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The homology of a Temperley–Lieb algebra on an odd number of strands

ROBIN J SROKA

We show that the homology of any Temperley–Lieb algebra T Ln.a/ on an odd number of strands
vanishes in positive degrees. This improves a result obtained by Boyd and Hepworth. In addition, we
present alternative arguments for two vanishing results of Boyd and Hepworth: the stable homology
of Temperley–Lieb algebras is trivial, and if the parameter a 2 R is a unit, then the homology of any
Temperley–Lieb algebra is concentrated in degree zero.

16E40, 20J05; 20F55

1 Introduction

Let a 2R be an element in a commutative unital ring. Intuitively, the Temperley–Lieb algebra TLn.a/
on n strands is the R–algebra whose underlying R–module has a basis given by isotopy classes of planar
diagrams. The multiplication of two planar diagrams is given by gluing them together. Any circles
appearing in the resulting diagram correspond to multiplication by a 2R. This is illustrated in Figure 1,
and a precise definition is given in the next section (see Definition 1).

The Temperley–Lieb algebra TLn.a/ has a natural augmentation �n WTLn.a/!R that maps all nonidentity
planar diagrams to zero. The augmentation gives R the structure of a TLn.a/–module, which we call the
trivial module and denote by 1. In this work, we examine the homology of Temperley–Lieb algebras
with coefficients in this module:

H?.TLn.a/;1/D TorTLn.a/
? .1;1/:

Recently, these homology groups have been studied by Boyd and Hepworth [2] and Randal-Williams [18].
Our new main finding is the following theorem, which removes all conditions in the vanishing results for
the homology of Temperley–Lieb algebras on an odd number of strands obtained by Boyd and Hepworth:

Theorem A Let R be a commutative unital ring , a 2R and n2N be odd. Consider the Temperley–Lieb
algebra TLn.a/ on n strands. Then

H0.TLn.a/;1/DR and H?.TLn.a/;1/D 0 for ? > 0:
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= a ��

Figure 1: Multiplication of two planar diagrams in TL6.a/.

Previously known results Assuming that the parameter a 2 R used to define TLn.a/ is of the form
aDvCv�1 for a unit v2R, Boyd and Hepworth proved that the homology of a Temperley–Lieb algebra on
an odd number n of strands is trivial in homological degrees 1�?�n�1 [2, Theorem B]. Theorem D of [2]
furthermore establishes that the homology groupsH?.TLn.a/;1/ are trivial in all positive degrees ?>0 if
nD 2kC1 is odd, the parameter aD vCv�1 is zero, and R is a field whose characteristic does not divide�
k
r

�
for any 1� r � k. In [18], Randal-Williams builds on the work of Boyd and Hepworth and shows that

the assumptions on the parameter a 2R can be removed using base change techniques [18, Theorem B’].
However, an invertibility condition on the binomials

�
k
r

�
remains [18, item (ii) before Corollary 3.2].

Our proof of Theorem A removes all of these conditions and gives an alternative argument for the
vanishing results due to Boyd and Hepworth, as well as the strengthening obtained by Randal-Williams.

In addition to Theorem A, our methods allow us to prove a vanishing line for the homology of Temperley–
Lieb algebras on an even number of strands. This vanishing line is weaker than the one obtained by Boyd
and Hepworth [2, Theorem B], who prove a slope-1 vanishing line; the one we prove is of slope 1

2
.

Theorem B Let R be a commutative unital ring , a2R and n2N be even. Consider the Temperley–Lieb
algebra TLn.a/ on n strands. Then H0.TLn.a/;1/DR,

H?.TLn.a/; 1/D 0 for 0 < ? < n

2
and

H?Cn=2.TLn.a/;1/ŠH?.TLn.a/;Cup.M// for ?� 0;

where Cup.M/ is a certain TLn.a/–module (see Definitions 7 and 11).

The coefficient TLn.a/–module Cup.M/ in Theorem B is, in general, not isomorphic to the Fineberg
module in the description of the higher homology groups obtained by Boyd and Hepworth [2, Theorem 5.1].

