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We produce a direct Quillen equivalence between two models of .1; 2/–categories: the complete Segal
‚2–spaces due to Rezk and the 2–complicial sets due to Verity.
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Introduction

The language of higher categories provides a way to describe many phenomena in areas of mathematics
as diverse as topology, algebra, geometry, and mathematical physics. In a higher categorical structure,
we not only have functions between objects, but functions between those functions and possibly further
iterations of this idea, encoded by the notion of a k–morphism between .k�1/–morphisms. One might
initially assume that these higher morphisms should satisfy conditions like associativity in the usual
way, but for many natural examples they only hold up to isomorphism or, in topological settings, up to
homotopy. In the latter situation, it is convenient to work in the setting of .1; n/–categories, in which
we have k–morphisms for arbitrarily large k, but they are all weakly invertible for k > n. These higher
invertible morphisms provide a means for conveniently encoding the “up to isomorphism” data in the
lower morphisms.

There have been many different approaches to realizing .1; n/–categories as concrete mathematical
objects; such realizations are often called models for .1; n/–categories. A natural question, then, is
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whether these different models really do encode the same information, namely, whether we can establish
an appropriate equivalence between them. Much work has been done in this direction, but there are still
proposed models for which we do not have such comparisons. In some other cases, we know by general
results that models must be equivalent, but do not have an explicit equivalence.

The motivation for this paper is the desire for an explicit comparison between two of these models, the
complete Segal ‚n–spaces as defined by [Rezk 2010] and the n–complicial sets as defined by [Verity
2008b] (see also [Ozornova and Rovelli 2020; Riehl 2018]); we give such a comparison when nD 2, for
which more tools are available. Let us give a brief description of these two models.

A complete Segal ‚2–space is described by a diagram of spaces indexed by 2–categories freely generated
by pasting diagrams such as

� � � �

which the expert reader may recognize as the generic element of Joyal’s cell category ‚2. In contrast, a
2–complicial set is given by a simplicial set with a suitable marking in which a k–simplex represents a
diagram indexed by a truncated oriental, which is a free 2–category generated by a standard simplex,
such as

� � � �

D

� � � �

A common way to show that two models are equivalent is to show that appropriate model categories for
each are Quillen equivalent to each other. In this paper, we seek to establish such a Quillen equivalence
between the model structure sSet‚

op
2

p;.1;2/
for complete Segal‚2–spaces and the model structure msSet.1;2/

for 2–complicial sets.

Combining several prior results by different groups of authors, we already know that the two model
categories are Quillen equivalent via a rather lengthy zigzag of Quillen equivalences between different
models. Although we do not expect the reader to be familiar with all these models of .1; 2/–categories,
to give an idea of the complexity of the comparison Figure 1 shows a diagram of an essentially optimal
zigzag of Quillen equivalences, extracted from [Gagna et al. 2022].

To simplify the comparison, the goal of this paper is to produce the following direct Quillen equivalence.

Theorem There is a Quillen equivalence between complete Segal ‚2–spaces , presented by the model
category sSet‚

op
2

p;.1;2/
, and 2–complicial sets , presented by the model category msSet.1;2/.

Algebraic & Geometric Topology, Volume 24 (2024)
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sSet‚
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sSet‚
op
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op
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'

[Lurie 2009a]

'

[Lurie 2009b]

'

[Gagna et al. 2022]

Figure 1

In addition to providing a more transparent comparison between the two models, this direct comparison
facilitates the transport of constructions between these model structures. We now briefly illustrate the
advantages of each model structure via the examples of duals and joins, and we refer the reader to
Section 4 for a more detailed treatment of these cases, as well as other applications.

The structure of the category ‚2 makes the description of duals straightforward in ‚2–spaces, thanks to
the globular shape of the objects. We can think of 1–dimensional duals as given by reversing the direction
of the arrows, and 2–dimensional duals as given by similarly reversing the direction of 2–cells. Describing
such 2–dimensional duals in the simplicial framework is more complicated, due to the triangular shape of
the cells.

On the other hand, the join construction has been described for 2–complicial sets by [Verity 2008b] and
is similar to familiar join constructions for simplicial sets. One can adjoin 1–simplices connecting the
vertices of the two simplicial sets being joined, and higher-dimensional simplices analogously. In this
case, working in a simplicial framework is much more straightforward than that of ‚2.

While the existence of such a direct Quillen equivalence follows formally, for example using methods of
[Dugger 2001], we find it valuable to have an explicit description.

Let us now describe the main ingredients of the proof of our main theorem.

(i) We use the compatibility of the 2–categorical nerve valued in marked simplicial sets, established
by [Ozornova and Rovelli 2022], to construct a left Quillen functor

L W sSet‚
op
2

.1;2/
!msSet.1;2/:

(ii) To show that this left Quillen functor is in fact a Quillen equivalence, we use a result of [Barwick
and Schommer-Pries 2021] to reduce the problem to showing that it preserves cells in dimensions
0, 1, and 2. In Section 3 we use the intermediate comparisons of models from the diagram above
to identify these cells in each model and thereby show that L does indeed preserve cells.

Algebraic & Geometric Topology, Volume 24 (2024)
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The outline of the paper is as follows. In Section 1 we recall some necessary results about model structures
for 2–categories, ‚2–spaces, and simplicial sets with marking, as well as functors between them, such
as suspension and nerve functors. In Section 2 we construct the adjunction between ‚2–spaces and
simplicial sets with marking and we show that it is a Quillen pair. We then describe how it follows from
[Barwick and Schommer-Pries 2021] that this adjunction is indeed a Quillen equivalence, modulo an
explicit identification of the cells in the two models. In Section 3 we then provide the desired identification
of the cells in the two models. In Section 4 we discuss some applications of the main theorem.
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1 Models of .1; 2/–categories

We assume the reader is familiar with the basics of strict 2–category theory (see eg [Borceux 1994]) and
with the language of model categories (see eg [Hirschhorn 2003; Hovey 1999]), and we now recall some
further preliminary material that we need in this paper.

1.1 Strict 2–categories

The category 2Cat of 2–categories is defined as the category whose objects are (small) categories enriched
over the category Cat of 1–categories. In particular, a 2–category D consists of a set of objects and, for
any objects x and x0, a 1–category HomD.x;x

0/ together with a horizontal composition that defines a
functor of hom-categories ıW HomD.x;x

0/�HomD.x
0;x00/! HomD.x;x

00/.

We consider the following model structure on 2Cat that was constructed by [Lack 2002, Theorem 3.3]
(with a correction in [Lack 2004, Theorem 4]).

Theorem 1.1 The category 2Cat of 2–categories supports a model structure in which

� all 2–categories are fibrant , and

� the weak equivalences are precisely the biequivalences of 2–categories.

An important source of examples of 2–categories is given by suspending 1–categories, as follows.

Algebraic & Geometric Topology, Volume 24 (2024)
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Definition 1.2 Let D be a 1–category. The suspension of D is the 2–category †D in which

(a) there are two objects x? and x>;

(b) the hom-1–categories are given by

Hom†D.a; b/ WD

8<:
D if aD x? and b D x>;

Œ0� if aD b;

¿ if aD x> and b D x?I

(c) there is no nontrivial horizontal composition.

This construction extends to a functor † W Cat! 2Cat�;� valued in the category of bipointed categories,
namely categories endowed with a pair of (possibly equal) specified objects, and basepoint-preserving
functors.

The 2–categorical suspension †D appears in [Barwick and Schommer-Pries 2021], where it is denoted
by �.D/. It is also often described in the literature as a special case of a simplicial suspension. For
instance, applying the nerve to hom-categories of the suspension †D gives a simplicial category N�.†D/

that agrees with what was denoted by U.N D/ in [Bergner 2007b], as S.N D/ in [Joyal 2007], as Œ1�N D

in [Lurie 2009a], and as 2ŒN D� in [Riehl and Verity 2020].

Notation 1.3 We record some notation for the following (nondisjoint) families of 2–categories.

� For m� �1, we denote by Œm� the finite ordinal with mC 1 elements.

� For j D 0; 1; 2, we denote by Cj the free j –cell. These 2–categories can be pictured as

C0 D � C1 D � � C2 D � �:

� For m � 0 and k1; : : : ; km � 0, we denote by Œmjk1; : : : ; km� a generic object of Joyal’s cell
category ‚2, namely the full subcategory ‚2 of 2Cat from [Joyal 1997].

� We denote by I the free-living isomorphism category. This category can be pictured as

I D � �:Š

1.2 Complete Segal spaces as a model for .1; 1/–categories

We briefly recall the theory of complete Segal spaces, as first defined by [Rezk 2001], of which the next
model we discuss for .1; 2/–categories is a generalization.

Algebraic & Geometric Topology, Volume 24 (2024)
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First, consider functors X W�op! sSet. For any n� 1, consider the Segal map

Xn!X1 �
X0

� � � �
X0

X1„ ƒ‚ …
n

induced by the inclusion
�Œ1� q

�Œ0�
�Œ1� q

�Œ0�
� � � q

�Œ0�
�Œ1�„ ƒ‚ …

n

!�Œn�

of the spine of the n–simplex into the n–simplex �Œn�.

Definition 1.4 A Segal space is a functor X W�op! sSet such that the Segal maps are weak equivalences
of simplicial sets for all n� 1.

The idea is that a Segal space behaves something like a category, with simplicial sets of objects and
morphisms, but with composition defined only up to homotopy.

However, to have a model for .1; 1/–categories, we do not want a simplicial set of objects, as in an
internal category, but instead a discrete set of objects. The most straightforward way to get such a model
is to ask for the simplicial set X0 to be discrete.

Definition 1.5 A Segal precategory is a functor X W�op! sSet such that X0 is a discrete simplicial set.
We denote by PCat the full subcategory of sSet�

op
spanned by all Segal precategories. A Segal category

is a Segal precategory that is also a Segal space.

There are two model structures for Segal precategories, the first of which has all objects cofibrant and is
originally due to [Pellissier 2002, Theorem 6.4.4]; another proof is given in [Bergner 2007a, Theorem 5.1].
However, in this paper we make use of the following model structure that has cofibrations defined similarly
to those in the projective model structure.

Theorem 1.6 [Bergner 2007a, Theorem 7.1; Bergner 2007c, Theorem 4.2] The category PCat of Segal
precategories admits a model structure in which

� the fibrant objects are the projectively fibrant Segal categories , and

� the cofibrations are projective cofibrations.

We denote this model structure by PCat.1;1/.

However, from the point of view of homotopy theory, asking for discreteness is awkward. The completeness
condition that we now describe can be more convenient from this perspective.

Let N I denote the nerve of the groupoid I, and denote by Xheq the simplicial set Hom.N I;X /, which is
sometimes called the space of homotopy equivalences of X . The unique map N I!�Œ0� induces a map

X0!Xheq:
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Definition 1.7 A Segal space is complete if this map X0!Xheq is a weak equivalence of simplicial sets.

Rezk builds a supporting model structure for the homotopy theory of complete Segal spaces.

Theorem 1.8 [Rezk 2001, Theorem 7.2] The category sSet�
op

of simplicial spaces admits a model
structure in which

� the fibrant objects are the injectively fibrant complete Segal spaces , and

� the cofibrations are the monomorphisms.

We denote this model structure by sSet�
op

.1;1/
.

