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Bounding the Kirby—-Thompson invariant of spun knots

ROMAN ARANDA
PUTTIPONG PONGTANAPAISAN
SCcoOTT A TAYLOR
SUIXIN (CINDY) ZHANG

A bridge trisection of a smooth surface in S is a decomposition analogous to a bridge splitting of a link
in S3. The Kirby—Thompson invariant of a bridge trisection measures its complexity in terms of distances
between disk sets in the pants complex of the trisection surface. We give the first significant bounds for
the Kirby—Thompson invariant of spun knots. In particular, we show that the Kirby—Thompson invariant
of the spun trefoil is 15.

57K45

1 Introduction

Every smooth surface in the 4—sphere S* (or indeed any 4-manifold) admits a certain kind of decomposi-
tion known as a bridge trisection. These bridge trisections are analogous to bridge positions of classical
knots in S3. They give rise to the fundamental notion of the bridge number b(S) of a knotted smooth
surface S. Bridge trisections and bridge number were defined by [Meier and Zupan 2017] and are closely
related to the trisections of smooth 4-manifolds of Gay and Kirby [2016]. The major advantage of both
bridge trisections and trisections of 4—manifolds is that the handle structure of the knotted surface or
4-manifold is captured using 2—dimensional data on the trisection surface X. They also give rise to
certain diagrammatic representations of knotted surfaces. In recent years, many authors have connected
(bridge) trisections to major open problems in the theory of 2—knots and 4—manifolds [Lambert-Cole
2020; Lambert-Cole et al. 2021; Gay and Meier 2022].

One pressing problem has been to develop new 2—knot or 4—manifold invariants using trisections. Kirby
and Thompson [2018] defined a nonnegative integer-valued 4-manifold invariant (M) using the cut
complex of X. Blair et al. [2022] adapted Kirby and Thompson’s definition to create an nonnegative
integer-valued invariant £(S) of a smooth surface in S*. They showed that, for orientable S, if £(S) = 0
then S is an unlink. They also showed that, for a connected, irreducible surface S, £(S) > b(S)—g(S)—2,
where g(.5) is the genus of S. Using spun knots, Meier and Zupan show that b(.S) can be arbitrarily large
for 2-knots S; consequently, £(.S) can be as well. However, for spun 2-bridge knots, the only previously
known lower bound is that £(.S) is nonzero. Calculating £(S) for specific surfaces remains a challenging
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problem, as does showing that, for a fixed bridge number, £(.5) can be arbitrarily large. We take steps
toward those questions by showing:

Theorem 1.1 Let K C S3 be a 2-bridge knot. If K is the numerator closure of a 2—string trivial tangle
with Conway number p/q, then

15 < %(S(K)) <min{6d(p/q,0) + 6,6d(p/q,0) + 9}.
In particular, if K is a trefoil knot 3/1, then £(S(K)) = 15.

Proof The lower and upper bounds are proven in Corollaries 3.17 and 4.5, respectively. a

More generally, we construct estimates for any spun knot. For a trivial N—tangle T, we define Pcomp(T)
and P.(T) to be the sets of pants decompositions in the pants complex p € P(X,x) such that all loops
in p bound compressing disks and c—disks, respectively.

Theorem 1.2 Let K = T; U Tx be a knot in b—bridge position. Let d > 0 be the distance in P(Xp)
between the sets P, (TI;Ir ) and P comp(Tg ). Then

6b —8 < L(S(K)) <6(d +b—1).

Proof The upper bound is proven in Theorem 4.3 for a particular minimal bridge trisection of S(K). Since
L(S(K)) is the minimum value of £(J) along all minimal bridge trisections of S(K) (see Section 2.4),
the upper bound holds. The lower bound is [Blair et al. 2022, Theorem 6.3]. |

The invariant £(7) for a bridge trisection I with trisection surface ¥ is defined using the pants complex
of I and the associated disk complexes (see Section 2.4). Most of the delicate combinatorial work in this
paper consists of a careful analysis of paths in the pants complex. Our techniques may, therefore, also
be of interest to those working on surface dynamics. In fact, most of our work in Section 3 consists in
understanding the combinatorics of (4, 2)-bridge trisections. We show:

Theorem 3.16 Let J be a (4,2)—bridge trisection for a knotted connected surface F in S*. Then

L(T) > 15.

Meier and Zupan [2017] described bridge trisection diagrams J iz for twist spun knots. Even though
(£1)-twist 2-bridge knots are unknotted, it is unclear whether their bridge trisections Jyz are stabilized.
They form a family of candidates of nonstabilized nonminimal bridge trisections. In order to disprove
this, one could try to build upper bounds for £(Inmz) of (£ 1)-twist spun knots and use Theorem 3.16 to
see they are stabilized.

Acknowledgements Taylor was partially supported by NSF grant DMS-2104022. Aranda and Pong-
tanapaisan were partially supported by a grant from the Berger Fund and Colby College. Pongtanapaisan
acknowledges the Pacific Institute for the Mathematical Sciences for its support. We are grateful to
Nathaniel Ferguson for helpful conversations and to Jeffrey Meier for suggesting this project.
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2 Preliminaries

In this section, we introduce terminology and recall the definitions of the pants complex, a genus-0
trisection of S# and bridge trisections, and the invariant £. For more detailed explanations please refer to
[Meier and Zupan 2017; Blair et al. 2022]

2.1 The pants complex

Suppose that % is a compact surface with punctures. A simple closed curve y C X is called essential if it
is disjoint from the punctures, does not bound an unpunctured or once-punctured disk in X, and does
not cobound an unpunctured annulus in ¥ with dX. If ¥ is a sphere, we define the inside of a simple
closed curve in X to be the sides with the fewest punctures and the outside to be a side that is not an
inside. Some curves have two inside regions and no outside region. We say that a simple closed curve in
a sphere X is an odd curve if the number of punctures on each side is odd and an even curve otherwise.

A pair of pants is a sphere with three punctures, an annulus with one puncture, or a disk with two
punctures. A pants decomposition of X is a collection of pairwise disjoint essential curves cutting 3 into
pairs of pants. Pants decompositions are considered up to isotopy. If X is a sphere with 2b > 4 punctures,
then each pants decomposition of X has 2b — 3 curves. Define P(X), the pants complex! of X, as follows.
Each pants decomposition of X is a vertex of P(X). Two vertices are connected by an edge if the two
corresponding pants decompositions have all but one (isotopy class of) curve in common and the two
curves where they differ (have representatives that) intersect minimally in exactly two points. We say
that the two endpoints of an edge differ by an A—move. The distance d(x, y) between two collections
of vertices x and y in P(X) is the minimum number of edges in a path in P(X) between a vertex of x
and a vertex of y. For a path « in (X)), we say that a curve y C X is unmoved on « if it (up to isotopy)
belongs to every vertex of «. On the other hand, if we have a path from vertex a to vertex b and if ¢ is
a curve in a pants decomposition x that is a vertex of the path, then, if the edge of the path leaving x
corresponds to an A-move replacing ¢ with ¢/, we say that ¢ is moved by the path and write ¢ +— c¢’.
Clearly, the length of the path is at least the number of curves moved by the path; some curves may be
moved multiple times, so it need not be equal to the number of curves that are moved.

A trivial tangle (Bg, 8) is a 3-ball Bg containing properly embedded arcs § such that, fixing the endpoints
of 6, we may isotope & into dBs. We consider the endpoints of § on ¥ = dBg to be punctures on X. A
c—disk in (Bg, §) is a properly embedded disk D C Bg transverse to §, with dD essential in the (punctured)
surface X, and with |D N §| < 1. The c—disk D is a compressing disk if |D N3] = 0 and a cut disk
otherwise. The disk set @(Bg, 8) for (Bg, §) consists of the vertices v of P(X) such that each curve in
the pants decomposition v bounds a c—disk in (Bg, §).

Each arc §¢ of a trivial tangle (Bjg, §) admits a disk D such that dD is the endpoint union of §¢ with an
arc on dBg and with interior disjoint from §. Such a disk is called a bridge disk and the arc on dBj is a

It is possible to define higher-dimensional simplices of P(Z), but we will not make use of them.
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shadow arc. There is a collection of pairwise disjoint bridge disks such that each arc of § belongs to a
bridge disk. The union of all the shadow arcs for such a collection of bridge disks is a complete shadow
arc collection.

For a link L C S3, a decomposition (S3, L) = (B, A) Ux (Bz, T), where each pair (Bj, §) is a trivial
tangle, is called a bridge splitting. The surface ¥ = 0B; for i = A, T is the bridge sphere of the splitting.
An efficient defining pair is a pair-of-pants decomposition (D, %, ) with x € 9, and y € D, such that
d(x,y) = d(@,, D). Zupan [2013] uses this distance to define a knot invariant for knots in S3. We
need the following well-known result (see [Bachman and Schleimer 2005; Zupan 2013]):

Lemma 2.1 Suppose that ¥ is a bridge sphere for an unlink L C S3; then:

(1) If |L| > 2, there is a sphere P C S? intersecting ¥ in a single essential simple closed curve and
separating components of L. Such a sphere is called a reducing sphere for 3.

(2) If Lo is a component of L such that |Lo N X| = 2, then there is a disk with boundary equal to L
and interior disjoint from L such that Ly N X is a single arc. Furthermore, given a collection of
pairwise disjoint reducing spheres, there is such a disk disjoint from them.

(3) If Lo is a component of L such that |Lo N X| > 4, then there exist disks D1 and D, on opposite
sides of X such that:
(a) Fori =1,2,0dD; is the endpoint union of a strand of L \ X and an arc on X.
(b) Fori = 1,2, the interior of D; is disjoint from L U X.
(c) D1 N Dy is a single point (necessarily a puncture of X).
In this case, we say that L is perturbed and call the disks D1 and D, a perturbing pair. Further-

more, given a collection of pairwise disjoint reducing spheres, there exists a perturbing pair disjoint
from them.

Definition 2.2 For a link L in S with bridge sphere X, the intersection of a reducing sphere with X is
called a reducing curve for (S3, L) on Z. Notice that an essential curve is a reducing curve if and only if
it bounds compressing disks for X in both of the trivial tangles on either side of 3. Similarly, if y C X is
a curve bounding cut disks on both sides of ¥, then y is a cut-reducing curve for (S3, L) on X.

2.2 Bridge trisections

Suppose that S is a smooth, closed surface in S*. A bridge trisection I with trisection surface T (a
sphere) is defined as follows.2 Suppose that Wy, W, and W3 are 4-balls in S 4 such that W; N Wjis a
3-ball B;; (for i # j) and that

Wi NW,NWs3 = Bip N Byz N B3y

21t is possible to define higher-genus bridge trisections [Meier and Zupan 2018], but we will not need them in this paper.
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is a smooth 2—-sphere X. Then we say that S* = Wy U W, U W3 is a O-trisection of S* [Gay and Kirby
2016]. Suppose also that each of Bys, B3 and Bj; are transverse to S and that ¥ and S intersect
transversally in 2b points and that, for each {i, j,k} € {1,2,3}:

(1) S NW, is a trivial disk system.
(2) In B;j U B}y, the sphere X is a bridge surface for the link S N (B;; U Bj).
(3) The link S N (B;; U Bj) is an unlink of ¢; components.

