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Extendable periodic automorphisms of closed surfaces
over the 3–sphere

CHAO WANG

WEIBIAO WANG

A periodic automorphism of a surface † is said to be extendable over S3 if it extends to a periodic
automorphism of the pair .†; S3/ for some possible embedding † ,! S3. We classify and construct all
extendable automorphisms of closed surfaces, with orientation-reversing cases included. Moreover, they
can all be induced by automorphisms of S3 on Heegaard surfaces. As a byproduct, the embeddings of
surfaces into lens spaces are discussed.

57M60, 57S17, 57S25

1 Introduction

Let †g be a connected closed orientable surface of genus g. Denote the automorphism group of a
manifold by Aut. � /. A torsion f 2 Aut.†g/ is called extendable over a 3–manifold M if there exists an
embedding e W†g ,!M and a periodic automorphism � of M , such that e ı f D � ı e. In other words,
f can be induced by a symmetry � of M on some embedded surface.

Existing results on this topic are mainly discussed in smooth category and concerned with the case
M D S3 or M DR3. For concrete examples, see the work of Guo, Wang, Wang and Zhang [6], which
determined the extendability over S3 for all periodic maps on †2. Equivalent conditions for a periodic
orientation-preserving automorphism to be extendable over R3 were first given by Rüedy [8], while the
orientation-reversing ones are classified by Costa [4]. The former work was recently generalized for S3 in
the orientation-preserving category by Ni, Wang and Wang [7], who put forward the following question.

Question 1.1 Consider orientation-reversing automorphisms — ie either f or � in the definition, or both
of them, can be orientation-reversing. How do we classify the periodic maps on †g that are extendable
over S3? Can the corresponding embedded surfaces always be chosen as Heegaard ones?

In this paper, we are going to solve this problem and construct all periodic extendable maps. As a
consequence, we give a positive answer to the latter half of the question. Also, we work in the smooth
category, thus by the geometrization of finite group actions on 3–manifolds, each torsion � 2 Aut.S3/ is
conjugate to an orthogonal action on the standard 3–sphere S3 �R4.
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Moreover, Funayoshi and Koda [5] proved that for g � 2, if a map f0 2 Aut.†g/ extends to an
automorphism of S3 with respect to some embedding †g ,! S3, then f0 can be realized as the restriction
of some �02Aut.S3/ on a Heegaard surface. It remains open whether that still holds for higher genus cases.
Here f0 and �0 are not necessarily periodic, but according to a recent result of Ni, Wang and Wang [7], if
f0 is periodic, then �0 can also be chosen as a torsion. Thus we obtain a partial answer to that problem.

Theorem 1.2 If an automorphism �0 2 Aut.S3/ induces a periodic map f 2 Aut.†g/ with respect
to some embedding †g ,! S3, then f can also be induced by a periodic automorphism � of S3 on a
Heegaard surface.

To classify periodic extendable maps, we first introduce some necessary invariants in Section 2. With
them we state our main results, Theorems 2.4, 2.5 and 2.6, which provide equivalent conditions for a
periodic map on †g to be extendable over S3. Basic examples will be presented in Section 3, and all
periodic extendable automorphisms can be constructed from them. In fact, in Section 4 we modify the
basic examples to get more extendable maps. Meanwhile, we prove that for a surface automorphism f

satisfying the extension conditions listed in the main theorems, f must be conjugate to one of them. In
Section 5 we finally prove the necessity of the extension conditions, case by case. Note that when a
periodic automorphism � of the pair .†g ; S3/ preserves the orientation of S3, the quotient orbifold pair
.†g=�; S

3=�/ is related to an embedded surface in a lens space, so we deal with the topic in Section 6.

Extendability characterizes whether a symmetry of a surface can be induced by those of 3–manifolds. The
notion can be generalized in different ways and some efforts have been made to understand it. For instance,
a finite subgroupG of Aut.†g/ (or aG–action) is called extendable over S3 with respect to an embedding
e W†g ,! S3 if there exists a group monomorphism ' from G to Aut.S3/ such that '.h/ıeD e ıh holds
for each h 2G. The maximum order of extendable groups for fixed genus g is discussed by Wang, Wang,
Zhang and Zimmermann in [10; 11; 12]. And as a contrast to Theorem 1.2, there are extendable finite
group actions on †21 and †481 whose extensions cannot be realized on Heegaard surfaces [11].

Acknowledgements We thank Professor Shicheng Wang of Peking University for his suggestions and
concerns for our work. C Wang is supported by National Natural Science Foundation of China (NSFC)
grant 12131009, and Science and Technology Commission of Shanghai Municipality (STCSM), grant
22DZ2229014. W Wang is supported by NSFC grants 11771021 and 11871078. We thank the referee for
valuable suggestions which enhanced our paper.

2 Classification of periodic maps and main theorems

The classification of periodic maps on closed orientable surfaces was finished by Yokoyama [13; 14; 15],
but see also Costa [3]. Indeed, Yokoyama completed the classification for all compact surfaces. We
introduce the involved invariants and present the results here in a convenient way for our task. The
notation will be used throughout the paper.
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Figure 1: A model for an orientable 2–orbifold.

Given a periodic map f 2Aut.†g/ of order n, we obtain an orbifold†g=f . Suppose†g=f has s isolated
singular points of indices n1; n2; : : : ; ns , respectively, and the underlying space j†g=f j is a compact
surface of genus h, with b boundary components. We can cut †g=f along a simple closed curve c with
no singular point on it, to get a genus h surface with connected boundary and a simpler orbifold, whose
underlying space is a sphere with bC 1 open disks removed. See Figure 1 for the orientable case and
Figure 2 for the nonorientable case. Take a basepoint x on c and choose oriented loops ˛i ; ˇi or ıi for
1� i � h along with �j ; �j for 1� j � b and �k for 1� k � s as in the figures. Here f˛i ; ˇig1�i�h (or
fıig1�i�h) is a canonical generator set for fundamental group of a closed surface; �j is a round trip between
the basepoint and the j th boundary component of j†g=f j; �j surrounds the j th boundary component; and
�k surrounds the kth singular point. Then by van Kampen’s theorem for orbifolds (see Scott [9, Section 2]),
there is a canonical presentation of the orbifold fundamental group �1.†g=f / given by�
˛1; ˇ1; : : : ; ˛h; ˇh; �1; �1; : : : ; �b; �b; �1; : : : ; �s

ˇ̌̌
hY
iD1

Œ˛i ; ˇi �

bY
jD1

�j

sY
kD1

�k D 1; �
nk

k
D 1 for 1� k � s; �j D ��1j �j �j and �2j D 1 for 1� j � b

�
if j†g=f j is orientable, or�
ı1; : : : ; ıh; �1; �1; : : : ; �b; �b; �1; : : : ; �s

ˇ̌̌
hY
iD1

ı2i

bY
jD1

�j

sY
kD1

�k D 1; �
nk

k
D 1 for 1� k � s; �j D ��1j �j �j and �2j D 1 for 1� j � b

�
if j†g=f j is nonorientable. The collection of such generators,

GD

�
f˛1; ˇ1; : : : ; ˛h; ˇh; �1; �1; : : : ; �b; �b; �1; : : : ; �sg if j†g=f j is orientable,

fı1; : : : ; ıh; �1; �1; : : : ; �b; �b; �1; : : : ; �sg if j†g=f j is nonorientable,

is called a canonical generator system of �1.†g=f /.
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Figure 2: A model for a nonorientable 2–orbifold.

The action of the finite cyclic group hf i on †g induces a short exact sequence

1! �1.†g/
��
�! �1.†g=f /

 
�! hf i ! 1;

where � W†g !†g=f is the quotient map. The following proposition shows that  plays a key role in
the classification of periodic maps up to conjugacy.

Proposition 2.1 [6, Theorem 2.2; 3, Lemma 4.1] Suppose f; f 0 2 Aut.†g/ are periodic maps of
the same order and with epimorphisms  and  0, respectively. Then f and f 0 are conjugate if and
only if there exists an orbifold homeomorphism H W†g=f !†g=f

0 such that � ı D  0 ıH�, where
� W hf i ! hf 0i is defined by �.f /D f 0.

Given a canonical generator system G of �1.†g=f /, we obtain a collection of elements  .
/.
 2 G/

in hf i. Mapping f to the generator 1 of the additive group Zn, we identify hf i with Zn. Without
ambiguity, we use integers to represent their images under the modulo n homomorphism Z! Zn. Then
the isotropy invariant of f is defined to be�
˙. .�1/;  .�2/; : : : ;  .�b/I  .�1/;  .�2/; : : : ;  .�s// if j†g=f j is orientable,
.˙ .�1/;˙ .�2/; : : : ;˙ .�b/I ˙ .�1/;˙ .�2/; : : : ;˙ .�s// if j†g=f j is nonorientable.

Here the plus-minus symbol is added universally or individually to make the defined object an invariant
of f and independent of the choice of G. Also, the order of �1; �2; : : : ; �b and that of �1; �2; : : : ; �s can
be changed arbitrarily. Thus, for example, ˙.4; 2I �8;�6/ and ˙.�2;�4I 6; 8/ are the same invariant;
.˙4;˙2I˙.�8/;˙.�6// and .˙2;˙4I˙6;˙8/ are the same invariant.

To classify periodic maps on closed surfaces, we still need two more invariants for two special cases.

Algebraic & Geometric Topology, Volume 24 (2024)
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Case 1 n=2 is even, j†g=f j is nonorientable (thus closed), and there is no˙n=2 among .�1/; : : : ;  .�s/.
Then we define h1.f / as

h1.f /D

hX
iD1

 .ıi /C

sX
kD1

�k .�k/; where �k D
�
0 if  .�k/ 2

˚
2; 4; : : : ; 1

2
n� 2

	
� Zn;

1 if  .�k/ 2
˚
1
2
nC 2; 1

2
nC 4; : : : ; n� 2

	
� Zn:

Note that each  .ıi / is odd and each  .�k/ is even, so h1.f / has the same parity as h.

Case 2 j†g=f j is nonorientable with genus hD 2. We choose

mD gcd
�
 .ı1/C .ı2/;  .�1/; : : : ;  .�b/;  .�1/; : : : ;  .�s/; n

�
;

where gcd. � � � / means the greatest common divisor. Let fm be the order m map induced by f on
j†g=f

mj, and
 m W �1.j†g=f

m
j=fm/! hfmi D Zm; identifying fm$ 1;

be the corresponding epimorphism. Then we define h2.f / as a multiset

h2.f /D f˙ m.ı1/;˙ m.ı2/g � Zm:

The following theorem tells that f 2Aut.†g/ is determined, up to conjugacy, by the topology of j†g=f j,
the isotropy invariant, and h1.f / and h2.f / if defined. Moreover, their values are independent of the
choice of canonical generator system G for �1.†g=f /. The theorem is a combination of Proposition 2
in Section 1 and Theorem 1 in Section 2 of [13], Theorems 2.2, 3.2, 4.2 and Propositions 2.4, 3.4, 4.4
of [14], and Theorems 3.2–3.5 together with Proposition 3.2 of [15].