This model structure can be obtained by taking the left Bousfield localization of the injective model
structure on sSet�

op
with respect to the following set of maps:

(1) the Segal acyclic cofibrations

�Œ1� q
�Œ0�

�Œ1� q
�Œ0�
� � � q

�Œ0�
�Œ1�„ ƒ‚ …

n

!�Œn�

for n� 1, and

(2) the completeness cofibration, given by either inclusion of the form

�Œ0�!N I:

Complete Segal spaces, the fibrant objects in sSet�
op

.1;1/
, are then precisely the injectively fibrant simplicial

spaces that are local with respect to the maps of type (1) and (2).

Remark 1.9 As briefly addressed in [Rezk 2010, Section 10], in presence of the maps of type (1), for the
purpose of the localization one could replace the map of type (2) as completeness acyclic cofibration with

(20) either inclusion of the form

�Œ0�!�Œ0� q
�Œ1�

�Œ3� q
�Œ1�

�Œ0�;

where the right-hand side is the colimit of the diagram

�Œ0� �Œ1� 02
�!�Œ3� 13

 ��Œ1�!�Œ0�:

The following theorem establishes that the homotopy theories of Segal categories and complete Segal
spaces are equivalent.

Theorem 1.10 [Bergner 2007a, Theorems 6.3 and 7.5] The inclusion functor from the category of
Segal precategories to the category of simplicial spaces induces a left Quillen equivalence

I W PCat.1;1/! sSet�
op

.1;1/:

Algebraic & Geometric Topology, Volume 24 (2024)
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1.3 Complete Segal ‚2–spaces as a model of .1; 2/–categories

We now recall the notion of complete Segal ‚2–spaces, which give a model for .1; 2/–categories.

Let ‚2 be Joyal’s cell category. For a precise account on how ‚2 is defined, we refer the reader to
the original source [Joyal 1997], or to [Berger 2007, Definition 3.3] or [Rezk 2010, Section 1.1] for an
inductive approach; we give a brief review here.

Recall that‚2 is a full subcategory of 2Cat and that a generic object of‚2 is a 2–category Œmjk1; : : : ; km�

generated by gluing horizontally the suspensions of Œki � for i D 1; : : : ;m. An example is the 2–category
Œ3j2; 0; 1�, which is generated by the following data:

x y z w

f

g

h

l

m

k
˛

ˇ




Definition 1.11 A‚2–set is a presheaf A W‚
op
2 !Set, and we denote the category of‚2–sets and natural

transformations by Set‚
op
2 . Similarly, a ‚2–space is a simplicial presheaf A W‚

op
2 ! sSet, and we denote

the category of ‚2–spaces by sSet‚
op
2 .

Remark 1.12 The reader familiar with [Rezk 2010] might observe that we are using the term “‚2–space”
in a more general sense than he does. His ‚2–spaces satisfy additional Segal and completeness conditions
that we discuss below; we further specify such objects by calling them “complete Segal ‚2–spaces”.

Remark 1.13 The canonical inclusion Set ,! sSet of sets as discrete simplicial sets induces a canonical
inclusion Set‚

op
2 ,! sSet‚

op
2 , which is both a left and right adjoint. In particular, we often regard ‚2–sets

as discrete ‚2–spaces without further specification.

Notation 1.14 For any object � of ‚2, we denote by ‚2Œ� � the ‚2–set represented by � .

Remark 1.15 As a special case of [Ara 2014, Section 3.1], given any ‚2–set A and any space B one
can consider the ‚2–space A�B, which is defined levelwise as the simplicial set

.A�B/� WDA� �B:

The construction extends to a bifunctor

� W Set‚
op
2 � sSet! sSet‚

op
2

that preserves colimits in each variable.
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In preparation for a localization on the category sSet‚
op
2 , we introduce the following class of maps. The

reader may notice the analogy with the maps treated in Section 1.2.

Definition 1.16 An elementary acyclic cofibration is a map of discrete ‚2–spaces of the following kinds.

(1) A vertical Segal acyclic cofibration is given by, for some k � 1, the canonical map

‚2Œ1j1� q
‚2Œ1j0�

� � � q
‚2Œ1j0�

‚2Œ1j1� ,!‚2Œ1jk�:

(2) A horizontal Segal acyclic cofibration is given by, for some m� 1 and ki � 0, where 0� i �m,
the canonical map

‚2Œ1jk1� q
‚2Œ0�
� � � q

‚2Œ0�
‚2Œ1jkm� ,!‚2Œmjk1; : : : ; km�:

(3) The horizontal completeness acyclic cofibration is either of the inclusions of the form

‚2Œ0�!‚2Œ0� q
‚2Œ1j0�

‚2Œ3j0; 0; 0� q
‚2Œ1j0�

‚2Œ0�;

where the right-hand side is the colimit of the diagram

‚2Œ0� ‚2Œ1j0�
02
�!‚2Œ3j0; 0; 0�

13
 �‚2Œ1j0�!‚2Œ0�:

(4) The vertical completeness acyclic cofibration is the canonical map

‚2Œ1j0�!‚2Œ1j0� q
‚2Œ1j1�

‚2Œ1j3� q
‚2Œ1j1�

‚2Œ1j0�;

induced by suspending the previous one.

We now describe two model structures on the category sSet‚
op
2 , both established by [Rezk 2010, Section

2.13, Proposition 11.5]. Our description, in terms of the elementary acyclic cofibrations defined above,
differs slightly from his, but is designed to facilitate some of our proofs in the next section. We explain in
Remark 1.21 why the two approaches give the same model structures.

Theorem 1.17 The category sSet‚
op
2 of ‚2–spaces supports the following two cofibrantly generated

model structures:

� the model structure
sSet‚

op
2

i;.1;2/

obtained by taking the left Bousfield localization of the injective model structure sSet‚
op
2

inj with
respect to the set of elementary acyclic cofibrations from Definition 1.16, and

� the model structure
sSet‚

op
2

p;.1;2/

obtained by taking the left Bousfield localization of the projective model structure sSet‚
op
2

proj with
respect to the set of elementary acyclic cofibrations from Definition 1.16.

Algebraic & Geometric Topology, Volume 24 (2024)
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Although the model structure sSet‚
op
2

i;.1;2/
is more common in the literature, for technical reasons that we

discuss in Remark 2.3, in this paper we focus more on sSet‚
op
2

p;.1;2/
. In this model structure

� the projectively fibrant objects, which we call complete Segal ‚2–spaces, are precisely the pro-
jectively fibrant ‚2–spaces that are local with respect to the elementary acyclic cofibrations from
Definition 1.16, and

� the cofibrations are precisely the projective cofibrations.

Remark 1.18 Combining [Hirschhorn 2003, Theorem 11.6.1 and Definitions 11.5.33 and 11.5.25], we
can obtain an explicit description of the generating cofibrations and generating acyclic cofibrations of
sSet‚

op
2

proj . In particular,

(1) a set of generating cofibrations for the projective model structure on sSet‚
op
2 is given by all maps

of the form

‚2Œ� �� @�Œ`�!‚2Œ� ���Œ`� for � 2 Ob.‚2/ and `� 0I

(2) a set of generating acyclic cofibrations for the projective model structure on sSet‚
op
2 is given by all

maps of the form

‚2Œ� ��ƒk Œ`�!‚2Œ� ���Œ`� for � 2 Ob.‚2/ and 0� k � `:

The following equivalence between the two model structures can alternatively also be seen as a direct
application of [Hirschhorn 2003, Theorem 3.3.20].

Theorem 1.19 [Rezk 2010, Sections 2.5–2.13] The identity functor defines a Quillen equivalence

sSet‚
op
2

p;.1;2/
� sSet‚

op
2

i;.1;2/
:

We want to consider the suspension of a simplicial space to a ‚2–space. In [Rezk 2010, Section 4.4],
the notation V Œ1�.X / is used for what we denote here by †X to emphasize the analogy with similar
constructions we have discussed.

Definition 1.20 The suspension †X of a simplicial space X is the ‚2–space obtained by applying the
cocontinuous functor † W sSet�

op
! sSet‚

op
2
�;� defined on representable simplicial spaces as

†.�Œk���Œ`�/ WD‚2Œ1jk���Œ`�:

This construction extends to a functor † W sSet�
op
! sSet‚

op
2
�;� valued in bipointed ‚2–spaces.

Remark 1.21 In the original construction from [Rezk 2010, Section 2.13, Proposition 11.5], two model
structures on sSet‚

op
2 are obtained by localizing the injective and projective model structure with respect

to the set of maps of the following kinds:

(10) a family of maps that can be recognized to be precisely the family of vertical Segal acyclic
cofibrations, using [Rezk 2010, Proposition 11.7];
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(20) a family of maps that can be recognized to be precisely the family of horizontal Segal acyclic
cofibrations, using [Rezk 2010, Proposition 11.7];

(30) the unique map
N‚2I!‚2Œ0�I

(40) the map
†N‚2I!‚2Œ1j0�

obtained by suspending the map from (30).

However, in presence of the maps of type (1) and (2), it is shown in [Rezk 2010, Section 10] and also
in [Barwick and Schommer-Pries 2021, Section 13] that for the purpose of the localization the maps of
type (3) and (4) are equivalent to the maps of type (30) and (40), respectively. It follows that, although
presented differently, these two model structures in fact agree with the model structures sSet‚

op
2

i;.1;2/
and

sSet‚
op
2

p;.1;2/
from Theorem 1.17.

1.4 Complicial sets as a model of .1; 2/–categories

The next model of .1; 2/–categories that we consider is based on the following structure, originally
referred to as a simplicial set with hollowness in [Street 1987] and later as a stratified simplicial set in
[Verity 2008a].

Definition 1.22 A simplicial set with marking is a simplicial set endowed with a subset of simplices of
strictly positive dimensions that contains all degenerate simplices, called thin or marked. We denote by
msSet the category of simplicial sets with marking and marking-preserving simplicial maps.

We want to consider a model structure on the category of simplicial sets with marking, in which the
fibrant objects, called 2–complicial sets, provide a model for .1; 2/–categories. The idea is that, in a
2–complicial set, the marked k–simplices are precisely the k–equivalences. We refer the reader to [Riehl
2018] for further elaboration on this viewpoint.

Remark 1.23 As discussed in [Verity 2008a, Observation 97], the underlying simplicial set functor
msSet! sSet fits into an adjoint triple

msSet sSet:

.�/]

.�/[

a
a

For any simplicial set X , the left adjoint X [ (sometimes also denoted simply by X ) is obtained by
marking only the degenerate simplices of X , and the right adjoint X ] is obtained by marking all simplices
in positive dimensions.
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Remark 1.24 As described in detail in [Verity 2008a, Observation 109], the category msSet of simplicial
sets with marking is complete and cocomplete, with limits and colimits constructed as follows.

� The underlying simplicial set of a limit limi2I Xi of simplicial sets with marking is the limit of the
corresponding underlying simplicial sets of Xi , and a simplex is marked in a limit of simplicial
sets with marking limi2I Xi if and only if it is marked in each component Xi for i 2 I .

� The underlying simplicial set of a colimit colimi2I Xi of simplicial sets with marking is the colimit
of the corresponding underlying simplicial sets of Xi , and a simplex is marked in a colimit of
simplicial sets with marking colimi2I Xi if and only if it admits a marked representative in Xi for
some i 2 I .

The following model structure is one instance of the family of model structures constructed by [Verity
2008b, Theorem 100], and is described in more detail in [Riehl 2018, Section 3.3].

Theorem 1.25 [Ozornova and Rovelli 2020, Theorem 1.25] The category msSet of simplicial sets with
marking supports a cofibrantly generated cartesian closed model structure in which

� the fibrant objects are the 2–complicial sets , as recalled in [Ozornova and Rovelli 2020, Definition
1.21], and

� the cofibrations are precisely the monomorphisms on underlying simplicial sets.