Remark In contrast with Temperley–Lieb algebras on an odd number of strands, the homology of a
Temperley–Lieb algebras on an even number n of strands can be nontrivial in positive degrees. This
was established in [2, Theorem C], which states that Hn�1.TLn.a/;1/ is nonzero if n is even and
aD vC v�1 2R is not a unit.
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Together, Theorems A and B give an alternative proof of the fact that the family of Temperley–Lieb
algebras fTLn.a/gn2N satisfies homological stability and that the stable homology is trivial:

colim
n!1

H?.TLn.a/;1/D
�
R if ?D 0;
0 if ? > 0:

This also follows from the work of Boyd and Hepworth and is discussed in [2]. Homological stability
questions for groups play a fundamental role in algebraic topology and algebraic K–theory, eg [4; 6; 7;
8; 9; 10; 11; 14; 21; 22]. This article can be seen as a contribution to the set of ideas formulated by
Hepworth [12], Boyd and Hepworth [2] and Boyd, Hepworth and Patzt [3], which aim to extend these
techniques to families of abstract algebras.

Building on Theorems A and B, we can formulate an alternative argument for [2, Theorem A], which
shows that the homology of any Temperley–Lieb algebra is trivial in positive degrees if the parameter
a 2R is a unit.

Theorem C ([2], Boyd and Hepworth) Let R be a commutative unital ring , a 2R and n2N. Consider
the Temperley–Lieb algebra TLn.a/ on n strands. If a 2R is a unit , then

H0.TLn.a/;1/DR and H?.TLn.a/; 1/D 0 for ? > 0:

Comparison with work of Boyd and Hepworth [2] and Boyd [1] The general strategy of proof that
we employ is similar to the one used by Boyd and Hepworth, ie we construct a certain highly connected
TLn.a/–chain complex and study spectral sequences attached to it. The chain complex that we use is
different from the complex of planar injective words studied by Boyd and Hepworth [2]. Indeed, we
will use the “cellular Davis complex” TLD of the Temperley–Lieb algebra TLn.a/. The structure of the
complex TLD is “sensitive” to the question of whether the number of strings of a Temperley–Lieb algebra
is even or odd. This is what enables us to prove Theorem A. The chain complex TLD has a simple
diagrammatic description and can be seen as an algebraic analogue of the classical Davis complex of the
symmetric group equipped with the “Coxeter cell” CW–structure; see Davis [5, Chapters 7 and 8]. The
classical Davis complex of a finite symmetric group Sn is a contractible CW–complex with Sn–action.
We prove the following Temperley–Lieb analogue:

Theorem D The “cellular Davis complex” TLD of a Temperley–Lieb algebra (see Definition 8) is a
contractible TLn.a/–chain complex with H0.TLD/D 1.

From this perspective, the content of this paper is inspired by and in direct analogy with the approach that
Boyd employed in [1] to derive formulas for the low-dimensional homology of Coxeter groups. The first
two chapters of the author’s thesis [19] make this analogy precise and explain how the chain complex
TLD was discovered via this analogy.
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3530 Robin J Sroka

Outline In Section 2, we define the Temperley–Lieb algebra TLn.a/ and its trivial module 1. At the
beginning of Section 3, we introduce a class of left submodules Cup.F / of TLn.a/ which will play an
important role. In Section 3.1, we use these modules to define the “cellular Davis complex” TLD of a
Temperley–Lieb algebra and establish that TLD is contractible (Theorem D). In Section 3.2, we study the
homology of the Temperley–Lieb algebra TLn.a/ with coefficients in Cup.F /. These homology groups
will appear on the E1–page of the spectral sequences that we use in Section 3.3 to formulate the proofs
of Theorems A, B and C.

