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Hyperbolic homology 3–spheres from drum polyhedra

RAQUEL DÍAZ

JOSÉ L ESTÉVEZ

We construct explicit families of hyperbolic homology spheres, by surgery on links with a large number
of components or by surgery on knots. In both cases the original cusped manifolds are obtained from
basic ideal polyhedra, which allows us to get further geometric properties, such as geometric convergence
to H3 and arbitrarily large Heegaard genus. In the same construction we also find a family of hyperbolic
knots converging geometrically to H3.

57K10, 57K32

1 Introduction

An integer homology 3–sphere is a closed 3–manifold M having the same integer homology groups as
the 3–dimensional sphere S3, that is, H�.M IZ/'H�.S

3IZ/. Although it may be considered homology
with another coefficients, mainly rational, throughout this paper we shall deal with the definition over the
integers.

These manifolds were under consideration previously, in the setting of the Poincaré conjecture. Homology
spheres manifested themselves as a much more extensive type of manifold.

In the setting of hyperbolic geometry we may apply the general method of performing 1=n–Dehn filling
to the complement of a knot in S3 to get a homology sphere. If the knot is hyperbolic, then for sufficiently
large n the resulting homology sphere becomes hyperbolic by Thurston’s Dehn surgery theorem.

There are, to our knowledge, three main constructions of hyperbolic homology spheres. One of them
is due to Baker, Boileau and Wang [Baker et al. 2001], which carry out the construction of an infinite
tower of finite-index coverings of hyperbolic homology spheres. This construction makes use of the
120–sheeted covering of the sphere S3 over the Poincaré homology sphere †.

Also noteworthy is the construction by Brock and Dunfield [2015]. In this case they deal with a sequence
of homology spheres focusing on the injectivity radius behavior rather than on topological aspects. Namely,
their sequence converges to H3 in the Benjamini–Schramm sense. Their construction involves modern
Kleinian group theory and is based on the residual finiteness of 3–dimensional hyperbolic fundamental
groups.
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From the Brock–Dunfield construction, Kent and Purcell [2018] were able to obtain a family of knots
that also Benjamini–Schramm converge to H3. Performing 1=n–Dehn filling they obtain a sequence of
homology spheres with the same convergence.

The aim of this paper is to make an elementary and explicit construction of families of hyperbolic
homology spheres — Theorems 5.2 and 5.3. From the geometric properties analyzed in the construction,
we show in Theorem 7.6 sequences of hyperbolic homology spheres converging geometrically to H3,
and in Corollary 8.3 sequences of homology spheres with large Heegaard genus.

We provide two different families of such hyperbolic homology spheres, which are obtained from Dehn
filling two different types of links: the first type consists of links with many but “short” components, in
the sense that each component is linked with few other components, and the other type of links are just
knots. The first family of hyperbolic links have the property that the cusp shapes are uniformly bounded
in the Teichmüller space of the torus, so the manifolds obtained after Dehn filling might be candidates for
hyperbolic homology spheres with injectivity radius uniformly bounded below.

From this construction it is manifest that there are hyperbolic manifolds obtained by Dehn filling links
and hyperbolic manifolds obtained by Dehn filling knots which have close volume — Corollary 7.7. This
motivates the question of whether the former manifolds can also be obtained from surgery on knots in S3.

Purcell and Souto [2010] proved the existence of a family of hyperbolic knots converging geometrically
to H3 and in their paper they ask for explicit examples. Spacious knots constructed by Kent and Purcell
[2018] provide such an example. As an aside to our construction we also obtain a family of hyperbolic
knots converging geometrically to H3 — Theorem 7.8.

Using the relation proved by Bachman, Cooper and White [Bachman et al. 2004] between the Heegaard
genus of a negatively curved manifold and the radius of balls contained in this manifold, we find, as
another consequence, homology spheres with large Heegaard genus — Corollary 8.3.

The idea of our constructions is as follows. To get the geometric convergence to H3 we consider hyperbolic
links constructed from big hyperbolic polyhedra. In this way, our starting point is to obtain big polyhedra
by stacking a large number of ideal drum polyhedra (Thurston’s notes [1979]) with basis a polygon with
many edges. So in this first step we obtain hyperbolic links containing big balls, and so converging
to H3 — Corollary 7.5. The homology spheres are obtained from the previous links by hyperbolic Dehn
surgery, using the 2� theorem and the Perelman geometrization theorem.

To obtain the two types of links involved in the constructions, we make use of some operations referred
in hyperbolic geometry literature, as Bridgeman surgery and Adams’ moves.

We remark that the links in our constructions are examples of fully augmented links studied by, among
others, Adams, Lackenby, Agol, D Thurston, Futer and Purcell; see for instance [Purcell 2011]. In
particular, their hyperbolicity is well known. In our construction we start with the hyperbolic polyhedra
to keep control of the symmetry and more explicit description of the geometry of the resulting links and
manifolds.
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1.1 Organization of the paper

We recall some preliminaries in Section 2. Section 3 is devoted to constructing the hyperbolic polyhedra
and links we will work with: the polyhedra Q.p; q/ obtained by performing Bridgeman surgery on a
stack of drum polyhedra; and the links M.p; q/, H.p; q/ and K.p; q/ obtained by gluing faces of two
copies of Q.p; q/, sometimes after Adams’ moves. The link H.p; q/ has many short components while
the link K.p; q/ has a very “long” component.

In Section 4.1 we show which surgery coefficients we need to add to H.p; q/ in order to obtain homology
spheres — Theorem 4.1. In Section 5 we use the 2� theorem to determine which of the homology spheres
obtained from H.p; q/ and K.p; q/ are negatively curved — Theorems 5.2 and 5.3. We notice that all
cusps shapes in H.p; q/ are uniformly bounded in Section 6.

In Section 7 we extract geometric properties of our manifolds; mainly we find big half-balls contained in
the polyhedra Q.p; q/ and, consequently, we find big balls in the hyperbolic links H.p; q/ and K.p; q/—
Corollary 7.5. From this, we obtain geometric convergence of homology spheres and of hyperbolic knots
to H3 in Theorems 7.6 and 7.8. In Section 8 we show that the balls contained in the previous links remain
after applying the 2� theorem, and, as an application, we obtain hyperbolic homology spheres with large
genus — Corollary 8.3.
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by the project PID2020-114750GB-C32. Estévez wishes to thank the Department of Algebra, Geometry
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2 Preliminaries

2.1 Operations on hyperbolic links

There are some operations in the literature that we will use to obtain further hyperbolic manifolds from
previous ones.

Bridgeman surgery [1994; 1996; 1998]: If P is an ideal polyhedron with all dihedral angles equal to �=2
and F is a nontriangular face, one can draw a line joining two points in the interior of two nonconsecutive
edges of F and collapse it to a point. The result is a new combinatorial polyhedron which has a realization
as an ideal hyperbolic polyhedron P 0 with all dihedral angles equal to �=2.