We denote this model structure by msSet.1;2/.

We warn the reader that the fibrant objects in this model structure have been given different names in
the literature, and could perhaps more accurately be called “2–trivial saturated weak complicial sets”.
We have chosen to call them “2–complicial sets” for the sake of brevity; in what follows we do not
make explicit use of their definition. We recall the key results we need, in particular about the weak
equivalences in this model structure, in the remainder of this section.

Remark 1.26 Because of the way the model structure msSet.1;2/ is constructed, if �Œ3�eq denotes the
3–simplex�Œ3� in which the nondegenerate marked 1–simplices are precisely the one between the vertices
0 and 2 and the one between the vertices 1 and 3, and all simplices in dimension 2 or higher are marked,
the canonical map �Œ3�eq!�Œ3�] is a weak equivalence. Indeed, the model structure msSet.1;2/ is a
Cisinski–Olschok model structure (in the sense of [Olschok 2011]) for which the map �Œ3�eq!�Œ3�] is
an anodyne extension.

Lemma 1.27 The functor
.�/] W sSet.1;0/!msSet.1;2/

is a left Quillen functor , where sSet.1;0/ denotes the Kan–Quillen model structure on the category sSet.

Proof The fact that the functor admits a right adjoint, often called the core functor, is discussed in
[Riehl and Verity 2022, Definition D.1.2]. It is straightforward from its description that the functor .�/]
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preserves cofibrations, and it is shown in [Ozornova and Rovelli 2020, Lemma 2.16] that it also sends
acyclic cofibrations of sSet.1;0/ to weak equivalences of msSet.1;2/. It follows that .�/] defines indeed
a left Quillen functor between the desired model categories.

For nD 2, the Street nerve was studied in detail by [Duskin 2001], and can be described explicitly as
follows.

Definition 1.28 The nerve N D of a 2–category D is the 3–coskeletal simplicial set in which

(0) a 0–simplex consists of an object of D:
xI

(1) a 1–simplex consists of a 1–morphism of D:

x yI
a

(2) a 2–simplex consists of a 2–cell of D of the form c) b ı a:

y

x z

ba

c

'

(3) a 3–simplex consists of four 2–cells of D that satisfy the relation

w z w z

D

x y x y

e e

d

a b c a

d

cf

and in which the simplicial structure is as indicated in the pictures.

Definition 1.29 [Verity 2008a, Chapter 10] The Roberts–Street nerve of a 2–category D is the simplicial
set with marking N RSD, defined by the following properties.

(0) The underlying simplicial set is the Duskin nerve N D.

(1) Only degenerate 1–simplices are marked.

(2) A 2–simplex of N D is marked in N RSD if and only if corresponding 2–morphism ' W c) b ı a is
an identity.

(3) Any m–simplex of N D for m� 3 is marked in N RSD.

This construction extends to a functor N RS W 2Cat!msSet.

The Roberts–Street nerve is a right adjoint functor, but, as proved by the second- and third-named authors,
does not preserve fibrant objects on the model structures we want to consider. However, it is a homotopical
functor between model categories, in the sense that it preserves weak equivalences.
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Proposition 1.30 [Ozornova and Rovelli 2022, Proposition 1.18] The Roberts–Street nerve defines a
homotopical functor of model categories

N RS
W 2Cat!msSet.1;2/:

The following two technical results essentially tell us that horizontal and vertical composition of 2–cells
can be encoded via Segal-type maps that are acyclic cofibrations in the model structure for 2–complicial
sets.

Theorem 1.31 [Ozornova and Rovelli 2022, Corollary 2.10] For any m� 0 and ki � 0 for i D 1; : : : ;m

there is a canonical map of simplicial sets with marking

N RSŒ1jk1� q
N RSŒ0�

� � � q
N RSŒ0�

N RSŒ1jkm� ,!N RSŒmjk1; : : : ; km�

that is an acyclic cofibration , and in particular a weak equivalence , in msSet.1;2/.

Theorem 1.32 [Ozornova and Rovelli 2022, Corollary 2.11] For any k � 0 there is a canonical map of
simplicial sets with marking

N RSŒ1j1� q
N RSŒ1�

� � � q
N RSŒ1�

N RSŒ1j1� ,!N RSŒ1jk�

that is an acyclic cofibration , and in particular a weak equivalence , in msSet.1;2/.

Note that, when taking the nerve we simply write N RSŒ1� rather than N RSŒ1j0�, since the 2–category Œ1j0�
is just the category Œ1� thought of as a 2–category.

An important construction in this paper is the suspension of a simplicial set with marking. We conclude
this section with the definition and some key results about it.

Definition 1.33 [Ozornova and Rovelli 2022, Definition 2.6] The suspension †X of a simplicial set
with marking X is the simplicial set with marking defined as follows.

� It has precisely two 0–simplices that we denote by x? and x>.

� The set of m–simplices for m> 0 is given by all k–simplices of X for 0� k �m� 1, as well as
the m–fold degeneracies of the two 0–simplices x? and x>, namely

.†X /m Š fs
m
0 x?gqXm�1q� � �qX0qfs

m
0 x>g:

� The simplicial structure can be read off from [Ozornova and Rovelli 2022, Definition 2.6].

� The set of nondegenerate m–simplices for m> 0 is given by the nondegenerate .m�1/–simplices
of X .

� A nondegenerate m–simplex � is marked in †X if and only if it is marked as an .m�1/–simplex
of X .

This construction extends to a functor † WmsSet!msSet�;� valued in bipointed marked simplicial sets.
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We now recall that this functor can be upgraded to a left Quillen functor of model categories. Recall
from [Hirschhorn 2021] that, given any cofibrantly model category M, there is a model structure on the
category M�;� of bipointed objects in M, in which cofibrations, fibrations, and weak equivalences are
created in M.

Lemma 1.34 [Ozornova and Rovelli 2022, Lemma 2.7] Regarding †X as a simplicial set with marking
bipointed on x? and x>, the marked suspension defines a left Quillen functor

† WmsSet.1;2/! .msSet.1;2//�;�:

In particular , it is homotopical and it respects connected colimits as a functor † WmsSet!msSet.

Finally, we recall that the suspension of a marked simplicial set is homotopically compatible with the
Roberts–Street nerve, as one would expect.

Theorem 1.35 [Ozornova and Rovelli 2022, Theorem 2.9] For any 1–category D there is a canonical
map

†N RSD!N RS†D

that is a weak equivalence in msSet.1;2/.

2 The comparison of models of .1; 2/–categories

In this section, we set up our explicit comparison between the two models for .1; 2/–categories that we
are considering. We first establish the desired Quillen pair of functors between the unlocalized model
structure on the category of ‚2–spaces and the model structure on simplicial sets with marking, then
show that it is still a Quillen pair after localization of the former model category. We then show that it is
a Quillen equivalence, deferring some steps in the proof to later sections.

2.1 The Quillen pair before localizing

Let us begin by defining the functor that we use to make our comparison.

Construction 2.1 The functor ‚2 ��� sSet‚
op
2 !msSet given by

.�; Œ`�/ 7! .‚2 ��/Œ�; `�D‚2Œ� ���Œ`� 7!N RS� ��Œ`�]

induces an adjunction
L W sSet‚

op
2 �msSet WR:

Roughly speaking, for any ‚2–space W , the simplicial set with marking LW is obtained by gluing
together a copy of the Roberts–Street nerve of � , for any � in ‚2 that maps to W . While describing this
gluing explicitly is complicated, it is essentially specified by the definition of left Kan extension.
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We now show that these adjoint functors define Quillen pair on unlocalized model categories.

Proposition 2.2 The adjunction

L W sSet‚
op
2

proj �msSet.1;2/ WR

is a Quillen pair.

Proof We want to show that the functor L preserves cofibrations and acyclic cofibrations. From
Remark 1.18 we know that

(1) a set of generating cofibrations for the projective model structure on sSet‚
op
2 is given by all maps

of the form
‚2Œ� �� @�Œ`�!‚2Œ� ���Œ`� for � 2‚2 and `� 0I

(2) a set of generating acyclic cofibrations for the projective model structure on sSet‚
op
2 is given by all

maps of the form

‚2Œ� ��ƒk Œ`�!‚2Œ� ���Œ`� for � 2‚2 and 0� k � `:

Using the facts that .�/] commutes with colimits, which is a consequence of Lemma 1.27, and that the
box product � preserves colimits in each variable, which was recalled in Remark 1.15, we see that

(1) the image of the generating cofibration via L is the map

N RS� � @�Œ`�]!N RS� ��Œ`�] for � 2‚2 and `� 0I

(2) the image of the generating acyclic cofibration via L is the map

N RS� �ƒk Œ`�]!N RS� ��Œ`�] for � 2‚2 and 0� k � `:

Since the model structure msSet.1;2/ is cartesian closed by Theorem 1.25 and .�/] is a left Quillen
functor by Lemma 1.27, we conclude that

(1) the map N RS� � @�Œ`�]!N RS� ��Œ`�] is a cofibration, and

(2) the map N RS� �ƒk Œ`�]!N RS� ��Œ`�] is an acyclic cofibration.

It follows that L preserves cofibrations and acyclic cofibrations, so it is a left Quillen functor, as desired.

Remark 2.3 One might wonder, in contrast with much of the literature on the subject, why we have
chosen to use the projective, rather than the injective, model structure on sSet‚

op
2 . However, it is not clear

whether the functor
L W sSet‚

op
2

inj !msSet.1;2/

is a left Quillen functor, since we do not know whether it preserves cofibrations. More precisely, it is
unclear whether L sends the injective cofibration

@‚2Œ3j1; 0; 1�!‚2Œ3j1; 0; 1�

to a cofibration of msSet.1;2/.
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2.2 The Quillen pair after localizing

We now show that we still have a Quillen pair after localizing the projective model structure on sSet‚
op
2 .

Theorem 2.4 The adjunction
L W sSet‚

op
2

p;.1;2/
�msSet.1;2/ WR

is a Quillen pair.

Since cofibrations are unchanged by localization, it suffices to prove that L preserves acyclic cofibrations.
We do so by proving that L preserves all elementary acyclic cofibrations, in the following sequence of
propositions.

Proposition 2.5 The functor L sends the vertical Segal acyclic cofibrations

‚2Œ1j1� q
‚2Œ1j0�

� � � q
‚2Œ1j0�

‚2Œ1j1� ,!‚2Œ1jk� for k � 0

from Definition 1.16 to weak equivalences in msSet.1;2/.

Proof The functor L sends the elementary acyclic cofibration

‚2Œ1j1� q
‚2Œ1j0�

� � � q
‚2Œ1j0�

‚2Œ1j1� ,!‚2Œ1jk�

to the canonical inclusion

N RSŒ1j1� q
N RSŒ1�

� � � q
N RSŒ1�

N RSŒ1j1� ,!N RSŒ1jk�;

which is an acyclic cofibration by Theorem 1.32.

Proposition 2.6 The functor L sends the horizontal Segal acyclic cofibrations

‚2Œ1jk1� q
‚2Œ0�
� � � q

‚2Œ0�
‚2Œ1jkm� ,!‚2Œmjk1; : : : ; km� for m� 0 and ki � 0

from Definition 1.16 to weak equivalences in msSet.1;2/.

Proof The functor L sends the elementary acyclic cofibration

‚2Œ1jk1� q
‚2Œ0�
� � � q

‚2Œ0�
‚2Œ1jkm� ,!‚2Œmjk1; : : : ; km�

to the canonical inclusion

N RSŒ1jk1� q
N RSŒ0�

� � � q
N RSŒ0�

N RSŒ1jkm� ,!N RSŒmjk1; : : : ; km�;

which is an acyclic cofibration by Theorem 1.31.

