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Dynamics of veering triangulations:
infinitesimal components of their flow graphs and applications

IAN AGOL

CHI CHEUK TSANG

We study the strongly connected components of the flow graph associated to a veering triangulation, and
show that the infinitesimal components must be of a certain form, which have to do with subsets of the
triangulation which we call “walls”. We show two applications of this knowledge: first, we fix a proof
in the original paper by the first author which introduced veering triangulations; and second, give an
alternate proof that veering triangulations induce pseudo-Anosov flows without perfect fits, which was
initially proved by Schleimer and Segerman.

57M50; 37D20, 37E30

1 Introduction

Veering triangulations were introduced in [Agol 2011] to study mapping tori of pseudo-Anosov home-
omorphisms. In that setting, these are ideal triangulations of the punctured mapping tori that encode
a folding sequence of train tracks associated to the pseudo-Anosov homeomorphism. In [Agol 2011],
veering triangulations were used to prove a quantitative refinement of a result obtained initially by Farb,
Leininger, and Margalit [Farb et al. 2011], which states that given a bound on the normalized dilatation
of the pseudo-Anosov monodromy, there are only finitely many homeomorphism types of such punctured
mapping tori. However, the proof presented in [Agol 2011] contained a gap: an estimate by Ham and
Song [2007] was applied to a matrix which records how weights on the branches of the train tracks
distribute under the folding moves, but the estimate only applies to irreducible matrices, and there exist
examples for which this fails to be the case.

Meanwhile, since [Agol 2011] appeared, the study of veering triangulations has developed in many
other directions; see for example [Guéritaud 2016; Hodgson et al. 2011; 2016; Landry 2018]. In
particular, Guéritaud [2016] reconstructed the veering triangulations for punctured mapping tori in terms
of the pseudo-Anosov suspension flow. Among other things, this shows that the veering triangulation is
canonically associated to each fibered face of the Thurston unit ball in H2, instead of individual fiberings
in the interior of the face. Generalizing this, the first author and Guéritaud showed that if a 3–manifold
has a pseudo-Anosov flow without perfect fits, then the manifold obtained by drilling out the singular
orbits of the flow admits a veering triangulation (see [Landry et al. 2023]).
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Recently, Schleimer and Segerman proved the converse of this: if a 3–manifold admits a veering
triangulation, then appropriate Dehn fillings of it carry pseudo-Anosov flows without perfect fits. Their
construction involves isotoping the stable and unstable branched surfaces in order to form a dynamic pair
in the sense of Mosher [1996]. The isotopy is in turn constructed by analyzing how the branched surfaces
behave with respect to a canonical decomposition of the 3–manifold into veering solid tori. Details of this
construction will appear in [Schleimer and Segerman � 2024]. We remark that Schleimer and Segerman’s
construction is in fact part of a big program showing that veering triangulations and pseudo-Anosov flows
without perfect fits are in correspondence with each other. In particular, their construction is inverse to
that of Agol and Guéritaud in both directions, in a suitable sense. The first three parts of their program
are [Schleimer and Segerman 2020; 2021; Frankel et al. 2019]. Also see the introduction of [Frankel et al.
2019] for an outline of the whole program.

This paper was born out of an attempt to reprove Schleimer and Segerman’s construction using more
direct means. There is a standard way of constructing pseudo-Anosov flows on a 3–manifold starting
from an embedded graph with desirable properties. See the concept of templates, introduced by Birman
and Williams [1983a; 1983b] (under the name of “knot-holders”), and the concept of dynamic pairs,
introduced by Mosher [1996]. The general strategy is to thicken up the graph using flow boxes, then
collapse along the complement to obtain a flow on the whole 3–manifold. Given a veering triangulation,
there is a natural candidate to apply this strategy to: the flow graph. (See Section 2 for definitions of
objects associated to veering triangulations.) However, the fact that the flow graph might not be strongly
connected presents difficulties in both constructing the flow and analyzing it.

This turns out to be exactly the same issue underlying the gap in [Agol 2011]. In this paper, we explain a
way of addressing this. We show that the problematic infinitesimal components must arise in a certain
form, which have to do with subsets of the veering triangulation which we call “walls”. By throwing out
these components, we obtain the reduced flow graph, which shares many of the same features as the flow
graph.

By analyzing this reduced flow graph, we are able to tackle the proof in [Agol 2011]. The explicit
quantitative bound we get is the following:

Theorem 4.1 If M is the punctured mapping torus of a pseudo-Anosov homeomorphism � WSg;n!Sg;n,
where the normalized dilatation �.�/2g�2C 2

3
n
� P , then M has a veering triangulation with at most

P9� 1

2

�
2 log P9

log.2P�9C 1/
� 1

�
tetrahedra.

Note that the bound we obtain is worse than that stated in [Agol 2011] by an exponent of 2C ", but there
might be room for improvement.

To reprove Schleimer and Segerman’s construction, we apply the general strategy outlined above to the
reduced flow graph: we thicken up the graph by flow boxes, and collapse along its complement, with
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the help of the unstable branched surface. When the filling slopes satisfy a necessary condition, it is not
difficult to see that the resulting flow is pseudo-Anosov. Furthermore, we can leverage the structure of
the unstable branched surface to show that the pseudo-Anosov flow obtained has no perfect fits relative to
the “filled” orbits. The precise result is as below; see Sections 2 and 5 for relevant definitions.

Theorem 5.1 Suppose M admits a veering triangulation. Let l D .li/ denote the collection of ladderpole
curves on each boundary component. Then M.s/ admits a transitive pseudo-Anosov flow � if jhs; lij � 2.

Furthermore , there are closed orbits ci isotopic to the cores of the filling solid tori , such that each ci is
jhsi ; liij–pronged , and � is without perfect fits relative to fcig.

We remark that there are 2 notions of pseudo-Anosov flows common in the 3–manifold topology literature:
topological pseudo-Anosov flows and smooth pseudo-Anosov flows. Theorem 5.1 holds for both notions.

We also remark that, in contrast to the work by Schleimer and Segerman, it is not clear whether our
construction provides a correspondence between veering triangulations and pseudo-Anosov flows. We
pose this as a question more carefully in Section 6.

The results we discuss in this paper run parallel to those in [Landry et al. 2023]. The walls in this paper
are closely related to what are called AB regions in [Landry et al. 2023]. In the setting of [Landry
et al. 2023], one starts with a pseudo-Anosov flow without perfect fits and builds a veering triangulation
transverse to the flow. Then it turns out that the flow graph encodes the orbits of the flow, with AB cycles
governing the extent of over- and under-counting. In this paper we go in the opposite direction, starting
with a veering triangulation and constructing a pseudo-Anosov flow without perfect fits. We end up with
a similar conclusion: the flow graph encodes the orbits of the flow, with infinitesimal cycles of walls
governing the extent of over- and under-counting. We will explain these connections between this paper
and [Landry et al. 2023] where relevant.

Here is an outline of this paper. In Section 2, we review the notion of veering triangulations and related
constructions. In Section 3, we study the infinitesimal components of the flow graph and show that
they must arise from walls. We also show how to define the reduced flow graph by throwing away
these infinitesimal components. In Section 4, we analyze the reduced flow graph of layered veering
triangulations to fix the gap in [Agol 2011] and prove Theorem 4.1. In Section 5, we reprove Schleimer
and Segerman’s result (Theorem 5.1) using the reduced flow graph. Finally in Section 6, we discuss some
questions coming out this paper. We remark that Sections 4 and 5 are independent of each other, and the
reader can jump to either of them after reading Section 3.
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triangulation census. We thank Andreas Giannopolous, Saul Schleimer, and Henry Segerman for making
the data in the census available. We also thank Saul Schleimer and Henry Segerman for sharing with
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Notational conventions Throughout this paper:

� M will be an oriented compact 3–manifold with torus boundary components, while M will be the
interior of such a manifold. We will sometimes conflate a torus end of M with the corresponding
boundary component of M .

� XnnY will denote the metric completion of XnY with respect to the induced path metric from X .
In addition, we will call the components of XnnY the complementary regions of Y in X .

� zX will mean a universal cover of X , unless otherwise stated.

2 Background: veering triangulations

We recall the definition of a veering triangulation.

Definition 2.1 An ideal tetrahedron is a tetrahedron with its 4 vertices removed. The removed vertices
are called the ideal vertices. An ideal triangulation of M is a decomposition of M into ideal tetrahedra
glued along pairs of faces.

A taut structure on an ideal triangulation is a labeling of the dihedral angles by 0 or � , such that

(1) each tetrahedron has exactly two dihedral angles labeled � , and they are opposite to each other;

(2) the angle sum around each edge in the triangulation is 2� .

Intuitively this means that there is a degenerate geometric structure on the triangulation where every
tetrahedron is flat.

A transverse taut structure is a taut structure along with a coorientation on each face, such that for any
edge labeled 0 in a tetrahedron, exactly one of the faces adjacent to it is cooriented out of the tetrahedron.

A transverse taut ideal triangulation is an ideal triangulation with a transverse taut structure.

We will always take the convention that the face coorientations are pointing upwards in our figures and
descriptions.

Definition 2.2 A veering structure on a transverse taut ideal triangulation is a coloring of the edges by
red or blue, so that looking at each flat tetrahedron from above, when we go through the 4 outer edges
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Figure 1: A tetrahedron in a transverse veering triangulation. There are no restrictions on the
colors of the top and bottom edges.

counterclockwise, starting from an endpoint of the inner edge in front, the edges are colored red, blue,
red, blue in that order. We call such a tetrahedron a veering tetrahedron.

A veering triangulation is a transverse taut ideal triangulation with a veering structure.

Figure 1 shows a veering tetrahedron in a veering triangulation.

From now on � will denote a veering triangulation on M .

Remark 2.3 Some authors call the notion we have just defined a transverse veering triangulation, and
call the version of this notion without face coorientations veering triangulations instead. These two
versions do not differ by much, since one can always take a double cover to make the faces coorientable.
However, we will just be studying the version with face coorientations in this paper. Without the face
coorientations, our main object of study, the flow graph (Definition 2.7), cannot be defined.

We recall some combinatorial facts and constructions for veering triangulations.

Definition 2.4 A veering tetrahedron in � is called a toggle tetrahedron if the colors on its top and
bottom edges differ. It is called a red/blue fan tetrahedron if both its top and bottom edges are red/blue
respectively.

Note that some authors call toggle and fan tetrahedra hinge and nonhinge respectively.

Proposition 2.5 [Futer and Guéritaud 2013, Observation 2.6] Every edge e in � has one tetrahedron
above it , one tetrahedron below it , and two stacks of tetrahedra , in between the tetrahedra above and
below, on either of its sides.

Each stack must be nonempty. Suppose e is red (resp. blue). If there is exactly one tetrahedron in one
stack , then that tetrahedron is a red (resp. blue) fan tetrahedron. If there are n > 1 tetrahedron in one
stack , then going from top to bottom in that stack , the tetrahedra are: one toggle tetrahedron , n� 2 blue
(resp. red ) fan tetrahedra , and one toggle tetrahedron.

Algebraic & Geometric Topology, Volume 24 (2024)
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Figure 2: The unstable branched surface meets the faces of a veering tetrahedron in the unstable
train track, which undergoes a folding move as one goes from the top faces to the bottom faces.
The flow graph can be embedded in the unstable branched surface.

Definition 2.6 For each tetrahedron of �, define a branched surface inside it by placing a quadrilateral
with vertices on the top and bottom edges and the two side edges of the same color as the top edge, then
adding a triangular sector for each side edge of the opposite color to the top edge, with a vertex on that
side edge and attached to the quadrilateral along an arc going between the two faces adjacent to that side
edge. We also require that the arcs of attachment for the two triangular sectors intersect only once on the
quadrilateral. See Figure 2, top left. These branched surfaces in each tetrahedron can arranged to match
up across faces, thus glue up to a branched surface in M , which we call the unstable branched surface B.

The intersection of the unstable branched surface with the faces of � is called the unstable train track.
Notice that as one goes from the top faces to the bottom faces of each veering tetrahedron, the unstable
train track undergoes a folding move. See Figure 2, bottom.

The branch locus of B is a union of circles, smoothly carried by the branch locus and intersecting
transversely at double points of the branch locus. We call these circles the components of the branch
locus. Orient the circles so that they intersect the 2–skeleton of the veering triangulation negatively, ie
they disagree with the coorientation of the faces whenever they meet. This orientation has the special
property that at double points of the branch locus, it always points from the side with more sectors to the
side with less sectors.

Note that the unstable branched surface, when considered as a cell complex by taking the 0–cells to be
the double points of its branch locus, the 1–skeleton to be the branch locus, and the 2–cells to be the
sectors, is dual to the veering triangulation. As such, it makes sense for us to talk about, for example, the
sector of B dual to a given edge of �.
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Also, notice that each sector of B is of the form of a diamond. Each sector has two upper edges and at least
two lower edges, at least one on either side; one top vertex, two side vertices, some vertices between the
lower edges on either side, and one bottom vertex. We refer to [Frankel et al. 2019, Section 6.13] for details.

Definition 2.7 Let � be a veering triangulation. The flow graph ˆ is a directed graph with vertex set
V .ˆ/ equals to the set of edges of �, and edge set E.ˆ/ defined by adding 3 edges per tetrahedron,
going from the top edge and the two side edges of opposite color to the top edge, into the bottom edge.

We note that the flow graph was first defined in [Landry et al. 2024]. However the reader is cautioned
that there the flow graph is oriented in the opposite direction compared to here.

The flow graph ˆ can be embedded in the unstable branched surface B in the following way. Place each
vertex of ˆ at the top vertex of the sector dual to the corresponding edge of �, and place the edges of ˆ
exiting that vertex in the interior of the sector, as shown in Figure 2, top right. See also [Landry et al.
2024, Section 4.3]. The flow graph inherits the structure of a (nongeneric) oriented train track from this
embedding, by making the edges meeting a vertex tangent to a vertical line. We will consider the flow
graph to be a subset of B in this way from now on.

The ideal triangulation � on M induces a triangulation @� on the torus boundary components of M ,
by considering them as links of the ideal vertices. The branch locus of the unstable branched surface
inside each tetrahedron opens up towards two opposite ideal vertices; hence each side determines an
oriented interval between two edges of a face in @�. Join these intervals end-to-end. Since each face
in @� contains at most one such interval, the paths must close up to form oriented parallel loops. Also
note that since every edge in � is the top edge of some tetrahedron, each boundary component of M will
receive at least one loop.

Definition 2.8 [Futer and Guéritaud 2013] The homotopy class of the union of these oriented parallel
loops on each boundary component of M is called the ladderpole curve on the boundary component.
The slopes they determine is called the ladderpole slope on the boundary component.

We end this section by analyzing the complementary regions of B in M and the complementary regions
of ˆ in B.

Proposition 2.9 The components of M nnB are (once-punctured cusped polygons)� S1, where each
cusp�S1 represents the ladderpole slope on the corresponding boundary component of M , and the sum
over all cusp circles in each component represents the ladderpole curve on the corresponding boundary
component of M .

