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We show that, in the character variety of surface group representations into the Lie group PSL.2;R/�
PSL.2;R/, the compactification of the maximal component introduced by the second author is a closed
ball upon which the mapping class group acts. We study the dynamics of this action. Finally, we describe
the boundary points geometrically as .A1�A1; 2/–valued mixed structures.
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1 Introduction

A recurring theme in higher Teichmüller theory is to relate surface group representations into higher-rank
Lie groups with geometric objects. Taking its cue from classical Teichmüller theory, one is often interested
in studying the degeneration of these associated geometric objects when the representation leaves all
compact sets in the character variety. The celebrated Thurston compactification of Teichmüller space
regards Fuchsian representations as marked hyperbolic metrics, where degenerating families of hyperbolic
metrics subconverge to projectivized measured laminations. One key aspect of this compactification is
that it is a closed ball upon which the mapping class group acts. In years following, there have been
numerous different perspectives of the Thurston compactification, using a variety of methods, topological,
geometric, analytic and algebraic (see [Bonahon 1988; Bestvina 1988; Paulin 1988; Wolf 1989; Morgan
and Shalen 1984; Brumfiel 1988]).
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When the Lie group PSL.2;R/ is replaced with a higher-rank one, the relevant geometric object is
not always immediately clear. In rank 2 however, combined work of Schoen [1993], Labourie [2017],
Loftin [2001], Collier [2016], Alessandrini and Collier [2019], and Collier, Tholozan and Toulisse
[Collier et al. 2019] provides a geometric interpretation to representations in the various distinguished
components of the relevant character variety. These components are usually maximal components or
Hitchin components, which maximize a topological quantity, the Toledo invariant, or contain a deformation
of the classical Teichmüller space. Parreau [2012] compactifies them by attaching at infinity surface
group actions on a Euclidean building.

This paper will primarily be concerned with the rank-2 semisimple split Lie group G D PSL.2;R/�
PSL.2;R/. The product structure of G makes our study more amenable towards techniques from classical
Teichmüller theory. For S a closed, orientable, smooth surface of genus g > 1, work of Goldman
[1988] shows the connected components of the character variety �.�1.S/;PSL.2;R// are determined
by the Euler number. In particular, the distinguished component with maximal Euler number of 2g�2
is the Teichmüller space Teich.S/. If we denote the character variety for G D PSL.2;R/� PSL.2;R/
by �.�1.S/;G/, then the connected components are merely products of the connected components of
�.�1.S/;PSL.2;R//. The maximal component Max.S;G/ of �.�1.S/;G/ is the collection of conjugacy
classes of pairs of representations, each of which is a Fuchsian representation. Hence Max.S/ WD
Max.S;PSL.2;R/�PSL.2;R// is the product of two copies of Teichmüller space.

Elements in the component Max.S/ have a number of related geometric interpretations. Schoen [1993]
has shown these representations correspond to equivariant minimal Lagrangians in H2�H2. At the same
time, the group G D PSL.2;R/�PSL.2;R/ is the isometry group of AdS3, and Mess [2007] has shown
the holonomy representations of GHMC-AdS3 manifolds are precisely the ones in Max.S/. Krasnov and
Schlenker [2007] have shown to each GHMC-AdS3 manifold there is a unique equivariant space-like
maximal surface, whose image under the Gauss map is the aforementioned minimal Lagrangian.

In seeking a compactification of Max.S/ via degeneration of geometric objects, the second author in
his thesis [Ouyang 2023] showed the natural limits to the minimal Lagrangians were given by cores
of R–trees dual to measured laminations. These are topologically and group-theoretically defined
distinguished subcomplexes of the product of two trees, where some parts are two-dimensional and
the remaining parts are one-dimensional. Denote by Core.T;T /, the space of cores in the product of trees
dual to measured laminations. Observe that there is a natural RC–action on Core.T;T / and denote by
P Core.T;T / the resulting projectivization. We equip Max.S/ and P Core.T;T / with the equivariant
Gromov–Hausdorff topology. One natural question one might ask is what exactly is the topology of the
resulting compactification. Our first main result is the following.

Theorem A The disjoint union
BDMax.S/tP Core.T;T /

is homeomorphic to a closed ball of dimension 12g�12.
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More precisely, we will show that the interior of B can be identified with Teich.S/�Teich.S/ and its
boundary with P .MF.S/�MF.S//. A point in B will thus be represented by a pair .x1; x2/, where
x1 and x2 are either both marked hyperbolic structures or both measured foliations up to simultaneous
projective equivalence.

The key new contribution of Theorem A is the description of the topology of a compactification of
a higher Teichmüller space. Even in the case of Teichmüller space, Thurston’s original proof requires
the construction of charts in order to show that the compactified space has the structure of a manifold
with boundary and then uses the Schönflies theorem (see [Fathi et al. 2012, pages 162–164]). We
overcome these difficulties in proving Theorem A by considering a more analytic approach inspired by
the compactification of Teichmüller space using harmonic maps in [Wolf 1989]: we naturally identify
Max.S/ with a unit ball in a vector space of pairs of holomorphic quadratic differentials and P Core.T;T /
with its boundary. To the best of our knowledge, this is the first example of a higher Teichmüller
component of a closed surface that is compactified to a closed ball.

It is not too difficult to see from the construction of this compactification that the action of the mapping
class group extends continuously to the boundary. Following Thurston, we study the action of the mapping
class group MCG.S/ on our compactification B.

Proposition 1.1 Suppose � 2MCG.S/ and �.x/D x for some x D .x1; x2/ 2B, where B is as defined
in Theorem A.

(1) If � is periodic , then x1 and x2 are any two points fixed by � in the Thurston compactification of
Teichmüller space such that .x1; x2/ 2B.

(2) If � is pseudo-Anosov, then .x1; x2/ 2 @B and x1 D 0, or x2 D 0 or x1 D x2.

The action of the mapping class group appears to be more interesting if we consider its action on
a natural quotient of B. In fact, given a maximal representation �, there is a unique equivariant minimal
Lagrangian z†� in H2 �H2. The induced metric on z†� descends to a negatively curved Riemannian
metric on S. We denote by Ind.S/ the space of such metrics. It turns out that Ind.S/ D Max.S/=S1,
since there is an S1–family of maximal representations with intrinsically isometric equivariant minimal
Lagrangians. (However, these minimal Lagrangians are not extrinsically isometric in H2 �H2: their
second fundamental form, which is completely determined by a holomorphic quadratic differential on S,
differs under rotation; see [Ouyang 2023, Proposition 4.3]). Similarly, the distance on the core of the
product of two trees dual to a pair of measured laminations can be recovered from a mixed structure,
that is, a hybrid geometric object on S that is in part a measured lamination and in part a finite-area flat
metric induced by a meromorphic quadratic differential on subsurfaces glued along annuli. The space of
projectivized mixed structures can then be identified with the boundary of Ind.S/ in the length spectrum
topology [Ouyang 2023]. The mapping class group acts on Ind.S/ and we prove the following:

Algebraic & Geometric Topology, Volume 24 (2024)
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Theorem B Assume � 2MCG.S/ fixes � 2 @Ind.S/.

(1) If � is purely flat , ie � is a mixed structure without laminar pieces , then � is periodic.

(2) If � is properly mixed , ie � is a mixed structure with at least one flat subsurface and one laminar
part , then � is not pseudo-Anosov.

Note that the remaining case of � a purely laminar mixed structure, in other words a genuine measured
lamination on S, is handled by the Nielson–Thurston classification theorem. Theorem 5.12 will give
a more detailed description of item (2) in Theorem B when � is reducible. In particular, we will show
that the subdivision of S induced by � is a refinement of the one induced by � if � has no trivial parts.