Proposition 2.7 The functor L sends the horizontal completeness acyclic cofibration

‚2Œ0�!‚2Œ0� q
‚2Œ1j0�

‚2Œ3j0; 0; 0� q
‚2Œ1j0�

‚2Œ0�

from Definition 1.16 to a weak equivalence in msSet.1;2/.
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To prove this proposition, we need the following preliminary lemma.

Lemma 2.8 The unique map
�Œ0� q

�Œ1�
N RSŒ3� q

�Œ1�
�Œ0�!�Œ0�

is a weak equivalence in msSet.1;2/.

Proof We observe that this map fits into a commutative diagram of simplicial sets with marking

�Œ0� q
�Œ1�

N RSŒ3� q
�Œ1�

�Œ0� �Œ0�

�Œ1�] q
�Œ1�

N RSŒ3� q
�Œ1�

�Œ1�] Š�Œ3�eq �Œ3�]

where �Œ1�] denotes the standard 1–simplex with the maximal marking. In this diagram, we observe that

� the bottom horizontal map is an acyclic cofibration by Remark 1.26;

� the left vertical map is a map between (homotopy) pushouts induced by the identity of N RSŒ3� and
two copies of the weak equivalence �Œ1�]!�Œ0�; and

� the right vertical map is a weak equivalence since .�/] preserves weak equivalences by Lemma 1.27.

It follows by two-out-of-three that the top horizontal map is a weak equivalence, as desired.

We can now use this lemma to prove Proposition 2.7.

Proof of Proposition 2.7 The functor L sends the map

‚2Œ0�!‚2Œ0� q
‚2Œ1j0�

‚2Œ3j0; 0; 0� q
‚2Œ1j0�

‚2Œ0�

to a map
�Œ0�!�Œ0� q

�Œ1�
N RSŒ3� q

�Œ1�
�Œ0�

that we want to show is a weak equivalence. However, we can conclude this fact by the two-out-of-three
property, since we know from Lemma 2.8 that the unique map

�Œ0� q
�Œ1�

N RSŒ3� q
�Œ1�

�Œ0�!�Œ0�

is a weak equivalence in msSet.1;2/.

To complete the proof of Theorem 2.4, it remains to show that L preserves one more acyclic cofibration.

Proposition 2.9 The functor L sends the vertical completeness acyclic cofibration

‚2Œ1j0�!‚2Œ1j0� q
‚2Œ1j1�

‚2Œ1j3� q
‚2Œ1j1�

‚2Œ1j0�

from Definition 1.16 to a weak equivalence of msSet.1;2/.
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Proof The functor L sends the map

‚2Œ1j0�!‚2Œ1j0� q
‚2Œ1j1�

‚2Œ1j3� q
‚2Œ1j1�

‚2Œ1j0�

to a map
N RSŒ1j0�!N RSŒ1j0� q

N RSŒ1j1�
N RSŒ1j3� q

N RSŒ1j1�
N RSŒ1j0�;

which we want to show is a weak equivalence. By the two-out-of-three property, it suffices to show that
the map

N RSŒ1j0� q
N RSŒ1j1�

N RSŒ1j3� q
N RSŒ1j1�

N RSŒ1j0�!N RSŒ1j0�;

induced by the unique map Œ1j3�! Œ1j0� in ‚2 that is bijective on objects, is a weak equivalence in
msSet.1;2/. This map can be rewritten in terms of suspensions of 1–categories, as in Definition 1.2, as

N RS†Œ0� q
N RS†Œ1�

N RS†Œ3� q
N RS†Œ1�

N RS†Œ0�!N RS†Œ0�:

By Theorem 1.35, this map fits into a commutative diagram of simplicial sets with marking

N RS†Œ0� q
N RS†Œ1�

N RS†Œ3� q
N RS†Œ1�

N RS†Œ0� N RS†Œ0�

†N RSŒ0� q
†N RSŒ1�

†N RSŒ3� q
†N RSŒ1�

†N RSŒ0� †N RSŒ0�

'
Š

in which the two vertical maps are weak equivalences. Note that for the left-hand map we are using the
fact that these pushouts are actually homotopy pushouts. In particular, by the two-out-of-three property,
to prove the theorem it is enough to prove that the bottom map is a weak equivalence. Using the fact that
suspension commutes with pushouts by Lemma 1.34, this map can be rewritten as

†

�
�Œ0� q

�Œ1�
N RSŒ3� q

�Œ1�
�Œ0�

�
!†�Œ0�;

namely the suspension of the map

�Œ0� q
�Œ1�

N RSŒ3� q
�Œ1�

�Œ0�!�Œ0�;

which was shown in Lemma 2.8 to be a weak equivalence. Since suspension is a left Quillen functor by
Lemma 1.34, we are done.

2.3 The Quillen equivalence

It remains to show that this Quillen pair is in fact a Quillen equivalence. Our proof, however, is not done
directly via the definition, but instead uses some machinery due to [Barwick and Schommer-Pries 2021]
that we now briefly recall.

The first thing we need to consider is their criterion for when a model category is a “model of .1; 2/–
categories”. We begin with some notation.
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Notation 2.10 Given a model category M, we denote by M1 the underlying .1; 1/–category of M.
While we do not need one here, for explicit (different but equivalent) constructions of M1 in the model
of quasicategories, we refer the reader to [Hinich 2016] or [Lurie 2009a, Section A.2].

Notation 2.11 Given a Quillen pair F WM�M0 WG between model categories M and M0, we denote by

F1 WM1�M01 WG1

the adjunction that .F;G/ induces at the level of underlying .1; 1/–categories.

On objects, the value of F1 on any object of M can be computed up to equivalence in M01 by applying
F to any cofibrant replacement of the given object. Similarly the value of G1 on any object of M0 can
be computed up to equivalence in M1 by applying G to any fibrant replacement of the given object.
Moreover, if .F;G/ is a Quillen equivalence, the induced adjunction .F1;G1/ is an equivalence of
.1; 1/–categories. For more details on how to obtain this adjunction of .1; 1/–categories in the model
of quasicategories we refer the reader to [Hinich 2016, Proposition 1.5.1].

Definition 2.12 (Barwick–Schommer-Pries) A model category M is a model of .1; 2/–categories if the
underlying .1; 1/–category is equivalent to the colossal model K from [Barwick and Schommer-Pries
2021, Section 8], namely if there exists an equivalence of .1; 1/–categories

M1 ' K:

The colossal model is constructed as an .1; 1/–category in [Barwick and Schommer-Pries 2021, Section 8].
As we discuss in the appendix, with standard techniques one can also present the colossal model as the
underlying .1; 1/–category of a model category. More precisely, we show as Theorem A.3 that it is the
underlying .1; 1/–category

�
sSet‡

op
2

.1;2/

�
1

of a model category sSet‡
op
2

.1;2/
.

In any case, for the main purpose of this paper the arguments are packaged in a way that no explicit
construction for the colossal model is needed.

Theorem 2.13 The model categories sSet‚
op
2

p;.1;2/
and sSet‚

op
2

i;.1;2/
are models of .1; 2/–categories.

Proof The fact that sSet‚
op
2

i;.1;2/
is a model of .1; 2/–categories is shown in [Barwick and Schommer-Pries

2021, Section 13] and there is an equivalence�
sSet‚

op
2

p;.1;2/

�
1
'
�
sSet‚

op
2

i;.1;2/

�
1

induced by the Quillen equivalence from Theorem 1.19.

Theorem 2.14 The model category msSet.1;2/ is a model of .1; 2/–categories.

Proof An equivalence of .1; 1/–categories

.msSet.1;2//1 '
�
sSet‚

op
2

i;.1;2/

�
1
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can be obtained combining several equivalences of .1; 1/–categories induced by Quillen equivalences
due to [Bergner and Rezk 2013; 2020; Gagna et al. 2022; Joyal and Tierney 2007; Lurie 2009b], as we
recalled in Figure 1.

Next, we recall the definition of a j –cell in a model of .1; 2/–categories.

Definition 2.15 Let M be a model category that is a model for .1; 2/–categories. An object of M is a
representative of the j –cell for j D 0; 1; 2 if it corresponds to the j –cell of the colossal model through

any equivalence of .1; 1/–categories M1 '
�
sSet

‡
op
2

.1;2/

�
1

.

For completeness, the definitions of the 0–, 1– and 2–cells in the colossal model are recalled in the
appendix, but will not be needed explicitly.

Remark 2.16 The object in M that represents the j –cell is unique up to equivalence in M1 and also
up to isomorphism in Ho M, the homotopy category of M. The definition makes sense in particular
because any auto-equivalence of

�
sSet

‡
op
2

.1;2/

�
1

preserves j –cells for j D 0; 1; 2, as shown in [Barwick
and Schommer-Pries 2021, Theorem 7.3].

The following statements describe j –cells in sSet‚
op
2

p;.1;2/
and msSet.1;2/.

Proposition 2.17 In sSet‚
op
2

p;.1;2/
the object ‚2ŒCj � is a representative of the j –cell for j D 0; 1; 2.

Proposition 2.18 In msSet.1;2/ the object N RSCj is a representative of the j –cell for j D 0; 1; 2.

Although the two statements are not surprising, the argument to identify cells in msSet.1;2/ requires
significant work and makes use of many external results. We therefore postpone both proofs to Section 3.

Finally, the following theorem is the key ingredient to prove that the functor L is a Quillen equivalence.

Theorem 2.19 [Barwick and Schommer-Pries 2021, Proposition 15.10] Let M and N be model cat-
egories that are models for .1; 2/–categories , and L W M� N WR a Quillen pair between them. Then
the Quillen pair .L;R/ is a Quillen equivalence if and only if the derived functor of L sends j –cells to
j –cells for j D 0; 1; 2.

Once the proofs of Propositions 2.17 and 2.18 are provided in Section 3, we can then apply Theorem 2.19
to the Quillen pair from Theorem 2.4 to conclude the desired Quillen equivalence.

Theorem 2.20 The adjunction

L W sSet‚
op
2

p;.1;2/
�msSet.1;2/ WR

is a Quillen equivalence , and in particular induces an equivalence of .1; 1/–categories

L1 W
�
sSet‚

op
2

p;.1;2/

�
1
� .msSet.1;2//1 WR1:
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3 Recognizing cells in models of .1; 2/–categories

The goal of this section is to identify the j –cells in sSet‚
op
2

p;.1;2/
, and most importantly the j –cells in

msSet.1;2/, as defined in Definition 2.15. The structure of the argument involves the identification of the
j –cells in several established model categories that are models of .1; 2/–categories.

In Figure 2, we display the equivalences used to identify the cells in the marked simplicial sets, and the
propositions displayed show how the cells behave under the corresponding equivalence.

While it is impractical to make this section completely self-contained, we have included precise references
for all relevant constructions and definitions.

Lemma 3.1 Suppose that a functor F WM!M0 is a left (resp. right) Quillen equivalence between models
of .1; 2/–categories , and an object X is cofibrant (resp. fibrant) in M. Then X is a j –cell in M for some
0� j � 2 if and only if F.X / is a j –cell in M0.

Proof Consider the induced functor F1 WM1!M01, which is an equivalence of .1; 1/–categories.
It follows that, for any j D 0; 1; 2 and j –cell Xj of M, the object F1.Xj / is a cell in M01, either by
direct verification, or by appealing to Theorem 2.19. Now, an object X is a j –cell in M if and only if
there is an isomorphism X ŠXj in Ho M. Again using the fact that F1 is an equivalence, this statement
is equivalent to saying that there is an isomorphism F1.X /Š F1.Xj / in Ho.M0/. But the existence
of such an isomorphism is equivalent to having F1.X / being a j –cell of M01 because F1.Xj / is one.
Since F.X / computes F1.X /, the result follows.