Theorem 2.2 (classification theorem) Let f; f 0 2 Aut.†g/ be two periodic maps of the same order n,
with j†g=f j Š j†g=f 0j.

(1) Suppose j†g=f j and j†g=f 0j are orientable. Then f and f 0 are conjugate if and only if they have
the same isotropy invariant , up to a reordering of the singular points and boundary components of
the corresponding orbifolds.

(2) Suppose j†g=f j and j†g=f 0j are nonorientable. Then f and f 0 are conjugate if and only if they
satisfy the following conditions:

(i) Up to a reordering of the singular points and boundary components of the corresponding
orbifolds , f and f 0 have the same isotropy invariant.

(ii) If n=2 is even and there is no˙n=2 in the isotropy invariant , then h1.f /D h1.f 0/.

(iii) If j†g=f j and j†g=f 0j have genus 2, then h2.f /D h2.f 0/.

If f 2 Aut.†g/ extends to � 2 Aut.S3/ with some embedding †g ,! S3, there are four types of .f; �/:

� type .C;C/ f; � are both orientation-preserving,

� type .�;�/ f; � are both orientation-reversing,

� type .C;�/ f preserves the orientation of †g while � reverses that of S3,

� type .�;C/ f reverses the orientation of †g while � preserves that of S3.

Algebraic & Geometric Topology, Volume 24 (2024)
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Now we can state our main theorems with the notation listed above. The first one is a recent result
from [7]. We include it here for the sake of completeness.

Theorem 2.3 A periodic orientation-preserving map f 2 Aut.†g/ is extendable over S3 in type .C;C/
if and only if the isotropy invariant˙. .�1/;  .�2/; : : : ;  .�s// is

˙.˛; ˛; : : : ; ˛„ ƒ‚ …
t

;�˛;�˛; : : : ;�˛„ ƒ‚ …
t

; ˇ; ˇ; : : : ; ˇ„ ƒ‚ …
s=2�t

;�ˇ;�ˇ; : : : ;�ˇ„ ƒ‚ …
s=2�t

/

up to rearrangement , where ˛; ˇ are elements of coprime orders p; q in Zn respectively, and 0� 2t � s.

Moreover , in that case , the conjugacy class of hf i is uniquely determined by its period n, the genus h of
the quotient orbifold †g=f , and the parameters s, t , p and q.

Theorem 2.4 A periodic orientation-reversing map f 2Aut.†g/ is extendable over S3 in type .�;�/ if
and only if there is a generator ˛ of Zn, such that there are only˙2˛ and 0 in the isotropy invariant , and
one of the following situations holds:

(1) n=2 is odd and j†g=f j is orientable. If n > 2, then up to rearrangement the isotropy invariant
˙. .�1/;  .�2/; : : : ;  .�b/I  .�1/;  .�2/; : : : ;  .�s// is

˙.2˛; : : : ; 2˛„ ƒ‚ …
t�ds=2e

;�2˛; : : : ;�2˛„ ƒ‚ …
t�bs=2c

; 0; : : : ; 0„ ƒ‚ …
sCb�2t

I 2˛; : : : ; 2˛„ ƒ‚ …
ds=2e

;�2˛; : : : ;�2˛„ ƒ‚ …
bs=2c

/;

where ds=2e � t � b.sC b/=2c.

(2) n=2 is odd and j†g=f j is nonorientable without boundary. If n > 2, then h and s have the same
parity.

(3) n=2 is even , and j†g=f j is nonorientable without boundary. If n > 4 and s is even , then

h1.f /D

�
�s˛ if 2˛ 2 f2; 4; : : : ; n=2� 2g � Zn;

s˛ if 2˛ 2 fn=2C 2; n=2C 4; : : : ; n� 2g � Zn:

If nD 4 and s D 0, then h1.f /D 0 2 Z4.

Moreover , in that case , the conjugacy class of hf i is uniquely determined by n, h, b, s and t if (1) holds ,
and by n, h and s if (2) or (3) holds.

Theorem 2.5 A periodic orientation-preserving map f 2 Aut.†g/ is extendable over S3 in type .C;�/
if and only if n is even , s � 2 and there is a generator ˛ of Zn such that , up to rearrangement , the isotropy
invariant˙. .�1/;  .�2/; : : : ;  .�s// is

˙.˛; .�1/s�1˛;�2˛; 2˛;�2˛; 2˛; : : : ; .�1/s � 2˛/:

If nD 2, then s D 2 and the isotropy invariant is˙.˛;�˛/.

Moreover , in that case , the conjugacy class of hf i is uniquely determined by n, h and s.
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Theorem 2.6 A periodic orientation-reversing map f 2 Aut.†g/ is extendable over S3 in type .�;C/
if and only if one of the following situations happens:

(1) n=2 is odd , and j†g=f j is orientable with nonempty and connected boundary , ie b D 1. If n > 2,
then s is odd and there exists a generator ˛ of Zn such that , up to rearrangement , the isotropy
invariant˙. .�1/I  .�1/;  .�2/; : : : ;  .�s// is

.2˛I 2˛; : : : ; 2˛„ ƒ‚ …
.s�1/=2

;�2˛;�2˛; : : : ;�2˛„ ƒ‚ …
.sC1/=2

/:

(2) n=2 is odd , and j†g=f j is nonorientable with nonempty and connected boundary, ie bD1. If s >0,
then s is odd , and there exists a factor l of n=2 and a generator ˛ of Zn such that the isotropy
invariant .˙ .�1/I ˙ .�1/; : : : ;˙ .�s// is

.˙2˛I ˙2l˛;˙2l˛; : : : ;˙2l˛/:

(3) j†g=f j is nonorientable without boundary , ie b D 0. Then , up to rearrangement , the isotropy
invariant .˙ .�1/; : : : ;˙ .�s// is

.˙ˇ; : : : ;˙ˇ„ ƒ‚ …
t

;˙
; : : : ;˙
„ ƒ‚ …
s�t

/;

where 0 � t � s, and ˇ; 
 2 Zn have coprime orders p; q, respectively. If t D 0 then set p D 1,
otherwise t should be odd ; if t D s then set q D 1, otherwise s � t should be odd. Let nD pql ;
then l is even and l=2 has the same parity as h. If hD 1, then l D 2. In addition , the following
conditions hold :

(i) If h1.f / is defined , ie n=2 is even and 2 … fp; qg, then h1.f /� l=2 .mod l/.

(ii) If hD 2, without loss of generality assume p is odd. Then f is conjugate to some power of
the map f0 whose invariants are

isotropy invariantD .˙ql; : : : ;˙ql„ ƒ‚ …
t

;˙pl; : : : ;˙pl„ ƒ‚ …
s�t

/;

h1.f0/D
1
2
n�maxft; 1g � 1

2
ql �maxfs� t; 1g � 1

2
pl 2 Zn (if defined),

h2.f0/D f˙k;˙.l=2� k/g � Zl=2;

where k is the smallest positive integer that satisfies

k � qm0 .mod p/; k � p .mod 2q/ and gcd.k; n/D 1;

and m0 is the smallest positive integer that satisfies

m0 �
1
2
l C 1 .mod l/ and gcd.m0; p/D 1:

Moreover , the conjugacy class of such an hf i is uniquely determined by the parameters n, h and s if
(1) happens; by n, h, s and l if (2) happens; and by n, h, s, t , p and q if (3) happens.
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notation model S3 DR3[f1g model S3 �C2

0 .0; 0; 0/ .0; 1/

1 1 .0;�1/

Z f.0; 0; z/ W z 2Rg[ f1g f.w1; w2/ W w1 D 0; jw2j D 1g

S1 f.x; y; 0/ W x2Cy2 D 1g f.w1; w2/ W jw1j D 1;w2 D 0g

S2 f.x; y; z/ W x2Cy2C z2 D 1g f.w1; w2/ W Re.w2/D 0; jw1j2Cjw2j2 D 1g

Table 1: Notation for identified objects in two models of S3.

3 Basic examples of extendable maps

Before proving the main theorems, we give some basic examples of extendable maps. In each of them
we choose a � 2 Aut.S3/ of order n and an embedded surface † which is �–invariant; thus � induces a
surface automorphism �j†. In the next section we will show that every periodic extendable map can be
constructed from these examples just with some inessential modifications.

Two models for S3 will be used. One is R3[f1g, where � acts as an element of O.3/. The other is the
unit sphere in C2,

f.w1; w2/ 2C2
W jw1j

2
Cjw2j

2
D 1g:

Write w1 D x1C iy1 and w2 D x2C iy2 with x1; y1; x2; y2 2 R. Then � acts as an element of O.4/
on S3 �C2 ŠR4 ŠRhx1; y1; x2; y2i. The two models are connected by a stereographic projection in
C2 ŠR4:

f.w1; w2/2C2
W jw1j

2
Cjw2j

2
D 1g!R3[f1g; .x1Ciy1; x2Ciy2/ 7!

�
x1

1C x2
;
y1

1C x2
;
y2

1C x2

�
:

It identifies some objects in the two models; see Table 1, where Re. � / denotes the real part of a complex
number. The notation will be used in this and the next two sections.

3.1 Type .C;C/

Example 3.1 The automorphism � acts on S3 � C2 as �.w1; w2/ D .w1e
2�i=n; w2e

2�i=n/, ie a
2�=n–rotation on both coordinate components. Let † be the torus

T D
˚
.w1; w2/ 2C2

W jw1j D jw2j D
p
2
2

	
:

As long as n > 1 (as is always assumed), �m for mD 1; 2; : : : ; n� 1 has no fixed point on S3; thus †=�
is a closed orientable surface, and by the Riemann–Hurwitz formula (or just by topological observation)
we know it is a torus. So �j† satisfies the conditions in Theorem 2.3 with g D 1, hD 1, s D t D 0 and
p D q D 1.

Algebraic & Geometric Topology, Volume 24 (2024)



Extendable periodic automorphisms of closed surfaces over the 3–sphere 3335

3.2 Type .�;�/

Example 3.2 S3 DR3[f1g, n is even, and � 2O.3/ has the matrix0@cos.2p�=n/ �sin.2p�=n/ 0

sin.2p�=n/ cos.2p�=n/ 0

0 0 �1

1A ;
ie � is the composition of a .2p�=n/–rotation around the z–axis and a reflection across the xy–plane.

(1) Let † be the unit sphere

S2 D f.x; y; z/ 2R3 W x2Cy2C z2 D 1g:

(i) If p D 1, then �j† satisfies Theorem 2.4(2) or (3) with g D 0, hD 1, s D 1 and ˛ D 1. Here
we do not check h1.�j†/ for it must be as in the theorem, according to Section 5. In the
degenerate case nD 2, we actually have sD 0, which is inessential in our discussion. Similarly,
we will also omit the calculation of the invariants h1 and h2, and ignore the degenerate cases
below.