The absence of a product structure for the other simple split Lie groups of rank 2 makes the study of
the topology of any compactification considerably more difficult. Furthermore, for PSL.2;R/�PSL.2;R/,
quadratic differentials are intimately related to pairs of measured laminations, and for higher-order
differentials, which appear for the other rank-2 cases, there are no obvious analogous topological objects.
However, it is possible to describe our compactification without explicit references to R–trees, and we
conjecture this perspective can be extended to the other rank-2 Lie groups. In particular, given any
Lie algebra g with Cartan subalgebra a and positive Weyl chamber aC, we define aC–valued measured
laminations and .aC; k/–mixed structures obtained by gluing these vector-valued laminations together with
1=k–translation surfaces of finite area along annuli (see Section 6 for details). We will consider this notion
for the Lie algebra sl.2;R/�sl.2;R/: in this case its Cartan subalgebra is of type A1�A1 and we denote
by AC1 �A

C
1 the closure of a fixed positive Weyl chamber. Concretely, in this case the Cartan subalgebra

can be chosen to be the space of pairs of 2� 2 traceless diagonal matrices, so it is homeomorphic to R2

and AC1 �A
C
1 is homeomorphic to a quadrant. We can rephrase our main result as follows:

Theorem C The boundary of Max.S/ can be identified with the space of .AC1 �A
C
1 ; 2/–mixed structures

on S, which is thus topologically a sphere of dimension 12g�13.

Moreover, we prove in Lemma 6.8 that .AC1 �A
C
1 ; 2/–mixed structures are dual to the subcomplexes of

a Euclidean building introduced and studied in [Parreau 2022]. Theorem C has the advantage of being easily
adaptable to other higher Teichmüller components (see Conjecture 6.7 for the precise statements in rank 2).

Historical remarks

In analogy with the classical case, compactifications of higher Teichmüller spaces are fruitfully studied
using different techniques and perspectives. Parreau [2012] compactifies the character variety of surface
group representations into noncompact semisimple connected real Lie groups with finite center using
Euclidean buildings. For Hitchin and maximal connected components, one can obtain additional informa-
tion on the boundary points by using the (‚-)positivity properties of the representations as in [Alessan-
drini 2008; Burger and Pozzetti 2017; Fock and Goncharov 2006; Le 2016; Martone 2019a; 2019b;
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Parreau 2022]. For rank-2 Lie groups, the second and third authors used analytic methods to study
degenerations of geometric objects associated to these representations in [Ouyang 2023; Ouyang and
Tamburelli 2021; 2023]. In a series of papers, Burger, Iozzi, Parreau and Pozzetti [Burger et al. 2017;
2021a; 2024] use geodesic currents and real algebrogeometric methods to study the Weyl chamber length
spectrum compactification of general character varieties introduced in [Parreau 2012]. Their results
apply in particular to Hitchin and maximal components, which are fundamental examples of higher
Teichmüller spaces, and establish several structural properties of the boundary points. While we refer to
their announcement [Burger et al. 2021b] for an account of their general framework and results, here
we describe in greater detail their independent work [Burger et al. 2021c] on the compactification of
n–copies of Teich.S/. Burger, Iozzi, Parreau and Pozzetti identify the boundary of the Weyl chamber
length spectrum compactification of Teich.S/n with the projectivization of MF.S/n, which is a sphere
of dimension n.6g�6/�1. In addition, they show that MCG.S/ acts properly discontinuously on the
space of positive joint systole n–tuples of measured foliations [Burger et al. 2021c, Theorem 1.1]. This
result provides a new geometric description of the domain of discontinuity introduced in [Burger et al.
2021a] for the MCG.S/ action on the boundary of the Weyl chamber length spectrum compactification
in the case of the Lie group PSL.2;R/n. Finally, when n D 2, they describe the boundary points as
vector-valued mixed structures (in their language, R2–mixed structures) and associate to these objects a
dual tree-graded R2–space in the sense of [Druţu and Sapir 2005] (see Theorems 1.2 and 1.3 in [Burger
et al. 2021c]). Their results lead to an (a priori different) compactification of Max.S/.

2 Background

2.1 Foliations, laminations and R–trees

We recall some classical facts about measured foliations and laminations. This material can be found in
[Fathi et al. 2012]. Let S be a closed, orientable, smooth surface of genus g > 1. A measured foliation is
a singular foliation (with k–pronged singularities) equipped with a measure on transverse arcs, invariant
under transverse homotopy.

If S is given a hyperbolic metric � , then a measured lamination is a closed set of disjoint simple
geodesics on .S; �/ together with a transverse measure. There is a natural homeomorphism between the
space MF.S/ of measured foliations on S and the space ML.S/ of measured laminations on .S; �/, so that
the role of � is an auxiliary one. Thurston showed MF.S/ is topologically trivial, being a ball of dimension
6g�6. The space PMF.S/ is the boundary of Teichmüller space under the Thurston compactification.

If S is given a complex structure J, then to any holomorphic quadratic differential qD q.z/ dz2, one may
consider the foliation obtained by integrating the line field q.v; v/ > 0. When further given the transverse
measure defined by

R
˛jIm.

p
q/j, the resulting measured foliation is called the horizontal foliation of q.

Likewise integrating the line field q.v; v/ < 0 and taking the measure
R
˛jRe.

p
q/j gives the vertical

foliation of q. The theorem of [Hubbard and Masur 1979] states that for a fixed Riemann surface .S; J /
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and any measured foliation F on S, there is a unique holomorphic quadratic differential q, whose horizontal
foliation is Whitehead equivalent (ie it differs at most by isotopies or expanding or collapsing pronged
singularities along straight arcs) to F. Any measured foliation F on S lifts to a measured foliation zF on
the universal cover zS. Taking the leaf space of zF together with a distance induced by the pushforward of
the transverse measure gives an R–tree. When an R–tree is constructed from a measured foliation in this
way, the R–tree comes equipped with a �1.S/–action from zF. This action is small, that is, the stabilizer of
an arc never contains a free group of rank 2, and minimal, that is, the action does not preserve any proper
subtree. A result of [Skora 1996] says that any R–tree with a �1.S/–action which is both small and
minimal is constructed from a measured foliation on S. Such R–trees are said to be dual to a measured
foliation, and for our purposes, all R–trees we consider will be dual to a measured foliation.

2.2 Half-translation surfaces, flat metrics and mixed structures

A Riemann surface equipped with a holomorphic quadratic differential q is called a half-translation surface.
This terminology comes from the fact these can be realized by gluing polygons in C via translations or
rotations of angle � .

A half-translation surface is naturally endowed with a singular flat metric jqj, where the singularities
are at the zeros of q. Duchin, Leininger and Rafi [Duchin et al. 2010] have studied the degeneration of
unit-area quadratic differential metrics, and have shown the limits are precisely projectivized (quadratic)
mixed structures. A mixed structure is a collection of integrable meromorphic quadratic differential
metrics on subsurfaces and measured laminations on other subsurfaces, glued along flat annuli to recover
the surface S. Trivial examples of mixed structures include singular flat metrics on S and measured
laminations on S. We say that a mixed structure is properly mixed if it has a flat piece but it is not
a singular flat metric. Mixed structures, when the meromorphic differential is cubic or quartic, appear
in the compactification of Hitchin components for SL.3;R/ and Sp.4;R/ (see [Ouyang and Tamburelli
2021; 2023]).

A measured lamination � on S is said to fill if the complement S n� is a disjoint union of topological
disks. A pair F1;F2 of measured foliations on S is said to fill or is transverse if, for any third foliation G,
one has i.F1;G/C i.F2;G/ > 0. Here i. � ; � / denotes the Bonahon intersection pairing, which generalizes
the topological intersection number between curves. We remark that the intersection number for the
corresponding measured laminations is the same; therefore we can define filling for a pair of measured
laminations analogously. Notice that given a holomorphic quadratic differential q, the vertical and
horizontal foliations of q fill. Conversely, the result of [Gardiner and Masur 1991] says that, given
any pair of filling measured foliations, there exists a unique Riemann surface structure and a unique
holomorphic quadratic differential which realizes the original pair as its vertical and horizontal foliation
(up to Whitehead equivalence). In particular, a pair of filling measured foliations will determine a unique
half-translation surface structure and consequently a unique singular flat quadratic differential metric.