3.1 Recognizing cells in ‚2–models of .1; 2/–categories

We now begin the work of identifying j –cells in different models for .1; 2/–categories. We begin with
the j –cells in sSet‚

op
2

i;.1;2/
, which have been identified by Barwick and Schommer-Pries.

sSet‚
op
2

i;.1;2/

sSet‚
op
2

p;.1;2/

sSet.���/
op

i;.1;2/

PCat.sSet�
op
/p;.1;2/

CatsSet�
op

.1;1/

CatSet�
op

.1;1/

CatsSetC
.1;1/

sSetsc
.1;2/

msSet.1;2/

'

Proposition 2.17

'

Proposition 3.5

'

Proposition 3.8

'

Proposition 3.12

'

Proposition 3.16

'

Proposition 3.18

'

Proposition 3.22

'

Proposition 2.18

Figure 2
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Proposition 3.2 [Barwick and Schommer-Pries 2021, Section 13] In sSet‚
op
2

i;.1;2/
the object ‚2ŒCj � is a

representative of the j –cell for j D 0; 1; 2.

We can now prove Proposition 2.17, which identifies the cells in sSet‚
op
2

p;.1;2/
.

Proof of Proposition 2.17 Consider the identity functor on sSet‚
op
2 , which by Theorem 1.19 defines a

left Quillen equivalence
id W sSet‚

op
2

p;.1;2/
! sSet‚

op
2

i;.1;2/
:

By Proposition 3.2 we know that ‚2ŒCj � is a j –cell in sSet‚
op
2

i;.1;2/
for j D 0; 1; 2. Moreover, the object

‚2ŒCj � is projectively cofibrant by [Hirschhorn 2003, Proposition 11.6.2], since it is representable. It
then follows from Lemma 3.1 that ‚2ŒCj � is a j –cell in sSet‚

op
2

p;.1;2/
.

3.2 Recognizing cells in multisimplicial models of .1; 2/–categories

We now turn to identifying j –cells in multisimplicial models of .1; 2/–categories. Because we have not
yet considered these models in this paper, we describe them briefly as we go.

Theorem 3.3 [Barwick 2005, Chapter 2] The category sSet.���/
op

of bisimplicial spaces admits a
model structure in which

� the fibrant objects are the injectively fibrant complete Segal objects in complete Segal spaces; and

� the cofibrations are the monomorphisms , and in particular every object is cofibrant.

We denote this model structure by sSet.���/
op

i;.1;2/
.

The idea behind complete Segal objects in complete Segal spaces is that we apply similar Segal and
completeness conditions to functors �op ! sSet�

op
, where the target category is equipped with the

complete Segal space model structure. Thus, the Segal and completeness maps are now equivalences
in this model structure, rather than equivalences of simplicial sets. For more details on the definition of
complete Segal objects in complete Segal spaces, see [Barwick 2005, Chapter 2; Bergner and Rezk 2020,
Definition 5.3; Lurie 2009b].

There is an explicit equivalence of model categories between this model structure and the one for complete
Segal ‚2–spaces. See also [Barwick and Schommer-Pries 2021] for a different proof of this equivalence.

Theorem 3.4 [Bergner and Rezk 2020, Corollary 7.1] The functor d W���!‚2 given by

Œm; k� 7! Œmjk; : : : ; k�

induces a left Quillen equivalence

d� W sSet‚
op
2

i;.1;2/
! sSet.���/

op

i;.1;2/
:

In particular, sSet.���/
op

i;.1;2/
is a model for .1; 2/–categories. We now characterize the j –cells in this model.
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Proposition 3.5 In sSet.���/
op

i;.1;2/
the object d�‚2ŒCj � is a representative of the j –cell for j D 0; 1; 2.

Proof We consider the functor d�, which defines a left Quillen equivalence

d� W sSet‚
op
2

i;.1;2/
! sSet.���/

op

i;.1;2/
:

By Proposition 3.2, for j D 0; 1; 2, the object ‚2ŒCj � is a j –cell in sSet‚
op
2

i;.1;2/
. Moreover, every object is

cofibrant in sSet‚
op
2

i;.1;2/
. It follows from Lemma 3.1 that d�‚2ŒCj � is a j –cell in sSet.���/

op

i;.1;2/
.

We can now generalize the notion of Segal precategory to this context; in analogy with the notion of
complete Segal objects described above, we can define Segal precategory objects in complete Segal
spaces, given by functors X W �op! sSet�

op
such that X0 is a discrete object and the Segal maps are

weak equivalences in the complete Segal space model structure. See [Bergner and Rezk 2013, Section 6]
for more details.

Let us briefly describe the comparison with complete Segal objects, which is analogous to Theorem 1.10.
We denote by PCat.Set�

op
/ the full subcategory of sSet.���/

op
given by Segal precategory objects in

simplicial spaces, namely those bisimplicial spaces X W�op! sSet�
op

for which X0 is discrete, and we
denote by I W PCat.Set�

op
/! sSet.���/

op
the inclusion functor.

Theorem 3.6 [Bergner and Rezk 2013, 6.12] The category PCat.sSet�
op
/ of precategories in simplicial

spaces admits a model structure in which

� the fibrant objects are the projectively fibrant Segal category objects , and

� the cofibrations are the projective cofibrations.

We denote this model structure by PCat.sSet�
op
/p;.1;2/.

This model was compared to the previous ones by [Bergner and Rezk 2020].

Theorem 3.7 [Bergner and Rezk 2020, Theorem 9.6 and Propositions 7.1 and 9.5] The natural inclusion
functor from [Bergner and Rezk 2020, Section 9] induces a left Quillen equivalence

I W PCat.sSet�
op
/p;.1;2/! sSet.���/

op

i;.1;2/
:

In particular, PCat.sSet�
op
/p;.1;2/ is a model for .1; 2/–categories.

For each j D 0; 1; 2, the bisimplicial space d�‚2ŒCj �, a priori an object of sSet.���/
op

, is actually a
precategory, so it can be regarded as an object of PCat.sSet�

op
/.

Proposition 3.8 In PCat.sSet�
op
/p;.1;2/ the object d�‚2ŒCj � is a representative of the j –cell for

j D 0; 1; 2.

To prove this result, we make use of the following lemma.
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Lemma 3.9 In PCat.sSet�
op
/p;.1;2/ the object d�‚2ŒCj � is a cofibrant for j D 0; 1; 2.

Proof If �Œ¿� denotes the initial bisimplicial space, we show that the canonical map �Œ¿�! d�‚2ŒCj �

is a cofibration in PCat.sSet�
op
/p;.1;2/ for j D 0; 1; 2.

For j D 0 and j D 1, the object d�‚2ŒCj � is representable as an object of sSet.���/
op

, so by [Hirschhorn
2003, Proposition 11.6.2] the map �Œ¿�! d�‚2ŒCj � is a projective cofibration and hence d�‚2ŒCj � is
cofibrant in PCat.sSet�

op
/p;.1;2/.

For j D 2, we recall from [Bergner and Rezk 2013, Section 6.2] that any map of the form AŒp�! BŒp�,
where p � 0 and A! B is a cofibration of sSet�

op

.1;1/
, is a cofibration in PCat.sSet�

op
/p;.1;2/. Recall

that AŒp� is defined as the pushout in PCat.sSet�
op
/

A� .�Œp�/0 A��Œp�

�Œ0�� .�Œp�/0 AŒp�

for any p � 0 and any simplicial space A. We can now write the map �Œ¿�! d�‚2ŒC2� as the following
composite of three cofibrations:

�Œ¿�! d�‚2ŒC0�Š�Œ0�Œ0�! .�Œ0�q�Œ0�/Œ0� Š�Œ¿�Œ1�!�Œ1�Œ1� Š d�‚2ŒC2�;

concluding the proof.

We can now prove the proposition.

Proof of Proposition 3.8 We consider the inclusion functor, which defines a left Quillen equivalence

I W PCat.sSet�
op
/p;.1;2/! sSet.���/

op

i;.1;2/
:

For j D 0; 1; 2, by Proposition 3.5 we know that I.d�‚2ŒCj �/ is a j –cell in sSet.���/
op

i;.1;2/
. Moreover, the

object is cofibrant in PCat.sSet�
op
/p;.1;2/ by Lemma 3.9. It follows from Lemma 3.1 that d�‚2ŒCi � is

a j –cell in PCat.sSet�
op
/p;.1;2/.

3.3 Recognizing cells in enriched models of .1; 2/–categories

We now turn to recognizing cells in models that are given by enriched categories. Many model structures
on enriched categories can be obtained by the following general result of Lurie.

Theorem 3.10 [Lurie 2009a, Theorem A.3.2.24] Let V be an excellent monoidal model category, in
the sense of [Lurie 2009a, Definition A.3.2.16]. The category of small categories enriched over V admits
a model structure in which

� the fibrant objects are the locally fibrant categories , ie the enriched categories C such that for any
pair of objects c; c0 in C , the mapping object HomC .c; c

0/ is fibrant in V;
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� the weak equivalences , which are described in [Lurie 2009a, Definition A.3.2.1] and [Lawson
2017], are enriched functors F W C !D such that
(1) for every pair of objects c; c0 of C , the map induced by F of mapping objects

Fc;d W HomC .c; c
0/! HomD.Fc;Fc0/;

is a weak equivalence in V, and
(2) the functor induced by F on (underlying categories) of Ho V–categories is essentially surjective;

� the cofibrations are those described in [Lurie 2009a, Proposition A.3.2.4].

We denote this model structure by CatV.

To give an idea, the technical condition for a combinatorial monoidal model category to be excellent
requests a closure property for cofibrations and weak equivalences, in addition to compatibility of the
model structure with the monoidal structure. Lurie’s original definition also requires a further condition,
known as “invertibility hypothesis”, which was shown to follow from the other conditions by [Lawson
2017, Theorem 0.1].

We specialize this construction to the following situations.

� Let VD Cat be the canonical model structure on the category Cat of small categories from [Rezk
1996], which is seen to be excellent using the fact that the nerve functor creates weak equivalences
and commutes with filtered colimits. We then obtain precisely the model category CatCat D 2Cat
as discussed in [Berger and Moerdijk 2013, Example 1.8].

� Let VD sSet.1;1/ be the Joyal model structure on the category sSet of simplicial sets from [Joyal
2008, Theorem 6.12], which is excellent by [Lurie 2009a, Example A.3.2.23]. We then obtain the
model category CatsSet.1;1/

.

� Let VD sSet�
op

.1;1/
be Rezk’s model structure from Theorem 1.8 on the category sSet�

op
of simplicial

spaces, which is discussed to be excellent [Bergner and Rezk 2013, Theorem 3.11]. We then obtain
the model category CatsSet�

op
.1;1/

.

� Let VD sSetC
.1;1/

be Lurie’s model structure on the category sSetC of marked simplicial sets from
[Lurie 2009a, Proposition 3.1.3.7], which is excellent by [Lurie 2009a, Example A.3.2.22]. We
then obtain the model category CatsSetC

.1;1/
.

We now turn to an explicit Quillen equivalence between one of these enriched models and one of the
models we have already discussed.

