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Finite presentations of the mapping class groups
of once-stabilized Heegaard splittings

DAIKI IGUCHI

Let g > 2 and assume that we are given a genus g Heegaard splitting of a closed orientable 3—manifold
with distance greater than 2g 4 2. We prove that the mapping class group of the once-stabilization of
such a Heegaard splitting is finitely presented.

57K30, 57M60

1 Introduction

Let (M,Y) be a Heegaard splitting of a compact orientable 3—manifold M. The mapping class
group MCG(M, ¥) of the Heegaard splitting (M, X) is defined to be the group o (Diff(M, X)) of
path-connected components of the group Diff(M, ), where we denote by Diff(M, ) the group of
diffeomorphisms of M that preserve X setwise. There is a natural homomorphism from MCG(M, X) to
the mapping class group MCG(M ) of M. Following Johnson [2011], we call the kernel of this natural
homomorphism the isotopy subgroup of MCG(M, X)), and denote it by Isot(M, X).

In this paper, we are interested in the isotopy subgroup of the mapping class group of a once-stabilized
Heegaard splitting. Let (M, X’) be a genus g(X’) > 2 Heegaard splitting of a closed orientable 3—
manifold M. We say that a Heegaard splitting (M, ¥) is a (once-)stabilization of (M, ') if it is obtained
from (M, ¥’) by adding a 1-handle whose core is parallel into X’. Corresponding to two handlebodies
Vs, and VEJF, in M with dVy, = 8VE+, = Y/, there are two obvious subgroups of Isot(M, X): one is
Isot(Vy,, X7) and the other is Isot(V;/, 1), where ¥~ (resp. £ 1) is the Heegaard surface obtained by
pushing % into Vg, (resp. V;{,) slightly. It is natural to ask when these subgroups generate Isot(M, X).
Johnson [2011] proved that if the distance d(X’) of the Heegaard splitting (M, ¥') is greater than
2g(X’) + 2, then the two subgroups defined above generate Isot(M, X). As a consequence of this fact,
together with a result of Scharlemann [2013] that says Isot(VEi,, %) are finitely generated, it follows that
Isot(M, ¥) and MCG(M, %) are finitely generated. In that paper, Johnson conjectured that Isot(M, X)
is an amalgamation of the two groups Isot(Vy,, ¥7) and Isot(V{f,, ¥ 1). This is the main result of the

paper:

Theorem 1.1 Suppose that (M, X') is Heegaard splitting of a closed orientable 3—manifold M with
d(X') > 2g(X’) + 2, and that (M, X) is a once-stabilization of (M, X'). Suppose that (Vy,, X7) (resp.
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(V;/, 1)) is the Heegaard splitting of Vs, (resp. Vgﬁ) obtained by pushing % into Vs, (resp. V;/)
slightly, where Vy,, and V;, are handlebodies in M bounded by X'. Then Isot(M, X) is isomorphic to an
amalgamation of the two groups Isot(Vy,, ¥7) and Isot(VEJr,, =1).

One might expect that the above theorem has something to do with van Kampen’s theorem. This idea can
be justified as follows. Following Johnson and McCullough [2013], we define the space #(M, X) to be
Diff(M ) /Diff(M, X) and call it the space of Heegaard splittings equivalent to (M, X). Let ¥ denote the
path-connected component of #(M, X) containing the left coset idys - Diff(M, X). It is known that if a
3—-manifold admits a Heegaard splitting with the distance greater than two, then such a 3—manifold must
be hyperbolic. By a result in [Johnson and McCullough 2013] (see Theorem 2.1 below for more details)
together with this fact, it follows that Isot(M, X) is isomorphic to 1 ().

Now fix a spine K = K~ U K of the Heegaard splitting (M, X'), that is, K~ and K are finite graphs
embedded in M such that the complement M \ K is diffeomorphic to X’ x (—1, 1) and X’ is a slice
of this product structure. Denote by ¥~ (resp. #7) the subspace of ¥ consisting of those elements
represented by a Heegaard surface T such that 7T is a genus g(X’) + 1 Heegaard surface of the genus
2(X’) handlebody M \ Int(N(K ™)) (resp. M \ Int(N(K™))), where N(K ™) (resp. N(K 7)) is a small
neighborhood of K + (resp. K7). By the similar reason as above (see Theorem 2.2 below), we can identify
Isot(Vy,, ¥7) and Isot(VZJr,, 1) with the fundamental groups 7;(%™~) and 7; (%) respectively. Set
#Y := %~ U %T. Theorem 1.1 is a corollary of the following.

Theorem 1.2 The inclusion #“ — ¥ is a homotopy equivalence.

It is well known that a genus g 4+ 1 Heegaard splitting of a genus g handlebody is unique up to isotopy.
Similarly, a genus g + 1 Heegaard splitting of the space Fg x [—1, 1] is unique up to isotopy, where we
denote by Fg a closed genus g surface. In other words, ¥+, %~ and ¥~ N KT are all connected, and
hence van Kampen’s theorem applies to the triple (¥, %1, %~ N % ™).

The proof of Theorem 1.2 is based on the concept of graphics, which was first introduced by Cerf [1968]
and then successfully applied to the study of Heegaard splittings by Rubinstein and Scharlemann [1996].
More precisely, we prove Theorem 1.2 by generalizing the method developed by Johnson [2010; 2011].
We also use an argument due to Hatcher [1976] crucially, which is a parametrized version of the innermost
disk argument.

In Section 5, we confirm that the isotopy subgroup of a genus g + 1 Heegaard splitting of a genus g
handlebody is finitely presented:

Theorem 1.3 Let V be a handlebody of genus g(V') > 2, and let (V, X) be a genus g(V') + 1 Heegaard
splitting of V. Then Isot(V, X) is finitely presented.

It follows from Theorem 1.3 that 7r; (%) and mr;(9™) are finitely presented. As a consequence, we have:
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Corollary 1.4 Let (M, X') be a Heegaard splitting of a closed orientable 3—manifold M with
d(x) >2g(Z) +2.
Let (M, X) be a once-stabilization of (M, X'). Then Isot(M, ¥) and MCG(M, X) are finitely presented.

