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Finite presentations of the mapping class groups
of once-stabilized Heegaard splittings

DAIKI IGUCHI

Let g � 2 and assume that we are given a genus g Heegaard splitting of a closed orientable 3–manifold
with distance greater than 2gC 2. We prove that the mapping class group of the once-stabilization of
such a Heegaard splitting is finitely presented.

57K30, 57M60

1 Introduction

Let .M; †/ be a Heegaard splitting of a compact orientable 3–manifold M . The mapping class
group MCG.M; †/ of the Heegaard splitting .M; †/ is defined to be the group �0.Diff.M; †// of
path-connected components of the group Diff.M; †/, where we denote by Diff.M; †/ the group of
diffeomorphisms of M that preserve † setwise. There is a natural homomorphism from MCG.M; †/ to
the mapping class group MCG.M / of M . Following Johnson [2011], we call the kernel of this natural
homomorphism the isotopy subgroup of MCG.M; †/, and denote it by Isot.M; †/.

In this paper, we are interested in the isotopy subgroup of the mapping class group of a once-stabilized
Heegaard splitting. Let .M; †0/ be a genus g.†0/ � 2 Heegaard splitting of a closed orientable 3–
manifold M . We say that a Heegaard splitting .M; †/ is a (once-)stabilization of .M; †0/ if it is obtained
from .M; †0/ by adding a 1–handle whose core is parallel into †0. Corresponding to two handlebodies
V �
†0 and V C

†0 in M with @V �
†0 D @V

C

†0 D †
0, there are two obvious subgroups of Isot.M; †/: one is

Isot.V �
†0 ; †

�/ and the other is Isot.V C
†0 ; †

C/, where †� (resp. †C) is the Heegaard surface obtained by
pushing † into V �

†0 (resp. V C
†0) slightly. It is natural to ask when these subgroups generate Isot.M; †/.

Johnson [2011] proved that if the distance d.†0/ of the Heegaard splitting .M; †0/ is greater than
2g.†0/C 2, then the two subgroups defined above generate Isot.M; †/. As a consequence of this fact,
together with a result of Scharlemann [2013] that says Isot.V ˙

†0 ; †
˙/ are finitely generated, it follows that

Isot.M; †/ and MCG.M; †/ are finitely generated. In that paper, Johnson conjectured that Isot.M; †/

is an amalgamation of the two groups Isot.V �
†0 ; †

�/ and Isot.V C
†0 ; †

C/. This is the main result of the
paper:

Theorem 1.1 Suppose that .M; †0/ is Heegaard splitting of a closed orientable 3–manifold M with
d.†0/ > 2g.†0/C 2, and that .M; †/ is a once-stabilization of .M; †0/. Suppose that .V �

†0 ; †
�/ (resp.
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.V C
†0 ; †

C/) is the Heegaard splitting of V �
†0 (resp. V C

†0) obtained by pushing † into V �
†0 (resp. V C

†0)
slightly, where V �

†0 and V C
†0 are handlebodies in M bounded by †0. Then Isot.M; †/ is isomorphic to an

amalgamation of the two groups Isot.V �
†0 ; †

�/ and Isot.V C
†0 ; †

C/.

One might expect that the above theorem has something to do with van Kampen’s theorem. This idea can
be justified as follows. Following Johnson and McCullough [2013], we define the space H.M; †/ to be
Diff.M /=Diff.M; †/ and call it the space of Heegaard splittings equivalent to .M; †/. Let H denote the
path-connected component of H.M; †/ containing the left coset idM �Diff.M; †/. It is known that if a
3–manifold admits a Heegaard splitting with the distance greater than two, then such a 3–manifold must
be hyperbolic. By a result in [Johnson and McCullough 2013] (see Theorem 2.1 below for more details)
together with this fact, it follows that Isot.M; †/ is isomorphic to �1.H/.

Now fix a spine K DK�[KC of the Heegaard splitting .M; †0/, that is, K� and KC are finite graphs
embedded in M such that the complement M nK is diffeomorphic to †0 � .�1; 1/ and †0 is a slice
of this product structure. Denote by H� (resp. HC) the subspace of H consisting of those elements
represented by a Heegaard surface T such that T is a genus g.†0/C 1 Heegaard surface of the genus
g.†0/ handlebody M n Int.N.KC// (resp. M n Int.N.K�//), where N.KC/ (resp. N.K�/) is a small
neighborhood of KC (resp. K�). By the similar reason as above (see Theorem 2.2 below), we can identify
Isot.V �

†0 ; †
�/ and Isot.V C

†0 ; †
C/ with the fundamental groups �1.H

�/ and �1.H
C/ respectively. Set

H[ WDH�[HC. Theorem 1.1 is a corollary of the following.

Theorem 1.2 The inclusion H[!H is a homotopy equivalence.

It is well known that a genus gC 1 Heegaard splitting of a genus g handlebody is unique up to isotopy.
Similarly, a genus gC 1 Heegaard splitting of the space Fg � Œ�1; 1� is unique up to isotopy, where we
denote by Fg a closed genus g surface. In other words, HC, H� and H�\HC are all connected, and
hence van Kampen’s theorem applies to the triple .H�;HC;H�\HC/.

The proof of Theorem 1.2 is based on the concept of graphics, which was first introduced by Cerf [1968]
and then successfully applied to the study of Heegaard splittings by Rubinstein and Scharlemann [1996].
More precisely, we prove Theorem 1.2 by generalizing the method developed by Johnson [2010; 2011].
We also use an argument due to Hatcher [1976] crucially, which is a parametrized version of the innermost
disk argument.

In Section 5, we confirm that the isotopy subgroup of a genus gC 1 Heegaard splitting of a genus g

handlebody is finitely presented:

Theorem 1.3 Let V be a handlebody of genus g.V /� 2, and let .V; †/ be a genus g.V /C 1 Heegaard
splitting of V . Then Isot.V; †/ is finitely presented.

It follows from Theorem 1.3 that �1.H
�/ and �1.H

C/ are finitely presented. As a consequence, we have:

Algebraic & Geometric Topology, Volume 24 (2024)
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Corollary 1.4 Let .M; †0/ be a Heegaard splitting of a closed orientable 3–manifold M with

d.†0/ > 2g.†0/C 2:

Let .M; †/ be a once-stabilization of .M; †0/. Then Isot.M; †/ and MCG.M; †/ are finitely presented.

We remark that a problem related to this work was treated by Koda and Sakuma [2023]. In that paper,
the concept of the “homotopy motion group” was introduced, and they considered the question that asks
when the homotopy motion group ….M; †/ of a Heegaard surface in a 3–manifold M can be written as
an amalgamation of the two homotopy motion groups ….U�

†
; †/ and ….UC

†
; †/ corresponding to the

two handlebodies U�
†

and UC
†

with @U�
†
D @UC

†
D†.

The paper is organized as follows. In Section 2, we recall from [Johnson and McCullough 2013] some
facts about the space of Heegaard splittings. We also recall the definition of the distance of a Heegaard
splitting. To prove Theorem 1.2, we will need to deal with the graphic determined by a 4–parameter
family of Heegaard surfaces. In Section 3, we give a quick review of the theory of graphics, and then we
see that some ideas in [Johnson 2010] can be adapted to our setting. In Section 4, we prove Theorem 1.2.
Finally, we give the proof of Theorem 1.3 in Section 5.

Acknowledgements The author would like to thank his advisor Yuya Koda for much advice and sharing
his insight. He is also grateful to the referees for their valuable comments that improved the manuscript.
This work was supported by JSPS KAKENHI grant JP21J10249.

2 Preliminaries

Throughout the paper, we will use the following notation. For a topological space X , we denote by jX j
the number of path-connected components of X . For a subspace Y of X , Int.Y / and Cl.Y / denote the
interior and the closure of Y in X , respectively. We will denote by J the closed interval Œ�1; 1�.

2.1 The space of Heegaard splittings

Let M be a compact orientable 3–manifold (possibly with boundary). Let .M; †/ be a Heegaard splitting
of M . This means that†�M is a closed orientable embedded surface cutting M into the two compression
bodies. Here, a compression body is a 3–manifold with nonempty boundary admitting a Morse function
without critical points of index 2 and 3. A handlebody is a typical example of a compression body. The
space H.M; †/D Diff.M /=Diff.M; †/ is called the space of Heegaard splittings equivalent to .M; †/.
Note that there is a one-to-one correspondence between H.M; †/ and the set of images of † under
diffeomorphisms of M . We often identify an element of H.M; †/ with the corresponding Heegaard
surface. We always take the surface † as the basepoint of H.M; †/, which corresponds to the left coset
idM �Diff.M; †/. The space H.M; †/ admits a structure of a Fréchet manifold, and this implies that
H.M; †/ has the homotopy type of a CW complex.