Adams’ moves [1985, Corollary 5.1]: Whenever we have a link with an unknotted component which
bounds a disc intersecting two strands of the link, one can cut along this disc, do a half-twist and glue it
again. Adams proved that a link obtained in this way from a hyperbolic link is also hyperbolic with the
same volume.

Algebraic & Geometric Topology, Volume 24 (2024)
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2.2 Dehn surgery (Dehn filling)

We recall the standard terminology. A framed link is a link L D fK1; : : : ;Kng in S3 with rational
numbers pi=qi attached to each component Ki . A framed link represents the manifold obtained by doing
Dehn surgery in each component with surgery instructions the given coefficients. The linking matrix of a
framed oriented link is a matrix B D .bij / where the diagonal entries are the surgery coefficients and
the off-diagonal entries are the linking numbers, ie bii D pi=qi and bij D lk.Ki ;Kj /. A result by Hoste
[1986] asserts that the framed link L represents a homology sphere if and only if det B D˙1=.q1 � � � qn/.
This result will be used in Section 4.

2.3 Hyperbolic Dehn surgery

There are two results that we would like to mention in this point. First, the Gromov–Thurston 2� theorem
provides sufficient conditions in order to guarantee that a closed manifold obtained by Dehn filling a
hyperbolic link is negatively curved. Some years later, Agol [2000] and Lackenby [2000] obtained
a similar result, the 6 theorem, to assert that the resulting filled manifold is hyperbolike. The term
hyperbolike refers to a closed, orientable 3–manifold that is irreducible with infinite word-hyperbolic
fundamental group. After the geometrization theorem, being negatively curved and being hyperbolike are
each equivalent to being hyperbolic manifold. We notice here that the 6 theorem was improved in terms
of a real parameter by Lackenby and Meyerhoff [2013] in the context of Mom Technology.

In our paper we will use the 2� theorem because the negatively curved structure obtained there is needed
in order to apply the Bachman, Cooper and White result in Section 8.

2� Theorem [Bleiler and Hodgson 1996] Let M be a complete hyperbolic 3–manifold of finite volume
and P1; : : : ;P� be disjoint horoball neighborhoods of the cusps of M . Suppose ri is a slope on @Pi

represented by a geodesic ˛i with length in the Euclidean metric satisfying length.˛i/ > 2� for each
i D 1; : : : ; �. Then M.r1; : : : ; r�/ has a metric of negative curvature , where M.r1; : : : ; r�/ is the manifold
obtained by Dehn filling M with the instructions that the slopes ri will bound discs.

2.4 Heegaard genus

We will use the following result by Bachman, Cooper and White to obtain hyperbolic homology spheres
with large genus.

Theorem 2.1 [Bachman et al. 2004] If M is a closed , orientable , connected Riemannian 3–manifold
with all sectional curvatures less than or equal to �1, then its Heegaard genus g satisfies g � 1

2
cosh.r/,

where r is the radius of any isometrically embedded ball in M .
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2.5 Geometric convergence

A sequence of pointed hyperbolic 3–manifolds .Mi ;pi/ converges geometrically or equivalently in the
pointed Gromov–Hausdorff topology to a pointed manifold .M;p/ if for every � and every compact set
K �M with p 2K there exists i0 such that for all i � i0, there is a .1C�/-bi-Lipschitz embedding

fi W .K;p/! .Mi ;pi/:

In particular, a sequence of hyperbolic 3–manifolds .Mi ;pi/ containing isometrically embedded balls
B.pi ; ri/ with ri!1 converges geometrically to .H3;p/ for any p 2H3.

3 Hyperbolic polyhedra and hyperbolic links

The main constructions of this section are the hyperbolic polyhedra Q.p; q/ and the hyperbolic links
M.p; q/ for any p � 3 and q � 1. The construction of Q.5; 3/ and M.5; 3/ is illustrated in Figures 2
and 3.

3.1 Drum polyhedra and polyhedra Q.p; q/

Drum polyhedra and links constructed from them appear in Thurston’s notes [1979, Chapter 6]. We will
consider a mild generalization of these examples, in the sense that we do not consider just drum polyhedra
but those obtained by stacking drums one over the other.

The n–drum also known as antiprism is a polyhedron with two n–gonal faces called bases and 2n lateral
triangular faces. Each lateral face is a triangle with an edge common to one of the bases and the opposite
vertex common to the other basis; see Figure 1. By explicit construction one can show that there is an
ideal drum polyhedra D.n/ with all dihedral angles equal to �=2, with cyclic symmetry of order n and
with the two bases regular ideal n–gons.

Next we can take m copies of D.n/ and glue them together along their bases. The result is again an
ideal polyhedron D.n;m/ with all dihedral angles equal to �=2. Notice that most lateral faces are ideal
squares.

2�=10

�=2

Figure 1: The schematic picture of the drum polyhedron D.10/.

Algebraic & Geometric Topology, Volume 24 (2024)
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Figure 2: This picture shows a diagram of D.10; 10/. Also shown is the pattern followed by the
segments in quadrangular faces in which Bridgeman’s surgery is to be performed to obtain the
polyhedron Q.5; 3/.

To gain flexibility, one can use Bridgeman surgery to split some of the squares into 2 triangles. From now
on, we will consider nD 2p and mD 2.2q� 1/ for some p � 3 and q � 1. Figure 2 shows the precise
lines on the quadrangular faces of D.2p; 4q�2/ which we will collapse to points. Each quadrangular face
will give rise to a pair of new triangular faces once the segment is collapsed. We obtain the polyhedron
Q.p; q/, which is again ideal and with all dihedral angles equal to �=2. See Figure 15 at the end of the
paper for a more “realistic” view.

Unlike D.n;m/, which is composed by isometric slices combinatorially equivalent to drum polyhedra,
the polyhedron Q.p; q/ can be divided into slices but they are no longer isometric. In Section 7 we will
work with these slices.

Notice that Q.p; q/ has dihedral symmetry of order p about the common perpendicular axis to the
two basis (ie generated by symmetry planes containing this axis) and it also has a horizontal symmetry
plane interchanging the two basis. To convince oneself of the existence of these symmetries in the
hyperbolic polyhedron, one can prove the existence in hyperbolic space of the fundamental domain for
these symmetries with the appropriate dihedral angles so that Q.p; q/ may be obtained by gluing a finite
number of copies of it.

Remark The existence and explicit construction of the hyperbolic polyhedra Q.p; q/ can also be shown
by means of circle packings; see the appendix. We will use this technique in Section 7 to prove some
properties of these polyhedra.

3.2 Links M.p; q/

We now proceed to identify the faces of two copies of Q.p; q/ to obtain a 3–dimensional manifold,
following the construction carried out by Thurston [1979, Example 6.8.8 of Chapter 6]. For this purpose,
we take two equal copies of Q.p; q/ and we identify their faces in two stages. In the first one we make
the identifications in each copy of Q.p; q/ separately, gluing all the triangular faces as shown in the
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A1 A1 A2 A2 A3 A3 A4 A4 A5 A5

F1 F1 F2 F2 F3 F3 F4 F4 F5 F5

G1 G2 G2 G1

H1 H2 H2 H1

J1 J1

K1 K1

Figure 3: The top picture shows the way to identify faces of the polyhedron Q.5; 3/. Gluing
two identical copies produces the link M.5; 3/ on the bottom. Blue, orange and red vertices
correspond, respectively to large horizontal, small horizontal and vertical components.

pattern at the top of Figure 3. In the second step we identify each nontriangular face of the first copy with
its corresponding one in the second copy.