Proof Let T be such a component. T is a neighborhood of a torus end of M . Inside each tetrahedron t ,
T \ t is homeomorphic to the product of T \ t \B with Œ0;1/. Hence the product structures glue up
to give a homeomorphism T Š T 2 � Œ0;1/. @T inherits the branch locus of B as cusp circles, with
these representing the ladderpole classes and slopes as described in the statement by definition. An
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Figure 3: The complementary regions of ˆ in B are annuli/Möbius bands with tongues.

identification of @T with T 2 sending these cusp circles to longitudes extend to an identification of T

with (once-punctured cusped n–gon)�S1, where n is the number of cusp circles.

Lemma 2.10 The components of Bnnˆ are annuli or Möbius bands with tongues , ie they can be obtained
by attaching triangular sectors (“tongues” ) along arcs to a smooth annulus or Möbius band and smoothing
all the arcs of attachment in the same direction with respect to the core of the annulus/Möbius band. (This
terminology is borrowed from [Mosher 1996].)

Moreover , the arcs of attachment zigzag along the annulus/Möbius band. More precisely , the arcs on the
annulus/Möbius band lift to y D ˙xC 2i , for i 2 Z, in the universal cover Œ0; 1��R. These arcs are
subintervals of the branch locus of B and are oriented downwards (ie decreasing y in the above model ).
See Figure 3, bottom.

Algebraic & Geometric Topology, Volume 24 (2024)
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Proof The topology of the complementary regions is unchanged if we thicken up ˆ to be a regular
neighborhood of itself in B within each sector. Hence we can take a neighborhood of ˆ in each sector
of B as in Figure 3, top, where the black lines in the figure are where the faces of � meet the sector.

With this adjustment in place, it is straightforward to analyze the portion of each complementary region
within a veering tetrahedron. There are two of these for each tetrahedron, corresponding to the two side
edges of the same color as the top edge. We show the form of these components in Figure 3 middle. In
particular they intersect the faces of the tetrahedron in train track switches.

Components of Bnnˆ can be obtained by gluing these pieces along the train track switches on the top
and bottom, and the result of the gluing must be an annulus or Möbius band with tongues with the arcs of
attachments of the tongues as described.

3 Infinitesimal components of the flow graph

Definition 3.1 A directed graph G is said to be strongly connected if for every ordered pair of vertices
.v; w/ there a directed edge path going from v to w.

The adjacency matrix of G is defined to be the matrix A 2 Hom.RV .G/;RV .G// where each entry Awv

is the number of edges going from v to w. It is easy to see that G being strongly connected is equivalent
to its adjacency matrix A being irreducible, ie for every v and w, the entry .An/wv is positive for some
n> 0.

For reasons explained in the introduction, it would be convenient to have a strongly connected flow graph
associated to a given veering triangulation. However, a brief search through the veering triangulation census
[Giannopolous et al. 2019] gives examples which this property fails, for instance: eLAkbbcdddhwqj_2102
(which is layered) and fLAMcaccdeejsnaxk_20010 (which is nonlayered). See [Giannopolous et al.
2019] for what these codes mean. For completeness, we also note that there are examples which this
property holds: cPcbbbdxm_10 (which is layered), and gLLAQbddeeffennmann_011200 (which is
nonlayered). As we shall see later, further examples can be constructed by taking covers.

Our goal in this section is to analyze how this property can fail and explain how to prune the flow graph
to make a version of this property hold.

3.1 Strongly connected components

We first set up some notation for discussing strong connectivity.

Definition 3.2 Let G be a directed graph, let v and w be vertices of G. Write v &w if there is a directed
edge path going from v to w. Write v � w if v & w and v . w. Note that � is an equivalence relation;
call equivalence classes of � strongly connected components.

Algebraic & Geometric Topology, Volume 24 (2024)
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Construct a directed graph G=� with vertex set equal to the equivalence classes Œv� of �, and an edge
from Œv� to Œw� if v & w and Œv� ¤ Œw�. Call a strongly connected component Œv� of G an infinitesimal
component if Œv� has an incoming edge in G=�.

A subset V of V .G/ is called a minimal set if it has the property that if v 2 V and v & w then w 2 V .

It is easy to see that a finite directed graph is a disjoint union of strongly connected graphs if and only if
it has no infinitesimal components. Similarly, a finite directed graph is strongly connected if and only if it
has no proper minimal sets. In this sense, infinitesimal components, or minimal sets in general, are the
obstruction to strong connectivity. Hence our approach to understanding the failure of strong connectivity
of a given flow graph is to analyze its infinitesimal components and minimal sets.

3.2 Walls

In this section, we introduce the concept of walls of a veering triangulation. These present one way in
which infinitesimal components of flow graphs can arise. What we will show in Section 3.3 is that these
account for all infinitesimal components of flow graphs.

Definition 3.3 Let � be a veering triangulation on a 3–manifold M . Suppose there are tetrahedra ti;j ,
for 1� i � wC 1 and j 2 Z=h, where w � 2, such that for 2� i � w:

(1) The bottom edge of ti;j is the top edge of ti;jC1

(2) If i is odd, the bottom edge of ti;j are side edges of ti�1;j and tiC1;j and no other tetrahedra in �.
If i is even, the bottom edge of ti;j are side edges of ti�1;jC1 and tiC1;jC1 and no other tetrahedra
in �.

Then we call the indexed multiset fti;j g a wall, and call w the width of the wall. We emphasize that in
this definition, ti;j for different i and j may not be different tetrahedra in �.

Notice that for w � 3, it is possible to extract a proper subcollection of fti;j g which will form a wall of
smaller width. A wall will be called maximal if the collection of tetrahedra fti;j g cannot be enlarged
into a wall of larger width. Similarly, one can always replace h with a multiple of h by renaming the
tetrahedra appropriately. In the sequel we will implicitly assume that h is the minimum possible value
that satisfies the definition.

Suppose we have a wall fti;j g of a veering triangulation �. Notice that for 2� i �w, by Proposition 2.5
and Definition 2.7, the bottom edge of ti;j has only one outgoing edge in the flow graph ˆ, namely the
edge going to the bottom edge of ti;jC1. Hence there is a cycle ci in the flow graph passing through the
top/bottom edges of ti;j , for which there are edges entering ci but no edges exiting ci . In other words, ci

is an infinitesimal component of the flow graph for each 2 � i � w. We call these ci the infinitesimal
cycles of the wall.

Meanwhile for each j there is an edge of ˆ going from the bottom edge of t1;j to the bottom edge
of t1;jC1, since the former is either the top edge of t1;jC1 or a side edge of opposite color as the top edge
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of t1;jC1. Let c1 be the cycle formed by these edges. Similarly, there is a cycle cwC1 passing through
the bottom edges of twC1;j . We call c1 and cwC1 the boundary cycles of the wall.

Here is a convenient way to visualize a wall, at least for those with width w � 3. Inside each tetrahedron,
there is a unique quadrilateral carried by the unstable branched surface with boundary lying on the
unstable train track. If w � 3, by applying Proposition 2.5 to the bottom edges of ti;j for 2� i � w, we
can see that the tetrahedra ti;j are all fan tetrahedra, and they are either all blue fan tetrahedra or all red
fan tetrahedra. Hence the quadrilaterals that lie inside them are adjacent to each other in B, and their
union forms a surface carried by B that is the image of an annulus or Möbius band under an immersion.
The quadrilaterals form a tiling of the annulus or Möbius band, with 4 quadrilaterals meeting at each
vertex, resembling a tiled wall. In fact, this is the reason why we have chosen to call the collection of
tetrahedra a wall. In particular, we note that in this case Definition 3.3(1) holds for i D 1; wC 1 as well,
and so the infinitesimal and boundary cycles ci lie within the quadrilateral tiling as vertical loops.

If w D 2, we can try to repeat the above argument, but the picture is not as clean. By the same argument
as above, t1;j and t3;j are fan tetrahedra, but the bottom edge of t1;j may be different from the top edge
of t1;jC1, and similarly for t3;j . As a result, the union of quadrilaterals inside the tetrahedra do not nicely
tile up an annulus or Möbius band, but instead at some vertices some quadrilaterals from the bottom
might “peel away”.

We remark that the quadrilaterals we considered above are among the ones considered in [Hodgson et al.
2011], and this idea of looking at how quadrilaterals tile up also appeared there.

In Figure 4, we present 3 ways of illustrating a wall of width 4 in order to aid the reader’s intuition. The
first picture shows the quadrilateral tiling as mentioned above (Figure 4, top left). The second picture
shows a layered view in terms of a folding sequence of the unstable train track on the faces of tetrahedra in
the wall (Figure 4, right). The third picture shows the portion of the unstable branched surface in a small
neighborhood of the wall (Figure 4, bottom left). The flow graph contains vertical lines as subgraphs in
the picture. These are the infinitesimal and boundary cycles of the wall.

In Figure 5, we also demonstrate the same 3 viewpoints for a wall of width 2, since as pointed out before,
the combinatorics for width 2 walls are slightly more general than that for higher width walls.

We caution the reader that ci for different i may be the same cycle in ˆ. In fact, call a wall twisted if
ti;j D twC2�i;jCh0 for some h0, and call a wall untwisted otherwise. For a twisted wall, ci and cwC2�i

are the same cycle for each i ; for a untwisted wall, ci are distinct cycles. Equivalently, a wall is twisted if
and only if the surface tiled by the quadrilaterals is homeomorphic to a Möbius band.

Another point of caution is that two distinct maximal walls fti;j g and ft 0i;j g can share a tetrahedron, say
ti;j D t 0i0;j 0 . By maximality, this is only possible if i D 1 or wC 1 and i 0 D 1 or w0C 1, where w and w0

are the widths of the walls respectively. In this case, the appropriate boundary cycles of the two walls
touch within the shared tetrahedron. In fact, this behavior can happen within a single wall as well, that is,
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t1;1 t5;1t3;1

t1;2 t5;2t3;2

t2;1 t4;1

Figure 4: Illustrating a wall of width 4 from three viewpoints. Top left: tiling with quadrilaterals.
Right: folding sequence of the unstable train track. Bottom left: unstable branched surface in a
small neighborhood.

a tetrahedron can appear as t1;j or as twC1;j for more than one value of j . However, a tetrahedron can
only appear at most twice in walls, corresponding to the 2 side edges of the same color as the top edge.
In particular a vertex of ˆ can lie in at most 2 boundary cycles.

3.3 Classification of infinitesimal components

We begin our analysis of infinitesimal components of flow graphs. Throughout this subsection, fix a
minimal set V of the flow graph ˆ associated to a veering triangulation �. Recall that vertices of ˆ are
edges of �, so it makes sense to say whether e is in V for an edge e of �.

Each branch of the unstable train track � in a face of � is dual to some edge of that face. Let � 0 be the
union of those branches dual to edges of � that lie in V . Up to rotation, there are 5 configurations for the
portion of � 0 lying on a face of �. We show and name these 5 types of faces in Figure 6.

We also consider the configurations for the portion of � 0 lying on the boundary of a tetrahedron. Since V

is minimal, and since the flow graph ˆ contains the cycles formed by edges going from the top edge to
the bottom edge of each tetrahedron, the top edge of a tetrahedron lies in V if and only if the bottom
edge lies in V . Again by minimality, if a side edge of opposite color to the top edge is in V , then the
bottom edge is in V , hence the top edge will be in V as reasoned above. From these restrictions, we can
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t1;1 t3;1

t1;2 t3;2

t2;1

t2;2

Figure 5: Illustrating a wall of width 2 from the same three viewpoints as Figure 4.

enumerate 13 configurations for the portion of � 0 on the boundary of a tetrahedron, up to rotation and
reflection. We show and name these 13 types of tetrahedra in Figure 7.

Lemma 3.4 Tetrahedra of type (VI)–(X) will not appear.

Proof We use a double-counting argument,X
# type (c) upper faces� # type (c) lower facesD 0;

where the sum is over all tetrahedra of �, since each face belongs to the upper face of exactly one
tetrahedron and the lower face of exactly one tetrahedron. By inspection of Figure 7, the number of
type (c) upper faces is always greater or equal to the number of type (c) lower faces for each tetrahedron;
for type (VI), (VIII), (IX) and (X) tetrahedra, strict inequality holds, so these in fact cannot occur.

A similar argument using type (i) faces eliminates the possibility of type (VII) tetrahedra (now that
type (VIII) tetrahedra are eliminated).

We now analyze what happens if we have a type (i) face. Let f be such a face, and e be the unique edge
of f that lies in V .
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(i)solated

(b)lank

(e)dge

(c)usp

(f)ull

Figure 6: The 5 possible types of faces, labeled by letters (b), (i), (e), (c) and (f).

The edge e is the top edge of one tetrahedron, the bottom edge of one tetrahedron, and the side edges of
two stacks of tetrahedra, one stack on each side of e. The face f determines a side of e, and we claim
that the stack of tetrahedra on that side consists of one tetrahedron only.

Suppose otherwise. Then the top edge of the tetrahedron on the bottom of the stack is of opposite color
to e (by Proposition 2.5). Looking at Figure 7, we claim that this tetrahedron must be of type (XI) or (XII).
This is because these are the only types of tetrahedron with a side edge in V that is of opposite color to
the top edge. As a consequence, the face of this tetrahedron which meet e must be of type (f). But again
by looking at Figure 7, the face f being of type (i) forces the face below it and sharing the edge e to be
of type (i) too (and the tetrahedron between them being of type (I) or (II)). In fact, the same is true for the
face above f and sharing the edge e. Hence inducting upwards and downwards, the faces on the side
of f that are adjacent to e must all be of type (i). This gives us a contradiction at the bottom of the stack
of tetrahedra.

The tetrahedra on the top and bottom of e have to be of type (III) or (IV). In fact, they are either both of
type (III) or both of type (IV), since by the reasoning above, a type (i) face on a side of e forces all of the
faces in that stack with edge e to be of type (i).

If the tetrahedra on the top and bottom of e are of type (III), the stack on the side of e opposite to f also
consists of one tetrahedron only by the reasoning two paragraphs above. In particular, e has degree 4 in
this case. Note that there is still the freedom of the side tetrahedra being of type (I) or (II).

At this point, we recall the quadrilaterals that we considered in Section 3.2. By looking at the surface
formed by the union of the quadrilaterals in the tetrahedra we have considered so far, this gives us a good
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(0)

(I)

(II)

(III)

(IV)

(V)

(VI)

(VII)

(VIII)

(IX)

(X)

(XI)

(XII)

Figure 7: The 13 possible types of tetrahedra, labeled by Roman numerals (0)–(XII). We drew
the tetrahedra by their top faces followed by their bottom faces. The tetrahedron of type (VI)–(X)
inside the box are eliminated by Lemma 3.4.
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III

III

I/II I/II

IV

IV

I/II IV

I/II

I/II

IV

IV

I/II V

e

f
e

e0

e

Figure 8: The types of the tetrahedra around e split into three cases. The Roman numeral inside a
quadrilateral is the type of the tetrahedron the quadrilateral belongs to.

way of keeping track of our argument. For example, in the situation of the paragraph above, we have 4

tetrahedra that share an edge e; hence we have 4 quadrilaterals sharing a vertex at e. See Figure 8, left.