Algebraic & Geometric Topology, Volume 24 (2024)
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Theorem 2.1 [Johnson and McCullough 2013, Corollary 1] Suppose that M is closed , orientable , irre-
ducible and �1.M / is infinite , and that M is not a non-Haken infranilmanifold. Then �k.H.M; †//D 0

for k � 2, and there is an exact sequence

1!Z.�1.M //! �1.H.M; †//! Isot.M; †/! 1:

A similar statement as above holds for handlebodies and the space Fg �J :

Theorem 2.2 Let g0 � g � 2. Suppose that M is a genus g handlebody or the space Fg �J , where Fg

denotes a closed orientable surface of genus g. Suppose that .M; †/ is a genus g0 Heegaard splitting
of M . Then �1.H.M; †//Š Isot.M; †/ and �k.H.M; †//D 0 for k � 2.

Proof By [Johnson and McCullough 2013, Theorem 1], �k.H.M; †//D �k.Diff.M // for k � 2, and
there is an exact sequence

1! �1.Diff.M //! �1.H.M; †//! Isot.M; †/! 1:

By Earle and Eells [1969] and Hatcher [1976], �k.Diff.M //D 0 for k � 1.

2.2 The distance of a Heegaard splitting

Let .M; †0/ be a genus g.†0/� 2 Heegaard splitting of a closed orientable 3–manifold M . Denote by
V �
†0 and V C

†0 the handlebodies in M with V �
†0 \V C

†0 D @V
�
†0 D @V

C

†0 D †
0. The curve graph C.†0/ is

the graph defined as follows. The vertices of C.†0/ are isotopy classes of nontrivial simple closed curves
in †0, and the edges are pairs of vertices that admit disjoint representatives. We denote by dC.†0/ the
simplicial metric on C.†0/.

Let D� (resp. DC) denote the set of vertices in C.†0/ that are represented by simple closed curves
bounding disks in V �

†0 (resp. V C
†0). Then the (Hempel) distance d.†0/ of the Heegaard splitting .M; †0/

is defined to be
d.†0/ WD dC.†0/.D

�;DC/:

For example, if M contains an essential sphere, then any Heegaard splitting of M has distance zero (see
Haken [1968]). If M contains an essential torus, then any Heegaard splitting of M has distance at most
two. Furthermore, any Heegaard splitting of a Seifert manifold has distance at most two. See Hempel
[2001] for these two facts. As a consequence of the geometrization theorem and these facts, we have:

Theorem 2.3 Suppose that .M; †0/ is a Heegaard splitting of a closed orientable 3–manifold M . If
d.†0/ > 2, then M admits a hyperbolic structure.

3 Sweep-outs and graphics

In this section, we recall the definition of graphics and summarize their properties. In what follows, let
M denote a closed orientable 3–manifold.
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3.1 Graphics

Let .M; †/ be a Heegaard splitting of M . A sweep-out associated with .M; †/ is a function

h WM ! J D Œ�1; 1�

such that the level set h�1.t/ is a Heegaard surface isotopic to † if t 2 Int.J /, and h�1.t/ is a finite graph
in M if t 2 @J . The preimage h�1.@J / is called the spine of h.

Lemma 3.1 Let n > 0 and .M; †/ be a Heegaard splitting of a closed orientable 3–manifold M .
Let ' W Dn ! H.M; †/. Then there exists a family fhu WM ! J j u 2 Dng of sweep-outs such that
h�1

u .0/D '.u/ for u 2Dn.

Proof Take a sweep-out h WM ! J with h�1.0/D†. We note that

Diff.M /! Diff.M /=Diff.M; †/DH.M; †/

is a fibration [Johnson and McCullough 2013]. So, the map ' lifts to a map Q' WDn! Diff.M /. Now
define hu WD h ı Q'.u/�1 for u 2Dn.

Let .M; †/ and .M; †0/ be Heegaard splittings of M . Let f WM ! J be a sweep-out with f �1.0/D†0.
Furthermore, let fhu WM ! J j u 2D2g be a family of sweep-outs associated with .M; †/. We define
the map ˆ WM �D2! J 2 �D2 by ˆ.x;u/D .f .x/; hu.x/;u/.

Set L WD ˆ�1.@J 2 �D2/, and W WD .M �D2/ nL. Define S D S.ˆjW / to be the set of all points
w 2W such that rank d.ˆjW /w < 4. The image � of S in J 2 �D2 is called the graphic defined by f
and fhug.

After a small perturbation, we may assume that the map ˆ is generic in the following sense. First, for
u2D2, the spine h�1

u .@J / intersects each level set of f at finitely many points. Similarly, for u2D2, the
spine f �1.@J / intersects each level set of hu at finitely many points. Furthermore, ˆ is “excellent” on W .
This means that the set S of singular points ofˆjW is a 3–dimensional submanifold in W , and S is divided
into four parts, S2, S3, S4 and S5, where Sk consists of singular points of codimension k. (In the notation
of [Boardman 1967], we can write S2D†

2;0, S3D†
2;1;0, S4D†

2;1;1;0 and S5D†
2;1;1;1;0[†2;2;0.)

For k ¤ 5, ˆ has one of the following canonical forms around a point w 2 Sk :1 there exist local
coordinates .a; b; c;x;y/ centered at w and .A;B;X;Y / centered at ˆ.w/ such that

.A ıˆ;B ıˆ;X ıˆ;Y ıˆ/D

8̂̂̂̂
<̂̂
ˆ̂̂̂:

.a; b; c;x2Cy2/ definite fold (w 2 S2);

.a; b; c;x2�y2/ indefinite fold (w 2 S2);

.a; b; c;x3C ax�y2/ cusp (w 2 S3);

.a; b; c;x4C ax2C bxCy2/ definite swallowtail (w 2 S4);

.a; b; c;x4C ax2C bx�y2/ indefinite swallowtail (w 2 S4):

1We do not know if there exist canonical forms for the singularities of type †2;2;0. However, the singularities in S5 are not
important for our present purpose.
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Furthermore, for 2� k � 5, ˆjSk
is an immersion with normal crossings, and the images of the Sk are

in general position. The main reference about these materials is the book by Golubitsky and Guillemin
[1973]. Hatcher and Wagoner [1973] also contains a helpful review for our present purpose.

In the remaining part of the paper, we always assume that the map ˆ has the property described above.
Under this assumption, � has the natural stratification: we can write � D F3 [F2 [F1 [F0, where
dim Fk D k for 0� k � 3 and each Fk has the following description.

F3 This consists of those points y 2 � such that .ˆjS /�1.y/� S2 and j.ˆjS /�1.y/j D 1.

F2 This consists of those points y 2 � such that
� .ˆjS /

�1.y/� S2 and j.ˆjS /�1.y/j D 2, or
� .ˆjS /

�1.y/� S3 and j.ˆjS /�1.y/j D 1.

F1 This consists of those points y 2 � such that
� .ˆjS /

�1.y/� S2 and j.ˆjS /�1.y/j D 3,
� .ˆjS /

�1.y/� S2[S3 and j.ˆjS /�1.y/j D 2, or
� .ˆjS /

�1.y/� S4 and j.ˆjS /�1.y/j D 1.

F0 This consists of those points y 2 � such that
� .ˆjS /

�1.y/� S2 and j.ˆjS /�1.y/j D 4,
� .ˆjS /

�1.y/� S2[S3 and j.ˆjS /�1.y/j D 3,
� .ˆjS /

�1.y/� S2[S4 and j.ˆjS /�1.y/j D 2,
� .ˆjS /

�1.y/� S3 and j.ˆjS /�1.y/j D 2, or
� .ˆjS /

�1.y/� S5 and j.ˆjS /�1.y/j D 1.

3.2 Labeling the regions of J 2 � D2

In this subsection, we will see that some definitions in [Johnson 2010] can be modified slightly and
adapted to our setting.

Let .M; †/ be a Heegaard splitting. We assume that one component of M n† is assigned the label �
and the other is assigned the label C in some way. We denote by U�

†
and UC

†
the components of M n†

labeled by � and C respectively. (Typically, such a labeling is determined by a given sweep-out h with
h�1.0/D†. In this case, we can define U�

†
D h�1.Œ�1; 0�/ and UC

†
D h�1.Œ0; 1�/.) Such an assignment

of the labels � or C to the components of M n† is called a transverse orientation of †.

Definition Let .M; †/ and U˙
†

be as above. Suppose †0 �M is a closed embedded surface. Then we
say that †0 is mostly above † if †0 is transverse to †, and if every component of †0\U�

†
is contained

in a disk subset of †0. Similarly, we say that †0 is mostly below † if †0 is transverse to †, and if every
component of †0\UC

†
is contained in a disk subset of †0.