Acknowledgements This article is based on the second chapter of my PhD thesis [19] written at the
University of Copenhagen under the direction of Nathalie Wahl. All results presented here are contained
in [19]. I am grateful to Nathalie Wahl, Richard Hepworth and Rachael Boyd for their constructive
feedback and many enlightening discussions while completing this work. I would like to thank Richard
Hepworth for fruitful conversations about related ideas [1; 12; 19, Chapter 3] that eventually inspired
this project. For clarifying conversations and helpful comments, I would like to thank Jonas Stelzig.
I am grateful to the referee for their suggestions and careful reading of this work. This research was
primarily supported by the European Research Council (ERC) under the European Union’s Horizon 2020
research and innovation programme (grant agreement 772960), as well as by the Danish National Research
Foundation through the Centre for Symmetry and Deformation (DNRF92) and the Copenhagen Centre
for Geometry and Topology (DNRF151). It was partially supported by NSERC Discovery Grant A4000
in connection with a Postdoctoral Fellowship at McMaster University, and by the Swedish Research
Council under grant 2016-06596 while the author was in residence at Institut Mittag-Leffler in Djursholm
Sweden during the semester Higher algebraic structures in algebra, topology and geometry. I gratefully
acknowledge this support.

2 Temperley–Lieb algebras

This section contains necessary background knowledge on Temperley–Lieb algebras that we mainly
learned from Kassel and Turaev [15] and the exposition of Boyd and Hepworth [2]. In 1971, Temperley
and Lieb introduced these algebras in their article [20].

Definition 1 [2, Definition 2.1; 15, Definition 5.24] Let R be a commutative unital ring, a 2 R and
n 2 N. The Temperley–Lieb algebra TLn.a/ with parameter a 2 R is the R–algebra with generators
U1; : : : ; Un�1 and the relations

(i) UiUj D UjUi if ji � j j � 2,

(ii) UiUjUi D Ui if j D i ˙ 1,

(iii) U 2i D aUi for all i .

Algebraic & Geometric Topology, Volume 24 (2024)
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The unit 1 corresponds to the empty product of the generators Ui . Note that

TL0.a/D TL1.a/DR:

Jones [13] used Temperley–Lieb algebras to define the polynomial invariant for knots, which we now call
the Jones polynomial. The following diagrammatic interpretation is due to Kauffman [16; 17]. We follow
[15, Section 5.7.4] in our exposition.

Definition 2 A planar diagram of n � 1 arcs D D f
1; : : : ; 
ng in Œ0; 1��R is a disjoint union of n
smoothly embedded arcs 
i W Œ0; 1�! Œ0; 1��R such that

(i) the images of any two arcs 
i and 
j are pairwise disjoint,

(ii) the points 
i .0/ and 
i .1/ are a subset of the points

f.0; 1/; : : : ; .0; n/; .1; 1/; : : : ; .1; n/g;

(iii) the tangent vectors at 
i .0/ and 
i .1/ are parallel to the x–axis R� 0.

Let a2R and Pn.a/ be the freeR–module spanned by the set of isotopy classes ŒD� of planar diagramsD.
We will now explain how the module Pn.a/ can be equipped with the structure of an associativeR–algebra.
Given two isotopy classes of planar diagrams ŒD� and ŒD0�, we obtain a diagram in Œ0; 1��R by pasting
D into

�
0; 1
2

�
�R and D0 into

�
1
2
; 1
�
�R. We can choose representatives D 2 ŒD� and D0 2 ŒD0� such

that the resulting diagram consists of a planar diagram D ıD0 and k.D;D0/� 0 circles. The product of
ŒD� and ŒD0� is defined as

ŒD� � ŒD0�D ak.D;D
0/ŒD ıD0�:

The reader is invited to revisit Figure 1, which illustrates this definition.

Theorem 3 [2, Section 2; 15, Theorem 5.34] The Temperley–Lieb algebra TLn.a/ is isomorphic to the
R–algebra of planar diagrams Pn.a/. The isomorphism is given by mapping a generator Ui 2 TLn.a/ to
the isotopy class of the planar diagram in Figure 2.

Definition 4 An element A 2 TLn.a/ is called a planar diagram in TLn.a/ if the isomorphism in
Theorem 3 identifies A with the isotopy class ŒD� 2 Pn.a/ of some planar diagram D of n arcs.

1

i

n:::

:::

Ui 7!

Figure 2: Translating between algebraic and diagrammatic definition of TLn.a/.
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Let cTLn be the two-sided ideal of TLn D TLn.a/ generated by the set

fUi W 1� i � n� 1g:

In the diagrammatic interpretation (see Theorem 3), cTLn is spanned by all planar diagrams except the
identity diagram.