After the first step, what is obtained is topologically a ball with some arcs removed from its interior
and some groves removed from its boundary. The second step corresponds to gluing these two balls to

Algebraic & Geometric Topology, Volume 24 (2024)
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Figure 4: Left: the link K.5; 3/. If we perform 1=n Dehn filling on the vertical components, we
obtain the knot K.5; 3; n/. Right: the link H.5; 3/.

obtain the complement of the link M.p; q/ shown at the bottom part of Figure 3. The ideal vertices of the
original polyhedra give rise to the components of the link.

The link M.p; q/ has some horizontal components (ie contained in the projection plane) and other vertical
components, all of them unknotted. For a more precise description of this link, see Section 4.1.

3.3 Adams’ moves

A way of modifying the link M.p; q/ is by performing Adams’ moves in the vertical components of
M.p; q/. We will do it in two different ways, in order to obtain two new links with opposite properties:

� In the first, we will obtain the link K.p; q/ of Figure 4 where all the horizontal components
of M.p; q/ have been connected to give a very long component which is linked to the vertical
components.

� In the second, we will obtain the link H.p; q/ of Figure 5, with many components but all of them
short in the sense that they are linked with few components (at most 8, independent of p and q).

The effect of the Adams’ moves in the gluing of the polyhedra is only that the gluing pattern is different.
In particular, some triangular faces of one copy of Q.p; q/ are identified with triangular faces of the other
copy of Q.p; q/.

Corollary 3.1 The link exteriors M.p; q/, K.p; q/ and H.p; q/ are hyperbolic , ie they have a complete
hyperbolic structure.

Algebraic & Geometric Topology, Volume 24 (2024)
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Proof We will prove that M.p; q/ has a complete hyperbolic structure. From this it will follow that the
same is true for K.p; q/ and H.p; q/, as Adam’s moves preserve both hyperbolicity and completeness.

To prove hyperbolicity of M.p; q/ we first notice that all the face identifications are done through
hyperbolic isometries. Then, as a result of this face pairing, each resulting edge in M.p; q/ coming from
identifying polyhedral edges add up to 2� , since the edges of Q.p; q/ are identified in groups of four
and all dihedral angles are �=2.

To prove completeness, we may apply [Thurston 1997, Proposition 3.4.15(d)], which characterizes the
completeness of a hyperbolic manifold M in terms of the existence of a family of compact subsets St of
M for t 2RC, such that

S
St DM and StCa contains a neighborhood of radius a about St .

In our case we shall consider the middle point M of the common perpendicular of the two bases of
Q.p; q/, which is a symmetry center of this polyhedron (recall the symmetries mentioned in Section 3.1).
Let Bt be the intersection of Q.p; q/ with the ball of center M and radius t . The set St is the union
of the copies of Bt in the two copies of Q.p; q/. The two isometric copies of Bt become identified by
isometries which are the restriction of the identifications of the faces of the two copies of Q.p; q/. Hence,
the family of subsets St satisfies the required condition.

4 Topological homology spheres

To finish our constructions, we will perform Dehn filling in order to obtain closed manifolds, especially
homology spheres.

� Starting from K.p; q/, we first perform 1=n–Dehn filling on the vertical components in order to
obtain a knot, denoted by K.p; q; n/. Then we just need to do 1=m–Dehn surgery on this knot to
get a homology sphere, which we denote by K.p; q; n/.m/

� To obtain homology spheres from H.p; q/ we need to choose the surgery coefficient with some
more care — Theorem 4.1.

4.1 Homology spheres from H.p; q/

In order to obtain homology spheres from H.p; q/ we will carefully choose the surgery coefficients in
Theorem 4.1 so that the linking matrix satisfies the condition stated in Section 2.2.

We will label the components of H.p; q/. In all the links appearing in the paper, the vertical components
fall into two types: those where Adams’ moves have been applied when passing from the link M.p; q/ to
another one, and those where no Adams’ move has been applied. We will define type A to be the first
ones and type B to be the second ones.

Notice that this link has rotational symmetry of order p and q “levels”. The components of this link fall
into four types (we will only label components which are not equivalent under the rotational symmetry;
see Figure 5):
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A1

A0
1 A2

A0
2

A3

A0
3

B1
B2

B3
B4

S1

S2

L1 L2 L3

�1=s0 1=s0 �1=s1 �1=s0

1=s0 1=s1 1=s2

Figure 5: Labeling the components of the link H.p; 3/. On the right, the rule to assign coefficients
to the small horizontal components.

� pq large horizontal components distributed in q levels, denoted by Li
j for j D 1; : : : ; q;

� p.q� 1/ small horizontal components, denoted by S i
j for i D 1; : : : ;p and j D 1; : : : ; q� 1;

� 2pq vertical components of type A, denoted by Ai
j and A0ij for j D 1; : : : ; q;

� 2p.q� 1/ vertical components of type B, denoted by Bj for j D 1; : : : ; 2.q� 1/.

In the above, the superindex i always runs from 1 to p and will be suppressed when no confusion arises.

Each component L of the link has attached a surgery coefficient c.L/. Equivalent components of the
link under the rotational symmetry are given the same coefficient. In this way we obtain a framed link
representing a manifold that we denote by H.p; q/.X /, where X is the collection of surgery coefficients.

Theorem 4.1 For p � 1 and q D 2k with k � 0, consider the link H.p; 2k/ with the following surgery
coefficients:

(a) If kD0, then there are no Si or Bi components. We take c.L1/D1=` and c.A1/D�c.A0
1
/D1=ai ,

for any integers ` and a.

(b) If k > 0, so q > 1, then

(i) c.Aj /D�c.A0j /D 1=aj for j D 1; : : : ; q;

(ii) c.Bj /D 1=b if j is even , and c.Bj /D�1=b if j is odd ;

(iii) c.Lj / D 1=` if j ¤ 1; q and j is even , c.Lj / D �1=` if j ¤ 1; q and j is odd , and
c.L1/D�c.Lq/D�1=`� b

(iv) c.S2i /D 1=si for i D 0; : : : ; k � 1, and if 2i < j < 2iC1 then c.Sj /D�c.S.2iC1�j//,

where aj , b, ` and si are arbitrary integers. See Figure 5.

Then the manifold H.p; q/.X / is a homology sphere.
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Ai ;
1
3 A0i ;�

1
3

Li ; 1=`

Li ; 1=`

step 1

Li ; 1=` LiC1;�1=`

Si ; si

B2i�1;
1
2 B2i ;�

1
2

Li ; 1=` LiC1;�1=`
Si ; si

Figure 6: Type A and B components of H.p; q/: an example of surgery coefficients is assigned
and step 1 of the proof has been applied.