Algebraic & Geometric Topology, Volume 24 (2024)
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2.3 Minimal Lagrangians in H2 �H2

A minimal Lagrangian z† in H2 �H2 is a minimal surface which is Lagrangian with respect to the
symplectic form !˚�!, where ! is the standard Kähler form on H2. Any � 2Max.S/ acts on H2�H2,
and Schoen [1993] has shown to each such � there is a unique �–equivariant minimal Lagrangian z†�
in H2 �H2, thereby providing a geometric interpretation to representations in Max.S/. The second
author [Ouyang 2023] has studied the degeneration of these minimal Lagrangians and has shown that one
may interpret the space P Core.T;T / as the boundary of the maximal component Max.S/.

2.4 Induced metrics and projectivized mixed structures

The induced metric on the unique �–equivariant minimal Lagrangian descends to a metric on S. It is not
too difficult (see [Ouyang 2023, Proposition 4.2]) to see this metric is in fact negatively curved. Hence, by
the result of [Otal 1990], its marked length spectrum determines the metric. The marked length spectrum
is the data of both the curve class and the length of its geodesic representative in the given homotopy class.
Let Ind.S/ denote the space of induced metrics coming from the �–equivariant minimal Lagrangians.
Then in fact one may embed Ind.S/ into the space of projectivized marked length spectra. Its closure is
then determined to be precisely the space Ind.S/ together with the projectivized mixed structures [Duchin
et al. 2010, Theorem 5; Ouyang 2023, Theorem 5.5].

3 Core of a product of trees

In this section we recall the notion of core of a product of trees and describe its geometry in the case of
trees dual to measured laminations. The core of a product of two R–trees can actually be defined for any
pair of R–trees each admitting a �1.S/–action. It is not necessary that the R–trees be dual to measured
foliations. However, we will specifically mention when particular properties of cores are germane only to
R–trees dual to measured foliations. The main reference for the material covered here is [Guirardel 2005].

Given an R–tree T, a direction ı based at a point p 2 T is a connected component of T n fpg. For a
product T1 �T2 of R–trees, a quadrant Q based at .p1; p2/ 2 T1 �T2 is a product ı1 � ı2 of directions.
If the R–trees T1; T2 are equipped with a �1.S/–action by isometries, then we say a quadrant Q is heavy
if there exists a sequence f
ng � �1.S/ for which, for i D 1; 2,

(i) 
n �pi 2 ıi , and

(ii) di .
n �pi ; pi /!1 as n!1.

Otherwise the quadrant is said to be light. Following [Guirardel 2005], the core C.T1; T2/ of T1 �T2 is

T1 �T2 n
G
Q light

Q:

When T1 and T2 are dual to measured laminations, the core C.T1; T2/ is always nonempty since the
�1.S/–actions are irreducible [Guirardel 2005, Proposition 3.1].
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However, even when T1 and T2 are dual to measured foliations, one pathology may still occur: C.T1; T2/
may be disconnected. This happens, for instance, when T1 D T2 and T1 is dual to a multicurve. However,
in such cases, Guirardel introduced a canonical way of extending the core to a connected subset of T1�T2
with convex fibers. (Here, a subset E � T1�T2 has convex fibers if for every x 2 Ti the set E \p�1i .x/

is convex, where pi W T1�T2! Ti denotes the canonical projection.) With abuse of terminology, we will
still refer to this canonical extension as the core of T1�T2. The following result completely characterizes
when this extension needs to be considered.

Definition 3.1 Given two real trees T and T 0 endowed with an action of �1.S/, we say that T is a
refinement of T 0 if there is an equivariant map f W T ! T 0 such that for all x; y; z 2 T if z lies in the
geodesic Œx; y� connecting x and y, then f .z/ belongs to Œf .x/; f .y/�.

Proposition 3.2 [Guirardel 2005, Proposition 4.14] Let T1 and T2 be trees dual to measured laminations.
Then the core C.T1; T2/ is disconnected if and only if T1 and T2 are refinements of a common nontrivial
simplicial tree T.

For example the assumptions of Proposition 3.2 are satisfied if T1 and T2 are dual to measured laminations
�1 and �2 with common isolated leaves.

When T1 and T2 are both dual to measured laminations �1 and �2, we can actually realize the core
C.T1; T2/ more concretely. Before describing this construction, we need the following result, which can
be seen as a special case of the decomposition theorem for general geodesic currents in [Burger et al.
2017] (see also [Burger et al. 2021a]) about how two measured laminations interact on subsurfaces. Here,
when we refer to measured laminations on open surfaces S 0, usually arising as subsurfaces of S, we will
always assume them to be compactly supported in S 0.

Lemma 3.3 Let �1 and �2 be measured laminations on S. Then there is a system of nontrivial , pairwise
nonhomotopic , disjoint , simple closed curves 
1; : : : ; 
n such that on each connected component S 0 of
S n

S
j 
j either

(i) �1C�2 is a (possibly zero) measured lamination on S 0, or

(ii) �1 and �2 are transverse and fill S 0; ie for all measured laminations � on S 0 we have

i.�1; �/C i.�2; �/¤ 0:

Proof Consider a maximal collection of nontrivial, pairwise nonhomotopic, disjoint, simple closed
curves 
j such that

i.�1; 
j /C i.�2; 
j /D 0:

We claim that this collection of curves satisfies the requirement of the lemma. Indeed, let S 0 be a connected
component of S n

S
j 
j . We need to show that if the pair .�1; �2/ does not fill the subsurface S 0, then
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�1C �2 is a lamination on S 0, or, equivalently, �1 and �2 are nowhere transverse on S 0. The claim is
clearly true if the support of either �1 or �2 does not intersect S 0, so we can assume that both have
support on S 0. Because the pair .�1; �2/ does not fill S 0 by assumption, there is a measured lamination �
on S 0 such that i.�1; �/C i.�2; �/D 0. On the other hand, by hypothesis, i.�1; 
/C i.�2; 
/¤ 0 for
all nonperipheral simple closed curves 
 on S 0. Therefore, the measured lamination � does not contain
isolated closed leaves. Let us first consider the case in which � fills the subsurface S 0, in the sense that
the complement of � (in S 0) only consists of disks and annuli. We note that then necessarily the support
of � must contain the support of �1 and �2 because otherwise �1 and �2 would intersect � transversely
somewhere. But this implies that �1 and �2 are nowhere transverse, being both contained in the support
of a measured lamination. We now reduce the general case to this, by showing that � must fill S 0. Assume
the opposite, and let S 00 � S 0 be a subsurface filled by �. Note that at least one between �1 and �2
intersects the boundaries of S 00 transversely. Without loss of generality we assume it is �1. Since �
fills S 00, the support of �1 intersects � transversely, but this contradicts the fact that i.�; �1/D 0.

The last ingredient we need is an explicit realization of a tree T� dual to a measured lamination �. The
construction goes as follows (see [Morgan and Otal 1993] for more details). Fix an auxiliary hyperbolic
metric on S and identify zS with H2. Let Q� be the lift of � under the covering map � WH2! S. We define
the metric space pre.T�/, where points of pre.T�/ are the connected components of H2n Q� and the distance
is computed as follows: if x; y 2 pre.T�/ correspond to connected components Cx; Cy of H2 n Q� then

d�.x; y/D inf
nZ


d Q�

ˇ̌

 W Œ0; 1�!H2; 
.0/ 2 Cx; 
.1/ 2 Cy

o
:

The tree T� is then the unique R–tree that contains pre.T�/ such that any point of T� lies in a segment
with vertices in pre.T�/. Note that we have a natural projection map p� W H2 n Q�! T�. If � has no
isolated leaves, this map extends continuously to a map, still denoted by p�, defined on the entire H2.
Otherwise, the continuous extension is obtained by first replacing each isolated leaf ` in Q� with a strip
`� Œ��; �� endowed with a uniform measure with total mass equal to Q�j` .