Suppose that f WM ! J is a sweep-out, and that † is a transversely oriented Heegaard surface of M . We
say that † is a spanning surface for f if there exist values a; b 2 Int.J / such that f �1.a/ is mostly above
† and f �1.b/ is mostly below †. We say that † is a splitting surface for f if it satisfies the following.

Algebraic & Geometric Topology, Volume 24 (2024)
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First, there does not exist value s 2 Int.J / such that f �1.s/ is mostly above or mostly below †. Second,
f j† is almost Morse, that is, f j† has only nondegenerate critical points and f j† is Morse away from
�1 and 1, but there may be more than one minima and maxima at the levels �1 and 1 respectively. We
note that these definitions are coming from that in [Johnson 2010, Definitions 11 and 12].

Proposition 27 in [Johnson 2010], which will be used in the proof of Theorem 1.2, can be stated in our
term as follows:

Lemma 3.2 [Johnson 2010, Proposition 27] Let f WM ! J be a sweep-out associated with a Heegaard
splitting .M; †0/. If f admits a splitting surface †, then d.†0/� 2g.†/.

Let .M; †/ and .M; †0/ be Heegaard splittings of M . Assume that f WM ! J is a sweep-out with
f �1.0/D †0, and that fhu WM ! J j u 2D2g is a family of sweep-outs associated with .M; †/. Let
ˆ WM �D2! J 2 �D2 be as in the previous subsection. Following [Johnson 2010], let us consider the
two subsets Ra and Rb of J 2 �D2 defined as

Ra WD f.s; t;u/ 2 J 2
�D2

j f �1.s/ is mostly above h�1
u .t/g;

Rb WD f.s; t;u/ 2 J 2
�D2

j f �1.s/ is mostly below h�1
u .t/g:

Here, for each u 2D2 and t 2 J , the transverse orientation of h�1
u .t/ is determined by the sweep-out hu.

For example, if t is sufficiently close to �1, then the point .s; t;u/ is in Ra because f �1.s/\h�1
u .Œ�1; t �/

consists of finitely many properly embedded disks in the handlebody h�1
u .Œ�1; t �/. Similarly, if t is

sufficiently close to 1, then the point .s; t;u/ is in Rb . The regions Ra and Rb are nonempty open subsets
in J 2 �D2. The next proposition follows directly from the definition.

Proposition 3.3 The following hold :

(1) Ra and Rb are disjoint as long as g.†0/¤ 0.

(2) Ra and Rb are bounded by � .

(3) The regions Ra and Rb are convex in the t–direction , that is , if .s; t;u/ is in Ra (resp. Rb), then
so is .s; t 0;u/ for any t 0 � t (resp. t 0 � t ).

Set J 2
u WD J 2 � fug � J 2 �D2 for u 2 D2. Then, for u 2 D2, the intersection � \ J 2

u � J 2
u can be

viewed as the (2D) graphic defined by sweep-outs f and hu.

Definition Let f and hu be as above.

(i) We say that hu spans f if there exists t 2 J such that h�1
u .t/ is a spanning surface for f .

(ii) We say that hu splits f if there exists t 2 J such that h�1
u .t/ is a splitting surface for f .

We also say that the graphic defined by f and hu is spanned if hu spans f . Similarly, we say that the
graphic defined by f and hu is split if hu splits f .

Remark 3.4 By Lemma 3.2, the graphic defined by f and hu cannot be split if d.†0/ > 2g.†/.

Algebraic & Geometric Topology, Volume 24 (2024)
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s

t

t0 t0

Ra Ra

Rb Rb

Figure 1: The graphic defined by f and hu is spanned if there exists a horizontal segment in
J 2

u intersecting both Ra and Rb (left). On the other hand, the graphic is split if there exists a
horizontal segment disjoint from both Cl.Ra/ and Cl.Rb/ (right).

Here are further remarks on the above definition. First, we remark that the condition (i) is equivalent
to the following: there exists t0 2 J such that the horizontal segment ft D t0g in J 2

u intersects both Ra

and Rb (the left in Figure 1). We also note that J 2
u intersects F3 transversely for u 2 D2, and hence

J 2
u \F3 consists of finitely many open arcs. This is because d.p3 ıˆ/w has maximal rank for w 2W ,

where p3 W J
2�D2!D2 denotes the projection onto the third coordinate. Furthermore, after perturbing

ˆ if necessary, J 2
u \Fk consists of finitely many points for 0� k � 2 and u2D2. Under this assumption,

condition (ii) is equivalent to the following: there exists t0 2 J such that the horizontal segment ft D t0g

in J 2
u is disjoint from both Cl.Ra/ and Cl.Rb/ (the right in Figure 1).

Proposition 3.5 If g.†0/� 2, then Cl.Ra/ and Cl.Rb/ intersect only at points of F0.

Proof We first note that by Proposition 3.3(1) and (2), the intersection between Cl.Ra/ and Cl.Rb/ is
contained in � . Suppose that Cl.Ra/\Cl.Rb/¤∅ and y 2 Cl.Ra/\Cl.Rb/� � . Let .s0; t0;u0/ be
the coordinate of y. Let l be the segment in J 2 �D2 defined by l WD fs D s0g \ fuD u0g. Note that
y 2 l by definition. Furthermore, it follows from Proposition 3.3(3) that l �Cl.Ra/[Cl.Rb/. Consider a
point .s0

0
; t0;u

0
0
/ obtained by perturbing the point .s0; t0;u0/ in the s– and u–directions. We may assume

that the segment Ql WD fs D s0
0
g\ fuD u0

0
g is transverse to each stratum of � . The preimage ˆ�1.Ql/ of Ql

is the genus g.†0/ Heegaard surface in M � fu0
0
g �M �D2, which can be naturally identified with †0.

Let h W†0! J denote the function defined to be the restriction of hu0
0

on ˆ�1.Ql/Š†0. Then h is almost
Morse.

Now suppose, for the sake of contradiction, that y is in Fk with k � 1. Let .s0
0
; t�;u

0
0
/ denote the

coordinate of the intersection point between Ql and the boundary of Cl.Ra/. Note that such a point is
unique by Proposition 3.3(3). Similarly, let .s0

0
; tC;u

0
0
/ denote the coordinate of the intersection point

between Ql and the boundary of Cl.Rb/. Then, h satisfies the following.

� For any regular value t 2 J n Œt�; tC�, every loop of h�1.t/ is trivial in †0.

� The interval Œt�; tC� contains at most three critical values of h.

It is easily seen that the Euler characteristic of such †0 must be at least �1, but this is impossible because
g.†0/� 2 by assumption.
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4 Proof of Theorem 1.2

Suppose that M is a closed orientable 3–manifold, and that .M; †0/ is a genus g.†0/ � 2 Heegaard
splitting with d.†0/ > 2g.†0/C2. Suppose that .M; †/ is a once-stabilization of .M; †0/. Let H denote
the path-connected component of H.M; †/ containing †. Let K˙ and H˙ �H be as in Section 1. Set
H[ WDH�[HC and H\ WDH�\HC.

By Theorem 2.2, �k.H
�/D �k.H

C/D �k.H
\/D 0 for k � 2. By the Mayer–Vietoris exact sequence,

it follows that Hk.H
[IZ/D 0 for k � 2. Applying Hurewicz’s theorem, we have �k.H

[/D 0 for k � 2.
On the other hand, by Theorems 2.1 and 2.3, �k.H/D 0 for k � 2. So, to prove Theorem 1.2, it is enough
to show the following.

Lemma 4.1 The inclusion H[!H induces the isomorphism �1.H
[/! �1.H/.

Johnson [2011] proved that �1.H/ is generated by �1.H
�/ and �1.H

C/, and hence the induced map is a
surjection. (In fact, using the notations in this paper, what he proved in [Johnson 2011] can be written as

�1.H;H
[/D 1:

See [Johnson 2011, Lemmas 2 and 3]. The following argument is motivated by this observation.) So in
this paper, we focus on the proof of the injectivity of the induced map. In other words, we will show the
following:

Lemma 4.2 The second homotopy group �2.H;H
[/ of the pair .H;H[/ vanishes.

Let e02@D
2 be the basepoint. Let ' W.D2; @D2; e0/!.H;H[; †/. We will show that Œ'�D02�2.H;H

[/.
Let f WM ! J be a sweep-out with f �1.0/D†0 and f �1.˙1/DK˙. By Lemma 3.1, there exists a
family fhu WM ! J j u 2D2g of sweep-outs such that h�1

u .0/D '.u/ for u 2D2. The key of the proof
is the following.

