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The homology of a Temperley—Lieb algebra on an odd number of strands

ROBIN J SROKA

We show that the homology of any Temperley—Lieb algebra 7L, (a) on an odd number of strands
vanishes in positive degrees. This improves a result obtained by Boyd and Hepworth. In addition, we
present alternative arguments for two vanishing results of Boyd and Hepworth: the stable homology
of Temperley—Lieb algebras is trivial, and if the parameter a € R is a unit, then the homology of any
Temperley—Lieb algebra is concentrated in degree zero.

16E40, 20J05; 20F55

1 Introduction

Let a € R be an element in a commutative unital ring. Intuitively, the Temperley-Lieb algebra 7L, (a)
on n strands is the R—algebra whose underlying R—module has a basis given by isotopy classes of planar
diagrams. The multiplication of two planar diagrams is given by gluing them together. Any circles
appearing in the resulting diagram correspond to multiplication by a € R. This is illustrated in Figure 1,
and a precise definition is given in the next section (see Definition 1).

The Temperley—Lieb algebra 7L, (a) has a natural augmentation €, : 7L, (a) — R that maps all nonidentity
planar diagrams to zero. The augmentation gives R the structure of a 7L, (a)-module, which we call the
trivial module and denote by 1. In this work, we examine the homology of Temperley—Lieb algebras
with coefficients in this module:

Ho(TLn(a), 1) = Tor[“"@ (1, 1).

Recently, these homology groups have been studied by Boyd and Hepworth [2] and Randal-Williams [18].
Our new main finding is the following theorem, which removes all conditions in the vanishing results for
the homology of Temperley—Lieb algebras on an odd number of strands obtained by Boyd and Hepworth:

Theorem A Let R be a commutative unital ring, a € R and n € N be odd. Consider the Temperley-Lieb
algebra TL,(a) on n strands. Then
Ho(TLy(a),)=R and H.(TLy(a),1)=0 for x> 0.
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Figure 1: Multiplication of two planar diagrams in 7L¢(a).
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Previously known results Assuming that the parameter ¢ € R used to define 7L, (a) is of the form
a=v4v~! foraunit v € R, Boyd and Hepworth proved that the homology of a Temperley—Lieb algebra on
an odd number 7 of strands is trivial in homological degrees 1 <+ <n—1 [2, Theorem B]. Theorem D of [2]
furthermore establishes that the homology groups H, (7L, (a), 1) are trivial in all positive degrees * > 0 if
n =2k 4+ 1 is odd, the parameter a = v + v~1 is zero, and R is a field whose characteristic does not divide
(’;) for any 1 <r < k. In [18], Randal-Williams builds on the work of Boyd and Hepworth and shows that
the assumptions on the parameter a € R can be removed using base change techniques [18, Theorem B’].
However, an invertibility condition on the binomials (];) remains [18, item (ii) before Corollary 3.2].

Our proof of Theorem A removes all of these conditions and gives an alternative argument for the
vanishing results due to Boyd and Hepworth, as well as the strengthening obtained by Randal-Williams.

In addition to Theorem A, our methods allow us to prove a vanishing line for the homology of Temperley—
Lieb algebras on an even number of strands. This vanishing line is weaker than the one obtained by Boyd
and Hepworth [2, Theorem B], who prove a slope-1 vanishing line; the one we prove is of slope %

Theorem B Let R be a commutative unital ring, a € R and n € N be even. Consider the Temperley—Lieb
algebra TLy(a) on n strands. Then Ho(TL,(a),1) = R,

Ho(TLp(a),1) =0 for0<x< %

and
H,n2(TLu(a), 1) = Hy(TLy(a), Cup(M)) for » >0,

where Cup(M) is a certain TLy(a)-module (see Definitions 7 and 11).

The coefficient 7L, (a)-module Cup(M ) in Theorem B is, in general, not isomorphic to the Fineberg
module in the description of the higher homology groups obtained by Boyd and Hepworth [2, Theorem 5.1].

Remark In contrast with Temperley—Lieb algebras on an odd number of strands, the homology of a
Temperley—Lieb algebras on an even number n of strands can be nontrivial in positive degrees. This
was established in [2, Theorem C], which states that H,_1(7L,(a), 1) is nonzero if n is even and
a=v+v~! e Risnot a unit.
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Together, Theorems A and B give an alternative proof of the fact that the family of Temperley—Lieb
algebras {7L,(a)}neN satisfies homological stability and that the stable homology is trivial:

R if x=0,

0 ifx>0.