We call ¥ = (B12, T12) U (B23, T23) U (B31, T31) the spine of the bridge trisection and X the bridge
surface of S. The numbers c1, ¢z, c3 are the patch numbers of the bridge trisection. The bridge number
b(7) of the trisection is b(9) = %|S N X| and the bridge number b(S) of S is the minimum of b(7) over
all bridge trisections J for S. We say that a trisection J with bridge number » and patch numbers c;,
¢z and c3 is a (b; c1, ¢, c3)-bridge trisection. As we mentioned, the definitions of bridge trisection and
bridge number are due to Meier and Zupan, who also proved that every smooth surface admits a bridge
trisection. We let @;; C P(X) be the disk set of the tangle (B;;, T;;).

Meier and Zupan [2017] also introduce the notion of a triplane diagram, a triple of planar tangle diagrams
whose pairwise unions are unlinks. Since a bridge trisection is determined by its spine consisting of
a triple of 3-balls (B12, B23, B31) with trivial tangles (T2, 723, T31), one can project each tangle 7;;
onto a vertical disk in B;; and obtain three planar tangle diagrams. In particular, every knotted surface
in S* can be represented by a triplane diagram which is unique up to interior Reidemeister moves, bridge
sphere braiding, and perturbation and deperturbation. See [Meier and Zupan 2017, Section 2] for details.

Lemma 2.3 Suppose that S C S* is a topologically knotted sphere with a (4; c1, ¢2, ¢3)—trisection and
4 =0(S). Thenc; =2 forall i.

Proof Since S is topologically knotted, ¢; > 2 for all i by [Meier and Zupan 2017, Corollary 1.12]. The
result follows since 2 = y(S) =c¢y1 +c2 +c3—4. |

Henceforth, we abbreviate the phrase “(4; 2, 2, 2)—trisection” to (4, 2)—trisection.

2.3 Spun knots

We now recall a construction of spun knots from a knot K C S3 due to Artin [1925]. Let (B3, K°) be the
result of removing a small, open ball centered on a point in K, so that K is a knotted arc with endpoints
on the north and south poles, labeled n and s, respectively. Then the spin S(K) of K is the knotted

surface given by
(S*, S(K)) = (B> K°) x SHY U ((S?, {n,s}) x D?).

Meier and Zupan also showed that every spun b—bridge knot S(K) € S* has bridge number at most 35 —2
by providing an explicit (30—2, b)-bridge trisection, whose corresponding triplane diagram is shown in
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Figure 1: A (3b—2, b)-bridge triplane diagram for the spin ¥(K) of the b-bridge knot K given
in bridge position (left). We will denote the tangles by 75, 723, and 73; from left to right.

Figure 1. From now on, we will denote this particular bridge trisection by J\z and, for that trisection,
define T;; as indicated for i, j € {1,2,3} withi # j.

Remark 2.4 For this particular trisection 7z for a spun b-bridge knot, since b = b(Tyz) = 3b—2 and
ci =bforalli €{l,2,3}, the corresponding bridge sphere is 2b—punctured, and each pants decomposition
pf f has exactly 2b —3 = 2(3b —2) — 3 = 6b — 7 curves. Thus, it follows from Lemma 2.7 that there exist
pl’-j € D;j and p;, € Djj with d(pl’-j,p;d) =b—c¢;=0Bb—-2)—b=2b-2.

We note the following:

Theorem 2.5 [Meier and Zupan 2017] If K C S3 has b(K) = 2, then b(¥(K)) = 4. Consequently, if
T is a (4; c1, ¢, c3)—trisection for a spun 2-bridge knot, then each ¢; = 2.

Proof We defer to [Meier and Zupan 2017, Section 5] for details. Let J be a (b; c1, ¢2, c3)-bridge
trisection of a spun 2-bridge knot ¥(K). By [Meier and Zupan 2017, Corollary 5.3 and Theorem 5.5],
min(c1, ¢, ¢3) > mrk(#(K)) = mrk(K),

where mrk is the “meridional rank™” of the 2—knot or knot. By [Boileau and Zimmermann 1989],
mrk(K) =2, so ¢; > 2 for all i. Also,

2=y (K)=ci+c2+c3—b>6—b.

Thus, b > 4. Since Meier and Zupan have constructed trisections of spun 2-bridge knots of bridge
number 4, b(¥(K)) = 4. Since the meridional rank of ¥(K) = 2, ¥(K) is topologically knotted. The
result follows from Lemma 2.3. |

2.4 The Kirby-Thompson invariant

We now define the Kirby—Thompson invariant of a bridge trisection. For a schematic diagram of the
efficient defining pairs for a trisection, see Figure 2.

Definition 2.6 (Kirby—Thompson invariant £) Suppose that S C S* is knotted surface with bridge
trisection J having trisection surface ¥ and spine ¥ = (B2, T12) U (B23, T23) U (B31, T31). For
{i, j,k}=1{1,2,3}, let (pl.]j, pjj.k) be an efficient defining pair for (B;;, T;;) Us (Bjk, Tjx). If X is a
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Figure 2: Defining £(T') via efficient defining pairs. The ellipses represent the disk sets. The line
joining pf ; to pijj represents a geodesic path in the pants complex, which has length b(9) —¢; for
a (b(9), c1, ca, c2)-bridge trisection.

sphere with strictly fewer than four punctures, define (') = 0. Otherwise, define the Kirby—Thompson
invariant £(7) to be the minimum of

d(ply. P12) +d(p33. p33) +d(p3y. p3y)

over all such choices of efficient defining pairs. Define the Kirby—Thompson invariant £(S) to be the
minimum of £(J) over all trisections I of S with b(7) = b(S).

The distance between an efficient defining pair in the setting of Definition 2.6 is determined:

Lemma 2.7 [Blair et al. 2022, Lemma 5.6] If 7 is a (b(7), ¢1, c2, ¢3)-bridge trisection, then every
efficient defining pair satisfies

d(pjy. pjs) = b(T) —ci.
2.5 Reducibility and stabilization of bridge trisection

We provide two related ways in which a bridge trisection may have higher bridge number than necessary:
reducibility and stabilization.

Definition 2.8 Given two trisections J; for surfaces S; (i = 1,2) in distinct copies of S 4. their distant
sum is the trisection obtained by taking the connected sum of the two copies of S* using a point on each
trisection surface disjoint from the surfaces. Their connected sum is the trisection obtained by taking the
connected sum of the two copies of S* using punctures on the two trisection surfaces. For more details,
see [Meier and Zupan 2017]. A trisection with trisection surface X is reducible if there exists an essential
simple closed curve in X bounding a c—disk in each tangle forming the spine.
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Figure 3: The arrangement of arcs from Lemma 2.12.

Lemma 2.9 If S is a knotted 2—sphere with b(S) <7, then no bridge trisection of minimal bridge number
is reducible.

Proof As explained in [Blair et al. 2022], if a trisection 7 is a reducible (4, 2)-bridge trisection for S,
then it is the connected sum of two other trisections 1 and I, such that b(T1) +b(T2) =b(T)+1<7
and each has bridge number at least 2. In particular, either J1 or J, has bridge number at most 3,
implying that the corresponding surface is unknotted by [Meier and Zupan 2017, Theorem 1.8]. In this
case, the other trisection is a trisection for S of smaller bridge number than 7. a

Lemma 2.10 Suppose that J is a bridge trisection with spine Ui# (Bij.Tij). Then J is reducible or
stabilized if and only if there is an essential curve y bounding a c—disk in each (B;;, T;;). Furthermore,
such a curve is a reducing or cut-reducing curve (respectively) for each link L; = T;; U Tjk.

Proof This follows easily from Lemma 2.1. a

Meier and Zupan [2017, Section 6] define what it means for a bridge trisection to be stabilized. This is the
analogous to a “perturbed bridge surface” for knots in 3—manifolds or to “stabilized Heegaard splittings”
of 3—manifolds. While we do not need the precise definition of stabilization, we need the following two

results, both from [Meier and Zupan 2017].
Lemma 2.11 If S C S*, then no stabilized bridge trisection of S has minimal bridge number.

Lemma 2.12 (stabilization criterion [Meier and Zupan 2017, Lemma 6.2]) Let I be a bridge trisection
with spine
(B12, T12) U (B23, T23) U (B31, T31).

If, for some {i, j, k} = {1,2,3}, there exists a collection of shadow arcs « for (B;;,T;;) and B for
(Bjk. Tjx) and a single shadow arc y for (B;i, T;x) such that the interiors of all the shadow arcs are
disjoint and the following two conditions hold, then J is stabilized:

(1) The union @ U B is a simple closed curve (ignoring the punctures).

(2) Exactly one endpoint of y lies on o U B.

Noting that the union of an arc with an isotopic copy having interior disjoint from the original is a circle
produces the following criterion, which we’ll use repeatedly:
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Lemma 2.13 Let J be a bridge trisection with spine

(B12, T12) U (B23, T23) U (B31, T31).

Suppose that there exist {i, j,k} = {1,2, 3} such that there is a shadow arc « for both (B;;, T;;) and
(Bjk.Tjx) and a shadow arc y for (B, T;x) sharing exactly one endpoint with a and with interior
disjoint from «. Then T is stabilized.

We note that Blair et al. [2022] show that,if a (b; ¢1, ¢, c3)-bridge trisection I of a knotted surface S is
not reducible, then
L(T)>2(c1 +c2+c3)—28.

If 7 is a (4, 2)-bridge trisection, this inequality translates to £(J) > 2-6 — 8 = 4. The goal of Section 3
is to further improve this estimate in Theorem 3.16.

3 Combinatorics of (4, 2)-bridge trisections

This section studies relations among pairs-of-pants decompositions of a trisection surface %~ having 8
punctures. For each {i, j, k} = {1,2,3}, the link L; = T;; U T;; is a 2—component unlink in 4-bridge
position. We define an inside of a simple closed curve in X to be a side with < 4 punctures and an
outside to be a side with > 4 punctures. Note that curves with four punctures on each side have two inside
regions and no outside region. We say that a puncture or set of punctures is enclosed by such a curve if
the curve does not separate them and they are all inside the curve. Analyzing which curves in a pants
decomposition can enclose which others, produces the next lemma:

Lemma 3.1 Let ( pf It pl’ ) be an efficient defining pair for L;. Then we may choose notation pf ;=
{v1.v2.v3. /1. f2} and p}; = {y1.v2.y3., fi. [} so that all of the following hold:

e yp is areducing curve for L;.

e Both y, and ys are cut-reducing curves for L;.

* f1 and f> bound compressing disks for T;; and f| and f, bound compressing disks for Tj.

¢ Every geodesic from pfj to pf x moves fi to f{ and f> to f;, and y1, y2, and y3 are unmoved.

Proof Recall that ¥ has eight punctures, so each pants decomposition has five curves. Let ( pl’f T pl’f ) be
an efficient defining pair. By Lemma 2.7, the distance from p;j ; to Pji is equal to b(T) —¢; = 2. Thus,
at least three curves are unmoved by any geodesic in the pants complex joining p; ;o Pip- Lety1, v2
and y3 be three such curves, and let f; and f, be the other two. Curves in X bounding cut disks in one
of the tangles in the spine, enclose an odd number of punctures in X, while those bounding compressing
disks enclose an even number of punctures. Thus, each of y1, y» and y3 is either a reducing curve or a
cut-reducing curve for L;.