Notation When the integers aj , b, ` and si in the above theorem are all equal to n, the manifold
H.p; q/.X / will be denoted by H.p; q/.n/.

Proof We do the proof in two steps: first we pass to another framed link H0.p; q/.X 0/ representing the
same manifold as H.p; q/.X /, and then we compute the linking matrix of this new framed link and its
determinant to show that the manifold it represents is a homology sphere.

For the first step, we twist about each vertical component V in order to change their surgery coefficient
to1 (precisely, if the coefficient of a vertical component is 1=a, we perform �a twists, where negative
twists means left handed twists). After doing this and removing the components with coefficient equal
to 1, we obtain the framed link H0.p; q/.X 0/. In this new link, a large horizontal component Lj is
linked to two other large horizontal components in the same level (except when pD 1; 2, when it is linked
just to itself or to one other component), but with linking number equal to 0, since c.Aj /D�c.Aj /; see
Figure 6. Also, the large component Li gets linked to Si�1 and Si .

To find the new surgery coefficients, recall the formula x0 D xC t.lk.L;V //2 which relates the old and
new surgery coefficients x and x0 of a component L different from the component V we are twisting
about.

Applying this formula to a large horizontal component Lj for j ¤ 1; q, we see that there are cancellations
coming from the fact that c.A0j /D�c.Aj / and c.BjC1/D�c.Bj /. Thus we have that c.Lj /

0 D c.Lj /
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for all j ¤ 1; q. The components L1 and Lq are only linked to one type B vertical component (if k > 0),
and thus we obtain

c.L1/
0
D c.L1/C b D�

1

`
; c.Lq/

0
D c.Lq/� b D

1

`
:

If k D 0, there are no B–vertical components at all, so c.L1/
0 D c.L1/. Similarly, the new coefficients

of the small horizontal components are equal to the old ones.

In conclusion, the frame link H0.p; q/.X 0/ only has horizontal large and small components, two large
components have linking number 0, and the surgery coefficients are equal to the old ones except when
k > 0 for the large components in the first and last level.

Next we compute the linking matrix of H0.p; q/.X 0/.

(a) In the case k D 0, by the above, the linking matrix is diagonal with entries integer inverses; so
H0.p; 1/ is a homology sphere by Hoste’s theorem (see Section 2.2).

(b) Let us see the general case q D 2k for k > 0. We order its components in p groups as

Li
1;S

i
1;L

i
2;S

i
2; : : : ;S

i
q�1;L

i
q; i D 1; : : : ;p;

and the linking matrix of H0.p; q/.X 0/ can be thought of as decomposed into square block submatrices
of size 2q � 1. Since lk.Ki

j ;K
i0

j 0/D 0 when i ¤ i 0 (where K is either L or S), only the blocks in the
diagonal are nonzero. Moreover, by the rotational symmetry, all these diagonal blocks are equal. We
denote this block Bk , and notice that it has order 2q� 1D 2kC1� 1. To obtain the off diagonal entries
of Bk we orientate H0.p; q/ with the orientation induced by a fixed orientation of the plane (namely,
orientate each planar component of H.p; q/ with the orientation induced by a orientation of the plane
containing them; this orientation induces one in H0.p; q/). Then we have

Bk D

0BBBBBBBBB@

�1=` b

b 1=s0 �b

�b 1=` b
: : :

�1=` b

c.Sq�1/ �b

�b 1=`

1CCCCCCCCCA
:

Since all the diagonal entries of Bk are of the form ˙1=a with a some integer, to finish the proof we
need to show that the determinant of Bk is equal, in absolute value, to the product of its diagonal entries.
We prove it by induction on k (recall that q D 2k).

If k D 0 then B0 D .�1=`/, so det B0 D˙1=`. Let us compute the case k D 1 by Laplace expansion
through the second row,ˇ̌̌̌

ˇ̌�1=` b 0

b 1=s0 �b

0 �b 1=`

ˇ̌̌̌
ˇ̌D�bb

1

`
C

1

s0

�
�

1

`

�
1

`
� .�b/.�b/

�
�

1

`

�
D�

1

s0`2
:
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Assume the result is true for all k � h and let us see for k D hC 1. Notice that the submatrix of BhC1

consisting of the first 2hC1� 1 rows and columns is the matrix Bh. Also notice that

order.BhC1/D 2hC2
� 1D 2.2hC1

� 1/C 1D 2 order.Bh/C 1:

Now, the key observation is that the surgery coefficients in (iii) and (iv) have been chosen so that the
matrix BhC1 has the structure

BhC1 D

Bh

�b

�b 1=shC1 b

b

SBh

where we have used the notation SA for the symmetric matrix of a square matrix A, ie for AD .aij /, its
symmetric matrix is defined to be SAD .�ad�i;d�j /. Notice that det SAD det A if d is even, while
det SAD� det A if d is odd.

Finally we denote by AŒi; j � the i; j minor of A, and call H D 2hC1�1, the order of Bh. Expanding the
determinant of BhC1 by its .H C 1/st row, we have

det BhC1 D�.�b/2BhŒH;H � det.SBh/C
1

shC1
det.Bh/ det.SBh/� b2 det.Bh/SBhŒ1; 1�:

Since H is odd, det SBh D� det Bh. On the other hand, notice that the submatrix of SBh obtained by
deleting the first row and column is the symmetric of the submatrix of Bh obtained by deleting its last
row and column. It follows that det SBhŒ1; 1�D det BhŒH;H �. Therefore, the first and last summands of
the above expression for det BhC1 cancel out and we get

det BhC1 D
1

shC1
det.Bh/ det.SBh/:

Then, by the induction hypothesis, we obtain the desired result.

5 Hyperbolicity of the homology spheres

The boundary of a horoball neighborhood of any vertex of Q.p; q/ is a rectangle with two parallel
edges contained in triangular faces and the other two parallel edges contained in nontriangular faces.
Following [Futer and Purcell 2007] we define shadow and white edges to be the edges of the rectangle
contained, respectively, in triangular and nontriangular faces. Therefore, the torus boundary of a horoball
neighborhood of a cusp of M.p; q/, K.p; q/ or H.p; q/ is made by gluing these rectangles, white edges
with white edges and shadow ones with shadow ones.
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To apply the 2� theorem it is convenient to find maximal horoball neighborhoods. In the context of fully
augmented links, Futer and Purcell [2007] describe a way to obtain a maximal horoball neighborhood,
which we describe in Lemma 5.1, particularized to our links.

Notice that each edge of an ideal hyperbolic triangle has a middle point defined as the intersection point
of this edge with the orthogonal line from the opposite vertex. Because any edge of Q.p; q/ belongs to a
unique triangular face, any edge of Q.p; q/ has a well defined middle point.

Lemma 5.1 [Futer and Purcell 2007] (i) There is a maximal horoball neighborhood of M.p; q/

which intersects any edge of Q.p; q/ in its middle point.

(ii) At the boundary of this maximal horoball neighborhood , `.s/D 1 and `.w/ � 1, where s is the
shadow edge of the rectangle and w is the white edge.

