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Strongly shortcut spaces

NIMA HODA

We define the strong shortcut property for rough geodesic metric spaces, generalizing the notion of
strongly shortcut graphs. We show that the strong shortcut property is a rough similarity invariant.
We give several new characterizations of the strong shortcut property, including an asymptotic cone
characterization. We use this characterization to prove that asymptotically CAT(0) spaces are strongly
shortcut. We prove that if a group acts metrically properly and coboundedly on a strongly shortcut rough
geodesic metric space then it has a strongly shortcut Cayley graph and so is a strongly shortcut group.
Thus we show that CAT(0) groups are strongly shortcut.

To prove these results, we use several intermediate results which we believe may be of independent interest,
including what we call the circle tightening lemma and the fine Milnor-Schwarz lemma. The circle
tightening lemma describes how one may obtain a quasi-isometric embedding of a circle by performing
surgery on a rough Lipschitz map from a circle that sends antipodal pairs of points far enough apart. The
fine Milnor-Schwarz lemma is a refinement of the Milnor—Schwarz lemma that gives finer control on the
multiplicative constant of the quasi-isometry from a group to a space it acts on.
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1 Introduction
The study of interactions between nonpositive curvature and infinite group theory have a long history
dating back to the work of Max Dehn on fundamental groups of surfaces in the early 20" century. These
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3292 Nima Hoda

ideas have been developed in a variety of directions since that time and have become particularly relevant
in recent decades with the emergence of geometric group theory. Various theories of nonpositively curved
groups have been developed: small cancellation groups, CAT(0) groups, cubulated groups, systolic groups,
quadric groups, etc. However, while the case of negatively curved groups has been satisfactorily unified
by the seminal work of Gromov [1987] on hyperbolic groups, to this date there is no satisfactory general
notion of a nonpositively curved group.

Strongly shortcut graphs were introduced in earlier work [Hoda 2022] as graphs satisfying a weak notion
of nonpositive curvature. They were shown to unify a broad family of graphs of interest in geometric group
theory and metric graph theory including hyperbolic graphs, standard Cayley graphs of finitely generated
Coxeter groups and 1-skeletons of finite-dimensional CAT(0) cube complexes, systolic complexes and
quadric complexes [Haettel et al. 2023; Hoda 2022]. They are finitely presented and have polynomial
isoperimetric functions and so have decidable word problem [Hoda 2022]. Strongly shortcut groups are
defined as those groups admitting a proper and cocompact action on a strongly shortcut graph [Hoda 2022].
They include a wide family of groups satisfying various nonpositive curvature conditions, including
hyperbolic groups, Coxeter groups, cocompactly cubulated groups, systolic groups, quadric groups,
finitely presented small cancellation groups, Helly groups, hierarchically hyperbolic groups and even the
discrete Heisenberg groups [Haettel et al. 2023; Hoda 2022; Le Donne and Paddeu 2023].

A graph T is strongly shortcut if, for some K > 1, there is a bound on the lengths of cycles «: S — I" for
which dx (x(p), a(p)) = (1/K)-(|S|/2) for every antipodal pair of points p, p € S. By [Hoda 2022],
a graph I' is strongly shortcut if and only if, for some K > 1, there is a bound on the lengths of the
K-bi-Lipschitz embedded cycles of I'. A result of Papasoglu [1996, page 793] implies that strongly
shortcut groups have simply connected asymptotic cones. By another result of Papasoglu [1996, page 805],
this implies that strongly shortcut groups have linear isodiametric functions and, by a result of Riley
[2003, Theorem C], this implies that strongly shortcut groups have linear filling length functions.

In this paper, we introduce a generalization of this notion to rough geodesic metric spaces. A metric
space X is R—rough geodesic if, for every x1, xo € X, there exists a function f:[0,£] — X such that
f(0) =x1, f(€) = x2, £ = d(x1, x2) and

ls—t|=R=d(f(s). f(1)) <|s—t|+R

for any s and ¢ in the interval [0, £]. This is the same as X being (1, R)—quasigeodesic. The special
case R = 0 is that of geodesic metric spaces. An R—rough geodesic metric space X is strongly shortcut
if, for some K > 1, there is a bound on the lengths of Riemannian circles S for which there exists an
R-rough 1-Lipschitz map «: S — X that satisfies dy («(p), a(p)) = (1/K)-(|S|/2) for every antipodal
pair of points p, p € S. Such a map « is called a 1/ K—almost isometric R—circle. We give several
characterizations of the strong shortcut property, we show that a group acting metrically properly and
coboundedly on a strongly shortcut rough geodesic metric space is a strongly shortcut group and we
prove a few other results that may be of independent interest in metric geometry and geometric group
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theory. The results of this paper are applied in several upcoming papers [Haettel et al. 2023; Hoda and
Krishna M S 2023; Le Donne and Paddeu 2023].

Below is a summary of our main results.

Theorem A gives several conditions that are equivalent to the strong shortcut property for rough geodesic
metric spaces. Of particular note is condition (5) which expresses the strong shortcut property in terms of
asymptotic cones. Conditions (2) and (3) generalize [Hoda 2022, Proposition 3.5], which expresses the
strong shortcut property for graphs in terms of bi-Lipschitz cycles. These two generalizations have their
own advantages: for geodesic metric spaces (ie when R = 0) condition (2) expresses the strong shortcut
property purely in terms of bi-Lipschitz maps from circles, whereas condition (3) avoids the dependence
on R. Condition (4) expresses the strong shortcut property in terms of nonapproximability of certain
finite metric spaces at large scale. Conditions (4) and (5) also make sense for general metric spaces and
we prove that they are equivalent for general metric spaces (see Theorem 3.6). Thus one may consider
condition (4) of Theorem A as a definition of the strong shortcut property for general metric spaces.

Theorem A (Theorem 3.8) Let X be an R—rough geodesic metric space. The following conditions are
equivalent:

(1) X is strongly shortcut.

(2) There exists an L > 1 such that there is a bound on the lengths of the (L, 4 R)—quasi-isometric
embeddings of Riemannian circles in X .

(3) There exists an L > 1 such that for every C > 0 there is a bound on the lengths of the (L, C )—quasi-
isometric embeddings of Riemannian circles in X .

(4) For some L > 1 and some n € N, there is a bound on the A > 0 for which there exists an L—bi-
Lipschitz embedding of )LS,? in X, where S,? is the vertex set of the cycle graph S, of length n and
180 is S with the metric scaled by A.

(5) No asymptotic cone of X contains an isometric copy of the Riemannian circle of unit length.

The main difficulty in proving Theorem A is in the implication (2) => (1). This is because a 1/ K—-almost
isometric R—circle in X does not need to be an (L, 4 R)—quasi-isometric embedding for any L > 1; while
the almost isometric condition only concerns pairs of antipodal points, the quasi-isometry condition
concerns all pairs of points. The idea of the proof is that given a 1/ K—almost isometric R—circle o with
K > 1 sufficiently close to 1, we can perform surgery on « in order to obtain an (L, 4 R)—quasi-isometric
embedding where L depends on K in such a way that if K — 1 then L — 1 also. The contrapositive
—(1) = —(2) then readily follows since any family of arbitrarily long R—circles with almost isometric
constant K approaching 1 could then be surgered to produce a family of quasi-isometric embeddings
with the multiplicative constant L tending to 1. The circle surgery result, which we call the circle
tightening lemma, is stated in slightly simplified form in Theorem G below and expressed more formally
in Lemma 4.5.
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Theorem B (Theorems 3.5 and 3.8) Let I' be a graph. Then T is strongly shortcut as a graph if and
only if T" is strongly shortcut as a geodesic metric space.

Theorem C gives several conditions that are equivalent to the strong shortcut property for groups.
Condition (3) reduces the property to the existence of a strongly shortcut Cayley graph. The proof is a
direct application of the fine Milnor—Schwarz lemma (Theorem H) and stability of the strong shortcut
property under scaling and quasi-isometric perturbation of the metric (Theorem F).

Theorem C (Corollary 5.5) Let G be a group. The following conditions are equivalent.

(1) G is strongly shortcut.
(2) G acts metrically properly and coboundedly on a strongly shortcut rough geodesic metric space.

(3) G has a finite generating set S for which the Cayley graph of (G, S) is strongly shortcut.

Asymptotically CAT(0) spaces and groups were first introduced and studied by Kar [2011]. A metric space
X is asymptotically CAT(0) if every asymptotic cone of X is CAT(0). A group is asymptotically CAT(0)
if it acts properly and cocompactly on an asymptotically CAT(0) proper geodesic metric space. Examples
of asymptotically CAT(0) spaces include CAT(0) spaces, Gromov-hyperbolic spaces and m with
the Sasaki metric [Kar 2011].

Theorem D (Theorems 6.1 and 6.2) Asymptotically CAT(0) rough geodesic metric spaces are strongly
shortcut. Consequently, (asymptotically) CAT(0) groups are strongly shortcut.

Theorem E shows that the strong shortcut condition is preserved under taking asymptotic cones. This
was suggested as a desirable property for a general notion of nonpositive curvature in Gromov [1993,
Section 6.E].

Theorem E (Corollary 3.9) Let X be an R—rough geodesic metric space. If X is strongly shortcut then
every asymptotic cone of X is strongly shortcut.

Theorem F below has several consequences. In addition to showing that the strong shortcut property
descends to isometric subspaces and is a rough similarity invariant, it implies that for a given strongly
shortcut space, a sufficiently small bi-Lipschitz distortion of the metric preserves the strong shortcut
property. This is another property which is discussed in Gromov [1993, Section 6.E].