Theorem 3.11 [Bergner and Rezk 2013, 7.1–7.6] The enriched nerve functor from [Bergner and Rezk
2013, Definition 7.3], obtained by regarding a bisimplicial category as a simplicial object in simplicial
spaces , defines a right Quillen equivalence

R W CatsSet�
op

.1;1/

! PCat.sSet�
op
/p;.1;2/:

In particular, CatsSet�
op

.1;1/
is a model for .1; 2/–categories.
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Now, we would like to identify the j –cells in the model structure CatsSet�
op

.1;1/
, for which we make use of

the discrete nerve functor N disc W Cat! sSet�
op

considered in [Rezk 2001]. Since it preserves products,
being a right adjoint functor, it induces a functor N disc

� W CatCat! CatsSet�op , given by applying N disc to
each mapping category.

Proposition 3.12 In CatsSet�
op

.1;1/
the object N disc

� Cj is a representative of the j –cell for j D 0; 1; 2.

Before proving this proposition, we establish two lemmas that tell us more about the structure of these
discrete nerves.

Lemma 3.13 For any j D 0; 1; 2, the sSet�
op

–enriched category N disc
� ‚2ŒCj � is fibrant in CatsSet�

op
.1;1/

.

Proof For j D 0; 1; 2, all hom-categories of Cj are of the form ¿ D Œ�1�, Œ0�, or Œ1�. So all hom-
bisimplicial sets of N disc

� ‚2ŒCj � are of the form N discŒ�1�, N discŒ0� or N discŒ1�, which are all complete
Segal spaces, namely fibrant in sSet�

op

.1;1/
, since the categories Œ�1�, Œ0�, and Œ1� do not have any nontrivial

isomorphisms.

Lemma 3.14 For any � in ‚2, there is an isomorphism of precategories

R.N disc
� �/Š d�‚2Œ� �:

Proof For i; j ; k � 0, we first compute the set .RN disc
� �/Œi�;Œj �;Œk�. If D is a bisimplicial category with

object set D0, and D1 denotes the bisimplicial space

D1 D

a
a;b2D0

HomD.a; b/;

by definition of R (as given in [Bergner and Rezk 2013, Definition 7.3]) for any i � 0 there is an
isomorphism of bisimplicial sets

.RD/Œi� Š D1 �
D0

D1 �
D0

� � � �
D0

D1„ ƒ‚ …
i

that is natural in i . When specializing to the case DDN disc
� � , we obtain a natural isomorphism

.RN disc
� �/Œi� Š .N

disc
� �/1 �

.N disc
� �/0

.N disc
� �/1 �

.N disc
� �/0

� � � �
.N disc
� �/0

.N disc
� �/1„ ƒ‚ …

i

:

In particular, if �0 denotes the set of objects of � and �1 denotes the category

�1 WD

a
a;b2�0

Hom� .a; b/;

for any j ; k � 0 we have a bijection

.RN disc
� �/Œi�;Œj �;Œk� ŠNj�1 �

�0

Nj�1 �
�0

� � � �
�0

Nj�1„ ƒ‚ …
i

;

that is natural in i; j ; k.
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Next, for i; j ; k � 0, we compute the set .d�‚2Œ� �/Œi�;Œj �;Œk�. By definition of d�, and using the fact that
‚2 is a full subcategory of 2Cat, we have bijections

.d�‚2Œ� �/Œi�;Œj �;Œk� Š Hom‚2
.Œi j j ; j ; : : : ; j„ ƒ‚ …

i

�; �/

Š Hom2Cat.Œi j j ; j ; : : : ; j„ ƒ‚ …
i

�; �/

Š Hom2Cat.Œ1jj �q
Œ0�
Œ1jj �q

Œ0�
� � � q

Œ0�
Œ1jj �„ ƒ‚ …

i

; �/

Š Hom2Cat.Œ1jj �; �/ �
Hom2Cat.Œ0�;�/

� � � �
Hom2Cat.Œ0�;�/

Hom2Cat.Œ1jj �; �/„ ƒ‚ …
i

Š Hom2Cat.Œ1jj �; �/ �
�0

� � � �
�0

Hom2Cat.Œ1jj �; �/„ ƒ‚ …
i

that are natural in i; j ; k.

Finally, we show that there is a bijection

Hom2Cat.Œ1jj �; �/ŠNj�1

that is natural in j , from which the lemma follows. To do so, we observe that there are natural bijections

Hom2Cat.Œ1jj �; �/Š
a

a;b2�0

Hom2Cat�;�
.Œ1jj �; .�; a; b//

Š

a
a;b2�0

HomCat.Œj �;Hom� .a; b//

Š HomCat

�
Œj �;

a
a;b2�0

Hom� .a; b/
�

Š HomCat.Œj �; �1/ŠNj�1;

as desired.

Proof of Proposition 3.12 Consider the right Quillen equivalence

R W CatsSet�
op

.1;1/

! PCat.sSet�
op
/p;.1;2/:

By Proposition 3.5 and Lemma 3.14, we know that for any j D 0; 1; 2, the object d�‚2ŒCj �ŠR.N disc
� Cj /

is a j –cell in PCat.sSet�
op
/p;.1;2/. Moreover, by Lemma 3.13 the object N disc

� Cj is fibrant in CatsSet�
op

.1;1/
.

It follows from Lemma 3.1 that N disc
� Cj is a j –cell in CatsSet�

op
.1;1/

, as desired.

We now compare the model structure for categories enriched in complete Segal spaces to the model
structure for categories enriched in quasicategories.
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Theorem 3.15 The functor induced by taking .�/0 on each hom-simplicial space defines a right Quillen
equivalence

CatsSet�
op

.1;1/

! CatSet�
op

.1;1/

:

In particular, CatSet�
op

.1;1/
is a model for .1; 2/–categories.

Proof The functor p W���!�, defined by Œm; n� 7! Œm�, induces an adjoint triple

Set�
op

Set.���/
op
D sSet�

op
;

p�

p�

p!

a
a

where p� is given by precomposition with p, while p! and p� are the left and right Kan extensions
along p, respectively. In particular, the functor p� is (strong) monoidal with respect to cartesian product
because it is a right adjoint. Moreover, it is shown as [Joyal and Tierney 2007, Theorem 4.11] that the
adjunction

p� W Set�
op

.1;1/� sSet�
op

.1;1/ Wp�

is a Quillen equivalence. One can then apply [Lurie 2009a, Remark A.3.2.6] to obtain the desired Quillen
equivalence, observing that p� is the functor .�/0.

We can now use this equivalence to identify the j –cells in CatSet�
op

.1;1/
.

Proposition 3.16 In CatSet�
op

.1;1/
the object N�Cj is a representative of the j –cell for j D 0; 1; 2.

Proof Consider the right Quillen equivalence from Theorem 3.15

CatsSet�
op

.1;1/

! CatSet�
op

.1;1/

:

By Proposition 3.12 and Lemma 3.13 we know that for each j D 0; 1; 2, the object N disc
� Cj is a j –cell in

CatsSet�
op

.1;1/
and is fibrant. It follows from Lemma 3.1 that N�Cj , the image of N disc

� Cj under the above
Quillen equivalence, is a j –cell in CatSet�

op
.1;1/

.

We now make a similar comparison between categories enriched in quasicategories and categories enriched
in marked simplicial sets.

Theorem 3.17 The functor induced by taking the underlying simplicial set U on each mapping object
defines a right Quillen equivalence

U� W CatsSetC
.1;1/

! CatsSet.1;1/
:

In particular, CatsSetC
.1;1/

is a model for .1; 2/–categories.

Algebraic & Geometric Topology, Volume 24 (2024)



3856 Julia E Bergner, Viktoriya Ozornova and Martina Rovelli

Proof The desired right Quillen equivalence is an instance of [Lurie 2009a, Remark A.3.2.6] applied to
the right Quillen equivalence

U W sSetC
.1;1/

! Set�
op

.1;1/

from [Lurie 2009a, Theorem 3.1.5.1].

Once again, our goal is to identify the j –cells in this model structure. To do so, consider the flat nerve
functor N [ WCat! sSetC, obtained by regarding the nerve of a category in which the marked 1–simplices
are precisely those corresponding to identity morphisms in the category. One can check that the functor
N [ preserves finite cartesian products, from which we obtain an induced functor N [

� W CatCat! CatsSetC ,
given by applying N [ to each mapping category.

Proposition 3.18 In CatsSetC
.1;1/

the object N [
�Cj is a representative of the j –cell for j D 0; 1; 2.

We begin with a lemma establishing that these objects are fibrant.

Lemma 3.19 For j D 0; 1; 2, the object N [
�Cj is fibrant in CatsSetC

.1;1/
.

Proof For j D 0; 1; 2, all hom-marked simplicial sets of N [
�Cj are of the form N [Œ�1�, N [Œ0� or N [Œ1�,

which are naturally marked quasicategories, and therefore fibrant in CatsSetC
.1;1/

, since the categories Œ�1�,
Œ0� and Œ1� have no nontrivial isomorphisms.

Proof of Proposition 3.18 We consider the right Quillen equivalence

U� W CatsSetC
.1;1/

! CatsSet.1;1/
:

By Proposition 3.16 we know that for each j D 0; 1; 2, the object U�N
[
�Cj Š N�Cj is a j –cell in

CatsSet.1;1/
, and N [

�Cj is fibrant in CatsSetC
.1;1/

by Lemma 3.19. It follows from Lemma 3.1 that N [
�Cj

is a j –cell in CatsSetC
.1;1/

.

3.4 Recognizing cells in simplicial models of .1; 2/–categories

Finally, we want to identify the j –cells in the model of marked simplicial sets. To aid in doing so, we
look first at the related model of scaled simplicial sets. A scaled simplicial set is a simplicial set with a
collection of marked 2–simplices including degenerate 2–simplices.

Theorem 3.20 [Lurie 2009b, Theorem 4.2.7] The category sSetsc of scaled simplicial sets admits a
model structure in which

� the fibrant objects are the1–bicategories from [Lurie 2009b, Definition 4.2.8], and

� the cofibrations are the monomorphisms (and in particular every object is cofibrant).

We denote this model structure by sSetsc
.1;2/

.
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Lurie enhances the classical homotopy coherent nerve functor N W CatsSet! sSet to the context of scaled
simplicial sets by taking into account the marking, obtaining a scaled homotopy coherent nerve functor
N W CatsSetC ! sSetsc .

Theorem 3.21 [Lurie 2009b, Theorem 0.0.3] The scaled homotopy coherent nerve functor from [Lurie
2009b, Definition 3.1.10] defines a right Quillen equivalence

Nsc
W CatsSetC.1;1/

! sSetsc
.1;2/:

In particular, sSetsc
.1;2/

is a model for .1; 2/–categories. We now describe the j –cells in this model
structure.

The description of the j –cells in this model structure makes use of a similar scaled nerve construction, in
the form of a functor N sc W 2Cat! sSetsc , as described in [Gagna et al. 2022, Definition 8.1]. Given any
2–category D, the scaled nerve N scD is given by the Duskin nerve of D together with the marking of all
2–simplices arising from 2–isomorphisms.

Proposition 3.22 In sSetsc
.1;2/

the object N scCj is a representative of the j –cell for j D 0; 1; 2.

Proof As a preliminary observation, we mention that there is an isomorphism of scaled simplicial sets

N scCj ŠNscN [
�Cj

for j D 0; 1; 2. This fact can be deduced combining [Gagna et al. 2022, Definition 8.1] together with
[Gagna et al. 2022, Proposition 8.2].

Consider now the right Quillen equivalence

Nsc
W CatsSetC.1;1/

! sSetsc
.1;2/:

By Proposition 3.18 we know that for each j D 0; 1; 2, the object N [
�Cj is a j –cell in CatsSetC

.1;1/
. We

have also proved that N [
�Cj is fibrant in CatsSetC

.1;1/
in Lemma 3.19. It follows from Lemma 3.1 that

N scCj ŠNscN [
�Cj is a j –cell in sSetsc

.1;2/
.