Definition 5 The trivial module 1 of the Temperley–Lieb algebra TLnD TLn.a/ is defined via the exact
sequence

0! cTLn ,! TLn� 1! 0:

Equivalently, the trivial module 1 is the 1–dimensional TLn–module coming from the augmentation
� W TLn!R that sends every generator Ui to zero.

3 Vanishing theorems for the homology of Temperley–Lieb algebras

This section builds on ideas contained in [1; 2]. We introduce the cellular Davis complex for Temperley–
Lieb algebras TLD and prove that it is contractible. We then use it to derive the vanishing results for the
homology of Temperley–Lieb algebras, which we stated as Theorems A, B and C in Section 1.

Throughout this section, let TLD TLn.a/ denote the Temperley–Lieb algebra on n strands with parameter
a 2R and let U1; : : : ; Un�1 be the standard generators. We sometimes identify fU1; : : : ; Un�1g with the
set hn� 1i D f1; : : : ; n� 1g.

Definition 6 (i) A (possibly empty) subset F � hn� 1i is called innermost if for any

i ¤ j 2 F we have that ji � j j � 2:

(ii) Let A 2 TL be a planar diagram in the sense of Definition 4, with corresponding isotopy class
ŒA�2Pn.a/. A2 TL is represented by certain monomials in the generating set fU1; : : : ; Un�1g. We write

F.A/D fUik W AD Ui1 � � � � �Uikg

for the set of possible last letters in a monomial representing A. Using the identification in Theorem 3,
the set F.A/ has the following diagrammatic interpretation:

F.A/D fUi W ŒA� has an arc connecting .1; i/ and .1; i C 1/g:

We call an arc connecting .1; i/ and .1; i C 1/ an innermost right cup at position i and F.A/ the set of
innermost right cups of the planar diagram A 2 TL; see Figure 3 for an example. Note that F.A/ is an
innermost set.

Algebraic & Geometric Topology, Volume 24 (2024)
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Observe that by Definition 1(i) all generators in an innermost set commute with each other. The following
modules are therefore well defined:

Definition 7 Let F � hn� 1i be an innermost set. Then we write Cup.F / for the left submodule of TL
generated by

Q
i2F Ui . Using Theorem 3, this is the TL–submodule of TLn.a/Š Pn.a/ spanned by all

isotopy classes of planar diagrams ŒA� 2 Pn.a/ that have an innermost right cup at position i for any
i 2 F , ie that satisfy F � F.A/.

3.1 The cellular Davis complex of a Temperley–Lieb algebra

Using the definitions above, we will now introduce and study the TL–chain complex that enables us to
formulate our proofs for Theorems A, B and C.

Definition 8 The cellular Davis complex .TLD; ı/ of TL is the chain complex whose chain module in
degree ˛ is given by

TLD˛ D
M

F�hn�1i innermost
jF jD˛

Cup.F /

and whose differential
ı˛ W TLD˛! TLD˛�1

factorizes summandwise as
Cup.F /!

M
s2F

Cup.Fs/ ,! TLD˛�1;

where Fs D F �fsg for s 2 F . The first arrow in this factorization is the map

A 7!
X
s2F

.�1/
F .s/�
Fs

F .A/;

where �Fs

F W Cup.F / ,! Cup.Fs/ is the inclusion and 
F .s/D jfs0 2 F W s0 < sgj.

In other words, the chain module TLD˛ of the cellular Davis complex TLD has an R–module basis
consisting of planar diagrams A with ˛ D jF j marked innermost right cups F � F.A/ (see Definition 7)
and the value of the differential ı W TLD˛ ! TLD˛�1 on such a marked planar diagram .A; F / is an

1

4

1

4
A D D

F.A/D f1; 4g

AD U5U2U3U4U1

D U5U2U3U1U4

Figure 3: The set of innermost right cups of an element in TL6.
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alternating sum of the marked planar diagrams .A; Fs/, ie copies of the same planar diagram A with one
mark s 2 F erased. See Figure 4 for an example.

We start by verifying that this really defines a chain complex. This argument is standard.

Lemma 9 The cellular Davis complex .TLD; ı/ is a chain complex of left TL–modules.