Theorem F (Corollary 3.10) Let X be a strongly shortcut rough geodesic metric space. Then there
exists an Ly > 1 such that whenever Y is a rough geodesic metric space and f:Y — X isan (Ly,C)—
quasi-isometric embedding up to scaling, with C > 0, then Y is also strongly shortcut. In particular, the
strong shortcut property is a rough similarity invariant of rough geodesic metric spaces.

In fact, Theorem F holds for general metric spaces with condition (4) of Theorem A in place of the
strong shortcut property (see Proposition 3.4). It should be noted that the strong shortcut property is not
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Figure 1: The closed outer path in black is a 1-Lipschitz embedding « of a Riemannian circle S.
This embedding « has poor bi-Lipschitz constant but only because it badly distorts distances
between relatively nearby pairs of points of S (pairs contained in the subpaths |g;). If we
consider only antipodal pairs of points of S then the distortion of their distances under « is much
less than in these worst cases. In other words « has low distortion when viewed globally. The
circle tightening lemma tells us that if the global distortion of « is low enough then we can
perform surgery on «, replacing distorted subpaths of arbitrarily low total relative length with
efficient alternatives (the red paths in the figure) in order to obtain an arbitrarily good bi-Lipschitz
constant.

a quasi-isometry invariant so one cannot hope to remove the dependence on X of the quasi-isometry
constant Ly . See Section 3.1 for an example.

The following result, which we call the circle tightening lemma, states that a map from a circle that
satisfies a rough Lipschitz upper bound and that, on antipodes, satisfies a bi-Lipschitz lower bound can
be upgraded through surgery to a rough bi-Lipschitz map. See Figure 1. The circle tightening lemma is
essential in the proof of Theorem A. We believe it may be of independent interest. Here we express a
slightly simplified version of the circle tightening lemma. For the formal statement, please see Lemma 4.5.

Theorem G (circle tightening lemma, Lemma 4.5) Let X be an R—rough geodesic metric space with
R >0, let L >1 and let ¢ > 0. There exists a K > 1 such thatif «: S — X is a sufficiently long R—rough
1-Lipschitz map from a Riemannian circle S satisfying

dx @(p),a(p)) = wds(p. )

for every antipodal pair p, p € S then there exists a countable collection {Q;}; of pairwise disjoint closed
segments in S of total length ) _; |Q;| < €|S| such that shortening the Q; and replacing the ot|g, : Q; — X
we can obtain from « an (L, 4R)—quasi-isometric embedding of a circle.

Note that in the statement of the circle tightening lemma, the rough geodesicity constant R may be equal
to 0 in which case the result is about 1-Lipschitz maps and L-bi-Lipschitz maps in a geodesic metric
space.
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We call the following refinement of the Milnor—Schwarz lemma the fine Milnor—Schwarz lemma. It is used
in the proof of Theorem C. It essentially says that if a group G acts metrically properly and coboundedly
on a rough geodesic space X then, up to scaling, the group G has word metrics that are quasi-isometric
to X with multiplicative constant arbitrarily close to 1. We believe it may be of independent interest.

Theorem H (fine Milnor—Schwarz lemma, Lemma 5.2, Remark 5.1) Let (X, d) be a rough geodesic
metric space. Let G be a group acting metrically properly and coboundedly on X by isometries. Fix
xo € X. Fort > 0 let S; be the finite set defined by

S: ={g€G|d(xo,8x0) <t}

and consider the word metric dg, defined by S;. (For those t where S; does not generate G, we allow
ds, to take the value 0o). Let K; be the infimum of all K > 1 for which

(G.tds,) > X, g g-xo,

is a (K, Cx)—quasi-isometry for some Cg > 0. Then K; — 1 as t — oo.

Structure of the paper

In Section 2 we introduce basic notions that will be used throughout the paper. In Section 3 prove various
characterizations of the strong shortcut property and prove that it is a rough similarity invariant. In
Section 4 we state and prove the circle tightening lemma. In Section 5 we state and prove the fine Milnor—
Schwarz lemma. In Section 6, we apply the results of the previous sections to prove that asymptotically
CAT(0) groups are strongly shortcut.
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2 Basic notions and definitions

Let X and Y be metric spaces, let S be a set and let R be a nonnegative real. A function f:S — Y is
R-roughly onto if every y € Y is at distance at most R from some point in f(X) C Y. An R—rough
isometric embedding from X to Y is a function f: X — Y such that

d(x1,x2) = R=<d(f(x1), f(x2)) <d(x1,x2) + R

for all x1, x, € X. An R-rough isometric embedding is the same as a (1, R)—quasi-isometric embedding.
An R-rough isometric embedding f: X — Y is an R—rough isometry if it is roughly onto. An R-rough
isometry is the same as a (1, R)—quasi-isometry.
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An R-rough geodesic in X from x1 to x, is an R-rough isometric embedding f from the interval
[0,£] C R to X with £ = d(x1,x3) such that f(0) = x; and f({) = xp. An R-rough geodesic is the
same as a (1, R)—quasigeodesic. A metric space (X, d) is R—rough geodesic if every pair of points in X
is joined by an R-rough geodesic.! Note that rough geodesicity implies weak geodesicity, as used by
Kasparov and Skandalis [1994; 2003] and others [Lafforgue 2002; Mineyev and Yu 2002]. A natural
question is whether or not every rough geodesic space can be thickened, in the sense of Gromov [1993,
Section 1.B] to a geodesic metric space.

Let X and Y be metric spaces, let R > 0 and let K > 1. An R—rough K-Lipschitz map from Y to X is a
function «: Y — X such that

d(a(p),a(q)) < Kd(p.q) + R

for all p,q € Y. An R—path in X is an R-rough 1-Lipschitz map «: P — X from an interval P C R.
An R—circle in X is an R-rough 1-Lipschitz map o: § — X from a Riemannian circle S. We use the
notation | F'| to denote the length of F, where F is an interval, a Riemannian circle or a finite union of
closed segments in an interval or in a Riemannian circle.

Remark 2.1 The concatenation of two R—paths need not be an R—path. However, if «1: P — X and
a2 P, — X are a pair of concatenable R—paths and y: [0, R] — X is the constant path at the point of
concatenation then the concatenation o1 y o5 is an R—path.

An R—circle a: S — X is 1/ K—almost isometric, for some K > 1, if

S
d@(p).a(p) = - )

for every antipodal pair of points p, p € S.

Definition 2.2 An R-rough geodesic metric space X is strongly shortcut if, for some K > 1, there is a
bound on the lengths of the 1/ K—almost isometric R—cycles of X.

Remark 2.3 By Theorem 3.8, the apparent dependence on R in Definition 2.2 is not essential. That
is, if X is an R-rough geodesic metric space and R’ > R then X is strongly shortcut if and only if it is
strongly shortcut when viewed as an R'-rough geodesic metric space.

We view graphs as geodesic metric spaces with each edge isometric to a unit interval. For a graph T,
we use the notation I'? to denote the vertex set of I" with its subspace metric. The cycle graph S, of
length 7 is the graph isometric to a Riemannian circle of length n. A cycle in a graph I is a combinatorial
IWe include the condition £ = d(x1, x2) in the definition of an R-rough geodesic f only for convenience. If we do not assume
it, then we can recover it up to slightly increasing the rough geodesicity constant to R’ = (1 4+ +/2) R. Indeed, the remaining
conditions on f imply that [£ —d(x1,x2)| < R and it can be shown that either d(x1, x) < R’ (in which case any function

[0,d(x1,x2)] — {x1, X2} is an R’—rough isometric embedding) or the composition of f with the orientation preserving linear
bijection [0, d(x1, x2)] — [0, £] results in an R’—rough isometric embedding.
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map S, — I from some cycle graph S, to I'. A path graph is a graph isometric to a real interval. A
combinatorial path in a graph I" is a combinatorial map P — I' from a path graph P.

Note that if «: S, — I' is a cycle in a graph I" then « is a 1-Lipschitz map from a Riemannian circle
to a geodesic metric space or, in the language we have established above, an R—circle in an R-rough
geodesic metric space where R = 0.

Definition 2.4 A graph I' is strongly shortcut as a graph if, for some K > 1, there is a bound on the
lengths of the 1/ K—almost isometric cycles of T'.

Remark 2.5 By Theorems 3.5 and 3.8 and Corollary 3.10, the following conditions are equivalent for a
graph T.

(1) T is strongly shortcut as a graph.
(2) T is strongly shortcut as a geodesic metric space.

(3) TI'?is strongly shortcut as a rough geodesic metric space.
If X is a metric space and A > 0 then we write A X to denote the metric space obtained from X by scaling

the metric by A.

3 Characterizing the strong shortcut property

In this section we will give various characterizations of the strong shortcut property.

Lemma 3.1 Let«:S — X be al/K-almost isometric R—circle in a metric space X . Then

d(e(p),a(q)) = d(p,q) ——4—— —2R
forall p,q € S.

Proof Let p’,q’ € S\ {p,q} be antipodal and suppose that a geodesic segment of S visits p’, p, ¢
and ¢’, in that order. Then

=l < datp). 0@
<d(a(p),a(p)) +d(a(p), a(q)) +d(a(qg), a(q)
<d(p', p)+ R+d((p),a(g)) +d(q,q") + R
=d(p', p)+d(q.q") +d(a(p),a(q)) +2R
= l%' —d(p,q) +d(a(p).a(q)) + 2R,
from which we can obtain the desired inequality. a

The following definition is very useful because it applies to general metric spaces.
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Definition 3.2 A metric space X approximates n—gons if for every K > 1 and every n € N there exist
K-bi-Lipschitz embeddings of AS? in X for arbitrarily large A > 0.