There is also another way of realizing the tree dual to a measured lamination using the language of
measured foliations. Let F denote the measured foliation corresponding to the measured lamination �
under the homeomorphism between MF.S/ and ML.S/. Let zF be its lift to H2. Then the tree T� can be
defined as the quotient H2=�, where � denotes the equivalence relation

x � y () dF.x; y/D 0

and
dF.x; y/D inffi. zF; 
/ j 
 W Œ0; 1�!H2; 
.0/D x; 
.1/D yg:

More concretely, T� identifies with the leaf space of zF with distance given by integrating the measure
of zF along arcs transverse to the leaves. We denote by �� the natural projection �� WH2! T�.

We are now ready to describe the core of a product of two trees T1 and T2 dual to measured laminations �1
and �2 on S. Lemma 3.3 furnishes a decomposition of S into subsurfaces that we lift to a decomposition
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of H2. The regions of this decomposition come in two flavors according to whether they project to
subsurfaces where �1C�2 is a lamination or to subsurfaces where the pair .�1; �2/ fills. Following the
statement of Lemma 3.3, we call these regions of type i and type ii, respectively. On the regions��H2 of
type i , the union of the lifts Q�1 and Q�2 can be regarded as the lift of the measured lamination �0D�1C�2.
We denote by T0 the tree dual to �0. Note that, for each region � � H2 of type i , we have a map
p0 WD p�0 , as defined before, and two natural collapsing maps cj W T0! Tj for j D 1; 2. On the regions
of type ii, we replace the measured laminations Q�i with the corresponding measured foliations zFi and
consider the projections �i WD ��i as described previously. Following [Guirardel 2005, Example 4; 2005,
Proposition 6.1], the core C.T1; T2/ is the image of the map F W zS ! T1 �T2 defined as follows:

(1) F.x/D

�
.�1 ��2/.x/ if x belongs to a region of type ii,
.c1 � c2/.p0.x// if x belongs to a region of type i .

Note that F is well-defined and continuous on the boundary Q
 between two different regions of zS because
Q
 is the lift of a curve 
j given by Lemma 3.3 which, by definition, has vanishing intersection number
with �0, F1, and F2; hence .�1 ��2/. Q
/ and .c1 � c2/.p0. Q
// is a single point.

It follows from this explicit description of C.T1; T2/ that the core is, in general, a 2–dimensional subcom-
plex of T1 �T2 that is invariant under the diagonal action of �1.S/. Moreover, the 2–dimensional pieces
of C.T1; T2/ are exactly the images of regions of type ii and are foliated by two families of transverse
foliations. Their quotients under the group action are the union of the subsurfaces of S in which �1 and �2
fill, endowed with the foliations F1 and F2 [Guirardel 2005, Example 4]. In particular, the 2–dimensional
pieces of C.T1; T2/ are the universal covers of half-translation surfaces. On the other hand, the images
under F of regions � of type i are 1–dimensional subcomplexes of T1 �T2. Each such � can be seen
as the universal cover of a subsurface S 0 of S where the restriction of �1C�2 is a measured lamination.
Let T 01 � T1 and T 02 � T2 be the corresponding subtrees. It turns out [Guirardel 2005, Section 6] that
F.�/ is an R–tree that is a common refinement of T 01 and T 02 if endowed with the distance

d0.x; y/D d1.x1; y1/C d2.x2; y2/; x D .x1; x2/; y D .y1; y2/ 2 T
0
1 �T

0
2;

where dj denotes the distance on Tj .

Lemma 3.4 The R–tree .F.�/; d0/ is isometric to the tree dual to the measured lamination �0D�1C�2
restricted to S 0.

Proof The tree F.�/ inherits from T 01 � T
0
2 an isometric action of �1.S 0/. We can define a length

function
` W �1.S

0/!RC; 
 7! lim
n!C1

1

n
d0.x; 


n
� x/;

where x is any point in F.�/ (the definition is independent of the choice of x). The limit in the
formula above is well-defined and coincides, indeed, with the minimal translation distance of 
 2 �1.S 0/
[Guirardel and Levitt 2017, Section A.3]. Since the action of �1.S 0/ on F.�/ is minimal and irreducible,
by [Guirardel and Levitt 2017, Theorem A.5], the isometry class of .F.�/; d0/ is completely determined
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by its length function. However, it is clear from the definition of ` and d0 that `D `0 WD `1C `2, where

j̀ denotes the analogously defined length functions on T 01 and T 02. On the other hand, `0 is exactly the
length function of the tree dual to the measured lamination �0, and the claim follows.

The ambient space T1 �T2 has, however, another natural distance defined by

d.x; y/D
p
d1.x1; y1/

2
C d2.x2; y2/

2; x D .x1; x2/; y D .y1; y2/ 2 T1 �T2:

This induces a path metric dC on the core C of T1 �T2, where the dC–distance between two points in the
core is the infimum of the length of all paths connecting the points and entirely contained in the core, where
the length is computed using the distance d . Guirardel [2005, Proposition 4.9] showed that the core is a
CAT(0) space if endowed with this path distance dC. In particular, since F.�/ does not contain topological
circles by Lemma 3.4, we can conclude that F.�/ endowed with the restriction of dC is still an R–tree.

We will denote by Core.T;T / the space of cores of the product of two trees dual to measured laminations
on S endowed with this path distance.

Proposition 3.5 Core.T;T / is homeomorphic to ML.S/�ML.S/.

Proof Since the core of a product of trees is uniquely determined by the two factors, the result fol-
lows immediately from the homeomorphism between the space of trees dual to measured laminations
and ML.S/.

We note that there is a natural RC–action on Core.T;T / given by rescaling the induced metric on the core,
which, under the homeomorphism above, corresponds to the diagonal action of RC by scalar multiplication
on the measures. We denote by P Core.T;T / the quotient Core.T;T /=RC. It follows that P Core.T;T / is
homeomorphic to P .ML.S/�ML.S//. In particular, it is topologically a sphere of dimension 12g�13.

4 Thurston’s compactification

Recall that we denote by Max.S/ the space of conjugacy classes of representations �D .�1; �2/ of the
fundamental group of a closed connected oriented surface S of negative Euler characteristic into the Lie
group PSL.2;R/� PSL.2;R/ such that e.�1/C e.�2/D 4g� 4. Here, e denotes the Euler number of
the representation. It follows from [Goldman 1988] that �1 and �2 are both Fuchsian representations.
Therefore, as Max.S/ may be thought of as the product of two copies of Teichmüller space, it is
homeomorphic to an open cell of dimension 12g�12.

The main goal of this section is to prove Theorem A from the Introduction, which we restate below for
the convenience of the reader.

Theorem 4.1 The disjoint union
BDMax.S/tP Core.T;T /

is homeomorphic to a closed ball of dimension 12g�12.
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We begin by recalling the topology placed on B. The maximal component Max.S/ is naturally home-
omorphic to the product of two copies of Teichmüller space. This in turn, by the result of Schoen, is
homeomorphic to the space of equivariant minimal Lagrangians in H2�H2. Under the Gromov–Hausdorff
topology, diverging sequences of minimal Lagrangians subconverge to the (projective) core of a product
of two trees [Ouyang 2023, Theorem 8.1]. The two trees are dual to a pair of measured laminations,
and the topology on B is compatible with the Thurston compactification on Teich.S/� Teich.S/ in the
following way: if .�1;n; �2;n/! Œ�1; �2�, then the associated minimal Lagrangians converge to the core
of T1 �T2, where Ti is dual to �i .