Next we analyze the combinatorics of each torus at the boundary of the cusps neighborhood of H.p; q/

or K.p; q/ in terms of the rectangles it is made of. Any such torus T corresponds to a component K of
the link. In each torus we will identify its meridian, ie the curve which is also a meridian of K (and so
the one which produces trivial surgery).

Suppose first that K is a horizontal component and suppose it is divided into t strands when cutting
along the discs bounded by the vertical components. Then there are t vertices in each copy of Q.p; q/

identified in the corresponding cusp so that the torus T is made by gluing 2t rectangles. Taking the two
rectangles corresponding to the same vertex in the two copies of Q.p; q/ and identifying them by their
white edges produces a cylinder whose meridian coincides with the meridian of the component K. The
torus T is then the result of gluing these cylinders, and has meridian � of length 2 and shortest longitude
� with length greater than t . Notice that � may not be the preferred longitude, that is, the curve �0 such
that the surgery coefficient m=n means that the slope to be killed is n�0Cm�, but `.�0/� `.�/.

When K is a vertical component, its corresponding cusp is composed only of one vertex in each copy
of Q.p; q/, so T is made by gluing two rectangles. If K is of type B (recall, no Adams’ move on K

to produce L from M.p; q/), we glue first the shadow edges of the rectangles and this produces two
cylinders whose meridians are the meridian of K, with length `.�/� 1. If the vertical component is of
type A, the corresponding torus is obtained from the previous one by cutting it along its longitude and
performing a half-twist.

In Figure 7 we can see the three types of cusp tori. We have represented the shaded edges of the rectangles
with a vector s and the white edges with a vector w. The vector s has length 1, while w may represent
different (but proportional) vectors with length greater or equal to 1.

We can now estimate the lengths of curves on the boundary of the horoball neighborhood of the cusps
and apply the 2� theorem. We obtain the following results.
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�D tw

�D 2s

�Dw

�D 2s

�Dw˙ s

�D 2s

Figure 7: Cusp shapes of the components of L. Top: the horizontal component. Bottom left: the
vertical components of type B. Bottom right: the vertical component of type A.

Theorem 5.2 Let p � 3 and k � 0. Let X D .ai ; b; `; si/ for i D 1; : : : ; 2k be integers with j`j � 1,
jbj � 4, jai j � 4 and jsi j � 3. Then the homology spheres H.p; 2k/.X / constructed in Theorem 4.1 are
hyperbolic. In particular , H.p; 2k/.n/ is negatively curved , and hence hyperbolic , for all p � 3, k � 0

and jnj � 4.

Proof Consider a maximal horoball neighborhood V of the cusps of H.p; q/ as described in Lemma 5.1.
Its boundary @V is a union of tori made by gluing triangles as described above and in Figure 7.

Now we compute the length of the slope ˇDm�Cn� in each of the above torus boundaries T using the
estimates in Lemma 5.1. Since most of the surgery coefficients are inverses of integers, we will do the
computations for mD 1 and check at the end that this is enough. If n> 0, notice that ˇ lifts to the curve
�C�0 in the n–sheeted cover zT of T determined by the subgroup generated by � and n�. Therefore, the
length of ˇ is the length of a diagonal of the fundamental domain of zT . If n< 0, the length of ˇ would
be that of the other diagonal; thus, we will always consider n> 0 and argument with the two diagonals.

For the cases of horizontal components and vertical components of type B, the torus is rectangular, so
both diagonals are equal and their length is

p
`.�/2C .n`.�//2. Thus, calling s D `.s/, w D `.w/ and

recalling s D 1 and w � 1,
`.ˇ/D

p
4s2C n2t2w2 �

p
4C n2t2

in the case of horizontal components, and

`.ˇ/D
p
w2C 4n2s2 �

p
1C 4n2

for vertical components of type B.
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For type A vertical components, the tori T are not rectangular; consequently, the two diagonals of zT are
different, and notice that the shortest one has the same length as the diagonal of the rectangular torus
with �Dw and �D .2n� 1/s. Hence,

`.ˇ/D
p
w2
C .2n� 1/2s2

�

p
1C .2n� 1/2:

Now we just find n such that the lower bound we have obtained for `.ˇ/ is greater than 2� . For horizontal
components we obtain n > 2

p
�2� 1=t , so n � 3 for t D 2 (small horizontal components) and n � 1

for t D 6 (large horizontal components Lj with j ¤ 1; q). Hence we take si � 3 and `� 1. For type B

vertical components we obtain n > 1
2

p
4�2� 1� 3:1. And for type A vertical components we obtain

n� 1
2

p
4�2� 1C 1� 3:6. Hence we take b; ai � 4.

To finish the proof it is only left to check that with the above bounds, the length of the slopes to be
killed in the horizontal components Lj with j D 1; q is greater than 2� . Since the surgery coefficient is
�1=`� b,

`.ˇ/D
p
.�1� b`/24s2

C `255w2
�

p
.�1� b`/24C `255

�
p

125> 2�:

Theorem 5.3 (a) The knot exterior K.p; q; n/ is hyperbolic for jnj � 4.

(b) The homology spheres K.p; q; n/.m/ are hyperbolic for jnj � 4 and jmj � 1.

Proof (a) The link K.p; q; n/ is the result of doing 1=n–Dehn filling at all the vertical components of
K.p; q/. Some of these components are of type A and the others of type B. So looking at the computations
on the proof of Theorem 5.2, we obtain that it is enough to take n� 4.

(b) The manifold K.p; q; n/.m/, obtained by 1=m–Dehn filling the knot K.p; q; n/, is also the manifold
obtained by doing 1=n–Dehn filling at all the vertical components of K.p; q/ and r–Dehn filling at the
horizontal component, where 1=m is the new surgery coefficient modified from r when performing first
the surgery instructions on the vertical components. Precisely, after noticing that the linking number of
any vertical component with the horizontal component of K.p; q/ is equal to 2, we have 1=mD r C 4nv,
where v is the number of vertical components (ie vD 2p.2q�1/). So r D 1=m�4nvD .1�4nmv/=m.

On the other hand, by the analysis of the cusps done before Theorem 5.2, the torus corresponding to the
horizontal component H is rectangular with `.�/D 2 and `.�/� 2v. In this torus, the length of the slope
ˇ corresponding to the surgery coefficient r D a=b is equal to the length of the diagonal of a rectangle
with sides a� and b�. Hence,

`.ˇ/� 2
p
.1� 4nmv/2C .vm/2 � 2

p
.3nmv/2C .vm/2 � 2

p
.3nmv/2 D 6jnmvj:

Since, as in part (a), we must take n� 4, we have that `.ˇ/� 2� for any jmj � 1.
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6 Uniformly bounded cusp shapes

In this section we show the following result.

Proposition 6.1 The hyperbolic links H.p; q/ have cusp shapes uniformly bounded for all p and q.

Proof This is a consequence of two properties. The first one is that any component of H.p; q/ is linked
to at most 6 vertical components, which makes the boundary tori composed of at most 12 rectangles, as
shown in Section 5. The second one is that the similarity structure of each rectangle is bounded above
and below. One estimate is the one given in Lemma 5.1; the other is Lemma 6.2 below.

