagram for L;, exactly in the same way as . Now from Proposition 4.13, the map
s1:=cCFLP(D}) - ¢CFL{(D]U Q) =cCFL{(D}) ®cCFL{ (D))

is the inclusion of c CFL{°(D1) as the first summand of c CFLG®(D] U Q); and we recall that D] is the
grid diagram obtained from D; by applying the algorithm in Section 3.2. Hence, the map s preserves
the Maslov grading and the filtration &. We conclude that the composition

s:=s2081:cCFL3°(D1) — ¢CFL3°(D3)
induces a graded injective homomorphism in homology, preserves j and it is s{—filtered of degree 1.
Given a centered southwest region S of R?, we say that
S+m:={(,A)eR?|(j,A-m)e S}
for every m € N, an example is given in Figure 21. We define the nonnegative integer hg(m) as
min{k € N | (0,m) € S_g}

and we recall that the reversed region —S is defined in Section 4.2 by applying to S the reflection of R?
with respect to the line {4 — j = 0}. Then we can prove that each Y gives a lower bound for the genus
of X.

Proposition 4.15 If L is an n—component link in S3, which bounds a surface ¥ as before, then
—Ys(L) <hss(g(E)+n—k)

for every centered southwest region S of R2.
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Figure 21: A centered southwest region S on the left and the southwest region S + 1 on the right.

Proof We construct a map fy by composing the maps ¢ and s defined in this subsection, together with
the concordance maps in Section 3. We obtain that

fs(FScCFLP(Op)) c F5TEE Tk CFLP(L)

for every S. In particular, if the homology class of x is a generator of Ft/ gO}c%%SE(‘;" (Ok) then f&[x]
is a generator of U $0}c?€%$8‘° (L). This immediately implies that Vs (L) = —hg(g(X) +n —k) and
we complete the proof by observing that Y_g(L) = Y (L) from Theorem 4.4. |

A similar lower bound holds with Y* in place of Y, but it is clear that the proof cannot work as the one of
Proposition 4.15. In fact, we used the map s that preserves the Maslov grading, while the Y *—invariants
of L; are computed by finding generators in cHFLJ°, (L1) and cHFLZ, (L2) respectively, where m
is the number of components of L;. To jump this hurdle, in the following lemma we introduce another
map s’ induced by the split move.

Lemma 4.16 Suppose that L1 and L, are as in the left side of Figure 20 and D1 and D5 are corresponding
grid diagrams. Then we can find a chain map

s':¢cCFLY(D1) = ¢CFLY [(D3)
for every d € 7, which preserves the F—filtration and induces an isomorphism
FUSOeHFL  (Ly) N FUSOGcHFL>Z (L)
FUSTTeHFLL (L) FUSVeHFLS (Ly)

where m is the number of components of L.

Proof We represent the split move using the fragments of D and D5 as in Figure 22, where this time
the number of special O—markings on each component is the same both before and after the move. We
define s’ as _

X ifc € x,

/ = d ! V - U' ! 5
s (x) Ux otherwise, an s(ip) s(p)
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Figure 22: Another split move in a grid diagram. We recall that special O—markings are colored in red.

for every grid state x € S(D1), every p € cCFL® (D) and V;—equivariant for i > 1, where V7 is the
variable associated to the normal Q—marking Oj; see Figure 22.

Consider the diagrams D’ and D/, obtained by applying the algorithm in Section 3.2 to Dy and D»; hence,
the diagrams D; and D; have same O—markings. Denote by D’ the diagram obtained by removing the
row o and the column g from DJ; then ¢ CFL*° (D)) is isomorphic to c CFL*>(D%) & c CFL*(D%)[1]
by Proposition 4.13. Finally, let us call 7: ¢ CFL*°(D}) — ¢ CFL* (DY) the map given by adapting to
our setting the homotopy inverse of the map i o H used in [Cavallo 2018, Proposition 3.1]. This map
coincide with the special destabilization in [Sarkar 2011, Section 3.3].

dNO is one of the

The map s” was also studied by Sarkar [2011, Section 3.3], and he proves that 7 o s’ =
destabilization maps in [Manolescu et al. 2007; Ozsvath et al. 2015]. Such a map is induced by the link
isotopy relating D} and D’ which means it is an almost filtered chain homotopy equivalence, and a local
equivalence by Remark 3.2. Therefore, the map s': cCFL®°(D1) — ¢ CFL®(D>) induces an injective
homomorphism in homology and drops the Maslov grading by one, while the fact that s’ preserves the

Alexander filtration &{ is shown in [Sarkar 2011, Section 3.4].

In order to conclude the proof we just need to observe that s” does not change the minimal j-level of a
generator of the homology in #/<0 ¢ CFL%(D1); and note that this only depends on the O—markings.
Since the identification in Proposition 4.13 is an isomorphism of chain complexes, we would have that if
s” would drop the minimal j—level then the same should be true for 77 o s’ = d™N°, but this is impossible
because the latter is a local equivalence. a

Now we can prove the main result of this subsection.

Proposition 4.17 Suppose that L is an n—component link in S3 which bounds a smooth, compact,
oriented surface ¥ < D*, with k connected components. Then

—h,5(8(%) < -Ys(L) <hsts(g(X) +n—k),
—h,5(g(X)+n—k)<-TYg(L) <his(g(%))

for every centered southwest region S of R2.
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Figure 23: The centered southwest regions Vj (left) and W, (right) of R? for any integer k > 0.

Proof The fact that —Yg(L) < h+s(g(X)) follows in the same way as in Proposition 4.15 by using
Lemma 4.16. Then we apply Propositions 4.5 and 4.15. O

This theorem immediately gives the lower bound in Theorem 1.5 for the smooth slice genus g4(L) of a
link, which is defined as the minimum genus of a smooth, oriented, compact surface properly embedded
in D* and that bounds L. For knots such lower bounds agree with the ones of Alfieri [2019] and Ozsvath,
Stipsicz and Szab6 [Ozsvéth et al. 2017a].