We remark that a problem related to this work was treated by Koda and Sakuma [2023]. In that paper,
the concept of the “homotopy motion group” was introduced, and they considered the question that asks
when the homotopy motion group I1(M, ) of a Heegaard surface in a 3—manifold M can be written as
an amalgamation of the two homotopy motion groups IT1(Uy;, ) and IT(U. +. ) corresponding to the
two handlebodies Ug and Uy with Uy = U4 = .

The paper is organized as follows. In Section 2, we recall from [Johnson and McCullough 2013] some
facts about the space of Heegaard splittings. We also recall the definition of the distance of a Heegaard
splitting. To prove Theorem 1.2, we will need to deal with the graphic determined by a 4—parameter
family of Heegaard surfaces. In Section 3, we give a quick review of the theory of graphics, and then we
see that some ideas in [Johnson 2010] can be adapted to our setting. In Section 4, we prove Theorem 1.2.
Finally, we give the proof of Theorem 1.3 in Section 5.

Acknowledgements The author would like to thank his advisor Yuya Koda for much advice and sharing
his insight. He is also grateful to the referees for their valuable comments that improved the manuscript.
This work was supported by JSPS KAKENHI grant JP21J10249.

2 Preliminaries

Throughout the paper, we will use the following notation. For a topological space X, we denote by | X|
the number of path-connected components of X . For a subspace Y of X, Int(Y') and C1(Y) denote the
interior and the closure of Y in X, respectively. We will denote by J the closed interval [—1, 1].

2.1 The space of Heegaard splittings

Let M be a compact orientable 3—manifold (possibly with boundary). Let (M, ) be a Heegaard splitting
of M. This means that ¥ C M is a closed orientable embedded surface cutting M into the two compression
bodies. Here, a compression body is a 3—manifold with nonempty boundary admitting a Morse function
without critical points of index 2 and 3. A handlebody is a typical example of a compression body. The
space (M, X) = Diff(M ) /Diff(M, ) is called the space of Heegaard splittings equivalent to (M, X).
Note that there is a one-to-one correspondence between #(M, X) and the set of images of ¥ under
diffeomorphisms of M. We often identify an element of # (M, X) with the corresponding Heegaard
surface. We always take the surface X as the basepoint of #(M, ), which corresponds to the left coset
idps - Diff(M, ¥). The space #(M, ) admits a structure of a Fréchet manifold, and this implies that
# (M, ¥) has the homotopy type of a CW complex.
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Theorem 2.1 [Johnson and McCullough 2013, Corollary 1] Suppose that M is closed, orientable, irre-
ducible and 1 (M) is infinite, and that M is not a non-Haken infranilmanifold. Then mj (#(M, X)) =0
for k > 2, and there is an exact sequence

1 - Z(m1(M)) > 71 (H(M, X)) > Isot(M, X)) — 1.
A similar statement as above holds for handlebodies and the space Fg x J:

Theorem 2.2 Let g’ > g > 2. Suppose that M is a genus g handlebody or the space Fg x J, where Fg
denotes a closed orientable surface of genus g. Suppose that (M, X)) is a genus g’ Heegaard splitting
of M. Then 1 (#(M, X)) = Isot(M, X) and 73 (H(M, X)) =0 for k > 2.

Proof By [Johnson and McCullough 2013, Theorem 1], 7z (#€(M, X)) = 3 (Diff(M)) for k > 2, and
there is an exact sequence

1 - a1 (Diff(M)) — 71 (#H(M, X)) — Isot(M, X) — 1.
By Earle and Eells [1969] and Hatcher [1976], 7; (Diff(M)) = 0 for k > 1. O

2.2 The distance of a Heegaard splitting

Let (M, X') be a genus g(X’) > 2 Heegaard splitting of a closed orientable 3—manifold M . Denote by
Vs, and V4, the handlebodies in M with Vi, N Vg, = 8V, = 8V}, = ©'. The curve graph 6(X') is
the graph defined as follows. The vertices of €(X’) are isotopy classes of nontrivial simple closed curves
in X', and the edges are pairs of vertices that admit disjoint representatives. We denote by di(x/) the
simplicial metric on 6(X’).
Let 9~ (resp. @) denote the set of vertices in €(X’) that are represented by simple closed curves
bounding disks in Vg, (resp. V). Then the (Hempel) distance d(3') of the Heegaard splitting (M, X')
is defined to be

dY) = dcg(zf) (@, @+).
For example, if M contains an essential sphere, then any Heegaard splitting of M has distance zero (see
Haken [1968]). If M contains an essential torus, then any Heegaard splitting of M has distance at most
two. Furthermore, any Heegaard splitting of a Seifert manifold has distance at most two. See Hempel
[2001] for these two facts. As a consequence of the geometrization theorem and these facts, we have:

Theorem 2.3 Suppose that (M, Y') is a Heegaard splitting of a closed orientable 3—manifold M . If

d(X') > 2, then M admits a hyperbolic structure.

3 Sweep-outs and graphics

In this section, we recall the definition of graphics and summarize their properties. In what follows, let
M denote a closed orientable 3—manifold.
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3.1 Graphics

Let (M, X) be a Heegaard splitting of M. A sweep-out associated with (M, X) is a function
h:M — J=[-1,1]

such that the level set 27! (¢) is a Heegaard surface isotopic to X if # € Int(J), and 27! (¢) is a finite graph
in M if t € 3J. The preimage 4~1(3J) is called the spine of h.

Lemma 3.1 Let n > 0 and (M, X) be a Heegaard splitting of a closed orientable 3—manifold M .
Let ¢: D" — % (M, X). Then there exists a family {h,: M — J | u € D"} of sweep-outs such that
h;1(0) = ¢(u) for u € D".

Proof Take a sweep-out i: M — J with h7~1(0) = . We note that
Diff(M ) — Diff(M)/Diff(M, X) = #(M, X)

is a fibration [Johnson and McCullough 2013]. So, the map ¢ lifts to a map ¢: D" — Diff(M ). Now
define hy :=ho@(u)~! for u € D". |

Let (M, %) and (M, %') be Heegaard splittings of M. Let f: M — J be a sweep-out with f~1(0) = X',
Furthermore, let {/,: M — J | u € D?} be a family of sweep-outs associated with (M, X). We define
the map ®: M x D? — J2 x D? by ®(x,u) = (f(x), hy(x),u).