Lemma 6.2 The vertex figure (boundary of horoball cusp) of any vertex of the polyhedron Q.p; q/ is a
Euclidean rectangle similar to one with side lengths 1 and a satisfying 1� a� 7.

Proof A vertex V of Q.p; q/ is incident to two triangular faces A and A0, and two white faces B and
B0 with b; b0 � 3 vertices. Thinking in the Poincaré halfspace model, and after normalization, we can
assume that one of the triangular faces, A, has vertices 0, 1 and1, with V D1. Thus, the vertex figure
of V is a rectangle R with vertices 0, 1, r i and 1C r i , the faces B and B0 are contained in the planes
x D 0 and x D 1 respectively, the face A0 is contained in the plane y D r and the whole polyhedron is
contained in the region bounded by these four planes; see Figure 8.

B0

B

F1
F2

F3

F6

F7

A

A0

F1

F2

F3

F6

F7

B B0

A

A0

Figure 8: To the left, the four planes B, B0, A and A0 that meet the ideal vertex V at infinity
shown in the circle packing. To the right, the polyhedron seen from the infinity: the planes B, B0,
A and A0 cut a horosphere in a rectangle.
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�=p

`

`X

�i �iC1

�i

�iC1

E1

E2

E3

E4

Figure 9: Central slice of Q.p; q/.

Let V D V0;V1; : : : ;Vk ;VkC1 D V be the vertices of B cyclically ordered and let F1;F2; : : : ;Fk be
the white faces different from B containing these vertices. Abusing notation, we also denote by Fi the
circle containing Fi . Then the circle F1 is tangent to the (unique) circle tangent to x D 0 and x D 1 and
orthogonal to y D 0, and Fk is the circle tangent to x D 0 and x D 1 and orthogonal to y D a. Next, the
circles F2; : : : ;Fk�1 are tangent to x D 0, disjoint from x D 1 and mutually tangent to its previous and
to its next ones. Since the diameter of a circle contained in R is at most 1, we have that a� 1� k � 1, so
a� k. Taking into account that each face of Q.p; q/ has at most 8 vertices, we have the result.

Remark Neumann and Zagier [1985] give an asymptotic estimation of the length of the core of the
filled solid torus which is inversely proportional to the normalized length of the slope killed. So if the
normalized length goes to infinity, then the length of the core of the filled solid torus tends to zero. Since
in our case the normalized length of all the slopes to be killed are bounded above, by Proposition 6.1, we
may hope that the homology spheres H.p; q/.n/ have uniformly bounded below injectivity radius.

7 Geometric properties of Q.p; q/ and consequences

In this section we will show that the polyhedra Q.p; q/ contain big balls. The technical tool consists of
cutting Q.p; q/ into slices and controlling their height.

The rotational symmetry of the polyhedron Q.p; q/ produces sections by planes orthogonal to the rotation
axis and going through some of the vertices of the polyhedron. In particular, the planes containing the
vertices corresponding to the small horizontal components cut Q.p; q/ into 2q slices: the top and the
bottom ones, which are isometric by the horizontal reflection plane, and are combinatorially equivalent to a
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Figure 10: Proof of Lemma 7.1: finding the lower bound.

p–gon drum polyhedron D.p/; the remaining slices, which we call central are combinatorially equivalent
to the polyhedron S.p/ shown in Figure 9. One should compare this figure with Figures 14 and 15,
which represent the whole polyhedron Q.p; q/. Each slice is ideal, with dihedral p–gonal symmetry, and
the dihedral angles between lateral faces are equal to �=2; furthermore, in the top and bottom slices the
dihedral angles between one of the basis and the lateral faces are equal to �=2.

Lemma 7.1 (height of central slices) For p � 3 let S.p/ be a central slice of Q.p; q/. Then its height
h is bounded above and below by constants 0< r0 < r1 independent of q. Moreover , r1! 0 as p!1.

Proof The polyhedron S.p/ is shown in Figure 9. We normalize so that the fundamental region, painted
in yellow, is bounded by the unit circle �, a circle D of radius r , the X –axis `X and the line ` of slope
� D �=p. These four curves determine a quadrilateral whose edges are denoted by E1, E2, E3 and E4.
The white faces are given by the circles �i , �i , �iC1 and �iC1, obtained as explained in the appendix.
We remark that the circles � do not intersect `, while the circles � do not intersect `X (see the appendix).

The height of S.p/ is the hyperbolic distance between the geodesics determined by � and D. Thus, it is
enough to show that there are constants 1< x0 < x1 such that the radius r of D satisfies x0 < r < x1.

To find the lower bound, first notice that the circles centered at `X , tangent to ` and that intersect the edge
E1 are those whose rightmost intersection point .t; 0/ with `X satisfy 1< t < sec �C tan � . Let ei˛.t/ be
the intersection point of these circles with E1. As t decreases in the above interval, ˛.t/ decreases from
� to 0. Consider x0 such that ˛.x0/D �=2; see Figure 10. We claim that x0 is a lower bound for the
radius r of D. Indeed, if r < x0, then any circle � intersecting the edge E3 intersects the edge E1 in a
point ei˛ with ˛ < �=2, while any circle � intersecting E4 intersects E1 in a point ei˛0 with ˛0 > �=2.
Thus � and � are not tangent at a point of E1, which is a contradiction.
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E2
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1

x1

Figure 11: Proof of Lemma 7.1: finding the upper bound.

For the upper bound, consider the circle � 0 centered at `X and tangent to ` and �. Let .x0
1
; 0/ be point

in `X \� 0 furthest from the origin and let � 00 be the circle centered at `X and tangent to ` and � 0 (see
Figure 11). Let .x1; 0/ be the point in `X \� 00 furthest from the origin. We claim that x1 is an upper
bound for the radius r of D. Indeed, suppose r > x1. Any circle � orthogonal to `X , disjoint from `

and intersecting the edge E1 intersects E3 at a point .x; 0/ with x < x0
1
, so is contained in the disc D0

centered at the origin and of radius x0
1
. On the other hand, any circle � orthogonal to `, disjoint from `X

and intersecting the edge E2 is outside D0. Thus, � and � are disjoint, which is a contradiction.

Finally it is clear that as p!1, x1! 1 and so r1! 0.

Corollary 7.2 For each p, the height of Q.p; q/ tends to infinity as q!1.

Proof The polyhedron Q.p; q/ contains 2q � 2 slices combinatorially equivalent to S.p/, and the
common perpendicular to the two bases of Q.p; q/ contains the common perpendiculars to the two basis
of any of these slices. Therefore, the height of Q.p; q/ is greater than .2q� 2/r0, by Lemma 7.1.

Lemma 7.3 (height of drum slices) For each p there is a constant r2.p/ > 0 such that the height of the
top slice of any Q.p; q/ is bounded above by r2.p/. Moreover , r2.p/! 0 as p!1.