Finally, we can compare the models of scaled simplicial sets and marked simplicial sets.

Theorem 3.23 [Gagna et al. 2022, Theorem 7.7] The forgetful functor defines a right Quillen equiva-
lence

U WmsSet.1;2/! sSetsc
.1;2/:

We can now prove Proposition 2.18, which characterizes the cells in msSet.1;2/.

Proof of Proposition 2.18 We consider the right Quillen equivalence

U WmsSet.1;2/! sSetsc
.1;2/:
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By [Gagna et al. 2022, Definition 8.1] we know that UN RSCj ŠN scCj for each j D 0; 1; 2. Moreover,
we know that N scCj is a j –cell in sSetsc

.1;2/ by Proposition 3.18 and that it is fibrant in msSet.1;2/ by
[Ozornova and Rovelli 2020, Theorem 5.1(1)]. It follows from Lemma 3.1 that N RSCj is a j –cell in
msSet.1;2/.

4 Applications

Here we discuss four situations in which one can exploit the explicit Quillen equivalence

(4-1) L W sSet‚
op
2

p;.1;2/
�msSet.1;2/ WR

from Theorem 2.20 to produce new theorems, new proofs or export constructions given some existing
ones. Precisely, we show the following.

(1) The nerve construction for 2–categories is compatible with the suspension construction and the
wedge constructions in an appropriate sense in the globular setting, using the analogous statement
proven in the complicial setting in [Ozornova and Rovelli 2022].

(2) The nerve construction for 2–categories is compatible with the cone construction in an appropriate
sense in the globular setting, using the analogous statement proven in the complicial setting in
[Gagna et al. 2023].

(3) The nerve construction for 2–categories is compatible with the co-dual construction in an appropriate
sense in the complicial setting, using the analogous statement that is formal in the globular setting.

(4) Weak equivalences can be tested on homotopy categories and homs in the complicial setting, using
the analogous statement for the globular setting from [Bergner and Rezk 2020].

We expect that similar techniques can be applied to translate any new results from the setting of complicial
sets to that of ‚2–spaces, and vice versa.

As a preliminary preparation that is common to many of the applications, we define the complicial nerve
to be the homotopical functor

N cmp
W 2Cat! Sett�

op

.1;2/!msSet.1;2/

obtained as a composite of the right Quillen functor N \ W 2Cat! Sett�
op

.1;2/
from [Ozornova and Rovelli

2021, Theorem 4.12] with the left Quillen functor Refl W Sett�
op

.1;2/
!msSet.1;2/. Similarly, we consider

the globular nerve construction to be the right Quillen functor

N gl
W 2Cat! Set‚

op
2

.1;2/
! sSet‚

op
2

i;.1;2/
! sSet‚

op
2

p;.1;2/

obtained by composing the right Quillen nerve N W 2Cat!Set‚
op
2

.1;2/
from [Campbell 2020, Theorem 5.10]

with the right Quillen equivalence Set‚
op
2

.1;2/
! sSet‚

op
2

i;.1;2/
from [Ara 2014, Corollary 8.8] and the identity
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viewed as a right Quillen equivalence id W sSet‚
op
2

i;.1;2/
! sSet‚

op
2

p;.1;2/
. The two nerve constructions N gl

and N cmp induce functors at the level of .1; 1/–categories that have the “correct” universal property,
namely they realize the .1; 1/–category of strict 2–categories as a localization of the .1; 1/–category of
.1; 2/–categories, as in [Moser et al. 2022, Remark 6.37].

The globular and complicial nerves are compatible in the following sense.

Proposition 4.1 For every 2–category D there is a natural weak equivalence

L..N glD/cof/ '�!N cmpD

in msSet.1;2/, where .N glD/cof denotes a functorial cofibrant replacement of N glD in sSet‚
op
2

p;.1;2/
.

Proof As a preliminary fact, we observe that with techniques analogous to the ones employed to construct
the Quillen equivalence (4-1), one could also show that there is a Quillen equivalence

L0 W sSet
‚

op
2

p;.1;2/
� Sett�

op

.1;2/ WR
0

by setting, for all � in ‚2 and k � 0,

L0.‚2Œ� ���Œk�/ WDN \.�/��Œk�]:

Here, Sett�
op

.1;2/
denotes the model structure from [Ozornova and Rovelli 2020, Theorem 1.28], and it is

useful to recall that, by [Ozornova and Rovelli 2020, Proposition 1.35], there is a Quillen equivalence

Refl W Sett�
op

.1;2/�msSet.1;2/:

By construction, one then has L D Refl L0. Now, for all � in ‚2 and k � 0, we have a commutative
diagram in 2Cat

cglN gl.�/ c\N \.�/

�
'

� �

'

Here, cgl W sSet‚
op
2 ! 2Cat and c\ W Sett�

op
! 2Cat denote the left adjoint functors to N gl and N \,

respectively, and the top map is adjoint to N \.�� W c
glN gl.�/! �/ with respect to the adjunction c\ aN \,

and the vertical maps can be seen to be weak equivalences in 2Cat combining [Ara 2014, Corollary 8.8;
Campbell 2020, Section 5.1; Ozornova and Rovelli 2021, Theorem 4.10]. So there is a weak equivalence

cgl‚Œ��Š cglN gl.�/ ' � c\N \.�/D c\L0‚Œ��

in 2Cat. Applying [Dugger 2001, Lemma 9.7] on the left Quillen functors

cgl; c\L0 W sSet
‚

op
2

p ! sSet
‚

op
2

p;.1;2/
! 2Cat;

it follows that, for all W cofibrant in .sSet‚
op
2 /p;.1;2/, there is a natural weak equivalence

cglW '
 � c\L0W
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in 2Cat. By [Hovey 1999, Corollary 1.4.4], it follows that for every (necessarily fibrant) 2–category D

we obtain a natural equivalence
N glD '

�!R0N \D

in sSet‚
op
2

p;.1;2/
. Hence, using that the left Quillen functor L0 preserves weak equivalences between cofibrant

objects in sSet‚
op
2

p;.1;2/
and that the derived counit of L0 aR0 at N glD is a weak equivalence in Sett�

op

.1;2/
,

we obtain that there are weak equivalences

L0..N glD/cof/ '�!L0..R0N \D/cof/ '�!N \D

in Sett�
op

.1;2/
. Finally, using that the functor Refl is homotopical we obtain a weak equivalence

L..N glD/cof/D Refl L0..N glD/cof/ '�! Refl N \DDN cmpD

in msSet.1;2/, as desired.

4.1 Compatibility of the suspension and wedge constructions with the nerve

We consider the following two constructions in the globular setting:

(1) the globular suspension construction from Definition 1.20

†gl
W sSet�

op

p;.1;1/! .sSet‚
op
2

p;.1;2/
/�;�;

which is a left Quillen functor; and

(2) the globular wedge construction

_
gl
W .sSet‚

op
2

p;.1;2/
/� � .sSet‚

op
2

p;.1;2/
/�! .sSet‚

op
2

p;.1;2/
/�;

defined by
W _gl Z WDW q

‚2Œ0�
Z;

which is a left Quillen bifunctor.

These constructions induce functors at the level of underlying .1; 1/–categories that have the following
recognized universal properties.

(1) The suspension construction induces precisely the construction studied in [Gepner and Haugseng
2015, Definition 4.3.21].

(2) The wedge construction induces the .1; 1/–categorical coproduct in the .1; 1/–category of pointed
.1; 2/–categories.

The analogous constructions can also be implemented in the complicial context as well, as

(1) the complicial suspension construction from [Ozornova and Rovelli 2022, Definition 2.6]

†cmp
WmsSet.1;1/! .msSet.1;2//�;�I
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(2) the complicial wedge construction from [Ozornova and Rovelli 2022, Definition 4.7]

_
cmp
W .msSet.1;2//� � .msSet.1;2//�! .msSet.1;2//�:

We record a precise relation between the globular and complicial suspension and wedge.

As a preliminary fact, we observe that with techniques analogous to the ones employed to construct the
Quillen equivalence (4-1), we could also show that there is a Quillen equivalence

L1 W sSet�
op

p;.1;1/� Sett�
op

.1;1/ WR1

by setting, for all m; k � 0,

L1.�Œm���Œk�/ WDN RS.Œm�/��Œk�] D th1.�Œm�/��Œk�
]:

Here, sSet�
op

p;.1;1/
denotes the model structure for complete Segal spaces obtained by localizing the

projective model structure, msSet.1;1/ denotes the model structure for saturated 1–complicial sets, and
th1 WmsSet.1;1/!msSet.1;2/ is the left Quillen functor from [Verity 2008b, Notation 13].

Proposition 4.2 (a) For all W cofibrant in .sSet�
op
/p;.1;1/ there is a weak equivalence

†cmpL1W '
�!L†glW

in .msSet.1;2//�;�.

(b) Given any W and Z in sSet‚
op
2
� , there is an isomorphism in msSet

L.W _gl Z/ŠLW _cmp LZ:

Proof (a) By [Ozornova and Rovelli 2022, Theorem 2.9], there is a natural weak equivalence in
.msSet.1;2//�;� given by the composite

L†gl‚2Œm�ŠL‚2Œ1jm�DN cmpŒ1jm�DN cmp†Œm� ' �†cmpN cmpŒm�D†cmpL1�Œm�:

The first three isomorphisms are given by the definitions of †gl, L, and †, respectively, and the last
is given by the definition L1. The weak equivalence was established in [Ozornova and Rovelli 2022,
Theorem 2.9]. Now, using [Dugger 2001, Lemma 9.7] on the functors

L†gl; †cmpL1 W sSet�
op

p ! sSet�
op

p;.1;1/! .msSet.1;2//�;�

it follows that for all W cofibrant in .sSet�
op
/p;.1;1/ there is a weak equivalence

†cmpL1W '
�!L†glW

in .msSet.1;2//�;�.

(b) Given any W and Z in sSet‚
op
2
� , there is an isomorphism in msSet

L.W _gl Z/ŠL
�
W q
‚2Œ0�

Z
�
ŠLW q

�Œ0�
LZ ŠLW _cmp LZ;

concluding the proof.
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Remark 4.3 By [Hovey 1999, Corollary 1.4.4], for all .Y; c; d/ fibrant in .msSet.1;2//�;� there is a
weak equivalence

(4-2) Homgl
RY
.c; d/ '�!R1 Homcmp

Y
.c; d/

in sSet‚
op
2

p;.1;1/
(and hence also in sSet‚

op
2

i;.1;1/
), where

Homgl
W .sSet‚

op
2

p;.1;2/
/�;�! sSet�

op

p;.1;1/

denotes the right Quillen adjoint functor to †gl, and similarly

Homcmp
W .msSet.1;2//�;�!msSet.1;1/

denotes the right Quillen adjoint to †cmp.

Recall that there are functors implementing the strict suspension construction

† W Cat! 2Cat�;�

and the strict wedge construction

_W 2Cat� � 2Cat�! 2Cat�:

As an application of Theorem 2.20, combined with results from [Ozornova and Rovelli 2022], we can
prove the following corollary, asserting that the suspension and wedge construction along a sieve/cosieve
object are both compatible with the globular nerve of 2–categories. Recall from [Ozornova and Rovelli
2022, Definition 4.3] the definition of sieve and cosieve object in a 2–category, which are used to determine
which 2–categories can be wedged together.