Example 4.18 We observe that, when L bounds a planar (genus zero) surface in D*, we have Yg(L) <0
and Yg(L) = 0 for every S centered.

4.5 Other concordance invariants from the link Floer complex

4.5.1 The invariant vt Let us consider the centered southwest regions
Vi :={(j,A) eR?|j <0,A<k}

with k € N; see Figure 23. We denote the Y—invariants associated to these regions by —2- V7, (k) = Ty, (L).
It follows from [Alfieri 2019] that the invariants Vg (k) determine some of the invariants /; of a knot K,
which were introduced by Rasmussen [2003].

Proposition 4.19 (Alfieri) Suppose that K is a knot in S3. Then Vi (k) = hy (K) for every k € N.

Applying Proposition 4.17 we obtain that s (K) = Vi (k) < g4(K)—k for aknot K and 0 < k < g4(K),
which coincides with [Rasmussen 2003, Corollary 7.4]. Furthermore,

0<Vi(k)<ga(L)+n—k—1 if k<ga(L)+n—1,

Vi(k)=0 if k=>gq(L)+n—1,
and
Vik)=Ve(k+1)

for every link L. Finally, Theorem 3.8 tells us that V7 (k) is a concordance invariant for every k € N.
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Hom and Wu [2016] define the knot concordance invariant v* and they prove that such invariant gives a

lower bound for the slice genus g4. Using our results we can easily extend v+ to links: we say that
vT(L) :=min{k € N | V7 (k) = 0}.

It is easy to check [Hom 2017] that for knots such a definition coincides with the one in [Hom and Wu

2016] and it generalizes its well-known properties.

Proposition 4.20 The nonnegative integer v (L) is a concordance invariant of links.

Proof If L is concordant to L, then V7, (k) = Vi, (k) for every k € N as we saw before. Hence, one
has V., (k) =0 if and only if V7, (k) = 0. |

Consider the southwest regions Wj, in Figure 23; we see immediately that one has Wy, = (V' and then
Tfka (L) =2-Vp«(k) for every k € N by Proposition 4.5. We say that

D(L) = max{vT (L), vT(L*)},
where
vT(L*) = min{k € N | Vp«(k) =0} = min{k € N | T;{,k (L) =0}

which is also a concordance invariant.

Theorem 4.21 Suppose that L is an n—component link in S3. Then
0<vH(L)<d(L)<ga(L)+n—1 and w(L)<vH(L).

Furthermore, the invariants vt (L) and D(L) are subadditive:

vV (Ly#Ly) <vT(Ly)+vt(Ly) and D(Li#La) <D(Ly)+0(La)
for every pair of links L and L.
Proof We saw before that if V7 (k) # 0 then k < g4(L) +n — 1. Since v (L) is the minimal k such
that V7 (k) = 0 and g4(L) = g4(L*), we conclude that V(L) < g4(L) +n — 1. We now show that
(L) < vt (L). Suppose that s is the minimal integer such that V7 (s) = 0; then there is an element x in

FVscCF Lg° (L) whose homology class is a generator of the homology with minimal j-level zero. The
claim follows from Lemma 4.6.

For the last part of the theorem, take elements x; and x, as before for L; and L, respectively. From
Section 4.3 we know that

X1 ®xp € F 0 H Lot e CFLE(Ly # L)

has the same properties. Since Yy, (L1#L2) <0 for every k, this implies V42, vt (L1)+v1(L2)) =0.
Now, denote by J; and J5 either the links L and L, or the links L’f and L;, depending on which ones
give the maximal v (J; # J). Then

D(Li# L) =vH (1 #1) <vT () +vT(J2) <D(L1) + D(La). ]
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<+

-3 -2 -1]0 1 2 3 1 4

Figure 24: The relevant acyclic summand of ¢ CFL*(L), where L = T o #T)'5, s # H™ 1.

Here, by relevant we mean the summand which contains the generators of gt/ <0} c%?ﬁﬁfg" (L),
in the decomposition induced by the connected sum, according to Theorem 4.9. We have that
7(L)=0and vt (L) =2.

Theorem 4.21 tells us that vt gives a lower bound to the slice genus at least as good as the one given
by 7. An example where this happens is shown in Figure 24.
Let us write 2- W (k) = Tw, (L). In the same way as before,

0< Wp(k) <ga(L)—k if k <ga(L),

Wir(k) =0 if k= ga(L),
and
Wp (k)= Wr(k+1)

for every link L.
We call v(L) the nonnegative integer
max{min{k € N | Wy (k) = 0}, min{k € N | W« (k) = 0}},

which shares similar properties with »(L). In particular, V(L) = V(L) for knots.

Theorem 4.22 Suppose that L is an n—component link in S3. Then V¥ is a concordance invariant;

moreover,
0<V(L)<g4(L) and t*(L)<Vv(L).

Furthermore, the invariant v (L) is also subadditive:
V(L1 #Ly) <v(Ly)+v(Lp)
for every pair of links L and L.
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Proof It follows in the same way as in the proof of Proposition 4.20 and Theorem 4.21, by applying
Lemma 4.6 and Proposition 4.17. We just need to observe that

min{k € N | W= (k) =0} = min{k € N | T{'}k (L) =03}. m|
This result implies that if L bounds a compact planar surface properly embedded in D* then V(L) = 0.

4.5.2 Secondary upsilon invariants In a paper of Allen [2020] we find an example of two noncon-
cordant knots with the same Y—invariants. These knots are the torus knot 75 7 and the connected sum
T, s #7Ts 6. Their chain complexes are pictured in [Allen 2020, Figures 4 and 6].