Algebraic € Geometric Topology, Volume 24 (2024)
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It is impossible for y;, y» and y3 to all bound cut disks to both sides, because there are only eight
punctures and the three curves are pairwise nonparallel. Thus, at least one is a reducing curve. Without
loss of generality, we may assume it is ;. Since ¢; = 2, all reducing curves for L; enclose the same
punctures. Thus, y» and y3 must be cut-reducing curves. Each encloses exactly three punctures. Since
pl’f ; is a pants decomposition, all other curves of pf ; enclose an even number of punctures. Consequently,
both f1 and f> must be moved by every geodesic between le ; and Pjj,- Thus, each geodesic moves the
pair (f1, f2) to the pair (f{, f3), which are the curves of p;, that are not y1, y2 or ys.

Furthermore, one of y, or y3 encloses three punctures as well as either f; or f>. Since no geodesic
between p; ; and Pjj moves y; or y3, there are not two geodesics one of which moves f to /{ and the
other of which moves it to f;. Thus, we may assume the notation was chosen so that every such geodesic

moves fi to f{ and f> to f;. O

Remark 3.2 We will often consider efficient deﬁnlng pairs ( pl o D k) and ( pl D k) in which case we
choose notation p] ={y1,¥2.73, f1, f2} and pl] = {Y1, V2, ¥3,hy, hy} as in Lemma 3.1. We refer to
any of y1, y» or y3 as a y,—loop and any of Y1, ¥ or Y3 as a Y¥,—loop.

A configuration of either T;j, Tj or L; is the partition A;j, Aji or A; (respectively) of the set of the
labeled punctures L = {1,2,3,4,5,6,7,8} on X built as follows: two punctures are related if they belong
to the same connected component of 7;j, Tjx or L;, respectively. We will often abbreviate the string
“3,4,5,6,7,8” as 3-8, and so forth. An element of a configuration with exactly n elements is called an

n—cycle.

We are interested in the triplet of configurations (Ay, Ay, Az) for Ly, L, and L3. Up to relabeling,
(4,2)-bridge trisection has essentially three options for such triplets. This is formalized in Lemma 3.3:

Lemma 3.3 Let S be a connected surface in S* with a (4, 2)—bridge trisection T. Up to permutation of
L and choice {i, j, k} = {1,2, 3}, there are three possible configurations for A;, A; and A:

(D) A; ={{1,2},{3-8}}, A; = {{1-5,8},{6,7}} and Ay = {{3,4},{1,2,5-8}}.

(2) A ={{1,2},{3-8}}, A; ={{1,2,6,7},{3,4,5,8}} and Ay = {{3,4},{1,2,5-8}}.

Q) A ={{14},{5-8}}, A; ={{1,4,5,8},{2,3,6,7}} and Ay = {{1,2,7,8},{3-6}}.
Proof The fact that T is a (4, 2)-bridge trisection implies that A1, A, and A3 each have either one
2—cycle and one 6-cycle or exactly two 4—cycles.

Case1 (A; has one 2—cycle) After relabeling, we can assume that A;; = {{1, 2}, {3,4}, {5,6},{7,8}}
and A = {{1,2},{3,8},{4,5},{6,7}}. By connectivity of F, we have that {1,2} ¢ A;r. We have two
cases: either A; shares a common 2—cycle with A;; (or Ajg) or not.

Subcase 1a (A;; and A;x have a common 2—cycle, say {3,4} € A;; N A;x) Suppose {6,7} € Ajk.
Since |Lj | =2, the labels 5 and 8 must lie in the same component of A, as 1 and 2. This yields option (1)
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of the statement. Suppose now that {6, 7} ¢ A;; in particular, A;x and A ;; have no common 2—cycle.
Focusing on Ay, observe that, if {5, 8} ¢ A;, then A;; must contain one of {1, 2} or {6, 7}, which is a
contradiction to the previous sentence. Thus, we have {5, 8} € A;j, concluding that A;; must relate the
labels 1 and 2 to 6 and 7 somehow. This yields the configuration in option (2) of the statement.

Subcase 1b  (A;x has no common 2—cycle with either A;; and Aj;) We will see that this case cannot
occur. Here, A;j is forced to relate 1 and 2 to labels in {3-8}. After relabeling, we can assume that
{2,3} € A;;r. We have five remaining options for x such that {1,x} € A;;. If x = 4, in order to
have |Ag| = 2, it must be that contains {7,8} € Aji. Thus, A;x and A, have a common 2—cycle, a
contradiction. Similarly, we rule out x =5, 6, 7. If x = 8, then, as A; does not share a 2—cycle with A i,
it must be the case that A;; contains either {4, 6} or {4, 7}. The first possibility implies A; is a single
8—cycle, while the second implies A;x and A;; share a 2—cycle. Both are impossibilities in this subcase.
Case 2 (A; contains two 4—cycles) We can assume that A;; = {{1,2},{3,4},{5,6},{7,8}} and A =
{{1,4},12, 3}, {5, 8}, {6, 7}} without loss of generality. Observe that, if A; or A; has one 2—cycle, then we
can permute the symbols {i, j, k} and continue as in Case 1, yielding the configurations (1) and (2) in the
statement. In particular, if {x, y} € A;x, then we must have {a, b}, {c,d } € Aji, where {x,a},{y,b} € A;;
and {x,c},{y.d} € Aj.

Subcase 2a (A;j relates 1 and 2 to 3 and 4) By the previous paragraph, we are forced to have
Ajr = {{1,3},{2,4},{5,7}.{6,8}}. Thus,

Aj = A = A = {14}, {5-8}},
which contradicts the fact that F' is connected.

Subcase 2b (A;; does not relate 1 and 2 to 3 and 4) After relabeling, we can assume that {4, 5} € Aj.
The fact that |Ag| = |A;| = 2 forces A = {{4, 5}, {3,6},{2,7}, {1, 8}}. This yields configuration (3)
in the statement. |

It is easy to see that (MZ—)bridge trisections for (twist) spun 2-bridge knots have configurations as in
configuration (2).

Question 3.4 Are there nonstabilized (4, 2)-bridge trisections of the other types?

A positive answer to Question 3.4 could lead to new examples of (3, 1)—trisections which have been
sought after in the literature.

Remark 3.5 The following combinatorial properties of reducing curves are direct consequences of
Lemma 3.3; let ¥1 and y1 be reducing curves in A; and A;, respectively:

e If {x, y} are punctures enclosed by y; and if one of them is also enclosed by 1, then both are
enclosed by 1.

e Suppose ¥; and y; both bound four punctures and that y; bounds {x, y,z,w}. Then, after
relabeling, ¥y separates {x, y} from {z, w}.
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3.1 Reducing curves

Reducing curves play a special role in trisections. In the case of (4, 2)-bridge trisections, they restrict
the pants decompositions near pl’: : in ?(X). Lemmas 3.6 and 3.7 show that, in certain circumstances,
reducing curves for different links must intersect at least four times. Lemma 3.9 compares the y,—curves
in pll: . with the ones (called v, —curves, for convenience) in pljj Lemmas 3.10 and 3.11 imply that
A-moves of the form y; > v, and y, = ¥ cannot occur near p; - We rely heavily on theorems of [Lee
2017], governing the relationship between perturbations of a bridge position with bridge disks.

Lemma 3.6 Suppose L; has one component intersecting % exactly twice and L; has no such component.
Let y in ¥ be a reducing curve for L; and suppose ¥ C X is either a reducing curve or cut-reducing curve
for L. Then the following hold:

(1) If ¥ is a reducing curve, then |y Ny | > 4.

(2) If v is a cut-reducing curve, and Y and y are disjoint, then y lies inside a 3—punctured disk
bounded by .

Proof Let y and ¥ be as in the statement and assume that they have been isotoped so as to intersect
minimally. Let Q be a sphere separating the components of L; such that QNX =v. Let L; (1) and L;(3)
be the 1-bridge and 3-bridge components of L; and let L} and L;./ be the two components of L;.

Since y is a reducing curve for L;, it is isotopic to the boundary of a regular neighborhood of an arc « C X
joining the punctures L; (1) N X. The arc « is the intersection D NX of a disk D such that dD = L; (1) and
the interior of D is disjoint from L;. Observe that there is a shadow arc &’ for (B, T;) that is a copy of o.

Suppose that y Ny = &. We may, therefore, assume that D is disjoint from Q N B;;.

Observe that Ey = D N Bj; is a bridge disk for an arc of Tj;. Let K; C B;; U Bjj be the link that
results from isotoping this arc along £ and across X. The link K is isotopic to L;, and is, therefore,
an unlink of two components. One component is equal to a component of L ;. The result of d—reducing
(Bjk. Tjx) along the c—disk E = Q N Bj is the disjoint union of two trivial tangles; call them (U, 1)
and (Uz, 72). The result of d—reducing (B, K; N Bjy) along E is two tangles, one of which is either
(U1, 1) or (Uz, 2). Without loss of generality, we may assume it is (Ua, 72). Call the other one (U7, 7).
If (U], 77) is a trivial tangle, then so is (Bjx, K; N Bjx). If ¥ is a reducing curve, then 77 is a single
strand; it must be unknotted, as K; is an unlink. Otherwise, ¥ separates the punctures of ¥ into one set
with three punctures and the other with five punctures. If y is on the side with five punctures, we have our
theorem, so assume y is on the side with three punctures. Thus, without loss of generality, (Uy, 71) has
two strands and (Uz, 72) has three strands. Thus, (U;, t7) has a single strand and, as before, we see that
it is a trivial tangle. Thus, (Bjk, K; N Bjy) is a trivial tangle and X is a bridge sphere for K.

By [Lee 2017, Theorem 1.1], there is a bridge disk E» for a strand of Tj k in E ik such that the arcs & and
B = E> N X intersect in a single point. The three shadow arcs o, &’ and 8 show that ¥ is stabilized as in
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AN, A, /(@/
Ty T

Figure 4: How to build the links A; and A,.

Lemma 2.13. This contradicts our assumption on X. Thus, |y N ¥| > 0 when ¥ is a reducing curve and
y is on the side with five punctures if i is a cut-reducing curve and |y N | =

Consider the twice-punctured disk D C X bounded by y. If |y N y| > 0, then ¥ N D consists of parallel
arcs separating the punctures. If ¥ is a reducing curve, then it bounds disks in ¥ each containing an even
number of punctures, in which case | N D] is even and |y N y| is a multiple of 4. Consequently, if ¥ is
a reducing curve, |y N Y| > 4. a

Lemma 3.7 Suppose L; has one component intersecting 3 exactly twice. That is, L; is a 2—component
link, where one component is in 1-bridge position and the other component is in 3—bridge position. Let
y C X be a reducing curve for L; and suppose  C X is a cut-reducing curve for L.

(1) Suppose that both components of L; are in 2—bridge position. Then |y N | # 2.

(2) Suppose L; has one component in 3-bridge position. If |y N | = 2, then the two punctures
corresponding to the 1-bridge component of L lie inside a 3—punctured disk bounded by /.

Proof Let Q be a cut-reducing sphere such that Q N ¥ = v. Cut open (S>3, L ;) along Q and glue
in (3-ball, unknotted arc) pairs (B>, ;) and (B3, &) to obtain (S3,11) and (S3, A,) (See Figure 4.)
In the 3-balls that we glued in we may find once-punctured disks whose boundaries coincide with
the images of 1. Attach those disks to the remnants of ¥ to obtain bridge spheres ¥; and X, for
(S3,11) and (S3, 1,), respectively. We can recover (S3, L j» %) by taking the connected sum of the
triples (S3, 11, 1) and (S3, A5, ¥5). In particular, A1 and A, are unlinks. Since we are decomposing a
2—component unlink L; via a cut-reducing sphere, we can assume that A; has one component and A, has
two components. There are a few cases to consider (see Figure 5). In all of these cases, the strategy is the

AN, Nosn NN/
I T Y

Figure 5: The link L; = T;; U T in bridge position. The arc « is a shadow for arcs in 7;; and Tj.
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following. Using the same notation as in Lemma 3.6, there is a shadow arc o’ for (B;i, Tjx) that is a copy
of o for (B;;, Ti;). We then use [Lee 2017] to find a shadow in (B}, Tjx) intersecting a only in one
endpoint (and no interior points). By Lemma 2.13, this implies that I is stabilized, contrary to hypothesis.