This also follows from the work of Boyd and Hepworth and is discussed in [2]. Homological stability

colim H,(TLy(a),1) =
n—-oo

questions for groups play a fundamental role in algebraic topology and algebraic K—theory, eg [4; 6; 7;
8; 9; 10; 11; 14; 21; 22]. This article can be seen as a contribution to the set of ideas formulated by
Hepworth [12], Boyd and Hepworth [2] and Boyd, Hepworth and Patzt [3], which aim to extend these
techniques to families of abstract algebras.

Building on Theorems A and B, we can formulate an alternative argument for [2, Theorem A], which
shows that the homology of any Temperley—Lieb algebra is trivial in positive degrees if the parameter
a € R is a unit.

Theorem C ([2], Boyd and Hepworth) Let R be a commutative unital ring, a € R and n € N. Consider
the Temperley-Lieb algebra TL, (a) on n strands. If a € R is a unit, then

Ho(TLn(a),1)=R  and  H.(TLn(a),1)=0 for x> 0.

Comparison with work of Boyd and Hepworth [2] and Boyd [1] The general strategy of proof that
we employ is similar to the one used by Boyd and Hepworth, ie we construct a certain highly connected
TLy(a)—chain complex and study spectral sequences attached to it. The chain complex that we use is
different from the complex of planar injective words studied by Boyd and Hepworth [2]. Indeed, we
will use the “cellular Davis complex” TL2 of the Temperley—Lieb algebra 7L, (a). The structure of the
complex 7LD is “sensitive” to the question of whether the number of strings of a Temperley—Lieb algebra
is even or odd. This is what enables us to prove Theorem A. The chain complex 7L has a simple
diagrammatic description and can be seen as an algebraic analogue of the classical Davis complex of the
symmetric group equipped with the “Coxeter cell” CW-structure; see Davis [5, Chapters 7 and 8]. The
classical Davis complex of a finite symmetric group S, is a contractible CW—complex with S,—action.
We prove the following Temperley—Lieb analogue:

Theorem D The “cellular Davis complex” TL® of a Temperley—Lieb algebra (see Definition 8) is a
contractible TL, (a)—chain complex with Ho(TL®) = 1.

From this perspective, the content of this paper is inspired by and in direct analogy with the approach that
Boyd employed in [1] to derive formulas for the low-dimensional homology of Coxeter groups. The first
two chapters of the author’s thesis [19] make this analogy precise and explain how the chain complex
TLD was discovered via this analogy.

Algebraic € Geometric Topology, Volume 24 (2024)



3530 Robin J Sroka

Outline In Section 2, we define the Temperley—Lieb algebra 7L, (a) and its trivial module 1. At the
beginning of Section 3, we introduce a class of left submodules Cup(F') of TL,(a) which will play an
important role. In Section 3.1, we use these modules to define the “cellular Davis complex” 7LD of a
Temperley—Lieb algebra and establish that 7L is contractible (Theorem D). In Section 3.2, we study the
homology of the Temperley—Lieb algebra 7L, (a) with coefficients in Cup(F'). These homology groups
will appear on the E1—page of the spectral sequences that we use in Section 3.3 to formulate the proofs
of Theorems A, B and C.
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Foundation through the Centre for Symmetry and Deformation (DNRF92) and the Copenhagen Centre
for Geometry and Topology (DNRF151). It was partially supported by NSERC Discovery Grant A4000
in connection with a Postdoctoral Fellowship at McMaster University, and by the Swedish Research
Council under grant 2016-06596 while the author was in residence at Institut Mittag-Leffler in Djursholm
Sweden during the semester Higher algebraic structures in algebra, topology and geometry. 1 gratefully
acknowledge this support.

2 Temperley-Lieb algebras

This section contains necessary background knowledge on Temperley—Lieb algebras that we mainly
learned from Kassel and Turaev [15] and the exposition of Boyd and Hepworth [2]. In 1971, Temperley
and Lieb introduced these algebras in their article [20].

Definition 1 [2, Definition 2.1; 15, Definition 5.24] Let R be a commutative unital ring, a € R and
n € N. The Temperley—Lieb algebra TL,(a) with parameter a € R is the R—algebra with generators
Ui, ..., U,—1 and the relations

i) U;U =U;U; ifli—j| =2,
(i) U;UU =U;ifj=i=+]l,
(iiiy U? =aU; foralli.