Fix a complex structure J on S and denote by X the Riemann surface .S; J /. Then for any hyperbolic
metric h 2 Teich.S/ there is a unique harmonic map wh W X ! .S; h/ in the homotopy class of the
identity [Eells and Sampson 1964; Hartman 1967]. Harmonicity of wh ensures that the Hopf differential
qh D .w

�
h
h/.2;0/ is a holomorphic quadratic differential on X. The vector space QD.X/ of holomorphic

quadratic differentials on X has a natural norm given by the L2–norm with respect to the uniformizing
hyperbolic metric � of X. With an abuse of notation, we will still denote by X the hyperbolic surface
.S; �/. The map which assigns to a point in Teichmüller space its corresponding Hopf differential is a
homeomorphism [Wolf 1989].

Proof of Theorem 4.1 By Theorem 6.13 of [Ouyang 2023], the space Max.S/ t P Core.T;T / is
naturally homeomorphic to Teich.S/�Teich.S/tP .MF.S/�MF.S//, so it suffices to prove the latter
is homeomorphic to a closed ball of dimension 12g�12.

As P .MF.S/�MF.S// is homeomorphic to a sphere of dimension 12g�13, the remainder of the proof
consists of describing how to attach this topological space to the open cell Teich.S/�Teich.S/ to obtain
a closed ball.

We start by fixing a complex structure J on S. Let X D .S; J / be the resulting Riemann surface. By the
Wolf parametrization [1989]

Teich.S/�Teich.S/Š QD.X/˚QD.X/

via the map ˆ.�1; �2/D .q�1 ; q�2/. We equip QD.X/˚QD.X/ with the norm

kqk Dmax.kq1k; kq2k/;

and consider
BPQD.X/D fq D .q1; q2/ W kqk< 1g;

which is, topologically, a ball of dimension 12g�12. We will need the following lemma.

Lemma 4.2 The map

ˇ W QD.X/˚QD.X/! BPQD.X/; q D .q1; q2/ 7!
4q

1C 4kqk
;

is continuous , injective , and proper. Hence ˇ is a homeomorphism.
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Proof Suppose ˇ.q1; q2/ D ˇ.�1; �2/. It follows then that q1 D k�1 and q2 D k�2 for some k 2 R.
Writing out ˇ.q1; q2/D ˇ.q1=k; q2=k/, basic algebra shows k D 1. Continuity and properness follow
by inspection.

We will now describe the attaching map. Consider the map

 W Teich.S/�Teich.S/tP .MF.S/�MF.S//! BPQD.X/
defined by

 .x/D

�
ˇ.ˆ.x// if x 2 Teich.S/�Teich.S/;
limn!C1 ˇ.ˆ.xn// if x 2 P .MF.S/�MF.S// and xn! x:

We show first that the map  is well-defined. Suppose xnD .X1;n; X2;n/!x and x0nD .X
0
1;n; X

0
2;n/!x,

where x D Œ�1; �2� 2 P .MF.S/�MF.S//. That is to say, there exist sequences of real numbers cn; dn
for which the rescaled hyperbolic surfaces zXi;n=cn and zX 0i;n=dn converge to R–trees Ti ; T 0i dual to
laminations �i and �0i such that Œ.�1; �2/�D Œ.�01; �

0
2/�. By [Wolf 1989], the sequences cn and dn can be

taken to be kˆ.xn/k and kˆ.x0n/k. Note that, a priori, �0i D k�i for some k > 0. With such rescaling, the
harmonic maps hi;n W zX ! zXi;n=cn converge to the harmonic map hi W zX ! Ti given by projection onto
the leaf space of the measured foliation zFi corresponding to Q�i [Wolf 1995, Corollary 5.2]. Moreover
the sequence of Hopf differentials qi;n of hi;n converges to the Hopf differential qi of hi (here take the
quotient so that qi is a holomorphic quadratic differential on X and not zX ). Finally, the differential qi is
the unique holomorphic quadratic differential on X whose horizontal foliation is Whitehead equivalent
to Fi . Likewise the sequence of harmonic maps h0i;n W zX ! zX 0i;n=dn converges to the harmonic map
h0 W zX! T 0i , whose Hopf differential q0i is the limit of the Hopf differentials q0i;n of h0i;n and has horizontal
foliation F 0i corresponding to the lamination �0i . Notice, in addition, that .q1;n; q2;n/Dˆ.xn/=kˆ.xn/k
and similarly .q01;n; q

0
2;n/ D ˆ.x

0
n/=kˆ.x

0
n/k. It follows that the limits of ˇ.ˆ.xn// and ˇ.ˆ.x0n// as

n!C1 exist and coincide with .q1; q2/ and .q01; q
0
2/. As the distance functions di and d 0i on Ti and T 0i

satisfy di D k � d 0i , by homogeneity of the Hopf differential, one has qi D k � q0i . Since the pairs .q1; q2/
and .q01; q

0
2/ both have unit norm, we conclude that k D 1 and the limits of ˇ.ˆ.xn// and ˇ.ˆ.x0n// as

n!C1 are equal.

Continuity follows almost immediately: the map ˇ ıˆ is continuous on the interior and extends con-
tinuously to the boundary by a diagonal argument. Indeed, we can approximate a sequence along the
boundary by sequences in the interior.

Bijectivity of  on the interior also follows by [Wolf 1989] and Lemma 4.2. On the boundary, given
q D .q1; q2/ with kqk D 1, if Xi;t is the hyperbolic surface corresponding to the rays tqi in Wolf’s
parameterization of Teich.S/, we have that ˇ.ˆ.X1;t ; X2;t //! q as t !1; thus  is surjective on
the boundary. Since the limit of ˇ.ˆ.xn// along diverging sequences in xn 2 Teich.S/�Teich.S/ only
depends on the projective class of the limit of xn and not on the particular sequence, we deduce that  is
injective on the boundary, because every point in P .ML.S/�ML.S// can be obtained as a limit along
a ray defined above and the limit of ˇ ıˆ along distinct rays is different.
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It remains to prove  �1 is continuous. We can actually write the inverse explicitly:

 �1.q1; q2/D

�
ˆ�1.ˇ�1.q1; q2// if k.q1; q2/k< 1;
Œ�1; �2� if k.q1; q2/k D 1,

where �i is the measured lamination corresponding to the horizontal foliation of qi . Continuity of  �1

on BPQD.X/ is then a consequence of Lemma 4.2 and Wolf’s parameterization. Continuity on the
boundary follows from the Hubbard–Masur theorem [1979]. In general, if qn D .q1;n; q2;n/ 2 BPQD.X/
converges to .q1; q2/ 2 @BPQD.X/, then there is a sequence of scaling factors cn such that the pair of
hyperbolic surfaces xn D  �1.q1;n; q2;n/ rescaled by cn converges to real trees T1; T2 dual to measured
laminations �1; �2. We need to show that  �1.q1; q2/ is equal to Œ�1; �2�. Assume not; then we would
have, by injectivity and continuity of  ,

.q1; q2/D  . 
�1.q1; q2//¤  .Œ�1; �2�/D lim

n!C1
 .xn/D lim

n!C1
.q1;n; q2;n/;

which contradicts the assumption on .q1;n; q2;n/.

Finally, we remark the compactification in [Ouyang 2023] is independent of the choice of a base point, so
that the role of the base point .S; J / is merely an auxiliary one. This completes the proof of the theorem.

5 Fixed point for the mapping class group action

In this section, we study the action of the mapping class group MCG.S/ on the compactification BD

Max.S/ constructed in Theorem 4.1. We wish to study the fixed points of this action. We will need the
following observations.

Lemma 5.1 The action of the mapping class group on Max.S/ extends continuously to the closure
BDMax.S/.