Set L := ®~1(3J2 x D?), and W := (M x D?)\ L. Define S = S(®|;-) to be the set of all points
w € W such that rank d(®|p )y < 4. The image T" of S in J? x D? is called the graphic defined by f
and {h,}.

After a small perturbation, we may assume that the map & is generic in the following sense. First, for
u € D?, the spine h;l (0J) intersects each level set of f at finitely many points. Similarly, for u € D?, the
spine f~1(9J) intersects each level set of /1, at finitely many points. Furthermore, ® is “excellent” on W.
This means that the set S of singular points of ® |y is a 3—dimensional submanifold in W, and S is divided
into four parts, S,, S3, S4 and S5, where Sy consists of singular points of codimension k. (In the notation
of [Boardman 1967], we can write S, = £%0, §3 =210, §, = »2.1.1.0 34 §; = »2.1.1,1.0y 372.2,0 )
For k # 5, ® has one of the following canonical forms around a point w € Sj:! there exist local
coordinates (a, b, ¢, x, y) centered at w and (4, B, X, Y) centered at ®(w) such that

(a,b,c, x>+ y?) definite fold (w € S»),
a,b,c,x*— indefinite fold (w € S5),
b,c,x*—y? indefinite fold (w € S,)
(Ao®, Bo® Xo®,Yod) =14 (a,b,c,x*®+ax—y?) cusp (w € S3),

(a,b,c, x*+ax?+bx+ yz) definite swallowtail (w € Sy),
(a,b,c, x4 +ax? 4+ bx— yz) indefinite swallowtail (w € Sy).

I'We do not know if there exist canonical forms for the singularities of type £2:2-0. However, the singularities in S are not
important for our present purpose.
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Furthermore, for 2 <k <5, ®|g, is an immersion with normal crossings, and the images of the Sy are
in general position. The main reference about these materials is the book by Golubitsky and Guillemin
[1973]. Hatcher and Wagoner [1973] also contains a helpful review for our present purpose.

In the remaining part of the paper, we always assume that the map ® has the property described above.
Under this assumption, I" has the natural stratification: we can write I' = F3 U F, U F; U F,y, where
dim Fj = k for 0 < k < 3 and each F} has the following description.

F5 This consists of those points y € I" such that (®|s)~'(y) C S, and |(®|s)~1(y)| = 1.
F, This consists of those points y € I' such that

* (@]5)7'(») C Sy and [(®|5)~"(»)] =2, 0r

* (@[s)7'(») C Sz and [(@]5) (M| = 1.
F1 This consists of those points y € I' such that

o (®[5)7"(») C Sy and [(®]s)~ (1) =3,

* (@[s)7'(») CS2U S5 and (@)~ (»)| =2, or

o (®[s)7(») CSyand [(@]5) (M =1.
Fy This consists of those points y € I' such that

« (®ls)7'(») C Sy and [(Dl5)7 () =4,
(®[s)~'(») € S2US3 and [(@|5)~' (»)] =3,
(®ls)~'(y) € S2 US4 and [(@|5)~ ' (»)| =2,
(®[s)~"(y) C S5 and |(®[s) " (»)| =2, or
(®l5)~'(») C S5 and |(®|5) "' (»)| = 1.

3.2 Labeling the regions of J2 x D?

In this subsection, we will see that some definitions in [Johnson 2010] can be modified slightly and
adapted to our setting.

Let (M, X) be a Heegaard splitting. We assume that one component of M \ X is assigned the label —
and the other is assigned the label + in some way. We denote by Uy, and U; the components of M \ X
labeled by — and + respectively. (Typically, such a labeling is determined by a given sweep-out /s with
h~1(0) = . In this case, we can define Uy = h=1(~1,0]) and U; = h~1([0, 1]).) Such an assignment
of the labels — or + to the components of M \ X is called a transverse orientation of X.

Definition Let (M, X) and U% be as above. Suppose ¥’ C M is a closed embedded surface. Then we
say that X' is mostly above X if X' is transverse to X, and if every component of X’ N Uy is contained
in a disk subset of X’. Similarly, we say that 3’ is mostly below X if X' is transverse to X, and if every
component of ' N Ug' is contained in a disk subset of X'.

Suppose that f: M — J is a sweep-out, and that X is a transversely oriented Heegaard surface of M. We
say that X is a spanning surface for f if there exist values a, b € Int(J) such that £ ~!(a) is mostly above
¥ and £~ (b) is mostly below . We say that ¥ is a splitting surface for f if it satisfies the following.
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First, there does not exist value s € Int(J) such that £ ~!(s) is mostly above or mostly below . Second,
f|x is almost Morse, that is, f |y has only nondegenerate critical points and f |y is Morse away from
—1 and 1, but there may be more than one minima and maxima at the levels —1 and 1 respectively. We
note that these definitions are coming from that in [Johnson 2010, Definitions 11 and 12].

Proposition 27 in [Johnson 2010], which will be used in the proof of Theorem 1.2, can be stated in our
term as follows:

Lemma 3.2 [Johnson 2010, Proposition 27] Let f': M — J be a sweep-out associated with a Heegaard
splitting (M, X'). If f admits a splitting surface X, then d(X') < 2g(X).

Let (M, X) and (M, ') be Heegaard splittings of M. Assume that f: M — J is a sweep-out with
f~1(0) = ¥, and that {h,: M — J | u € D?} is a family of sweep-outs associated with (M, X). Let
®: M x D?> — J? x D? be as in the previous subsection. Following [Johnson 2010], let us consider the
two subsets R, and Ry, of J2 x D? defined as

Ry = {(s,t,u) € J*>x D* | f~1(s) is mostly above h;l(t)},
Rp 1= {(s,t,u) € J> x D* | f71(s) is mostly below 4, ' (r)}.
Here, for each u € D? and ¢ € J, the transverse orientation of /2, ! (¢) is determined by the sweep-out /,,.
For example, if ¢ is sufficiently close to —1, then the point (s, ¢, ) is in R, because £~ (s)Nhy 1 ([—1,1])
consists of finitely many properly embedded disks in the handlebody /! ([—1,¢]). Similarly, if ¢ is
sufficiently close to 1, then the point (s, ¢, u) is in Rp. The regions R, and Ry, are nonempty open subsets
in J2 x D?. The next proposition follows directly from the definition.
Proposition 3.3 The following hold:
(1) R4 and Ry, are disjoint as long as g(X') # 0.
(2) R4 and Ry, are bounded by T'.
(3) The regions R, and Ry, are convex in the t—direction, that is, if (s,t,u) is in R, (resp. Rp), then

sois (s,t’,u) forany t’ <t (resp.t' > t).