Algebraic € Geometric Topology, Volume 24 (2024)
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The unit 1 corresponds to the empty product of the generators U;. Note that

TLo(a) =TLi(a) =R.

Jones [13] used Temperley—Lieb algebras to define the polynomial invariant for knots, which we now call
the Jones polynomial. The following diagrammatic interpretation is due to Kauffman [16; 17]. We follow
[15, Section 5.7.4] in our exposition.

Definition 2 A planar diagram of n > 1 arcs D = {y1,...,¥n} in [0, 1] x R is a disjoint union of n
smoothly embedded arcs y; : [0, 1] — [0, 1] x R such that

(i) the images of any two arcs y; and y; are pairwise disjoint,

(ii) the points y; (0) and y; (1) are a subset of the points
{(0,1),...,(0,n),(1,1),...,(1,n)},

(iii) the tangent vectors at y; (0) and y; (1) are parallel to the x—axis R x 0.

Leta € R and Py, (a) be the free R—module spanned by the set of isotopy classes [ D] of planar diagrams D.
We will now explain how the module P, (a) can be equipped with the structure of an associative R—algebra.
Given two isotopy classes of planar diagrams [D] and [D’], we obtain a diagram in [0, 1] x R by pasting
D into [0, %] x R and D’ into [% 1] x R. We can choose representatives D € [D] and D’ € [D’] such
that the resulting diagram consists of a planar diagram D o D’ and k(D, D’) > 0 circles. The product of
[D] and [D’] is defined as

[D]-[D'] = a*®@-P)[D o D).

The reader is invited to revisit Figure 1, which illustrates this definition.
Theorem 3 [2, Section 2; 15, Theorem 5.34] The Temperley—Lieb algebra TL, (a) is isomorphic to the

R-algebra of planar diagrams Py (a). The isomorphism is given by mapping a generator U; € TL,(a) to
the isotopy class of the planar diagram in Figure 2.

Definition 4 An element A € TL,(a) is called a planar diagram in TLy(a) if the isomorphism in
Theorem 3 identifies A with the isotopy class [D] € P, (a) of some planar diagram D of n arcs.

Figure 2: Translating between algebraic and diagrammatic definition of 7L, (a).
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Let 7/'2,1 be the two-sided ideal of TL, = TL,(a) generated by the set
{Uj:1<i<n-—1}
In the diagrammatic interpretation (see Theorem 3), TLy is spanned by all planar diagrams except the

identity diagram.

Definition 5 The trivial module 1 of the Temperley—Lieb algebra TL,, = TLy(a) is defined via the exact
sequence
()—>7/'Zn<—>7'£n—»1—>().

Equivalently, the trivial module 1 is the 1-dimensional 7L£,—-module coming from the augmentation
€ : TL, — R that sends every generator U; to zero.

3 Vanishing theorems for the homology of Temperley—Lieb algebras

This section builds on ideas contained in [1; 2]. We introduce the cellular Davis complex for Temperley—
Lieb algebras 7L£® and prove that it is contractible. We then use it to derive the vanishing results for the
homology of Temperley—Lieb algebras, which we stated as Theorems A, B and C in Section 1.

Throughout this section, let 7L = TLy(a) denote the Temperley—Lieb algebra on n strands with parameter
a € Randlet Uy, ..., U,— be the standard generators. We sometimes identify {Uj, ..., U,—1} with the
set (n—1)y={1,...,n—1}.

Definition 6 (i) A (possibly empty) subset F C (n — 1) is called innermost if for any

i#jeF wehavethat |i—j|>2.
(ii)) Let A € TL be a planar diagram in the sense of Definition 4, with corresponding isotopy class
[A] € Pp(a). A € TL is represented by certain monomials in the generating set {Uj, ..., U,—1}. We write
FA)={U, :A=U;----- Ui}

for the set of possible last letters in a monomial representing A. Using the identification in Theorem 3,
the set F(A) has the following diagrammatic interpretation:

F(A) ={U; : [A] has an arc connecting (1,7) and (1,7 + 1)}.

We call an arc connecting (1,i) and (1,7 + 1) an innermost right cup at position i and F(A) the set of
innermost right cups of the planar diagram A € TL; see Figure 3 for an example. Note that F(A4) is an
innermost set.