Starting from this example, we build the links J; = T5 7 # Hi”_l and Jo =T s #T56# Hi”_l. Since
we can compute the complex of the positive Hopf link,

¢CFL®(Hy) = CFK®(T»3) ®@F[U, U 'y,

we easily obtain that the homology groups of J; and J, are F—filtered isomorphic. On the other hand, it
is still possible to show that ¢ CFL®°(Jy) is not locally equivalent to ¢ CFL%°(J3), which means that the
filtered isomorphism (or its inverse) is not induced by a chain map that preserves the filtration .

In order to find an obstruction for the existence of such a map, we need to use another family of invariants,
which was introduced by Kim and Livingston [2018] and by Alfieri [2019] for knots. We define the
secondary Y—invariants Tézl, S S(L) of an n—component link L as —Yg(L) plus the supremum of
k € Z such that

SKU(S T U(S5-)

F ¢CFL(L)

contains a 1—chain a with 9”a = x1 + x3; the cycles
S 00 (S5 00
x1€F v cCFL(L) and xp €&y ’cCFLG (L)

have the property that their homology classes are generators of Ft/ $0}C%g$80 (L), where y* = Ygx(L)
and ST, S~ and S are three centered southwest regions of R%. Note that Tézl S— S(L) can be 400, as
it happens for the unknot.

We can define a secondary Y *—invariant exactly in the same way, only this time we consider elements in

Maslov gradings 1 —n and 2 —n. For the sake of simplicity, in this subsection we only write proofs for

Té? S—§ (L), but all the results also hold for this version of the invariant.

Proposition 4.23 Let us consider a link L. Then the invariant Tézl — g (L) is a concordance invariant

S
for every triple of centered southwest regions ST, S~ and S of R2.

Proof Suppose that L; is concordant to L, and Tg,zl S— S(Ll) < Tézl 5— S(Lz). Then there is an

integer k > Tézl g— S(Ll) 4+ Ys(L1) such that
+_ 5"
zF e F vEcCFL(Ly),
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the homology class [zT] = [z7] is the generator of Ft/<0} cHFELC (L) and there exists

Be @Sku(s;;)u(s,,:)

cCFL{°(L>)
with 9~ = zT + z~. We recall that y* = Yg+(L1) =Yg+ (L2), since T is a concordance invariant.

From Theorem 1.2 we know that the corresponding chain complexes of two links are locally equivalent.
Then we find a chain map g:cCFL§° (L) — ¢CFL{°(L1), which preserves % and induces an Ffiltered
isomorphism between ¢ HFLG°(L2) and cHFLG (L1). Therefore, we can take

gz +g(z7) =g B) =09"¢g(B)
and we have N
g(z%) € FrEcCFLY(Ly),

the homology class [g(zT)] = [g(z7)] is the generator of %‘USO}C%%&BSO (L1) and

—+ —
2(B) e 7SIV cpLe(Ly).
This is a contradiction, because it implies k < Té%z s-, s(L1) + Ts(Ly). ad

Now we can show that the links J; and J, are not concordant. We have that
CCFL(lxin(Jl) = CCFLB.O(T5’7) and CCFL(lxin(Jz) = CCFLSO(Tz,s #Ts,s)
up to acyclics; hence, if J; and J, were concordant then Proposition 4.23 should imply

2 2 2 2
T3 oo s(Ts7) = (TG oo () =(0NE o () =T o (o 5#Ts6)

for every southwest regions S* and S. This is not true, as shown by Allen [2020].

We showed that the secondary Y—invariants can give more information than the F—filtered isomorphism
type of ¢cHFL°(L); nonetheless, the following proposition holds. Here we recall that the invariants
V1, (0) and W (0), corresponding to the southwest regions Vp and Wy, are defined before in Section 4.5.

Proposition 4.24 If V7, (0) = Wy, (0) = 0 then all of the Y’s of L are zero and all of the Y® s of L
are +o00. In the same way, if Vi (0) = W« (0) = O then all of the Y*’s of L are zero and all of the
(Y*)@ s of L are +o0.

Proof Suppose that S is a centered southwest region of R2. Then Vo C S and 0 = Yy, (L) < Ts(L).
In the same way, S C Wp and Ys(L) < Yw, (L) = 0. This implies Ys(L) = 0.

Consider two centered southwest regions ST of R2. Then Vo € ST N S, so there is a cycle, which
represents the generator of the algebraic level zero of ¢cHFLG° (L), in

FVocCFLP(L) C 75 ¢cCFLP(L)NFS ¢ CFLYP(L).

;%2 §— S(L) = +o00. The proof for Y* is exactly

the same by Proposition 4.5. O

Since Yg(L) = 0 for every S from before, we obtain T

Algebraic € Geometric Topology, Volume 24 (2024)



3274 Alberto Cavallo

In particular, for knots we have the following corollary.

Corollary 4.25 For a knot K, if Vg (0) = Vi+(0) = 0 then Ys(K) =0 and Y ¢ (L) = +oo for
all southwest regions S* and S of R2.

Proof This follows immediately from Propositions 4.5 and 4.24. |

In fact, it is possible to prove that Vx (0) = Vg=(0) = 0 forces CFK*°(K) to be stably equivalent to
F[U,U _1](0), the filtered chain homotopy type of the unknot; see [Hom 2017].

5 Unoriented Heegaard Floer homology

5.1 The homology group HFL’(L)

Let us take a Heegaard diagram 9 for a link L in S3. The chain complex CFL’(L) is the filtered chain
homotopy type of CFL'(®), the free F[U, U~ !]-module over T = T, N Ty with differential given by

a’x — Z Z m(¢) . U”w(¢)+nz(¢)y,

Y€T pemr(x,y)
u(p)=1

where ¢, n«(¢) and m(¢) are as in Section 2.1, and

YU p) =U=-0'p
forany x € T and p € CFL'(%).
Foe every x € T we define the §—grading as

8(x) = M(x)— A(x).

It is easy to check that, with this definition, the variable U*! drops the §—grading by +1. Moreover,

there is a map
d,: CFL;(9) - CFL;_ (%)
for any d € Z.