(ii) If p D 2 and n=2 is odd, then �j† satisfies Theorem 2.4(1) with g D 0, hD 0, b D 1, s D 1,
t D 1 and ˛ D 1.

(2) Let † be the boundary of a �–invariant regular neighborhood of the circle

S1 D f.x; y; z/ 2R3 W z D 0; x2Cy2 D 1g:

For instance, † can be chosen as the torus T in Example 3.1.

(i) If p D 1, then �j† satisfies Theorem 2.4(2) or (3) with g D 1, hD 2, s D 0 and ˛ D 1.

(ii) If p D 2 and n=2 is odd, then �j† satisfies Theorem 2.4(1) with g D 1, hD 0, b D 2, s D 0,
t D 1 and ˛ D 1.

(3) Suppose p D 2 and n=2 is odd. Let ˇ be the line segment connecting the points .0; 0; 1/ and
.0; 1; 0/ in R3. Then the union of �m.ˇ/ for 1 � m � n is a connected graph; see Figure 3,
left. Choose a �–invariant regular neighborhood and let † be its boundary. Then �j† satisfies
Theorem 2.4(1) with g D n=2� 1; hD 0; b D 1; s D 2; t D 1 and ˛ D 1.

(4) Suppose p D 2 and n=2 is odd. Let CC be the circle

f.x; y; z/ 2R3 W z D 1; x2Cy2 D 1g;

and ˇ0 the line segment connecting the points .0; 1; 1/ and .0; 1; 0/ in R3. Then the union of
�m.CC[ˇ

0/ for 1�m� n is a connected graph; see Figure 3, right. Choose a �–invariant regular
neighborhood and let † be its boundary. Then �j† satisfies Theorem 2.4(1) with g D n=2C 1,
hD 1, b D 1, s D 0 and t D 0.
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1

z

x

y

ˇ

z
CC

x

y

ˇ0

S1

Figure 3: �–invariant graphs, nD 6.

3.3 Type .C;�/

Example 3.3 S3 D R3 [ f1g, and � 2O.3/ has the same matrix as in the last example with n even
and p D 1.

(1) Let † be the sphere xy–plane [ f1g. Then �j† satisfies the conditions in Theorem 2.5 with
g D 0; hD 0; b D 0; s D 2 and ˛ D 1.

(2) Choose an arc

 D f.x; y; z/ 2R3 W y2C .z� 1/2 D 4; y � 0; x D 0g;

and write �1 D
Sn=2
mD1 �

2m.
/ and �2 D �.�1/; see Figure 4. Let † be defined by

fX 2R3 W dist.X; �1/D dist.X; �2/g[ f1g;

where dist is the Euclidean distance in R3. The two components of S3�† are regular neighborhoods
of �1 and �2, so† is a Heegaard surface of genus n=2�1. As � exchanges �1 and �2, it preserves†.
If n� 4, there are three singular points in the quotient orbifold †=�, which are provided by the

x

y

z

4�=n

�1

�2

1

�1

Figure 4: A �–invariant graph with two components, nD 6.
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orbits f.0; 0; 0/g; f.0; 0;˙2/g; f1g; if nD 2, the orbit f.0; 0;˙2/g gives a regular point so there
are only two singular points. Now by the Riemann–Hurwitz formula we see that �j† satisfies the
conditions in Theorem 2.5 with g D n=2� 1, hD 0, b D 0, s D 3 (if nD 2 then s D 2) and ˛ D 1.

3.4 Type .�;C/

Example 3.4 S3 �C2 and �.w1; w2/D .w1e2�i=.n=2/;�w2/, where n is even and n=2 is odd. Let †
be the sphere

S2 D f.w1; w2/ 2 S
3
�C2

W Re.w2/D 0g:

Then �j† satisfies Theorem 2.6(1) with g D 0; hD 0; b D 1; s D 1 (if nD 2 then s D 0).

Example 3.5 † is chosen as the union of1 and a plane in R3 passing through the origin. Let � act
on S3 �C2 as �.w1; w2/D .�w1;�w2/. Then �j† satisfies Theorem 2.6(3) with g D 0, hD 1, b D 0,
s D t D 0, p D q D 1 and l D nD 2.

Example 3.6 The torus
T D

˚
.w1; w2/ 2C2

W jw1j D jw2j D
p
2
2

	
splits S3 �C2 into two solid tori,

V1 D
˚
.w1; w2/ 2 S

3
�C2

W jw1j �
p
2
2

	
and V2 D

˚
.w1; w2/ 2 S

3
�C2

W jw2j �
p
2
2

	
:

The .2; 2/–torus link
LD

˚�p
2
2
ei� ;˙

p
2
2
ei�
�
W 0� � � 2�

	
on T bounds an annulus in V1:˚

.rei� ;˙
p

1� r2ei� / W 0� � � 2�;
p
2
2
� r � 1

	
;

which divides V1 into two solid tori V1;1 and V1;2; see Figure 5.

V1

L

V2

V1;1 V1;2

C1

C5

†

C4

C8

L

S1

ı1

ı2

Figure 5: A genus 1 Heegaard surface in S3, d D 4.
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Fix a positive number d , and cut V2 into 2d cylinders

Ck D

�
.w1; w2/ 2 S

2
W jw2j �

p
2
2
;
.k� 1/�

d
� Arg.w2/ <

k�

d

�
for 1� k � 2d:

Define

H1 D V1;1[C1[C3[ � � � [C2d�1 and H2 D V1;2[C2[C4[ � � � [C2d ;

and let † be @H1 D @H2. For each k D 1; 2; : : : ; 2d , L divides the annulus T \ @Ck into two disks, so
each of V1;1; V1;2 intersects Ck at a disk, which implies H1;H2 are both solid tori and † is a genus 1
Heegaard surface of S3.

(1) Suppose d is odd and consider the automorphism of S3 defined by

�.w1; w2/D .w1e
2�i=d ; w2e

2�i.dC2/=2d /:

Decompose it as

.w1; w2/
�1
�! .w1e

2�i=d ; w2e
2�i=d /

�2
�! .w1e

2�i=d ; w2e
2�i.1=dC1=2//:

On V1, �1 preserves each component of L while �2 does not, thus � exchanges them and also the solid
tori V1;1 and V1;2. On V2, � sends Ck to CkC2Cd , thus changes the parity of the subscript. Therefore,
� exchanges H1 and H2 and induces an f on †, which satisfies Theorem 2.6(2) with nD 2d , g D 1,
hD 1, b D 1, s D 0 and l D d .

(2) Suppose d is even and consider the automorphism � given by the composition

.w1; w2/! .w1e
2�i=2d ; w2e

2�i=2d /! .w1e
2�i=2d ; w2e

2�i.1=2dC1=2//:

Similarly, it induces a periodic map on † which satisfies Theorem 2.6(3) with nD 2d , g D 1, hD 2,
b D 0, s D t D 0, p D q D 1 and l D 2d . Then h1.�j†/ and h2.�j†/ must be as in the theorem, though
we can compute them directly. Choose a canonical generator system of �1.†=�/:

� ı1, represented by the oriented geodesic segment on †\V1 from�p
2
2
;
p
2
2

�
to

�p
2
2
e2�i=2d ;

p
2
2
e2�i.1Cd/=2d

�
;

� ı2, represented by the oriented curve on †\C1 from�p
2
2
e2�i.dC1/=2d ;

p
2
2
e2�i=2d

�
to

�p
2
2
;
p
2
2

�
:

By the definition of the epimorphism  , the deck transformation � .ı1/ sends the initial
�p

2
2
;
p
2
2

�
to the

terminal �p
2
2
e2�i=2d ;

p
2
2
e2�i.1Cd/=2d

�
:

So  .ı1/ is 1; similarly,  .ı2/Dd�1. Hence, h1.�j†/Dd 2Z2d and h2.�j†/Df˙1;˙.d�1/g�Zd .
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V2

C1

C4

†0

C3

C2

C5

C6

L0

V1

L0

V 01;1 V 01;2

S1

Figure 6: A genus d C 1 Heegaard surface in S3, d D 3.

Example 3.7 Replace the .2; 2/–torus link L in the last example by the .2; 4/–torus link

L0 D
˚�p

2
2
ei� ;˙

p
2
2
e2i�

�
W 0� � � 2�

	
;

and define the corresponding handlebodies V 01;1, V 01;2, H 01 and H 02 similarly. Then we obtain another
Heegaard splitting of S3; see Figure 6. Note that now each of V 01;1 and V 01;2 intersects Ck at two disks,
hence the Heegaard surface †0 D @H 01 D @H

0
2 has genus d C 1.

(1) Suppose d is odd and consider the automorphism of S3 defined by the composition

.w1; w2/! .w1e
2�i=d ; w2e

2�i �2=d /! .w1e
2�i=d ; w2e

2�i.2=dC1=2//:

With the Riemann–Hurwitz formula, we see that it induces a periodic map on †0 which satisfies
Theorem 2.6(2) with nD 2d , g D d C 1, hD 2, b D 1, s D 0 and l D d .

(2) Suppose d is odd and consider the composition

.w1; w2/! .w1e
2�i=2d ; w2e

2�i �2=2d /! .w1e
2�i=2d ; w2e

2�i.2=2dC1=2//:

Then the induced map on †0 satisfies Theorem 2.6(3) with n D 2d , g D d C 1, h D 3, b D 0,
s D t D 0, p D q D 1 and l D 2d .

4 Realizations of the extensions

Suppose that a periodic map f on a closed surface satisfies the extension conditions as in one of
Theorems 2.3–2.6. We are going to prove that it is extendable over S3 in the corresponding type.

For each case, we will show first that, up to conjugacy, the cyclic group hf i is determined by the invariants
used in the theorems. The strategy is to show that fixing a possible collection of such invariants, the
following assertions hold:

(1) The isotropy invariant of f can be normalized. That is to say, there exists some integer m coprime
to n (thus hf mi D hf i) such that the isotropy invariant for f m has a “normal” form uniquely
determined by the given invariants. The “normalizations” below are the same.
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(2) If h1.f / exists, ie j†g=f j is nonorientable without boundary, n=2 is even and there is no n=2 in
the isotropy invariant, then h1.f / can be normalized without changing the isotropy invariant.

(3) If h2.f / exists, ie j†g=f j is nonorientable with genus h D 2, then h2.f / can be normalized
without changing the isotropy invariant and h1.f / (if defined).

Then we have an integer m coprime to n, such that the isotropy invariant of f m and h1.f m/; h2.f m/
(if defined) have a “normal” form, which is uniquely determined by the given invariants. Moreover, the
genus g of the surface can be figured out from the Riemann–Hurwitz formula. According to Theorem 2.2,
the conjugacy class of f m is determined. Therefore, hf i D hf mi is also determined.