Algebraic € Geometric Topology, Volume 24 (2024)
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Observe that by Definition 1(i) all generators in an innermost set commute with each other. The following

modules are therefore well defined:

Definition 7 Let F' C (n — 1) be an innermost set. Then we write Cup(F') for the left submodule of 7L
generated by [ [; < U;. Using Theorem 3, this is the 7L—submodule of 7L, (a) = Py(a) spanned by all
isotopy classes of planar diagrams [A] € P, (a) that have an innermost right cup at position i for any
i € F,ie that satisfy F C F(A).

3.1 The cellular Davis complex of a Temperley-Lieb algebra

Using the definitions above, we will now introduce and study the 7£—chain complex that enables us to
formulate our proofs for Theorems A, B and C.

Definition 8 The cellular Davis complex (TLD, §) of TL is the chain complex whose chain module in
degree « is given by

TLD, = &b Cup(F)

F C(n—1) innermost
|F|=«a

and whose differential
8& : T[.:@a d TE@Q—]
factorizes summandwise as

Cup(F) — @D Cup(Fs) <> TLDg-1.
seF

where Fy = F —{s} for s € F. The first arrow in this factorization is the map

A Y ()7 (4),
seEF

where L? : Cup(F) < Cup(Fj) is the inclusion and yg (s) = |{s' € F : s’ <s}|.

In other words, the chain module 7L, of the cellular Davis complex 7£® has an R—module basis
consisting of planar diagrams A with ¢ = | F| marked innermost right cups F € F(A) (see Definition 7)
and the value of the differential 6: 7LDy, — TLDy—1 on such a marked planar diagram (A, F) is an

o - D F(A) ={1.4)
A= v - ! A = UsUyU3UsU
= Us50U20U30U4U1

R e M

Figure 3: The set of innermost right cups of an element in 7Ls.
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alternating sum of the marked planar diagrams (A, F;), ie copies of the same planar diagram A with one
mark s € F erased. See Figure 4 for an example.

We start by verifying that this really defines a chain complex. This argument is standard.
Lemma 9 The cellular Davis complex (TL®, §) is a chain complex of left TL-modules.

Proof Let A € Cup(F) C TL®D, be a planar diagram. We need to argue that
§2(A) =0 € TLDg_>.

Observe that

§2(4) = 5( (=g (A)) = Z(—I)VF(S)( 3 (_Dyﬂ(t)tg,,(A))

seF seF teFy
= Z (_I)VF(S)"FVFS (t)t?,t(A),
(s,t)eFxF
sF#t

where tff” : Cup(F) < Cup(Fj;) denotes the inclusion. Clearly, F;; = F; . It therefore suffices to
show that if s < ¢, then
(_I)VF(S)'H/FS @) + (_1))’F(t)+VFt () — .

This holds because s < ¢ implies that

yr() =yr,(@)+1 and yr(s) =yF(s).

The TL—equivariance of the differential § follows from the 7L—equivariance of the inclusion maps. 0O

Theorem 10 The cellular Davis complex (TL9, 8) is contractible with

Ho(TLD, ) = 1.
! 00 g
L I (—=1)° | o+ (=Dt L d
> < > o D <
Cup({1,4}) Cup({4}) Cup({1})

Figure 4: The differential of (7LD, §) evaluated on an element in Cup({1, 4}).
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Proof Let A € TL be a planar diagram and F' C (n—1) be an innermost set. Recall from Definition 7 that
Ae€Cup(F) < F C F(A).

Let R{(A, F)} € Cup(F) denote the R-linear summand spanned by the isotopy class of A in the
diagrammatic picture using the convention that R{(A4, F)} = 0 if F € F(A). We think of (4, F)
as a planar diagram with | F'|-marked innermost right cups. Then the R—module Cup(F) admits the
decomposition

Cup(F)= (P R4 F)}.

A€ETL
planar diagram

Hence, the R—module 7£9, can be written as

TLDy = &y Cup(F) = &y B RiAF)

F C(n—1) innermost FC(n—1) innermost = A€ETL
|F|=a |F|=«a planar diagram
- & P RrRAF= @ TLOA..
A€eTL  FC(n—1) innermost AeTL
planar diagram |F|=a planar diagram

where we define

TLD(A)g = @ R{(A, F)}.

FCF(A)
|F|=a
Observe that for any planar diagram A € TL, the sequence of submodules {7L£9(A)y}qenN forms an
R-module subcomplex TLD(A) of the cellular Davis complex 7LD because the partial differentials in
TLD are given by inclusion maps Cup(F) < Cup(F) with Fy C F (see Definition 8). It follows that,
as a chain complex in R-modules, the cellular Davis complex is a coproduct:!