The chain complex CFL’(L) also has the algebraic filtration j, defined as in Section 2.1 by
JICFL'(Ly=U""-CFL"(L),
where CFL"” (L) is the free F[U]-module over T and ¢ € Z. Note that the latter group was the original

unoriented chain complex defined in [Ozsvith et al. 2017b]. It is easy to check that the differential o’
preserves j.

We define the homology group as usual:

HFL'(L)= @ HFL(L) and F' HFL)(L)=my(Kerd);,) :=my(Kerd; NF CFL'(L)).
deZ
where m;: Ker B/d — HFL’(L) is the quotient map.
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Proposition 5.1 For every n—component link L,
HFL'(L) =pyy— FIU.UTP,
with §—homogeneous generators, and
FOHFL'(L) on—1
FOHFL(L) T
Proof The first claim follows from [Ozsvath et al. 2017b], while the second one from the fact that the

U -action drops the §—grading by one: each homology class in #* HFL'(L)\ % ' HFL'(L) corresponds
exactly to an IF[U, U ~!]-summand of HFL'(L). a

In [Ozsvith et al. 2017b] it is proved that HFL’(L) is an isotopy link invariant. This is also implied by
the following theorem.

Theorem 5.2 There exists a chain map
i:¢cCFL®(L)®cCFL*(L)[-1] - CFL'(L),
which is an isomorphism of [F—vector spaces that identifies the Maslov grading with the §—grading.

Proof Let us consider all the intersection points x1, ..., x; whose Maslov grading has the same parity
of d. We define
i9:¢CFLY (L) — CFL)(L),
Ukix, +...+ Uk’xl s U2ki—AGD UZkI_A(xl)xl’
and 1 o ,
igy:cCFL(L)— CFL,;_ (L),
Uklxl et Uk’xl — U1+2k'_A(xl)x1 4ot U1+2k1_A(x’)xl.

These maps are linear by definition; let us prove that they are also injective. We observe that

i5(UR Xy +-- 4+ UR X)) £ 0,

U8+2kl' —A(x;

where ¢ is O or 1, because the monomials )x; fori =1,...,1 are linearly independent in

CFL!,__(L); hence, the kernel of i§ is trivial.

We now show that iy = ig + i;H is surjective. Suppose that g = UM x; +---+ UM x; € CFL,(L). If
h; = A(x;) mod 2 then there exists a k; such that 2k; — A(x;) = h;; otherwise, if h; = A(x;) + 1 mod 2
then there exists a k; such that 1 +2k; — A(x;) = h;. Therefore, say ¢ = g1 + g2 and ¢; consists of
monomials of these two kinds respectively; we find p; and p, such that

ia(p1.p2) =ig(p)+igi1(p2) =q1+q2=¢
and the claim follows.

Since ig and ié 41 are both injective and their images have trivial intersection, and then give a direct sum
of CFL/,(L), we obtain that each iz is a linear isomorphism between ¢ CFL*°(L) @ cCFL*(L)[1]
in §—grading d and CFL//(L).
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In order to complete the proof we now have to show that i is a chain map, which means i o(07,907) = d'oi.
Since i is linear we can just check monomials. We have
(ig—10 (7. 07N x,0) = ig_1 (3~ (U*x).0))
=i9 (U*dx)

=U2k'i2—1(z > m(¢)'U""’(¢)y)

€T pema(x,y)
w(g)=1

— Z Z m(e) - U2k+2nw(¢)_A(y)y

Y€T ¢pem(x,y)
w(g)=1

and

(a/ Old)(ka,O) — 8/(13(ka)) — 8/(U2k—A(x)x) — Z Z m(¢) . U2k—A(x)+nw(¢)+nz(¢)y‘
YET ¢pema(x,y)

u(g)=1
To conclude we need to see that 714, (¢p) — A(y) = nz(¢) — A(x) and this holds for every ¢ € w2 (x, y);
see [Ozsvath and Szab6 2008]. The proof for the monomials (0, U h y) is the same. a

The graded object associated to CFL'(L) is CFL' (L), which is the version of CFL obtained by collapsing
the bigrading accordingly. Hence, if L and L, are isotopic links then

HFL,'(Ly) =p HFLy'(L»)

for every d € Z. This means that both HFL’(L) and HFL' are link invariants.

5.2 The v-set and unoriented concordance

We start this subsection with some properties of HFL'(L).

Lemma 5.3 For every link L,
(1) ifthereis achain map F:cCFL* (L) — cCFL®(L,) which preserves the F—filtration then the
map F': CFL'(L1) — CFL'(Ly), defined as i o (F @ F[[—1])) oi; !, preserves j;

(2) if cCFL® (L) is locally equivalent to cCFL®°(L,) then there is a j—filtered and §—graded
isomorphism between HFL'(L1) and HFL'(L,).

Proof Let us prove (1). We have to show that F’ is j—filtered of degree zero. We do this by proving
that if UXx € #*CFL/(L;) then F'(U¥x) € ¥ CFL’(L5) for every monomial.

We assume that £ = —¢. Then one has
(U k+4())/2 () if kK + A(x) is even,

1k oy
ii (Ux) = (0, UCTHK+A/2) if ko 4 A(x) is odd.
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Now, when k + A(x) is even, we can write

(F& F[-1])G; ' (U*x) = ( Y a(x,y) - yEHAC2HACY)), o),
yeT

with a(x, y) € F. This yields
F'(Ux) =" a(x.y) UkrA@-40+24000),,
yeT

and it is easy to check that we get the same result when k + A(x) is odd. To conclude we need to argue
that A(y) < A(x)+2A(x, y). Since F preserves %, it is both j and s{-filtered of degree zero. Therefore,
itis A(x,y) =0and A(y) < A(x) + A(x, y) whenever a(x, y) = 1 and the claim follows.