We will see that in the case of a graph or a rough geodesic metric space nonapproximation of n—gons is
equivalent to the strong shortcut property. Thus it would make sense to define the strong shortcut property
for general metric spaces as nonapproximability of n—gons.

Definition 3.3 Let X and Y be metric spaces. A function f:Y — X is a (K, C)—quasi-isometry up
to scaling if there exists a A > 0 such that f is a (K, C)—quasi-isometry when viewed as a function
from AY to X. A function f:Y — X is a rough similarity if, for some C > 0, the function f is a
(1, C)—quasi-isometry up to scaling. A property & of metric spaces is a rough similarity invariant if
whenever X satisfies ? and f:Y — X is a rough similarity then Y also satisfies . A property % of
metric spaces is a rough approximability invariant if, for any metric space X satisfying P, there exists
an Ly > 1 such that whenever C >0 and f:Y — X is an (Ly, C)—quasi-isometric embedding up to
scaling, then Y also satisfies %.

Proposition 3.4 Nonapproximability of n—gons is a rough approximability invariant of metric spaces. In
particular, nonapproximability of n—gons is a rough similarity invariant of metric spaces.

Proof Let X be a metric space that does not approximate n—gons. Then there isa K > 1, an n € N and
a A > 0 such that any K-bi-Lipschitz embedding of AS? in X satisfies A < A.

Let Y be a metric space, letz > 0, let L € (1, K) and let f:tY — X be an (L, C)—quasi-isometric
embedding. Let K’ € (1, K/L) and let '’ > CLK’/t. We will show that there is a bound on the
A" for which there exists a K’-bi-Lipschitz embedding a: A’S? — Y. Viewing such an o as map
from tA’S? to tY the composition f oa:tA'S? — X is an (LK’, C)—quasi-isometric embedding. But
the minimum distance between distinct points in 71’ S,? is A’ and so one can show that f o« is a
(tMLK'+ C)/(tA' — LK'C)-bi-Lipschitz embedding from t1’S?. But

tAMLK' +C

(N—LK'C
as A’ — oo so there is a Ag such that if A’ > Ag then (ALK’ + C)/(tA — LK'C) < K. So if we
had A’ > A’ = max{Ag, A/t} then f o« would be a K-bi-Lipschitz embedding of AS? in X with
A =1tA > A, which would be a contradiction. Thus A’ bounds the A’ for which there exists a K'-bi-
Lipschitz embedding a: A'S? — Y, as required. |

LK <K

Theorem 3.5 Let I' be a graph. Then the following conditions are equivalent.
(1) T is not strongly shortcut as a graph.

(2) T approximates n—gons.

Proof (1) = (2) Let K’ >1andleta: S, — I be a 1/K’—almost isometric cycle. Let n € N and
subdivide S, into n segments of equal length, ignoring the original graph structure on S,/. Let Y C S, be
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the set of endpoints of the segments. Then Y is isometric to AS,, for A =n’/n. Let o’ be the composition
of the inclusion Y — S, with . Let p,q € Y be distinct. Then d(p, g) > |S»/|/n and, by Lemma 3.1,

K’—1'|S,,/| - K/—l.nd(p,q):(1 n(K' — )) (0.0,

d@'(p).a'(q)) = d(p.q)— d(p.q)—

K’ 2 = K’ 2 2K’
but d(a’(p).a@’(q)) < d(p.q) so, when K’ is small enough that n(K' — 1)/2K’ < 1, the map o' is

K-bi-Lipschitz for
n(K'—1)\ !
K=({1-—— .
2K’

Thus, given an arbitrary n € N and an o’ as above with K’ small enough, we can obtain a K-bi-Lipschitz
embedding of 1S, in I" with
K'—1 !
k=(1-"E Dy,
2K n
Since T is not strongly shortcut, there exist & as above with K’ > 1 arbitrarily close to 1 and with n’

arbitrarily large. But K — 1 as K’ — 1 and A — oo as n’ — oo so we have K-bi-Lipschitz embeddings
of AS,, with K arbitrarily close to 1 and A arbitrarily large.

(2) = (1) LetneN,let K >1,let A > K and let a: AS? — T" be a K-bi-Lipschitz embedding.
There is a retraction r: I' — I'% such that r is a (1, 1)—quasi-isometry. Then the composition r o « is a
(K, 1)—quasi-isometric embedding. But distinct points in 15?2 are at distance at least A and, since K < A,
this implies that r o o is L-bi-Lipschitz, where L = (KA + 1)/(A — K). View S, as the Cayley graph of
Z/nZ with generating set {1} and, for i € Z/nZ, let v; be the vertex of S, corresponding to i. Then,
for each i, we have d(r o @ (v;),r oa(vi+1)) < |LA] so there is a combinatorial path y;: P; — I of
length m; € {|LA] —1, [ LA]} from r o (v;) to r o (vj+1). For each i, identify the endpoint of P; with
the initial point of P;4; to obtain a cycle y: S, — I withm = Z;’Zl m;. Then « factors through y
via the embedding that sends v; to the initial point of P; C Sp,. So, viewing S? as a subset of SO via
this embedding, we have r o (v;) = y(v;), for each i. Let x € Sy, and let v; minimize d(x, v;). Then
d(x,vi) <s I_LAJ and if X is the antipode of x and i =i + |_ J then d(X,v;) < |LA] + %, s0

d(y(x),y(x)) = d(y(vi), y(v;)) —d(y(x), y(vi)) —d(y(X), y(v;))
> d(y(vi), y(v;7)) —d(x,v;) —d(X,v7)
> d(y(vi), y(v)) = LA = |LA] = 3n
=d(roa(v;),roa(v;))— % |[LA] — %n
> Ldy g0 (vi,07) = 3LLA] =

= Hldn- - 4
I e U e S R
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Since m < nLA, the above computation implies that

_ n—1 3 1\ |Sml

d , > —— | —

vz (-2 - )
so, given « as above, we can obtain a 1/ K’—almost isometric cycle in ' of length m, where
1 (n—1 3 1
K’ \nL?> n LA)

We need only show there exist o for which 1/K’ is arbitrarily close to 1 and m is arbitrarily large. By

hypothesis, there exist @ for which K = (n + 1)/n and A > n, for arbitrary n € N. But then, as n — o0,
we have m > n(|LA]—1) > ocoand L = (KA +1)/(A — K) — K so

1 n—1 3 1 | -
— = - )=>1.
K’ nl?2 n LX

Let X be a metric space. Let U be a nonprincipal ultrafilter on N. Let (b)), be a sequence in X.

Let (s"),,en be a sequence of positive reals such that s — oo as m — oco. Consider the set

d pm)
X' = {(xm)meN ) (%) is bounded}
S meN

of sequences in X that are bounded with respect to the basepoint sequence (b(m))m and the scaling
sequence (s™),,,. For (Xm)m. (Xp)m € X/,
/
3o, (i) = i “E2 )
defines a pseudometric on X’. The asymptotic cone X of X with respect to the nonprincipal ultrafilter U,
the basepoint sequence (b)), and the scaling sequence (s™),, is the metric space obtained from X’
and d by identifying (xXm)m and (x},)m Whenever d ((Xm)m. (X)m) = 0.

Note that Theorem 3.6 and Corollary 3.7 apply to general metric spaces and not just rough geodesic
metric spaces.

Theorem 3.6 Let X be a metric space. Then the following conditions are equivalent.

(1) There is an asymptotic cone of X that contains an isometric copy of the Riemannian circle of unit
length.

(2) X approximates n—gons.

Proof (1) = (2) Suppose S C ¥ is a subspace isometric to the Riemannian circle of unit length in the
asymptotic cone % of X with respect to a nonprincipal ultrafilter U, a basepoint sequence (b™),, and a
scaling sequence (s(’"))m. Take any n € N, any K > 1 and any A > 0. We will construct a K-bi-Lipschitz
map a: AS? — X with A > A. Subdivide S into n segments of equal length and let S® denote the set of
endpoints of the segments. For each £ > 0 and each p, g € S° represented by (pm)m and (¢m)m, there is

an A2 € Y such that
d(pm,qm)

SGm) <d(p.q)+e

d(p.q)—¢=
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for all m € AZ*?. There are finitely many pairs p,q € S® so A, = ﬂp,q AP € L. Then, for any distinct
p.q€SY,

__ & \m < < _ & \m
(1= 20y )™ p.0) = dom.am) = (14 g5 )™ d(p.0)

forall m € A¢. Butd(p,q) > % and so
(1=ne)s™d(p.q) < d(pm.qm) < (1 +ne)s"™d(p.q)
for all m € Ag. So if ne < 1 then, for m € A, the map
o s™MS0 5 X, P> Pm,

is bi-Lipschitz with bi-Lipschitz constant

max{l—i—ns, 1 }: 1 .
1—ne 1—ne

The space s S is isometric to (s(m)/n)S,? so if we chose & small enough thatne <1 and 1/(1—ne) < K
and we take m € A, large enough that s(m)/n > A then we can take o = ayp.

(2) = (1) For m € N, there exists a (m + 1)/m-bi-Lipschitz map a,: A, ng — X with A,, > m.
Metrize the group (1/2™)Z = {k/2™ | k € Z} C R with the subspace metric and metrize the quotient
group (1/2™)7Z /7 with the quotient metric. Then (1/2’")ng is isometric to (1/2™)Z/Z. Via this
isometry we identify the vertex set S5, with the elements of (1/2™)Z/Z. Thus we view (1/2™)S3,, as
a metric subspace of the Riemannian circle of unit length S = R/Z. By this identification, the union
Sp = Upen ng C S is the dyadic circle Z[%]/Z. The dyadic circle Sp is dense in S. Thus, since
asymptotic cones are complete metric spaces [Drutu and Kapovich 2018, Proposition 10.70], it will suffice
to isometrically embed Sp into an asymptotic cone of X.