Let D as in Lemma 3.6. The intersection D N X is a shadow « for arcs in both 7;; and Tj;. Since
ly Ny =2, the disk Q¢ = Q N B;; intersects the disk £ = D N B;; in a single arc. Thus, E persists to
bridge disks £ for A1 and E; for A,.

Case 1 (each component of L; is in 2-bridge position, ie intersects X four times) Suppose for the sake
of contradiction that |y N Y| = 2. Only one component of L; intersects Q. Without loss of generality,
we may assume it is L’. Furthermore, all of the punctures L7 N X must lie in £, as [L} N X| = 4. Thus,
A1 is an unknot intersecting 31 exactly four times. Recall E is a bridge disk for Ay. Let £ i be another
bridge disk for A1, on the same side of X1 as Eq, but disjoint from E;. Observe that, in the 4—punctured
sphere X1, the frontiers of the arcs £1NX and E{ NX are isotopic. Since a reduction along a bridge disk
of the 2-bridge unknot is an unknot in 1-bridge position, Theorem 1.2 of [Lee 2017] tells us that each arc
of A1\ X1 on the opposite side of X1 from E; and E has a bridge disk intersecting both E1 and E5 only in
one endpoint (and no interior points). Let € be such a disk for the strand of A1 \ ¥ that does not contain o .
Then € is also a bridge disk for L; and it intersects « only in one endpoint (and no interior points).

Case 2 (acomponent of L; is in 1-bridge position, ie intersects X only twice) Suppose that |y Ny | =2.
If A1 is an unknot intersecting X exactly 4 times, then we have the situation with the schematic shown
in Figure 5, center. In this case, the shadow we seek for (B, Tjx) is found as in Case 1. That is, there is
a shadow arc o’ for (B, Tjy) that is a copy of a shadow arc « for (Bij. Tij). Since A1 is a 2-bridge
unknot, Lee [2017] tells us that there is a shadow in (B ik Tjk) intersecting o only in one endpoint (and
no interior points). On the other hand, if A; is an unknot intersecting ; exactly 6 times, we have the
second conclusion of our lemma (see Figure 5, right). |

Remark 3.8 Our proofs of Lemmas 3.6 and 3.7 above do not work for higher bridge numbers, as there
is a 4-bridge position of the unknot with no complete canceling disk system (see [Lee 2017]).

For the remainder of this section, let pf ! and pljj be pants decompositions belonging to defining pairs for
Li=T; U Ti and Li =TV Y_}j, respectively. Denote their curves by pl’:j ={¥1,¥2.73, f1, f2} and
piJj = {¥1,¥2,¥3,h1,hy} asin Lemma 3.1.

Lemma 3.9 No y,—loop is equal to f,, for any m € {1,2}. Similarly, no y,—loop is equal to hy, for any
m € {1,2}.

Proof The second statement follows from the first by reversing the roles in the proof below. We prove
the first statement.

By Lemma 3.1, v, and 3 bound cut disks and f; and f> bound compressing disks, so the number of
punctures they enclose is different modulo 2. Thus, ¥, # f1, f> forn =2, 3.
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Figure 6: Various subsurfaces of 2.

Suppose now that ¥; = fi. In particular, y; and ¥ are disjoint reducing curves. By Lemma 3.6, the
number of punctures enclosed by y; and {1 must be the same. For if y; bounds two punctures and
Y1 bounds four punctures, then the two curves will intersect. But y; and f; are distinct curves in the
pants decomposition pl’: /580 they cannot both enclose four punctures. We conclude that ¥; = f1 and y;
enclose two punctures each. Let f{ and f; be simple closed curves such that pi, = {y1,v2,v3, f{, 5}
completes a defining pair (p; it pj;) for Tij U Tix. Focus our attention on the A-move corresponding
to f1 — f{, which happens inside a 4-holed sphere E. The boundaries of E correspond to boundaries
of small neighborhoods of punctures or to some y,—curves. Notice that one or two boundaries of E
correspond to some yp—curves.

Case 1 (JF has exactly one y,—loop) After a surface homeomorphism, we can draw E as in the
Figure 6, left. Here, after choosing coordinates for the 4—punctured sphere, f; is depicted as a separating
curve of slope 1/0. The conditions | f1 N f{| =2 and f{ Ny, = @ imply that f is a separating simple
closed curve in E of slope n/1 for some n € Z. In other words, f; = dn(c) and f| = dn(c’) for some
properly embedded arcs ¢, ¢’ in E such that ¢ is an arc disjoint from y,, and ¢ N ¢’ = dc N dc’ is exactly
one puncture. We pick ¢’ so that the end disjoint from ¢ corresponds to the puncture p on the same side
of f1 as y, (see Figure 6, left). Now, recall that f] bounds a compressing disk for Tj, and so ¢’ is a
shadow for some arc in T;x. Similarly, c is a shadow for arcs in both 7;; and Tj; because f; = V1 isa
compressing disk for both tangles. By Lemma 2.13, these three shadow arcs with one common endpoint
imply that the bridge trisection is stabilized. This concludes Case 1.

Case 2 (dF has two y,—loops) Both must bound cut disks. After a surface homeomorphism, the curves
in pf ; can be depicted as in Figure 6, center. Observe here that f{ must surround four punctures on each
side. Let D be the 4-holed sphere inside X cobounded by f{, y1, 9n(p) and dn(q); see Figure 6, center
and right. By construction, there exists an arc x in D with endpoints in p and E such that x is disjoint
from f{ N D. Since y; and f] both bound compressing disks for T}, it follows that there is an arc in Tjx
connecting p and g. Furthermore, such arc has a shadow arc ¢’ in X with interior disjoint from f] and y;.
Regarded as a subset of D, the arc ¢’ connects E and y;. We can slide ¢’ over y; several times and choose
a shadow arc ¢ with interior disjoint from x. In particular, ¢ intersects f7 in one point. This, together
with the fact that f; = v; bounds reducing curve for Ty ; U T; 7, implies the existence of a shadow arc ¢
for both Ty ; and T;; with ¢ N¢’ = dc N dc’ = {p}. By Lemma 2.13, we conclude that 7 is stabilized. O
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Figure 7: When the reducing curve bounds four punctures, the two cut curves lie on distinct sides.

Lemma 3.10 If e is an edge in P (X)) with initial endpoint at pl T then e does not move y; to any Y, —loop
in p . Similarly, if e is an edge in % (X) with terminal endpoint at pj then e does not move any y,—loop

ofpl] to ¥q.

Proof The second statement follows from the first by interchanging the roles of y; and v, and so we
prove only the first statement. Suppose, to establish a contradiction, that y; is moved to some ¥, —loop by e.

First we show that e does not move y; to 1. Suppose y; bounds a twice-punctured disk D. If e moves
y1 to ¥rq, then |y N | =2, so D Ny consists of a single arc. It follows that the two punctures of D are
on opposite sides of 1, contradicting Remark 3.5. Similarly, {; does not bound a twice-punctured disk.

Consequently, if e moves y; to 1, then both y1 and 1 enclose four punctures. This sets us in the third
configuration of Lemma 3.3. First, observe that f; and f> must be separated by y;. This holds since
pl’ i = v2, 3, f1, f2} is a pants decomposition for X, and only y;, f1 and f> bound an even number
of punctures. Thus, after a surface homeomorphism, we can draw ¥ and p; ; as in Figure 7. We see,
therefore, that if ¢ moves y; to ¥, then y; and ¥; will both bound the same three (out of four) punctures,
contradicting Lemma 3.3. Hence, y; cannot be moved first to 1.

We will now see that, due to parity constraints, if ¢ moves yi, then y; is moved to a curve bounding
an even number of punctures. In particular, y; is not moved to v, for n = 2,3. In order to do this,
we focus on the 4-holed sphere, denoted by E, corresponding to the first A—move. The four boundary
components of E are loops (or punctures), {d1, d2, 93, d4}. If Y1 bounds four punctures, up to surface
homeomorphism, then X can be depicted as in Figure 7 and we see that each component of dF is an odd
curve. On the other hand, if y; encloses exactly two punctures, then two components of dE are single
punctures. The other two boundaries, say d3 and d4, will enclose punctures 1 and 5, 2 and 4, or 3 and 3,
respectively. Notice that they cannot enclose punctures 2 and 4, since that will force the existence of a
fourth curve in pf : bounding an even number of punctures. Thus, in any case, all the components of JF
are either a single puncture or enclose an odd number of punctures. Consequently, e moves y; to a curve
enclosing an even number of punctures, as desired. |

Lemma 3.11 If e is an edge in (%) with initial endpoint at pl ;> then e does not move any y,—loop
of pl oy Similarly, if e is an edge in (X)) with terminal endpoint at p then e does not move y; to

any Y, —loop.
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Figure 8: A close look at the A—move y; — ;.

Proof As we did in Lemma 3.10, it is enough to show the first statement. The case r; — y; has been
discussed in the proof of Lemma 3.10.

We study the case y; — ¥». In particular, y; and 1 must be disjoint because the endpoint of e is pljj
Thus, Lemma 3.6 forces both y; and y; to bound two punctures each. The 4-holed sphere corresponding
to e is drawn in Figure 8, left. Observe that we are forced, by Lemma 3.1, to have one cut curve inside d4
and one compressing curve x. Here, the sets of curves {x, d2,d4} and {h, hy, Y1} agree. Since ¥
bounds two punctures, we can assume d4 = k1. Moreover, Lemma 3.7(2) implies that ¥; = 95, leaving
us with x = hs,.

Focus on /1] € p} e If h'; bounds two punctures, we can proceed as in the previous paragraph and conclude
that the bridge trisection is stabilized. Thus, /] must bound four punctures. Here, &} bounds ¢ and the
curve /3. By focusing on this disk (see Figure 8, right), we see that &/, must be disjoint from y; because
(ha U h%) N3 = @. This lets us find a shadow ¢’ for T connecting ¢ and u, such that ¢’ is disjoint
from k) and h’,. We can slide ¢’ over i} and h/, in order to arrange that ¢’ and y; intersect once. Thus,
the bridge trisection is stabilized by Lemma 2.13. |

3.2 Improved lower bound

We are ready to prove the lower-bound of Theorem 1.1. The main result of this Section is Theorem 3.16,
which states that the Kirby—Thompson invariant of a (4, 2)-bridge trisection of a knotted sphere in S* is
at least 15.