To prove (2) take the maps f:cCFL*®(L1) - cCFL* (L) and g: cCFL*® (L) - ¢cCFL®*(Ly),
which both preserve the Ffiltration. Theorem 5.2 implies that /7, defined as iro(f @ f [—1])oi; !, and g’,
defined in the same way from g, induce §—graded isomorphisms in homology. Moreover, Lemma 5.3(1)
also gives that they preserve j. Hence, HFL'(Ly) is j—filtered isomorphic to HFL'(L). |

The first consequence of this lemma is that the group H FL' is also a concordance invariant.
Corollary 5.4 If the link L is concordant to the link L, then the unoriented link Floer homology group
HFL'(Ly) is j—filtered isomorphic to HFL'(L>), which means that

F HFL);(L1) ~p ¥ HFL);(L>)

foreveryt,d € 7.

Proof From Theorem 1.2 we know that cCFL®°(L1) is locally equivalent to c CFL®°(L5). The claim
then follows from Lemma 5.3(2). O

By Theorem 2.1 we know that for an n—component link L,
FUSO e FLP (L) o w5
FUS Ve FLP(L)

ford =0,...,1—n. Let us denote by {h1,...,hyn—1} abasis for the direct sum of such groups, where
the homology classes A; satisfy that for each i, there is an integer k and a Maslov grading d € [0, 1 —n]
such that h; € FAD« CHFLY (L)/%(Al)’“rl cHFLT (L), where Ay is the centered southwest region

{(j,A)eR?|j+A4<0}

that we used in Section 2.2 to define Y7 (1), and, for any fixed k and d, the number of /; with those k
and d is exactly
FADKcHFLT (L)

O A TS (L)
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We also take /1 to be the only homology class as above in Maslov grading 0 and /,.—1 the same, but in
Maslov grading 1 —n.

We define u; (L) fori =1,...,2" ! as the maximum k € R such that @(A‘)kc%%iﬁzo (L) contains the
homology class /;. Note that the unordered set {u1(L), ..., u,»—1(L)} does not depend on the choice
of the &;, but only on the F—filtered isomorphism type of ¢c#F£>°(L). Moreover, u1(L) = Y7 (1) and
usn—1(L) = Yj(1).
Now let v(L) = {v1(L), ..., vmm—1(L)} be the set of §—gradings of a homogeneous [F—basis of
FOHFL'(L)
FIHFL' (L)
This set exists by Proposition 5.1 and it does not depend on the choice of the basis, but only on the
Jj—filtered isomorphism type of HFL’(L). We have the following lemma.

Lemma 5.5 A homogeneous F —basis as before is obtained by taking the homology classes of elements
{(Ukigy, ..., UkZ"—lqzn—l}, where q; = ig, (pi) and p; represents the homology class h; in Maslov
grading d; foreveryi =1,...,2"1,

Proof Since i is an isomorphism from Theorem 5.2, there is an injective map ¢c#FF£*°(L) — HFL'(L)
identifying the Maslov grading with the §—grading. This means that if p is a representative for /2, with
Maslov grading d, then ig (p) represents a nonzero homology class in H FL'(L); moreover, representatives
of distinct homology classes are sent into representatives of distinct homology classes, by Theorem 5.2.

The element g = ig (p) is in §—grading d, but the minimal j-level of [¢] is not necessarily zero; although,
since the §—grading is an absolute Z—grading and the U-action drops it by one, there is an integer k£ such
that U¥[¢] has indeed minimal j—level equal to 0.

The fact that the set of all the U kq obtained in this way gives a basis as wanted is assured by the condition
we put on the choice of the 4;. O

We use this lemma to show that the v—set of L is closely related to the set {u1(L), ..., uzn—1(L)}.

Proposition 5.6 Let v(L) and u; (L) fori =1,...,2" ! be as before. Then v; (L) = u; (L) + d;, where
u; (L) is associated to the homology class h; with Maslov grading d;. In particular, vy (L) = Yz (1) and
Upn—1(L) =Y/ (1) +1—n.

Proof Suppose that p; = Ukixy + -+ Ukex, € cCFL (L) represents the homology class 4;;
moreover, we assume that

k;j —A(Uijj') =2kj —A(x;) 2u;(L) forany j=1,...,¢
and 2k; — A(x1) = u; (L).
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By Lemma 5.5, ¢; = i(p;) = U1 —AGD x| ... 4 y2ke=AGdy, ¢ CFL;,Z_ (L) represents a nonzero
homology class in HF Lil (L) and U ~2k1+A4(x1) -¢; is in minimal algebraic level zero. Moreover, we
saw that we get a homogeneous basis by considering all the 4; and then, by definition of v (L),

vi(L) = §(U AT g;) = 8(gi) + 2Ky — A1) = di + i (L)

foreveryizl,...,2”_1. O

We can shift HFL'(L) in order to turn it into an unoriented link invariant.

Theorem 5.7 CFL’(Ll)[[%J(Ll)]] is j—filtered chain homotopy equivalent to CFL’(Lz)[[%o(Lz)]]
whenever L is isotopic to L, as unoriented links, where o is the signature of a link as in [Gordon and
Litherland 1978]. In particular, the set

v(L)—3o(L)={Yr(1)—30(L),.... Y[ () +1—n—310(L)}
is an unoriented link invariant for every link L.
Proof Changing the orientation of a link L from Zl to zz, by reversing the orientation on the it
component, results in a grid diagram G where the O;—markings and the X;—markings are swapped. Then

everything stays the same except for the —grading, which is renormalized. Using [Ozsvéth et al. 2017Db,
Proposition 7.1] we conclude that

81(0) = 82(x) = 30(L1) — 30 (L2)
for every grid state x of G. |
It is important to note that, if we only compute the group HFL'(L), we do not know how to identify
YL (1) and Y/ (1) + 1 —n in the v—set of L. This means that the latter is an unoriented link invariant
only if considered as an unordered set of 2"~ integers, up to an overall shift that can be determined from

a diagram representing L. Furthermore, an analogue of the last result holds for unoriented concordant
links.