View oy, as an (m + 1)/m-bi-Lipschitz map from (1/2’")ng to (1/Am2™)X. Set b = ,,(0) and
set s = 1,,2m. Every nonzero element of Sp can be uniquely represented as k/ 2¢ with k odd and
satisfying 0 < k < 2¢. For any such representation & /2¢ and any m € N, set

(m) _ pm) ifm<¢,

k28T Vo (k /28 ifm > 0,

and set x(()m) = b Then, for any nonprincipal ultrafilter U, the expression p — (xl(,m))m defines an

isometric embedding of Sp into the asymptotic cone ¥ of X with respect to U, the basepoint sequence
(), and the scaling sequence S . Indeed, for every p, ¢ € Sp,

dy” xg™) _ d(em(p).om@) _ (i V/m-Ands,, (p.q) _m+1
st T am — o2 =" (P9
and
g™ ") _ d(em(p)-am(@) _ m/m+1) - Amdsyn (p.q) _ J
s T aam A2 = a1 I (P
whenever m is large enough. O
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Corollary 3.7 Let X be a metric space and let X be an asymptotic cone of X . Suppose that X does not
approximate n—gons. Then X does not approximate n—gons.

Proof By Theorem 3.6, it suffices to show that any asymptotic cone X’ of X does not contain an isometric
copy of a Riemannian circle of unit length. But X’ is isometric to an asymptotic cone of X [Drutu and
Kapovich 2018, Corollary 10.80] so does not contain an isometric copy of a Riemannian circle of unit
length by Theorem 3.6. a

Theorem 3.8 Let X be an R-rough geodesic metric space. The following conditions are equivalent.
(1) X is not strongly shortcut.
(2) Forevery L > 1 there exist (L, 4 R)—quasi-isometric embeddings of arbitrarily long Riemannian
circles in X .
(3) For every L > 1 there is a C > 0 such that there exist (L, C)—quasi-isometric embeddings of
arbitrarily long Riemannian circles in X .
(4) X approximates n—gons.

(5) There is an asymptotic cone of X that contains an isometric copy of the Riemannian circle of unit
length.

Proof Conditions (4) and (5) are equivalent for general metric spaces, by Theorem 3.6. So it will suffice
to prove the equivalence of conditions (1), (2), (3) and (4).

(1) = (2) Let N =2, let L > 1 be arbitrary, let K > 1 be small enough to satisfy Lemma 4.5 and
let : S — X be a 1/K—-almost isometric R—circle in X with | S| arbitrarily larger than the M from
Lemma 4.5. Then the limit R—circle ®oo: Soo — X given by Lemma 4.5 is an (L, 4 R)—quasi-isometric
embedding of a Riemannian circle of length at least %|S l.

(2) = (3) This is immediate.

(3) = (4) Leta:S — X be an (L, C)—quasi-isometric embedding of a Riemannian circle. Let n € N,
subdivide S into n segments of equal length and let Y be the set of endpoints of the segments. Then Y is
isometric to (|S|/n)S, and

(1 -15)dr.0) = d(e(p).ata) = (L +1$)d(p.0)

for distinct p, g € Y. By hypothesis, there exist arbitrarily long o with L arbitrarily close to 1 and so a|y
is a K-bi-Lipschitz embedding of 1S, for A = |S|/n arbitrarily large and
1 nC\™! nC
K=max{<———) ,L—l——}
o LS| S|

arbitrarily close to 1.
(4)= (1) LetneN,let L>1,let A >0andleta:AS? — X be an L-bi-Lipschitz embedding. View
Sy as the Cayley graph of Z/nZ with generating set {1} and, for i € Z/nZ, let v; be the vertex of
S, corresponding to i. Then, for each i, we have d(a(v;), ®(vi+1)) < LA so, by scaling an R—rough
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geodesic, there is an R—path y/: P; — X of length | P;| = LA from a(v;) to a(v;+1). Let y; be the
concatenation ¢; y/ where ¢; : [0, R] — X is the constant path of length R at «(v;). For each i, identify the
endpoint of P; with the initial point of P;1 to obtain an R—circle y: S — X with |S|=n(LA+ R). Then
o factors through y via the embedding that sends v; to the initial point of P; C S. So, viewing S? as a
subset of S via this embedding, we have a(v;) = y(v;) for each i. Let x € S and let v; minimize d(x, v;).
Then d(x, v;) < %(L)t + R) and if X is the antipode of x and i =i + L%J then d(x,v;) < LA+ R, so

d(y(x),y(x)) = d(y(vi), y(v;)) —d(y(x), y(vi)) —d(y(X), y(v7))
>d(y(vi), y(v7)) —d(x,v;) = R—d(%,v;) — R
> d(y(vi),y(v;)) — 3(LA+ R)— (LA + R)—2R
= d(a(vi),a(v;)) — (BLA + 7R)
> Tdy g0 (vi, v7) — SGLA+TR)
=2 4n|-1GLA+TR)

> %(%(n— 1)) —1BLA+7R)

1 (A(n—1
= L(2 =D 575 gR).Ls)
|S] L
1 An—1) 1
= —3LA—7R)-1I8
n(L)H—R)( L ) 215
B An— A 3LA 7R 1g]
“ \L2An+nLR LAn+nR LAn+nR) 2"

So, given « as above, we can obtain a 1/ K—almost isometric R—circle in X of length |S| =n(LA + R),
where

i_( An—A  3LA 7R )
K \L2An+nLR LAn+nR LAn+nR)"

We need only show there exist o for which 1/K is arbitrarily close to 1 and | S| is arbitrarily large. By
hypothesis, there exist o for which L = (n + 1)/n and A > n, for arbitrary n € N. But then, as n — o0,
we have |S| =n(LA+ R) — oo and

L_( an—A  3Lr 7R )
K \L2An+nLR LAn+nR LAn+nR :

Corollary 3.9 Let X be a metric space. If X is strongly shortcut then every asymptotic cone of X is

O

strongly shortcut.
Proof This follows immediately from Theorem 3.8 and Corollary 3.7. m|

Corollary 3.10 The strong shortcut property is a rough approximability invariant of rough geodesic
metric spaces. In particular, the strong shortcut property is a rough similarity invariant of rough geodesic
metric spaces.

Proof This follows immediately from Theorem 3.8 and Proposition 3.4. O
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Figure 2: Continuing the pattern, one obtains an infinite graph that is strongly shortcut because it
is the 1-skeleton of a finite-dimensional CAT(0) cube complex. Subdividing the interior edges of
each n x n grid results in a quasi-isometric graph that is not strongly shortcut.

3.1 Instability under quasi-isometries

In light of Corollary 3.10, we should point out that the strong shortcut property is not a quasi-isometry
invariant. The 1-skeleton of an n x n grid of squares is strongly shortcut but subdividing its interior edges
causes its boundary cycle to become isometrically embedded. We can construct a strongly shortcut graph
T that contains isometric copies of 1-skeletons of larger and larger n x n grids. See Figure 2. Subdividing
the interior edges of each n x n grid of I" does not change the quasi-isometry type but results in a graph
that is not strongly shortcut because it contains arbitrarily long isometrically embedded cycles.

4 The circle tightening lemma

The circle tightening lemma describes how one may perform surgery on an almost isometric R—circle to
obtain a quasi-isometrically embedded R—circle, assuming the various constants are chosen appropriately.
A version of this lemma first appeared implicitly in the proof of a proposition in an earlier work [Hoda
2022, Proposition 3.5] where it applied only to graphs. Here we state and prove a generalization to (rough)
geodesic metric spaces.

4.1 Tightening sequence for a Riemannian circle
Let S be a Riemannian circle. A tightening sequence for S is a sequence of intervals and Riemannian
circles (P;);, a sequence of Riemannian circles (S;); and sequences of maps
S:S0@P0—>S1<—’P1—>S2<—"P2—>---
such that, for each i, either
(1) (@) P; — S; and P; — S; 41 are continuous paths of unit speed,
(b) P; — S;+1 is injective on the interior Pl.° of P;,
(©) |P;|>1]S], and
(A |Sit1l <|Sil; or
(2) (@ P°=P; =S;=Si+1,and

(b) P; — S; and P; — S;4+1 are identity maps.
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P;
O N
P; im(P;)
Qi 0;
Pl-°

Figure 3: In a circle tightening sequence, the circle S; 4 is either equal to S; or is obtained from S;
by replacing some geodesic segment Q; of S; with a shorter segment Q;, possibly of zero length.

See Figure 3. Then, for each i, the circle S;+1 is obtained from S; by replacing Q; = S\ P with 0,
where either Q; = Q; = @ or Q; and Q; are intervals with |Q;| < |Q;|. So we also have a commutative
diagram of 1-Lipschitz maps

Qo — Qo 01 —» 01 Q2 — 0>
o T b9
S =38 ¢ > Py > S1 ¢ > Py > Sy ¢ > Py >

Figure 4: A circle tightening sequence that is disjoint up to 4 but not disjoint up to 5. The outer
circle is the initial circle S = Sy. For i > 0, the circle S; 4 is obtained from S; by replacing the
geodesic segment Q; C S; (indicated by perpendicular markings) with a shorter sequence Q;.
The segment Q4 (drawn in cyan) is the first replaced segment that cannot be viewed as a subspace
of § since it is not contained in Py 4, which can be viewed as S\ Ui-, 0.
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where each Q; — Q; is affine. We call the Q; the rightened segments of the tightening sequence. We
let 7 denote the composition 7;_j o 7j_p o---o 7. A tightening sequence is eventually constant if
S; = Si+1 for all large enough i.