As before, let S be a connected surface in S* with an unstabilized, irreducible (4, 2)-bridge trisection 7.
Fix {l J.k}y=1{1,2,3}. Let (pll:j, pll:k) and (pl.jj,pj{k) be defining pairs. Denote the curves in pll:j and pijj
by pi; ={r1.v2.v3. f1. f2} and Pi]j ={¥1,V2,V¥3,h1, ha} asin Lemma 3.1. We know that f1, f2, 1y
and /1, bound compressing disks for 7;;; also, each y,—curve is a reducing or cut-reducing curve for L;
and each ¥, —curve is a reducing or cut-reducing curve for L;; in fact, y1 and v; are reducing curves
and the others are cut-reducing curves. Recall that there are essential, simple closed curves f] and f,
such that pf © = 1.v2.v3. f{. f5} completes an efficient defining pair ( pf i pf )- Likewise, there are
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V2=,

Figure 9: Two subcases, depending on the number of punctures bounded by 5.

essential, simple closed curves A/ and h/, such that p} © = W1, Y2, Y3, b, h} completes an efficient

defining pair (pijj, pjj.k).

The proof of Theorem 3.16 will be broken into Propositions 3.13, 3.14 and 3.15, each of them proving
that d ( pl’: it pl.]j) > 5 for each pair, depending on the number of punctures bounded by y; and ;. We
begin in Proposition 3.12, showing that such distance is at least 4.

Proposition 3.12 If A(ij) is a path from pfj to pljj The length of A(ij) is at least 4. If it is equal to 4,
then at least one of fi and f, is unmoved by A(ij).

Proof By Lemma 3.9, no y/,—loop is equal to f; or f» and no y,—loop is equal to ; or /. Thus, if
some y,—loop is unmoved by A(ij), then it is equal to some ¥,—loop. But, by Lemma 2.10, this implies
that I is reducible, a contradiction. Thus, A(ij) moves every y,—loop, so the length of A(ij) is at least 3.
If it is equal to 3, then f1 and f> are unmoved by A(ij) and, if it is equal to 4, at least one of f1 or f5 is
unmoved by A(ij), as desired. Thus, we simply need to show that the length is not 3.

Assume, for a contradiction, that the length of A(ij) is 3. As f; and f, are unmoved, by Lemma 3.9,
{f1, f2} = {h1,h2}. By Lemma 2.10, each of the curves {y1, y2, y3} moves exactly once. For each
m =1,2,3, let y;, denote the ¥,—loop to which y,, is moved by A(ij). Lemmas 3.10 and 3.11 imply
that the curves y; and ¥; are not involved in the first and third A-moves of A(ij). Thus, y; — ¥ must
be the second A-move in A(ij). We can then assume that y, moves first, y; = ¥ and y} = ¥3.

We focus on the 4-holed sphere E where the A-move y5 > y5 occurs. Denote the boundaries of E by
d1, 02, 03 and d4. After a surface homeomorphism, we can draw E as in Figure 9, left, which shows
the parity of punctures bounded by d,. Since y; is a cut disk, one of its sides contains three punctures.
Thus, we may assume that d, only bounds the puncture p and d; bounds two punctures. We get two
cases, depending on the number of punctures bounded by 93, one or three (see Figure 9).

Case 1 (03 bounds three punctures; in particular, d3 = y3 bounds a cut disk) See Figure 9, center.
By the previous paragraph, y3 has to be moved in third place and y; in second. Since y; — V¥ is an
A-move, we know that |y; Ny | = 2. This is a contradiction, due to the following argument, also found in
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Lemma 3.6. Denote by D C X the twice-punctured disk bounded by y;. We have that ¥r; N D consists of
parallel arcs separating the punctures. Since V¥ is a reducing curve, it bounds disks in X each containing
an even number of punctures. Therefore, |11 N D| is even and |1 N y1]| is a multiple of 4.

Case 2 (03 bounds one puncture, named g) After a surface homeomorphism, we can draw the curves
as in Figure 9, right. Recall that y1 > ¥ is the second A—move in A(ij). It follows that y; € {01, 04, x}
and observe that all the possible configurations for the curve y; = v in Figure 9, right, contradict the
combinatorial conditions in Remark 3.5. Thus, this case cannot occur. |

Proposition 3.13 Suppose y1 bounds two punctures and {1 bounds four. Then any path A(ij ) from pl’f ;
to pj; must be of distance at least 5.

Proof By Proposition 3.12, it is enough to show the distance from pl’: ; to pljj is not four. By way of
contradiction, let A be a geodesic path of length four between such pants decompositions. By Lemmas 2.10
and 3.9, each y,—curve must move at least once. We have two cases, depending on how many curves
of { f1, f>} are moved.

Case 1 (A moves one curve of { f1, f>}) Without loss of generality, f; is moved and so f» = h; is
fixed. In this case, each of {y1, y2, ¥3, f1} is moved once to one curve among {V¥1, V2, V3, h1}. Denote
by x’ the image of a loop x under the path A; ie x and x’ differ by one A-move.

First observe that, since 4, and y; are compressing curves for the same tangle, it must happen that, if y;
bounds {p, g}, then they are both on the same side of /. Thus, |y1 N h,| = 0 modulo 4. In particular,
Yy # hn. Similarly y; # . Thus, y| bounds a cut disk, say y; = ¥». In particular, |y; N | = 2. This
is a contradiction to Lemma 3.7(1). Hence, this case cannot occur.

Case 2 (A fixes {f1, f2}) We can write f; = hy and f> = h,. In this case, one of {y1, y2, y3} will
move twice and the other y,—loops move once along A. For the curve y; € {y1, y2, y3} that moves twice,
denote by 6 the curve y]’.. We will also refer to 6 as the pivotal curve.

Subcase 2a (y; moves once along A) By Lemma 3.6, [y; N /1| > 4, so y; must bound a cut disk, say
Y1 = ¥2. In particular, |y; Ny2| = 2. This is impossible since it contradicts Lemma 3.7(1).

Subcase 2b (y; moves twice along 1) We will first see that y;, # V1 for any n. In particular, 6" = y;
and the following property holds: at each vertex of A, there are at most three pairwise disjoint curves
bounding an even number of punctures.

By Lemma 3.6, y; # V1. Suppose, without loss of generality, that y;, = . The 4-holed sphere
corresponding to the A—move Y, — 1 has one boundary component bounding one puncture, r, and
boundary loops d1, d3 and d4 bounding two, two and three punctures, respectively (see Figure 10, right).
Here, there are four pairwise disjoint curves bounding an even number of punctures: {1, d1, 03, x}.
Since y; N Y1 # @ by Lemma 3.6, we know that { f1, f»,60} = {31,903, x}. If d; = 6, then y; will
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Figure 10: How the curves in X look for specific A—moves.

bound r and one of the two punctures bounded by d;. This is impossible since such punctures are on
distinct sides of /1. Hence, d; = f1 = h;.

Observe that the two punctures bounded by y; must be separated by 6 = yy; if not, then |y; N 6| =0
modulo 4, which makes impossible the A-move y; — 6. We use this to see that, if d3 = 6, then y; would
bound one puncture inside d3 with one puncture inside d4. These points are in distinct sides of 1 (see
Figure 10, right), which is a contradiction to Remark 3.5. Hence, x = 6, d3 = f> and d; = f1. Notice
that all the incoming A-moves will occur in the side of 1/ containing d4. This forces pl]] to have at least
four curves bounding an even number of punctures, a contradiction to Lemma 3.1. Thus, we conclude
that y/, # v, as desired.

By the above, the y, cut curves move once along A to v, cut curves. Without loss of generality, y;, = ¥y,
for n = 2,3. We will assume that y3 — 3 is not the last A—-move in A; if not, we can relabel the
yn—curves. We will focus on the 4-holed sphere corresponding to the A—move y3 — y; (see Figure 11,
left). We have two cases, depending on the number of punctures bounded by d, and 93.

Subcase 2b(i) (both 0, and d3 bound one puncture each) We adopt the notation in Figure 11, center.
In this case, we already have three pairwise disjoint curves bounding an even number of punctures,
{01, 04, x}, so there is a curve y bounding x and one puncture u (see Figure 11, center). Recall that 4,
bounds two punctures and f,, = hy, is fixed by A. This implies that d; = f1, x = f> and d4 € {6, V1 }.

Figure 11: The three possibilities occurring in Subcase 2b.
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Figure 12: Two paths.

Now, since y3 — 13 is not the last A—move in A, there are two possible curves which may move next, y
and 6.

Suppose first that y moves before 6 does. (The curve 6 may or may not move). Then y” must be a cut disk
and we get y' = ¥, and y = y,. Using the notation of Figure 11, center, since y; bounds two punctures
and is disjoint from Y, and y3, we obtain that y; bounds {r, s}. But d4 separates such punctures, so the
only option is d4 = 6. Now, the fact that y’ bounds a cut disk implies that it bounds the two punctures
inside x and s. The next move 6 — V1 is forced to separate r and s, contradicting Remark 3.5.

It remains to study what happens when d4 moves before y. (The curve y may or may not move). Here,
d4 = 0. Focusing on Figure 11, center, we observe that ¥/; = 6 bounds the two punctures inside x = f3,
together with ¢ and u. By Remark 3.5, y; bounds either {r, s} or {¢,u}. The latter is impossible since
y3 is disjoint from y; and y3 separates such punctures. Thus, y; bounds {r,s}. Since 13 separates
r and s, the A—move y; — 6 must appear in A before y3 — 3. Moreover, the move y, > ¥, = y
cannot happen between y; +— 6 and y3 — ¥3. This claim holds because, if y» moves between y;
and 3, it would force y, to bound the two punctures inside x = f; together with s, which implies the
contradiction y; Ny, # &. We are left with two possibilities, depending on the order of the curves moving:
(Y2, y1,y3,0) or (y1,y3, 0, y2). Figure 12 showcases the two possible paths and which punctures are
bounded by each curve.

We focus on the subpath of A corresponding to the consecutive A—moves y; — 6 followed by y3 — V3.
The second A-move occurs inside a 4-holed sphere with boundaries associated to ¢, r, f1 and 6 (see
Figure 13, left). The fact that y; and y3 are disjoint implies that the condition |y3 N 3| = 2 is equivalent
to |y1 N3] = 2. One can see this claim by noticing that the curves y3 and d7(y; U €) are isotopic in the
4-holed sphere. The condition |y; N ¥3| = 2 contradicts Lemma 3.7. In other words, Subcase 2b(i) is
impossible.

Subcase 2b(ii) (only one of {d,, d3} bounds one puncture) Without loss of generality, d, bounds one
puncture and d3 three. This forces the setup in Figure 11, right. The curves along the path A bounding an
even number of punctures are y1, Y1, f1 = h1, f> = h and (possibly) 6. But we have seen that 6" = v,

Algebraic € Geometric Topology, Volume 24 (2024)



3384 Romdn Aranda, Puttipong Pongtanapaisan, Scott A Taylor and Suixin (Cindy) Zhang

Figure 13: Curves interacting in the consecutive A—moves y; > 0, y, > ¥, for a fixed n.

and y| = 6. This implies that d4 ¢ {y1, 6, Y1} since all the A—moves starting at d4 will be forced to end
at curves bounding two punctures. Thus, we may assume that d4 = f7. Since no curve at this moment
bounds four punctures, there should be another A—move after y3 — 3. Using the notation in Figure 11,
right, the curves that might move are {d1, 03, x}.

Suppose that d3 moves first, then d3 = y and 95 = V. Since ¥, bounds three punctures, 05 must
enclose 0 and the puncture r together. Since 1 separates the cut curves v, and 3 (Figure 7), it follows
that d; = f> and y; separates p and g. Thus, from Remark 3.5, we must have x = 6. Without loss of
generality, y1 encloses r and p (see Figure 11, right). We now focus on the consecutive A—moves y; — 6
and d3 = y» > Y. Observe that y» — Y5 occurs in a 4-holed sphere with boundaries corresponding to
Y3, r, 01 = f» and 6. This local setup in depicted in Figure 13, center. In here, the conditions y; Ny, = &
and |y2 Ny, | = 2 force |y1 N yY»| = 2. This contradicts Lemma 3.7.