Proof Let A 2 Cup.F /� TLD˛ be a planar diagram. We need to argue that

ı2.A/D 0 2 TLD˛�2:

Observe that

ı2.A/D ı

�X
s2F

.�1/
F .s/�
Fs

F .A/

�
D

X
s2F

.�1/
F .s/

� X
t2Fs

.�1/
Fs .t/�
Fs;t

F .A/

�
D

X
.s;t/2F�F

s¤t

.�1/
F .s/C
Fs .t/�
Fs;t

F .A/;

where �Fs;t

F W Cup.F / ,! Cup.Fs;t / denotes the inclusion. Clearly, Fs;t D Ft;s . It therefore suffices to
show that if s < t , then

.�1/
F .s/C
Fs .t/C .�1/
F .t/C
Ft .s/ D 0:

This holds because s < t implies that


F .t/D 
Fs
.t/C 1 and 
F .s/D 
Ft

.s/:

The TL–equivariance of the differential ı follows from the TL–equivariance of the inclusion maps.

Theorem 10 The cellular Davis complex .TLD; ı/ is contractible with

H0.TLD; ı/D 1:

1

4

A

7�!

ı2

1

.�1/1.�1/0

Cup.f1; 4g/ Cup.f4g/ Cup.f1g/

�
f1g
f1;4g

.A/

C
4

�
f4g
f1;4g

.A/

Figure 4: The differential of .TL6D; ı/ evaluated on an element in Cup.f1; 4g/.
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Proof Let A2 TL be a planar diagram and F �hn�1i be an innermost set. Recall from Definition 7 that

A 2 Cup.F / () F � F.A/:

Let Rf.A; F /g � Cup.F / denote the R–linear summand spanned by the isotopy class of A in the
diagrammatic picture using the convention that Rf.A; F /g D 0 if F ª F.A/. We think of .A; F /
as a planar diagram with jF j–marked innermost right cups. Then the R–module Cup.F / admits the
decomposition

Cup.F /D
M
A2TL

planar diagram

Rf.A; F /g:

Hence, the R–module TLD˛ can be written as

TLD˛ D
M

F�hn�1i innermost
jF jD˛

Cup.F /D
M

F�hn�1i innermost
jF jD˛

M
A2TL

planar diagram

Rf.A; F /g

D

M
A2TL

planar diagram

M
F�hn�1i innermost

jF jD˛

Rf.A; F /g D
M
A2TL

planar diagram

TLD.A/˛;

where we define

TLD.A/˛ D
M

F�F.A/
jF jD˛

Rf.A; F /g:

Observe that for any planar diagram A 2 TL, the sequence of submodules fTLD.A/˛g˛2N forms an
R–module subcomplex TLD.A/ of the cellular Davis complex TLD because the partial differentials in
TLD are given by inclusion maps Cup.F / ,! Cup.Fs/ with Fs � F (see Definition 8). It follows that,
as a chain complex in R–modules, the cellular Davis complex is a coproduct:1

TLDD
M
A2TL

planar diagram

TLD.A/:

We will calculate the homology of each subcomplex TLD.A/. If AD id, then F.A/D∅ and TLD.A/D
Rf.id;∅/gŒ0� is concentrated in degree 0. IfA¤ id, then TLD.A/ is exactly the augmented chain complex
zC.�/ŒC1� of the simplex � on the vertex set F.A/, where the vertices are ordered using F.A/� hn�1i
and the chain complex is shifted up by one degree. Therefore the homology of the complex TLD.A/
is zero in every degree if A¤ id. The identification H0.TLD; ı/D 1 as a TL–module holds because
im.ı1/D cTL, where the right side is as in Definition 5, and TLD0 D Cup.∅/D TL.

1A similar splitting was used by Boyd, Hepworth and Patzt in their work on the homology of Brauer algebras [3, Definition 5.5].
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3.2 Homology with coefficients in Cup.F /

Let F � hn� 1i be an innermost set. The homology groups H?.TL;Cup.F // of the Temperley–Lieb
algebra TL with coefficients in Cup.F / will occur on the E1–page of the spectral sequences, which we
will use to derive Theorem A, B and C. For this reason, we will now study the modules Cup.F / and
the homology groups H?.TL;Cup.F //. We begin by collecting several important observations about
innermost sets.