Lemma 4.3 For any u 2D2, the graphic defined by f and hu is spanned.

Proof Suppose, contrary to our claim, there exists u0 2D2 such that the graphic defined by f and hu0

is not spanned. Put J 2
u0
WD f.s; t;u/ 2 J 2 �D2 j uD u0g. For brevity, we denote the restriction of ˆ

on W D .M �D2/ nL by the same symbol ˆ in the following. Set � WD ˆ.S.ˆ//. The intersection
� \J 2

u0
� J 2

u0
is precisely the graphic defined by f and hu0

.

As noted in Remark 3.4, this graphic cannot be split. Then, there exists t0 2 J such that the horizontal
segment l WD ft D t0g � J 2

u0
intersects both Cl.Ra/ and Cl.Rb/ at their boundaries (Figure 2). By

Proposition 3.5, Cl.Ra/ and Cl.Rb/ intersect only at points of F0. So, pushing l out of J 2
u0

slightly, we
get an arc Ql � J 2 �D2 such that

� Ql is disjoint from both Ra and Rb , and

� Ql is transverse to each stratum of � .
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t

s

t0

l

J 2
u0

Ra Ra

Rb Rb

Figure 2: If the graphic defined by f and hu0
is not spanned, then there exists a horizontal

segment l � J 2
u0

intersecting Cl.Ra/ and Cl.Rb/ at their boundaries; the intersection is either
separate vertices (left) or a single common vertex (right). In either case l can be perturbed in
J 2 �D2 so that l does not meet Cl.Ra/[Cl.Rb/.

Furthermore, there is a family flt j t 2 Ig of arcs with l0 D l and l1 D Ql such that for any t 2 .0; 1�,
lt is transverse to each stratum of � . Note that d.p2 ıˆ/ and d.p3 ıˆ/ have maximal ranks, where
p2 W J

2 �D2! J is the projection onto the second coordinate and p3 W J
2 �D2!D2 is the projection

onto the third coordinate. This means that ˆ is transverse to l D l0. As a consequence, ˆ is transverse
to lt for all t 2 Œ0; 1�, and hence z† WD ˆ�1.Ql/ is a closed embedded surface in M �D2 isotopic to
†t0;u0

WDˆ�1.l/ (D h�1
u0
.t0/� fu0g). In particular, g.z†/D g.†0/C 1.

Let q1 WM �D2!M denote the projection onto the first coordinate. Since the restriction

q1j†t0;u0
W†t0;u0

!M

is an embedding, so is q1jz†
W z†!M . We see that q1.z†/ is a splitting surface for f . Consider the

restriction f ı q1jz†
on z†. The arc Ql intersects � only at points in F3, which correspond to fold points

of ˆ. Thus, f ı q1jz†
is almost Morse. Let s 2 J be any regular value of f ı q1jz†

. By definition, we can
write

.f ı q1jz†
/�1.s/D .h�1

u .t/� fug/\ .f �1.s/� fug/�M �D2

for some t 2 J and u 2 D2. Since Ql is disjoint from both Ra and Rb , the preimage .f ı q1jz†
/�1.s/

contains at least one loop that is nontrivial in the surface f �1.s/� fug. This implies that q1.z†/ is a
splitting surface for f . But it follows from Lemma 3.2 that d.†0/ � 2g.z†/ D 2g.†0/C 2, and this
contradicts the assumption.

We now return to the proof of Lemma 4.2.

Proof of Lemma 4.2 Let p2 W J
2 �D2 ! J denote the projection onto the second coordinate. For

u 2 D2, set Iu WD p2.Cl.Ra// \ p2.Cl.Rb//. Then t 2 J is in Int.Iu/ if and only if h�1
u .t/ is a

spanning surface for f . By Lemma 4.3, each Iu is a nonempty subset of J . Furthermore, it follows from
Proposition 3.3(3) that each Iu is a closed interval in J . So

F
u2D2 Iu is an (trivial) I–bundle over D2.
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Let � WD2!
F

u2D2 Iu be a section of this I–bundle. Define Q� WD2!H by Q�.u/ WD h�1
u .�.u//. Recall

that '.u/D h�1
u .0/ for u 2D2. The straight line homotopy connecting the 0–section of J �D2!D2 to

� induces the homotopy f'r WD
2!H j r 2 Œ0; 1�g with '0 D ' and '1 D Q� . By Proposition 3.3(3), we

may choose � such that for u 2 @D2, '.u/ is isotopic to Q�.u/ through surfaces disjoint from K� or KC,
depending on if '.u/ 2HC or '.u/ 2H� holds. This means that 'r .u/ 2H[ for u 2 @D2 and r 2 Œ0; 1�.
Clearly, f'r g can be chosen so that it preserves the basepoint. Thus, ' and Q� represent the same element
of �2.H;H

[/. Applying the homotopy described above, from now on, we may assume that the map '
satisfies the following: for any u 2D2, †u WD '.u/ is a spanning surface for f .

We think about a fixed u 2 D2 for a moment. By assumption, there exist values a; b 2 J such that
†0C WD f �1.a/ is mostly above †u, and †0� WD f �1.b/ is mostly below †u. By definition, every loop
of †u\ .†

0C[†0�/ bounds a disk in †0C[†0�. The following observation is due to Johnson [2011].

Claim One of the two (possibly both ) holds:

(1) Every loop in †u\†
0C bounds a disk in †u.

(2) Every loop in †u\†
0� bounds a disk in †u.

Proof If we compress the surface†u along innermost loops in†0C[†0� repeatedly, we have a collection
of surfaces disjoint from both †0C and †0�. The point is that there is a surface S in the collection that
separates †0C from †0�, and so S is in the product region between †0C and †0�. Note that such S

must have genus at least g.†0/. This means that at most one of the two surfaces †0C and †0� contains
an actual compression for †u (ie a loop in †u \†

0C or †u \†
0� that is nontrivial in †u) because

g.†u/D g.†0/C 1. Therefore, either (1) or (2) holds.

Put T 0 D†0C[†0�. Take a loop ` in †u\T 0 satisfying the following condition:

(�) ` is trivial in †u and ` is innermost in T 0 among all the loops of †u\T 0.

If we compress †u along ` and discard the sphere component, then the loop ` (and possibly some other
loops in †u\T 0) is removed. Since M is irreducible, this process can actually be achieved by an isotopy.
Repeating this process as long as possible, all the loops in †u\T 0 satisfying the condition (�) are finally
removed. In particular, the resulting surface is disjoint from †0C or †0� depending on if (1) or (2) holds.

We wish to do the above process simultaneously for u 2 D2. In fact, it is always possible using an
argument of Hatcher [1976]. The following is a sketch of the argument in [Hatcher 1976].

We will construct a smooth family f‚u;r W †u!M j u 2D2; r 2 Œ0; 1�g of isotopies such that for any
u 2D2, ‚u;0.†u/D†u and ‚u;1.†u/ is disjoint from either K� or KC. By the above argument, we
can see that there exist a finite cover fBig of D2 with Bi Š D2 and a family fT 0i g of (disconnected)
surfaces with the following properties:

� T 0i is the union of the two level surfaces †0Ci and †0�i of f .

� If u 2 Bi , then †0Ci is mostly above †u, and †0�i is mostly below †u.
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For u 2D2, let zCu be the set of intersection loops between †u and
S

i T 0i , where the union is taken over
all i such that u 2 Bi . We denote by D0.`/ the disk in T 0i bounded by ` for ` 2 zCu. (Note that such a
disk is unique because each component of T 0i is not homeomorphic to S2.) For u 2D2, let Cu be the
subset of zCu consisting of those loops ` such that ` is trivial in †u, and that D0.`/ contains no other
intersection loop that is nontrivial in †u. Furthermore, for ` 2 Cu, we denote by D.`/ the disk in †u

bounded by `. (Again, note that such a disk is unique because †u ¤ S2.) For u 2 D2, we define the
partial order <0 on Cu by

` <0 m () D0.`/�D0.m/:

Let fB0ig be a finite cover of D2 obtained by shrinking each Bi slightly so that B0i � Int.Bi/ for i . Take a
family f˛u W Cu! .0; 2/ j u 2D2g of functions with the following properties:

� If `;m 2 Cu and ` <0 m, then ˛u.`/ < ˛u.m/.

� If u 2 B0i and `�†u\T 0i , then ˛u.`/ < 1.

� If u 2 @Bi and `�†u\T 0i , then ˛u.`/ > 1.

