Download this article
 Download this article For screen
For printing
Recent Issues

Volume 25
Issue 3, 1265–1915
Issue 2, 645–1264
Issue 1, 1–644

Volume 24, 9 issues

Volume 23, 9 issues

Volume 22, 8 issues

Volume 21, 7 issues

Volume 20, 7 issues

Volume 19, 7 issues

Volume 18, 7 issues

Volume 17, 6 issues

Volume 16, 6 issues

Volume 15, 6 issues

Volume 14, 6 issues

Volume 13, 6 issues

Volume 12, 4 issues

Volume 11, 5 issues

Volume 10, 4 issues

Volume 9, 4 issues

Volume 8, 4 issues

Volume 7, 4 issues

Volume 6, 5 issues

Volume 5, 4 issues

Volume 4, 2 issues

Volume 3, 2 issues

Volume 2, 2 issues

Volume 1, 2 issues

The Journal
About the Journal
Editorial Board
Subscriptions
 
Submission Guidelines
Submission Page
Policies for Authors
Ethics Statement
 
ISSN 1472-2739 (online)
ISSN 1472-2747 (print)
Author Index
To Appear
 
Other MSP Journals
Dynamics of veering triangulations: infinitesimal components of their flow graphs and applications

Ian Agol and Chi Cheuk Tsang

Algebraic & Geometric Topology 24 (2024) 3401–3453
Bibliography
1 I Agol, Ideal triangulations of pseudo-Anosov mapping tori, from: "Topology and geometry in dimension three" (editors W Li, L Bartolini, J Johnson, F Luo, R Myers, J H Rubinstein), Contemp. Math. 560, Amer. Math. Soc. (2011) 1 MR2866919
2 J S Birman, R F Williams, Knotted periodic orbits in dynamical systems, I : Lorenz’s equations, Topology 22 (1983) 47 MR0682059
3 J S Birman, R F Williams, Knotted periodic orbits in dynamical system, II : Knot holders for fibered knots, from: "Low-dimensional topology" (editor S J Lomonaco Jr.), Contemp. Math. 20, Amer. Math. Soc. (1983) 1 MR0718132
4 M Brunella, Surfaces of section for expansive flows on three-manifolds, J. Math. Soc. Japan 47 (1995) 491 MR1331326
5 B Farb, C J Leininger, D Margalit, Small dilatation pseudo-Anosov homeomorphisms and 3–manifolds, Adv. Math. 228 (2011) 1466 MR2824561
6 S Fenley, Ideal boundaries of pseudo-Anosov flows and uniform convergence groups with connections and applications to large scale geometry, Geom. Topol. 16 (2012) 1 MR2872578
7 S Fenley, L Mosher, Quasigeodesic flows in hyperbolic 3–manifolds, Topology 40 (2001) 503 MR1838993
8 S Frankel, S Schleimer, H Segerman, From veering triangulations to link spaces and back again, preprint (2019) arXiv:1911.00006
9 D Fried, Transitive Anosov flows and pseudo-Anosov maps, Topology 22 (1983) 299 MR0710103
10 D Futer, F Guéritaud, Explicit angle structures for veering triangulations, Algebr. Geom. Topol. 13 (2013) 205 MR3031641
11 A Giannopolous, S Schleimer, H Segerman, A census of veering triangulations, electronic reference (2019)
12 S Goodman, Dehn surgery on Anosov flows, from: "Geometric dynamics" (editor J Palis Jr.), Lecture Notes in Math. 1007, Springer (1983) 300 MR1691596
13 F Guéritaud, Veering triangulations and Cannon–Thurston maps, J. Topol. 9 (2016) 957 MR3551845
14 J Y Ham, W T Song, The minimum dilatation of pseudo-Anosov 5–braids, Exp. Math. 16 (2007) 167 MR2339273
15 E Hironaka, Small dilatation mapping classes coming from the simplest hyperbolic braid, Algebr. Geom. Topol. 10 (2010) 2041 MR2728483
16 C D Hodgson, J H Rubinstein, H Segerman, S Tillmann, Veering triangulations admit strict angle structures, Geom. Topol. 15 (2011) 2073 MR2860987
17 C D Hodgson, A Issa, H Segerman, Non-geometric veering triangulations, Exp. Math. 25 (2016) 17 MR3424830
18 A Katok, B Hasselblatt, Introduction to the modern theory of dynamical systems, 54, Cambridge Univ. Press (1995) MR1326374
19 N Kopell, Commuting diffeomorphisms, from: "Global analysis" (editors S s Chern, S Smale), Proc. Sympos. Pure Math. 14, Amer. Math. Soc. (1970) 165 MR0270396
20 M Landry, Taut branched surfaces from veering triangulations, Algebr. Geom. Topol. 18 (2018) 1089 MR3773749
21 M P Landry, Veering triangulations and the Thurston norm : homology to isotopy, Adv. Math. 396 (2022) 108102 MR4370465
22 M P Landry, Y N Minsky, S J Taylor, Flows, growth rates, and the veering polynomial, Ergodic Theory Dynam. Systems 43 (2023) 3026 MR4624489
23 M P Landry, Y N Minsky, S J Taylor, A polynomial invariant for veering triangulations, J. Eur. Math. Soc. (JEMS) 26 (2024) 731 MR4705661
24 C T McMullen, Entropy and the clique polynomial, J. Topol. 8 (2015) 184 MR3335252
25 L Mosher, Laminations and flows transverse to finite depth foliations, preprint (1996)
26 A Parlak, Computation of the taut, the veering and the Teichmüller polynomials, Exp. Math. 33 (2024) 1 MR4713861
27 M Ratner, Markov partitions for Anosov flows on n–dimensional manifolds, Israel J. Math. 15 (1973) 92 MR0339282
28 S Schleimer, H Segerman, Essential loops in taut ideal triangulations, Algebr. Geom. Topol. 20 (2020) 487 MR4071381
29 S Schleimer, H Segerman, From loom spaces to veering triangulations, preprint (2021) arXiv:2108.10264
30 S Schleimer, H Segerman, From veering triangulations to pseudo-Anosov flows and back again, in preparation
31 M Shannon, Hyperbolic models for transitive topological Anosov flows in dimension three, preprint (2021) arXiv:2108.12000