Proof Recall that these are the top and bottom slices of the polyhedron Q.p; q/ and that one of the bases
is orthogonal to the lateral faces. We normalize so that this basis is the unit circle �. By the symmetry,
we can assume that two consecutive vertices in this basis are the points P1 D 1 and P2 D ei� . Then the
lateral face containing these vertices is given by the circle C orthogonal to � at P1 and P2. The other
basis is given by a circle D centered at the origin and which intersects C , so it is furthest from � when

Algebraic & Geometric Topology, Volume 24 (2024)



Hyperbolic homology 3–spheres from drum polyhedra 3563

�1

�

�01 2�

`0

�.p/ S

C

Figure 12

D is tangent to C . In other words, the height of this drum polyhedron is bounded above by the distance
r2 between � and the circle D0 centered at the origin and tangent to C . By the construction it is clear
that r2! 0 as p!1.

Proposition 7.4 For each r > 0 there are p and q such that the polyhedron Q.p; q/ contains a half-ball
of radius r orthogonal to one of its bases.

Proof Consider the circle packing determining Q.p; q/ as explained in the appendix, where �, �1 and
�0

1
are the circles centered at the origin with respective radii 1, R and 1=R, and let `0 be the line through

the origin with slope 2� D 2�=p.

In the upper half-space, let C be the euclidean cone generated by `0 and let S be the sphere tangent to C

and orthogonal to the half-sphere over �1 (see Figure 12). It is clear that the cone C does not intersect
any of the hyperbolic planes bounded by the circles of the circle packing with the exception of �1 and �0

1

(Figure 12 shows a vertical section of it), so the same is true for S.

When viewed in H3, the cone C is the surface equidistant to the z–axis at distance �.p/ equal to the
hyperbolic distance between the z–axis and `0. Clearly, as p goes to infinity, �.p/ also goes to infinity,
independently of q. Notice that �.p/ is also the hyperbolic radius of S.

Let C D .0; 0; c/ be the lowest intersection point of S with the z–axis. Small computations give that

c DR
1� cos 2�

sin 2�
and that

c �
1

R
() R2

�
sin 2�

1� cos 2�
:

Thus, if the above inequality holds, S does not intersect �0
1

and hence half of the ball bounded by S is
contained in the polyhedron Q.p; q/.

Algebraic & Geometric Topology, Volume 24 (2024)



3564 Raquel Díaz and José L Estévez

To conclude, given r , we first take p big enough that �.p/� r . Once p is fixed, by Corollary 7.2, there
is a q such that the height of Q.p; q/ is greater thanr

sin 2�

1� cos 2�
:

For these values of p and q, Q.p; q/ satisfies what is required.

Corollary 7.5 For each r > 0 there are p and q such that M.p; q/ (resp. H.p; q/ or K.p; q/) contains
an isometrically embedded ball of radius r . As a consequence , there is a sequence of hyperbolic link
exteriors M.p; q/ (resp. H.p; q/ or K.p; q/) converging geometrically to H3.

Proof Since the half-ball contained in Q.p; q/ found in Proposition 7.4 is orthogonal to one of the bases,
it is enough to glue two copies of Q.p; q/. Depending on the pattern used for gluing the triangular faces,
the quotient manifold may be M.p; q/, H.p; q/ or K.p; q/, among others.

Theorem 7.6 (a) There is a sequence of hyperbolic homology spheres H.p; q/.n/ converging geo-
metrically to H3.

(b) There is a sequence of hyperbolic homology spheres K.p; q; n/.m/ converging geometrically to H3.

Proof (a) By Corollary 7.5, there is a sequence of hyperbolic links H.p; q/ converging geometrically
to H3. By the hyperbolic Dehn surgery theorem, for each p and q, there is a sequence of closed hyperbolic
manifolds H.p; q/.n/ converging geometrically to H.p; q/ as n!1. By Theorem 4.1 we can chose
those n such that H.p; q/.n/ is a homology sphere. Thus, we obtain the result by a diagonal argument.

(b) The argument is similar, since K.p; q; n/.m/ can be obtained by Dehn filling K.p; q/.

Corollary 7.7 For each � there is an N such that jvol.H.p; q/.n//� vol.K.p; q; n/.m//j < � for each
n;m>N .

Proof The exterior links H.p; q/ and K.p; q/ have the same volume V since they are the union of
two copies of the same polyhedron Q.p; q/. Taking n and m sufficiently large, the volume of the Dehn
filled manifolds H.p; q/.n/ and K.p; q; n/.m/ converge to the volume V of the links and so the result
follows.

The above corollary motivates the following question.

Question Can the manifold H.p; q/.n/ be obtained as Dehn surgery on a knot in S3?

Using the same argument of Theorem 7.6 we also obtain an explicit sequence of knots converging
geometrically to H3, answering a question of Purcell and Souto [2010].

Theorem 7.8 There is a sequence of hyperbolic knots K.p; q; n/ which converge geometrically to H3.
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Proof By Corollary 7.5 there is a sequence of links K.p; q/ converging geometrically to H3. For any
p and q there is a sequence of knots K.p; q; n/ converging to K.p; q/. Thus, the result follows from a
diagonal argument.

8 Homology spheres with large genus

In the previous section we have proved that the exterior of the links M.p; q/ contain big balls. Now we
will prove that this property remains true after removing a maximal horoball neighborhood of the cusps —
Lemma 8.1. Then using the 2� theorem [Bleiler and Hodgson 1996] we will obtain closed negatively
curved manifolds containing big balls.

Lemma 8.1 The half-balls contained in Q.p; q/ found in Proposition 7.4 are also contained in these
polyhedra minus the maximal horoball neighborhoods described in Lemma 5.1.

Proof We will prove that the maximal horoball neighborhood N described in Lemma 5.1 does not
intersect the cone C defined in the proof of Proposition 7.4. Because of the geometric description of N

(Lemma 5.1(i)), notice that this neighborhood is invariant under the symmetries of Q.p; q/.

We introduce the following terminology. If H is a horoball with center P , we define the horizontal
projection of H as its vertical projection ph.H / over the plane z D 0. We define the vertical section as
the section with the vertical plane going through P and the origin O D .0; 0; 0/. We define the amplitude
of a circle C with respect to a exterior point Q as the angle between the two tangents from Q to C . For a
horoball, we define the horizontal and vertical amplitude as the amplitude of the horizontal projection or
the vertical section with respect to the origin O . Basic trigonometry implies that the vertical amplitude of
a horosphere is smaller than its horizontal amplitude.

Using this terminology, it is enough to show that the vertical amplitude of any horosphere of the maximal
horoball neighborhood N is smaller than 2�=p.

Let H be a horoball of N whose center is not in the x–axis `X nor in `. By contradiction, suppose its
horizontal projection intersects `. By reflection on ` we obtain another horoball H 0 of N, different to H ,
such that ph.H /\ph.H

0/¤∅. This implies that H \H 0 ¤∅, since both horospheres have the same
euclidean radius. Thus, H \H 0 \Q.p; q/ ¤ ∅, which is a contradiction. The argument is the same
if ph.H / intersects `X or other symmetry line of the circle packing defining Q.p; q/. Thus, ph.H / is
contained in a sector of angle �=p, which implies that the horizontal amplitude, and hence the vertical
amplitude, of H is smaller than or equal to �=p.