Let Py ; be the limit of the diagram

/t\ /t\/t\

S S()\ ’P() < ’Pl > ’J1—>SJ

in the category of topological spaces and continuous maps. Concretely, we have Pg, = So, Py, = P
and Pj ;= Py -1 N P ]?_1 where the intersection is taken in S;_1. Thus we have the commutative

diagram

Py < > Ppo < > Poy < -

I i [
/t\ /i\ /l\

S SO( ’P() < ’Pl < ’Pz >

”

We can think of Pg ;as the original points of S that are not replaced until at least step j of the “construction
of the S;, where the j™ step of the construction refers to the operation of replacing Q; with Q; in order
to obtain S; 41 from §;.

0

We say that a tightening sequence is disjoint up to j if Q; C Py, for all i < j, where P, 0.i is viewed
as a subspace of S; via the embedding Py ; < S;. See Figure 4. We say that a tightening sequence is
completely disjoint if it is disjoint up to j for every j.

If a tightening sequence is disjoint up to j, for i < j, we have Q, W P(;’lJrl = Py; = S.So,fori < j,
we may think of the Q; as disjoint subspaces of S with S\ U =Py ; in S. Since §; is obtained
from S by replacing Q; w1th Q;, foreach i < j, we see then that the Q i W1th i < j, embed disjointly
in §; with Py —S]\Ul Q;in S;.

If a tightening sequence is completely disjoint then the Q; all embed disjointly in S and the complement
of their union in S is Pg o = (72, Py

Lemma 4.1 Consider a tightening sequence for a Riemannian circle S with the same notation as above.
If the tightening sequence is completely disjoint and the sum Y ;2 |Q;| of the tightened segment lengths
is strictly less than |S| then

§:8x8 —>Rso. (x,y)r> lim ds, (@ (x),. 7D (y)),
1 —>00

defines a pseudometric on S such that the induced metric quotient S of (S,38), called the limit
Riemannian circle of the tightening sequence, is a Riemannian circle of length lim; —co |S;|.
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Proof The 7 are isomorphisms on fundamental group so, for each i, we have a commuting diagram
R —" %R
Si — Sit

where R — §; and R — S; 4 are the quotient maps from (R, +) by the subgroups |S;|Z and |S;+1|Z,
respectively. Then, since 7r; is 1-Lipschitz, so is 77;. Without loss of generality, the map 7; sends 0 to 0
and preserves order, in the sense that s < r implies ; (s) < #; (r). Let 7@ : R — R be the composition

ooy o-+-omi—1 so that the diagram "
7’% 1

R——R

.

o)

S —— S;

commutes and satisfies the same properties as the previous diagram. Then for r € R, the sequence
(7D (r)); is either nonnegative and nonincreasing or nonpositive and nondecreasing. In either case the
limit exists so we can define a limit function

7R S>R, r lim 7O@F),
1 —>00

which is also 1-Lipschitz, sends 0 to 0 and preserves order.
By assumption 3 72, |Q;] < |S| so 7 @D(|S]) = [Si| > |S| =272, 1Qi| > 0 and s0
7(|S]) = lim |S;|> 0.
1 —>00

For r € R, we have 7 (r +|S|) = 7D (r) 4+ |S;| so

7 +18) =7 F) + lim |S;],
1—>00

which implies that if R — S is the quotient map of (R, +) with kernel (lim; 0 |S;|)Z then the map
7S = Soo, 7 H+I|S|Z > 7 () + (lim |Si])Z,
1—>00

is well defined and makes the diagram o)
T oo

R— R

(00)
S T —§
commute.

Then |S| = lim; oo |S;| and, for 7 + |S|Z and s + |S|Z in S,
dg (7 (r +1812), 7 (s + |S|2)) = ds(7(r) +|S|Z, 7 (s) + |S|Z)

— min [2© () — 7 () Sk
min (%) () = ) + | S|k
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= min {n(oo)(r) — 7 (s) + S |k|

= min lim ‘n(l)(r) 7@ (s) +|S; |k}

kel i—o0

= lim mm‘n(’)(r) 7D (s) +S; |k |
i—oo kel

= lim mm}fr(’)(r) 7D (s) +|S; |k|
i—>ookeZ

= lim ds, (D) +|:|Z, 7D (s) + | |Z)
1 —>00

= lim dg, (7 +8|2), 7D (s +S|2)),

1—>00

where I = {k € Z | |k| < [|r —s|/|S|]}. So the pseudometric on S pulled back from 7 (> is §. Then,
since 7(%) is surjective, this implies that S is Seo, the induced metric quotient of (S, §) and 7™ is the
quotient map. |

Remark 4.2 If a completely disjoint tightening sequence of a Riemannian circle is eventually constant
then, for large enough 7, the limit Riemannian circle S is isometric to the i™ Riemannian circle of the
sequence S;.

4.2 Tightening sequence for an R—circle

Let R > 0 and let X be an R—rough geodesic metric space. Let o: S — X be an R—circle. A tightening
sequence for « is a sequence of intervals and Riemannian circles (P;);, a sequence of Riemannian circles
(S;); and sequences of maps as in the commutative diagram

S —— §p «¢ > Py > P >

S o

such that each ¢; is an R—circle and the sequence of maps

S=S0<—3P0—>Sl<—3P1—>Sz<—>P2—>---

is a tightening sequence for S. Then, by the discussion of Section 4.1, we have a diagram

Qo — Qo \Ql_»él \Qz—»gz \
S—So > Po S1m52 > Py .

e ol e

where the bounded planar regions are commuting triangles and squares.
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Lemma 4.3 Consider a tightening sequence for an R—circle a: S — X in an R—rough geodesic metric
space X, with the same notation as above. If the tightening sequence is completely disjoint and the sum
32 Qi of the tightened segment lengths is strictly less than |S| then
Ooo:Soo = X, X+ lim ¢ o ® oo (x),
1 —>00
defines an R—circle, called a limit R —circle of the tightening sequence, where S is the limit Riemannian
circle of the tightening sequence and 0 : Soc — S is a section of the quotient map S — So.

Proof Since the tightening sequence is completely disjoint, we may think of the Q; as a collection

of disjoint segments in S. For x € S either x ¢ | J;2, Q; and (; o ad )(x))l?’io is a constant sequence
o0

. =i+ |
lim; s 00 0 © n(’)(x) exists so we have a function o : S — X given by o/, (x) = lim; 00 ¢t © n(’)(x).

or x € Q; for some j and the tail sequence (¢; o n(i)(x)) | 1s constant. In either case, the limit

Let S be the limit Riemannian circle given by Lemma 4.1. So S« is the induced metric quotient of
(S, 6) where § is the pseudometric give by §(x, y) = lim; o0 dss; (7 @ (x), 7D (y)). Since each «; is an
R—circle, for x,y € S,
dy (i o1 (x). 05 01D (1)) < ds, (7D (). 7D () + R
for all i, and thus
dx (0o (x), 0o (1)) < 8(x. y) + R
by taking limits as i — oo.

Then, for x, y € Seo,

dx (oo (X), too (1)) = dx (¢ (0(x)), 2 (0(1))) = 8(0(x).0(¥)) + R=ds(x.y)+R. O

Remark 4.4 If a completely disjoint tightening sequence for an R—circle «: S — X is eventually constant
then, for large enough i, the limit R—circle too: Soo — X is isometric over X to the i R—circle of the

sequence «;. This means that there is an isometry So, — S such that diagram

commutes.
We are ready now to state the circle tightening lemma.

Lemma 4.5 (circle tightening lemma) Let N > 1, let L > 1, let K > 1 be small enough (depending on
N and L), let R > 0, let M > 0 be large enough (depending on N, L, K and R) and let C > 4R.

Let «: S — X be an R—circle in an R—rough geodesic metric space. If « is 1/ K—almost isometric and
|S| > M then o has a completely disjoint tightening sequence such that the total length Y 72, |Q;| of the
tightened segments is at most |S|/N and the limit R—circle a is an (L, C)—quasi-isometric embedding.
If, additionally, C > 0O then such a tightening sequence exists that is eventually constant.
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Lemma 4.5 is a consequence of Claims 4.7, 4.8, 4.11 and 4.14 and the strict inequalities of Claim 4.12
below, but to understand these claims we need to first define greedy tightening sequences and prove some
properties about them.

4.3 Greedy tightening sequences

In order to prove Lemma 4.5 we will need to describe a tightening sequence that is constructed inductively
by greedily choosing segments to tighten. Let «: S — X be an R—circle in an R—rough geodesic metric
space X, with R > 0. Let C > 4R and let L > 1. We will inductively define a tightening sequence
for o with the same notation as in the previous sections. Suppose we have «;: S; — X. If o; is an
(L, C)—quasi-isometric embedding then we extend the sequence as follows.

(1) Weset P°=P; =S; =S;41and Q; = Q; = .
(2) Welet P; — S; and P; — S;4+1 be identity maps.
3) Weletoa;j+1 =0;.