The function ˛u shows the times when intersection loops that belong to Cu are eliminated by compressing.
Let G denote the union of the images of the ˛u in D2 � Œ0; 2�. Note that for each intersection loop `,
the images of the loops corresponding to ` form a 2D sheet over some Bi , and so G can be written as
the union of these sheets. We can view G as a “chart” to compress the surface †u; if we compress †u

following this chart upward from r D 0 to r D 2, then we get the sequence of surfaces. Note that the
following subtle case may occur: if ` and m are loops of †u\T 0i with D.`/�D.m/ and ˛u.m/ < ˛u.`/,
then the loop ` is eliminated automatically before the time ˛u.`/. This example shows that we should
use the “reduced” chart yG rather than G, which is obtained from G by removing the parts of the sheets
corresponding to any such `.

For every u, we will define the isotopy ‚u;r as follows. Let N. yG/ denote a small fibered neighborhood
of yG. The interval fug � Œ0; 2� intersects N. yG/ at its subintervals J

.k/
u , where 1� k � nD n.u/. Define

z‚u;r to be the isotopy obtained by piecing together the isotopies � .1/u;r ; : : : ; �
.n/
u;r in the way suggested

by yG. Here each � .k/u;r is an isotopy with its r–support in J
.k/
u , and corresponds to the compression along

a loop in Cu. See Figure 3. Now we define ‚u;r as the restriction of z‚u;r on Œ0; 1�.

It remains to see that we can modify the above construction to get the isotopy f‚u;r g to be smooth for
u 2D2. It is enough to show that each factor � .k/u;r of ‚u;r can be chosen so that it varies smoothly for u.
For simplicity, we will think about the isotopy � .1/u;r in the following although the same argument applies to
any � .k/u;r . The isotopy � .1/u;r corresponds to the compression along a loop `u 2 Cu for each u. Assume that
`u � T 0i for any u. Denote by D3.`u/ the 3–ball in M bounded by the 2–sphere D.`u/[D0.`u/. (Note
that such a 3–ball is unique because M ¤ S3.) Let .D3;D;D0/ be the standard triple of disks, that is, D

and D0 are the upper and lower hemispheres in the boundary @D3 of the standard 3–ball D3, respectively.
There is an identification �u W .D

3.`u/;D.`u/;D
0.`u//! .D3;D;D0/ for every u. Then the arguments
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r

u
u

0

1

2

J
.1/
u

J
.2/
u

J
.3/
u

J
.4/
u

Figure 3: The isotopy z‚u;r is obtained by piecing together the isotopies � .1/u;r , � .2/u;r �
.3/
u;r and � .4/u;r .

(In this example, z‚u;r can be written as the concatenation � .1/u;r � �
.2/
u;r � �

.3/
u;r � �

.4/
u;r of the small

isotopies.) The r–support of � .k/u;r is contained in J
.k/
u .

in [Hatcher 1976] together with the Smale conjecture (the space Diff.D3 rel @D3/ is contractible), which
is proved in [Hatcher 1983], show that �u can be chosen such that it varies smoothly for u.2 Now we can
define � .1/u;r � �

�1
u ıFr ı�u on D.`u/�†u and � .1/u;r �‚u;0 on the complement of a small neighborhood

of D.`u/ in†u, where fFr WD
3!D3 j r 2 Œ0; 1�g is an isotopy that carries D to D0 across D3. Therefore,

it follows that f‚u;r g is smooth for u 2D2.

Finally, we see that‚u;1.†u/2H[ for u2D2. Let u be any point in D2. Take a path � W Œ0; 1�!D2 with
�.0/D e0 and �.1/D u. It suffices to show that the path Q� W Œ0; 1�!H defined by Q�.t/ WD‚�.t/;1.†�.t//
is wholly contained in H[.

For brevity, we denote by †t the surface ‚�.t/;1.†�.t// for t 2 Œ0; 1� in the following. The cover fBig

of D2 induces the cover fIk j 0 � k � ng of Œ0; 1� by finitely many closed intervals. By passing to a
subcover if necessary, we may assume that Ik \ Ij D ∅ if jk � j j > 1. As we have seen above, there
exists a family f†0C

k
[†0�

k
g (D fT 0

k
g) of level surfaces of f and the following hold:

� †0C
k

is mostly above †t if t 2 Ik . Similarly, †0�
k

is mostly below †t if t 2 Ik .

� For each k, one of the two surfaces †0C
k

and †0�
k

is disjoint from †t if t 2 Ik .

As is naturally expected, the following holds:

Claim Suppose that t 2 Ik . If †t \ †
0C

k
D ∅ and †t \ †

0�
k
¤ ∅, then †t 2 H�. Similarly , if

†t \†
0�
k
D∅ and †t \†

0C

k
¤∅, then †t 2HC.

2More specifically, we need the arguments at the end of Section 1 in [Hatcher 1976], where the sought isotopy, denoted by htu

in that paper, is constructed. It starts by taking a suitable triangulation of Dn and then proceeds by extending the isotopy over the
k–skeleton inductively. The homotopy group �k.Diff.D3 rel D// appears as an obstruction to extending a map. (As we work in
the smooth category, we use the Smale conjecture instead of the Alexander trick.)
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Proof The proof is by induction on k. The following argument is based on the idea in [Johnson 2011].
By definition, †t 2 H\ for t 2 I0. Thus our claim holds on I0. So, in what follows, we assume that
k > 0 and that our claim holds on any interval Ij with 0� j < k.

Let t 2 Ik . Without loss of generality, we may assume that †t \†
0C

k
D ∅ and †t \†

0�
k
¤ ∅. Fix

t0 2 Ik \ Ik�1. Note that †t0
and †t are isotopic through surfaces disjoint from KC. Thus it is enough

to show that †t0
2H�. There are three cases to consider.

Case 1 †t0
\†0C

k�1
D∅ and †t0

\†0�
k�1
¤∅.

By the assumption of induction, this implies that †t0
2H� and our claim holds in this case.

Case 2 †t0
\†0C

k�1
¤∅ and †t0

\†0�
k�1
D∅.

We will see that †t0
2H\. This is same as saying that †t0

is a Heegaard surface of

M n Int.N.KC[K�//Š†0 �J;

where N.KC[K�/ is a sufficiently small neighborhood of KC[K�. Since†t0
\†0�

k�1
D†t0

\†0C
k
D∅,

†t0
separates KC from K�. First, we see that †t0

is bicompressible in M n .KC[K�/. By assumption,
there exists a loop `�†t0

\†0C
k�1

bounding a disk D��†0C
k�1

such that ` is nontrivial in†t0
. Similarly,

there exists a loop m�†t0
\†0�

k
bounding a disk DC �†0�

k
such that m is nontrivial in †t0

. Since
D� and DC are in the opposite side of †t0

to each other, †t0
is bicompressible in M n .KC[K�/.

It is known that any genus g.†0/C1 bicompressible surface in †0�J separating †0�f1g from †0�f�1g

must be reducible (see [Johnson 2011]). This means that there exists a 2–sphere P �M n .KC[K�/

intersecting †t0
at a single nontrivial loop in †t0

. Since M is irreducible, P cuts .M; †t0
/ into the two

Heegaard splittings: one is a genus g.†0/ Heegaard splitting of M and the other is a genus 1 Heegaard
splitting of S3. If we denote by S the genus g.†0/ surface obtained by cutting †t0

along P , then S still
separates KC from K�. Thus, S is isotopic to †0 in the complement of KC[K�. This shows that †t0

is a genus g.†0/C1 Heegaard surface in M n Int.N.KC[K�//. Therefore, we conclude that †t0
2H\

in this case.

Case 3 †t0
\†0C

k�1
D†t0

\†0�
k�1
D∅.

Let j denote the minimal integer such that for any j < j 0 � k and t 2 Ij 0 , †t \†
0C
j 0 D†t \†

0�
j 0 D∅.

If j D 0, then †t0
is isotopic to †0 through surfaces disjoint from KC[K�. This shows that †t0

2H\.
So we may assume that j > 0 in the following. Let t1 2 Ij \ IjC1.

First, we assume that †t1
\†0Cj D∅ and that †t1

\†0�j ¤∅. By the assumption of induction, it follows
that †t1

2H�. Since †t1
and †t0

are isotopic in M n .KC[K�/, we have †t0
2H� in this case.

Next, we assume that †t1
\†0Cj ¤ ∅ and that †t1

\†0�j D ∅. Then, there exists a compression disk
D� � †0Cj for †t1

. Since †t1
and †t0

are isotopic in M n .KC [K�/, †t0
has a compression disk

disjoint from K� as well. On the other hand, as we have seen above, †0�
k

contains a compression disk
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DC for †t0
lying in the opposite side of †t0

to D�. Thus, †t0
is bicompressible in M n .KC[K�/.