D= @ TLIA).
planéredz;fg:ram
We will calculate the homology of each subcomplex 7LD (A). If A =1id, then F(A) = @ and TLD(A) =
R{(id, @)}[0] is concentrated in degree 0. If A # id, then TLD(A) is exactly the augmented chain complex
C (A)[+1] of the simplex A on the vertex set F(A), where the vertices are ordered using F(A) C (n —1)
and the chain complex is shifted up by one degree. Therefore the homology of the complex TLD(A)
is zero in every degree if A # id. The identification Ho(7£®,8) = 1 as a TL-module holds because
im(8,) = 7L, where the right side is as in Definition 5, and 7LDy = Cup(@) = TL. ad

LA similar splitting was used by Boyd, Hepworth and Patzt in their work on the homology of Brauer algebras [3, Definition 5.5].
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3.2 Homology with coefficients in Cup(F)

Let F C (n — 1) be an innermost set. The homology groups H, (7L, Cup(F)) of the Temperley-Lieb
algebra 7L with coefficients in Cup(F') will occur on the E;—page of the spectral sequences, which we
will use to derive Theorem A, B and C. For this reason, we will now study the modules Cup(F') and
the homology groups H, (7L, Cup(F)). We begin by collecting several important observations about
innermost sets.

The following notion explains why the cellular Davis complex is “sensitive” to the question of whether
the underlying Temperley—Lieb algebra is defined on an even or an odd number of strands:

Definition 11 If n is even, we call M = {1,3,...,n— 1} C (n — 1) the unique maximal innermost set.

Note that if n is even, then M = {1,3,...,n—1} C (n — 1) really is the unique innermost set of maximal
cardinality. If the number of strands n > 3 is odd, then in contrast to the even case there exist multiple
different innermost sets of maximal cardinality (see Figure 5).

Ao A1 Az

:D <:6 D <;6 :> <:5

C1 <:1 <:1

Cup({1, 4, 6}) Cup({1, 3,6}) Cup(M)

Figure 5: Innermost sets of maximal cardinality for (6) (left) and (5) (right).

In particular the next observation always applies, if the Temperley—Lieb algebra is defined on an odd
number n > 3 of strands:

Observation 12 If F C (n—1) is nonempty and innermost, but not the unique maximal innermost set M ,
then there exists an index 1 <i <n such thateitheri —1 ¢ F and s=i+1€ F,ori ¢ Fands=i—2€F.

Proof Since F is nonempty, there exists a smallest z € F. If z # 1, we set 1 <i :=z—1<n. Then
i—1=z-2¢ F by the minimality of z and s =i + 1 = z € F by definition. Hence, the first case
applies. Assume that z =1 € F. Because F # M, theset {1,...,n}\{j,j +1:j € F} is nonempty
and contains a smallest index i. The assumption 1 € F' and the minimality of i imply that i > 3 is an odd
number such that s =i —2 € F. Therefore the second case applies. O
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In the setting of Observation 12 we can think of the index 1 <i < n as the vertex (1,i) on the right
side of any planar diagram A in Cup(F'). Then, this vertex has the property that it is next to the marked
innermost right cup at position s € F' but not itself the start or endpoint of a marked innermost right cup.

The following proposition is closely related to [2, Section 3] and replaces the “inductive resolutions”,
which Boyd and Hepworth introduced, in our setting:
Proposition 13 Let F C (n — 1) be nonempty and innermost but not unique maximal innermost, and
choosei €{l,...,n}and s € {i —2,i + 1} as in Observation 12. Let Fy = F —{s}. Then
Cup(F) < Cup(Fy)
is a retract of left TL—modules.
Proof Assume thati ¢ F and s =i —2 € F. Consider the map of left modules (see Figure 6)
Cup(Fg) — Cup(F) givenby ¢+ c-(Ui—1U;-»).
We need to check that this map is well defined. If ¢ € Cup(Fj), thenc = A-]] jer, Uj for some A € TL.
Therefore
c-(Ui—1Ui—p) = (A- 1_[ Uj)(Ui—lUi—Z) = (A‘Ui—l)( l_[ Uj)’

JEFs JEF

where we used that U;_; commutes with all {U,},eF, and that s =i —2 € F. The commutativity of
Ui—1 with {U;};cF, follows from Observation 12 because

|G—D—z|>min{|i —1)—@G—4)|,|i —1)—@G+1)|} =2 forany z € F;.