It then suffices to realize extendable maps with any possible invariants involved. We will construct them
by modifying the examples in Section 3, so that Theorem 1.2 follows.

The following lemmas will be used to normalize some cases in our discussion.

Lemma 4.1 Suppose f 2 Aut.†g/ has period n. Let k;m be integers with km� 1 .mod n/. Denote
the corresponding epimorphisms for f and f m by

 W �1.†g=f /! hf i D Zn; identifying f $ 1;

 0 W �1.†g=f /! hf
m
i D Zn; identifying f m$ 1;

respectively. Then for each 
 2 �1.†g=f /, we have  0.
/D k .
/.

Proof Naturally we have .f m/ 
0.
/ D f  .
/, so the conclusion follows.

Lemma 4.2 Suppose f 2 Aut.†g/ has period n, and m is a factor of n. Let fm be the order m map
induced by f on j†g=f mj, and

 m W �1.j†g=f
m
j=fm/! hfmi D Zm; identifying fm$ 1;

be the corresponding epimorphism. Then there is a commutative diagram for  m and  ,

�1.†g=f /

	

 
//

F�
��

Zn

modm
��

�1.j†g=f
mj=fm/

 m
// Zm

where F� is induced by the natural forgetful map.

Proof Fix a basepoint for �1.†g=f /. It is a regular orbit X �†g under the f –action. Fix x0 2X . For

 2 �1.†g=f /, 
 can be represented by the image of an oriented curve in †g that connects x0 to some
x 2X . Then  .
/ 2 Zn is determined by the equation

f  .
/.x0/D x:
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On the other hand, the oriented curve descends to j†g=f mj and connects Œx0� to Œx�. It represents F�

in �1.j†g=f mj=fm/. So  m.F�
/ 2 Zm is determined by the equation

.fm/
 m.F�
/.Œx0�/D Œx�:

Obviously,  .
/ satisfies the equation, so  m.F�
/�  .
/ .modm/.

Lemma 4.3 (1) Suppose gcd.a; b; c/D 1. Then there exists an integer d such that gcd.aCbd; c/D 1.

(2) If gcd.m; n/D p, then there exists an integer k such that gcd.k; n/D 1 and km� p .mod n/.

(3) Suppose p, q, p0 and q0 are integers. The congruence equation system�
x � p0 .mod p/;
x � q0 .mod q/;

has a solution x 2 Z if and only if p0 � q0 .mod gcd.p; q//. Moreover , if it has a solution , then
the solution is unique modulo the least common multiple lcm.p; q/.

(4) Suppose � and � 2 Zn have orders p and q, respectively, and gcd.p; q/D 1, so nD pql . Then
there exists a generator � of Zn such that �D �ql and �D �pl .

Proof (1) Factorize c into ps11 � � �p
sI
I q

t1
1 � � � q

tJ
J , where pi ; qj are prime and pi j a, qj −a for each i; j .

Let d D qt11 � � � q
tJ
J , and suppose gcd.aC bd; c/D c0. We only need to show c0 D 1. For each pi , we

have pi j a, pi j c, pi −b, pi −d ; for each qj , we have qj −a, qj j d , qj j c. So none of pi ; qj divides
aC bd , thus c0 must equal 1.

(2) Assume mDm0p and nD n0p; then gcd.m0; n0/D 1. Let k1 satisfy k1m0 � 1 .mod n0/. By (1),
we just choose k D k1Cn0d.d 2 Z/ such that gcd.k; n/D 1.

(3) If x exists, assume x D p0C k1p D q0C k2q, where k1; k2 2 Z. Then p0� q0 D�k1pC k2q, so
p0 � q0 .mod gcd.p; q//.

Conversely, if p0� q0 .mod gcd.p; q//, there are integers k, a and b such that p0�q0D k �gcd.p; q/D
k.apC bq/. Then x D p0� kap D q0C kbq is a solution of the equations.

If x and x0 are both solutions, then x � x0 .mod p/ and x � x0 .mod q/, so x � x0 .mod lcm.p; q//.

(4) Assume �D �0ql and �D �0pl with 1 � �0 < p; 1 � �0 < q and gcd.�0; p/D gcd.�0; q/D 1.
By (3), there exists an integer �0 such that �0��0 .mod p/ and �0��0 .mod q/. Also, gcd.�0; pq/D 1.
By (1), we just choose � D �0Cpqd.d 2 Z/ such that gcd.�; n/D 1.

4.1 Type .C;C/

Proposition 4.4 Suppose f satisfies the conditions in Theorem 2.3. Then the conjugacy class of hf i is
uniquely determined by n, h, s, t , p and q.

Proof We fix n, h, s, t , p and q and follow the strategy at the beginning of this section.
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Assume nD pql for some positive integer l . By Lemma 4.3(4), the isotropy invariant is

.�ql; : : : ; �ql„ ƒ‚ …
t

;��ql; : : : ;��ql„ ƒ‚ …
t

; �pl; : : : ; �pl„ ƒ‚ …
s=2�t

;��pl; : : : ;��pl„ ƒ‚ …
s=2�t

/;

where � is a generator of Zn. By Lemma 4.1, the isotropy invariant for f � is

.ql; : : : ; ql;�ql; : : : ;�ql; pl; : : : ; pl;�pl; : : : ;�pl/:

Moreover, g can be figured out from the Riemann–Hurwitz formula,

2� 2g D n
�
2� 2h� 2t

�
1�

1

p

�
� .s� 2t/

�
1�

1

q

��
:

According to Theorem 2.2(1), f � is determined up to conjugacy and thus so is hf i D hf � i.

Maps extendable in type .C;C/ and the corresponding embedded surfaces have been described in [7].
We introduce another approach to constructing them as follows, and the strategy will be applied later to
obtain all extendable maps in the other three types from the basic examples in Section 3.

Example 4.5 Let � be idS3 and † be a trivially embedded sphere in S3 which does not intersect the
two circles S1 and Z; see Figure 7. Then of course �j† satisfies the conditions in Theorem 2.3 with
parameters g D hD 0, s D t D 0 and nD p D q D 1. We can modify † as in the figure to get another
�–invariant surface †0, which has larger genus and more intersection points with S1 and Z. Then we
consider a branched covering S3! S3 with branch sets S1[Z (both upstairs and downstairs). Lifting
†0 from the downstairs S3 to the upstairs S3, we obtain a surface z†. Let z� be a periodic automorphism
of S3 such that the quotient map S3! jS3=z�j Š S3 is exactly the branched covering. By this means,
the extension for a map in Theorem 2.3 with any possible parameters znD zpzq, zh, zs, zt , zp and zq can be
realized as .z�jz†; z�/.

Z

S1

† †0 z†

Figure 7: Constructing new extendable maps with surgeries, znD 6, zhD 2, zs D 6, zt D 1, zp D 2, zq D 3.
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Generally, suppose we have a periodic automorphism � of S3 and a �–invariant Heegaard surface † such
that the induced map �j† satisfies the conditions in Theorem 2.3 with parameters g, h, s, t , n, p and q.
We can make modifications in a fundamental domain for the �–action on .†; S3/, and extend them
�–equivariantly. In other words, we apply the following surgeries, and then lift the surface in jS3=�j to
†0 in S3:

� Genus surgery Modifying the quotient surface j†=�j in jS3=�j to increase the genus by adding
a “handle”.

� Singular surgery Modifying the quotient surface j†=�j in jS3=�j to enlarge the intersection sets
j†=�j \ jS1=�j; j†=�j \ jZ=�j by an isotopy which seems like “stretching out hands to grip the
axes”.

After that, take a branched covering S3! S3 with branch sets S1[Z (both upstairs and downstairs).
Lifting †0 and � from the downstairs S3 to the upstairs S3, we obtain a surface z† and a periodic
automorphism z�. In other words, we conduct the following surgery:

� Branch surgery Suppose � acts on S3 �C2 as

�.w1; w2/D .w1e
2�im1=n; w2e

2�im2=n/

with gcd.n;m1; m2/D 1. Let z� W S3! S3 be the map defined by

z�.w1; w2/D .w1e
2�im1=nn1 ; w2e

2�im2=nn2/

with gcd.m1; n1/ D gcd.m2; n2/ D gcd.n1; n2/ D 1. Then the z�n–action induces a branched
covering map

! W S3! jS3=.z�/nj Š S3; .w1; w2/ 7! .jw1je
i �n1�Arg.w1/; jw2je

i �n2�Arg.w2//:

For a �–invariant surface †0 � jS3=.z�/nj Š S3, write z†D !�1.†0/.

As j z†=z�j Š j†0=�j, we have constructed a new extendable map z�jz†, which still satisfies the conditions
in Theorem 2.3. Denote the corresponding parameters by zg, zn, zh, zs, zt , zp and zq. We see that zh� h is
the genus of the added “handle” in the genus surgery; 2zt ; zs� 2zt are the cardinalities of j†0=�j \ jS1=�j
and j†0=�j\ jZ=�j, respectively; zpD pn2, zq D qn1; znD nn1n2; and zg is determined by the Riemann–
Hurwitz formula. Moreover, z† can be chosen as a Heegaard surface in S3.

Now from Example 3.1 we have an extendable map with parameters n>1, hD 1, sD t D 0 and pD qD 1.
Apply the three surgeries. Similarly, we can obtain each extendable map with possible parameters zg, zn,
zh, zs, zt , zp and zq with zn > zpzq. Note that in this case zh must be nonzero for otherwise the corresponding
epimorphism z cannot be surjective. Also, during the surgeries we can always make z† a Heegaard
surface of S3.

So far we have proved that for a surface map satisfying the conditions in Theorem 2.3, it is extendable
in type .C;C/. Moreover, according to its parameters, we can construct such a map together with an
extension as above. For a direct (and essentially the same) description, readers may refer to [7].
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4.2 Type .�;�/

Proposition 4.6 (1) Suppose f satisfies Theorem 2.4(1). Then the conjugacy class of hf i is uniquely
determined by n, h, b, s and t .

(2) Suppose f satisfies Theorem 2.4(2) or (3). Then the conjugacy class of hf i is uniquely determined
by n, h and s.

Proof (1) Fix n, h, b, s and t . Just as in the proof of Proposition 4.4, we may figure out g from
the Riemann–Hurwitz formula, and normalize the isotropy invariant to make ˛ D 1 2 Zn. Then by
Theorem 2.2(1), hf i is determined up to conjugacy.

(2) Fix n, h and s. Similarly figure out g. We first normalize ˛ to be 1 2 Zn and normalize h1.f / (if
defined) to be �s 2 Zn as below. Consider f ˛. Denote by  0 the corresponding epimorphism for f ˛.
Fix a canonical generator system

GD fı1; : : : ; ıh; �1; : : : ; �sg

of �1.†g=f /. Without loss of generality, assume that  .�i /D 2˛ for i D 1; 2; : : : ; s0 and  .�j /D�2˛
for j D s0 C 1; : : : ; s. By Lemma 4.3 we have  0.�i / D 2 for i D 1; 2; : : : ; s0 and  0.�j / D �2 for
j D s0C 1; : : : ; s. So the isotropy invariant of f ˛ is .˙2;˙2; : : : ;˙2/.