Corollary 5.2 For every � 2MCG.S/, there exists x 2B such that �.x/D x.

The first main goal of this section is to analyze these fixed points via the celebrated Nielsen–Thurston
classification, which we recall for future reference.

Theorem 5.3 (Nielsen–Thurston classification; see [Farb and Margalit 2012, Chapter 13]) Any diffeo-
morphism � on S is isotopic to a map �0 satisfying one of the following mutually exclusive conditions:

(1) Periodic �0 is of finite order.

(2) Reducible �0 is not periodic , and there is a nonempty set fc1; : : : ; crg of isotopy classes of
essential pairwise disjoint simple closed curves in S such that f�0.ci /griD1 D fcig

r
iD1.

(3) Pseudo-Anosov/pA There exist � > 1 and two transverse measured foliations F and F 0 such that

�0.F/D �F and �0.F 0/D
1

�
F 0:
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Remark 5.4 Note that our definition of reducible mapping class is nonstandard as we assume that if � is
reducible, then it is not periodic. We do so to improve our exposition. The set fc1; : : : ; crg in item (2) is
a reduction system of �. The canonical reduction system f Nc1; : : : ; Nckg of � reducible is the intersection of
all the maximal (with respect to inclusion) reduction systems. Equivalently, each Ncj is part of a reduction
system and if i. Ncj ; c/¤ 0 and n¤ 0, then �n.c/¤ c.

Remark 5.5 The Nielsen–Thurston classification theorem also applies to surfaces S 0 with boundary
[Fathi et al. 2012, Theorem 11.6]. In this case a diffeomorphism of S 0 is considered up to isotopies that
do not necessarily fix pointwise the boundary components. We can thus still talk about pseudo-Anosov
diffeomorphisms of S 0, which are exactly the mapping classes that are neither reducible nor periodic and
preserve two transverse measured foliations on S 0.

We are ready to characterize the fixed points of a mapping class acting on B and establish Proposition 1.1
from the Introduction.

Proposition 5.6 Suppose � 2MCG.S/ and �.x/D x for some x D .x1; x2/ 2B.

(1) If � is periodic , then x1 and x2 are any two points fixed by � in the Thurston compactification of
Teichmüller space such that .x1; x2/ 2B.

(2) If � is pA , then .x1; x2/ 2 @B and x1 D 0, or x2 D 0 or x1 D x2.

Proof (1) If � fixes x projectively, there exists ˛ > 0 such that �.x1; x2/ D .˛x1; ˛x2/. Since � is
periodic, we can check that ˛ D 1.

(2) Since � fixes the projective class of .x1; x2/, there exists ˛ > 0 such that �.x1; x2/D .˛x1; ˛x2/.
On the other hand, since � is pseudo-Anosov, there exist two measured laminations y1 and y2 and � > 1
such that �.y1/D �y1 and �.y2/D .1=�/y2. Since � does not fix any other projective class of measured
laminations [Fathi et al. 2012, Corollary 12.4], it follows that xi D 0, y1 or y2 for i D 1; 2. We claim
that x ¤ .y1; y2/ (and, symmetrically, x ¤ .y2; y1/). Otherwise, because i.y1; y2/¤ 0,

� � i.y1; y2/D i.�.y1/; y2/D ˛ � i.y1; y2/D i.y1; �.y2//D
1

�
� i.y1; y2/;

which is a contradiction.

There is a natural continuous projection map � W B ! Ind.S/ defined as follows. For x 2 Max.S/,
consider the corresponding equivariant minimal Lagrangian z†x . Then, �.x/ is the induced metric on z†x .
Otherwise, if x 2 @B, consider the core of the tree corresponding to x 2 P .ML.S/�ML.S//: its length
spectrum coincides with that of a mixed structure � on S. Set �.x/D �. This projection � is continuous
then by [Ouyang 2023, Theorem 6.13]. We consider the corresponding action of MCG.S/ on Ind.S/
given by push-forward.

Lemma 5.7 The actions of MCG.S/ on B and Ind.S/ commute. In other words , for every � 2MCG.S/

� ı� D � ı�:
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Proof If x D .x1; x2/ is in the interior of B, then �.�.x//D �.�.x// because �.�.x// has the same
length spectrum as the induced metric on the minimal Lagrangian associated to �.x1/ and �.x2/. Suppose
x 2 @B and consider a sequence .xn/n2N �Max.S/ such that xn! x. Since, �.�.xn//D �.�.xn//
for all n 2N, the result follows by continuity of � and � .

We are now ready to establish the main theorems of this section. In particular, Theorem 5.8 below is
Theorem B from the Introduction.

Theorem 5.8 Assume � 2MCG.S/ fixes � 2 @Ind.S/.

(1) If � is purely flat , then � is periodic.

(2) If � is properly mixed , then � is not pA.

Proof For item (1), if � fixes projectively a geodesic current coming from a flat metric, then � rescales
the flat metric by some positive constant. Therefore, it is an automorphism of the underlying conformal
structure, and hence is of finite order by the Hurwitz automorphism theorem.

We establish item (2). Suppose � is properly mixed, ie � is not flat but it has at least one flat piece. We
can decompose S as

.fS˛g˛2A; fdˇ gˇ2B; f�˛g˛2A/;

where �˛ is a flat structure or a (possibly zero) laminar structure on S˛ and dˇ is a maximal collection
of closed geodesics so that

i.dˇ ; dˇ 0/D 0 and i.dˇ ; �/D 0

for all ˇ; ˇ0 2B and for every c that intersects some dˇ transversely, i.c; �/ > 0. Note that there exists a
unique set fdˇ gˇ2B with these properties (see [Burger et al. 2017, Theorem 1.1]).

Claim 5.9 The map � fixes the set fdˇ gˇ2B.

Proof Observe that

i.�.dˇ /; �.dˇ 0//D i.dˇ ; dˇ 0/D 0 and i.�; �.dˇ //D i.�
�1.�/; dˇ /D 0:

If c is a curve that intersects �.dˇ / transversely, then

i.��1.c/; dˇ /D i.c; �.dˇ // > 0 and i.c; �/D i.��1.c/; ��1.�// > 0:

Thus, by uniqueness, f�.dˇ /gˇ2B D fdˇ gˇ2B.

Item (2) now follows immediately from the claim above as � must fix the set of closed curves fdˇ gˇ2B,
but pseudo-Anosov diffeomorphisms do not preserve any closed curve.

Remark 5.10 For an explicit example of� purely flat and � periodic such that �.�/D�, consider a singu-
lar flat metric on a surface of genus 2 obtained by doubling a singular flat metric on a torus with boundary.
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Remark 5.11 Theorem 5.8(1) holds more generally, and with the same proof, in the case in which S has
punctures and � gives a conformal class of metrics with a finite group of conformal automorphisms. In par-
ticular, conformal structures on a surface (with or without punctures) with negative Euler characteristic will
have finite conformal automorphism group; see [Oikawa 1956]. From this, we deduce that if � 2MCG.S/
fixes a purely flat structure � on a surface S (possibly with punctures), then � is necessarily periodic.

Theorem 5.12 Suppose � 2MCG.S/ is reducible and fixes � 2 @Ind.S/, which is properly mixed. Let
S D .S˛; fdˇ gˇ2B; �˛/ be the subdivision of S induced by �.

(1) If , for some N > 0, we have  ˛ D .�N /jS˛ W S˛! S˛ is pA , then �˛ D 0.

(2) If �˛ ¤ 0 for all ˛ 2A, then the canonical reduction system of � is contained in fdˇ gˇ2B.

Proof By the hypotheses, we can decompose S as .fS˛g˛2A; fdˇ gˇ2B; f�˛g˛2A/. By Claim 5.9, there
exists N > 0 such that �N fixes dˇ for all ˇ 2B and �N .S˛/D S˛. Set  ˛ D .�N /jS˛ W S˛! S˛.