If x moves before d; and 03, then d; = f5. In particular, x = y; and d3 must move so that 8’ = ¥ can
bound four punctures. We can then redefine x to be y; = 6 and proceed as if d3 moved first (paragraph
above). We get then a contradiction.

The last case to check is when d; moves before d3 and x. In particular, x = f> and 9y € {y1,6}.

First we see that, if d; = y1, then d3 will have to move between y; — 6 and 6 — 1. This is true because,
if 93 didn’t move immediately after, then (y{)’ = ¥1 would separate ¢ and u, contradicting Remark 3.5.
In particular, d3 = y» must move between y; and 6. Moreover, the A-move y, — 11 occurs in a 4-holed
sphere with boundaries corresponding to 8, d; = f> and two boundaries bounding one puncture each. If
we switch the labels and redefine 5 to be y3, we get the situation of Subcase 2b(i). We can then obtain a
contradiction.

Therefore, we must have d; = 6. Since y; is disjoint from y3, using the notation in Figure 11, right, we
can assume that y; bounds ¢ and s. We obtain the subpath of A, depicted in Figure 13, right, given by
the consecutive A—moves y; — 6 and y3 — 3. Observe that y3 — 3 occurs in a 4-holed sphere with
boundaries corresponding to s, d3, f1 and 6. In here, the conditions y3 Ny; = @ and |y3 N 3| = 2 force
ly1 N3] = 2, contradicting Lemma 3.7. Hence, Subcase 2b(ii) cannot occur. We have exhausted all the
possibilities, thus concluding the proof of the proposition. O

Algebraic € Geometric Topology, Volume 24 (2024)



Bounding the Kirby—Thompson invariant of spun knots 3385

Proposition 3.14 Suppose that both y; and {1 bound two punctures each. Then any path A(ij ) from
pfj to pl.jj must be of distance at least 5.

Proof This proof follows the same path as Proposition 3.13. By Proposition 3.12, it is enough to show
the distance from pf ; to plj] is not four. By way of contradiction, let A be a geodesic path of length four
between such pants decompositions. By Lemmas 2.10 and 3.9, each y,—curve must move at least once.
We have two cases, depending on how many curves of { f1, f>} are moved.

Case 1 (A moves one curve of { f1, f2}) Without loss of generality, assume f» = h5 is fixed. Observe
that, since 11 and y; bound two punctures and the curves ¥, y1, h1 and f1 are compressing curves
for the same tangle, we obtain that y; # hy, Y1 and ¥ # f{. Thus, we can assume that y; = 1> and
Y5 = ¥1. By Lemmas 3.10 and 3.11, the A-moves y; — ¥, and y, + 1 cannot be first nor last in A.

Subcase 1(a) (y; — ¥ is second) In particular, y» — ¥ is third, and there are at most three
curves bounding an even number of punctures after the second A—move: { f1, 1, f> = ha}. We focus
our attention on the 4-holed sphere corresponding to y; +— V. By the previous sentence, we are
forced to have an arrangement of curves as in Figure 10, left (compare with Figure 14). In particular,
{x,02,04} ={f1,h1, fo} and y = y». Since V1 is the next curve to appear, ¥; must bound {r, s}. This is
already a contradiction since Lemma 3.7(2) implies that ¥r; bounds two of the three punctures {p, v, w}.
This subcase is impossible.

Subcase 1(b) (y; — ¥ is third and y, — ¥ is second in A) Recall that the only curves bounding
an even number of punctures are {y1, V1, f1, %1, f = ha}. We need to decide which of the A-moves
y3 > hy and f1 — 3 is first. For us to decide, focus on the 4-holed sphere corresponding to the A—move
y1 — Y. Counting y, there were four or five pairwise disjoint curves bounding an even number of
punctures before y; moved (see Figure 14). But every A-move in A interchanges cut and compressing
curves, so the number of even curves after the second A-move will be three or five. Thus, Y3 moves first,
f1 last, and the curves look like in Figure 14, right. Lemma 3.7(2) implies that d, = ¥1. Since y, — ¥
occurs in second place, we can assume that y, bounds {p, g, v}.

We will focus on d4. First observe that, if d4 = f, = hy, then the A—moves in distinct sides of d4
commute. This would let us contradict Lemma 3.11, since we could make y, +> i the first A—move.
Suppose now d4 = fi. Since fj is the last curve to move, we can assume that f| = 13 bounds {g, u,}.
Moreover, because |y N Ya| = |04 N3] = 2 and 3 is disjoint from x, z and ¥, we can see that y;
and 13 must intersect in two points. Now, we know that x = h, for some a € {1,2}. We can use the dual
curve hl, € p} . to find a tuple (c, ¢’) of destabilization shadows as in Lemma 2.13. Thus, d4 = /1 is the
remaining option.

If 04 = hq, then we can assume that y3 bounds {r,s, w} because y3 +> hy is the first A—move in A.
Recall that y, bounds {p, ¢, v}. By thinking in the 4-holed sphere with boundaries y3, d2, z and x, the
conditions |d4 N y3| = |02 N y2| =2 and 94 N d, = @ imply that y, intersects d, = V¥ in two points.
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Figure 14: When y; and v, differ by one A-move, there are either three (left) or four (right)
curves disjoint from y; bounding an even number of punctures.

Now, we know that z = f, for some a € {1,2}. We can use the dual curve f, € pl’f ¢ to find a pair of
shadows (c, ¢’) as in Lemma 2.13. We have concluded Case 1.

Case 2 (A fixes { f1, f2}) In this case, one y,—curve moves twice and the rest exactly once. We write
fa = hgy and denote by 6 the pivotal curve. There are two subcases, depending on how many times y;
moves.

Subcase 2a (y; moves once along A) Recall that y1, V1, f1 = k1 and f> = hy bound compressing
disks in 7;; and y; and v; bound two punctures. Thus, |y, Na| and |1 N «| are both divisible by
four for all « € {y1, V1, fi = h1, f2 = h2}. This implies that y; must bound a cut disk, say y; = .
Lemmas 3.10 and 3.11 force y; to move second or third in A. We can represent the curves in the 4-holed
sphere corresponding to y; + V¥, like in Figure 14. Observe that, before the A-move of y;, there are
either four or five pairwise disjoint curves bounding an even number of punctures.

We first study 05 in Figure 14. Since d, bounds two punctures, we have d, € { f1 = h1, fo = ha, Y1, 0}.
Notice that d, cannot be 6. If that were the case, 8’ would be forced to bound an even number of
punctures, say {p,v}, and 8’ = ¥. In particular, ¥; would separate p and ¢, which contradicts
Remark 3.5. Lemma 3.7 implies that 1y bounds two punctures from {p, v, w}; thus, 0, = V1.

Subcase 2a(i) (there are five even curves) We use the notation in Figure 14, right. We have that the sets
of curves {x, z,d4} and {6, f1, f>} agree. In particular, by Lemma 3.11, y» — ¥/ must be the second
A-move and so y3 — 0 is the first one. If d4 is equal to some f,, then the curves 6 and v will lie in
different sides of d4. We could then permute their corresponding A-moves and obtain y, +— 11 first in A,
contradicting Lemma 3.11. Thus, we conclude that d4 = 6, x = f; = hj and z = f> = h;. Here, we can
assume that y» bounds {p, g, v} and y3 bounds {w, r, s}. Now, by looking at the 4-holed sphere bounded
by y2, x, z and dn(w), we can see that y3 Ny, = & and |y, N Y| = 2 imply that |y3 N 1| = 2. Then,
inside the component of X \ y3 containing w, we can use f; to find a tuple of shadows (c, ¢’) satisfying
the conditions of Lemma 2.13. Thus, this subcase cannot occur.

Subcase 2a(ii) (before the A—move y; — V5, there are four curves bounding an even number of punctures)
We can draw the curves in ¥ as in Figure 14, left. Since d, = Y1, we can assume x = f; = hq and
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d4 = f2 = ha. Now, since d4 is fixed along A, the A—moves occurring in different sides of d4 can be

permuted. Thus, we can assume that y = y, and so y; € {{3, 0}.

Suppose now that y; = 3. Since ¥3 = y; is forced to bound {u,t, s}, we can assume that /| € pjk
bounds {z, s}. In particular, T} connects the punctures {z,s}. On the other hand, since y1, f1 and f>
bound disks in 7;;, we know that 7;; connects p, u and r with g, t and s, respectively. The fact that
L;=T;;U Tjk is a 2-component link and v/ is a reducing curve implies that 7z connects the punctures
{u,r} with {p, g}. Since y, bounds a cut disk for T}, we have that T;; must connect r with either u
or t. In any case, the fact that Ly = T;; U Tjk is a 2—component link forces v and w to be connected
by Ti. Since Y1 bounds a compressing disk in both 7;; and T}, we obtain that v and w are connected
by the three tangles. This implies the surface S is disconnected, a contradiction.

We are left with y;, = 6, which forces y; = ¥ = 02 and 6’ = 3. Since d4 = f> = h» is fixed along A,
the A—moves on distinct sides of d4 commute. Thus, we can take A such that y3 — 1 is the first A—move.
This contradicts the conclusion of Lemma 3.11. Hence, this subcase cannot occur.

Subcase 2b (y; moves twice along A) By symmetry and Subcase 2a, it is enough to study the case that
6" = 1. We write y; = ¥ and y} = V3. First observe that, since y; and v/ bound disjoint sets of two
punctures (Lemma 3.3), the A—moves y; — 6 and 6 — 1 cannot be consecutive in A. In other words, at
least one cut curve must move between those moves. We are left with two options (up to symmetry) for
the order of the A—moves along A: (1, v3, y2,60) and (y1, y3, 6, y2). We focus on the second A—move
y3 > 3. It occurs inside a 4-holed sphere depicted in Figure 11, left.

Subcase 2b(i) (both d> and d3 bound one puncture each) We use the notation in Figure 11, center,
and observe that y = y,. Since Y1 — 6 and y3 — V3 are the first two A—-moves in A, we know that the
sets of curves {x, d1, d4} and {6, f1 = h1, f> = ha} agree. Suppose d4 = 0; then y; is forced to bound
{r,s}. In the 4-holed sphere with boundaries d;, y, dn(r) and dn(¢), the conditions y3 N y; = & and
|ys N3] =2 force |y N3] = 2. Lemma 3.7 implies that ¥, bounds two punctures from {g, p, r}. This
is impossible since d1 € {h1, ha} is disjoint from 1. Thus, we conclude that 04 = f> = h».

Suppose now that 9, = f; = h1. Since the A—move y; + 0 occurs inside y», we can reuse Figure 11,
center, and assume that x = y; and 6 = y| bounds {u, v}. After y| — 6, the next A—move has to be
y2 > Yo. Here, ¥, and y; = 6’ will bound {s,u, v} and {s, u}, respectively. Focus on the 4-holed
sphere E corresponding to the A-move 6 — 1. Notice that £ has boundaries corresponding to s, u, v
and ¥,. Since |y2 N 2| = 2, the intersection Y, N E is an arc with both endpoints on 1/ that separates s
from {u, v} (see Figure 15, left). Since 6 Ny, = &, the condition |y; N 6| = 2 forces 1 to intersect y;

in two points.