Set J2 := J? x {u} C J? x D? for u € D?. Then, for u € D?, the intersection I' N J2 C J2 can be
viewed as the (2D) graphic defined by sweep-outs f and A,,.

Definition Let / and /4, be as above.

(i) We say that &, spans f if there exists ¢ € J such that i}, !(¢) is a spanning surface for f.
(ii) We say that hy, splits f if there exists ¢ € J such that i, (¢) is a splitting surface for f.

We also say that the graphic defined by f and 4, is spanned if h, spans f. Similarly, we say that the
graphic defined by f and A, is split if hy, splits f.

Remark 3.4 By Lemma 3.2, the graphic defined by f and /1, cannot be split if d(X') > 2g(X).
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Figure 1: The graphic defined by f and /4, is spanned if there exists a horizontal segment in
JL% intersecting both R, and R (left). On the other hand, the graphic is split if there exists a
horizontal segment disjoint from both C1(R,) and C1(Rp) (right).

Here are further remarks on the above definition. First, we remark that the condition (i) is equivalent
to the following: there exists 7y € J such that the horizontal segment {¢ = o} in J?2 intersects both R,
and Ry (the left in Figure 1). We also note that Ju2 intersects F3 transversely for u € D?, and hence
J2 N F; consists of finitely many open arcs. This is because d(p3 o ®),, has maximal rank for w € W,
where p3:J2 x D?> — D? denotes the projection onto the third coordinate. Furthermore, after perturbing
@ if necessary, Jlf N F consists of finitely many points for 0 < k <2 and u € D?. Under this assumption,
condition (ii) is equivalent to the following: there exists ¢y € J such that the horizontal segment {¢t = #(}
in J2 is disjoint from both Cl(%,) and CI1(%y) (the right in Figure 1).

Proposition 3.5 If g(X') > 2, then CI(R,) and C1(Rp) intersect only at points of Fy.

Proof We first note that by Proposition 3.3(1) and (2), the intersection between C1(%R,) and CI(Rp) is
contained in T". Suppose that CI(%R,) N Cl(Rp) # & and y € Cl(R,) NCI(Rp) C . Let (59, £, tg) be
the coordinate of y. Let / be the segment in J2 x D? defined by / := {s = 59} N {u = uy}. Note that
y €[ by definition. Furthermore, it follows from Proposition 3.3(3) that / C C1(%®,) U CI(%Rp). Consider a
point (sy., Zy, ) obtained by perturbing the point (s, Zo, t9) in the s— and u—directions. We may assume
that the segment [:= {s = 54} N {u = uy} is transverse to each stratum of I". The preimage o 1(1) of
is the genus g(X’) Heegaard surface in M x {u;)} C M x D?, which can be naturally identified with X’
Let 4: ¥/ — J denote the function defined to be the restriction of h% on ®~! (i) =~ Y. Then £ is almost
Morse.

Now suppose, for the sake of contradiction, that y is in Fj with &k > 1. Let (s(’), —, u:)) denote the
coordinate of the intersection point between [ and the boundary of ClI(%,). Note that such a point is
unique by Proposition 3.3(3). Similarly, let (s, #+, u;) denote the coordinate of the intersection point
between / and the boundary of C1(®p). Then, & satisfies the following.

e For any regular value ¢ € J \ [t_, 1], every loop of h~1(¢) is trivial in X’.

e The interval [/_, 4] contains at most three critical values of /.

It is easily seen that the Euler characteristic of such X’ must be at least —1, but this is impossible because
g(X’) > 2 by assumption. |
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4 Proof of Theorem 1.2

Suppose that M is a closed orientable 3—manifold, and that (M, X') is a genus g(X’) > 2 Heegaard
splitting with d(X") > 2g(X’) + 2. Suppose that (M, ¥) is a once-stabilization of (M, X’). Let ¥ denote
the path-connected component of %(M, £) containing . Let K* and #* C % be as in Section 1. Set
HY = UK and K" :=H " NHT.

By Theorem 2.2, ;. (#7) = mp (1) = m3(#"™) = 0 for k > 2. By the Mayer—Vietoris exact sequence,
it follows that Hy (#"; Z) = 0 for k > 2. Applying Hurewicz’s theorem, we have 7y (#") = 0 for k > 2.
On the other hand, by Theorems 2.1 and 2.3, 7z (#) = 0 for kK > 2. So, to prove Theorem 1.2, it is enough
to show the following.

Lemma 4.1 The inclusion #” — ¥ induces the isomorphism 1 (%) — 7 (%).

Johnson [2011] proved that 1 (%) is generated by 71 (# ™) and 1 (%), and hence the induced map is a
surjection. (In fact, using the notations in this paper, what he proved in [Johnson 2011] can be written as

T (%, %) = 1.

See [Johnson 2011, Lemmas 2 and 3]. The following argument is motivated by this observation.) So in
this paper, we focus on the proof of the injectivity of the induced map. In other words, we will show the
following:

Lemma 4.2 The second homotopy group 5 (%, #") of the pair (3, %) vanishes.

Let eg € 3D? be the basepoint. Let ¢ : (D2, dD?, eo) — (%, %V, =). We will show that [¢p] =0 € 7, (%, #").
Let f: M — J be a sweep-out with f~1(0) = X’ and f~!(+1) = K*. By Lemma 3.1, there exists a
family {h,: M — J | u € D?} of sweep-outs such that /1,1 (0) = ¢(u) for u € D?. The key of the proof
is the following.

Lemma 4.3 For any u € D?, the graphic defined by f and h,, is spanned.