In order to prove item (1), we need to consider three cases.

(a) If �˛ D 0, then  ˛ can be any element in MCG.S˛/.

(b) If .S˛; �˛/ is purely flat (there exists at least one ˛ for which this happens), then  ˛ can only be
periodic by Theorem 5.8 and Remark 5.11, as incompressibility of the subsurfaces rules out the case of
the once-punctured sphere and annuli.

(c) Suppose .S˛; �˛/ is purely laminar and nonzero. Since � has a flat piece �ˇ , we know that  ˇ is
periodic and hence it fixes �ˇ (not just projectively). We deduce that �N .�/D �; otherwise we could
find z ¤ 1 such that  ˛.�˛/D z�˛, but then �N would not fix � projectively. We can now conclude
that  ˛ cannot be pA. This is because if c is a curve such that i.�˛; c/ > 0, then

i.�˛; c/D i. 
�1
˛ .�˛/; c/D i.�˛;  ˛.c//;

but i.�˛;  ˛.c//¤ i.�˛; c/ because  ˛ would change the length of curves transverse to �˛.

This completes the proof of item (1).

For item (2), we wish to prove that the canonical reduction system f Nc1; : : : ; Nckg of � is a subset of
fdˇ gˇ2B under the additional assumption that �˛ ¤ 0 for all ˛ 2 A. First, observe that by Claim 5.9
fdˇ gˇ2B is contained in a maximal reduction system for �. In particular i. Ncj ; dˇ /D 0 for all j and ˇ.
Moreover, since � is properly mixed, there exists ˇ such that �ˇ is flat; hence  fixes �, not just its
projective class, as observed before.

Assume, by contradiction, Ncj 62 fdˇ gˇ2B. Suppose Ncj is contained in a purely flat piece .S˛; �˛/. Then,
by Theorem 5.8 and Remark 5.11,  ˛ is necessarily periodic. But this contradicts the property that if
i. Ncj ; c/¤ 0 and n¤ 0, then �n.c/¤ c since there exists m such that  m˛ is the identity. Therefore Ncj is
contained in a purely laminar piece �˛.
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By the definition of fdˇ gˇ2B,  ˛ fixes a measured lamination F which is filling in S˛. Hence, by the
Nielsen–Thurston classification theorem,  ˛ is necessarily pseudo-Anosov or periodic. If  ˛ is pA,
then this contradicts item (1). Assume that  ˛ is periodic, so that there exists m > 0 such that  m˛ is
the identity. Then, we achieve again a contradiction because there would exist c such that i. Ncj ; c/¤ 0
but �m.c/D c. Therefore, Ncj cannot be contained in a purely laminar part either. By the definition of
fdˇ gˇ2B, this forces the curve Ncj to be one of the dˇ ’s.

6 aC–valued measured laminations and mixed structures

In this final section we introduce Weyl-chamber-valued measured laminations and use them to refine
the notion of mixed structures on a closed surface defined in [Duchin et al. 2010], and generalized to
higher-order differentials in [Ouyang and Tamburelli 2021; 2023]. We show that the core of the product of
two trees dual to measured laminations is dual to such a mixed structure, thus giving a new interpretation
of the boundary objects in our compactification of Max.S/.

Let g be a real semisimple Lie algebra. The choice of a maximal compact subalgebra k induces an
orthogonal decomposition of g for the Killing form:

gD k˚m:

A Cartan subalgebra a� g is a maximal abelian subspace of m. This induces a decomposition of g in
ad.a/–eigenspaces

gD g0˚
M
˛2†

g˛:

Elements of †� a� D Hom.a;R/ are called restricted roots of a in g. Here we can extract a subset � of
simple roots with the property that any ˛ 2† can be expressed as a linear combination of simple roots
with coefficients all of the same sign. This distinguishes, thus, a subset of positive roots that we denote
by †C �†. The closed positive Weyl chamber of a associated to †C is then the cone

aC D fX 2 a j ˛.X/� 0 for all ˛ 2†Cg:

We also denote by W the Weyl group of g, ie W DN.a/=a, and by r the opposition involution. Moreover,
recall that a has a partial order: if x, y 2 a, then x � y if x�y 2 aC. The following definition is due to
[Parreau 2012, Section 2.2.3]:

Definition 6.1 A function daC W Y �Y ! aC on a topological space Y is an aC–valued distance if

(i) daC.x; y/D 0 if and only if x D y,

(ii) daC.x; y/D r.daC.y; x// for all x; y 2 Y ,

(iii) daC.x; y/� daC.x; z/C daC.y; z/ for all x; y; z 2 Y.
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We introduce the notion of Weyl-chamber-valued measured lamination.

Definition 6.2 An aC–valued measured lamination on a (not necessarily closed) surface S is a geodesic
lamination � on S that supports a measure � on transverse arcs that takes values in aC and satisfies the
following properties:

(a) �.
/¤ 0 if 
 intersects � transversely.

(b) If 
 and 
 0 are homotopic arcs transverse to � and there is a homotopy between them that preserves
transversality at every time, then �.
/D �.
 0/.

(c) � is additive on concatenation of paths, ie �.

 0/D �.
/C�.
 0/ for all 
 and 
 0 transverse to �
such that concatenation is defined.

Remark 6.3 If gD sl.2;R/, then we can identify the closed positive Weyl chamber with R�0. Thus,
in this case, Definition 6.2 recovers the standard notion of measured laminations. Similarly, if g D

sl.2;R/˚ sl.2;R/, then aC–valued laminations can be identified with ordered pairs .�1; �2/ such that
�1, �2 and �1C�2 are measured laminations (ie �1 and �2 are nowhere transverse).

We can also extend the classical notion of trees dual to a measured lamination to this context.

Definition 6.4 Let .T; d/ be an R–tree acted upon by the fundamental group of S. We say that the action
of �1.S/ is dual to an aC–valued measured lamination � if there is an equivariant map p W zS! T and an
aC–valued distance daC W T �T ! aC such that:

(a) For all x; y 2 zS, we have daC.p.x/; p.y//D�.
/ for some (hence any) arc 
 W Œ0; 1�! zS transverse
to the support of � with 
.0/D x and 
.1/D y.

(b) Given a geodesic path 
 W Œ0; 1�! T, we have d.
.0/; 
.1//� kdaC.
.0/; 
.1//k. Here k �k denotes
the standard Euclidean norm of a vector in aC.

We now combine aC–valued measured laminations with the classical notion of 1=k–translation surfaces
in order to define a hybrid structure on S.

Definition 6.5 Let aC be a closed Weyl chamber and k � 1 an integer. An .aC; k/–mixed structure on a
closed surface S is the datum of

(a) a collection of nonhomotopically trivial, pairwise nonhomotopic, disjoint simple closed curves

1; : : : ; 
n on S ;

(b) for each connected component S 0 of S n
S
j 
j either

� an aC–valued measured lamination �, where we allow each 
j to be in the support; or
� a meromorphic k–differential of finite area that endows S 0 with a 1=k–translation surface structure.

These .aC; k/–mixed structures can be interpreted as dual to the .a; W /–complexes studied by Anne
Parreau [2022] in the context of gD sl.3;R/. Let us recall briefly how these complexes are defined and
explain in which sense these notions can be considered dual to each other.
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Following [Parreau 2022], an .a; W /–complex K is the union of (possibly degenerate) polygons in a

glued together along boundary segments via elements of Waff D W Ì R. More precisely, there is a
family of affine simplices P� � a and injective maps �� W P� ! K such that if K� D ��.P�/ and
K�0 D ��0.P�0/ have nonempty intersection then there is w�;�0 2Waff such that ��.x/D ��0.x0/ if and
only if x0 D w�;�0.x/ and P� \w�1�;�0.P�0/ is a face in P�. We only consider connected and simply
connected .a; W /–complexes acted upon by �1.S/. Note that, since the gluing maps between simplices
are Euclidean isometries, the Euclidean distance on a induces a distance on K. We will only work with
.a; W /–complexes whose induced distance is CAT(0). Similarly, K is also endowed with an aC–valued
distance inherited from a.