To end, we study the curve f;. For reference, we use the curves and notation from Figure 15, right. We
now look at the 4-holed sphere E” with boundaries y3, y2, dn(r) and d7(t). Since |1 Ny2| =2, Y1 NE’
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Figure 15: A close-up of some curves in Subcase 2b(i).

is an arc with both endpoints on y, that separates s from r and y3. Thus, the conditions y, N f, = &
and | f; N f2| = 2 imply that ¥ intersects f, in two points. If f; bounds two punctures, we can use
the condition |y; N f;| = 2 to find a tuple (c, ¢’) of shadows satisfying the condition of Lemma 2.13,
contradicting the fact that J is not stabilized.

On the other hand, if f, bounds four punctures, we will also find a tuple (c, ¢’) as in Lemma 2.13. The
rest of this paragraph explains how to do this. First observe that f, will bound y3 and s. Since f{
lies inside y3 and intersects fi in two points, we can assume that f| bounds {g,¢}. Both f] and f;
bound compressing disks in T, so we can find a shadow ¢’ of an arc of T} connecting {p, s} such
that ¢’ is disjoint from f] and f;. Inside the disk component of X\ f; that contains y3, the condition
|1 N f,| =2 implies that ¥ is an arc with both endpoints in f; that separates s from f] and p. We can
slide ¢’ over f{ and f, and assume that |¢’ N ;| = 1. The last condition allows us to pick an arc ¢ in ¥
connecting {s, u} such that dn(c) = 1 and ¢ N ¢/ = dc N dc’ = {s}. Notice that ¢’ is a shadow for arcs
in 7;; and Tjx. Hence, the tuple (c, ¢’) satisfies the conditions of Lemma 2.13. This is a contradiction.

We are left with x = f; = hy and 0 = 0;. Since d4 = f> = hy is fixed along A, A—moves on distinct sides
of 4 commute. Moreover, this setup is equivalent to the previous case (01 = f1 = h1): one can reflect
Figure 11, center, with respect to d4 and the roles of the curves on each side will reverse. Therefore, this
case is impossible.

Subcase 2b(ii) (0, and d3 enclose one and three punctures, respectively) We use the notation of
Figure 11, right. One of the curves {d;, x, d4} is equal to #. Observe that, if p is a curve such that
p > 04 is an A-move immediately before d3 — 3, then p bounds four punctures. In particular, p # y;.
Thus, d4 # 6 and so d4 = f1 = h;. Suppose now that x = 6. We can assume that y; bounds {r, p}. By
Lemma 3.3, the two punctures bounded by ¥; must be distinct than {r, p}. Here, notice that y; = v
is forced to bound {z,u,r} and & = x must move after y,. Moreover, ' has to bound four punctures,
contradicting 6’ = ;. Hence, x = f> = hp and 97 = 6.
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We are left to discard the case d; = 6. Since x is fixed along A and 3 won’t move, we see that two out
of the three punctures {¢, u, r} will be bounded by ;. We can assume that y; bounds {z, s}. By looking
at the 4-holed sphere with boundaries y3, dn(¢), dn(s) and dn(u), we see that the conditions {3 N0 = &,
lys N3] =2 and |6 N y| =2 imply |y; N 3| = 2. Now, inside the disk of ¥ \ ¥3 containing d4 = A1,
one can see that 7 € p; & must intersect y; in two points. Thus, there is a shadow ¢’ for an arc of T with
dn(c’) = h and |¢’Ny1| = 1. By taking ¢ C X with dn(c) = y; and ¢ N ¢’ = dc N dc” = {5}, we obtain
a tuple (c, ¢’) like in Lemma 2.13. Hence, T is a stabilization. This finishes the analysis in Case 2. O

Proposition 3.15 Suppose that both Y, and 1 bound four punctures each. Then any path A(ij) from
pfj to pl.]j must have length at least 5.

Proof By Proposition 3.12, it is enough to show the distance from pl’: ; to pljj is not four. By way of
contradiction, let A be a geodesic path of length four between such pants decompositions. By Lemmas 2.10
and 3.9, each y,—curve must move at least once.

Notice that, if two pants decompositions differ by the A—move y; +— 1, then each boundary loop of the
4-holed sphere corresponding to this A-move must bound two punctures. This is true because the curves
y1 and Y1 bound compressing disks for the same tangle 7;;. In particular, we know that there are at most
five curves bounding an even number of punctures that are involved in A, say {y1, ¥1, h1, f1, fo =ha} or
{y1,¥1,0, f1 = h1, fo = hy}, where 0 is the pivotal curve. Thus, it cannot contain the edge Y, — V1.

Case 1 (A moves one curve of { f1, fo}) Say f> = h» is fixed. Notice that f; bounds two punctures
since y; bounds four. Also, f; and 1 bound compressing disks for the same tangle 7;;, so the two
punctures bounded by f; must be on the same side of ;. Thus, | f; N Y] is divisible by four. This
implies that f| % 1. Similarly, y{ 7 h1. We can then assume that y, > 1 and y; — ¥, are A-moves
along A. Moreover, by Lemmas 3.10 and 3.11, such A-moves must be in either second or third place.
But y1 N1 # &, so y1 — ¥ must be second and y5 +— V¥ third.

We now study the 4-holed sphere where the A—move y; + ¥, occurs. We can assume that the curves
look like in Figure 16, left. In particular, d; = y» and the sets of curves {x, d3, d4} and { f1, h1, fo = ho}
agree. Since the next A—move is Y, > 1, we obtain that ¥; bounds x and d3. From Figure 7, we know
that the reducing curve y; (resp. ¥1) must separate fi and f> (resp. 41 and /5). This implies that x = f7,
83 = fz :hz and 84 =h1.

To end this case, we will analyze the possible shadows of the tangles T;;, T and Tji. Figure 17, left,
contains the labels of the punctures and the new shadows described throughout this paragraph. Notice that
h'; bounds two punctures, say {s, t}. By looking at the 4-holed sphere with boundaries v, s, f and u, we
can conclude that 4} must intersect y1 in two points. In particular, there is a shadow ¢ of an arc in T}
connecting {s, ¢} such that dn(c) = k. Since |1} Ny1| = 2, we see that ¢ intersects y; once. Now focus
on the disk component of X \ y; containing y». Since f1 and y; bound compressing disks for 7;;, there
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Figure 16: Curve arrangements for specific A—moves.

are shadows a1 and a» for arcs of T;; that are disjoint from f; U y; satisfying dn(a1) = f1 and such
that a, connects {r, s}. Notice that f; and & are on opposite sides of y, so a; N ¢ = &. Moreover, we
can think of a; as an arc in a 4-holed sphere with boundaries x = fi, y1, an(s) and dn(r), where a»
and ¢ are arcs connecting {r, s} and {s, y1 }, respectively. We can slide a, over fi and y; and still obtain
a shadow arc for 7;;. Thus, we can slide a5 inside this 4-holed sphere and choose a» to have interior
disjoint from c, ie a N ¢ = da N dc = {s}. To end, we observe that f{ bounds two punctures and is
inside y>. We can assume that f{ bounds {g, r}. Since f| and y; bound compressing disks for 7;z, we
can find shadows by and b, for arcs in T; disjoint from f] and y; satisfying dn(b1) = f{ and that b,
connects {p, s}. Since | f1 N f{| = 2, we can choose b; so that by Nay = by Nda; = {q}. As we did
with a», we can slide b, over fl’ and y1 until b, has interior disjoint from ¢. We can further slide a, and
by and see that a; U by Uay U by can be chosen to be a simple closed curve (ignoring the punctures).
The tuple (¢, B,y) = ({a1, a2}, {b1, b2}, c) satisfies the conditions of Lemma 2.12, concluding that 7 is
a stabilization.

Case 2 (A fixes {f1, f2}) Suppose first that y; = ». From Figure 16, left, we note that, before the
A-move y1 — Y, there are four curves bounding an even number of punctures, say {y1, x, d3, d4}. Since
Y1iNy1 # &, fi =hy and f> = hy, the mentioned A-move is impossible. Thus, y| # V2, ¥3. Similarly,
we see that ¥y # y), y5. We have already established that y| cannot be equal to ¥;. Thus, the only
option is y{ = 6 and 6’ = v. In particular, y; = ¥, and y} = V3.

Figure 17: Shadows.
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We now study how many punctures 6 bounds. First note that 6 cannot bound three punctures. This
holds because, before the A—move y; — 0, there would be three other curves bounding an even number
of punctures (set ¥, = 6 in Figure 16, left). This is impossible since only five curves can bound an
even number of punctures, {y1, V1,6, f1 = hi1, fo = hz}, and ¥ and 6 intersect y;. If 6 bounds two
punctures, the curves in X will look as in Figure 16, center. If § moves immediately after y;, then three
out of the four punctures bounded by y; will be on the same side of ; = 8, contradicting Remark 3.5. If
a cut curve moves before 6, we can assume it is Y, = d3. Since yé bounds a cut disk, it is forced to bound
6 together with one other puncture. This implies that #” = ¥y will bound two punctures, a contradiction.

The only remaining option is if § bounds four punctures. Since only { f1 = hy, f» = ha} are curves
disjoint from y; that bound an even number of punctures, we can draw the curves in X before the A-move
y1 — 0 as in Figure 16, right. Moreover, we can assume x = f; = h; and z = f> = h,. Recall that
f1 = hy and f, = h; lie in different sides of both y; and v; (see Figure 7). Thus, by Remark 3.5,
since y1 bounds ¢, u and f> = h,, we conclude that y; bounds r, s and f> = /. But d; bounds /1
and r which are on distinct sides of ¥1. Thus, 01 & {2, ¥3}. Similarly, d4 ¢ {2, ¥3}. We can then
assume that d; = y, and d4 = y3. Since 0 separates {r, ¢} from {s, u}, we see that y, moves before 6.
Also, y5 = ¥, will bound ¢ and f; = h;. The A—move y, > Y, occurs inside a 4-holed sphere with
boundaries f1 = hy, dn(r), dn(t) and 6. Here, y; is an arc with both endpoints in 6 that separates ¢ from
f1 = hy and dn(r). Thus, since y, N y; = &, the condition |y, N ¥, | = 2 is equivalent to [y, Ny | = 2.
Now, inside y», we can assume that the curve A bounds {p,?}. Again, the condition |y; N | =2
implies that |2} N y{| = 2. In particular, there is a shadow c of an arc in T} connecting {p, ¢} such that
dn(c) = h'j. The condition |h} N y1| = 2 implies that ¢ intersects y; once. Focus on the disk component
of ¥\ y1. Here, the arc ¢ is an arc with endpoints in y; and {¢}. We can repeat the argument in Case 1
and find shadows a; and a for arcs in 7j; and by and b, for arcs in Tj; as in Figure 17, right. One of
the key properties we obtain is that a1 U by Ua, U b, is a simple closed curve (ignoring the punctures)
disjoint from y; that intersects ¢ in the puncture {¢}. Then the tuple (o, 8, y) = ({a1, a2}, {b1, b2}, ¢)
satisfies the conditions of Lemma 2.12, concluding that J is a stabilization. |

Theorem 3.16 Let J be a (4,2)-bridge trisection for a knotted connected surface S in S*. Then

L(T) > 15.