Now, our analysis can be extended in the vertical direction. The top edge of the tetrahedron above e is
adjacent to a type (i) face. So we can repeat our arguments on there. This gives a group of 4 tetrahedra
centered around that edge. In terms of the quadrilaterals, we are extending the tiling vertically. See
Figure 9, left. A caveat of this picture, however, is that the top and bottom vertices of the quadrilaterals
representing type (I) and (II) tetrahedra may not match up, since they might be representing different
edges of the adjacent type (III) tetrahedron. See, for example, the situation of t1;1 and t1;2 in Figure 5.
We denote this by making the quadrilaterals peel away slightly when the vertices do not match up. Since
there are only finitely many tetrahedra, the vertical extension must loop back on itself eventually, giving
us a width 2 wall whose infinitesimal cycle lies in V .

We still need to tackle the case when the tetrahedra on the top and bottom of e are of type (IV). We claim
that the stack on the side of e opposite to f also consists of one tetrahedron only. Suppose otherwise;
then arguing as before, the tetrahedron on the bottom of the stack is of type (XI) or (XII) and its faces that
meet e are of type (f). But we know that the face at the bottom of the stack that meets e is of type (e), so
this is not the case.

Looking at Figure 7, this single tetrahedron must be of type (IV) or (V), since these are the only types of
tetrahedra that have a side edge in V meeting two type (e) faces. If the side tetrahedron is of type (IV),
it has two type (i) faces, and the tetrahedra sharing those type (i) faces must be of type (I) or (II). In
particular, we get a cluster of 6 tetrahedra. The corresponding 6 quadrilateral tile up a region as shown in
Figure 8, center.

Now repeat the argument vertically as in the last case. We obtain a width 3 wall eventually, for which the
infinitesimal cycles lie in V .

Finally, we tackle the case where e has type (IV) tetrahedra above and below and a type (V) tetrahedron
on the side opposite to f . See Figure 8, right. Let e0 be the top edge of this type (V) tetrahedron. By
repeating our arguments up to this point vertically, we know that the tetrahedron on top of e0 is of type (IV)
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III

III

I/II

I/II

I/II

I/II

I/II

I/II

IV

IV

I/II

I/II

I/II

V

V

V

IV

IV

V

V

V

I/II

I/II

I/II

Figure 9: The patterns of quadrilaterals that can occur in our proof. Left: a width 2 wall. Right: a
width � 3 wall.

or (V). It is not of type (IV). Otherwise e0 has a side where all the faces are of type (i), contradicting
the fact that the type (V) tetrahedron below it has only type (e) faces. So the sides of e0 have type (e)
faces on the top and bottom of their stacks of tetrahedra. We have argued that this implies the stacks of
tetrahedra on the sides of e0 have one tetrahedron each, and that these side tetrahedra are of type (IV)
or (V). The same argument also applies to the bottom edge of the original type (V) tetrahedron. In terms
of our picture with quadrilaterals, this extends the tiling horizontally.

Now continue the analysis inductively, both horizontally and vertically. Again, the vertical extension
must loop back on itself at some point. This implies that the horizontal extension has to stop at some
point, otherwise it will loop back on itself and we will get a Klein bottle or a torus tiled by quadrilaterals
from type (V) tetrahedra, which contradicts � having a strict angle structure (see [Hodgson et al. 2011,
Theorem 1.5 and Corollary 3.11]). The horizontal extension stops by hitting a column of type (IV)
tetrahedra, after which the tiling is “capped off” by type (I) or (II) tetrahedra. See Figure 9, right. Hence
in every case, we get a wall with infinitesimal cycles contained in V .

We claim that if V is a proper subset of V .ˆ/, it consists solely of these infinitesimal cycles of walls.
Suppose otherwise. Since these infinitesimal cycles have no incoming edges from vertices in V , we can
remove all of them from V and we would still have a nonempty minimal set. Rename V as this new
minimal set, and reclassify the faces and tetrahedra of � according to Figures 6 and 7 with respect to this
new minimal set.

After this reclassification, there are no type (i) faces anymore, since those must be contained in walls by
our analysis above, and we have eliminated all strongly connected components of V within walls. In
particular, we can only have tetrahedra of type (0), (V), (XI) and (XII).

Suppose we have a type (e) face f . Let e be the unique edge of f not lying in V . Consider the stack of
tetrahedra on the side of e determined by f . Looking at Figure 7, with the limited types of tetrahedra
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we can have, as we move downwards the stack starting from f , we can only get to faces of type (e). So
the stack must end on a type (e) face, but then the tetrahedron directly below this face, which is also
the tetrahedron below e, cannot be any of the types in Figure 7, since none of those have a type (e) top
face and have a top edge that does not lie in V . This contradiction shows that there are no type (e) faces
anymore.

And so the only types of tetrahedra we can have are type (0) and (XII). In this case, it is clear that a
tetrahedron sharing a face with a type (0) or a type (XII) tetrahedron must be of type (0) or type (XII)
itself, respectively. Because M is connected, V is either empty or the entirety of V .ˆ/. This proves the
claim and concludes our analysis of minimal sets of ˆ, which we summarize as:

Theorem 3.5 For a given veering triangulation �, the infinitesimal components of its flow graph ˆ are
exactly the infinitesimal cycles of walls. Furthermore , ˆ=� is a rooted height 1 tree , ie it has a unique
vertex v0 such that there is a directed edge from v0 to every other vertex.

Proof We showed that any proper minimal set of ˆ is a disjoint union of infinitesimal cycles of walls.
This implies that every proper minimal set of ˆ=� is a disjoint union of vertices. Furthermore, each
infinitesimal cycle of a wall has incoming edges; hence each vertex of ˆ=� which is an infinitesimal
component has an incoming edge. This is enough to imply the second statement of the theorem.

We use this theorem to justify our statement earlier that for a finite cover z� of a veering triangulation �,
z� has a strongly connected flow graph if and only if � has a strongly connected flow graph. The flow
graph of z� is a covering of that of �, and so the forward implication is easy. For the converse, if the flow
graph of z� is not strongly connected, it contains infinitesimal cycles of a wall. Such a wall projects down
to a wall of � by Definition 3.3, thus � contains infinitesimal cycles as well.

Remark 3.6 With this theorem, we can also discuss how walls are related to the material in [Landry
et al. 2023].

We first recall some terminology from [Landry et al. 2023]. The dual graph to a veering triangulation �
is defined to be the 1–skeleton, ie the branch locus, of the unstable branched surface B, with the edges
oriented by the coorientations on �.2/. An AB cycle is then defined to be a loop carried by the dual
graph which only makes antibranching turns, ie does not follow components of the branch locus at each
vertex of B. The lift of an AB cycle to the universal cover zM determines a properly embedded plane
carried by zB, by taking the union over all sectors lying below the lifted AB cycle. Such a plane is called
a dynamic plane. The total number of lifted AB cycles in a dynamic plane is defined to be the width of
the dynamic plane. If there are 2 or more such lifted AB cycles, the region bounded in between them is
called an AB region. For more details, we refer the reader to [Landry et al. 2023, Sections 2.2 and 3.1].

Now one can count that there are
˙

1
2
w
�

or w adjacent AB cycles within a wall of width w, depending on
whether the wall is twisted or not. These lift to w lifted AB cycles in a dynamic plane, which bound AB
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regions in between. Conversely, if in the universal cover zB carries a dynamic plane containing an AB
region, then the portion of the flow graph within the AB region carries a line which only has incoming
edges, hence quotients to an infinitesimal cycle of a wall.

3.4 Reduced flow graph

Given Theorem 3.5, a way of arranging for strong connectivity is to simply throw away all the infinitesimal
cycles.

Definition 3.7 The reduced flow graph ˆred of a veering triangulation is the flow graph with all infinites-
imal cycles in walls and the edges that enter the cycles removed.

Thus by Theorem 3.5, ˆred is strongly connected. Because of the simple nature of infinitesimal cycles,
ˆred inherits some of the properties of ˆ. We end this section with two examples of this, which will be
useful in Section 5.

Lemma 3.8 For every cycle c of ˆ, c or c2 is homotopic to a cycle of ˆred in M .

Proof The cycles of ˆ are those of ˆred and the infinitesimal cycles of walls in ˆ. Each infinitesimal
cycle of a wall is homotopic (isotopic, even) to a boundary cycle in M , unless the wall has even width
and is twisted, in which case one has to double the infinitesimal cycle cw=2 before it is homotopic to a
boundary cycle in M .

Lemma 3.9 The components of Bnnˆred are annulus or Möbius bands with tongues.

Moreover , the arcs of attachment of the triangular sectors crisscross along the annulus/Möbius band.
More precisely , the arcs on the annulus/Möbius band lift to y D˙xC 2i=w for i 2 Z in the universal
cover Œ0; 1��R, for some w � 1. These arcs are subintervals of the branch locus of B and are oriented
downwards (ie decreasing y in the above model ). See Figure 10.

Proof By Lemma 2.10, it suffices to look at the components that contain infinitesimal cycles of some
wall. These components are obtained by gluing components of Bnnˆ along the infinitesimal cycles and
the edges that enter them.

To describe these gluings more precisely, let us introduce some terminology. For a component J of Bnnˆ,
we call the vertex of a tongue not lying on the annulus/Möbius band the tip of the tongue. If one cuts
open @J along all the tips, the resulting set has a natural structure as an oriented train track, where the
orientation is induced from that of ˆ. Under this structure, each component of this set will be a cycle
with some entering edges. We call each such component a crown.

To obtain a component of Bnnˆred containing infinitesimal cycles, certain components of Bnnˆ are glued
together by identifying crowns in their boundaries. Under such a gluing, the union of annuli/Möbius
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Figure 10: The complementary regions of ˆred in B are annuli/Möbius bands with tongues. The
attaching arcs form a crisscross pattern on the annulus/Möbius band. Here we show the situation
in the neighborhood of the width 4 wall from Figure 4 (top) and the width 2 wall from Figure 5
(bottom).

bands is an annulus/Möbius band, while collections of tongues that share a tip are glued together to form
individual tongues, showing that such a component of Bnnˆred is an annulus/Möbius band with tongues
as well.

The crisscross pattern of the arcs of attachment follows from the zigzag pattern for components of Bnnˆ

and from the description of the gluing.

We remark that this argument actually shows that all the infinitesimal cycles contained in a component of
Bnnˆred belong to a single wall. In this case, w in the statement of the lemma is the width of the wall.

Remark 3.10 We remark that if w � 3 for a component of Bnnˆred as in the lemma, the tongues
attached along the y D xC 2i=.N C 1/ arcs must all lie on one side and the tongues attached along the
y D�xC 2i=.N C 1/ arcs must all lie on the opposite side, in the universal cover. In contrast, the sides
of attachment do not have fixed patterns for w D 1; 2.
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4 Finiteness of layered veering triangulations

In this section, we fix the gap in the proof of [Agol 2011, Theorem 6.2]. For completeness, we explain the
setup of the original theorem then proceed to show a way of fixing its proof, albeit with a weaker bound.

We first have to explain layered veering triangulations.

Let � W Sg;n! Sg;n be a pseudo-Anosov homeomorphism on a finite type surface with

�.Sg;n/D 2� 2g� n< 0:

Sı will denote the surface obtained by removing the singularities of the stable and unstable foliations
for �, and �ı will denote the restriction of � to Sı. Write T .�ı/ for the mapping torus of �ı.

In [Agol 2011], it is shown that there exists a periodic folding sequence of train tracks �0 � � � �N ,
ie train tracks such that �iC1 is obtained from �i using a folding move and �.�N / D �0, on Sı. The
sequence of ideal triangulations ıi of Sı dual to �i are then related to one another by diagonal switches
in quadrilaterals, and �ı sends ıN to ı0.

A veering triangulation can be constructed in the following way: Start with ı0 on Sı and attach a flat
tetrahedron to the bottom that effects the diagonal switch from ı0 to ı1. The bottom boundary of the
complex can be identified with .Sı; ı1/. We inductively add tetrahedra to the bottom, until the bottom
boundary of the complex can be identified with .Sı; ıN /. Finally, we glue this bottom boundary to the top
boundary to get a triangulation � of T .�ı/, using the fact that �ı sends ıN to ı0. We color an edge of ıi
that is dual to a small branch according to the direction of smoothing at the endpoints, using Figure 11.
It can be checked that this determines a well-defined edge coloring of � which makes it into a veering
triangulation.

We construct a directed graph according to this description. Start with a set of e vertices given by the
set of edges in ı0. Notice that ı1 and ı0 differ by one edge exactly, say ı1ne1 D ı0ne0. Add a vertex
corresponding to e1, and add three edges going from the three elements of E.ı0/ dual to the three branches
of �0 which fold onto the branch of �1 dual to e1. One of these edges goes from e0 to e1, call this edge
vertical, and call the other two edges slanted. Inductively, for each i , add a vertex that corresponds to

Figure 11: Defining colors of edges of ıi that are dual to small branches. This determines a
well-defined edge coloring of � which makes it into a veering triangulation.
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E.ı0/

E.ı1/

E.ı2/

E.ı3/

Figure 12: The cut open flow graph for a layered veering triangulation. There is a natural
identification between adjacent layers E.ıi/ and E.ıiC1/, which is represented in the figure by
moving one element directly downwards. This divides the cut open flow graph into columns. The
cut open reduced flow graph for the veering cellulation can be obtained by deleting some columns.

the new edge in ıi and add three edges according to the folding move �i �iC1, one vertical and two
slanted. Call the resulting directed graph the cut open flow graph ˆnnS . See Figure 12, where we draw
vertical and slanted edges as vertical and slanted respectively.

The flow graph of � can be obtained from ˆnnS by identifying the vertices at the bottom corresponding
to E.ıN / to those at the top for E.ı0/ according to how �ı sends ıN to ı0.

Now define another directed graph G by setting the set of vertices to be the set of edges in ı0, and placing
an edge from i to j for every directed edge path in the cut open flow graph ˆnnS which starts at i and
ends at .�ı/�1.j /. Let A be the adjacency matrix of G (which we defined in Definition 3.1).

We note that A can also be defined as the transition matrix describing how weights on the branches of �0

distribute under the sequence of folding moves �0 � � � �N and the return map �ı.

Meanwhile, let �D �.�/ > 1 be the dilatation of �. The train tracks �i in fact carry the unstable measured
lamination of �, hence the transverse measure on the leaves of the foliation collapse down to weights on
the branches of �0. These in turn define an eigenvector .wi/ of A with eigenvalue �.

The assertion of [Agol 2011, Theorem 6.2] is that if �2g�2C 2
3

n
�P , then the veering triangulation � has

at most 1
2
.P9� 1/ tetrahedra.

We recall the proof presented in [Agol 2011], but phrased in the language here. We first claim that G has
at least 2N C e edges. This is because for every slanted edge in ˆnnS , we can take an edge path from
E.ı0/ to E.ıN / by concatenating paths of vertical edges to the back and front of the slanted edge. Also,
for every vertex i in E.ı0/, there is an edge path from i to E.ıN / that consists entirely of vertical edges.
Since there are 2N slanted edges and e vertices in E.ı0/, we find 2N C e edges in G.