Proof Suppose, contrary to our claim, there exists u¢ € D? such that the graphic defined by f and A,
is not spanned. Put Jlfo = {(s,t,u) € J> x D? | u = uy}. For brevity, we denote the restriction of ®
on W = (M x D?)\ L by the same symbol ® in the following. Set I' := ®(S(®)). The intersection
rn JuzO C JL%O is precisely the graphic defined by f and /.

As noted in Remark 3.4, this graphic cannot be split. Then, there exists 7y € J such that the horizontal
segment [ ;= {t = ty} C Juz0 intersects both Cl1(%,) and Cl(%p) at their boundaries (Figure 2). By
Proposition 3.5, C1(%R,) and CI(%R}) intersect only at points of Fy. So, pushing / out of Jlfo slightly, we
get an arc I  J% x D? such that

o [is disjoint from both R, and R, and

e [ is transverse to each stratum of T".

Algebraic € Geometric Topology, Volume 24 (2024)



3630 Daiki Iguchi

Ry Rp
, T \\/\3 \/<<

L s Ra Ra

2
Juy

Figure 2: If the graphic defined by f and /, is not spanned, then there exists a horizontal
segment / C Juzo intersecting C1(R,) and C1(Rp) at their boundaries; the intersection is either
separate vertices (left) or a single common vertex (right). In either case / can be perturbed in
J? x D? so that / does not meet CI(R,) U Cl(Rp).

Furthermore, there is a family {/; | t € I} of arcs with [o =/ and /; = I such that for any ¢t € (0, 1],
[; is transverse to each stratum of I'. Note that d(p, o @) and d(p3; o ®) have maximal ranks, where
p2: J? x D? — J is the projection onto the second coordinate and p3: J? x D? — D? is the projection
onto the third coordinate. This means that ® is transverse to / = /. As a consequence, ® is transverse
to [; for all ¢ € [0, 1], and hence T = <I>_1(l~ ) is a closed embedded surface in M x D? isotopic to
S o0 i= P 1() (= I (1) x {uo}). In particular, g(2) = g(T') + 1.

uo

Let ¢;: M x D?> — M denote the projection onto the first coordinate. Since the restriction
qi1 |Et0,u0 : Eto,uo - M

is an embedding, so is g1 |5: Y — M. We see that q1 (f)) is a splitting surface for f. Consider the
restriction f oqq[s on . The arc [ intersects T only at points in F3, which correspond to fold points
of ®. Thus, f ogqils is almost Morse. Let s € J be any regular value of f ogq|5. By definition, we can
write

(foqilg)™ () = (hy () x W) N (f 71 () x {u}) € M x D?

for some ¢ € J and u € D?. Since [ is disjoint from both %, and R, the preimage ( f o q; |§)_1(s)
contains at least one loop that is nontrivial in the surface f~!(s) x {u}. This implies that ¢, (i) is a
splitting surface for f. But it follows from Lemma 3.2 that d(X’) < 2g(§) = 2g(X’) + 2, and this
contradicts the assumption. O

We now return to the proof of Lemma 4.2.

Proof of Lemma 4.2 Let p,: J2 x D> — J denote the projection onto the second coordinate. For
u € D%, set I, := pr(Cl(Rg)) N pa(Cl(Rp)). Then ¢ € J is in Int(1,) if and only if 4, !(z) is a
spanning surface for . By Lemma 4.3, each [, is a nonempty subset of J. Furthermore, it follows from
Proposition 3.3(3) that each I, is a closed interval in J. So | |,cp2 I, is an (trivial) /-bundle over D2.
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Leto: D? — | |, p2 Iu be a section of this 7-bundle. Define 6: D? — % by 6 (u) := h;; ! (o (u)). Recall
that ¢(u) = h;,;1(0) for u € D?. The straight line homotopy connecting the O—section of J x D? — D? to
o induces the homotopy {¢,: D> — % | r € [0, 1]} with g9 = ¢ and ¢; = &. By Proposition 3.3(3), we
may choose o such that for u € 3D?, ¢(u) is isotopic to & (u) through surfaces disjoint from K~ or K,
depending on if (1) € % or ¢(u) € %~ holds. This means that ¢, (1) € %" for u € dD? and r €0, 1].
Clearly, {¢,} can be chosen so that it preserves the basepoint. Thus, ¢ and & represent the same element
of (%, #"). Applying the homotopy described above, from now on, we may assume that the map ¢
satisfies the following: for any u € D2, ¥, := ¢(u) is a spanning surface for f.

We think about a fixed u € D? for a moment. By assumption, there exist values a,b € J such that
¥'* := f~!(a) is mostly above I, and X'~ := f~1(b) is mostly below X,. By definition, every loop
of ¥, N (X7 U X'") bounds a disk in ¥’T U X'~ The following observation is due to Johnson [2011].

Claim One of the two (possibly both) holds:
(1) Every loopin X, N >'* bounds a disk in .
(2) Every loop in ¥, N X'~ bounds a disk in X,,.

Proof If we compress the surface ¥, along innermost loops in X' U X/~ repeatedly, we have a collection
of surfaces disjoint from both X’* and X'~. The point is that there is a surface S in the collection that
separates ¥'T from X7, and so S is in the product region between X't and X'~. Note that such S
must have genus at least g(X’). This means that at most one of the two surfaces X't and X/~ contains
an actual compression for X, (ie a loop in ¥, N ¥’ * or X, N X'~ that is nontrivial in X,) because
g2(Z,) = g(¥’) + 1. Therefore, either (1) or (2) holds. |

Put 7/ = X/t U X/~. Take a loop ¢ in X, N T satisfying the following condition:
(%) £ is trivial in ¥, and £ is innermost in 7’ among all the loops of X, N T".

If we compress X, along £ and discard the sphere component, then the loop £ (and possibly some other
loops in X, N T") is removed. Since M is irreducible, this process can actually be achieved by an isotopy.
Repeating this process as long as possible, all the loops in X, N T’ satisfying the condition (%) are finally
removed. In particular, the resulting surface is disjoint from X’* or X'~ depending on if (1) or (2) holds.

We wish to do the above process simultaneously for u € D?. In fact, it is always possible using an
argument of Hatcher [1976]. The following is a sketch of the argument in [Hatcher 1976].