In the following two cases, h1.f / is not defined:

� n=2 is odd;

� nD 4 and s ¤ 0, thus we have 2˛ D 2D n=2 in the isotropy invariant.

So the normalization is straightforward, just by replacing f with f ˛.

If n=2 is even, n > 4 and s is even, or n D 4 with s D 0, then h1.f / satisfies the condition (3) in
the theorem. We only need to check that h1.f ˛/ D �s, so we can replace f by f ˛ directly. If
2˛ 2 f2; 4; : : : ; n=2� 2g � Zn, by definition we have

h1.f /D

hX
iD1

 .ıi /� .s� s0/� 2˛ 2 Zn:

Therefore,
hX
iD1

 .ıi /D h1.f /C .s� s0/� 2˛ D�s˛C .s� s0/� 2˛ D .s� 2s0/˛:

It follows that
Ph
iD1  

0.ıi /D s� 2s0 and

h1.f
˛/D

hX
iD1

 0.ıi /� 2.s� s0/D�s 2 Zn:

If 2˛ 2 fn=2C 2; n=2C 4; : : : ; n� 2g, a similar check shows that
Ph
iD1  .ıi / equals .s � 2s0/˛ and

h1.f
˛/ equals �s as well.
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In the remaining case, where n=2 is even, n > 4 and s is odd, also we have

h1.f
˛/D

hX
iD1

 0.ıi /� 2.s� s0/ 2 Zn:

Therefore,

2h1.f
˛/C 2s D 2

hX
iD1

 0.ıi /C

sX
jD1

 0.�j /D  
0

� hY
iD1

ı2i

sY
jD1

�j

�
D 0 2 Zn:

So h1.f ˛/ D �s or h1.f ˛/ D �s C n=2. If h1.f ˛/ D �s, we just replace f by f ˛; otherwise we
replace f by f .n=2C1/˛. In fact, if h1.f ˛/ D �sC n=2, we can check that the isotropy invariant of
f .n=2C1/˛ is also .˙2;˙2; : : : ;˙2/, and

h1.f
.n=2C1/˛/D

�
1
2
nC 1

� hX
iD1

 0.ıi /� 2.s� s0/D
�
1
2
nC 1

��
�sC 1

2
nC 2.s� s0/

�
� 2.s� s0/

D�s 2 Zn:

Now we have finished the normalization of the isotropy invariant and h1.f /. It suffices to normalize
h2.f / for the case hD2. If s >0, h2.f /must be f˙1;˙1g�Z2 as gcd.2˛; n/D2, so hf i is determined.
Assume hD 2; s D 0 below, thus by definition and Lemma 4.2, we have

h2.f /D f˙ .ı1/;˙ .ı2/g � Zd and d D gcd. .ı1/C .ı2/; n/:

If n=2 is odd, from the relation

2. .ı1/C .ı2//D  .ı
2
1ı
2
2/D  .1/D 0 2 Zn

we see that  .ı1/C  .ı2/ D 0 2 Zn since  .ı1/ and  .ı2/ are both odd. If n=2 is even, with the
assumptions in the theorem we also have  .ı1/C .ı2/D h1.f /D 0. So d D n holds for either case.
Now  is surjective, so  .ı1/ and  .ı2/ are both coprime to n. Choose mD .ı1/, then f m normalizes
the invariant h2. In fact, let  00 be the corresponding epimorphism for f m, then by Lemma 4.1 we have
 00.ı1/D 1 and  00.ı2/D�1. Therefore,

h2.f
m/D f˙ 00.ı1/;˙ 

00.ı2/g D f˙1;˙.n� 1/g � Zn:

Moreover, f and f m have no isotropy invariant, and h1.f m/, if it exists, equals  00.ı1/C 00.ı2/D
0D h1.f /. As a consequence, the conjugacy class of hf i D hf mi is uniquely determined.

For type .�;�/, extendable maps have been constructed in Costa’s fine work [4]. It was not explained
why his examples are all the extendable ones, and Proposition 4.6 irons out this flaw. Also, it is convenient
to realize them from Example 3.2 with surgeries.

Example 4.7 Suppose f satisfies the condition (1) in Theorem 2.4 with parameters n, hD 2, b D 6,
s D 5 and t D 4. Then it can be realized from Example 3.2(1)(ii). In fact, the constructed surface †g can
also be directly described as follows (just with a little deformation). See Figure 8.
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1

2

z

x

y

C2 C 04

C 004

˛
ˇ2

Figure 8: The graph � (I D 2; J D 1;K D 3;LD 2).

Write
Cj D f.x; y; z/ 2R3 W z D 0; x2Cy2 D j 2g;

C 0k D
˚
.x; y; z/ 2R3 W x D 0;

�
y �

�
kC 1

2

��2
C z2 D 1

4

	
;

C 00l D
˚
.x; y; z/ 2R3 W x D 0;

�
y �

�
l C 1

2

��2
C .z� 2/2 D 1

4

	
;

˛ D f.x; y; z/ 2R3 W x D 0; y � 3; z � 0; .y � 3/2C z2 D 4g;

and let ˇi be the line segment connecting the points .0; 0; i/; .0; 1; 0/. Choose � 2 Aut.S3/ as in
Example 3.2(1)(ii), ie the composition of a 2�=.n=2/–rotation around the z–axis and a reflection across
the xy–plane. For nonnegative integers I , J , K and L, choose † to be the boundary of a �–invariant
regular neighborhood of the graph

�I;J;K;L ,
n[

mD1

�m
�
˛[

� I[
iD0

ˇi

�
[

� J[
jD1

CjC1

�
[

� JCK[
kD1

C 0k

�
[

� L[
lD1

C 00lC2

��
:

† is a connected surface of genus

g D 1
2
n.2I C 2J CKC 2L/� 2I:

Then �j† satisfies the conditions (1) in Theorem 2.4 with h D L, b D 2J CK C 1, s D 2I C 1 and
t D I CJ C 1. In particular, the case I D 2, J D 1, K D 3 and LD 2 in the figure gives hD 2, b D 6,
s D 5 and t D 4.

We give an explanation for the idea of the example. Beginning with the basic example, we have an initial
surface †, which is isotopic to the boundary of a �–invariant regular neighborhood of the initial graph
�0;0;0;0. The parameters for the surface map �j† are n, hD 0, bD 1 and sD t D 1. We hope to enlarge the
parameters by modifying the quotient space pair .j†=�j; jS3=�j/. Just as in type .C;C/, we apply genus
surgery and singular surgery to enlarge h and s. In Figure 8 the surgeries are realized by adding C 00

l
and

ˇi .i � 1/, ie enlarging the parameters L and I for the graph. For boundaries, we need two more surgeries:

� Boundary surgery I When @jS3=�j ¤∅, applying a connected sum on j†=�j with a properly
embedded disk in j.S3�Z/=�j, we can increase b by 1 without changing t . In the example, we
add C 0

k
, ie enlarge K, to accomplish it.
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case (in Theorem 2.4) initial example (in Example 3.2)

(1) with s even and t D 0 (4) with hD 1; b D 1; s D 0; t D 0

(1) with s D 2t > 0 (3) with hD 0; b D 1; s D 2; t D 1

(1) with s even and t > s=2 (2)(ii) with hD 0; b D 2; s D 0; t D 1

(1) with s odd (1)(ii) with hD 0; b D 1; s D 1; t D 1

(2) with s even (2)(i) with n=2 odd and hD 2; s D 0

(2) with s odd (1)(i) with n=2 odd and hD 1; s D 1

(3) with s even (2)(i) with n=2 even and hD 2; s D 0

(3) with s odd (1)(i) with n=2 even and hD 1; s D 1

Table 2: Extendable periodic maps in type .�;�/.

� Boundary surgery II When @jS3=�j ¤∅, applying a connected sum on j†=�j with a properly
embedded annulus A in j.S3�Z/=�j such that @A surrounds jZ=�j, we can increase b and t by
2 and 1, respectively. In the example, we add Cj , ie enlarge J , to accomplish it.

The same trick works for the remaining cases in type .�;�/. Table 2 lists the constructions of all
extendable maps, where the fourth case has been discussed in detail as above. Note that if Theorem 2.4(1)
holds with s D 2t D 0, h must be positive for otherwise  cannot be surjective, and if Theorem 2.4(3)
holds, h and s must have the same parity, according to the equation

2

� hX
iD1

 .ıi /

�
C

sX
kD1

 .�k/� 0 .mod n/

and 2 .ıi /�  .�k/� 2 .mod 4/.

4.3 Type .C;�/

Proposition 4.8 Suppose f satisfies the conditions in Theorem 2.5. Then the conjugacy class of hf i is
uniquely determined by n, h and s.

This proposition is an immediate consequence of Theorem 2.2(1). So we just turn to the realizations
of all extendable maps in type .C;�/. If s is even, take Example 3.3(1) with hD 0 and s D 2; and if
s is odd, take Example 3.3(2) with hD 0 and s D 3. Similarly, we can apply genus surgery and singular
surgery to increase h and s in either case and complete the construction.

4.4 Type .�;C/

Example 4.9 We first construct a family of extendable maps such that the quotient surfaces are Klein
bottles.
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In Example 3.6(2), we have an automorphism � acting on .†; S3/ as

�.w1; w2/D .w1e
2�i=l ; w2e

2�i.l=2C1/=l/

with l � 0 .mod 4/. We are now to do branch surgery on it. As the branch axis S1 is on †, generally †
does not lift to a surface. Though, we can disturb † �–equivariantly to get over it. For example, take the
solid tori V1 and V2 as in Example 3.6, and let V0 be a thinner solid torus in V1:

V0 D
˚
.w1; w2/ 2 S

3
�C2

W jw2j �
1
2

	
:

We disturb † in V0 so that it looks like the same as in V2. That is to say, we define

� W V2! V0; .w1; w2/ 7!

�q1� 1
2
jw1j2

jw2j
w2;

p
2
2
w1

�
;

and then replace † with the surface

y†D .†�†\V0/[ �.†\V2/:

Suppose p and q are coprime positive integers. Without loss of generality, assume p is odd. Choose the
smallest m0 2N such that �

m0 �
1
2
l C 1 .mod l/;

gcd.m0; p/D 1:

By Lemma 4.3(1), such an m0 exists. Let �0 W S3! S3 be the map defined by

�0.w1; w2/D .w1e
2�i=ql ; w2e

2�im0=pl/:

Then .�0/l induces a branched covering map

! W S3! jS3=.�0/l j Š S3; .w1; w2/ 7! .jw1je
i �q�Arg.w1/; jw2je

i �p�Arg.w2//:

For the �–invariant surface y†� jS3=.�0/l j Š S3, write †0 D !�1.y†/. Obviously, j†0=�0j Š jy†=�j Š
j†=�j, so the restriction of �0 on †0 is an extendable map with n D pql , h D 2, s D 2 and t D 1. In
addition, we can also use singular surgery to make t > 1 or s� t > 1.