Proof of Theorem 1.7 This follows in the same way as the last theorem, using Corollary 5.4. a
5.3 Unoriented cobordisms

5.3.1 Normal form and Euler number Let us denote by upax (resp. Umin) the maximal (resp. minimal)
value in the v-set of a link. From [Ozsvath et al. 2017b, Theorem 5.2] if there is an oriented saddle
between L and L’, where L’ has one more component with respect to L, then

(5-1) UmaX(L/) < Umax (L) < Unax (L/) +1
and
(5-2) Umin(L/) < Umin(L) < Umin (L/) + 1.

The following inequalities agree with Proposition 4.17.
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Figure 25: Canonical form of unoriented cobordisms between two links: only one connected
component of F' is shown. The nonorientable saddles are Mobius strips with a small open disk

removed.

Proposition 5.8 Suppose that a link L bounds a compact oriented surface X, properly embedded in D*,
with genus g(X) and k connected components. Then

—g(X)+k—n<vpnx(L)<g(X) and —g(X)+1—n<vmy(L)<g(X)+1—k.

Proof From Corollary 5.4 we know that vp.x and vpi, are concordance invariants. Hence, since every
oriented cobordism X between () and an n—component link L can be decomposed as explained at the
beginning of Section 4.4, and the values of Unax () and vmin(Op) are 0 and 1 — k respectively, the
claim follows from (5-1) and (5-2). O

We now want to study how these invariants behave when we consider unoriented cobordisms. First, we
note that there still exists a normal form; in fact, comparing the oriented case with the results of Kamada
[1989] applied to cobordisms, we obtain that every unoriented cobordism F between L and L, can be
written as in Figure 25. Hence, we just need to check what happens to the v—set when two links are
related by many nonorientable saddles. Of course, we can just study the case where there is only one
such move, since the general case is obtained by composing the cobordism in Figure 26.

We recall that, if F is an unoriented cobordism, there is a well-defined integer e(F'), called the Euler

e(F):= > &

peFNF’

number, defined as

where ¢, is the sign of a oriented basis of T, F @ T, F’, induced by a local orientation system of F,
compared with the one given by the orientation of 7}, (S 3 x I); and where F’ denotes a push-off of F
along the trivialization of v(L1) (resp. v(L2)) in §3 x {0} (resp. S3 x {1}) given by the Seifert framing;
see [Gordon and Litherland 1978; Ozsvath et al. 2017b]. Clearly, e(F) = 0 if F is an orientable knot
cobordism.

The integer e(F) can also be interpreted in the following way. Suppose that L has n components,
while L, has m; since F is homotopy equivalent to a 1-dimensional CW-complex, its normal 1-sphere

Algebraic € Geometric Topology, Volume 24 (2024)



Locally equivalent Floer complexes and unoriented link cobordisms 3281

N

Figure 26: A nonorientable saddle corresponds to a nonoriented band move on a single component.

bundle admits a section F’. The boundary of F’ consists of the links L, and L/, which can be oriented
accordingly to L and L,. Then

e(F) =Y ek(Li. (L)) = Y €k(L}. (L))
i=1 Jj=1

The reader can check that this definition is independent of the choice of the section; see [Gordon and
Litherland 1978].

From the previous statement we obtain that if F is the union of disjoint surfaces Fi,..., Fy then
e(F)=e(F1)+---+e(Fg). In particular, a nonorientable saddle as in Figure 26 has Euler number equal
to that of the unique nonorientable component.

Lemma 5.9 Suppose that L and L, are related by a nonorientable saddle F. Say D1 and D, are planar
diagrams for them such that the saddle is represented as in Figure 27. Denote by D the corresponding
diagram obtained from D; by deleting all the components that do not appear in the saddle. Then

e(F) = wr(D}) —wr(D}) +e,

where ¢ is equal to 1 if the crossing is positive and —1 if is negative.

Proof From what we said before, e(F) = e(F’), where F’ is a nonorientable saddle between K
and K>, the components of the links represented by D} and D, Since e(F’) is computed from a tubular

D,

Figure 27: The nonorientable saddle is represented in the diagrams as an unoriented resolution of
a crossing, where both arcs belong to the same component of L.
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unoriented resolution

nonoriented band move
|
|
Figure 28: Each of two rows shows a direction of the equivalence of the two representations of a

nonorientable saddle.

neighborhood of F’ and F’ is disjoint from the other annuli of F, we have that e(F”) can be computed
using [Ozsvith et al. 2017b, Lemma 4.3]:

e(F') = wr(D}) —wr(D5) +e.

The fact that every nonorientable saddle can be seen as an unoriented resolution of a crossing (and vice

versa) follows easily from Figure 28. a

5.3.2 Unorientable saddle move We use the grid diagrams and maps defined in [Ozsvéth et al. 2017b,
Section 5]. Say G and G5 are grid diagrams for L and L, which are related by a nonorientable saddle
as in Figure 29. Then we have chain maps v: CFL'(G1) - CFL'(G,) and v': CFL'(G,) — CFL'(Gy),
such that v/ ov =vov’ = U, defined as

Ux ifxNA#o, x ifxNA#g,

v(x) = . and V(x) = .
X ifxNA=g, Ux ifxNA=a,
for every grid state x.

O 0] X

) 0 0
—

X X X

X X 0]
G1 G/ GZ

Figure 29: Nonorientable saddle in a grid diagram. Assume the markings in the first two columns
of G belong to the same component of L;; we switch the X—marking in the first column with
the @O—marking in the second one to get G’. Then starting from the X at the bottom, we reverse
all the markings on this component of the link until we obtain the diagram G».
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Lemma 5.10 The maps v and v’ as before drop the §—grading by
7(2—e(F))— 3(tk(K1. L1 \ K1) —tk(K>, L2 \ K3)),
12+ e(F))+ F(Uk(Ky, L1\ K1) — tk(K2, Ly \ K2)).
respectively. Here, K; is the component of L; where we perform the nonorientable saddle move.
Proof Say G, G’ and G, are as in Figure 29, with orientations on G; and G, given as in Section 3.2.