Otherwise, the set

1
Ji ={(p.q) € S; xS | dx (e (p). (@) < 1ds; (p.4) = C}
is nonempty and ds, (p,q) > LC > 0 for any (p,q) € J; and so s; = supi{ds, (p,q) | (p.q) € Ji} > 0.
By compactness of §, there is a sequence (pl-(”), ql.(”))n in J; that converges to some (p;,q;) € S X S
with ds, (pi.qi) = si as n — oco. Then
dx (@i (pi). @(g)) < dx (@i (pi).a(p{™)) + dx (o (p™). (@™)) + dx (ei (@), @ (@)
1
<ds, (pi. p{") + R+ 7ds, (p”.q(") = C +ds, (¢ 4) + R
1
— 7 ds;(pi.gi))—C +2R
as n — 00. So
1
(%) dx (ai(pi).a(gi)) < st,»(l?i,qz')—c + 2R,
() ds;(pi~qi) >0 and ds;(pi.qi) = L(C —2R)
hold. Let Q; be a geodesic segment of S; between p; and ¢;. In the case where p; and ¢g; are antipodal
in S;, there are two geodesic segments between p; and g;; in this case we let Q; be the geodesic segment
whose intersection with Pg; has greatest total length. Let P be the complement of Q; and let P;
be the closure of P°. Let y/: Q; — X be an R-rough geodesic from «;(p;) to o;(g;). For x € X,

let ¢x: [0, R] — X denote the constant path of length R at x. Let y;: Q; — X be the concatenation
Co; (Pi)yi/c“i (q)- We have

— 1
0<|Qi|—2R =dx (i (pi),ai(g;)) < Z|Qi|_c +2R
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and so, since C > 4R,
~ 1
&9 Qi = 710:l.
We obtain o y1: Sj+1 — X from o; |p, and y; by identifying the corresponding endpoints of Q; with p;
and ¢g; in P;. Then, by consideration of Remark 2.1, the map «; +1 is an R—circle.

Remark 4.6 The inequalities

dx (et +1(pi), @i+1(x)) <ds; . (pi,x), dx(ai+1(qi) oi+1(x)) <ds,,(qi,x)
hold for any x € Q;.
This completes the description of our inductive construction. Any tightening sequence for o obtained in

this way is called an (L, C)—greedy tightening sequence for . The importance of this construction for us
is evident from the following claim.

Claim 4.7 LetL > 1, let K > 1, Iet C > 4R and consider an (L, C)—greedy tightening sequence for
a 1/ K-almost isometric R—circle «: S — X in an R-rough geodesic metric space X . If the tightening
sequence is completely disjoint and the sum Y 7o, |Q;| of the tightened segment lengths is strictly less
than |S| then any limiting R—circle dso: Soo — X is an (L, C)—quasi-isometric embedding.

Proof Let Soo be the limit Riemannian circle given by Lemma 4.1. So S is the induced metric quotient
of (S, §) where § is the pseudometric given by 8(x, y) =lim; 0 ds; (7D (x), 7D (). Let too: Seo — X
be a limit R—circle as in Lemma 4.3. So s is an R—circle defined by oo (x) = lim; o0 @ © 7®o o(x),
where 0: Soo — S is a section of the quotient map S — Seo.

If ¢ is not an (L, C')—quasi-isometric embedding then, since R < C,
dy (@00 (1), oo (1) < 7 dls (x,7) = C
for some x, y € Seo, which then must be distinct. But
ds(x.y) = lim ds,(xD(0(x)). 7V (6 ().
dy (@00 (x). oo (1)) = lim dy (o 01V (0(x)). 01V (0(1)).

where, by complete disjointness, (ﬂ(i)(O' (x)))l. and (n(i )(a(y)))l. are eventually constant. So, for all
large enough j,

dx (a7 01D (0(x)).j o n D@ (1)) = lim d (o o7V (0/(x)). € 07V (0(y))
but also, for all large enough j,
. ; ; 1 ; ;
Jim dy (@ 07 (0(x). 05 0 1D (0 (1)) < 7ds; (V@ (). 7P (0 () ~ €
so, for all large enough j,
dy (e (x 00 (1)), (P 00 (y)) < 7 ds, (7P 00 (x). 7P 00 () = €
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which implies that (n(j Voo (x), 1P oo ( y)) € J;, for all large enough ;. But then, for all large enough j,

de (n(j) oo(x),n’(j) OU(J’)) <s; =|0;|
with lim; o0 |Q)| =0 so

ds..(x,y) = lim ds, (7 o0 (x), 7 o0 (y)) =0
j—o00

which is a contradiction. O

4.4 Eventual constantness and greedy tightening sequences

Consider a greedy tightening sequence with notation as in Section 4.3. Note that if S; = S; 1 for some i
then S; = S;+1 = Si+2 = -+, so the tightening sequence is eventually constant. Moreover, for any i for
which S; # S; 41, we have

181~ 181411 = 10:1 = 1011 = 10s] = 110i] = (1= 1) 124]
> (1 —%)L(C—ZR) — (L—1)(C —2R)

by (1) and (%). If R > 0 then, since C > 4R, we have C > 2R > 0. If R =0 then C > 2R is equivalent
to C > 0. Thus, if C > 0 then |S;|—|Si+1] = (L —1)(C —2R) > 0. This implies the following claim.

Claim4.8 If R>0,L > 1 and C > 0 then any (L, C)—greedy tightening sequence for an R—circle in
an R-rough geodesic space is eventually constant.

4.5 Disjointness and greedy tightening sequences

Consider a greedy tightening sequence with notation as in Section 4.3. Assume that « is 1/ K—almost
isometric and that the tightening sequence is disjoint up to j. Recall that, by the discussion in Section 4.1,
we may think of the Q;, with i < j, as disjoint subspaces of S.

Ifi < j and Q; # @ then, by Lemma 3.1 and (),

K—1 |S 1
011 521 Bl ok < e e, atq) = 1011 - ¢ 42,
but C > 4R so
o - KL B L,
! K 2 — L'~

for all i < j. Hence, we have established the following claim.

Claim 4.9 If an (L, C)-greedy tightening sequence for a 1/ K—almost isometric R—circle is disjoint up

0= (K2t 1)l

to j then

K L-1) 2

forany i < j, where Q; is the i'" replaced segment of the tightening sequence.
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By this claim, we can find a pair of points p, g in the closure of S \ (U,J ;11 0 i) at distance

Let A1 and A5 be the two segments of S between p and g. If 1 ={i < j | Q; € Ay} then, since «; is

an R—circle,
dx (a(p),a(q)) <ds;(p.q) + R

<[Ail=)_10il+ ) 10il+R

iel; iEIl
<|41= ) 10il+— ZlQ |+ R
iel; lGI]
L—1
=|41]==— > 10i|+R
i€l

where the last inequality follows by (&). Corresponding relations for A, and I = {i < j | Q; C A,} also
hold, and so, by Lemma 3.1,

|S|——Z|Q | +2R = 2dx (@(p). a(q)) = 2ds(p.q) — 2L | 5| -

i<j
K—-1 L \|S| K-
STRI i L/
K L-1)2
which establishes the following claim.

Claim 4.10 If an (L, C)-greedy tightening sequence for a 1/ K—almost isometric R—circle is disjoint up

0] then K—1 L(3L-2) 6LR
| < _ . — S -
Z|Ql|—( K 2(L—1)2)| |+L—1

i<j

where Q; is the i ™ replaced segment of the tightening sequence.

Claim 4.10 implies that

Sig = (K2l L0 6k
_ i<j
soif K—1 L(3L-2)
K 2L—12 N

then, if |S| > M for some M depending only on K, L, R and N, then

K—1 L3L-2) 6LR 1

K 20-102 SIL-D "N

andso » ;_; |Qi] <|S|/N. Since

K—1 LB3L-2)
K 2(L—1)2
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is equivalent to
NL(3L-2)

S GBN-2)[2—(2N—4)L—2

we have established the following claim.

K

Claim4.11 LetN > 1,let L > 1,let R> 0 and let K > 1 satisfy

p NLGL-2)
SGBN-2)[2—2N—4L—2

Then there exists an M > 0 such that if an (L, C)—greedy tightening sequence for a 1/ K—almost isometric
R—circle «: S — X of length |S| > M is disjoint up to j then

Yl <bl

i<j

where the Q; are the tightened segments of the tightening sequence.

The following claim about rational functions has a short and elementary proof. We will make use of it
below.

Claim 4.12 The inequalities

- L(9L? —3L —4) L(9L?> —3L —4) _LGL-4)
7L3 +3L2—10L +2’ 7L3+3L2—10L+2~ 3L2-2°
NL(3L-2) L(9L? —3L —4) __LOL-6)

1< ,
(BN —2)L?2—(2N —4)L—2" 7TL3+3L2—10L+2 ~ 5L?2—-2L -2
hold forany L. > 1 and N > 1.

The next claim is essential in proving disjointness of greedy tightening sequences.

Claim4.13 Let K > 1, L > 1 and R > 0. There exists an M > 0 such that if X is an R-rough geodesic
metric space, a: S — X is a 1/ K-almost isometric R—circle with |S| > M and
L(9L? —3L —4)
< 9
7L3+3L2—10L+2
and C > 4R then any (L, C)—greedy tightening sequence for « that is disjoint up to j satisfies the

following statement. With notation as above, if (p,q) € J; and Q is a geodesic segment from p to q
in S, then Q C P(;’j, where we view P0°j as a subspace of §; via the embedding Pg’j — S;.

Proof First we will show that Q is not contained in Q; for any i < j. Recall that Q; is the concatenation
AQ;B where o | 0" Q; — X is an R-rough geodesic and «; is constant on A and B, each of which is
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isometric to [0, R]. By (), we have |Q| > (C —2R)L > (4R—2R)L > 2R and |Q| > 0 so we cannot
have Q € A or Q C B. We also cannot have Q; C Q C Q; since then

Qi =2R = dx (e (pi). i(g1)) = dx (2 (p). ¢ (q)) < 71| = C = 710i[ = C <|Qi| = C,
which contradicts C > 4R. So, if Q € Q; then some endpoint of Q is contained in Q; But this implies

that aj|g: Q — X is a 2R-rough geodesic and so, by (*) and (),

101-2R = dx (e (p).o; (@) < 71|~ C < Q|- C,

which, again, contradicts C > 4R. Thus we see that Q is not contained in Q; for ani < j. Hence Q
intersects P& j nontrivially in S;.