We therefore proved that ¢ - (U;—1U;—3) € Cup(F), and hence that the map is well defined. To see that it
defines a retraction, we observe that if ¢ € Cup(F), then ¢ = ¢’ - U;_5. Therefore

¢ (UimUi—p) =" - (Ui—2Ui1Ui—3) = ¢’ -Ui—p = c.

The argument for the case where i —1 ¢ F and s =i + 1 € F is similar. We consider the map of left

modules
Cup(Fy) — Cup(F) givenby ¢+ c-(U;U;+1).

A A A-Ui—1-Ui—»

V : D/ c Je—=.,
:> <:1 :> <:s=i—2 5 1

Cup({1.4}) Cup({4}) Cup({1.4})

Figure 6: Illustration of the retraction constructed in Proposition 13.

Algebraic € Geometric Topology, Volume 24 (2024)



3538 Robin J Sroka

By Observation 12, |i —z| > min{|i — (i —2)|,|i — (i +3)|} > 2 for z € F;. This again implies that the
map is well defined. To see that it defines a retraction, we use that if ¢ € Cup(F) then ¢ = ¢’ - Uj41.
Therefore

¢ (UiUig1) =" - (Ui+1UiUi41) =" - Uiy1 = c. ]

Remark 14 The elements that we use to define the retractions in Proposition 13 are exactly the same
elements that Boyd and Hepworth use in [2, Section 3] to define “inductive resolutions”.

The role of the following corollary in our arguments is similar to the role of Theorem F in [2].

Corollary 15 Let F C (n — 1) be innermost, but not unique maximal innermost. Then
Cup(F)—TL

is a retract of left TL-modules and H, (TL,Cup(F)) =0 for x > 0.

Proof If F = @, the retraction statement is trivial because Cup(@) = TL. If F # &, it follows from
Proposition 13 by induction. The fact that Cup(F) is a retract of the free 7£-module 7L implies that
Cup(F) is a projective TL-module. Therefore H, (7L, Cup(F)) =0 for x > 0. |

In the next lemma, we compute the degree-zero homology of the Temperley—Lieb algebras with coefficients
in Cup(F):

Lemma 16 Assume that F' C (n — 1) is an innermost set. Then
R it F =0,
Ho(TL,Cup(F)) =1®7Cup(F)~{R/a ifn=2and F = {1},
0 ifn>2and F # @.

Proof The short exact sequence defining the trivial module 1 (Definition 5) and the right exactness of
— ®7¢ Cup(F) yield an exact sequence

TL @77 Cup(F) = TL &7 Cup(F) — 1 ®7 Cup(F) — 0.

It follows that
Cup(F)

TL-Cup(F)
We use this to compute 1 ®7, Cup(F) in each case. If F = &, then Cup(F) = TL and we find that

1®7 Cup(F) =

17 Cup(F)=1®7,TL = R.
If n =2 and F = {1}, then Cup(F) = TL = R{U;} and TL-TL = aR{U,}. Hence,
1®7, Cup(F) =~ R/a.
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For the last case, we assume that n > 2 and F # @. We will prove that
Cup(F) C TL - Cup(F).

Consider an element A € Cup(F). The definition of Cup(F) implies that 4 = A’ - (]_[ jer U j) for some
A’ € TL. We fix a generator U;, whose index i has the property that i € F # &. Because TL hasn—1> 1
generators, I — 1 or i + 1 also indexes a generator U;_; or U; 4. By Definition 1(ii), it follows that

AU [JU =4 T[U o AU [JU=4"T]U.
jeF JjEF JjeF jeF

Note in either case, B := A’ - (U;U;—1) or B := A’ - (U;U; +1), that B € TL. Therefore

A:B-(l_[ U,-) € 7L -Cup(F).

JEF

It follows that Cup(F) C TL - Cup(F), and hence that 1 ® 7 Cup(F) = 0. a

Remark 17 The homology with trivial coefficients of the Temperley—Lieb algebra 7L on one generator
has been completely computed by Boyd and Hepworth in [2, Proposition 7.1]. For the case n = 2 and
F = {1} in Lemma 16, it holds that Ho(7L, Cup(F)) = H;(TL,1). In particular, this case can also be
deduced from [2, Proposition 7.1].