Now applying the same argument as in Case 2, we have †t0
2H\ and this completes the proof.

The above claim implies that the image of Q� W Œ0; 1�!H is contained in H[. In particular, ‚u;1.†u/2H[.
Therefore, we conclude that Œ'�D 0 2 �2.H;H

[/ and this finishes the proof of Lemma 4.2.

5 The isotopy subgroup of a Heegaard splitting of a handlebody

5.1 Proof of Theorem 1.3

We now give a proof of Theorem 1.3. Let V be a genus g.V / � 2 handlebody, and let .V; †/ be
a genus g.V /C 1 Heegaard splitting of V . Fix a complete system E1; : : : ;Eg.V / of meridian disks
for V . Consider a properly embedded, boundary parallel arc I in V that is disjoint from

Sg.V /
iD1

Ei .
The surface † can be viewed as the boundary of a small neighborhood N.@V [ I/ of @V [ I . In the
same spirit in [Johnson and McCullough 2013], we define the space Unk.V; I/ of unknotted arcs to be
Diff.V /=Diff.V; I/. Then, the following holds:

Theorem 5.1 [Scharlemann 2013, Theorem 5.1] The group Isot.V; †/ is isomorphic to �1.Unk.V; I//.

Thus, it suffices to show that �1.Unk.V; I// is finitely presented.

Fix a parallelism disk E for I disjoint from
Sg.V /

iD1
Ei . Furthermore, fix a spine K of V such that

K\ED∅ and K intersects each Ei at a single point. We now consider the two subspaces of Unk.V; I/:

U1 WD fI
0
2 Unk.V; I/ j I 0 admits a parallelism disk E0 with E0\K D∅g;

U2 WD

�
I 0 2 Unk.V; I/

ˇ̌̌
I 0\

g.V /[
iD1

Ei D∅
�
:

Note that U1, U2 and U1\U2 are all connected.

The group �1.U1/ is identical to the group FE in [Scharlemann 2013], which is called the freewheeling
subgroup in that paper. This group is an extension of �1.@V / by Z, and generated by �i , �i (1� i �g.V /)
and � shown in Figure 4. For each i , �i is represented by an isotopy of parallelism disk E along a
longitudinal loop that intersects @Ei at a single point. Similarly, �i is represented by an isotopy of
the parallelism disk E along a meridional loop corresponding to @Ei . The set f�i ; �i j 1 � i � g.V /g

corresponds to a generating set of �1.@V /, and � is defined to be the half rotation of the parallelism disk E.
Let P denote the planar surface obtained by cutting @V along simple closed curves @E1; : : : ; @Eg.V /.
Then, the group �1.U2/ is isomorphic to the 2–braid group B2.P / of P . Following [Scharlemann 2013],
we define the anchored subgroup AE1;:::;Eg.V /

of �1.U2/ as follows. This is generated by 2g.V / elements
˛i and ˛0i (1� i � g.V /) shown in Figure 5. Here each of ˛i and ˛0i is represented by an isotopy of I that
moves the one endpoint p1 of I along a meridional loop and fixes the other endpoint p0. Note that we
can write ˛0i D �

�1
i ˛i�i as elements of �1.Unk.V; I//. The group �1.U2/ is generated by AE1;:::;Eg.V /

and �.
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�i : E1 Ei Eg.V /

I

�i :
E1 Ei Eg.V /

I

�:
E

�

Figure 4: The group �1.U1/ is generated by 2g.V /C 1 elements.

The groups �1.U1/, �1.U2/ and �1.U1\U2/ are all finitely presented. By van Kampen’s theorem, the
proof is finished if the following is shown:

Lemma 5.2 The inclusion U1[U2! Unk.V; I/ is a homotopy equivalence.

In fact, by the same argument as in Section 4, it is easily seen that �k.U1[U2/D �k.Unk.V; I//D 0 for
k � 2. (And of course, this fact is unnecessary for our present purpose.) So we will see that the natural
map �1.U1[U2/! �1.Unk.V; I// is an isomorphism.

Proof For brevity, set U WDUnk.V; I/. In [Scharlemann 2013], it was shown that �1.U / is generated by
the two subgroups �1.U1/ (D FE) and AE1;:::;Eg.V /

(� �1.U2/). It follows from this fact that the map

E1 Ei Eg.V /
E1

Ei Eg.V /

p0p1
p0p1

˛i
˛0i

Figure 5: The group AE1;:::;Eg.V /
� �1.U2/ is generated by 2g.V / elements.
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Figure 6: For u 2 @D2, the parallelism disk Eu intersects
Sg.V /

iD1
Ei only at arcs parallel to Iu

and intersects K at finitely many points.

�1.U1[U2/! �1.U / is a surjection. We will see that the map �1.U1[U2/! �1.U / is an injection.
In other words, we will see that �2.U;U1[U2/D 0. Let ' W .D2; @D2/! .U;U1[U2/. Put Iu WD '.u/

for u 2D2. In the same spirit of the proof of Lemma 3.1, we can show the following.

Claim 1 There exists a (smooth ) family of disks fEu j u 2D2g in V such that Eu is a parallelism disk
for Iu.

Proof By [Scharlemann 2013], the map Diff.V / ! Diff.V /=Diff.V; †/ is homotopy equivalent to
Diff.V /! Diff.V /=Diff.V; I/. The former is a fibration [Johnson and McCullough 2013], and so is the
latter. Thus, the map ' WD2! U lifts to a map Q' WD2! Diff.V /. Now define Eu WD Q'.u/.E/.

Since '.@D2/ � U1 [U2, the isotopy fIu j u 2 @D
2g represents an element of �1.U1 [U2/. So we

can write this isotopy as a product !1!2 � � �!n of the !k’s, where each !k is either �i , �i , �, ˛i ,
˛0i or their inverses. Corresponding to this factorization, there is a division of @D2 into the intervals
J1 D Œu0;u1�; : : : ;Jn D Œun�1;un� with u0 D un.

Claim 2 After a deformation of fEu j u 2D2g near @D2, the following hold for any u 2 @D2:

(i) Eu intersects
Sg.V /

iD1
Ei at finitely many arcs , and Eu intersects K at finitely many points.

(ii) Each arc of Eu\
Sg.V /

iD1
Ei is parallel to Iu in Eu.

(iii) If a and a0 are arcs of Eu\
Sg.V /

iD1
Ei , then a and a0 are nested in the following sense: if � and

�0 are bigons in Eu cut by a and a0 respectively, then either ���0 or �0 �� holds.

See Figure 6.

Proof The key is the following simple observation. For each interval Jk , there are the three possibilities:

� !k D �
�
i for some 1� i � g.V / and � D˙1. Then, during the move !k , some intersection arcs

of Eu\
Sg.V /

iD1
Ei are introduced or removed (possibly both may occur). All such arcs are parallel

to Iu in Eu. The intersection pattern of Eu\K is not changed by !k . See Figure 7, top.

� !k D ˛
�
i or !k D ˛

0�
i for some 1 � i � g.V / and � D˙1. Then, during the move !k , a single

intersection point of Eu\K is introduced or removed. The intersection pattern of Eu\
Sg.V /

iD1
Ei

is not changed by !k . See Figure 7, bottom.
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Ei

Ei

Ei

K

K

K

K

˛i

�i

Figure 7: The move �i introduces or removes arcs parallel to Iu (top), and the move ˛i introduces
or removes a single point (bottom).

� !kD�
�
i or !kD�

� for some 1� i �g.V / and �D˙1. Then, during the move !k , the intersection
pattern of Eu\

�Sg.V /
iD1

Ei [K
�

does not change.

Recall that Eu0
D Eun

D E by definition. In particular, Eu0
\
�Sg.V /

iD1
Ei [K

�
D ∅. By the above

observation, it follows that the conditions (i), (ii) and (iii) are satisfied on the interval J1. By an inductive
argument, we can see that these three conditions are satisfied on any interval Jk as well.