We will construct a smooth family {®, ,: £, — M |u € D2, r €0, 1]} of isotopies such that for any
ue D?, Ou.0(Zy) = Ty and O, 1(Z,) is disjoint from either K~ or K. By the above argument, we
can see that there exist a finite cover {B;} of D? with B; 2 D? and a family {T/} of (disconnected)
surfaces with the following properties:

e T/ is the union of the two level surfaces E;"' and X7 of f.

e Ifu € B;, then E;Jr is mostly above %, and E;._ is mostly below X,,.
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For u € D2, let Qéu be the set of intersection loops between X%, and Ui Ti’ , where the union is taken over
all i such that u € B;. We denote by D’({) the disk in 7, bounded by ¢ for ¢ € %,. (Note that such a
disk is unique because each component of 77 is not homeomorphic to S 2)) For u € D?, let ¢, be the
subset of €, consisting of those loops £ such that £ is trivial in ¥, and that D’({) contains no other
intersection loop that is nontrivial in ¥,. Furthermore, for £ € €,, we denote by D(¥) the disk in X,
bounded by £. (Again, note that such a disk is unique because X, # S2.) For u € D?, we define the
partial order <’ on %6, by
{<'m < D'({) c D'(m).

Let { B/} be a finite cover of D? obtained by shrinking each B; slightly so that B} C Int(B;) for i. Take a
family {o,: €, — (0,2) | u € D?} of functions with the following properties:

e If{,m €€, and £ <’ m, then ay (£) < ay, (m).
e IfueBland{ C X, NT/, then oy ({) < 1.
o IfuecdB;jand{ C X, NT]/, then oy (£) > 1.

The function «;, shows the times when intersection loops that belong to 6, are eliminated by compressing.
Let G denote the union of the images of the a, in D? x [0, 2]. Note that for each intersection loop £,
the images of the loops corresponding to £ form a 2D sheet over some B;, and so G can be written as
the union of these sheets. We can view G as a “chart” to compress the surface ¥,,; if we compress %,
following this chart upward from r = 0 to r = 2, then we get the sequence of surfaces. Note that the
following subtle case may occur: if £ and m are loops of X, N T/ with D(£) C D(m) and o, (m) < aty (£),
then the loop £ is eliminated automatically before the time o, (£). This example shows that we should
use the “reduced” chart G rather than G, which is obtained from G by removing the parts of the sheets
corresponding to any such £.

For every u, we will define the isotopy ®, , as follows. Let N (G) denote a small fibered neighborhood

of G. The interval {u} x [0, 2] intersects N (@) at its subintervals J,fk), where 1 <k <n =n(u). Define
@u,r to be the isotopy obtained by piecing together the isotopies 9,51,) e «9,5",) in the way suggested

by G. Here each QLSkr) is an isotopy with its r—support in Jlsk), and corresponds to the compression along

a loop in 6. See Figure 3. Now we define ©,, , as the restriction of @)W on [0, 1].

It remains to see that we can modify the above construction to get the isotopy {®, ,} to be smooth for

(k)
u

ue D% Itis enough to show that each factor 0, ; of ®, , can be chosen so that it varies smoothly for .

For simplicity, we will think about the isotopy 9,512 in the following although the same argument applies to
any Gékr) . The isotopy 051,) corresponds to the compression along a loop £,, € 6, for each u. Assume that
€, C T/ for any u. Denote by D*(¢,) the 3-ball in M bounded by the 2-sphere D(£,) U D'(£,). (Note
that such a 3-ball is unique because M # S 3) Let (D3, D, D') be the standard triple of disks, that is, D
and D’ are the upper and lower hemispheres in the boundary dD3 of the standard 3—ball D3, respectively.

There is an identification ¢, : (D3(£,), D({,), D'({y)) — (D3, D, D') for every u. Then the arguments
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Figure 3: The isotopy @u,r is obtained by piecing together the isotopies 051,) , 9,52,) 0,53,) and OLS?,) .

(In this example, (:)u, » can be written as the concatenation 951,) * 952,) * 9,53,) * 915?,) of the small

isotopies.) The r—support of Oékr) is contained in J,fk).
in [Hatcher 1976] together with the Smale conjecture (the space Diff(D3 rel dD?3) is contractible), which
is proved in [Hatcher 1983], show that ¢, can be chosen such that it varies smoothly for u.?> Now we can
define 951,) =¢, ' oF,o¢, on D({,) C =, and 951,) = Oy, on the complement of a small neighborhood
of D(£,) in £, where {F,: D3> — D3 |r €[0, 1]} is an isotopy that carries D to D’ across D>. Therefore,
it follows that {®,, ,} is smooth for u € D2,

Finally, we see that ®,, 1 (X,) € %" for u € D?. Let u be any point in D2. Take a path p:[0, 1] — D? with
p(0) = eg and p(1) = u. It suffices to show that the path p: [0, 1] — € defined by p(7) := O y1).1 (X p(r))
is wholly contained in #".

For brevity, we denote by X, the surface © ,(),1(Z,(;)) for # € [0, 1] in the following. The cover {B;}
of D? induces the cover {I; | 0 < k < n} of [0, 1] by finitely many closed intervals. By passing to a
subcover if necessary, we may assume that I N I; = @ if |k — j| > 1. As we have seen above, there
exists a family {E;:r U X, "} (={T;}) of level surfaces of f and the following hold:

. E;:r is mostly above X; if ¢ € Ij. Similarly, E;{‘ is mostly below X, if t € I.

e For each k, one of the two surfaces E;:r and E;{_ is disjoint from X, if 7 € I}.

As is naturally expected, the following holds:

Claim Suppose that t € I}.. If ¥; N Z;:r = @ and ¥; N X~ # &, then ¥, € #~. Similarly, if
NI =@and £; N X" # o, then 5, € %+

2More specifically, we need the arguments at the end of Section 1 in [Hatcher 1976], where the sought isotopy, denoted by /17,
in that paper, is constructed. It starts by taking a suitable triangulation of D" and then proceeds by extending the isotopy over the

k—skeleton inductively. The homotopy group rj (Diff(D3 rel D)) appears as an obstruction to extending a map. (As we work in
the smooth category, we use the Smale conjecture instead of the Alexander trick.)
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Proof The proof is by induction on k. The following argument is based on the idea in [Johnson 2011].
By definition, £, € %" for ¢ € Iy. Thus our claim holds on Iy. So, in what follows, we assume that
k > 0 and that our claim holds on any interval /; with 0 < j < k.