Also notice that by an index calculation, we have e � 9
�
2g� 2C 2

3
n
�
. See [Agol 2011, Lemma 6.1] for

details of this.
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Now assume for the moment that G is strongly connected. Then [Agol 2011] proceeds by using an
estimate of Ham and Song [2007]. We repeat Ham and Song’s argument here since it is a good warm-up
for the proof which we will present later. Fix a vertex i of G and fix a spanning tree T of G rooted at i ,
ie T is a subgraph of G which is a tree, and for every vertex j of G there is an edge path from j to i

within T . Then there are at least 2N C 1 edges in GnT , and for every edge d in GnT , we can find a
path in G ending at i and of length e by prepending to the path traveling across d then to i within T an
arbitrary path at the front. These paths will be distinct; hence using the fact that .wi/ is an eigenvector of
Ae of eigenvalue �e, and summing over the paths, we have �ewi �†wj � .2N C 1/minj wj . Taking
the minimum over the left hand side, �e minwi � .2N C 1/minwj ; hence N � 1

2
.�e � 1/� 1

2
.P9� 1/.

The problem with this argument however, is that G is not always strongly connected.

In fact, G is strongly connected if and only if the flow graph ˆ is strongly connected. For if ˆ is strongly
connected, then for every pair of vertices .i; j / in E.ı0/, their images can be connected by an edge path
˛ in ˆ. The preimage of such an edge path under ˆnnS ! ˆ is a collection of paths ˛1; : : : ; ˛s , for
which the ending point of ˛i , which lies in E.ıN /, is sent by � to the starting point of ˛iC1, which lies
in E.ı0/. Hence the ˛i define an edge path ˛0 in G connecting i to j .

Conversely, if ˆ is not strongly connected, then we can find a infinitesimal cycle c of a wall. As above, c

lifts to a collection of paths c1; : : : ; cs in ˆnnS and determines a cycle c0 in G. In fact, ci will consist
entirely of vertical edges by the definition of the infinitesimal cycles of a wall. The vertices of G that lie
in c0 are exactly those elements of E.ı0/ that have image in c. Moreover, c0 has no outgoing edges in G0,
for otherwise there is an outgoing path of c in ˆ.

This motivates us to consider instead the full subgraph of G obtained by restricting to the set of vertices
that have image in the reduced flow graph ˆred in ˆ. We call this subgraph Gred. By the argument above,
Gred can also be obtained by removing c0 for all infinitesimal cycles c of ˆ.

We also set the cut open reduced flow graph, ˆrednnS , to be the preimage of ˆred � ˆ in ˆnnS . Let
Ered.ıi/ be the subset of E.ıi/�ˆnnS that lie in ˆrednnS . Gred can be obtained by gluing Ered.ıN / at
the bottom of ˆrednnS to Ered.ı0/ at the top. Hence arguing as above, we can see that Gred is strongly
connected.

The strategy now is to apply Ham and Song’s argument on Gred to bound the number of vertices in ˆred,
then bound the number of vertices in ˆnˆred.

We first set up some notation. Let N 0 be the number of vertices in ˆred. Let e0 be the number of elements
in Ered.ı0/.

We claim that Gred has at least 2N 0C e0 edges. This follows from the same argument as for G: we can
find an edge path in ˆrednnS from Ered.ı0/ to Ered.ıN / for every slanted edge in ˆrednnS and for every
vertex in Ered.ı0/.
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Meanwhile, recall that GnGred is the union of c0 for the infinitesimal cycles c of ˆ, where each c0 has no
outgoing edges. Hence the adjacency matrix Ared of Gred is a submatrix of A where all other entries in
the same row are zeros. As a consequence, .wi/i2Gred is an eigenvector of Ared with eigenvalue �.

Hence repeating Ham and Song’s argument, we have N 0 � 1
2
.�e0 � 1/.

Now suppose we have a width w wall. For simplicity, first suppose that the wall is untwisted. Then there
are w� 1 infinitesimal cycles and 2 boundary cycles of the wall, all of the same length h. The .w� 1/h

vertices in the infinitesimal cycles are discarded in ˆred, but the 2h vertices in the boundary cycles remain.
Similarly, if the wall is twisted, there are .w� 1/h vertices discarded while 2h vertices remain, for an
appropriate h. In other words, if we let W be the maximum width of a wall in the veering triangulation �,
then for every vertex in a boundary cycle, there are at most 1

2
.W � 1/ vertices in the infinitesimal cycles,

which we discard when passing to ˆred.

Meanwhile, as discussed in Section 3.2, each vertex of ˆ can appear at most twice in the collection of all
boundary cycles. Hence we conclude that the number of discarded vertices N �N 0 is at most N 0.W �1/,
or N �N 0W . Thus it remains to bound W .

To that end, let c2; : : : ; cW be the infinitesimal cycles in a width W wall, and let c1 and cWC1 be the
boundary cycles of the wall. Again, for simplicity, first suppose that the wall is untwisted. Then there are
corresponding disjoint cycles c0

1
; : : : ; c0

WC1
in G. The length of each cycle c0i is given by the number of

paths in the lift of ci in the cut open flow graph. But this number is also equal to the intersection number
of ci with Sı in T .�ı/. Since the ci are parallel to each other, this number is of the same value L for
each i D 1; : : : ;W C 1 and hence at most e=.W C 1/ by the pigeonhole principle. Similarly, if the wall
is twisted, the infinitesimal and boundary cycles determine cycles in G of lengths at most 2e=.W C 1/.

Now pick a vertex of ˆred that lies in c1. One of its preimages in ˆrednnS has three incoming edges. The
cycle c1 passes through one of these edges, and for each of the remaining two, we can construct a path
from Ered.ı0/ to Ered.ıN / by concatenating vertical edges to the back and front of the edge. These two
paths determine two edges that enter c0

1
at a vertex i in Gred. Since Gred is strongly connected, we can

locate two edge paths in Gred of length L that end at the two edges respectively. Suppose these two paths
start at vertices j and k. Then using the fact that .wi/ is an eigenvector of AL

red with eigenvalue �L, we
have �Lwi � wi Cwj Cwk , which implies

wi �
2

�L�1
min

j
wj :

But for every two vertices i and j in Gred, by strong connectivity, there is an edge path of length � e0

from i to j ; hence wi � �
�e0wj . So maxj wj=mini wi � �

e0 . Applying this to the above inequality,

�e0
�

2

�L�1
; �L

� 2��e0
C 1:

Hence,
2e

W C 1
�L�

log.2��e0 C 1/

log�
; W �

2 log�e

log.2��e0 C 1/
� 1:
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Putting everything together,

N �
�e0 � 1

2

�
2 log�e

log.2��e0 C 1/
� 1

�
�
�e � 1

2

�
2 log�e

log.2��eC 1/
� 1

�
�

P9� 1

2

�
2 log P9

log.2P�9C 1/
� 1

�
:

We record this as a theorem.

Theorem 4.1 If M is the punctured mapping torus of a pseudo-Anosov homeomorphism � WSg;n!Sg;n,
where the normalized dilatation �.�/2g�2C 2

3
n
� P , then M has a veering triangulation with at most

P9� 1

2

�
2 log P9

log.2P�9C 1/
� 1

�
tetrahedra.

Remark 4.2 Note that
P9� 1

2

�
2 log P9

log.2P�9C 1/
� 1

�
is asymptotically 9

2
P18 log P as P !1, so we have worsened the exponent on the bound in [Agol 2011,

Theorem 6.2] by a factor of 2C ".

We remark that the original bound of 1
2
.P9� 1/ still holds for veering triangulations that have strongly

connected flow graph. However, it is not clear if this is the case for “most” � or if there is a way to tell if
this is the case just from �.

It also seems likely that there is room for improvement for our bound in the general case. For example, it
should be possible to obtain better bounds on W by finding more paths that enter c0

1
, which should be

easy when L is large. When W or L is large, it should also be possible to bound e0 more effectively than
just using e, which is what we have done here. See Section 6 for another discussion on how one might
improve the bound.

5 Pseudo-Anosov flows

In this section we will reprove Schleimer and Segerman’s result that a veering triangulation induces a
pseudo-Anosov flow without perfect fits on suitable Dehn fillings. We use the following notation to
simplify the statement. If s D .si/ is a collection of slopes on each boundary component of M , we write
M.s/ to mean the closed 3–manifold obtained by Dehn filling M along the slopes recorded by s. If
aD .ai/ and b D .bi/ are collections of slopes on each boundary component of M , then by jha; bij � n

we mean that the geometric intersection numbers between ai and bi on each boundary component is at
least n.

Theorem 5.1 Suppose M admits a veering triangulation. Let l D .li/ denote the collection of ladderpole
curves on each boundary component. Then M.s/ admits a transitive pseudo-Anosov flow � if jhs; lij � 2.

Furthermore , there are closed orbits ci isotopic to the cores of the filling solid tori , such that each ci is
jhsi ; liij–pronged , and � is without perfect fits relative to fcig.
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We will recall the definitions of pseudo-Anosov flows, transitivity, and no perfect fits in Section 5.4.

A subtle point of the theorem is that there are actually two common notions of pseudo-Anosov flows on
3–manifolds in the literature, which we differentiate by calling them topological pseudo-Anosov flows
and smooth pseudo-Anosov flows. Theorem 5.1 holds for both notions, due to Theorem 5.11. We will
explain this technicality more in Sections 5.4 and 5.5.

The proof can be outlined as follows. We first thicken up the reduced flow graph ˆred in M to N.ˆred/

by replacing its edges with flow boxes. This set can be considered as a subset of a neighborhood of the
unstable branched surface, N.B/, naturally. By understanding the complement of ˆred in B, we are able
to glue faces of N.ˆred/ across its complementary regions in N.B/. Similarly, by understanding the
complement of B in M , we are able to glue faces of N.B/ across its complementary regions in M.s/.
These gluings preserve the (singular) 1–dimensional foliation on the flow boxes, hence that descends
down to an (honest) 1–dimensional foliation on M.s/, which can be parametrized into a topological flow,
for which we show is pseudo-Anosov, transitive, and without perfect fits (relative to the orbits fcig).

Remark 5.2 It is not too difficult to show that a veering triangulation induces a (topological) pseudo-
Anosov flow on M.s/ for jhs; lij � 2, using the tool of dynamic pairs developed by Mosher [1996].
Specifically, one can apply the proof of [Mosher 1996, Proposition 2.6.2] to .B; ˆ/ to produce a dynamic
pair in M.s/, which by [Mosher 1996, Theorem 3.4.1] gives rise to a pseudo-Anosov flow. The more
challenging part however, at least from this approach, is to show that such a pseudo-Anosov flow is
transitive and has no perfect fits.

In our proof, we use a lot of the same ideas as [Mosher 1996], but most notably we skip over constructing
the “stable branched surface” in a dynamic pair, and instead construct a pseudo-Anosov flow directly
from the “unstable branched surface” B and the “dynamic train track” ˆred, to use the terminology from
[Mosher 1996]. This allows us to analyze the pseudo-Anosov flow using the special properties of ˆred

and B, proving transitivity and no perfect fits.

5.1 Thickening up ˆred

We know that ˆred is strongly connected by construction. This is equivalent to its adjacency matrix
A 2 Hom.RV .ˆred/;RV .ˆred// being irreducible. As such, by the Perron–Frobenius theorem, A has a
positive eigenvector .wv/ with eigenvalue �� 1. We know that � > 1 since each vertex of ˆred has three
incoming edges. Meanwhile, A being irreducible implies AT is irreducible as well, and so the latter has
a positive eigenvector .w0v/ with the same eigenvalue � > 1.

We remark in passing that each vertex of ˆred having 3 incoming edges in fact implies that �D 3 and
wv D 1 for all v. This knowledge, however, will play no role in the construction at all. We simply wish
to point out that the value of � has nothing to do with the dilatation factor of the monodromy when � is
layered.
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t

u

s

Figure 13: A flow box.

Recall that ˆred naturally sits on B inside M . We will thicken up ˆred by replacing each edge e of ˆred

going from v to w by a flow box

Ze Š f.s;u; t/ 2R3
W jsj � wv�

t�1; juj � w0w�
�t ; t 2 Œ0; 1�g:

See Figure 13. There are two 2–dimensional foliations on Ze: the first one by leaves of the form
fu D u0�

�tgu0
, which we will call the stable foliation, and the second one by leaves of the form

fs D s0�
t�1gs0

, which we will call the unstable foliation. There is also an oriented 1–dimensional
foliation on Ze by curves f.s0�

t�1;u0�
�t ; t/ W t 2 Œ0; 1�gs0;u0

, oriented by decreasing t . Notice that the
leaves of the stable and unstable foliations intersect transversely along leaves of the oriented 1–dimensional
foliation.

Give Ze its Euclidean metric induced from R3. There is a natural way of gluing up the Ze across their
top and bottom faces at the vertices of ˆred, preserving the metric on those faces, by definition of wv
and w0v . A priori there is a freedom for Ze to twist along e, we get rid of this by requiring that the framing
on Ze induced from its u coordinate match up with the framing on e induced from B. See Figure 14. We
call the resulting set N.ˆred/, since it is a regular neighborhood of ˆred in M .

Note that the oriented 1–dimensional foliations on Ze piece together to give a decomposition of N.ˆred/.
This decomposition is almost an oriented 1–dimensional foliation, except the “leaves” are oriented 1–
manifolds possibly with train track singularities branching off in forward and backward directions, arising
from the multiple outgoing and incoming edges at the vertices. Despite this, for convenience we will still
refer to this decomposition as an oriented 1–dimensional foliation.

Similarly, the stable and unstable foliations on Ze each piece together to give a decomposition of N.ˆred/

which is almost a 2–dimensional foliation, except that the “leaves” have branching. We will refer to these
as the stable and unstable foliations on N.ˆred/ respectively.

Denote @sZe D fuD˙w
0
w�
�tg and @uZe D fs D˙wv�

t�1g. We will call @sN.ˆred/ WD
S

e @
sZe the

stable boundary of N.ˆred/ and @uN.ˆred/ WD
S

e @
uZe the unstable boundary of N.ˆred/. We will

also call the collection of the closures of intervals where the interior of the top and bottom faces of Ze
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@sN.ˆred/

@uN.ˆred/

Figure 14: Thickening up ˆred to N.ˆred/, which naturally embeds in N.B/.

meets @sN.ˆred/ or @uN.ˆred/ the branch locus. These are exactly the places where the leaves of the
oriented 1–dimensional foliation on N.ˆred/ have branching.

Now consider an I–fibered neighborhood N.B/ of B in the cusped model. This means that N.B/ is a
closed regular neighborhood of B, with a map M !M restricting to a projection on N.B/! B with
I–fibers and a homeomorphism outside of N.B/, and so that the boundary of N.B/ can be decomposed
into surfaces with boundary, the interior on which the projection is a local homeomorphism, and the
boundary curves correspond to the components of the branch locus of B. We will often conflate a
component of the branch locus of B with the corresponding circle on @N.B/. We will also call the
collection of circles in the latter setting the branch locus of N.B/.