Proof We first observe that J is unstabilized and irreducible. If J is stabilized, then b(S) < 3. By
[Meier and Zupan 2017, Theorem 1.8], S is unknotted, contradicting our assumption. If J is reducible,
then, by [Blair et al. 2022], it is either the distant sum or connected sum of two other trisections. In the
former case, this would imply that F is disconnected, a contradiction. In the latter case, the two other
trisections have bridge numbers by, b, > 2 and by + b, — 1 = 4. Thus, by, b < 3. Again by [Meier and
Zupan 2017, Theorem 1.8], this means both surfaces being trisected are unknotted and so S, being their
connected sum, is also unknotted.
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Let (pfj, pfk) for {i, j,k} ={1,2, 3} be choices of efficient pairs such that

H(T) = d(pla. o) +d(p31. P31) +d(p33. p33).
By Lemma 3.3, the reducing curves of pf : and pljj either
(1) bound two and four punctures each,
(2) both bound two punctures, or
(3) both bound four punctures.

Propositions 3.13, 3.14 and 3.15 state that d(pl‘:j, pljj) > 5 in each case. Hence, £(9) is at least
54+5+5=15. |

Corollary 3.17 Let K # U be a 2-bridge knot in S3. The spun knot (K satisfies
L(S(K)) = 15.

Proof From Theorem 2.5, if J is a minimal (b, ¢1, ¢2, ¢2)-bridge trisection of S(K), then b = 4 and
¢1 = c3 = c3 = 2. By Theorem 3.16, £(9) > 15. O

4 Upper bounds for Y—-invariant of spun knots

The goal of this section is to build an upper bound for £(S(K)) in terms of the bridge splitting for K.
Throughout this section, K will denote a knot in b-bridge position, K = TI;F U Tg, and Tz is the
(3b—2, b)-bridge trisection for the spin of K from Section 2.3.

Example 4.1 ($—invariant of spun trefoil) When K is the trefoil knot, the triplane diagrams from
Section 2.3 give us the links L; = T;; U T;j in Figure 18. In the same figure, we find particular choices for
efficient defining pairs ( pf i pl’.' i) for the link L; which have bounded distance d/( pl’ i p{/.) <5 (Figure 19).
Thus, £(S(K)) < 15. One can observe that such paths resemble a particular path in the 4—punctured
sphere (Figure 19, right). The main idea of this section is to formalize the resemblance and use it to build
a general upper bound in Theorem 4.3.

Recall that a link L = L4 U L_ in bridge position is perturbed if there is a pair of bridge disks (one
on each side) intersecting once in one puncture. This notion is equivalent to the existence of a pair of
compressing disks (one per tangle) with boundaries f4 and f_ such that

(1) each fi bounds two punctures,
(2) f+ and f— bound one common puncture, and
G) [f+n /=2
Observe that, if ¢ is the shadow for the bridge disk in the perturbation, then fi = dncL.
A perturbation system is a finite collection of perturbation pairs {(c”, ¢’} ) },, with pairwise disjoint interiors

such that | J,, (¢’t Uc!) contains no circles in the bridge surface. In other words, it is a collection of
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Tl 2 x T23

Figure 18: Bridge positions and efficient defining pairs for the links L; = T;; U Tik.

perturbations that can be undone at the same time. Figure 20 contains examples of perturbation systems.
As submanifolds of the bridge surface, the loops 817(Un (ch U cﬁ)) bound c—disks for L in both sides. We
will refer to these curves (resp. spheres) in the bridge surface (resp. S3) as sensor curves (resp. spheres)
since they allow us to think of L as a link with lower bridge number.

For the h-bridge links in Figure 20, the perturbation systems will determine two simplicial maps between
pants complexes P(X,p) = P(Zep—_4). The main idea of the upper bound for £(Tmz) is to induce paths
in P (Xgp_4) using information from the splitting of the knot K.

P§3 P31

Figure 19: Three paths of length five between pl’.' ; and pljj
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Sl
C_
{

-

Figure 20: Bridge presentations for the links L 5= T, U Ts.

Fix (e, 8, p) to be a cyclic permutation of the labels (12, 31, 23). Focus on the link L eF = T: U Tg and
the perturbation system in Figure 20. Observe that L_ 5 is in (6b—4)-bridge position. Moreover, if we
shrink the sensor spheres to a point by collapsing the 3’—ball containing the perturbation disks, we obtain
a link isotopic to L 3 in b-bridge position. At the level of the bridge surfaces, this collapsing induces
a continuous map between the punctured spheres g 5 261, 4 — 22p- Given a pants decomposition
p € P(X,p), define sets of curves GjE (p) = _1(p) u U qﬁg 5» Where u - and ¢, 5 are collections
of curves described in Figure 21. By constructlon both GjE (p) are pants decomposmons of Ygp_a.
Furthermore, the functions {G } ©.5) satisfy several propemes described in the following lemma:

Lemma 4.2 Let (&, 68, p) be a cyclic permutation of (12,23,31) and let py and py be any two pants
decompositions of ¥,p. The following holds:

(1) GﬂE 1 P(Xnp) = P(Xep—4a) is a 1—simplicial map; in other words, if A C P(X,p) is a path from
po to p1, then Gi (A) is a path connecting Gi (po) and Gi (p1).

(2) Ifevery loop in po bounds a c—disk in T, then the tuple (GJr (po), G ( Po)) is an efficient pair
for the link T, U Ty.

3
K:®o @ © @ - 0@

127 0 o o [5 5 = @@;@

Hi233
(2330): ® ® A= (Gr(® wo

4 2b—12b-2 53
ry ¢I12 23
/

_7¢ S

$23.31 31\’1 ]31’1

(B31,12): @ @ ®:- 5] o 5] = C@@
5] e [ B C O(CEC ) )

+
H3112

Figure 21: Curves that complete G:ES—; we removed the indices in the right side of the figure.
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(3) Ifevery loop in p1 bounds a compressing disk for Ty, then the distance in P(X¢p—4) between
G*(p1) and G, (p1) is 2(b—1).

Proof Part (1) follows from the definition of Gi In order to prove (2), we first observe that GJr (po)
and G ( po) are pants decompositions with loops bounding c—disks in 7 and Tj, respectlvely The
loops i 1n /L - arlse from perturbation pairs and the ones in ¢, 5 from sensor loops (see Figure 20). Thus,
they bound c—dlsks The extra assumptlon in pg implies that g_1 (po) also bounds c—disks. Next, one
can see from Figure 21 that the loops in ;L - and u 5 can be palred so that they intersect in two points
and are disjoint from the rest. Thus, there i 1s a path i 1n 9’(26g 4) of length 2h — 2. Lemma 2.7 concludes
that (G:S—( Do), Gg,s_(p())) is an efficient pair.

We will now discuss (3). Label the punctures in the bridge sphere for K as in the left side of Figure 21.
In particular, since every loop in p; bonds a compressing disk for 7%, we get that the pairs of punctures
{2n — 1,2n} belong to the same component of ¥,, \ p; forn = 1,...,b. We denote this collection
of loops by B C p;. After an isotopy of the bridge surface for K, which changes the surface by a
homeomorphism fixing the punctures, we can assume that the loops in B look as in Figure 22. Observe
that this isotopy of K does not affect the class of bridge trisection J\z; more precisely, it changes the
triplane diagrams by a mutual braid transposition by a pure braid [Meier and Zupan 2017, Section 2.5].
We can then consider the pants decompositions GJr ( p1) and G ( p1) and see that the loops in g, -1 ( P1)
and g 0 1( p1) agree. We also observe that the loops 1n wt o3 and ,u o5 are the same since their correspondlng
bridge disks agree (see Figure 20). To end, we can perform the length two path of A—moves described by
Figure 22 near each loop in B (b — 1 times), and find a path in P(X¢;_4) replacing the loops ¢ 5 by the

2.3+ @ s B et B (O OJessn:
Il Il

[ [ [
(31,@)—3 B (23,31)~ B (12,2_3)—

Figure 22: If we perform the sequence of A-moves inside each component of B, we obtain paths
of length 2(b — 1) connecting ¢, 5 — ¢, z.
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+ —_
Glz’ﬁ(pl) Glz,ﬁ(pl)

%

Gy, (P1) G 51 (p1)

G3.51(Po)

+ —
G31’ﬁ(p]) G23,ﬁ(p1)

2b—2

Figure 23: Upper bound for £(9).

loops ¢, z. Thus, the distance in (Xgp—4) between GJr (p1) and G z(p1) is at most 2(b — 1). Since
the sets of curves ¢, 5 and ¢, g have no common curve, We conclude that this path is minimal length. O

Motivated by Lemma 4.2, for a trivial N—-tangle 7T, we define P comp(7) and P (T') to be the sets of pants
decompositions p € P (X, ) such that all loops in p bound compressing disks and c—disks, respectively.
The upper bound in the following theorem can be summarized in Figure 23.

Theorem 4.3 Let K = TI? U T be a knot in b—bridge position and let T vz be the (3b—2, b)—bridge
trisection for the spun 2—knot S(K) C S*. Let d > 0 be the distance in P(X,}) between the sets P (TI'(Ir )
and Pcomp(Ty ). Then

L(Tmz) <6(d+b—1).

Proof Let pg € P, (TI‘(" ) and p1 € Peomp(Ty ) be pants decompositions realizing the distance d, and
let A be a geodesic path in P(X,;) connecting them. In particular, pg and p; satisfy the conclusions
of Lemma 4.2 for any cyclic permutation (g, §, p) of (12,23, 31). Now, consider the loop in P(Xgp_4)
described in Figure 23. By Lemma 4.2, this loop satisfies the conditions in the definition of £(Jmz).
Since each G;’Eg(k) is a path of length d, we can conclude the desired inequality. |
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Figure 24: Paths of length three between G;rg( p1) and G;’g( P1)-

Remark 4.4 From Figure 23, we can derive a more general upper bound for £(Tvz) as follows: if
Po, p1 € P(X,p) are pants decompositions with pg € P, (TI;" ), then

£(Twz) < 6d(po. p1) +d(G, 57(p1). G, 55(p1) +d(G 53(p1). G, 5(p1)
+d(G; 3 (p), G;;j (P1)).

The following corollary studies the distance between G;rs—( p1) and G;,E( p1) for families of pants decom-
positions other than Pcomp (7T ). We use Conway’s notation [1970; Kauffman and Lambropoulou 2004;
Mulazzani and Vesnin 2001] to describe 2-bridge links. The curve in the top of Figure 22 (resp. Figure 24)
bounds a compressing disk on both sides of the 2—bridge link with Conway number O (resp. oo). The
distance below can be computed using continued fraction expansions of p/q [Agol 2010]. For details on
continued fraction expansions of rational tangles, see [Hatcher 2022].

Corollary 4.5 Let K C S3 be a 2-bridge knot. If K is the numerator closure of a 2—string trivial tangle
with Conway number p/q, then

L (Tmz) <min{6d(p/q,0)+6,6d(p/q,o0) + 9}.

Proof For 2-bridge knots, the only curve bounding a compressing disk in T (resp. TI;F ) is the loop of
slope O (resp. p/q) in the 4—punctured bridge sphere. Furthermore, there are no cut disks for T; since b
is small. The first inequality, £(Tmz) < 6d(p/q,0) + 6, follows from Theorem 4.3.
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In order to prove the second inequality, we consider p; C P(Z4) corresponding to the curve B C X4 with
slope oo in Figure 24. In the same figure, we observe that the distance between the pants decompositions
ng(pl) and G;E(pl) is bounded by three. By Remark 4.4, we conclude £(S(K)) <6d(p/q,c0)+3-3,
as desired. |
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