Denote the extendable surface map �0j†0 by f 0. Now we compute its isotropy invariant as well as
h1.f

0/ and h2.f 0/. Denote the epimorphism for f 0 by  0, and let i� W �1.†0=f 0/! �1.S
3=�0/ be the

homomorphism induced by the inclusion. Then there is a commutative diagram with the two rows exact:

1 // �1.†
0/ // �1.†

0=f 0/
 0
//

i�
��

Zpql

f 0$1$�0D

��

// 1

1 // �1.S
3/ // �1.S

3=�0/ // Zpql // 1

With an abuse of notation, denote the epimorphism for the �0–action on S3 by  0 too,

 0 W �1.S
3=�0/! h�0i D Zpql ; �0$ 1:
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x
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z

2�

ql

2�
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0

S1

�1

�2

�

Figure 9: A fundamental domain for a cyclic action on S3.

The �0–action on S3 � C2 has a fundamental domain F , which is the convex part bounded by the
disks Arg.w1/D 0, Arg.w1/D 2�=ql , Arg.w2/D��=p and Arg.w2/D �=p; see Figure 9. jS3=�0j is
homeomorphic to a lens space L.l;m0/Š L.l; l=2C 1/, which can be obtained from F by gluing its
boundary.

There are some typical elements in �1.S3=�0/:

� �1, represented by the image of the oriented arcn�p
2
2
;
p
2
2
ei�
�
W �
�

p
� � �

�

p

o
;

which has order p, and  0.�1/ corresponds to the automorphism .�0/ 
0.�1/ of S3 defined by

.w1; w2/ 7! .w1; w2e
2�i=p/:

So  0.�1/D ˛1ql , where ˛1 is a solution of the congruence equation

˛1qm0 � 1 .mod p/:

� �2, represented by the image of the oriented arcn�p
2
2
ei� ;

p
2
2

�
W 0� � �

2�

q

o
;

which has order q, and  0.�2/ corresponds to the map defined by

.w1; w2/ 7! .w1e
2�i=q; w2/:

So  0.�2/D ˛2pl , where ˛2 is a solution of the congruence equation

˛2p � 1 .mod q/:
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� �, represented by the image of the oriented curven�p
2
2
ei�=q;

p
2
2
eim0�=p

�
W 0� � �

2�

l

o
;

which has order n, and  0.�/ corresponds to the map defined by

.w1; w2/ 7! .w1e
2�i=ql ; w2e

2�im0=pl/:

So  0.�/D 1. Note that in jS3=�0j Š L.l; l=2C 1/, � is homotopic to a core curve.

By choosing a canonical generator system

GD fı1; ı2; �1; �2; : : : ; �sg

of �1.†0=f 0/, we may assume i�.�i / D .�1/i�1 for 1 � i � t and i�.�j / D .�1/j�t�2 for t < j � s.
Then we have

 0.�i /D .�1/
i˛ql for i D 1; 2; : : : ; t;

 0.�j /D .�1/
j�t˛pl for j D t C 1; t C 2; : : : ; s;

where ˛ is a solution of the congruence equations�
˛qm0 � 1 .mod p/;
˛p � 1 .mod q/:

So the isotropy invariant of f 0 is

.˙˛ql; : : : ;˙˛ql„ ƒ‚ …
t

;˙˛pl; : : : ;˙˛pl„ ƒ‚ …
s�t

/:

According to Lemma 6.6, in jS3=�0j Š L.l; l=2C 1/Š L.l; l=2� 1/, i�.ı1/ and i�.ı2/ are homotopic
to ˙� and ˙.l=2� 1/�, respectively. That means

 0.ı1/�˙1 and  0.ı2/�˙.l=2� 1/ .mod l/:

So we have
h2.f

0/D f˙1;˙.l=2� 1/g � Zl=2:

If 2 … fp; qg, then h1.f 0/ is defined. To compute it, as  0.�1/; : : : ;  0.�s/ are fixed, we only need to
determine the value of  0.ı1ı2/. It satisfies

2. 0.ı1ı2//�˛ql �˛pl D 0 2 Zpql :

The equation has two solutions in Zpql : ˛.pCq/l=2 and ˛.pCq/l=2Cpql=2. We can exclude one of
them with one more branch surgery as follows.

Let z� W S3! S3 be the map defined by

z�.w1; w2/D .w1e
2�i=2ql ; w2e

2�im0=pl/:
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Then .z�/pql is a �–rotation around Z and induces a 2–fold branched covering map

z! W S3! jS3=.z�/pql j Š S3:

Let z† be the surface z!�1.†0/. Denote the epimorphism for z� by z .

If q ¤ 1, z†=z� has the same singular points with †0=�0, though the index-q singular points now have
index 2q. So G provides a canonical generator system for �1.z†=z�/. With an abuse of notation, similarly
we can assume

z .�i /D .�1/
i
z̨ � 2ql for i D 1; 2; : : : ; t;

z .�j /D .�1/
j�t
z̨pl for j D t C 1; t C 2; : : : ; s;

where z̨ is a solution of the congruence equations�
z̨ � 2qm0 � 1 .mod p/;

z̨p � 1 .mod 2q/:
Thus

z .ı1ı2/D
1
2
z̨.pC 2q/l or 1

2
z̨.pC 2q/l Cpql 2 Z2pql :

By Lemma 4.2,
 0.ı1ı2/� z .ı1ı2/�

1
2
z̨.pC 2q/l .mod pql/:

Since z̨ is unique modulo 2pq,  0.ı1ı2/ 2 Zn is determined.

If q D 1, then s D t . The regular points on .†0\S1/=�0 now become index-two singular points in z†=z�.
The number of them is odd, according to Lemma 6.2. So there are z�tC1; : : : ; z�zs , with zs > s D t and zs� t
odd, such that

G[fz�tC1; : : : ; z�zsg

is a canonical generator system for �1.z†=z�/. Similarly we assume

z .�i /D .�1/
i
z̨ � 2ql D .�1/i z̨ � 2l 2 Z2pql for i D 1; 2; : : : ; t;

z .z�j /D .�1/
j�t
z̨pl D pl 2 Z2pql for j D t C 1; t C 2; : : : ; zs:

Thus we still have

z .ı1ı2/D
1
2
z̨.pC 2q/l or 1

2
z̨.pC 2q/l Cpql 2 Z2pql ;

 0.ı1ı2/� z .ı1ı2/�
1
2
z̨.pC 2q/l .mod pql/:

So in either case,  0.ı1ı2/� z̨.pC 2q/l=2 .modpql/, and h1.f 0/ can be computed by definition.

Now take the smallest positive integer k that satisfies8<:
k � qm0 .mod p/;
k � p .mod 2q/;
gcd.k; pql/D 1:
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With Lemma 4.3(1) we see such a k exists. We can simply verify k˛ � 1 .mod p/, k˛ � 1 .mod q/ and
k z̨ � .pC 1/=2 .mod p/, k z̨ � 1 .mod 2q/. Take k0 such that kk0 � 1 .mod pql/. Let f0 D .f 0/k0

and denote the corresponding epimorphism by  0. By Lemma 4.1,

 0.�i /D k 
0.�i /D .�1/

ik˛ql D .�1/iql 2 Zpql for i D 1; 2; : : : ; t;

 0.�j /D k 
0.�j /D .�1/

j�tk˛pl D .�1/j�tpl 2 Zpql for j D t C 1; t C 2; : : : ; s:

So f0 has isotropy invariant
.˙ql; : : : ;˙ql„ ƒ‚ …

t

;˙pl; : : : ;˙pl„ ƒ‚ …
s�t

/;

and
h2.f0/D

˚
˙k;˙

�
1
2
l � k

�	
� Zl=2:

If h1.f0/ is defined, ie 2 … fp; qg, then we can compute it according to the definition. For example, when
p > 2; q > 2, as ql; pl 2 f0; 2; : : : ; pql=2� 2g, we have

�k D

�
0 if  0.�k/ 2

˚
2; 4; : : : ; 1

2
pql � 2

	
� Zpql ;

1 if  0.�k/ 2
˚
1
2
pql C 2; 1

2
pql C 4; : : : ; pql � 2

	
� Zpql ;

D

8̂̂̂<̂
ˆ̂:
1 if 1� k � t and k is odd;
0 if 1� k � t and k is even;
1 if t < k � s and k� t is odd;
0 if t < k � s and k� t is even;

h1.f0/D  0.ı1ı2/C

sX
kD1

�k 0.�k/D k z̨ �
1
2
.pC 2q/l C 1

2
.t C 1/ � .�ql/C 1

2
.s� t C 1/ � .�pl/

D
1
2
pl C 1

2
.pC 1/ql � 1

2
.t C 1/ql � 1

2
.s� t C 1/pl D 1

2
pql � 1

2
tql � 1

2
.s� t /pl 2 Zpql :

With similar checks for other cases, we finally conclude that

h1.f0/D
1
2
pql �maxft; 1g � 1

2
ql �maxfs� t; 1g � 1

2
pl 2 Zpql :

Proposition 4.10 (1) Suppose f satisfies Theorem 2.6(1). Then the conjugacy class of hf i is uniquely
determined by n, h and s.

(2) Suppose f satisfies Theorem 2.6(2). Then the conjugacy class of hf i is uniquely determined by n,
h, s and l .

(3) Suppose f satisfies Theorem 2.6(3). Then the conjugacy class of hf i is uniquely determined by n,
h, s, t , p and q.

Proof Also, g can be figured out from the Riemann–Hurwitz formula, and we may assume ˛ D 1 2 Zn.
Then (1) follows from Theorem 2.2. For (2), h1 does not exist, and in the case h D 2 we must have
h2.f /D f˙1;˙1g � Z2 for gcd.2˛; 2l˛; n/D 2. Therefore (2) is also verified, and we turn to (3).
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The following cases are straightforward:

� n=2 is odd. Then l=2 is odd and h¤ 2. So f has no invariants h1, h2.

� n=2 is even, h ¤ 2 and 2 2 fp; qg. Without loss of generality, suppose q D 2. Then by the
assumptions in the theorem we have t ¤ s, and there exists ˙pl D n=2 in the isotropy invariant.
So f has no invariants h1, h2.

� hD 2.

There is only one remaining case, where n=2 is even, h¤ 2 and 2 … fp; qg. We only need to focus on the
normalization of h1.f / for that case.