N.ˆred/ can be arranged to be a subset of N.B/, in such a way that @uN.ˆred/ � @N.B/, the branch
locus of N.ˆred/ is a subset of the branch locus of N.B/, and N.ˆred/ is saturated with respect to the
I–fibering of N.B/.

Note that we do not require the intervals Œ�wv�t0�1; wv�
t0�1��fu0g�ft0g �Ze �N.ˆred/ to coincide

with the I–fibers of N.B/. Indeed, this is impossible since the branch locus of N.ˆred/ are parallel along
such intervals, while branch locus of N.B/ project to transverse curves on B. One can arrange for this
property by “splitting” N.ˆred/ slightly, but since this does not aid our construction, we will not do so.

5.2 Gluing along the stable boundary

The next step is to glue N.ˆred/ along its stable boundary across its complementary regions in N.B/, so
that the foliations on N.ˆred/ descend to respective foliations on N.B/. To perform the gluing, we have
to understand the complementary regions in question.
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Figure 15: Complementary regions of N.ˆred/ in N.B/. We construct an I–fibering conjugating
the flows on the stable face, and collapse along the I–fibers.

By Lemma 3.9, the complementary regions of ˆred in B are annuli or Möbius bands with tongues. The
complementary regions of N.ˆred/ in N.B/ are I–fibered neighborhoods of these; see Figure 15 (where
the red intervals will come into play later). Fix one of these components K. The boundary of K is
naturally divided into @sK [ @uK, where @sK is identified to @sN.ˆred/ in M and @uK � @N.B/. In
particular @sK inherits the oriented 1–dimensional foliation on @sN.ˆred/. Furthermore, if we call the
I–fibers over the tips of the tongues of Bnnˆred the cusps of K, @sK can be divided along the cusps into
two or one components (depending on whether the corresponding component of Bnnˆred is an annulus or
a Möbius band with tongues respectively). Call these components the stable faces of K.

Meanwhile, recall that N.ˆred/, hence @sN.ˆred/, inherits the Euclidean metric of the flow box Ze . The
oriented 1–dimensional foliation contracts the metric in the transverse direction. Hence the oriented
foliation on each stable face of K has exactly one S1 leaf, and all other leaves enter through the cusps
of K and spiral into the S1 leaf.

More rigorously, parametrize the oriented 1–dimensional foliation on @sN.ˆred/ in some way, for example
according to the t coordinate of each Ze, so that we can consider it as a forward semiflow. Take the
intervals Œ�wv; wv �� f˙w0w�

�1g � f1g �Ze �N.ˆred/, with the Euclidean metrics, as sections of the
flow, and note that the first return map contracts the metric by ��1, then apply Banach fixed point theorem.

We claim that there is an I–fibering of K, transverse to the stable faces and parallel to @uK, for which
the induced homeomorphism between the stable faces preserves the oriented 1–dimensional foliations on
them, ie send leaves to leaves in an orientation preserving way.
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(1) (2)

(4)

(5)

(3)

Figure 16: The steps for constructing the I–fibering on each component of N.B/nnN.ˆred/.

Suppose first that the corresponding component of Bnnˆred is an annulus with tongues. Choose short
local sections to the foliation near the unique S1 leaf on each stable face of K, call them J and J 0. The
return maps of the oriented foliations on J and J 0, which we call h and h0, are contracting by our analysis
above, ie hk.J / is a strictly decreasing collection of subintervals with

T1
kD1 hk.J / being a point, and

similarly for h0k.J 0/. Note that these points could lie on endpoints of J and J 0 if one side of the annulus
has no tongues attached.

Construct the I–fibering on K in the following steps:

(1) Define the I–fibering on the cusps of K, where the I–fibering is uniquely determined but degenerate,
in the sense that the I–fibers are just points.

(2) Extend the I–fibering to the triangular faces of @uK, so that the base of the triangles, which are
among the branch locus of N.B/, are I–fibers.

(3) Extend the I–fibering across subintervals of the leaves of the foliation on the stable faces which
start on the branch locus and end at the interior of J or J 0.

(4) Extend the I–fibering across subintervals of the leaves which start on the interior of the cusps of K

and end at the interior of J or J 0, using the fact that the union of these subintervals is a finite union
of rectangles foliated as products.

(5) Apply Lemma 5.3 below by taking f to be the homeomorphism induced by portion of the I–
fibering already defined. Then use the extended f given by the lemma to construct the I–fibering
between J and J 0, and complete the construction by extending the I–fibering along the leaves as
they go around the stable faces.

See Figure 16 for a graphical summary of these steps.
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Lemma 5.3 Let h W J ! J and h0 W J 0! J 0 be injective contracting maps on intervals. Let

f W Jnh.J /! J 0nh0.J 0/

be a given homeomorphism. Then there is a unique way of extending f to a homeomorphism J ! J 0

such that h0f D f h.

Proof Write J .k/ D hk.J / and J 0.k/ D h0k.J 0/. By assumption, J .k/ is a shrinking subinterval of J

which contracts to a point s and J 0.k/ is a shrinking subinterval of J 0 which contracts to a point s0. Extend
f by defining it to be h0kf .hk/�1 on J .k/nJ .kC1/. Finally define f .s/D s0.

If the corresponding component of Bnnˆred is a Möbius band with tongues instead, we choose two local
sections J1 and J2 on the one stable face near the S1 leaf, so that we have return maps J1! J2 and
J2! J1 for the oriented foliation. (We can pick J1 first, then pick J2 near J1 using the fact that the
return map J1! J1 is contracting.) Let s1 and s2 be where the S1 leaf meets J1 and J2. Then s1 and s2

have to be in the interior of J1 and J2 in this setting. Let Ji be the subinterval of Ji to the left of si , and
J 0i be the subinterval of JiC1 to the right of siC1 (indices taken mod 2, and left/right measured relative
to the direction of the flow and a fixed orientation on the stable face). First construct the I–fibering on
subintervals of leaves that start on cusps of K and end at the interior of J1 or J2, then apply Lemma 5.4
below (with mD 2) to construct the I–fibering across a neighborhood of the periodic trajectory as above.

Lemma 5.4 Let hi WJi!JiC1 and h0i WJ
0
i!J 0

iC1
be injective contracting maps on intervals J1; : : : ;Jm

and J 0
1
; : : : ;J 0m (indices taken mod m). Here , contracting means fhmkCi�1 � � � hi.Ji/gk is a decreasing

collection of subintervals and
T1

kD1 hmkCi�1 � � � hi.Ji/ is a single point for each i , and similarly for h0i .
Let fi W Jinhi�1.Ji�1/! J 0inh

0
i�1
.J 0

i�1
/ be given homeomorphisms. Then there is a unique way of

extending fi to homeomorphisms Ji! J 0i such that h0ifi D fiC1hi for all i .

Proof This can be proved as in the previous lemma (which is the “baby case” when mD 1), with more
annoying bookkeeping. We remark that we stated this lemma for all m � 1 because we will need this
generality in the next subsection.

Remark 5.5 The homeomorphism across the stable faces induced by such an I–fibering cannot be made
to preserve the Euclidean structure on @sN.ˆred/ in general. In particular, the homeomorphism will not,
in general, take an interval of the form Œ�wv�

t0�1; wv�
t0�1�� f˙w0w�

�t0g � ft0g � Ze � N.ˆred/ to
another interval of this form.

Also, the homeomorphism cannot be chosen to be a diffeomorphism in general (with respect to the
smooth structures induced by the Euclidean structures). This arises from the fact that one cannot replace
“homeomorphisms” by “diffeomorphisms” in Lemma 5.4 in general by Kopell’s lemma [1970].

Now collapse across all such components K along the I–fiberings. This collapses N.ˆred/ onto N.B/.
The oriented 1–dimensional foliation on N.ˆred/ descends to a decomposition of N.B/. The “leaves” of
which are still not all 1–manifolds, but now we only have branching in the backwards direction, since all
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the forward branching occurs along some cusp of some K, and we have collapsed all forward trajectories
starting from those points. As before, we will still call this decomposition an oriented 1–dimensional
foliation for convenience of notation.

Similarly, the stable and unstable foliations on N.ˆred/ descend to decompositions of N.B/, which we
call the stable and unstable foliations on N.B/ respectively. The leaves of the stable foliation on N.B/

are in fact 2–manifolds by the same argument as the last paragraph, but those of the unstable foliation
on N.B/ have branching.

Remark 5.6 For the purposes of the next step of the construction, it is worth noting that when restricted
to the unstable boundary, the collapse takes @uN.ˆred/ onto @N.B/, under which the restriction of the
oriented 1–dimensional foliation of N.ˆred/ to @uN.ˆred/ descends to the restriction of the oriented
1–dimensional foliation of N.B/ to @N.B/.

In particular, we can recover the latter in the following way: take the image of ˆred on the boundary of
M nnB, thicken it up within @.M nnB/ by replacing each edge by a flow box f.u; t/ W juj�w0w�

�t ; t 2 Œ0; 1�g

foliated by f.u0�
�t ; t/ W t 2 Œ0; 1�gu0

and piecing together their top and bottom edges at the vertices
of ˆred. The I–fiberings on the components K constructed above, when restricted to @uK, will determine
I–fiberings of the complementary regions, and we collapse along these I–fibers to get the oriented
foliation on @N.B/.

Before we move on, we will construct some local sections to the foliation which will be used to prove no
perfect fits in Section 5.4. Fix a component c of the branch locus of B. Consider the subset of double
points of the branch locus of B that lie on c. These are each dual to some veering tetrahedron in �.
Let Vc be the subset of vertices of ˆred which are the bottom edges of one of these veering tetrahedra.
Cyclically order Vc D fv1; : : : ; vsg according to the order in which c meets the corresponding double
points.

Meanwhile, for a vertex v of ˆred, let Rv be the union of the top faces of the flow boxes Ze as e varies
over the edges of ˆred that exit v. Equivalently, this is also the union of the bottom faces of Ze as e varies
over the edges of ˆred that enter v. These are embedded rectangles transverse to the foliation on N.ˆred/.

For a collection Vc D fv1; : : : ; vsg as above, each Rvi
�N.ˆred/ contains a subinterval of c. Here we

remind the reader that we are using the same name for a component of the branch locus of B and the
corresponding component of the branch locus of N.B/. Let @�Rvi

be the side of Rvi
which c enters,

and let @CRvi
be the side of Rvi

which c exits. Note that @CRvi
and @�RviC1

lie on stable faces of
the same component of N.B/nnN.ˆred/ (indices taken mod s). We drew one instance of these as red
intervals in Figure 15.

After collapsing along the components of N.B/nnN.ˆred/, the image of the union
Ss

iD1 Rvi
in N.B/

contains c, since for each component K of N.B/nnN.ˆred/, the bases of the triangular faces of @uK

are among the I–fibers that we chose. The images of @CRvi
and @�RviC1

may not match up away
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M

O

Rvi

Qi

RviC1

c

Figure 17: The surfaces Pc are unions of images of Rvi
and connecting surfaces Qi .

from c. However, what we will show is that we can at least find surfaces Qi which are unions of finite
subintervals of leaves of the 1–dimensional foliation on N.B/ which connect the image of @CRvi

to a
subinterval of that of @�RviC1

. See Figure 17, top.

Let K be the component of N.B/nnN.ˆred/ which contains both @CRvi
and @�RviC1

. To construct Qi ,
consider the universal cover zK of K. Note that there is a notion of height on zK, with respect to the
y–coordinate in the model described in Lemma 3.9, as opposed to K where that coordinate is circular.
The oriented 1–dimensional foliations on the stable faces of K lift to oriented 1–dimensional foliations
on the stable faces of zK. Similarly, the I–fibering on K lifts to an I–fibering on zK. A component of
the branch locus of K is a subinterval of c connecting @CRvi

and @�RviC1
. Lift @CRvi

and @�RviC1

together with the connecting subinterval to zK. We abuse notation and still call the lifts of @CRvi
and

@�RviC1
by the same name.

We claim that the crisscross property stated in Lemma 3.9 implies that the component of @u zK containing
an endpoint of @CRvi

does not lie below that containing the endpoint of @�RviC1
on the same side. To

check this, let J be the component of Bnnˆred corresponding to K and consider the universal cover zJ
of J . Without loss of generality, we can assume that the lifted connecting subinterval corresponds to
yD�x in the branch locus of zJ , under the model described in Lemma 3.9. Notice that in this case @CRvi

lies along the stable face of zK corresponding to x D 0 while @�RviC1
lies along that corresponding

to x D 1.

Meanwhile, there are two sides to Œ0; 1��R� zJ for which its tongues are attached along. Correspondingly,
the components of @u zK also lie on two sides, and we need to check our claim on the two sides separately.
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On the side for which the tongue is attached along y D �x, the component of @u zK containing the
endpoint of @CRvi

is the same as that containing the endpoint of @�RviC1
, unless the tongue attached

along y D x� 2 is done so on this same side (hence w D 1 or 2), in which case the former is higher up
than the latter.

On the other side, the component of @u zK containing the endpoint of @CRvi
is strictly higher up than that

containing the endpoint of @�RviC1
, unless w D 1 and the tongue attached along y D x� 2 is done so

on the same side as that along y D�x, in which case the two component coincide.

This claim implies that if we transfer @CRvi
to the other stable face of zK using the homeomorphism

induced by the I–fibering, and call the image @CCRvi
temporarily, then the leaves of the 1–dimensional

foliation passing through @CCRvi
will also pass through @�RviC1

. Hence we can take the union of
subintervals of leaves going between @CCRvi

and @�RviC1
, project down to K then collapse to N.B/

to get Qi .

Here we caution that @CCRvi
may not lie strictly above @�RviC1

, that is, some of the leaves that form
Qi may be oriented from @�RviC1

to @CCRvi
, as indicated in Figure 17. The important feature here,

rather, is that Qi \ @
CRvi

D @CRvi
and Qi \ @

�RviC1
� @�RviC1

.

Let Pc be the union of the images of Rvi
and Qi . Notice that Pc is an immersed annulus with corners in

N.B/, which contains c and intersects the same leaves (of the oriented 1–dimensional foliation) as the
images of Rvi

. Pc is not strictly speaking a local section, since the Qi are tangent along the flow. One
can perturb Pc so that it becomes transverse to the flow everywhere, but since we ultimately only use the
structure of Pc after projecting to the orbit space, this is not necessary for our arguments. We will point
out more features of Pc in Section 5.4.

5.3 Gluing along the unstable boundary

We will follow the same strategy to glue N.B/ along its boundary across its complementary regions
in M.s/, so that the foliations on N.B/ descend to respective foliations on M.s/, for suitable s.

Lemma 5.7 The components of M nnB are (once-punctured cusped polygons)�S1. Fix one of these
components T ; @T is naturally decomposed into a number of annulus faces meeting along cusp circles.
ˆred on each annulus face consists of one or two oriented circles along with some branches attached
inductively which exit through the cusp circles. Each oriented circle of ˆred\ @T has isotopy class equal
to the ladderpole slope , in particular they are parallel. See Figure 18, left.