Examples of .a; W /–complexes are subcomplexes of an Euclidean building modeled on Waff. We will
see that cores of products of two trees dual to measured laminations are indeed .a; W /–complexes, where
a is the Cartan subalgebra of sl.2;R/˚ sl.2;R/ and W D f˙Idg.

Definition 6.6 We say that an .a; W /–complex K acted upon by �1.S/ is dual to an .aC; k/–mixed
structure � on S if we can decompose K into a 1–dimensional part K1 and a 2–dimensional part K2
such that

� K1 is the union of R–trees dual to the laminar part of �,

� K2 is endowed with a 1=k–translation surface structure isomorphic to the universal cover of the
flat parts of �.

Note that the 2–dimensional part of an .a; W /–complex can be endowed with a 1=k–translation surface
structure only if W contains the subgroup generated by rotations of angle 2�=k.

We believe that these mixed structures naturally appear in a harmonic map compactification of the
Hitchin and maximal components of the character variety for real Lie groups G of rank 2. In this context,
Labourie [2017], Collier [2016] and Collier, Tholozan and Toulisse [Collier et al. 2019] proved that given a
Hitchin or maximal representation � W �1.S/!G there exists a unique �–equivariant minimal surface z†�
in G=K, where K is a maximal compact subgroup of G. One could then find a compactification of these
components by studying the limiting behavior of z†�n when �n leaves all compact sets in the character
variety. Up to subsequences, and after rescaling the metric onG=K appropriately, z†�n should converge to a
subcomplex z†1�B, where B is a nondiscrete Euclidean building modeled on the affine Weyl group ofG.
We conjecture that†1 is dual to a mixed structure as in Definition 6.6, where aC is a Cartan subalgebra of
the Lie algebra of G and k depends on the particular group. More precisely, we conjecture the following:

Conjecture 6.7 (a) Let G be a real split semisimple Lie group of rank 2. Then the boundary of
Hit.S;G/ can be identified with the space of projective classes of .aC; k/–mixed structures where:

� If G D SL.3;R/, then aD A2 and k D 3.

� If G D Sp.4;R/, then aD B2 and k D 4.

� If G DGR
2 , then aDG2 and k D 6.
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(b) LetG be a real semisimple Lie group of Hermitian type and rank 2. Then the boundary of Max.S;G/
can be identified with the space of projective classes of .aC; k/–mixed structures where:

� If G D SL.2;R/�SL.2;R/, then aD A1 �A1 and k D 2.

� If G D SO.2; n/ with n� 3, then aD B2 and k D 4.

In support of this conjecture, we show that the core of the product of two trees dual to measured
laminations is dual to an .AC1 �A

C
1 ; 2/–mixed structure and that we can identify Core.T;T / with the

space of such structures, thus proving the conjecture for G D SL.2;R/� SL.2;R/. Moreover, in [Loftin
et al. 2022], Loftin, Wolf, and the third author give further evidence towards Conjecture 6.7 by describing
the geometry of the harmonic maps to buildings arising from some diverging sequences of SL.3;R/–
Hitchin representations. It would be interesting to introduce a higher-rank version of our vector-valued
mixed structures, at least for the case of SL.d;R/–Hitchin components, and relate it to the subspaces of
the Euclidean building studied in [Le 2016; Martone 2019a].

Lemma 6.8 Let T1 and T2 be real trees dual to measured laminations �1 and �2 and let C be the core of
T1 �T2. Then C is an .A1�A1; f˙Idg/–complex dual to an .AC1 �A

C
1 ; 2/–mixed structure on S.

Proof We already saw in Section 3 that C is the union of a 1–dimensional subcomplex C1 and a
2–dimensional subcomplex C2 of T1 � T2. Moreover, we showed that each connected component of
C2 is the universal cover of a half-translation surface structure on a subsurface S 0 of S, on which the
laminations �1 and �2 fill. Thus, it only remains to show that each connected component C 01 of C1 is a
tree dual to an AC1 �A

C
1 –valued measured lamination.

Recall from Section 3 that C 01 is the image under the map F defined in (1) of a domain ��H2 that can
be identified with the universal cover of a subsurface S 0 of S on which �1 and �2 are nowhere transverse.
Moreover, we observe that C 01 has a natural distance d induced by the ambient space

d..x0; y0/; .x1; y1//D
p
d1.x0; y0/

2
C d2.x1; y1/

2

and a natural AC1 �A
C
1 –valued distance Ed defined by

Ed..x0; y0/; .x1; y1//D .d1.x0; y0/; d2.x1; y1//:

We claim that .C 01; d / is an R–tree dual to the AC1 �A
C
1 –valued measured lamination E�D .�1; �2/ (see

Remark 6.3). By Lemma 3.4, C 01 can be identified with the R–tree dual to the measured lamination
�0D �1C�2 if endowed with the distance d0 introduced in Section 3. In particular, there is a continuous
�1.S

0/–equivariant map p WD p�0 W�! C 01. It follows immediately from the definitions and the fact
that T1 and T2 are dual to the laminations �1 and �2 that for all x; y 2�0 we have

Ed.p.x/; p.y//D E�.
/

for all 
 W Œ0; 1�!� transverse to the support of �0 with 
.0/D x and 
.1/D y.
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Property (b) in Definition 6.4 also holds. Indeed, a geodesic path 
 D .
1; 
2/ W Œ0; 1�! C 01 � T1 �T2,
seen in the quadrant 
1�
2, consists of a concatenation of horizontal, vertical or diagonal paths in which
the projections onto the two factors are always nondecreasing. Hence,

d.
.0/; 
.1//� k Ed.
.0/; 
.1//k;

and the proof is complete.

Theorem 6.9 The space of .AC1 �A
C
1 ; 2/–mixed structures on S is homeomorphic to Core.T;T /.

Proof Let Y denote the set of .AC1 �A
C
1 ; 2/–mixed structures on S. We still need to define a topology

on Y. We will construct a bijection
' W Y !ML.S/�ML.S/

with the property that for all y 2 Y the core of the product of trees corresponding to '.y/ is dual to the
.AC1 �A

C
1 ; 2/–mixed structure y. We then give Y the topology that makes ' a homeomorphism, thus

proving the result.

Given y 2 Y, let 
1; : : : ; 
n be the simple closed curves subdividing S into its laminar and flat parts, as in
Definition 6.5. Let Si for i D 1; : : : ; m denote the connected components of S n

S
j 
j . If Si is endowed

with a half-translation surface structure induced by a meromorphic quadratic differential qi of finite area,
then the horizontal and vertical foliations of qi determine a pair of measured laminations .�i1; �

i
2/. Here we

are implicitly using the well-known homeomorphism between the space of measured foliations arising this
way and the space of measured laminations; see for instance [Levitt 1983; Lindenstrauss and Mirzakhani
2008]. On the other hand, by Remark 6.3, if Si carries an aC–valued measured lamination, then this is
equivalent to a pair of measured laminations .�i1; �

i
2/ possibly containing some boundary curves 
j in their

support. We can then associate to y 2 Y the pair of measured laminations .�1; �2/ 2ML.S/�ML.S/

defined as �j D
Pm
i �

i
j for j D 1; 2. Since the horizontal and vertical measured foliations uniquely

determine a meromorphic quadratic differential of finite area [Gardiner and Masur 1991], using Remark 6.3
and Lemma 3.3, it is clear that ' is a bijection.

Moreover, comparing the definition of the map ' with Lemma 6.8, it is easy to verify that the core of the
product of trees dual to the pair '.y/ is dual to the .AC1 �A

C
1 ; 2/–mixed structure y we started with.
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