Put B WD fre
p
�1� 2 C j 0 � r � 1; 0 � � � �g. There is a smooth family ffu W Eu! B j u 2D2g of

diffeomorphisms between Eu and B. (More rigorously, this is a consequence of the fact that the space
Diff.D2 rel @D2/ is contractible [Smale 1959].) Furthermore, by Claim 2, we may choose ffug such that
for any u2@D2, each arc of Eu\

Sg.V /
iD1

Ei is mapped to an arc fre
p
�1� 2B j rD r0; 0�� ��g for some

0< r0 � 1. For t 2 Œ0; 1/, define �t WB!B by �t .re
p
�1� / WD .1� t/re

p
�1� . Set ‚u;t WD f

�1
u ı�t ıfu

for u 2 D2 and t 2 Œ0; 1/. Then, the isotopy ‚u;t shrinks Iu along Eu into a small neighborhood of
a point in Eu \ @V as t ! 1. If t is sufficiently close to 1, then ‚u;t .Iu/ 2 U1. Furthermore, by
definition, for u 2 @D2 and t 2 Œ0; 1/, ‚u;t .Iu/ is disjoint from either K or

Sg.V /
iD1

Ei . Let u 2 @D2 and
t 2 Œ0; 1/. If ‚u;t .Iu/\K D ∅, then ‚u;t .Iu/ 2 U1. On the other hand, if ‚u;t .Iu/\

Sg.V /
iD1

Ei D ∅,
then ‚u;t .Iu/ 2 U2. This means that ‚u;t .Iu/ 2 U1 [U2 for u 2 @D2 and t 2 Œ0; 1/. Therefore, we
conclude that Œ'�D 0 2 �2.U;U1[U2/.

5.2 Proof of Corollary 1.4

Proof of Corollary 1.4 By Theorems 1.1 and 1.3, Isot.M; †/ is finitely presented. It remains to show
that MCG.M; †/ is finitely presented. By definition, there exists an exact sequence

1! Isot.M; †/!MCG.M; †/!MCG.M /:

Algebraic & Geometric Topology, Volume 24 (2024)
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By Theorem 2.3, M is hyperbolic, and hence MCG.M / is finite. Therefore, MCG.M; †/ is finitely
presented.

References
[Boardman 1967] J M Boardman, Singularities of differentiable maps, Inst. Hautes Études Sci. Publ. Math. 33

(1967) 21–57 MR Zbl

[Cerf 1968] J Cerf, Sur les difféomorphismes de la sphère de dimension trois .�4 D 0/, Lecture Notes in Math. 53,
Springer (1968) MR Zbl

[Earle and Eells 1969] C J Earle, J Eells, A fibre bundle description of Teichmüller theory, J. Differential Geom. 3
(1969) 19–43 MR Zbl

[Golubitsky and Guillemin 1973] M Golubitsky, V Guillemin, Stable mappings and their singularities, Grad.
Texts in Math. 14, Springer (1973) MR Zbl

[Haken 1968] W Haken, Some results on surfaces in 3–manifolds, from “Studies in modern topology” (P J Hilton,
editor), Stud. Math. 5, Math. Assoc. America, Concord, CA (1968) 39–98 MR Zbl

[Hatcher 1976] A Hatcher, Homeomorphisms of sufficiently large P 2–irreducible 3–manifolds, Topology 15
(1976) 343–347 MR Zbl

[Hatcher 1983] A E Hatcher, A proof of the Smale conjecture, Diff.S3/ ' O.4/, Ann. of Math. 117 (1983)
553–607 MR Zbl

[Hatcher and Wagoner 1973] A Hatcher, J Wagoner, Pseudo-isotopies of compact manifolds, Astérisque 6, Soc.
Math. France, Paris (1973) MR Zbl

[Hempel 2001] J Hempel, 3–Manifolds as viewed from the curve complex, Topology 40 (2001) 631–657 MR Zbl

[Johnson 2010] J Johnson, Bounding the stable genera of Heegaard splittings from below, J. Topol. 3 (2010)
668–690 MR Zbl

[Johnson 2011] J Johnson, Mapping class groups of once-stabilized Heegaard splittings, preprint (2011) arXiv
1108.5302

[Johnson and McCullough 2013] J Johnson, D McCullough, The space of Heegaard splittings, J. Reine Angew.
Math. 679 (2013) 155–179 MR Zbl

[Koda and Sakuma 2023] Y Koda, M Sakuma, Homotopy motions of surfaces in 3–manifolds, Q. J. Math. 74
(2023) 29–71 MR Zbl

[Rubinstein and Scharlemann 1996] H Rubinstein, M Scharlemann, Comparing Heegaard splittings of non-
Haken 3–manifolds, Topology 35 (1996) 1005–1026 MR Zbl

[Scharlemann 2013] M Scharlemann, Generating the genus gC 1 Goeritz group of a genus g handlebody, from
“Geometry and topology down under” (C D Hodgson, W H Jaco, M G Scharlemann, S Tillmann, editors), Contemp.
Math. 597, Amer. Math. Soc., Providence, RI (2013) 347–369 MR Zbl

[Smale 1959] S Smale, Diffeomorphisms of the 2–sphere, Proc. Amer. Math. Soc. 10 (1959) 621–626 MR Zbl

Higashihiroshima, Japan

diguchi00@gmail.com

Received: 4 April 2022 Revised: 8 January 2023

Geometry & Topology Publications, an imprint of mathematical sciences publishers msp

https://doi.org/10.1007/BF02684585
http://msp.org/idx/mr/231390
http://msp.org/idx/zbl/0165.56803
https://doi.org/10.1007/BFb0060395
http://msp.org/idx/mr/229250
http://msp.org/idx/zbl/0164.24502
http://projecteuclid.org/euclid.jdg/1214428816
http://msp.org/idx/mr/276999
http://msp.org/idx/zbl/0185.32901
https://doi.org/10.1007/978-1-4615-7904-5
http://msp.org/idx/mr/341518
http://msp.org/idx/zbl/0294.58004
http://msp.org/idx/mr/224071
http://msp.org/idx/zbl/0194.24902
https://doi.org/10.1016/0040-9383(76)90027-6
http://msp.org/idx/mr/420620
http://msp.org/idx/zbl/0335.57004
https://doi.org/10.2307/2007035
http://msp.org/idx/mr/701256
http://msp.org/idx/zbl/0531.57028
http://numdam.org/item/AST_1973__6__1_0/
http://msp.org/idx/mr/353337
http://msp.org/idx/zbl/1384.57019
https://doi.org/10.1016/S0040-9383(00)00033-1
http://msp.org/idx/mr/1838999
http://msp.org/idx/zbl/0985.57014
https://doi.org/10.1112/jtopol/jtq021
http://msp.org/idx/mr/2684516
http://msp.org/idx/zbl/1246.57044
http://msp.org/idx/arx/1108.5302
http://msp.org/idx/arx/1108.5302
https://doi.org/10.1515/crelle.2012.016
http://msp.org/idx/mr/3065157
http://msp.org/idx/zbl/1281.57008
https://doi.org/10.1093/qmath/haac017
http://msp.org/idx/mr/4571622
http://msp.org/idx/zbl/1514.57023
https://doi.org/10.1016/0040-9383(95)00055-0
https://doi.org/10.1016/0040-9383(95)00055-0
http://msp.org/idx/mr/1404921
http://msp.org/idx/zbl/0858.57020
https://doi.org/10.1090/conm/597/11879
http://msp.org/idx/mr/3186683
http://msp.org/idx/zbl/1288.57014
https://doi.org/10.2307/2033664
http://msp.org/idx/mr/112149
http://msp.org/idx/zbl/0118.39103
mailto:diguchi00@gmail.com
http://msp.org
http://msp.org


ALGEBRAIC & GEOMETRIC TOPOLOGY
msp.org/agt

EDITORS

PRINCIPAL ACADEMIC EDITORS

John Etnyre
etnyre@math.gatech.edu

Georgia Institute of Technology

Kathryn Hess
kathryn.hess@epfl.ch

École Polytechnique Fédérale de Lausanne

BOARD OF EDITORS

Julie Bergner University of Virginia
jeb2md@eservices.virginia.edu

Steven Boyer Université du Québec à Montréal
cohf@math.rochester.edu

Tara E Brendle University of Glasgow
tara.brendle@glasgow.ac.uk

Indira Chatterji CNRS & Univ. Côte d’Azur (Nice)
indira.chatterji@math.cnrs.fr

Alexander Dranishnikov University of Florida
dranish@math.ufl.edu

Tobias Ekholm Uppsala University, Sweden
tobias.ekholm@math.uu.se

Mario Eudave-Muñoz Univ. Nacional Autónoma de México
mario@matem.unam.mx

David Futer Temple University
dfuter@temple.edu

John Greenlees University of Warwick
john.greenlees@warwick.ac.uk

Ian Hambleton McMaster University
ian@math.mcmaster.ca

Matthew Hedden Michigan State University
mhedden@math.msu.edu

Hans-Werner Henn Université Louis Pasteur
henn@math.u-strasbg.fr

Daniel Isaksen Wayne State University
isaksen@math.wayne.edu

Thomas Koberda University of Virginia
thomas.koberda@virginia.edu

Markus Land LMU München
markus.land@math.lmu.de

Christine Lescop Université Joseph Fourier
lescop@ujf-grenoble.fr

Robert Lipshitz University of Oregon
lipshitz@uoregon.edu

Norihiko Minami Yamato University
minami.norihiko@yamato-u.ac.jp

Andrés Navas Universidad de Santiago de Chile
andres.navas@usach.cl

Robert Oliver Université Paris 13
bobol@math.univ-paris13.fr

Jessica S Purcell Monash University
jessica.purcell@monash.edu

Birgit Richter Universität Hamburg
birgit.richter@uni-hamburg.de

Jérôme Scherer École Polytech. Féd. de Lausanne
jerome.scherer@epfl.ch

Vesna Stojanoska Univ. of Illinois at Urbana-Champaign
vesna@illinois.edu

Zoltán Szabó Princeton University
szabo@math.princeton.edu

Maggy Tomova University of Iowa
maggy-tomova@uiowa.edu

Chris Wendl Humboldt-Universität zu Berlin
wendl@math.hu-berlin.de

Daniel T Wise McGill University, Canada
daniel.wise@mcgill.ca

Lior Yanovski Hebrew University of Jerusalem
lior.yanovski@gmail.com

See inside back cover or msp.org/agt for submission instructions.