Proof The first sentence is Proposition 2.9, and the second sentence follows easily. For the third sentence,
note that ˆred on each annulus face A of @T is an oriented train track with branches exiting through
the boundary and with only diverging switches. This forces ˆred \A to be a union of parallel circles
with branches attached inductively which exit through the cusp circles. There cannot be more than 2
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Figure 18: Collapsing across complementary regions of M.s/nnN.B/.

circles on each annulus or else the inner circles will have no branches attached. These will then contradict
ˆred being strongly connected, since these circles can have no outgoing edges. Meanwhile, each cusp
circle meets ˆred, otherwise there will be a component of Bnnˆred carrying a circle in its branch locus,
contradicting Lemma 3.9. These two observations imply the third sentence.

To show the fourth sentence, it suffices to show that the oriented circles of ˆred \ @T are oriented
coherently. We will show this using [Landry et al. 2024, Lemma 5.4]. (Again, we caution the reader
that the flow graph in [Landry et al. 2024] is oriented in the opposite direction compared to this paper.)
Their lemma implies that each cycle of ˆ\ @T has slope equal to the ladderpole slope. Since ˆred is a
subgraph of ˆ, the same statement holds for ˆred\ @T . We remark that the third sentence of our lemma
follows from their lemma as well.

Recall that we can recover the oriented 1–dimensional foliation on the boundary of each component
of M nnN.B/ from the portion of ˆred on the boundary of the corresponding component of M nnB, as
described in Remark 5.6. From Lemma 5.7, it follows that the foliation on each annulus will consist of a
band of S1 leaves, with all other leaves spiraling out of the band and exiting through the cusp circles.
Using the transverse measure du on the rectangles f.u; t/ W juj � w0w�

�t ; t 2 Œ0; 1�g, one can see that
the band of S1 leaves actually just consists of one leaf. For if the band has nonzero width, pick a local
section to the foliation within the band and observe that the backward return map of the foliation has to
be contracting, providing a contradiction. See Figure 18, middle.

Now fix a component T of M nnN.B/, fix an identification T Š (punctured cusped k–gon)� S1 and
take the orientation on the punctured cusped k–gon to be the one induced from that of T �M and the
ladderpole slope. Label the annulus faces of @T as A.1/; : : : ;A.k/ cyclically according to the orientations
we have chosen. Suppose a slope s is given on the torus end of T , whose geometric intersection number
with the ladderpole class l is at least 1. We want to produce a “pronged I–fibering” of T .s/ preserving the
leaves on A.j/. By this we mean a decomposition of T .s/ into intervals and jhs; lij–prongs, such that the
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endpoints of the prongs lie along the unique S1 leaves on the A.j/, and such that the homeomorphisms
on the halves of A.j/ induced from the interval fibers preserve the leaves of the oriented 1–dimensional
foliations.

Let m be the meridian of T in the description T Š (punctured cusped k–gon)�S1, ie the isotopy class
of @(punctured cusped k–gon)� ft0g. We pick jhs; lij=k local sections J

.j/
1
; : : : ;J

.j/

jhs;lij=k
near the S1

leaf on A.j/, so that we have backward return maps J
.j/
i ! J

.j/
iC1

(subindices taken mod jhs; lij=k) of
the oriented foliation. Let s

.j/
i be where J

.j/
i meets the S1 leaf on A.j/. First define the fibering on

the cusp circles of T .s/, where it is uniquely determined and degenerate, then extend the fibering over
subintervals of leaves that start at the interior of J

.j/
i and end on the cusp circles, using the fact that the

union of these trajectories are unions of rectangles foliated as products. Finally apply Lemma 5.4 to Ii ,
the subinterval of J

.j/
i to the left of s

.j/
i , and I 0i , the subinterval of J

.jC1/

i˙hs;mi
to the right of s

.jC1/

i˙hs;mi
for

each j (mod k) where the ˙ is taken to be the sign of hs; li, to produce the pronged I–fibering in the
remaining subset of T .s/.

Now given a collection of slopes s on each torus end of M with jhs; lij � 1, collapse along the fibers
of the pronged I–fibering in each corresponding component of M.s/nnN.B/. See Figure 18, right, for
an illustration of a collapsed component of M.s/nnN.B/ with jhs; lij D 3. The oriented 1–dimensional
foliation on N.B/ descends to a decomposition of M.s/, which is a genuine oriented 1–dimensional
foliation, since all the branching of the leaves in N.B/ occurs along the branch locus of N.B/, and we
have collapsed all backward trajectories ending at those points. In particular this oriented 1–dimensional
foliation can be continuously parametrized into a topological flow.

For each torus end of M , call the image of the S1 leaves on A.j/ after collapsing the core orbit of the
corresponding end.

5.4 Showing pseudo-Anosovity and no perfect fits

We have constructed our flow at this point. It remains to check that it satisfies the properties described in
Theorem 5.1. We first recall the relevant definitions.

Definition 5.8 Consider the map
�
��1

0
0
�

�
WR2!R2. This preserves the foliations of R2 by horizontal

and vertical lines. Let �n;0;� WR
2!R2 be the lift of this map over z 7! zn=2 that preserves the lifts of

the quadrants. (When n is odd, one has to choose a branch of z 7! zn=2 but it is easy to see that the result
is independent of the choice.) Let �n;k;� WR

2!R2 be the composition of �n;0;� and rotating by 2�k=n

counterclockwise Also pull back the foliations of R2 by horizontal and vertical lines. The resulting two
singular foliations are preserved by �n;k , call them ls and lu respectively. Let ˆn;k;� be the mapping
torus of �n;k;�, let ƒs and ƒu be suspensions of ls and lu respectively, and consider the suspension flow
on ˆn;k;�. Call the suspension of the origin the pseudohyperbolic orbit of ˆn;k;�. The local behavior of
the flow near the pseudohyperbolic orbit serves as the local model for singular orbits in a pseudo-Anosov
flow.
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Definition 5.9 A smooth pseudo-Anosov flow on a closed smooth 3–manifold N is a continuous flow �t ,
along with a path metric d on N , which is induced from a Riemannian metric g away from the singular
orbits, satisfying:

(S1) There is a finite collection of closed orbits f
1; : : : ; 
sg, called the singular orbits such that �t is
smooth away from the singular orbits.

(S2) Away from the singular orbits, there is a splitting of the tangent bundle into three �t –invariant line
bundles TM DEs˚Eu˚T�t such that

jd�t .v/j< C��t
jvj

for every v 2Es; t > 0, and
jd�t .v/j< C�t

jvj

for every v 2Eu; t < 0, for some C; � > 1.

(S3) Each singular orbit 
i has a neighborhood Ni and a map fi sending Ni to a neighborhood of the
pseudohyperbolic orbit in ˆni ;ki ;�, for some ni � 3, such that

� fi is bi-Lipschitz on Ni and smooth away from 
i ,

� fi preserves the orbits, and

� fi sends Es and Eu to line bundles tangent to ƒs and ƒu respectively.

In this case, we say that 
i is ni–pronged.

A topological pseudo-Anosov flow on a closed 3–manifold N is a continuous flow �t satisfying:

(T1) There is a finite collection of closed orbits f
1; : : : ; 
sg, called the singular orbits, and two singular
2–dimensional foliations ƒs and ƒu, called the stable and unstable foliations respectively, which
are nonsingular away from the singular orbits.

(T2) Away from the singular orbits, every point has a neighborhood which is a flow box, ie a set of
the form Is � Iu � It such that the flow lines are the lines with constant s and u, the stable and
unstable foliations are the foliations by planes with constant u or s coordinate respectively.

(T3) There is a Markov partition, ie there is a finite collection of flow boxes fI .i/s � I
.i/
u � Itgi covering

N with disjoint interiors, such that

.I .i/s � I .i/u � f1g/\ .I
.j/
s � I .j/u � f0g/D

[
k

J .ij:k/s � I .i/u � f1g D
[
k

I .j/s �J .ji:k/
u � f0g

for some finite collection of subintervals J
.ij ;k/
s � I

.i/
s and J

.ji;k/
u � J

.j/
u .

(T4) Pick a path metric d on M . For every p and q on the same stable leaf, there exists an orientation-
preserving homeomorphism T W .�1;1/! .�1;1/ such that

lim
t!1

dN .�
t .p/; �T .t/.q//D 0:
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Respectively, for every p and q on the same unstable leaf, there exists an orientation-preserving
homeomorphism T W .�1;1/! .�1;1/ such that

lim
t!�1

dN .�
t .p/; �T .t/.q//D 0:

(T5) Each singular orbit 
i has a neighborhood Ni and a continuous map fi sending Ni to a neighborhood
of the pseudohyperbolic orbit in ˆni ;ki ;�, for some ni � 3; � > 1, such that
� fi preserves the orbits, and
� fi preserves ƒs and ƒu on the two sets.

In this case, we say that 
i is ni–pronged.

Definition 5.10 A (smooth/topological) pseudo-Anosov flow is transitive if it has a dense orbit.

It has long been a folklore fact that the notions of smooth and topological pseudo-Anosov flows are
essentially equivalent in the case when the flows are transitive. The easier direction is that a transitive
smooth pseudo-Anosov flow is a topological pseudo-Anosov flow. Indeed, the only nontrivial facts to
check are that Es˚T�t and Eu˚T�t are integrable (away from singular orbits), which follows from
stable manifold theory (see for example [Katok and Hasselblatt 1995, Chapter 17.4]), and that there exists
a Markov partition, which follows from the arguments in [Ratner 1973, Section 2]. For the other direction,
we have:

Theorem 5.11 Given a transitive topological pseudo-Anosov flow �t on a closed 3–manifold N , there
exists a homeomorphism F WN !N and a smooth pseudo-Anosov flow O�t (with respect to some smooth
structure on N ), such that F maps the trajectories of �t to that of O�t (preserving their orientations), ie �t

is C 0–orbit equivalent to O�t .

This theorem has been proven recently by Shannon [2021] in the case of transitive Anosov flows, ie when
there are no singular orbits. His methods in fact generalize immediately to the general case of transitive
pseudo-Anosov flows. We will explain more carefully how to apply his arguments to prove Theorem 5.11
in Section 5.5. We remark that it is still open whether Theorem 5.11 is true without the hypothesis of
transitivity. Also see [Mosher 1996, Section 3.1] for a related discussion.

Before we recall the definition of no perfect fits, we need a nontrivial fact: Suppose a closed 3–manifold
N admits a (smooth/topological) pseudo-Anosov flow. Lift everything up to the universal cover zN .
It is shown in [Fenley and Mosher 2001, Proposition 4.1] that the orbit space O of the flow on zN is
homeomorphic to R2, and inherits two (possibly singular) 1–dimensional foliations Os and Ou.

Remark 5.12 Fenley and Mosher [2001] only dealt with smooth pseudo-Anosov flows, but given
Theorem 5.11, the facts stated above holds for topological pseudo-Anosov flows as well. Alternatively,
the proof of [Fenley and Mosher 2001, Proposition 4.1] is valid verbatim for topological pseudo-Anosov
flows.
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F

G

H

K

Figure 19: A perfect fit rectangle.

We will in fact generalize the definition of no perfect fits slightly, compared to the usual definition found
in, for example, [Fenley 2012].

Definition 5.13 Let � be a pseudo-Anosov flow on a closed 3–manifold N , and let fc1; : : : ; ckg be
a collection of closed orbits of �. Lift these up to a flow Q� on the universal cover zN together with a
collection of orbits f Qcig which are the preimages of fcig.

A perfect fit rectangle is a rectangle-with-one-ideal-vertex properly embedded in O such that 2 opposite
sides of the rectangle lie along leaves of Os and the remaining 2 opposite sides lie along leaves of Ou, and
such that the restrictions of Os and Ou to the rectangle foliate it as a product, ie conjugate to the foliations
of Œ0; 1�2nf.1; 1/g by vertical and horizontal lines. See Figure 19.

The collection of orbits f Qcig determines a set C in O. We will say that � has no perfect fits relative to
fc1; : : : ; ckg if there are no perfect fit rectangles in O disjoint from C.

Given a perfect fit rectangle with sides F and H along leaves of Os , sides G and K along leaves of Ou,
and sides F and G adjacent to the ideal vertex, notice that we can always choose a smaller perfect fit
rectangle with sides F , G, H 0 and K0, where H 0 is closer to F than H , and K0 is closer to G than K.
We will frequently use this observation when analyzing perfect fit rectangles.

A pseudo-Anosov flow is without perfect fits according to the definition in [Fenley 2012] if and only if it
is without perfect fits relative to ¿ in Definition 5.13. This is in turn equivalent to the pseudo-Anosov
flow having no perfect fits relative to the set of its singular orbits, since by definition a perfect fit rectangle
cannot contain a singular point in its interior, and we can always choose a smaller perfect fit rectangle
that does not contain any singular points on the boundary as well.

It is immediate from their definitions that the property of transitivity and no perfect fits relative to a
collection of orbits is preserved under C 0–orbit equivalence. Hence in view of Theorem 5.11, it suffices
for us to show Theorem 5.1 with “pseudo-Anosov flow” taken to mean topological pseudo-Anosov flow.

We first verify that our flow on M.s/ is a topological pseudo-Anosov flow. For (T1), take the collection
of singular orbits to be the core orbits of the ends of M with jhs; lij � 3, and take ƒs and ƒu to be the
stable and unstable foliations on M.s/ respectively.
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For (T2), one can construct flow box neighborhoods (away from the singular orbits) in M.s/ by piecing
together those in N.ˆred/.

We will call the images of the flow boxes Ze in M.s/ after collapsing N.B/nnN.ˆred/ and M.s/nnN.B/

by the same name. These form a Markov partition for the flow by definition, verifying (T3).

Take dM.s/ to be the path metric on M.s/ induced by the Euclidean metrics dEucl
Ze

on Ze. This means
that we define the length of a path by summing over the dEucl

Ze
–lengths of the portions within each Ze,

and define the distance between two points to be the infimum length of paths between them. Here for a
path lying on more than one Ze , one is allowed to calculate its length by the Euclidean metric on any of
them. Note that since each Ze is compact, the identity map on Ze is uniformly continuous with respect
to dEucl

Ze
and dM.s/jZe

.

Let us prove (T4) in the case when p and q lie on the same stable leaf; the proof for when p and q lie on
the same unstable leaf is symmetric. Notice that it suffices to prove this when p and q are close to each
other, so we can assume that p and q lie in the same flow box Ze . We parametrize the orbits through p

and q so that they go through each flow box in unit time. Then we would have

dEucl
Ze

.�t .p/; �t .q// < C��t

whenever �t .p/ and �t .q/ lie in the flow box Ze (where C depends on p; q). So (T4) follows from
uniform continuity between dEucl

Ze
and dM.s/.