Let ¢t € Iy.. Without loss of generality, we may assume that X; N E;j =@ and X; N Z;C_ # @. Fix
to € Ix N Ix_1. Note that 3, and X, are isotopic through surfaces disjoint from K. Thus it is enough
to show that X, € #~. There are three cases to consider.

Casel Z;,NZF =@and I, NI} #2.

By the assumption of induction, this implies that >;, € %~ and our claim holds in this case.

Case2 I, N #2and S, NEZ | =2.

We will see that 3, € 9. This is same as saying that ¥, is a Heegaard surface of
M\Int(N(KTUK™)) =% xJ,

where N (Kt UK™) is a sufficiently small neighborhood of KUK ™. Since X;,N E}C__l =3 N E;:' =0,
¥4, separates K from K. First, we see that X, is bicompressible in M \ (K™ U K ™). By assumption,
there exists a loop £ C X;, N E;:r_l bounding a disk D™ C Z;{’L_l such that £ is nontrivial in X,. Similarly,
there exists a loop m C X4, N X} bounding a disk D* C X/~ such that m is nontrivial in X,. Since
D~ and D are in the opposite side of X, to each other, X, is bicompressible in M \ (Kt U K7).

It is known that any genus g(X’) + 1 bicompressible surface in ¥’ x J separating ¥’ x {1} from ¥’ x {—1}
must be reducible (see [Johnson 2011]). This means that there exists a 2—sphere P C M \ (KT U K™)
intersecting X, at a single nontrivial loop in X,. Since M is irreducible, P cuts (M, X,,) into the two
Heegaard splittings: one is a genus g(X’) Heegaard splitting of M and the other is a genus 1 Heegaard
splitting of S3. If we denote by S the genus g(X’) surface obtained by cutting X, along P, then S still
separates KT from K. Thus, S is isotopic to ¥’ in the complement of K+ U K. This shows that X,
is a genus g(¥’) + 1 Heegaard surface in M \ Int(N (KT U K™)). Therefore, we conclude that =, € %"
in this case.

Case3 T, NZF =%,NZ =0

Let j denote the minimal integer such that for any j < j' <k andt € I;s, ¥, N E;?L =%;N E}T =g.
If j =0, then X, is isotopic to X through surfaces disjoint from K U K. This shows that ¥,, € %".
So we may assume that j > 0 in the following. Let 7y € I; N ;4.

First, we assume that >, N Z}Jr = & and that X, N E}_ # . By the assumption of induction, it follows
that X,, € 9. Since X, and X, are isotopic in M \ (K* U K~), we have X;, € ¥ in this case.

Next, we assume that X, N E}Jr # @ and that X;, N E}_ = . Then, there exists a compression disk
D~ C E;+ for X;,. Since X, and ¥;, are isotopic in M \ (KT U K™), X;, has a compression disk
disjoint from K~ as well. On the other hand, as we have seen above, E;{‘ contains a compression disk
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DT for Xy, lying in the opposite side of X, to D™. Thus, X, is bicompressible in M \ (K™ U K7).
Now applying the same argument as in Case 2, we have X, € %" and this completes the proof. a

The above claim implies that the image of : [0, 1] — 9€ is contained in %" In particular, ®, 1 (Z,) € 9.
Therefore, we conclude that [¢] = 0 € (%, #") and this finishes the proof of Lemma 4.2. |

5 The isotopy subgroup of a Heegaard splitting of a handlebody

5.1 Proof of Theorem 1.3

We now give a proof of Theorem 1.3. Let V be a genus g(V') > 2 handlebody, and let (V, X) be
a genus g(V) + 1 Heegaard splitting of V. Fix a complete system Ej, ..., Eg(y) of meridian disks
for V. Consider a properly embedded, boundary parallel arc I in V that is disjoint from Uf’g) E;.
The surface X can be viewed as the boundary of a small neighborhood N(dV U I') of 0V U I. In the
same spirit in [Johnson and McCullough 2013], we define the space Unk(V, I) of unknotted arcs to be
Diff(V') /Diff(V, I'). Then, the following holds:

Theorem 5.1 [Scharlemann 2013, Theorem 5.1] The group Isot(V, X) is isomorphic to 1 (Unk(V, I)).

Thus, it suffices to show that 771 (Unk(V, I)) is finitely presented.

Fix a parallelism disk E for I disjoint from Uf’ﬂ? E;. Furthermore, fix a spine K of V such that
KN E = and K intersects each E; at a single point. We now consider the two subspaces of Unk(V, I):

Uy :={I' e Unk(V,I) | I’ admits a parallelism disk E" with E' N K = &},

g()
U, := {I/eUnk(V,I) ‘ I'n U E; = Q}.
i=1

Note that Uy, U, and U; N U, are all connected.

The group 1 (U;) is identical to the group § g in [Scharlemann 2013], which is called the freewheeling
subgroup in that paper. This group is an extension of 71 (V) by Z, and generated by A;, u; (1 <i <g(V))
and p shown in Figure 4. For each i, A; is represented by an isotopy of parallelism disk £ along a
longitudinal loop that intersects dE; at a single point. Similarly, u; is represented by an isotopy of
the parallelism disk £ along a meridional loop corresponding to dE;. The set {A;, u; |1 <i < g(V)}
corresponds to a generating set of 771 (dV), and p is defined to be the half rotation of the parallelism disk E.
Let P denote the planar surface obtained by cutting 9V along simple closed curves dEy, ..., dEg .
Then, the group 1 (U>) is isomorphic to the 2-braid group B,(P) of P. Following [Scharlemann 2013],

we define the anchored subgroup A g, .. E., of m1(Uz) as follows. This is generated by 2g (V') elements

Eew)
o and o) (1 <i < g(V')) shown in Figure 5. Here each of «; and « is represented by an isotopy of I that
moves the one endpoint p; of I along a meridional loop and fixes the other endpoint py. Note that we
can write o} = Ai_laiki as elements of 1 (Unk(V, I)). The group 7 (U;) is generated by 2 g,

and p.
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Figure 4: The group 71 (U ) is generated by 2g (V') + 1 elements.