3.3 Proof of Theorems A, B and C

We will now prove the three main theorems. The following result, stated as Theorem A in Section 1,
generalizes [2, Theorem D] and the “odd” part of [2, Theorem B].

Theorem 18 If n is odd, then Ho(TL,1) = R and H.(TL,1) =0 for x > 0.

Proof Let P, be a free resolution of the trivial 7£-module 1, and consider the double complex
P, @7 TLD, where TLD is the cellular Davis complex for Temperley—Lieb algebras (see Definition 8).
The horizontal and vertical filtration of P, ®7 TLD give rise to two spectral sequences. The vE !-page
of the vertical spectral sequence is given by

VE, g = Hp(Poy ®72 TLD) = Py @7 Hp(TLD).

It follows from Theorem 10 that the vE '—page is concentrated in degree 8 = 0, where it is given by the
complex vE 1,0 =~ P, ®7r 1. Then by definition,

vES o = Ho(TL, 1).
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The collapsing of the vertical spectral sequence on the vE?—page implies that the horizontal spectral
sequence converges to Hy 1 g(TL,1). The hE 1_page of the horizontal spectral sequence is given by

hEoll,ﬂ — Hﬂ (P* R7r TE@a) o~ @ Hﬂ (P* 7L CuP(F))

F C(n—1) innermost
|F|=a

=~ ey Hg(TL, Cup(F)).

F S(n—1) innermost
|F|=a

Because 7 is odd, Corollary 15 applies to any innermost subset F' C (n — 1). Together with Lemma 16,

- :{R if (o, B) = (0,0),
“F 10 if (, B) # (0,0).

The theorem follows. O

this implies that

The next vanishing result, stated as Theorem B in Section 1, is similar to the “even” part of [2, Theorem B].
The vanishing line which Boyd and Hepworth obtain is stronger than ours —slope 1 versus slope % —and
in fact optimal [2, Theorem C]. The description of the high-dimensional homology in terms of homology
with coefficients is new in the sense that the coefficient system is different from the one in [2].

Theorem 19 If n is even, then Ho(TL,1) = R, Hy,(TL,1) =0 for 0 < x < 7 and
H,yn/2(TL, 1) = H.(TL, Cup(M))

for x > 0 and where M = {1,3,...,n—1} C (n — 1) is the unique maximal innermost set.

Proof By the same argument as in the proof of Theorem 18, we obtain a spectral sequence converging
to Hyyg(TL,1) with hE'-page

hEy 5 = &y Hg(TL, Cup(F)).

F C(n—1) innermost
|F|=c

Because n is even, there exists a unique innermost set M = {1,3,...,n — 1} C (n — 1) of maximal
cardinality |M| = Z. Corollary 15 applies to all innermost subsets F' C (n — 1) except M. Together with
Lemma 16, this implies that

R if (@. B) = (0.0),
hEL 5= { Hg(TL,Cup(M)) if (. B) = (2. ).
0 else.

If n = 2, the only possibly nontrivial differential on the 1 E!—page
di: Ho(TL,Cup(M)) =17 Cup(M) > 1@, TL=Ho(TL, TL), IRA—IRA=1-AR1=0
is the zero map. We conclude that the spectral sequence collapses on the 4 E!—page. O
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Remark 20 In the setting of Theorem 19, Lemma 16 implies that H, /»(7£,1) = R/a if n = 2, and
that Hy,»(TL,1) = 0if n > 2. This is consistent with [2, Theorem B and C] mentioned above.

We finish by presenting an alternative proof of [2, Theorem A], ie Theorem C stated in Section 1.

Theorem 21 [2, Theorem A] If the parameter a € R is a unit, then

Ho(TL,1)=R and H.(TL,1)=0 for > 0.

Proof By Theorems 18 and 19, it suffices to prove that, for n > 2 even and M C (n — 1) the unique
maximal innermost set, H, (7L, Cup(M)) = 0 for » > 0. To see this, we consider the innermost set
M1 = M —{1}. There is a map of left TL—modules

Cup(M1) — Cup(M) givenby ¢+ c-Uj.
Observe that the map obtained by precomposition with the inclusion
Cup(M) < Cup(M) — Cup(M)
is multiplication by a. If a is a unit, the inclusion induced map
H,(TL,Cup(M)) - H.(TL,Cup(My))

must therefore be an injection. By Corollary 15, the target of this map is zero if » > 0. For x =0, we
invoke Lemma 16. |
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