Consider now H a horoball of N with center at `X and suppose that its horizontal projection intersects `.
Reflecting in ` we obtain another horoball H 0 of N such that ph.H /\ph.H

0/\Q.p; q/¤ 0, which is a
contradiction. Then, ph.H / is contained in a sector of angle 2�=p and hence its horizontal and vertical
amplitude are smaller than or equal to 2�=p.
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Proposition 8.2 (a) Let jnj � 5. For any r > 0, there exists a homology sphere H.p; q/.n/ with
sectional curvature less than or equal to �1 containing an isometrically embedded ball of radius
greater than r .

(b) For any r > 0 there exists a homology sphere K.p; q; n/.m/ with sectional curvature less than or
equal to �1 containing an isometrically embedded ball of radius greater than r .

Proof We prove (a); (b) is equal. By Lemma 8.1 there are p and q such that the hyperbolic link H.p; q/

minus a maximal system C1; : : : ;Ck of horoballs contains a ball B of radius greater than Ar for any
arbitrarily chosen A> 0. The Dehn filling consists now on gluing negatively curved tori Vi to the boundary
components of the horoball neighborhood removed. To guarantee that the sectional curvature is bounded
above by �1 we need a little modification, as follows.

By the proof of Theorem 5.2, we can check that for n � 5 the minimal length, `min, of the slopes ˇi

in @Ci is greater than 9. Then, using [Futer et al. 2008, Theorem 2.1], we obtain that the Dehn filled
manifold H.p; q/.n/ admits a Riemannian metric for each � 2 .0; 1/, which agrees with the hyperbolic
metric in H.p; q/ outside of Ci and with sectional curvatures bounded above by

�
��

2�

`min

�2
� 1

�
< �

��
2�

9

�2
� 1

�
D�� � 0:512< 0:

Now we rescale the metric on H.p; q/.n/ by multiplying by the factor �D��
��

2�
9

�2
� 1

�
, so that the

lengths get multiplied by
p
� and the sectional curvatures get multiplied by 1=�. Thus, with this new

metric, the homology sphere H.p; q/.n/ has sectional curvature less than or equal to �1.

Finally, choosing A at the beginning of the proof to be equal to 1=
p
�, we obtain that the ball B embedded

in H.p; q/ n
S

i Ci has, in this new metric, radius greater than r .

Corollary 8.3 For any n�5 and for any g>0 there exists a hyperbolic homology sphere H.p; q/.n/with
genus greater than or equal to g. For any g > 0 there exists a hyperbolic homology sphere K.p; q; n/.m/

with genus greater than or equal to g

Proof By Proposition 8.2, there exists a homology sphere H.p; q/.n/ with sectional curvature less than
or equal to �1 which contains an embedded ball of radius greater than arccosh 2g. Then by Theorem 2.1,
the genus of H.p; q/.n/ is greater or equal to g. By the geometrization theorem, the manifold H.p; q/.n/

is hyperbolic.

Appendix Circle packing construction of Q.p; q/

It is a property of fully augmented links that their corresponding polyhedra can be constructed by means
of circle packings [Purcell 2011]. Precisely, think of Q.p; q/ as placed in the Poincaré upper half-space.
Remove the triangular faces and consider the planes containing the remaining faces. The boundaries
of these planes enclose disjoint discs in C which are tangent if and only if the two faces share a vertex
of Q.p; q/.
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�

`

P

�0

�1

��1

�0

�1
��1

Figure 13: Iterative construction of the circle packing. The tangency point P in � of the starting
circles �0 and �0 acts as a parameter of deformation of the configuration shown in the picture.

In this appendix we explain how to construct the circle packing corresponding to Q.p; q/. We normalize
so that the reflection plane interchanging the bases is the (half-sphere over the) unit circle �. Then, the
bases will be circles �1 and �0

1
centered at the origin with radius R and 1=R for some R> 1 which will

be determined in the construction. On the other hand, since Q.p; q/ has dihedral symmetry or order p, the
circle packing constructed will have this symmetry. Then the x–axis and the line ` with slope � D �=p
are symmetry planes and a fundamental domain of the circle packing is given by the region enclosed by
these two lines, and the circles � and �1.

The construction of the fundamental domain is iterative; see Figure 13. The iterative step is as follows:

We have two mutually tangent circles �i and �i having their centers respectively at ` and the x–axis.
Accordingly with the combinatorics of Q.p; q/, the next circle is tangent to �i and �i , and centered
either at ` or the x–axis. Without loss of generality, suppose it is `. Let Pi be the rightmost intersection
point of �i and ` and let �iC1 be the unique circle tangent to �i at Pi and tangent to �i . Notice that in
order that the discs bounded by �iC1 and �i be disjoint, some inequality involving the centers and radii
of �i and �i , denoted by c.�i/, r.�i/, etc, must be satisfied. Precisely,

jc.�i/jC r.�i/ < .jc.�i/jC r.�i// cos �
p
:

In the first step we take �0 and �0 orthogonal to �. Their tangency point P D eit is taken as a parameter
of the construction, so that for each t we have a family C.p; q/.t/ of circles with the required tangency
conditions. Nevertheless, it is not necessarily a circle packing because it is not guaranteed that the discs
enclosed by the circles constructed are disjoint.
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Figure 14: Circle packing corresponding to Q.8; 4/. Circles inside the annulus represent white
faces of the polyhedron. The circle in red is the boundary of a symmetry plane of the circle
packing and thus of the polyhedron by reflection.

The polyhedron Q.p; q/ will be achieved when the parameter t satisfies

jc.�q�1/jC r.�q�1/D
�
jc.�q�1/jC r.�q�1/

�
:

Notice that the above value is the radius R of �1.

The existence of the right value of t is guaranteed by the existence of Q.p; q/ (see Section 3.1). Alterna-
tively, it can be shown by a careful analysis of the one parameter family C.p; q/.t/.

Remark A consequence of the invariance of the circle packing Q.p; q/ under the symmetries at the
lines ` and x–axis, is that all the circles centered at ` are disjoint to the x–axis and vice versa. This is
useful in Section 7.
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Figure 15: This is a more realistic view of the polyhedron Q.5; 3/. Colored faces are to be
identified following the pattern of Figure 3 to obtain the link M.5; 3/.

We end by showing the existence of the infinite polyhedra Q.p;1/.

Lemma A.1 There is a value t D t1 of the parameter described above for which the corresponding circle
packing C.p;1/ is an infinite circle packing of the Euclidean plane minus the origin.

Proof Notice that the slice S.p/ of Q.p; q/ defined in Section 7 still has some combinatorial symmetry,
corresponding to involutions with axes going through vertices in the lateral faces. To construct Q.p;1/

it is enough to construct the fundamental region R.p/ of this new slice. The parameter t1 can be found
by noticing that the tangent point of the circles �1 and �1 is in the bisector line of the sector ỳ̀X .
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