For (T5), the neighborhoods Ni can be constructed by piecing up the flow box neighborhoods in N.ˆred/

again. We then have to find conjugations fi between Ni and neighborhoods of the pseudohyperbolic
orbits in ˆni ;ki ;� for ni D jhsi ; liij. These can be constructed by choosing local sections to the flow
in Ni and in ˆni ;ki ;�, then applying Lemma 5.4 to the prongs that are the intersections of these local
sections with the singular stable and unstable leaves, taking f there to be an arbitrary homeomorphism.
This constructs fi on the singular stable and unstable leaves on the local sections, then fi is uniquely
determined on the local sections (after possibly shrinking them), by requiring that it preserves the stable
and unstable foliations. Then we complete the construction of fi by following the trajectories as they go
around Ni . Observe that jhs; lij � 2 is required here, otherwise we will have 1–pronged singular orbits.
(Meanwhile “2–pronged singular orbits” are just nonsingular orbits.)

We then show that the flow is transitive. Pick an infinite path in ˆred which contains all finite paths in ˆred

as subpaths. Such a path can be constructed using the fact that ˆred is strongly connected. Write the path
as v1

e1
�! v2

e2
�! � � � . We claim that there is an infinite flow line in M.s/ passing through Ze1

;Ze2
; : : :

in that order. To show this claim, consider the subset in Ze1
of points whose forward trajectories flow

through Ze1
; : : : ;Zek

. These subsets will be nonempty decreasing subflow boxes of Ze1
; hence taking

the intersection as k!1, we get points in Ze1
whose flow lines have the required property. Pick one

of these flow lines and denote it by l . Now for any point y 2M.s/, suppose the forward and backward
trajectories of y pass through Zd0

;Zd1
;Zd2

; : : : and Zd0
;Zd�1

;Zd�2
; : : : respectively. Note that these
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sequences may not be unique, due to the fact that leaves of the 1–dimensional foliation on N.ˆred/ have
forward and backward branching, but we can always just make a choice. Now fix some N > 0, the flow
line l passes through Zd�N

; : : : ;ZdN
in that order at some point, by construction. Since both l and the

backward flow line through y pass through Zd�N
; : : : ;Zd0

, they intersect Zd0
in flow lines not more

than wv�N
��N apart in the dEucl

Zd0

metric. Similarly, looking in the forward direction, l and the flow line
through y are not more than w0wN

��N apart in the dEucl
Zd0

metric. Hence we conclude that l passes through
a .maxwv Cmaxw0v/�

�N dEucl
Zd0

–neighborhood of y. Letting N !1 and using uniform continuity
between dEucl

Zd0

and dM.s/, this proves transitivity.

Finally we prove that the flow has no perfect fits relative to the core orbits, which we denote by ci . To do
this we will make use of the surfaces Pc constructed in Section 5.3. There, we defined these as subsets
of N.B/, but here we will consider their images in M.s/ after collapsing M nnN.B/ and still refer to
them by the same name. Consider the lifts of Pc to the universal cover AM.s/. We denote these by zPQc ,
where Qc ranges over components of the branch locus of zB that are lifts of c, which we will conflate
with the corresponding components of the branch locus of AN.B/. After collapsing AM.s/nnAN.B/, each
Qc �AM.s/ lies on a leaf of zƒu and is transverse to the flow, meeting exactly those flow lines which spiral
out of the lift of the core orbit produced by collapsing the component of AM.s/nnAN.B/ which Qc opens up
towards. Moreover, as one goes along Qc in its orientation lifted from c, we meet flow lines that spiral
closer to the lift of the core orbit. Hence Qc projects to an open half leaf of Ou on O, which under the
orientation of Qc, limits to the lift of the core orbit (as a point in O) in the forwards direction and escapes
to infinity in O in the backwards direction. Since the projection is a homeomorphism, we will call this
open half leaf Qc as well for convenience.

Meanwhile, each zPQc projected to O will be a surface containing Qc. More precisely, recall that Pc is the
union of the images of Rvi

and Qi . Let zRvi
� ẑ red be the lifts of Rvi

that meet Qc and zQi �
AN.B/ the lifts

of Qi that meet Qc. Then zPc is the union of the images of zRvi
and zQi after collapsing AN.B/nnBN.ˆred/

and AM.s/nnAN.B/. The image of each zRvi
will be projected homeomorphically to a rectangle in O along Qc

since these are transverse to the flow, while the image of each zQi is tangent to the flow, hence will be
projected into sides of the rectangles.

The way these rectangles fit together is described by the following lemma.

Lemma 5.14 The projection of each zPQc is homeomorphic to

f.x;y/ 2 .�1; 0/�R W r1.x/� y � r2.x/g

where r1 (resp. r2) is a nonincreasing (resp. nondecreasing) negative (resp. positive) piecewise constant
function , Qc is sent to .�1; 0/� f0g in the direction of increasing x, and the restriction of ƒs (resp. ƒu)
are sent to the foliation by vertical (resp. horizontal ) lines. See Figure 17.

Proof The rectangles in O that are the projections of zRvi
have nonoverlapping interiors and cover Qc, so

the only thing that remains to be shown is the monotonicity of r1 and r2.
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To show this, recall that Qi \@
CRvi

D @CRvi
and Qi \@

�RviC1
� @�RviC1

. This implies that the line
that is the image of zQi is the right vertical side of the rectangle that is the projection of zRvi

and a subset
of the left vertical side of the rectangle that is the projection of zRviC1

. In simpler terms, the rectangles
get taller or are of equal height as one goes along Qc, which establishes the lemma.

For convenience, from now on let us write zPQc and zRvi
for their images in O as well.

To establish no perfect fits, we will basically argue that if there is a perfect fit rectangle in O disjoint from
the images of Qci , then we can reduce it to sit inside one of these zPQc with the ideal vertex at a corner of the
rectangle with larger x coordinate. But from the monotonicity of r1 and r2, such a perfect fit rectangle
cannot be properly embedded in zPQc , giving us a contradiction.

So suppose we have a perfect fit rectangle in O disjoint from the images of Qci with sides F and H along
leaves of Os , sides G and K along leaves of Ou, and sides F and G adjacent to the ideal vertex. Lift
H to AM.s/. By flowing forward (and possibly rechoosing K to be closer to G) we can assume that the
lift of H is short enough to be contained within the lift of some flow box, which we denote by zZe. In
particular we can take the lift of H to lie on the image of some zRv. If the lift of H does not meet the
image of the branch locus of AN.B/ in its interior, ie it is fully contained in the bottom face of some zZe ,
then we can rechoose the lift of H to be on the top face of zZe. When we do so, the length of the lift
(with respect to the Euclidean metric on the zZe’s) is increased by a factor of �, so we cannot continue
this operation indefinitely. In other words, we can choose a lift of H which lies on the image of some zRv

and whose interior meets the image of the branch locus of AN.B/.
Recall that the components of the branch locus of AN.B/ carry orientations induced from those of B. We
split into two cases depending on how the lift of H meets the image of the branch locus of AN.B/ with
respect to this orientation.

Case 1 is if the lift of H meets the image of a component Qc of the branch locus oriented in the same
direction as K leaving H . In this case, by moving K closer to G, we can suppose that K lies within Qc
on O. This uses the assumption that the perfect fit rectangle is disjoint from the images of Qci , otherwise
K could go beyond Qc on the leaf of Os . Now by construction, zPQc in O contains both H and K. In the
description of Lemma 5.14, the direction at which K leaves H is the direction of increasing x, so the
perfect fit rectangle must sit inside zPQc and with the ideal vertex at a corner with larger x coordinate. See
Figure 20. As pointed out, this gives us a contradiction.

Case 2 is if the lift of H meets a component Qc of the branch locus oriented in the different direction as
K leaving H . As above, we can assume that K lies within Qc on O. Recall that zPQc consists of a union
of rectangles zRvi

along Qc, and H is contained in one of these rectangles. Since K is a finite interval, it
only goes through finitely many zRvi

, call this finite number the length of K. Notice that it is sometimes
possible to reduce the length of K by moving H closer to F and from zRviC1

to zRvi
while keeping it

inside zPQc . In any case, we can assume that the length of K is the minimum possible value among all
perfect fit rectangles that are disjoint from the images of Qci in O.
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K

H

Figure 20: In case 1, the ideal vertex of the perfect fit rectangle must lie inside zPQc , giving us a contradiction.

If the length of K is 1, then we have a perfect fit rectangle with H and K within a single rectangle zRv.
But then the perfect fit rectangle would not be properly embedded, so this is a contradiction.

Hence the remaining case is if we cannot move H from zRviC1
to zRvi

for some consecutive rectangles
zRvi

and zRviC1
along Qc. Let @C zRvi

be the side of zRvi
which Qc exits, and @� zRviC1

be the side of zRviC1

which Qc enters. (This is consistent with the notation used in Section 5.2.) We can at least move H onto
the image of @� zRviC1

in O in this case. Then we can pick a lift of H which lies in the image of the stable
face of some component zK of AN.B/nnBN.ˆred/ which contains @� zRviC1

. The assumption that we cannot
move H to zRvi

means that an endpoint of @C zRvi
lies on a component of @u zK which meets the other

stable face at a point whose image in AM.s/ has forward trajectory meeting this lift of H in its interior.
See Figure 21 for an illustration of the situation.

We claim that the crisscross property stated in Lemma 3.9 implies that at least one of the endpoints of
@C zRvi

lies on a component of @u zK whose branch locus L is oriented in the different direction as Qc and
meets the stable face of zK containing @� zRviC1

at a point z on or above @� zRviC1
. To check this, we let

J be the component of Bnnˆred corresponding to K, let zJ be the universal cover of J , and suppose that
Qc lies along y D�x in the branch locus of zJ under the model described in Lemma 3.9.

If w � 2, then the endpoint of @C zRvi
away from the side on which the tongue is attached along y D�x

to zJ lies on the component of @u zK whose branch locus corresponds to y D x�2=w, hence is oriented in
the different direction as Qc and meets the stable face of zK containing @� zRviC1

at a point strictly above
@� zRviC1

. This is the case that is illustrated in Figure 21.

If wD 1 and if the tongue attached along y D x�2 is done so in the opposite side as that along y D�x,
we have a similar conclusion: the endpoint of @C zRvi

away from the side on which the tongue is attached
along y D �x lies on the component of @u zK whose branch locus corresponds to y D x � 2, hence is
oriented in the different direction as Qc, but now meeting the stable face of zK containing @� zRviC1

at a
point on @� zRviC1

.

Finally, if w D 1 and if the tongue attached along y D x � 2 is done so in the same side as that along
y D�x, then the endpoint of @C zRvi

on this common side lies on the component of @u zK whose branch
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K

H

Qc

@C zRvi

@� zRviC1

L

z

Figure 21: In case 2, up to possibly rechoosing a lift of H that is higher up, we can assume that
the lift of H meets a component of the branch locus of AN.B/ oriented in the same direction as K

leaving H .

locus corresponds to y D x� 2, hence is oriented in the different direction as Qc and meets the stable face
of zK containing @� zRviC1

at a point on @� zRviC1
.

Now, if, in the claim, the point z lies on @� zRviC1
then we are in case 1 since the component of the branch

locus on which L in the claim lies on will meet the lift of H and is oriented in the same direction as K

leaving H .

If z is strictly above @� zRviC1
, then up to moving K closer to G, we can rechoose a lift of H on the

image of a higher zRv so that it meets a component of the branch locus of AN.B/ oriented in the different
direction as Qc, hence the same direction as K leaving H . See Figure 21. Then we have reduced to case 1
again. Hence in any case, we see that the perfect fit rectangle cannot exist.
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5.5 Proof of Theorem 5.11

By [Brunella 1995] and the standard fact that pseudo-Anosov flows are expansive (which can in turn
be proved via a symbolic dynamics argument making use of a Markov partition), �t admits a Birkhoff
section. Recall that this means there is an embedding of an oriented surface with boundary † ,!N , such
that @† is a union of orbits, int† is positively transverse to N , and every point intersects † in finite
forward time. We briefly sketch an argument here.

For every point x 2N , take a local section to the flow near x. The local section is divided into 2n regions
by the stable and unstable leaves containing x (where n D 2 unless x lies on a singular orbit). Name
them A1;B1; : : : ;An;Bn in a cyclic order. It is standard that the set of periodic orbits in a transitive
pseudo-Anosov flow is dense. For example, this can again proved using a symbolic dynamics argument,
similar to how we proved transitivity before. Use this fact to find nonsingular periodic orbits pi passing
through Ai . We can further assume that the stable and unstable leaves which pi lie on are orientable, since
the set of periodic orbits satisfying this is dense as well. Encode the closed orbits pi by periodic symbolic
sequences using a Markov partition, then concatenate these sequences to get a long periodic sequence
which corresponds to a closed orbit q in N “shadowing” p1; : : : ;pn, in that cyclic order. Now construct a
2n–gon on the local section with vertices at where p1; q;p2; q; : : : ;pn; q meet the local section. Here the
multiple listings of q refer to the multiple times q meets the local section as it shadows the pi’s. Connect
up the edges Œq;pk � and Œpk ; q� on the local section for each k by following the flow. After perturbation,
we get an immersed local Birkhoff section. See Figure 22. Since N is compact, we can take the union
of finitely many such surfaces and have all points meet the union in finite forward time. Then we can
perform some surgeries along the self-intersections to get a genuine Birkhoff section †.

Our argument here is a generalization of an argument of Fried [1983] to pseudo-Anosov flows. We
remark that there is an alternative argument to construct q in [Brunella 1995] without using symbolic
dynamics.We can further assume that pi are orientation preserving paths on the stable and unstable leaves
they lie on, since the set of orientation preserving periodic orbits is dense as well.

Let†ı be† without its boundary components, and let† be† with all its boundary components collapsed
to points. The first return map on † restricts to a pseudo-Anosov homeomorphism hı on †ı, with the
intersections of ƒs and ƒu with †ı acting as the stable and unstable foliations. This in turns induces
a pseudo-Anosov homeomorphism Nh on †. (Note that a map obtained this way on a general Birkhoff
section may have 1–pronged singularities, but this is eliminated by requiring that the components of @† lie
on orientable stable and unstable leaves.) By classical results, there is a smooth structure on † such that
Nh is smooth away from the singular points. Hence the mapping torus of .†; Nh/ carries a smooth structure
such that the suspension flow is smooth away from the singular points. Moreover, for each closed orbit of
the suspension flow, there is a neighborhood diffeomorphic to a neighborhood of the pseudohyperbolic
orbit of some ˆn;k;� in Definition 5.8. In particular this is true for the closed orbits which are suspensions
of points of †n†ı. We call these closed orbits the surgery orbits for ease of notation.
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p1

p2

p3

q

Figure 22: Left: pick a long periodic orbit q which weaves around the shorter periodic orbits
p1; : : : ;pn. Right: take a 2n–gon transverse to the flow with vertices at p1; q; : : : ;pn; q and
connect up its sides to produce an immersed local Birkhoff section.