See Figure 5. We will define a segment Ep C §; containing p and a corresponding segment A, C S.
(Note that A p does not denote the closure of A, here.) If p is contained in the interior of Q ; for some
i < jthenlet A, = Q; and let A, = Q;. Otherwise, let A, = A, = {p}. Define A4, and A, similarly
for ¢. A priori, it is possible that A p= Zq. Let O~ be obtained from Q by subtracting the interiors of A p
and /_lq and let 0 — S; extend Q <> S; so as to include a full copy of A p and a full copy of Zq. Let
0O, C S be obtained from Q~ C §; by replacing any 0, C O~ with Q; C S, fori < j. Let Q(T —- S
be obtained from Qt — S; by replacing any 0;—S i, where i < j, with Q; < S.

Let pT and ¢ be the images of the endpoints of Q(')" in S, with p™ the endpoint corresponding to p and
g the endpoint corresponding to ¢. Let p~ and ¢~ be the endpoints of Q o in S, with p~ the endpoint
corresponding to p and ¢~ the endpoint corresponding to g. Then we have

dx (a(p™), a(g™)) < dx(a(p™), a;(p)) + dx (¢ (p), @ (@) + dx (@ (@), (g ™))
<dg (p*.p)+dx(e;(p).a;j(@) +dg (q.97)

1
<dg,(p".p)+7101-C +dz,(q.q7)
1 _ _ _
=dg,(p".p)+ 7 (dg,(p. P +1Q7 | +d5,(a7.9) +d5,(¢.47) - C
1 _
<dg,(pT.p)+dg (p.pT)+ 7107 +dg, (a7 9) +d5,(g.47) - C
- 1. -
=|Ap|+z|Q |+ [Aq| = C
_ 1. _
S|Ap|+z|Qo|+|Aq|—C
<L+ Liogl+ Liag-c = Lofi-c
A At AR L'<0

where the second inequality follows from Remark 4.6 and the last inequality follows from (i). By
assumption, Q nontrivially intersects at least one Q;, with i < j. Let m be minimal such that Q
nontrivially intersects Q,,. Then, since Q intersects P(;” j nontrivially, the image of QO+ — Sy must
strictly contain Q.
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+— oF of —

Figure 5: In the proof of Claim 4.13, from a geodesic segment Q of S; (indicated by a green
outline) we obtain Q! by removing the interiors of any Q; that are partially contained in Q. We
obtain 9 — ; by extending the inclusion Q < S; to include full copies of any Q; that are
partially contained in Q. From Q™ < §; and Q" — S; we obtain Q5 < S and Q(‘)Ir — S in
S = Sy by replacing any Q; — S; with Q; — §. The Q; with i < j are drawn in red in S;.
The Q; withi < j are drawn with perpendicular markings in S.

So, if Q(J)r — S,, was the inclusion of a geodesic segment, we would have (p™,¢™") € J,,, which would
contradict ds,, (Pm,qm) = Sm. Thus |Q(‘f| > %lSml. But then

+ |Sm |S| 1 S| (K—1 LGBL=2)\|S| 3LR
901> ZlQ" (K 2(L—1)2) L—1
_( _K-1 LBL-2) 6LR )@

l<m

K 2(L—1)2 [S|[(L—-1)
by Claim 4.10 while

K—1 L \|S|
< R —
100l < (K L_1)2
by Claim 4.9. So |Q{ | <|Qo| would imply

K—1 LG3L-2) 6LR _K—-1 L
K 2L-12 [S[(L-1) K L-1

1—

which is equivalent to the inequality

K—1 L(5L—4) 6LR
K 2L-12 " |S|[(L—-1)

) 1<

By hypothesis and Claim 4.12, we have K < L(5L —4)/(3L? —2) which is equivalent to

K—1 L(5L—4)
K 2(L—1)72

so if |S| > M’ for some M’ depending only on K, L and R then we would have

K—1 LGL—4)  G6LR
K 2(L—-12 " [S|(L-1)

and this would contradict (§). Hence, assuming |S| is greater than this M’, we have |QJ | > 0ol
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Then if Q SL — § were the inclusion of a geodesic segment, we would have (p™, ¢g™) € Jg and this would
contradict ds (po, go) = so. Thus |Q(J)r| > %|S|. On the other hand

|Q | =100 |+ |A4p] + [Aq4]
<1071+ Y _(10i1—10il) + [4p] + | 44]

i<j
|S;] -
ETJ+Z(|Qi|—|Qi|)+|Ap|+|Aq|
i<j
|S|
+= Z|Q|—|Q|)+|Ap|+|Aq|
1</
_Isl
+ = Z|Q|+|A|+|A|
l<]
|S| K—1 LB3BL-2) 3LR K—1 L
< = . S . S
=5 % 4(L —1)2 | |+L—1+ K L-1 151
|S| K -1 L 3L—-2 3LR
= — . . |S|+—
2 K L-1 4(L—) L—1
S| K-1 L 7L-6 3LR
2 K L—1 4(L—1) L—1

(1 K—1 L(IL—6) 3LR
_(5+ K HL-1)? |S|(L—1))"

where the last inequality follows from Claims 4.9 and 4.10. By hypothesis and Claim 4.12,

L(7L —6)
< —,
5L2—-2L-2
which is equivalent to
1 K—-1 L(7L-06)

R ST

Thus, if |S| > M" for some M” depending only on K, L and R then
1 K—-1 L(7L-06) 3LR

1
2T Tk a@ = Tsie—n S

and so |Q(J)r| < |S] so that Q(T embeds in S. In this case, the endpoints pT and gt of Q(;r in S are at
distance

4 4 (1 K-1 LOL-6)  3LR
ds(p ’Q)z(z K 4(L-1)72 |S|(L—1))||

but we also have

1 1 K—1 L(7L—-6 3LR
dx(@(p*).alg™) < 11051-C ( (L6 )|S|—

A U ST S T [T
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which, by Lemma 3.1 and C > 4R, implies

1(1+K—1.L(7L—6) 3LR )| |>(l_K—l.L(7L—6)_ 3LR )| |_K—1.|S_|
L\2 K 4L-1)2 |S|(L-1) 2 K 4L-1D2 |[S(L-1) K 2
which is equivalent to the inequality

K—1 9L?2-3L—4 6R(L+1) L-1

XK 2@-12 Tsic-n_ L

M

By hypothesis,
L(OL?—3L—4)
7L3 +3L%2—10L +2

which is equivalent to
K—1 9L2-3L—4 _L-l
K 2(L —1)2 L
so if |.S| > M"" for some M"" depending only on K, L and R then we would have
K—1 9L2—3L—4+ 6R(L +1) - L—1
K 2(L—1)2 IS|(L—1) L

which contradicts (7).

Therefore, if |S| > M = max{M’, M", M""}, which depends only on K, L and R then assuming the
existence of a j for which O ¢ Pg j leads us to a contradiction. O

Claim4.14 Let K > 1, L > 1 and R > 0. There exists an M > 0 such that if X is an R-rough geodesic
metric space, a: S — X is a 1/ K—-almost isometric R—circle with |S| > M and
L(OL? —3L —4)
TL3+3L%2—10L +2°
and C > 4R then any (L, C)—greedy tightening sequence for « is completely disjoint.

K <

Proof Consider an (L, C)—greedy tightening sequence for o with notation as above. For the sake of
finding a contradiction, suppose j > 1 is the least 1nteger with Q; ¢ P ° .. As above we view the Q;
with i < j as disjoint segments of S; with S; \ U P°, WL

Since Q; ¢ P(;’ we have O, N Q; # @, for some m < j. Recall that (p;,q;) is the limit of a

sequence (p ,an))n in J;. For each n, let Q( ™ be a geodesic segment between p ( ) (n) ;

By Claim 4.13, Q ) ¢ P(;’j,

assume ¢, = p;. See Figure 6.

and ¢;"" in ;.

s00mNQ;C {pm, gm} N {pj.q;}. Without loss of generahty, we may

Since Q(”) C Pg; ., we may think of the Q(n) as segments of Sy, by the embedding Pg ; <> Sm. Each

0,/°
Q( " isa geodesic segment in S, since the complementary segment of Q( ™) in S is even longer than

the complementary segment of Q(") in §;. Thus . q J"))n is a sequence in Jy,. For each n, let Q(")

be a segment between p( ™) and q( ™) Such that (Q(”))n converges to O, in Hausdorff distance. The
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Figure 6: A greedy tightening sequence that is disjoint up to j but not up to j 4+ 1 with Q;
intersecting the prior Q; only at endpoints, as in the proof of Claim 4.14.

circular orders on the triples ( p,(,',l ), q,(,f ), q](.n)) and ( p,(,;’ ), p](.n), qj(.")) are eventually constant and equal.

Let (A™), be a sequence of segments in Sy, from p,(,f ) to qj(.") such that A eventually contains q,(,? )

or, equivalently, eventually contains p](.").