The subscription price for 2024 is US $705/year for the electronic version, and $1040/year (C$70, if shipping outside the US) for print and
electronic. Subscriptions, requests for back issues and changes of subscriber address should be sent to MSP. Algebraic & Geometric Topology is
indexed by Mathematical Reviews, Zentralblatt MATH, Current Mathematical Publications and the Science Citation Index.

Algebraic & Geometric Topology (ISSN 1472-2747 printed, 1472-2739 electronic) is published 9 times per year and continuously online, by
Mathematical Sciences Publishers, c/o Department of Mathematics, University of California, 798 Evans Hall #3840, Berkeley, CA 94720-3840.
Periodical rate postage paid at Oakland, CA 94615-9651, and additional mailing offices. POSTMASTER: send address changes to Mathematical
Sciences Publishers, c/o Department of Mathematics, University of California, 798 Evans Hall #3840, Berkeley, CA 94720-3840.

AGT peer review and production are managed by EditFlow® from MSP.

PUBLISHED BY

mathematical sciences publishers
nonprofit scientific publishing

https://msp.org/
© 2024 Mathematical Sciences Publishers

http://dx.doi.org/10.2140/agt
mailto:etnyre@math.gatech.edu
mailto:kathryn.hess@epfl.ch
mailto:jeb2md@eservices.virginia.edu
mailto:cohf@math.rochester.edu
mailto:tara.brendle@glasgow.ac.uk
mailto:indira.chatterji@math.cnrs.fr
mailto:dranish@math.ufl.edu
mailto:tobias.ekholm@math.uu.se
mailto:mario@matem.unam.mx
mailto:dfuter@temple.edu
mailto:john.greenlees@warwick.ac.uk
mailto:ian@math.mcmaster.ca
mailto:mhedden@math.msu.edu
mailto:henn@math.u-strasbg.fr
mailto:isaksen@math.wayne.edu
mailto:thomas.koberda@virginia.edu
mailto:markus.land@math.lmu.de
mailto:lescop@ujf-grenoble.fr
mailto:lipshitz@uoregon.edu
mailto:minami.norihiko@yamato-u.ac.jp
mailto:andres.navas@usach.cl
mailto:bobol@math.univ-paris13.fr
mailto:jessica.purcell@monash.edu
mailto:birgit.richter@uni-hamburg.de
mailto:jerome.scherer@epfl.ch
mailto:vesna@illinois.edu
mailto:szabo@math.princeton.edu
mailto:maggy-tomova@uiowa.edu
mailto:wendl@math.hu-berlin.de
mailto:daniel.wise@mcgill.ca
mailto:lior.yanovski@gmail.com
http://dx.doi.org/10.2140/agt
http://www.ams.org/mathscinet
http://www.emis.de/ZMATH/
http://www.ams.org/bookstore-getitem/item=cmp
http://www.isinet.com/products/citation/wos/
https://msp.org/
https://msp.org/


ALGEBRAIC & GEOMETRIC TOPOLOGY
Volume 24 Issue 7 (pages 3571–4137) 2024

3571Geography of bilinearized Legendrian contact homology

FRÉDÉRIC BOURGEOIS and DAMIEN GALANT

3605The deformation spaces of geodesic triangulations of flat tori

YANWEN LUO, TIANQI WU and XIAOPING ZHU

3621Finite presentations of the mapping class groups of once-stabilized Heegaard splittings

DAIKI IGUCHI

3641On the structure of the top homology group of the Johnson kernel

IGOR A SPIRIDONOV

3669The Heisenberg double of involutory Hopf algebras and invariants of closed 3–manifolds

SERBAN MATEI MIHALACHE, SAKIE SUZUKI and YUJI TERASHIMA

3693A closed ball compactification of a maximal component via cores of trees

GIUSEPPE MARTONE, CHARLES OUYANG and ANDREA TAMBURELLI

3719An algorithmic discrete gradient field and the cohomology algebra of configuration spaces of two points on complete graphs

EMILIO J GONZÁLEZ and JESÚS GONZÁLEZ

3759Spectral diameter of Liouville domains

PIERRE-ALEXANDRE MAILHOT

3801Classifying rational G–spectra for profinite G

DAVID BARNES and DANNY SUGRUE

3827An explicit comparison between 2–complicial sets and‚2–spaces

JULIA E BERGNER, VIKTORIYA OZORNOVA and MARTINA ROVELLI

3875On products of beta and gamma elements in the homotopy of the first Smith–Toda spectrum

KATSUMI SHIMOMURA and MAO-NO-SUKE SHIMOMURA

3897Phase transition for the existence of van Kampen 2–complexes in random groups

TSUNG-HSUAN TSAI

3919A qualitative description of the horoboundary of the Teichmüller metric

AITOR AZEMAR

3985Vector fields on noncompact manifolds

TSUYOSHI KATO, DAISUKE KISHIMOTO and MITSUNOBU TSUTAYA

3997Smallest nonabelian quotients of surface braid groups

CINDY TAN

4007Lattices, injective metrics and the K.�;1/ conjecture

THOMAS HAETTEL

4061The real-oriented cohomology of infinite stunted projective spaces

WILLIAM BALDERRAMA

4085Fourier transforms and integer homology cobordism

MIKE MILLER EISMEIER

4103Profinite isomorphisms and fixed-point properties

MARTIN R BRIDSON

4115Slice genus bound in DTS2 from s–invariant

QIUYU REN

4127Relatively geometric actions of Kähler groups on CAT.0/ cube complexes

COREY BREGMAN, DANIEL GROVES and KEJIA ZHU

A
L

G
E

B
R

A
IC

&
G

E
O

M
E

T
R

IC
T

O
P

O
L

O
G

Y
2024

Vol.24,
Issue

7
(pages

3571–4137)

http://dx.doi.org/10.2140/agt.2024.24.3571
http://dx.doi.org/10.2140/agt.2024.24.3605
http://dx.doi.org/10.2140/agt.2024.24.3621
http://dx.doi.org/10.2140/agt.2024.24.3641
http://dx.doi.org/10.2140/agt.2024.24.3669
http://dx.doi.org/10.2140/agt.2024.24.3693
http://dx.doi.org/10.2140/agt.2024.24.3719
http://dx.doi.org/10.2140/agt.2024.24.3759
http://dx.doi.org/10.2140/agt.2024.24.3801
http://dx.doi.org/10.2140/agt.2024.24.3827
http://dx.doi.org/10.2140/agt.2024.24.3875
http://dx.doi.org/10.2140/agt.2024.24.3897
http://dx.doi.org/10.2140/agt.2024.24.3919
http://dx.doi.org/10.2140/agt.2024.24.3985
http://dx.doi.org/10.2140/agt.2024.24.3997
http://dx.doi.org/10.2140/agt.2024.24.4007
http://dx.doi.org/10.2140/agt.2024.24.4061
http://dx.doi.org/10.2140/agt.2024.24.4085
http://dx.doi.org/10.2140/agt.2024.24.4103
http://dx.doi.org/10.2140/agt.2024.24.4115
http://dx.doi.org/10.2140/agt.2024.24.4127

	1. Introduction
	2. Preliminaries
	2.1. The space of Heegaard splittings
	2.2. The distance of a Heegaard splitting

	3. Sweep-outs and graphics
	3.1. Graphics
	3.2. Labeling the regions of J2 D2

	4. Proof of Theorem 1.2
	5. The isotopy subgroup of a Heegaard splitting of a handlebody
	5.1. Proof of Theorem 1.3
	5.2. Proof of Corollary 1.4

	References
	
	