The following notion explains why the cellular Davis complex is “sensitive” to the question of whether
the underlying Temperley–Lieb algebra is defined on an even or an odd number of strands:

Definition 11 If n is even, we call M D f1; 3; : : : ; n� 1g � hn� 1i the unique maximal innermost set.

Note that if n is even, then M D f1; 3; : : : ; n�1g � hn�1i really is the unique innermost set of maximal
cardinality. If the number of strands n� 3 is odd, then in contrast to the even case there exist multiple
different innermost sets of maximal cardinality (see Figure 5).

1

4

6

1

3

6

1

3

5

A0 A1 A2

Cup.f1; 4; 6g/ Cup.f1; 3; 6g/ Cup.M/

Figure 5: Innermost sets of maximal cardinality for h6i (left) and h5i (right).

In particular the next observation always applies, if the Temperley–Lieb algebra is defined on an odd
number n� 3 of strands:

Observation 12 If F �hn�1i is nonempty and innermost , but not the unique maximal innermost set M ,
then there exists an index 1� i �n such that either i�1…F and sD iC12F , or i …F and sD i�22F .

Proof Since F is nonempty, there exists a smallest z 2 F . If z ¤ 1, we set 1 � i WD z � 1 � n. Then
i � 1 D z � 2 … F by the minimality of z and s D i C 1 D z 2 F by definition. Hence, the first case
applies. Assume that z D 1 2 F . Because F ¤M , the set f1; : : : ; ng n fj; j C 1 W j 2 F g is nonempty
and contains a smallest index i . The assumption 1 2 F and the minimality of i imply that i � 3 is an odd
number such that s D i � 2 2 F . Therefore the second case applies.

Algebraic & Geometric Topology, Volume 24 (2024)
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In the setting of Observation 12 we can think of the index 1 � i � n as the vertex .1; i/ on the right
side of any planar diagram A in Cup.F /. Then, this vertex has the property that it is next to the marked
innermost right cup at position s 2 F but not itself the start or endpoint of a marked innermost right cup.

The following proposition is closely related to [2, Section 3] and replaces the “inductive resolutions”,
which Boyd and Hepworth introduced, in our setting:

Proposition 13 Let F � hn� 1i be nonempty and innermost but not unique maximal innermost , and
choose i 2 f1; : : : ; ng and s 2 fi � 2; i C 1g as in Observation 12. Let Fs D F �fsg. Then

Cup.F / ,! Cup.Fs/

is a retract of left TL–modules.

Proof Assume that i … F and s D i � 2 2 F . Consider the map of left modules (see Figure 6)

Cup.Fs/! Cup.F / given by c 7! c � .Ui�1Ui�2/:

We need to check that this map is well defined. If c 2 Cup.Fs/, then c DA �
Q
j2Fs

Uj for some A 2 TL.
Therefore

c � .Ui�1Ui�2/D

�
A �

Y
j2Fs

Uj

�
.Ui�1Ui�2/D .A �Ui�1/

� Y
j2F

Uj

�
;

where we used that Ui�1 commutes with all fUzgz2Fs
and that s D i � 2 2 F . The commutativity of

Ui�1 with fUzgz2Fs
follows from Observation 12 because

j.i � 1/� zj �minfj.i � 1/� .i � 4/j; j.i � 1/� .i C 1/jg � 2 for any z 2 Fs:

We therefore proved that c � .Ui�1Ui�2/ 2 Cup.F /, and hence that the map is well defined. To see that it
defines a retraction, we observe that if c 2 Cup.F /, then c D c0 �Ui�2. Therefore

c � .Ui�1Ui�2/D c
0
� .Ui�2Ui�1Ui�2/D c

0
�Ui�2 D c:

The argument for the case where i � 1 … F and s D i C 1 2 F is similar. We consider the map of left
modules

Cup.Fs/! Cup.F / given by c 7! c � .UiUiC1/:

A A A �Ui�1 �Ui�2

7!