We prove the claim for the map v. From [Ozsvath et al. 2017b, Proposition 5.7] and its proof we have
that g, (x) = 8¢’ (v(x)) and

86'(v(x)) =8, (v(x)) = —5[Wr(G1) —wr(G2) + 1-2]
= —4[wr(G]) —wr(G3) +1-2]— 3[2-¢k(K1. L1\ K1) —2-tk(K2, L2\ K2)].
where Gl.1 is the subdiagram representing K;. Then
8G,(v(x)) =86, (x) — (2 —e(F)) + 3 ((k(K1, L1\ K1) —€k(K>, L2 \ K>))

by Lemma 5.9. The case of v’ is done in the same way. |
This lemma implies the following result.

Proposition 5.11 Suppose that L; and K; are as before and F is the corresponding nonorientable saddle.
Then

Umax(L1) — 2 —e(F)) + 3[¢k(K71, L1 \ K1) — €k(K2. L2\ K>)]
< Umax (L2) < Umax(L1) + 32+ e(F)) + 3[¢k(K1, L1\ K1) — €k(K2, L2 \ K2)],
where L1 \ K1 and L, \ K, are oriented in the same way. The same is true for Un;y.

Proof Since v/ ov =vov’ = U we have that v and v’ induce isomorphisms in homology. Therefore,
the claim follows from Lemma 5.10 and the definition of vpax and Uniy. O

These inequalities do not depend on the orientation of the components of L; and L, where the saddle
appears. The proof of this statement is given in Lemma 5.12.

5.4 Bounds for the unoriented slice genus of a link

Suppose that the n—component (unoriented) link L bounds a compact, unoriented surface F, with k
connected components and Euler number e(F), properly embedded in D*. Define v = vy + --- + v as
in Figure 30. Using the notation in [Gordon and Litherland 1978], we write
AML):= Y tk(Li.Ly)
1<i<j<n
for the total linking number of L and we take & j(F):=e(F)— ZA(Z), where L means that we pick an

orientation of L. Then e; (F) = 0 when F'is oriented and L inherits its orientation from F; see [Gordon
and Litherland 1978, Section 5].
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L
6‘5’ ......... g:: ......... @
Ok
g tori v nonorientable
saddles

Figure 30: The number v; denotes how many nonorientable saddles there are on each of the k
components of F. In the picture we omitted the attachment of the extended birth and death moves.

Lemma 5.12 Suppose that a link L = L = dF as in Figure 30 is such that n = k, which means that F is
the union of n disjoint unoriented surfaces F;, each one bounding a knot. Then

(5-3) —g =30+ 18 (F) < vnax(L) S g + 30+ §2;. (F)
and
(5-4) —g—%v +1—-n+ %éz(F) < Umin(L) < g+ %v +1—-n+ %éZ(F)

for every possible orientation we put on L.

Proof If v = 0 then the claims are true since in this case e; (F) = e(F) = /\(Z) = 0 (every orientation on
L is compatible with one on F') and by Proposition 5.8. Suppose that v = 1; we prove the last statement
first. We assume (5-3) and (5-4) are satisfied for one orientation L and we prove them for another one, that
we call L. Obviously, we can also suppose that L’ is obtained from L by just reversing the orientation
on one component of L, that we denote by K.

By [Ozsvith et al. 2015, Corollary 2.7.10] and Theorem 5.7,
v(L') =v(L) + k(K. L\ K),
where here v denotes either v, Or Umin. Hence, since

ML) =ML\ K)—4k(K, L\ K) = A(L)—24k(K,L\ K),
we obtain

1e;,(F)=1e; (F)+(k(K.L\K).
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This means that if we add Zk(]% L \ K ) to each term in the inequalities in (5-3) and (5-4) then we obtain
precisely the corresponding equations for L’; and this part of the proof is complete.

We now prove that the inequalities hold for at least one orientation of L. We proceed by induction on v,
where the initial step has been done at the beginning of the proof. Therefore, we assume that (5-3) and
(5-4) hold for L and we prove them for L , where this time L’ is related to L by a nonorientable saddle
move as in Figure 27. Denote by K and K’ the components of L and L’ where the move is performed.
We orient them as in the proof of Lemma 5.10 and Proposition 5.11.

We show the case of (5-3); the argument for (5-4) is exactly the same. We start by writing
—g— 2v + 4eL(F) < UmaX(L) and UmaX(L) g+5 v + 4eL(F)
from the inductive step; we call S the saddle move and F’ the surface obtained by gluing S to F, which
means 0F’ = L’. Then the first inequality becomes
— Y+ +1e; (F) = —g—tv+1e: (F)+(—1+1e($)+3 k(K. L\K)- L tk(K', L'\ K"))

< Unax(L) + (=3 +5e(S) + 3 tk(K. L\K) =3 tk(K', L'\ K")) < vmax (L),
where the first equality can be easily computed from the definition of e and the last inequality follows
from Proposition 5.11. In the same way,

-

Umax (L) < Umax (L) + (3 + Le(S) + L tk(K, L\ K) — L ¢k(K', L'\ K"))
<g+ivtie;(F)+ (L +1e(S)+ k(K. L\K)— L tk(K'.L'\ K"))
<g+ 3+ 1)+ ez, (F).
This concludes the proof because all the terms in (5-3) and (5-4) are preserved under concordance; hence,
we can ignore extended births and deaths in F. |

This lemma allows us to prove Proposition 5.13. Suppose that L is a link which bounds an unoriented
surface F in D*, with Fy, ..., Fy as connected components, as in Figure 30. Fix an orientation on L; we
need to define the integer A(Z, F):=A(L1)+---+ A(L), where L; is the oriented sublink of L such
that L; = dF;. Note that the orientation on L; has nothing to do with F; which may be nonorientable as
well. We say that A(L;) =0 when L; is a knot.