The groups 71 (Uy), 71 (U3) and 1 (U; N U,) are all finitely presented. By van Kampen’s theorem, the
proof is finished if the following is shown:

Lemma 5.2 The inclusion Uy U U, — Unk(V, I') is a homotopy equivalence.

In fact, by the same argument as in Section 4, it is easily seen that 7y (U U U,) = 7 (Unk(V, 1)) = 0 for
k > 2. (And of course, this fact is unnecessary for our present purpose.) So we will see that the natural
map 71 (U; UUy) — 71 (Unk(V, I)) is an isomorphism.

Proof For brevity, set U := Unk(V, I). In [Scharlemann 2013], it was shown that 771 (U) is generated by
the two subgroups 71 (Uy) (= §g) and Ag, . E,, (C 71(U2)). It follows from this fact that the map

Pr. Do D1

Po

o %;

Figure 5: The group 2 g, C 71 (U,) is generated by 2g(V) elements.

,,,,, Eg(V)
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Figure 6: For u € dD?, the parallelism disk E, intersects | J{

and intersects K at finitely many points.

E; only at arcs parallel to 7,

w1 (U UU,) — 71 (U) is a surjection. We will see that the map 7 (U; U U,) — 1(U) is an injection.
In other words, we will see that 77, (U, U UU,) = 0. Let ¢: (D?,3dD?) — (U, U; UU,). Put I, := @(u)
for u € D?. In the same spirit of the proof of Lemma 3.1, we can show the following.

Claim 1 There exists a (smooth) family of disks { E, | u € D?} in V such that E, is a parallelism disk
for 1.

Proof By [Scharlemann 2013], the map Diff(V') — Diff(V)/Diff(V, ¥) is homotopy equivalent to
Diff(V') — Diff(V)/Diff(V, I'). The former is a fibration [Johnson and McCullough 2013], and so is the
latter. Thus, the map ¢: D? — U lifts to a map ¢: D? — Diff(V). Now define E, := ¢(u)(E). a

Since @(dD?) C Uy U U,, the isotopy {1, | u € dD?} represents an element of 7{(U; U U,). So we
can write this isotopy as a product wyw; ---w, of the wy’s, where each wy is either A;, ui, p, o,
o or their inverses. Corresponding to this factorization, there is a division of dD? into the intervals
J1=uo,u1l, ..., Jn =[tn—1,un] with uy = uy.

Claim 2 After a deformation of {E, | u € D?} near dD?, the following hold for any u € 9D?:
(i) E, intersects U,gS? E; at finitely many arcs, and E,, intersects K at finitely many points.
(i) Each arc of E, N\JS? E; is parallel to I in Ey.

(ili) If a and a' are arcs of E,, N Ufgf) E;, then a and a are nested in the following sense: if A and
A’ are bigons in E, cut by a and a’ respectively, then either A C A" or A’ C A holds.

See Figure 6.

Proof The key is the following simple observation. For each interval Jy, there are the three possibilities:

* wi = A forsome 1 <i < g(V) and € = £1. Then, during the move wy, some intersection arcs
of £, N Uf’i’? E; are introduced or removed (possibly both may occur). All such arcs are parallel
to I, in E,. The intersection pattern of £, N K is not changed by wy. See Figure 7, top.

* wi =af or wg =« forsome 1 <i < g(V) and € = £1. Then, during the move wy, a single
intersection point of £, N K is introduced or removed. The intersection pattern of £, N Uf’i‘? E;
is not changed by wy. See Figure 7, bottom.
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e

o

Figure 7: The move A; introduces or removes arcs parallel to 7, (top), and the move ¢; introduces
or removes a single point (bottom).

o wj = i or wg = p€ for some 1 <i < g(V) and € = £1. Then, during the move wy, the intersection
pattern of E;, N ( £ E; U K) does not change.

i=1
Recall that E,, = E,, = E by definition. In particular, Eu, N (U5 E; U K) = @. By the above
observation, it follows that the conditions (i), (ii) and (iii) are satisfied on the interval J;. By an inductive
argument, we can see that these three conditions are satisfied on any interval J; as well. a

Put B := {reﬁe €C|0<r<1,0<80 <m}. There is a smooth family { f;,: E, — B |u € D?} of
diffeomorphisms between £, and B. (More rigorously, this is a consequence of the fact that the space
Diff(D? rel 9D?) is contractible [Smale 1959].) Furthermore, by Claim 2, we may choose { f;,} such that
for any u € dD?, each arc of E, nUf’Sf) E; is mapped to an arc {reﬁe € B|r=ry,0<60 <m}for some
0<rg=<1.Forte|0,1),define o;: B— B by at(reﬁe) =(1 —t)reﬁe. Set Oy := fu_1 000 fy
for u € D? and ¢ € [0,1). Then, the isotopy ®,,; shrinks I, along E, into a small neighborhood of
a point in £, NdV as ¢t — 1. If ¢ is sufficiently close to 1, then ®,,(1,) € U,. Furthermore, by
definition, for u € D% and ¢ € [0, 1), Ou,s (1) is disjoint from either K or Uf’g) E;. Letu € 9D? and
t €[0,1). If O, (1,) N K = @, then ©y,(I,) € Uy. On the other hand, if Oy, (I,) N JE%) E; = 2,
then ®y ;(Iy) € U,. This means that ©, ;(1,) € Uy U U, for u € dD? and ¢ € [0, 1). Therefore, we
conclude that [p] = 0 € (U, Uy U Uy). |

5.2 Proof of Corollary 1.4

Proof of Corollary 1.4 By Theorems 1.1 and 1.3, Isot(M, X)) is finitely presented. It remains to show
that MCG(M, X) is finitely presented. By definition, there exists an exact sequence

1 — Isot(M, ) — MCG(M, ¥) — MCG(M).
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By Theorem 2.3, M is hyperbolic, and hence MCG(M) is finite. Therefore, MCG(M, X) is finitely
presented. O
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