Cup.f1; 4g/ Cup.f4g/ Cup.f1; 4g/

�
7!
r

i

s D i � 2

D A4

1

4 4

1

Figure 6: Illustration of the retraction constructed in Proposition 13.
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By Observation 12, ji � zj �minfji � .i � 2/j; ji � .i C 3/jg � 2 for z 2 Fs . This again implies that the
map is well defined. To see that it defines a retraction, we use that if c 2 Cup.F / then c D c0 �UiC1.
Therefore

c � .UiUiC1/D c
0
� .UiC1UiUiC1/D c

0
�UiC1 D c:

Remark 14 The elements that we use to define the retractions in Proposition 13 are exactly the same
elements that Boyd and Hepworth use in [2, Section 3] to define “inductive resolutions”.

The role of the following corollary in our arguments is similar to the role of Theorem F in [2].

Corollary 15 Let F � hn� 1i be innermost , but not unique maximal innermost. Then

Cup.F / ,! TL

is a retract of left TL–modules and H?.TL;Cup.F //D 0 for ? > 0.

Proof If F D ∅, the retraction statement is trivial because Cup.∅/D TL. If F ¤ ∅, it follows from
Proposition 13 by induction. The fact that Cup.F / is a retract of the free TL–module TL implies that
Cup.F / is a projective TL–module. Therefore H?.TL;Cup.F //D 0 for ? > 0.

In the next lemma, we compute the degree-zero homology of the Temperley–Lieb algebras with coefficients
in Cup.F /:

Lemma 16 Assume that F � hn� 1i is an innermost set. Then

H0.TL;Cup.F //Š 1˝TL Cup.F /Š

8<:
R if F D∅;
R=a if nD 2 and F D f1g;
0 if n > 2 and F ¤∅:

Proof The short exact sequence defining the trivial module 1 (Definition 5) and the right exactness of
�˝TL Cup.F / yield an exact sequencecTL˝TL Cup.F /! TL˝TL Cup.F /! 1˝TL Cup.F /! 0:

It follows that

1˝TL Cup.F /Š
Cup.F /cTL �Cup.F /

:

We use this to compute 1˝TL Cup.F / in each case. If F D∅, then Cup.F /D TL and we find that

1˝TL Cup.F /D 1˝TL TLŠR:

If nD 2 and F D f1g, then Cup.F /D cTLDRfU1g and cTL �cTLD aRfU1g. Hence,

1˝TL Cup.F /ŠR=a:
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For the last case, we assume that n > 2 and F ¤∅. We will prove that

Cup.F /� cTL �Cup.F /:

Consider an element A 2 Cup.F /. The definition of Cup.F / implies that AD A0 �
�Q

j2F Uj
�

for some
A0 2 TL. We fix a generator Ui , whose index i has the property that i 2F ¤∅. Because TL has n�1> 1
generators, i � 1 or i C 1 also indexes a generator Ui�1 or UiC1. By Definition 1(ii), it follows that

A0 � .UiUi�1/ �
Y
j2F

Uj D A
0
�

Y
j2F

Uj or A0 � .UiUiC1/ �
Y
j2F

Uj D A
0
�

Y
j2F

Uj :

Note in either case, B WD A0 � .UiUi�1/ or B WD A0 � .UiUiC1/, that B 2 cTL. Therefore

AD B �

� Y
j2F

Uj

�
2 cTL �Cup.F /:

It follows that Cup.F /� cTL �Cup.F /, and hence that 1˝TL Cup.F /Š 0.

Remark 17 The homology with trivial coefficients of the Temperley–Lieb algebra TL on one generator
has been completely computed by Boyd and Hepworth in [2, Proposition 7.1]. For the case nD 2 and
F D f1g in Lemma 16, it holds that H0.TL;Cup.F //ŠH1.TL; 1/. In particular, this case can also be
deduced from [2, Proposition 7.1].

3.3 Proof of Theorems A, B and C

We will now prove the three main theorems. The following result, stated as Theorem A in Section 1,
generalizes [2, Theorem D] and the “odd” part of [2, Theorem B].

Theorem 18 If n is odd , then H0.TL; 1/DR and H?.TL; 1/D 0 for ? > 0.