Fix a canonical generator system

GD fı1; : : : ; ıh; �1; : : : ; �sg

such that  .�i /D ˛ql for 1� i � t and  .�j /D ˛pl for t C 1� j � s. The relation

hY
iD1

ı2i

sY
kD1

�k D 1 2 �1.†g=f /

implies that x D
Ph
iD1  .ıi / is a solution for the equation

2xC t˛ql C .s� t /˛pl � 0 .mod n/:

There are two solutions,

x1 D�
1
2
.t˛ql C .s� t /˛pl/ and x2 D x1C

1
2
n:

So
hX
iD1

 .ıi /D x1 or
hX
iD1

 .ıi /D x1C
1
2
n:

If pq is odd, n=2� l=2 .mod l/. By definition,

h1.f /D

hX
iD1

 .ıi /C t�˛ql C .s� t /�
0˛pl 2 Zn;

where

�D

�
0 if ˛ql 2

˚
0; 2; 4; : : : ; 1

2
n� 2

	
� Zn;

1 if ˛ql 2
˚
1
2
nC 2; 1

2
nC 4; : : : ; n� 2

	
� Zn;

�0 D

�
0 if ˛pl 2

˚
0; 2; 4; : : : ; 1

2
n� 2

	
� Zn;

1 if ˛pl 2
˚
1
2
nC 2; 1

2
nC 4; : : : ; n� 2

	
� Zn:

Note that n=2� pql=2� l=2 .mod l/. With the condition h1.f /� l=2 .mod l/, we see that one of x1
or x1Cn=2 is impossible for

Ph
iD1  .ıi /. Then h1.f /, and therefore hf i, are determined.
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case (in Theorem 2.6) initial example

(1) Example 3.4 with hD 0, s D 1
(2) with h odd Example 3.6(1) with nD 2l , hD 1, s D 0
(2) with h even Example 3.7(1) with nD 2l , hD 2, s D 0
(3) with hD 1 Example 3.5 with hD 1, s D t D 0, p D q D 1
(3) with h even Example 3.6(2) with hD 2, s D t D 0, p D q D 1
(3) with h odd and h� 3 Example 3.7(2) with hD 3, s D t D 0, p D q D 1

Table 3: Extendable periodic maps in type .�;C/.

If pq is even, it suffices to show that there exists a positive integer m such that

hf mi D hf i and h1.f
m/D h1.f /C

1
2
n;

and f m and f have the same isotropy invariant. In fact, if it holds, then we can always normalize h1.f /
to x1 and thus hf i is determined up to conjugacy. By Lemma 4.3(1), we choose a positive integer d such
that gcd..pqC 1/C .2pq/d; n/ D 1. Choose m 2 Z such that m � ..pqC 1/C .2pq/d/ � 1 .mod n/.
Let  0 be the corresponding epimorphism for f m. By Lemma 4.1, for each 
 2 �1.†=f /, we have
 0.
/D ..pqC 1/C .2pq/d/ .
/. Without loss of generality, assume p is odd and q is even, hence
s� t is odd. If

hX
iD1

 .ıi /D x1C
1
2
nD .pq� t˛q� .s� t /˛p/ � 1

2
l;

we have
hX
iD1

 0.ıi /D ..pqC 1/C .2pq/d/

hX
iD1

 .ıi /D .pqC 1/

hX
iD1

 .ıi /C 0

D
1
2
pq.pql/� t˛q � 1

2
pql � .s� t /˛.pql/ � 1

2
pC

hX
iD1

 .ıi /

D 0C 0C 1
2
nC

hX
iD1

 .ıi / 2 Zn:

If
Ph
iD1  .ıi /D x1, a similar check also shows

hX
iD1

 0.ıi /D

hX
iD1

 .ıi /C
1
2
n:

Moreover, for i D 1; 2; : : : ; s, as  .�i /D ˛ql or ˛pl , we have

 0.�i /D ..pqC 1/C .2pq/d/ .�i /D  .�i / 2 Zn:

So f m and f have the same isotropy invariant and h1.f m/D h1.f /C 1
2
n.

Similarly, all extendable maps in type .�;C/ can be constructed from Examples 3.4–3.7 with the surgeries;
see Table 3.
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5 Necessary conditions for extendability

A periodic automorphism of S2 is conjugate to a rational rotation, maybe composed with a reflection,
hence must be extendable in each type with respect to the standard embedding S2 ,! S3. So in this
section, we assume the genus g is no less than 1.

Suppose a periodic map f 2 Aut.†g/ of order n is extendable over S3 with respect to an embedding
e W†g ,! S3 and an automorphism � 2Aut.S3/. For convenience, we identify †g with its image e.†g/.
As we work in the smooth category, � can be assumed to be a torsion in the orthogonal group O.4/. By
the assumption g � 1 we see that �m D id if and only if f m D id, so � is also of order n.

Extendable maps in type .C;C/ are classified in [7]. So we only verify the necessity of the listed
conditions in Theorems 2.4, 2.5 and 2.6.

We denote the fixed-point set of an automorphism by fix. � /, and for a group action G Õ X , we use
Fix.G;X/ to denote the set

fx 2X W 
.x/D x for some 
 2Gnf1Ggg:

For a periodic map f 2Aut.†g/, if Fix.hf i; †g/ has dimension 1, then f must be orientation-reversing;
if fix.f / has dimension 1, then f must be an orientation-reversing involution; and if there exists an
isolated point in fix.f /, then f must be orientation-preserving.

5.1 Type .�;�/

Proposition 5.1 Suppose f 2 Aut.†g/ is orientation-reversing. Then f is extendable over S3 in type
.�;�/ if and only if it is extendable over R3.

Proof Suppose f extends to some orientation-reversing automorphism � of S3 with respect to some
embedding †g ,! S3. Up to similarity, � 2O.4/ has the standard form0BB@

cos.2p�=n/ �sin.2p�=n/ 0 0

sin.2p�=n/ cos.2p�=n/ 0 0

0 0 1 0

0 0 0 �1

1CCA ; where gcd.n; p/D 1 or 2:

Identify S3 with R3[f1g; then � corresponds to the matrix0@cos.2p�=n/ �sin.2p�=n/ 0

sin.2p�=n/ cos.2p�=n/ 0

0 0 �1

1A ;
which fixes two points, 0 and1. If1…†g , f is naturally extendable over R3. Otherwise12 fix.f /,
so f has a one-dimensional fixed-point set, for an orientation-reversing map has no isolated fixed point.
It implies f is an involution and � D diag.1; 1;�1/. So j†g=f j is homeomorphic to the closure of a
fundamental domain, which is an orientable surface with nonempty boundary. By [4, Proposition 1], f is
extendable over R3 as well.

Algebraic & Geometric Topology, Volume 24 (2024)



3356 Chao Wang and Weibiao Wang

The extendability over R3 of an orientation-reversing map has been discussed by Costa [4]; Theorem 2.4
is essentially the same as his conclusions. We omit the details in the calculation here.

5.2 Type .C;�/

The automorphism � has the same matrix as in the proof of Proposition 5.1 with n even. For orientation
reasons, � exchanges the two components of S3 �†g , so the fixed points 0 and 1 must be on †g .
Note that Fix.hf i; †g/ is discrete and j†g=f j is a closed orientable surface. If gcd.n; p/ D 2, then
n=2 must be odd as � is of order n. Then fix.�n=2/ is the sphere f1g [ xy–plane. This implies
fix.f n=2/ D †g \ fix.�n=2/ has dimension 1 and f n=2 is orientation-reversing, a contradiction. So
gcd.n; p/D 1. Without loss of generality, we assume p D 1, for otherwise we can consider f k instead
of f , where k 2Z satisfies kp � 1 .mod n/. Then � is the composition of a .2�=n/–rotation around the
z–axis and reflection across the xy–plane.

If n D 2, Fix.h�i; S3/ D f0;1g. Hence †g=f has only two singular points, and their corresponding
elements �1; �2 2 �1.†g=f / are sent to the generator of Z2 by the epimorphism  W �1.†g=f /! Z2.

If n > 2, †g intersects the circle f1g[ z–axis at 2s� 2 points: 0,1 and .0; 0;˙zi / for 1� i � s� 2,
where 0 < z1 < z2 < � � �< zs�2. Their images in †g=f are the singular points. Let 0,1 and .0; 0; zi /
correspond to �1, �2 and �iC2 2 �1.†g=f /, respectively. Then  .�1/ D 1 and  .�i / D .�1/i � 2 for
3� i � s, while  .�2/ is determined by

0D  

� hY
iD1

Œ˛i ; ˇi �

sY
kD1

�k

�
D

sX
kD1

 .�k/;

so equals �1 if s is even, and otherwise equals 1.

5.3 Type .�;C/

As � 2O.4/ is orientation-preserving, up to similarity it has the standard form0BB@
cos.2m1�=n/ �sin.2m1�=n/ 0 0

sin.2m1�=n/ cos.2m1�=n/ 0 0

0 0 cos.2m2�=n/ �sin.2m2�=n/
0 0 sin.2m2�=n/ cos.2m2�=n/

1CCA ;
where gcd.n;m1; m2/D 1.

Let p D gcd.n;m1/ and q D gcd.n;m2/. Then p; q are coprime as gcd.n;m1; m2/D 1. Without loss of
generality, we set p to be odd. Moreover, we assume m1 D p, for otherwise we can consider �k and f k

instead of � and f , where k satisfies gcd.k; n/D 1 and km1 � p .mod n/, by Lemma 4.3(2). Assume
that nD pql and m2 Dmq. Using the model

S3 D f.w1; w2/ 2C2
W jw1j

2
Cjw2j

2
D 1g;
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� is the map

.w1; w2/ 7! .w1e
2�i=ql ; w2e

2�im=pl/:

The �–action on S3 has a fundamental domain F as in Figure 9, and jS3=�j is homeomorphic to a lens
space L.l;m/.

If j†g=f j is orientable with nonempty boundary, then the boundary comes from the one-dimensional
part of fix.f n=2/� fix.�n=2/. As

�n=2.w1; w2/D .w1e
2�ip=2; w2e

2�imq=2/D .w1e
2�i=2; w2e

2�imq=2/;

fix.�n=2/ can only be the axisZ. SoZ�†g and @j†g=f j is connected. With the fundamental domain F
we see q D 2, for otherwise †g cannot be a closed surface. Moreover, by Proposition 6.1(1) we have
l D 1. Take �1 2 �1.†g=f / to be the element represented by an oriented curve which is parallel to the
boundary Z=�. Then �1 is sent to 2˛ by  , where ˛ is a generator of Zn. If n > 2, the singular points
come from †g \S

1, so  .�i /D˙2˛. The signs of  .�1/; : : : ;  .�s/ must be alternating, as j†g=f j is
orientable. From the relation

 .�1/C .�1/C � � �C .�s/D 0 2 Zn;

we see s is odd and  .�1/; : : : ;  .�s/ are �2˛; 2˛;�2˛; 2˛; : : : ;�2˛.