We also write L for the k—component link which appears before the split moves in the decomposition of
F in Figure 30. Hence, if we denote by F C F the subsurface such that L = dF then L and F satisfy
the hypothesis of Lemma 5.12.

Proposition 5.13 With the notation established above, the following inequalities are satisfied for the 2k
orientations of L which are determined by the ones on L:

—g—%v+k—n+lé,3(F)<vmax(L)<g+%v+léi(F)
—g—tv+l-n+le; (F)\Umm(L)\g—i-zv—l—l k+te- 7 (F).
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Proof We have that
((Li,Ly)= Y tk(Ls, Ly)

tel;,lel;

forevery i, j =1,...,k, where I, is the set of the components of L in L, fora =1,..., k. Therefore,
one has /\(Z) + /\(z, F)= A(Z). We name F’ C F the cobordism between L and L and we obtain

27 (F) = e(F) =2A(L) = e(F) +e(F) =2(M(L) + ML, F)) = & (F) + (e(F") = 2A(L. F)),
and from this, say F/ = F’ N F; is a connected component of F’, we argue that
k
e(F')=2ML.F) =Y (e(F)) —2A(L}))
i=1
by definition of the Euler number. Since each Fl.’ is oriented and it is a cobordism from L P = Ln F;

to L;, we can cap F; off in D* by gluing a compact oriented surface with boundary L;. In this way, we
obtain an oriented surface G; such that 0G; = L; and e(G;) = e(Fl-’ ) forevery i =1,...,k and then

k k k
> (e(F)=2M(L) = (e(G)) —2A(L;)) = Y 21,(Gi) =0

because the orientation on L; is induced by the one on G; (which is the same induced by Fl.’ ).
We have proved that e; (F) = e Z(ﬁ ) and now we can apply Lemma 5.12 to show that
—g— 30+ 487 (F) < Uman(L) < g + 30 + §8; (F)
and
—g—3v+1—k+ 367 (F) Sumin(L) < g+ 30+ 1—k + g¢; (F).

In order to conclude the proof, we apply (5-1) and (5-2) which tell us that

Umax(z) < Umax(z) < Umax(z) +n—k and Umin(l_:) < Umin(z) < Umin(z) +n—k,
provided that the orientation on L belongs to the 2K ones induced by an orientation of F’. |
We can use this result to prove that the wideness of the v—set of L gives a lower bound for the unoriented

slice genus yik)(L), which is defined as the smallest first Betti number of a surface F' as in Figure 30
with k connected components.

Proof of Theorem 1.8 This follows from Proposition 5.13 because 2g + v + n — k is exactly the first
Betti number of F. d

Note that Theorem 1.7 tells us that Upax (L) — Umin (L) is an unoriented concordance invariant of L. As a
consequence of Theorem 1.8 we obtain Corollary 1.9; see also [Donald and Owens 2012, Section 5] for
another proof of this result.
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N

/\

Figure 31: The link 7> 4; this link becomes the 2—component unlink after the unoriented resolution
of the crossing on the blue component.

Proof of Corollary 1.9 Suppose that F is the unoriented surface with maximal value of y(F) and
say it appears like in Figure 30. As we saw in the proof of Theorem 1.8, the first Betti number of F is
2g 4+ v +n —k and then the same theorem implies

k—1<2g+v+n—k
because, for a quasialternating link L, Uyax (L) = Umin(L) by Theorem 4.8.
The latter inequality can be rewritten as
2k—n—2g—v<1
and it is easy to check that the left-most side is precisely y(F). O
In particular, suppose that the quasialternating link L has n components and F is the disjoint union of a
disks and n — a Mobius strips. Then a can be at most equal to one.

We saw in Theorem 1.7 that we can shift HFL’ (Z) to obtain an unoriented concordance invariant of links.
This suggests that we can modify the bounds in Proposition 5.13 in a way that only unoriented invariants
appear. The main tool to achieve this goal is the Gordon-Litherland formula [1978, Corollary 5”],

7 - k
(5-5) (L) - Le; (F)| < v{P W),
where L = dF and F = Fy U---U Fy.

Proof of Theorem 1.10 We just need to apply (5-5) to Proposition 5.13. a

Note that the quantities that appear in the left-most side of all the inequalities in Theorem 1.10 are
unoriented concordance invariants; in particular, they are independent of the choice of the orientation
on L.

We conclude the paper with a couple of applications, which imply Corollary 1.11. First, we compute
J/Y)( L) when L, is the 2—component link TZ W TS#Z.
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Corollary 5.14 yf) (Lpy)=n+1 forevery n=0.

Proof Since Tz*, 4 18 nonsplit alternating we can easily compute vmin(TZ 4) = 1 using Theorem 4.8, while
the fact that v(T3#”3) = —2n is known from [Ozsvith et al. 2017b, Corollary 1.4]. Moreover, applying
Corollary 4.11 we obtain that

Umin(Ln) = Umin(T2*’4) + U(T:f”}‘ =1-2n.
Now we just use Theorem 1.10 and remember that G(TZ*A) =3 and 0(73,4) = —6, so
1—2n—1G—6m)+1|=|n+L|<n+1<yP L.

In order to complete the proof we observe that there is a sequence of n 4+ 1 nonorientable saddles that
change L, into the unlink (): there is one from 73 4 to the unknot and we perform one on each summand,
while we can go from 7> 4 to (O2 by an unoriented resolution of a crossing; see Figure 31. a

Finally, we show that yil) (Ly) can be arbitrarily large.
Corollary 5.15 yil)(Ln) = n foreveryn = 0.

Proof We use the last inequality in Theorem 1.10 with vy (L) and we immediately obtain

1—2n—13—6n—1)|=n <y{"(Ln). O

We point out that these two results cannot be obtained by using Theorem 1.8 alone.
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