Proof Let P? be a free resolution of the trivial TL–module 1, and consider the double complex
P?˝TL TLD, where TLD is the cellular Davis complex for Temperley–Lieb algebras (see Definition 8).
The horizontal and vertical filtration of P?˝TL TLD give rise to two spectral sequences. The vE1–page
of the vertical spectral sequence is given by

vE1˛;ˇ DHˇ .P˛˝TL TLD/Š P˛˝TLHˇ .TLD/:

It follows from Theorem 10 that the vE1–page is concentrated in degree ˇ D 0, where it is given by the
complex vE1?;0 Š P?˝TL 1. Then by definition,

vE2˛;0 DH˛.TL; 1/:
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The collapsing of the vertical spectral sequence on the vE2–page implies that the horizontal spectral
sequence converges to H˛Cˇ .TL;1/. The hE1–page of the horizontal spectral sequence is given by

hE1˛;ˇ DHˇ .P?˝TL TLD˛/Š
M

F�hn�1i innermost
jF jD˛

Hˇ .P?˝TL Cup.F //

Š

M
F�hn�1i innermost

jF jD˛

Hˇ .TL;Cup.F //:

Because n is odd, Corollary 15 applies to any innermost subset F � hn� 1i. Together with Lemma 16,
this implies that

hE1˛;ˇ D

�
R if .˛; ˇ/D .0; 0/;
0 if .˛; ˇ/¤ .0; 0/:

The theorem follows.

The next vanishing result, stated as Theorem B in Section 1, is similar to the “even” part of [2, Theorem B].
The vanishing line which Boyd and Hepworth obtain is stronger than ours — slope 1 versus slope 1

2
— and

in fact optimal [2, Theorem C]. The description of the high-dimensional homology in terms of homology
with coefficients is new in the sense that the coefficient system is different from the one in [2].

Theorem 19 If n is even , then H0.TL;1/DR, H?.TL;1/D 0 for 0 < ? < n
2

and

H?Cn=2.TL;1/ŠH?.TL;Cup.M//

for ?� 0 and where M D f1; 3; : : : ; n� 1g � hn� 1i is the unique maximal innermost set.

Proof By the same argument as in the proof of Theorem 18, we obtain a spectral sequence converging
to H˛Cˇ .TL; 1/ with hE1–page

hE1˛;ˇ Š
M

F�hn�1i innermost
jF jD˛

Hˇ .TL;Cup.F //:

Because n is even, there exists a unique innermost set M D f1; 3; : : : ; n � 1g � hn � 1i of maximal
cardinality jM j D n

2
. Corollary 15 applies to all innermost subsets F � hn� 1i except M . Together with

Lemma 16, this implies that

hE1˛;ˇ D

8<:
R if .˛; ˇ/D .0; 0/;

Hˇ .TL;Cup.M// if .˛; ˇ/D
�
n
2
; ˇ
�
;

0 else.

If nD 2, the only possibly nontrivial differential on the hE1–page

d1 WH0.TL;Cup.M//D 1˝TLCup.M/! 1˝TLTLDH0.TL; TL/; I˝A 7! I˝AD I �A˝1D 0

is the zero map. We conclude that the spectral sequence collapses on the hE1–page.
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Remark 20 In the setting of Theorem 19, Lemma 16 implies that Hn=2.TL; 1/D R=a if nD 2, and
that Hn=2.TL; 1/D 0 if n > 2. This is consistent with [2, Theorem B and C] mentioned above.

We finish by presenting an alternative proof of [2, Theorem A], ie Theorem C stated in Section 1.

Theorem 21 [2, Theorem A] If the parameter a 2R is a unit , then

H0.TL;1/DR and H?.TL; 1/D 0 for ? > 0:

Proof By Theorems 18 and 19, it suffices to prove that, for n � 2 even and M � hn� 1i the unique
maximal innermost set, H?.TL;Cup.M// D 0 for ? � 0. To see this, we consider the innermost set
M1 DM �f1g. There is a map of left TL–modules

Cup.M1/! Cup.M/ given by c 7! c �U1:

Observe that the map obtained by precomposition with the inclusion

Cup.M/ ,! Cup.M1/! Cup.M/

is multiplication by a. If a is a unit, the inclusion induced map

H?.TL;Cup.M//!H?.TL;Cup.M1//

must therefore be an injection. By Corollary 15, the target of this map is zero if ? > 0. For ?D 0, we
invoke Lemma 16.
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