Meanwhile, note that N n@† with the restricted �t flow is C 0–orbit equivalent to the suspension flow
on the mapping torus .†ı; hı/. In particular, there is a vector field on N n@† (with respect to some
smooth structure) whose trajectories are equal to the flow lines of �t . Using the orbit equivalence, we
can transfer neighborhoods of the surgery orbits, minus the surgery orbits themselves, to neighborhoods
of the ends of N n@†, then fill back in the components of @† to get neighborhoods of @† in N . It
remains to perform Dehn surgery on these neighborhoods, which we will do by cutting out small special
shaped subneighborhoods and gluing similarly shaped regions back in, and arguing that the result is orbit
equivalent to �t on the original manifold N . The first step is a restatement of the arguments in [Goodman
1983], while the second step relies on [Shannon 2021, Theorem 3.9].

Within each such neighborhood in N , locate and excise a small cross-shaped neighborhood of @† using
the orbit equivalence map between N n@† and the mapping torus of .†ı; hı/. Here we provide an
illustration of these cross-shaped neighborhoods in Figure 23 and refer to [Shannon 2021, Section 5.2] for
their precise definition. The key feature of these neighborhoods is that their boundaries have alternating
annulus faces, the flow transverse to half of the faces and tangent to the remaining faces.

Then we glue some cross-shaped neighborhoods back in by matching up the vector fields at the boundary,
so that the glued vector field determines a smooth flow (away from the singular orbits). See [Shannon
2021, Section 5.3] for an explicit description of this gluing map. The key observation that makes this
work is that there is a freedom in this gluing: one can do Dehn twists suitably along annulus faces which
the flow is transverse to, and still have the vector fields match up. So far there is no difference between
the Anosov case and the general pseudo-Anosov case.
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Figure 23: A cross-shaped neighborhood and the portion of the Birkhoff section constructed in it.

Then one uses a cone field argument to find the stable and unstable line bundles, Es and Eu, and show
that the glued up flow is pseudo-Anosov, provided that the neighborhood we excised is small enough.
This is done in the Anosov case in [Shannon 2021, Section 5.4], and is in fact more simple in the
pseudo-Anosov case, since one only needs to construct Es and Eu away from the singular orbits. On
the singular orbits, the definition only requires an orbit equivalence between a neighborhood in N and a
neighborhood in ˆn;k;�, and these are provided by the orbit equivalence between N n@† and the mapping
torus of .†ı; hı/, since by construction the orbits of @† are nonsingular. As remarked above, this method
of constructing (pseudo-)Anosov flows on Dehn surgeries appeared back in [Goodman 1983].

Finally, we construct a Birkhoff section on this glued flow by taking the portion of the original Birkhoff
section† outside of the excised cross-shaped neighborhood, and extending it inside the glued cross-shaped
neighborhood by taking a union of straight lines (with respect to the Euclidean metric on a canonical set
of coordinates) towards the pseudohyperbolic orbit. Call this surface †0. We illustrate the portion of †0

within each cross-shaped neighborhood in Figure 23 and refer to [Shannon 2021, Section 5.5] for precise
formulas, where it is also shown that this indeed defines a Birkhoff section, and that the return map h0 is
pseudo-Anosov. Moreover, h and h0 induce the same automorphism on �1.†/Š �1.†

0/, preserving the
peripheral subgroups. Hence using [Shannon 2021, Theorem 3.9], which applies to pseudo-Anosov flows
as well, as stated there, we get a C 0–orbit equivalence between �t on N and the smooth pseudo-Anosov
glued flow.

5.6 Properties of the construction

We point out two properties of the pseudo-Anosov flows we constructed. We will phrase our proofs in
terms of the initial topological pseudo-Anosov flow we constructed, but thanks to Theorem 5.11, one can
just take an orbit equivalence map to prove the properties for the smooth pseudo-Anosov flow as well.
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Proposition 5.15 The unstable lamination of the pseudo-Anosov flow, obtained by blowing air into the
leaves of the unstable foliation that contain the core orbits , is carried by B �M.s/.

Proof The unstable lamination can also be obtained by taking the unstable foliation on N.B/ and
blowing air into the nonmanifold leaves. There is a projection N.B/!B by definition, and this projects
the lamination to B.

Definition 5.16 Suppose a pseudo-Anosov flow � has a Markov partition as in Definition 5.9. De-
fine a directed graph G by letting the set of vertices be the flow boxes, and putting an edge from
.I
.j/
s � I

.j/
u � Œ0; 1�t / to .I .i/s � I

.i/
u � Œ0; 1�t / for every J

.ij ;k/
s .

Notice that G has a natural embedding in N by placing the vertices in the interior of the corresponding
flow box and placing the edges through the corresponding intersections J

.ij ;k/
s � I

.i/
u � f1g. G together

with this embedding in N is said to encode the Markov partition.

Proposition 5.17 The pseudo-Anosov flow constructed in Theorem 5.1 admits a Markov partition
encoded by the reduced flow graph ˆred.

Proof The flow boxes Ze form a Markov partition by construction, but notice that the graph that encodes
this Markov partition is not ˆred. Indeed, the flow boxes Ze correspond to edges, not vertices, of ˆred;
hence the graph encoding this Markov partition is instead a “dual” of ˆred.

What we will do is extract from this an alternate Markov partition that is encoded by ˆred. For each
vertex v of ˆred, recall the rectangle Rv considered in Section 5.2. Let Z0v be the closure of the union of
trajectories in M.s/ that start in the image of the interior of Rv and end when it meets the image of the
interior of another (possibly the same) Rv0 . These Z0v cover M.s/ with disjoint interiors, but they might
not be flow boxes. Instead, they are in general homeomorphic to f.s;u; t/ W s 2 Is;u 2 Iu; t 2 Œf .s;u/; 1�g

with a function f with discontinuities along finitely many lines u D u0. Each of these intervals of
discontinuity correspond to an adjacent pair of flow boxes leaving Rv.

Consider the total number of intervals of discontinuity at the bottom of all the Z0v. If this number is 0,
then we have a genuine flow box decomposition which gives a Markov partition encoded by ˆred.

If this number is positive, we claim that we can modify the Z0v to reduce it. Fix an interval of discontinuity
J of Z0v . Suppose the two sides to it on the bottom of the Z0v lie on the image of Rv1

and Rv2
. We can

isotope Rv1
near J , moving each point along a trajectory of the flow, so that Rv1

matches up with Rv2

along J , eliminating the discontinuity. See Figure 24.

One might worry that this produces new intervals of discontinuity, but we argue that this will not happen.
Using the same notation as above, since we only modify Rv1

near J , the operation only possibly creates
new intervals of discontinuity that lie on the same sides of Rv1

and Rv2
as J and share an endpoint

with J . Suppose K is such an interval. We illustrate one example of such a K in Figure 24. J \K is a
point x that lies on the image of a component c of the branch locus of N.B/ that passes through Rv1
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Z0v Z0v

Rv1 Rv2
Rv2

Rv1

K

J J

K

Figure 24: Modifying Rv to eliminate the intervals of discontinuity, so that we obtain a decompo-
sition by flow boxes.

and Rv2
. In particular, Rv1

and Rv2
match up along x already. (In Figure 24, we illustrate c as the

yellow line; compare with Figure 17, top.) So we can in fact isotope Rv1
while fixing K, ensuring that

we will not create a new interval of discontinuity at K. Doing this inductively, we can reduce the number
of intervals of discontinuity to 0.

Corollary 5.18 Given a cycle l of ˆ in M.s/, there is a periodic orbit c of the flow such that l is
homotopic to c. Conversely , given a periodic orbit c of the flow , there exists a cycle l of ˆ such that l is
homotopic to some multiple ck for k � 1.

Proof This is mostly a straightforward consequence of Proposition 5.17 and Lemma 3.8.

Given a cycle l of ˆ, we first assume that there is a homotopic cycle of ˆred, which we also write as l .
Then we can proceed as in the proof of transitivity to construct orbits of the flow passing through the
sequence of flow boxes corresponding to the sequence of vertices of ˆred passed through by l 0. A similar
argument as in that proof shows that such an orbit will be unique; hence the orbit c will be periodic, since
the sequence of flow boxes is periodic. A homotopy between l and c can now be constructed using a
straight line homotopy within each flow box.

We caution that c may not be a primitive closed orbit. Indeed, the above construction in fact gives a S1

leaf c0 of the singular 1–dimensional foliation on N.ˆred/. But when we quotient N.ˆred/ to M.s/, c0

may cover an orbit multiple times.

If l is not homotopic to a cycle of ˆred, then by the proof of Lemma 3.8, l must be an infinitesimal cycle
within a twisted wall. Let l 0 be the boundary cycle of that wall. Applying the argument above for this l 0,
we find a circular leaf c0 in N.ˆred/ lying on the stable boundary @sN.ˆred/ which is homotopic to l 0
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in M.s/. When we quotient N.ˆred/ to N.B/, c0 double covers its image c00, which is hence homotopic
to l . The image of c00 after quotienting to M.s/ will be the desired periodic orbit c in this case. Again,
we remark that c may not be primitive.

Conversely, given a periodic orbit c of the flow on M.s/, consider its preimage in N.ˆred/. This will be
a disjoint union of circular leaves which cover c possibly multiple times. Pick one of these circles c0.
The periodic sequence of flow boxes which it meets will determine a cycle l of ˆred �ˆ. A homotopy
between l and c can now be constructed using a straight line homotopy within each box as before.

Combining [Landry 2022, Theorem A] and [Landry et al. 2024, Proposition 5.7], it is known that when
jhs; lij � 3, the homology classes of the cycles of ˆ in M.s/ span a cone dual to a face of the Thurston
unit ball, namely the face determined by the negative of the Euler class of the veering triangulation

�e.�/D
X

1
2
.# prongs.
 /� 2/ � Œ
 � 2H1.M.s//:

Hence Corollary 5.18 implies that the homology classes of the periodic orbits of the pseudo-Anosov flow
in Theorem 5.1 span the same dual cone.

Remark 5.19 Corollary 5.18 and its proof also allows one to count the number of periodic orbits of
the pseudo-Anosov flow using ˆ. The precise statements one can get are essentially the same as those
shown in [Landry et al. 2023, Theorem 6.1], but again we remind the reader that our setting in this paper
is opposite to that in [Landry et al. 2023].

We elaborate on this a little more. The proof of Corollary 5.18 shows that for each cycle l of ˆ, there
is a unique primitive periodic orbit c of the flow homotopic to l , unless if l determines a circular leaf
that lies on the boundary of N.ˆred/ and multiple covers a periodic orbit of the flow under the quotient
maps. If such a circular leaf lies on @sN.ˆred/nn@

uN.ˆred/, then l lies on the boundary of a component
of Bnnˆred, and if the circular leaf multiple covers a periodic orbit, the component must be a Möbius band
with tongues. If such a circular leaf lies on @uN.ˆred/, then l can be homotoped into a torus end of M .

Conversely, the proofs of Corollary 5.18 and Lemma 3.8 show that for each primitive periodic orbit c of the
flow, there is a unique cycle l ofˆ homotopic to c, unless the preimage of c in N.ˆred/multiple covers c or
if l is homotopic to a boundary cycle of a wall. The former can only happen when the preimage lies in the
boundary of N.ˆred/. If the preimage lies in @sN.ˆred/nn@

uN.ˆred/, then c is homotopic to the core of a
component of Bnnˆred which is a Möbius band with tongues as above. If the preimage lies in @uN.ˆred/

then c is a core orbit. In the latter case, l is homotopic to an AB cycle, by the discussion in Remark 3.6.

6 Discussion and further questions

We conclude with some questions coming out of this paper.

In Section 3, we analyzed how the flow graph of a veering triangulation can fail to be strongly connected.
An equally interesting question is when does the flow graph fail to be strongly connected. For example,
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for layered veering triangulations, one could ask if there is a topological criterion on the monodromy
that determines whether the flow graph is strongly connected. Another interesting question is if having a
strongly connected flow graph is a generic property among all veering triangulations.

We already pointed out in Section 4 that in our argument for Theorem 4.1, there is a lot of room for
improvement for the bounds we used. A more interesting approach to try to obtain better bounds overall
is to study the flow graphs themselves. It is shown in [McMullen 2015] how to recover the dilatation of
the pseudo-Anosov monodromy from the Teichmüller polynomial of the associated fibered face. The
Teichmüller polynomial is in turn related to the veering polynomial of the layered veering triangulation,
defined in [Landry et al. 2024] as the inclusion of the Perron polynomial of the flow graph in the 3–
manifold. Now, the combinatorial rigidity of veering triangulations might impose restrictions on the
graph isomorphism type of flow graphs, which might in turn have consequences for the behavior of their
Perron polynomials, possibly giving some bounds on dilatations. We remark that Parlak [2024] computed
some data for veering polynomials of veering triangulations in the census. This data might be helpful for
extrapolating patterns for the approach above.

One motivation for improving the bound is to use Theorem 4.1 to solve the minimal dilatation problem
by computation. Starting with an upper bound, we can use Theorem 4.1 to reduce the search to a finite
list. However, it has been conjectured that one cannot do better than P D

�
1
2
.3C
p

5/
�2 (see [Hironaka

2010], where examples that asymptotically attain this bound are also shown). Plugging this into our
Theorem 4.1, we have to look at all 3–manifolds triangulated by at most 9:7�1015 veering tetrahedra. In
comparison, the veering triangulation census only covers triangulations up to 16 veering tetrahedra for
now, so huge advancements would have to be made before this approach is computationally feasible.

Finally, there are plenty of natural questions one could ask about our construction of the pseudo-Anosov
flow in Section 5.

We have been using the unstable branched surface B throughout this paper, but there is also a stable
branched surface associated to a veering triangulation, which can be defined as the unstable branched
surface associated to the veering triangulation with reversed coorientation on the faces. It is natural to ask
whether the stable lamination of our pseudo-Anosov flow is carried by the stable branched surface.

Also, one can repeat our entire construction with the stable branched surface replacing the unstable
branched surface. Then one can ask whether the pseudo-Anosov flows obtained using the stable and
unstable branched surfaces are C 0–orbit equivalent. A related development is that Parlak [2024] has
found veering triangulations whose veering polynomial is different from that of the veering triangulation
with reversed coorientation on the faces.

We mentioned in the introduction that the construction of a pseudo-Anosov flow without perfect fits
from a veering triangulation was first done by Schleimer and Segerman. It is an interesting question to
ask whether the flow constructed by our approach ends up being equivalent to the one constructed by
Schleimer and Segerman.
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One could also ask if our construction is inverse, in either direction, to the construction by Agol and
Guéritaud, which produces a veering triangulation out of a pseudo-Anosov flow without perfect fits. More
precisely, if one starts with a pseudo-Anosov flow without perfect fits relative to orbits fcig on a closed
orientable 3–manifold N and constructs a veering triangulation on N with fcig drilled out, then constructs
a pseudo-Anosov flow by filling in slopes that recover N , is the final pseudo-Anosov flow C 0–orbit
equivalent to the initial pseudo-Anosov flow? Conversely, if one starts with a veering triangulation and
constructs a pseudo-Anosov flow by filling along slopes s with jhs; lij � 2, then constructs a veering
triangulation with the core orbits drilled out, is the final veering triangulation isomorphic to the initial
veering triangulation? If one could show that our construction is equivalent to that of Schleimer and
Segerman, then the answer to both questions would be “yes”, since as mentioned in the introduction, this
is a feature of their construction.
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