Let & > 0 satisfy ¢ < %|Qj| and ¢ < LR/(L + 1). Then, for n large enough,
AP = 10W) + 10|~ ds,, @ p\) > [Om| — £+ 10— & — & = |Om| + Q)] =36 > | O
and
dx (cm(p). am(q ")
< dx (em(pI). am(q3™) + dx (m (@) am(p™)) + dx (em (p™). ot (q ™)
< Tds, (.4 — C +ds, (g%, p™) + R+ 1-ds,, (0" 4) — C
< %lQmI—i-e—C +8+R+%|Qj|+8—c
= 10l +10j))—2C + R+ 3

< %(|A(")| 4 36)—2C + R+ 3¢

3L+

_ 1y m_
= 7 14®|—2C + R+ 7

L
< —
< L|A |- C

since C > 4R. So, if A™ is a geodesic segment for arbitrarily large n then, for some 1, we would have

(p,(ﬁ), qj(.n)) € Jm and dg,, (p,(,?), j(.")) > |Om| = Sm, which is a contradiction. Thus eventually

0521+105”1 =14 > 31|
and 50 |Qm| +10;1 = 3 5m.
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Then, by Claim 4.9,
S oK1 L)

K L-1)2

while
|S,,, S| (K—1 LGBL-2)\|S| 3LR
Z|Q|— K 2(L—-12)2 L-1

l<m

_ (1_ K—1 . L(3L-2) __6LR )@
K 2(L-1)2% |S|(L-1)
by Claim 4.10. Combining these we obtain
K—I.L(7L—6) 6LR -1
K 2(L-1)2 |S[(L-1)—

but, by hypothesis and Claim 4.12,
L(7L —6)

< 77 A7 A
50L2—-2L -2
which is equivalent to
K—1 L(7L-6)

< 9
K 2(L—1)2

so, if |S| is large enough (depending only on K, L and R) then we have a contradiction. O

5 The fine Milnor-Schwarz lemma

The fine Milnor-Schwarz lemma is a refinement of the Milnor—Schwarz lemma that gives finer control
on the multiplicative constant of the quasi-isometry. In this section we will state and prove this version of
the Milnor-Schwarz lemma. As a consequence we will prove that every strongly shortcut group has a
strongly shortcut Cayley graph. A corresponding statement should hold for any rough approximability
invariant of metric spaces.

Let (X, d) be a rough geodesic metric space. Let G be a group acting coboundedly on X by isometries.
Let

Sxo,t =18 € G | d(x0,gx0) <1}
for xo € X and t € R>o.

Remark 5.1 1If the action of G is metrically proper then the Sy, , are finite.

Let 'y, ; be the graph with vertex set G and with an edge of length ¢ between g and g’ whenever g’ = gs
for some s € Sy,,r. So when Sy, ; generates G, the graph I'y ; is the Cayley graph of G for the generating
set Sx,, with edges scaled by ¢. Let dy, s be the graph metric on 'y, ; where we set dx, ((g.h) = oo
when g and / are in different components of I'y, ;. Then, when Sy, ; generates G, the metric dy, s is
the word metric on G for the generating set Sy, ; scaled by . Let fx,: (G, dx,,:) = (X, d) be defined
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by fxo.:(8) = gxo. Let Ky, be the infimum of all K > 1 for which there exists some Cg > 0 such
that fy, is a (K, Cx)—quasi-isometry. Note that if fx, ; is not a quasi-isometry (eg if Sy,,; does not
generate G) then Ky, ; = oo.

Lemma 5.2 (fine Milnor—Schwarz lemma) Let (X, d) be a rough geodesic metric space. Let G be a
group acting coboundedly on X by isometries. Let xo € X and let Ky, ; be defined as above for t € Rxy.
Then Kx,; — 1 as t — oo.

Proof Let g € G. We will prove that d ( fxq,: (1), fxo,(€)) < dxo,t (1, g). If dxy,¢ (1, g) = oo there is
nothing to show and so dx, (1, g) = Mt for some M € Nx¢ and there is a combinatorial path defined by

1=g0.81.82..--.8M =&

in Iy, The g;_ _11 gi are contained in Sy, ; and so, by the triangle inequality,

d(fxo.t (1), fxo,(8)) = d(x0, gx0)
< d(x0, g1x0) + d(g1x0, §2%0) + -+ + d(gp—1X0, X0)
= d(x0. g1X0) + d(xo. g1 ' g2%0) + -+ + d(x0. gp7—18%0)
<M1

= dxo,t(lvg)-
We now establish a lower bound on D = d(fx,,:(1), fxo,:(g)). Since G acts coboundedly on X, the
orbit G xg is a quasi-onto subspace of X. Hence Gxo is roughly isometric to X and so Gxg is also a
rough geodesic metric space. Let R be the rough geodesicity constant of Gxg. Let «: [0, D] = Gxg be
an R-rough geodesic from fx, (1) = xo to fx,.:(g) = gxo. Assume that # > R and subdivide [0, D]
into at most [ D/(t — R)] segments of length at mostt — R. Let 0 = a9 <ay <az <---<ap = D be
the endpoints of the segments and let g; xo = «(a;), for each i, with gog = 1 and gps = g. Then

d(xo, g7 ' gi+1%0) = d(giXo, gi+1X0) = d(ae(a;), a(ai+1)) < |a; —ai+1| + R <t

for each i. Thus gi_lg,url € Sx,,s» for each i, and so

1=g0.81.82.--- . 8M—1.8M = &

defines a combinatorial path in I'y, ;. Hence

D
dyor(1,8) <tM < tlrt—_R—|

_ {d (firo (1), fxo,,(g))w

t—R

< t(d(fxoytglz’gxmt(g)) n 1)

= ﬁd(fxo,t(l)v fxo,t(g)) +1
and so we have ((t — R)/1)dxy,:(1,8) — (t = R) < d(fx,t (1), fx,e(8))-
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For g, g’ € G,

d(fro,t(8): frou(g)) = d(gx0,8'x0) = d(x0, 87" &'x0) = d(fxout (1)s fro (8™ 'g"))

and dxo,t(gv g/) = dxo,t(la g_lg/)’ SO
I—R

— o (g, g) =t —R) <d(fxo,t(8): frxo.t(8)) <dxoi(g.8):

hence 1 < Ky, < (t—R)/t when ¢t > R. This implies that Ky, ; — 1 as t — oo. O

Corollary 5.3 (Milnor-Schwarz lemma) If the G-action on X is metrically proper then G is finitely
generated and, for any finite generating set S, the map

fs:1(G.ds) > X, g gxo.

is a quasi-isometry, where dg is the word metric for the generating set S.

Proof By Lemma 5.2, if 7 is large enough then Ky, ; < oo. Thus Sy, ; generates G. By Remark 5.1, the
generating set Sy, ; is finite so G is finitely generated. Since Ky, ; < oo and since scaling the metric dg
by a factor of ¢ preserves the quasi-isometry type, the map fs is a quasi-isometry for S = Sy, ;. But the
identity map on G is a bi-Lipschitz equivalence from (G, ds/) to (G, dg~) where S’ and S” are any two
finite generating sets and dg- and dg~ are the corresponding word metrics. Thus fg is a quasi-isometry
for any generating set S. a

Corollary 5.4 Let G be a group. If G acts metrically properly and coboundedly on a strongly shortcut
rough geodesic metric space X then G has a finite generating set S for which the Cayley graph of (G, S)
is strongly shortcut. In particular, the group G is strongly shortcut.

Proof By Corollary 3.10, there exists an Ly > 1 such that whenever C > 0 and Y is a rough geodesic
metric space and f:Y — X is an (Ly, C)—quasi-isometry up to scaling, then Y is strongly shortcut. But,
by Lemma 5.2, there is a Cayley graph I of G, a C > 0 and an (Ly, C)—quasi-isometry up to scaling
f:T — X. So T is strongly shortcut as a rough geodesic metric space. Then, by Remark 2.5, the Cayley
graph I' is strongly shortcut as a graph. a

Corollary 5.5 Let G be a group. The following conditions are equivalent:

(1) G is strongly shortcut.
(2) G acts metrically properly and coboundedly on a strongly shortcut rough geodesic metric space.

(3) G has a finite generating set S for which the Cayley graph of (G, S) is strongly shortcut.

6 Asymptotically CAT(0) spaces

In this section we will apply the characterizations of Section 3 to prove that asymptotically CAT(0)
rough geodesic metric spaces are strongly shortcut. By the results of Section 5, this will imply that
asymptotically CAT(0) groups are strongly shortcut.
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Asymptotically CAT(0) spaces and groups were first introduced and studied by Kar [2011]. A metric
space X is asymptotically CAT(0) if every asymptotic cone of X is CAT(0). A group is asymptotically
CAT(0) if it acts properly and cocompactly on an asymptotically CAT(0) proper geodesic metric space.
(Note that the condition that the action be on a proper metric space does not make this definition more
restrictive than the definition given by Kar [2011] since the definition of proper action in Kar [2011,
page 77] seems to be that of Bridson and Haefilger [1999, Section 1.8.2] and any geodesic metric space
admitting a cocompact action that is proper by this more restricted definition is a proper metric space.)
For an introduction to CAT(0) geodesic metric spaces, see Bridson and Haefliger [1999].

Theorem 6.1 Asymptotically CAT(0) rough geodesic metric spaces are strongly shortcut.

Proof By uniqueness of geodesics in CAT(0) geodesic metric spaces, there is no isometric copy of
a Riemannian circle in the asymptotic cone of an asymptotically CAT(0) metric space X. So, by
Theorem 3.8, any asymptotically CAT(0) rough geodesic metric space is strongly shortcut. |

Theorem 6.2 Asymptotically CAT(0) groups are strongly shortcut.

Proof A proper and cocompact action on a proper metric space is metrically proper and cobounded. So,
by Theorem 6.1, any asymptotically CAT(0) group G acts metrically properly and coboundedly on a
strongly shortcut geodesic metric space. Thus, by Corollary 5.5, the group G is strongly shortcut. |
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