If j†g=f j is nonorientable with nonempty boundary, similarly we have jZ=�j D @j†g=f j, q D 2 and
 .�1/D˙2˛, where h˛iDZn. Moreover, if p>1, s is odd and˙ .�i /D˙2l˛ for each i D 1; 2; : : : ; s.

Finally we suppose j†g=f j is a closed (thus nonorientable) surface of genus h, embedded in the lens
space L.l;m/. According to [2] (see Lemmas 6.3 and 6.4), l is even, and l=2 and h have the same parity.
Moreover, if hD 1, l must be 2. The circles S1=� and Z=� in S3=� have indices p and q, respectively.
Suppose that in †g \F there are t points on S1=� and s� t points on Z=�. They are the singular points
of indices p and q, respectively (though they degenerate when pD 1 or qD 1). So the isotropy invariant is

.˙ˇ; : : : ;˙ˇ„ ƒ‚ …
t

;˙
; : : : ;˙
„ ƒ‚ …
s�t

/;

where ˇ; 
 2 Zn have orders p; q respectively. Moreover, t and s� t should be odd, by Lemma 6.2.

When n=2 is even and 2 … fp; qg, h1.f / is defined. Let

�l W .w1; w2/ 7! .w1e
2�i=l ; w2e

2�im=l/

be the automorphism of jS3=�l jŠS3 induced by �, and fl be induced on j†g=f l j, with the corresponding
epimorphism  l . As Fix.hfli; j†g=f l j/� Fix.h�li; S3/ and Fix.h�li; S3/ is empty, the map

.j†g=f
l
j; S3/

.fl ;�l /
����! .j†g=f j; L.l;m//
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is a covering, which induces a commutative diagram

1 // �1.j†g=f
l j/ // �1.j†g=f j/

 l
//

i�

��

Zl

fl$1$�lD

��

// 1

1 // �1.S
3/ // �1.L.l;m//

Š
// Zl // 1

By Proposition 6.5, i�
�Qh

iD1 ıi
�

is nontrivial and represents the order-2 element in H1.L.l;m/IZ/Š
�1.L.l;m//. Hence, by Lemma 4.2,

 

� hY
iD1

ıi

�
�  l

� hY
iD1

ıi

�
�

1
2
l .mod l/:

So by definition we have h1.f /� 1
2
l .mod l/.

When hD 2, by Lemma 6.4 we have l� 0 .mod 4/ andm� 1
2
l˙1 .mod l/. Supposem� 1

2
lC1 .mod l/.

Take the smallest m0 2N such that �
m0 �

1
2
l C 1 .mod l/;

gcd.m0; p/D 1:
Choose � 2N that satisfies the congruence equations�

� � 1 .mod ql/;
�m�m0 .mod pl/:

With Lemma 4.3(3) and a few basic calculations, such a � exists and is coprime to n. Take �0 with
��0�1 .mod n/. By replacing � and f by ��

0

and f �
0

, we may assumemDm0. Note that in Example 4.9
the embedding of surface has nothing to do with the computation of the invariants. Therefore we can follow
it directly and see that f must have the same isotropy invariant, h1 and h2 as the f 0 in the example. So hf i
is conjugate to hf0i. Ifm� 1

2
l�1 .mod l/, as the quotient space jS3=�j ŠL.l; l=2�1/ŠL.l; l=2C1/,

it must be conjugate to the last case, so we finish the proof.

6 Surfaces in lens spaces

In this section, we present some facts about embedded surfaces in lens spaces.

A lens space L.l;m/, with l � 1 and gcd.l; m/ D 1, can be constructed by gluing two solid tori
V1DD

2�S1 and V2DS1�D2 with a homeomorphism ! W @V2! @V1 whose restriction to the meridian
f1g � @D2 of V2 is

f1g �S1! S1 �S1 D @V1; .1; e2�it / 7! .e2�itm; e2�itl/:

Cutting V1 along the disk D2 � f1g, we obtain a cylinder C DD2 � I . Its boundary @C consists of two
disks D2�f0g and D2�f1g and an annulus @D2� I D S1� I , denoted by D0, D1 and A, respectively.

Remark To some degree, V1; V2 � L.l;m/ are unique. In fact, for a given lens space, its Heegaard
splitting of a fixed genus is unique up to isotopy [1].
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A simple closed curve in a lens space is a core if its complement is homeomorphic to a solid torus.

Proposition 6.1 Let 
 be a core curve of a lens space L.l;m/ with gcd.l; m/D 1.

(1) If l > 1, 
 cannot bound an embedded orientable surface in L.l;m/.

(2) If l is even , 
 can neither bound an embedded nonorientable surface in L.l;m/.

(3) If l is odd , 
 bounds an embedded nonorientable surface in L.l;m/. Moreover , if mD 2, 
 bounds
a Möbius band ; and if mD 4, 
 bounds a one-holed Klein bottle.

Proof (1) If 
 bounds an embedded orientable surface then it must be trivial in H1.L.l;m/IZ/ Š
�1.L.l;m//, a contradiction.

(2) If 
 bounds an embedded nonorientable surface then it must be trivial in H1.L.l;m/IZ2/Š Z2, a
contradiction.

(3) It suffices to consider the quotient space pair .j†=�j; jS3=�j/ in Examples 3.6(1) and 3.7(1).

Lemma 6.2 [2, page 97, lines 24–28] Suppose a closed surface † is embedded in a lens space , and †
intersects a core curve transversely. Then † is nonorientable if and only if the number of their intersection
points is odd.

Lemma 6.3 [2, page 88, lines 11–24] Suppose a lens space L.l;m/, with gcd.l; m/D 1, admits an
embedded nonorientable closed surface of genus h. Then l is even and l=2 has the same parity as h.

Lemma 6.4 [2, Theorem 6.1] (1) A lens space L.l;m/ admits an embedded projective plane if and
only if L.l;m/Š L.2; 1/.

(2) L.l;m/ admits an embedded Klein bottle if and only if L.l;m/Š L.4r; 2r ˙ 1/ for some positive
integer r .

(3) A nonorientable closed surface of genus 3 can be embedded into L.4rC2; 2r�1/ for each positive
integer r .

According to [2], the embeddings can be constructed as follows. For L.2; 1/, see Figure 10. For
L.4r; 2r �1/, choose the arcs on @C as in Figure 11. Their union consists of 2r �1 closed curves, which
bound disjoint disks in C . Gluing these disks and f1g �D2 � V2 back, we get an embedded closed
surface in L.4r; 2r � 1/. From the gluing we see its Euler number is .2r � 1/� .4r/=2C 1D 0. As the

V1 V2

gluing

Figure 10: A projective plane in L.2; 1/.
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� � �
� � �

� � �

� � �

� � �

1
2 3 4 5

2r
2r C 1

2r C 1
2r C 2

1
4r

unfolding

ı1

Figure 11: A Klein bottle in L.4r; 2r � 1/.

surface intersects the core circle S1 � f0g � V2 at only one point, it must be nonorientable, thus a Klein
bottle. Similarly, with the closed curves on @C shown in Figure 12, we obtain a nonorientable closed
surface of genus 3, embedded in L.4r C 2; 2r � 1/.

Remark Every green curve in Figures 11 and 12 generates the fundamental group of the corresponding
lens space. Thus the embeddings above induce surjective homomorphisms on �1.

Proposition 6.5 Suppose K is a nonorientable closed surface , and i WK!L.l;m/ is an embedding. Let
ı 2H1.KIZ/ be the order-2 element. Then i�.ı/ is nontrivial in H1.L.l;m/IZ/.

Proof We will choose a union of oriented curves on K so that it represents ı. Then we will verify it is
nontrivial in the homology of L.l;m/.

3 2rC2
2rC4

1

3 2rC21

r D 1

r > 1

r even

� � �
� � �

� � �

� � �

� � �

� � �

� � �
� � �

� � �

� � �

� � �

� � �

� � �

� � �
r odd

Figure 12: A genus 3 nonorientable surface in L.4r C 2; 2r � 1/.
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We follow the arguments in [2, Section 7]. Suppose K intersects the core S1 � f0g � V2 transversely;
thus K \ V2 can be assumed to be a union of d meridian disks. We may reduce to the case d D 1 by
isotopy as [2] does. Now assume K \V2 D f1g �D2 and K \ @C consists of l parallel arcs on A, l=2
arcs on D0, l=2 arcs on D1, and maybe some closed curves in the interior of D0 and D1. Thus K \C
consists of some compact surfaces properly embedded in C . They must be orientable, otherwise a double
of C would give an S3 admitting embedded nonorientable closed surfaces. Now K can be constructed
by gluing back these surfaces and the disk K \V2. We just glue part of them back as follows, to obtain a
compact orientable surface K0 such that K0 can also be constructed by cutting K along a union of curves
which represents ı in homology.

Fix an orientation on K\V2. Each arc component ˛ of K\D1 connects two parallel components ˇ1, ˇ2
of K \A. Let K˛ be the component of K \C such that @K˛ � ˛ [ ˇ1 [ ˇ2. Any given orientation
on K˛ induces opposite orientations on the parallel arcs ˇ1; ˇ2. Therefore, we can glue part of @.K\V2/
back to one of ˇ1; ˇ2 so that the orientation of K \V2 and that of K˛ coincide; thus .K \V2/[K˛ is
oriented. In this way, half of the l parallel arcs K \A can be glued onto @.K \V2/ so that the obtained
surface, denoted by K0, is still oriented.

The oriented boundary of K0 consists of the following arcs and curves:

(1) l=2 parallel arcs on A, with accordant orientations.

(2) l=2 oriented arcs on @.K \D2/, of equal length.

(3) K0\D0 with orientation.

(4) K0\D1 with orientation.

The Klein bottle K can be obtained by gluing @K0: the oriented arcs in (1) are identified with those in (2),
and (3) is identified with (4). Therefore, the union of (1) and (3) represents the order-2 element ı in
H1.KIZ/.

Let c be the oriented core f0g � S1 in V1, then H1.L.l;m/IZ/Š Zl is generated by Œc�. As only the
arcs in (1) contribute to H1.V1IZ/, the union of (1) and (3) represents .l=2/Œc� in H1.V1IZ/, as well as
in H1.L.l;m/IZ/. Thus i�.ı/D .l=2/Œc�¤ 0 in H1.L.l;m/IZ/.

The following lemma can also be deduced by the analysis in [2, Section 7] and Figure 11. Note that the
green curve in Figure 11 represents ı1.

Lemma 6.6 The embedding of a Klein bottle into L.4r; 2r � 1/, where r � 1, is unique up to isotopy.
Denote it by i and identify H1.L.4r; 2r � 1/IZ/ with Z4r by mapping an oriented core to 1. Let
hı1; ı2 j ı

2
1ı
2
2 D 1i be the fundamental group of the Klein bottle. Then

fi�.Œı1�/; i�.Œı2�/g D f1; 2r � 1g or f�1; 2r C 1g � Z4r

in homology.
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