Corollary 4.4 (a) Given any 1–category D, there is a weak equivalence

†glN glD '
�!N gl†D

in .sSet‚
op
2

.1;2/
/�;�.

(b) Given 2–categories A and B endowed with a sieve and a cosieve object , respectively, there is a
weak equivalence in .sSet‚

op
2

.1;2/
/�,

N glA_gl N glB '
�!N gl.A_B/:

Proof We prove (b) and leave (a) to the interested reader.

First, in the commutative square

N RSA_cmp N RSB N cmpA_cmp N cmpB

N RS.A_B/ N cmp.A_B/

'

'

'
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the left vertical map is a weak equivalence in msSet.1;2/ by [Ozornova and Rovelli 2022, Theorem 4.9].
The two horizontal maps are weak equivalences in msSet.1;2/, which can be seen by combining [Ozornova
and Rovelli 2021, Theorem 5.2] and [Ozornova and Rovelli 2020, Proposition 1.31]. By the two-out-of-
three property, the right-hand map is then a weak equivalence in msSet.1;2/.

Next, in the commutative square

L..N glA/cof/_cmp L..N glB/cof/ N cmpA_cmp N cmpB

L..N gl.A_B//cof/ N cmp.A_B/

'

'

'

the two horizontal maps are weak equivalences in msSet.1;2/ by Proposition 4.1. By the two-out-of-three
property, the left vertical map is a weak equivalence.

We have the commutative triangle

L..N glA/cof _gl .N glB/cof/ L..N glA_gl N glB/cof/

L..N gl.A_B//cof/

'

'

By [Hovey 1999, Corollary 1.3.16], the left Quillen equivalence L creates weak equivalences between
cofibrant objects in sSet‚

op
2

p;.1;2/
, so we obtain a commutative square

.N glA_gl N glB/cof .N gl.A_B//cof

N glA_gl N glB N gl.A_B/

'

' '

as desired. By the two-out-of-three property, the bottom map in the square is a weak equivalence in
sSet‚

op
2

p;.1;2/
, as desired.

While (a) can be essentially read off from [Rezk 2010], tackling directly (b) within the globular setting
would require significant combinatorial work.

4.2 The cone construction and compatibility with the nerve

In the globular setting there does not seem to be a straightforward way to define join constructions, or
even cone constructions, which play an important role in the development of the theory of limits and
colimits. By contrast, the complicial setting is well-suited to implementing formal join constructions in
general, and cones in particular. A cone construction

Conecmp
WD�Œ0� ?�WmsSet.1;1/! .msSet.1;2//�

is defined in [Gagna et al. 2023] in the form of a left Quillen functor.
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Given any W in .sSet‚
op
2 /p;.1;1/, taking advantage of the explicit Quillen equivalence (4-1), it is possible

to define the cone construction for W in terms of the one for L1W , by setting

ConeglW WDR..Conecmp.L1.W
cof///fib/:

While the formula is fairly complicated, there is currently no competing way of treating cones in ‚2–
spaces.

Remark 4.5 For every W cofibrant in .sSet‚
op
2 /p;.1;2/ there is a zigzag of weak equivalences

L..ConeglW /cof/DL..R..Conecmp.L1.W
cof///fib//cof/ '�! .Conecmp.L1.W

cof///fib

'
 � Conecmp.L1.W

cof//

'
�! Conecmp.L1W /

in msSet.1;2/.

Recall that there is a functor implementing the strict cone construction Cone W Cat ! 2Cat�. As an
application of Theorem 2.20, combined with results from [Gagna et al. 2023], we can prove the following
corollary, asserting that the cone construction is compatible with the nerve construction in a suitable sense
in the globular setting for 1–categories that are freely generated by a loop-free graph. Such 1–categories
are called strong Steiner in [Ara and Maltsiniotis 2020, Section 2.15].

Corollary 4.6 Given any 1–category D that is freely generated by a loop-free graph , there is a zigzag of
weak equivalences in .sSet‚

op
2 /p;.1;2/,

N glConeD' ConeglN glD:

Proof There is a zigzag of weak equivalences

L..N glConeD/cof/ '�!N cmpConeD

'
 � ConecmpN cmpD

'
 � ConecmpL1..N

glD/cof/'L.Conegl.N glDcof/cof/

in msSet.1;2/ given by Proposition 4.1, [Gagna et al. 2023, Theorem 5.5], Proposition 4.1 for L1, and
Remark 4.5, respectively. Given that the left Quillen equivalence L creates weak equivalences between
cofibrant objects, we obtain a zigzag of weak equivalences in .sSet‚

op
2 /p;.1;2/

N glConeD' .ConeglN glD/cof
' .Conegl..N glD/cof//cof '

�! Conegl..N glD/cof/ '�! ConeglN glD;

as desired.

4.3 Dual constructions and compatibility with the nerve

It is determined in [Barwick and Schommer-Pries 2021, Theorem 7.3] that there are four types of dualities
for .1; 2/–categories: identity; op-dual, which reverses the direction of the 1–morphisms; co-dual, which
reverses the direction of the 2–morphisms; and co-op-dual, which reverses both.
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In the complicial setting, one can implement the op-dual construction .�/op WmsSet.1;2/!msSet.1;2/ in
a straightforward way. However, there is no formal way to define the co-dual construction in msSet.1;2/,
and a co-dual construction .�/co was only proposed recently in [Loubaton 2022, Proposition 4.2.7] in the
form of a (highly nontrivial) left Quillen functor .�/co WmsSet.1;2/!msSet.1;2/.

By contrast, the globular setting is well-suited to implementing all four dualities; see [Haugseng 2021]. In
particular, the co-dual construction can be realized as an isomorphism that is both a left and right Quillen
equivalence for both the projectively-based and injectively-based model structures,

.�/co
W sSet

‚
op
2

p;.1;2/
! sSet

‚
op
2

p;.1;2/
and .�/co

W sSet
‚

op
2

i;.1;2/
! sSet

‚
op
2

i;.1;2/
:

Given the Quillen equivalence (4-1), for all Y fibrant in msSet.1;2/, there is a zigzag of weak equivalences

(4-3) Y co
'L...RY /co/cof/;

in msSet.1;2/, allowing one to express the co-dual construction of Y in terms of the one for RY .

Remark 4.7 For every fibrant object Y in msSet.1;2/, by (4-3) there is zigzag of weak equivalences

L...RY /co/cof/' Y co

in msSet.1;2/. By taking a functorial fibrant replacement in msSet.1;2/, we obtain a zigzag of weak
equivalences between fibrant objects in msSet.1;2/

.L...RY /co/cof//fib
' .Y co/fib:

Applying R then gives a zigzag of weak equivalences

R.L...RY /co/cof//fib/'R..Y co/fib/

in sSet
‚

op
2

p;.1;2/
. By composing with the component of the derived unit of LaR on ..RY /co/cof, we obtain

a zigzag of weak equivalences

.RY /co
' ..RY /co/cof

'R..Y co/fib/

in sSet
‚

op
2

p;.1;2/
.

As an application of Theorem 2.20, we can prove the following corollary, asserting that the co-dual
construction is compatible with the nerve of 2–categories in the complicial setting.

Corollary 4.8 Given any 2–category D, there is a zigzag of weak equivalences in msSet.1;2/

N cmpDco
' .N cmpD/co:

Proof There a zigzag of weak equivalences

RN cmp.Dco/'N gl.Dco/' .N glD/co
' .RN cmpD/co

'R..N cmpD/co/fib/
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in .sSet‚
op
2 /p;.1;2/, where the weak equivalences are given by Proposition 4.1, inspection, Proposition 4.1,

and Remark 4.7, respectively. By [Hovey 1999, Corollary 1.3.16], the right Quillen equivalence R creates
weak equivalences between fibrant objects in .sSet‚

op
2 /p;.1;2/, so we obtain a zigzag of weak equivalences

N cmpDco
' ..N cmpD/co/fib

' .N cmpD/co

in msSet.1;2/, as desired.

4.4 A fundamental theorem for 2–complicial sets

We define the globular hom construction

Homgl
W .sSet

‚
op
2

p;.1;2/
/�;�! sSet

‚
op
1

p;.1;1/

as the right (Quillen) adjoint functor of the suspension †gl. Similarly, we define the globular homotopy
category construction

Hogl
W sSet

‚
op
2

p;.1;2/
! Cat

to be given by
Hogl X D h��‚X;

where h W sSet�
op
! Cat is the homotopy category functor from [Rezk 2010, Section 7.3] and

�‚ W�D‚1!‚2

is the functor defined by �‚Œm�D Œm�.Œ0�; : : : ; Œ0�/ from [Bergner and Rezk 2020, Section 3.2]; it is also
defined in [Rezk 2010, Section 4.1] in more generality.

The following statement, which is essentially in [Bergner and Rezk 2020], can be thought of as a
fundamental theorem for .1; 2/–categories, referring to the terminology from [Rezk 2022], where the
.1; 1/–categorical case is treated in the model of quasicategories.

Proposition 4.9 Let W and Z be fibrant in sSet
‚

op
2

p;.1;2/
. A map f WW ! Z in sSet

‚
op
2

p;.1;2/
is a weak

equivalence if and only if

(1) the map f is essentially surjective , meaning that it induces an essentially surjective functor of
homotopy categories

Hogl f W Hogl W ! Hogl ZI

(2) the map f is homotopically fully faithful , namely that it induces a weak equivalence

fc;d W Homgl
W
.c; d/' Homgl

Z
.fc; fd/

in sSet�
op

p;.1;1/
.

Proof As a consequence of [Bergner and Rezk 2020, Theorem 6.4], the functor

d� W sSet
‚

op
2

p;.1;2/
! sSet.���/

op

p;.1;2/
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creates weak equivalences, so saying that f WW !Z is a weak equivalence in sSet‚
op
2

p;.1;2/
is equivalent

to saying that
d�f W d�W ! d�Z

is a weak equivalence in sSet.���/
op

p;.1;2/
. Let us take a functorial fibrant replacement of d�f in sSet

‚
op
2

p , and
denote it by .d�f /pf W .d�W /pf! .d�Z/pf. Using the fact that d� preserves fibrant objects [Bergner
and Rezk 2020, Proposition 6.3], we can deduce that d�f W d�W ! d�Z is a weak equivalence in
sSet‚

op
2

p;.1;2/
! sSet.���/

op

p;.1;2/
if and only if

.d�f /pf
W .d�W /pf

! .d�Z/pf

is a weak equivalence in sSet.���/
op

p;.1;2/
. Since .d�W /pf and .d�Z/pf are fibrant in sSet.���/

op

p;.1;2/
, we know

that .d�f /pf is a weak equivalence in sSet.���/
op

p;.1;2/
if and only if the same map is a weak equivalence in

sSet.���/
op

p . Using the fact that Dwyer–Kan equivalences between complete Segal objects are precisely
levelwise weak equivalences [Bergner and Rezk 2020, Proposition 8.17 and Definition 8.2], the map
.d�f /pf is a weak equivalence in sSet.���/

op

p;.1;2/
if and only if

(10) the map
Ho..d�f /pf/ W Ho..d�W /pf/! Ho..d�Z/pf/

is an essentially surjective functor on homotopy categories, where Ho denotes the homotopy
category from [Bergner and Rezk 2020, Section 8.1]; and

(20) the map

..d�f /pf/a;b WM
�
.d�W /pf..d

�f /pf.a/; .d�f /pf.b//!M�
.d�Z/pf..d

�f /pf.a/; .d�f /pf.b//

is a weak equivalence in sSet�
op

p;.1;1/
, where M� denotes the mapping object from [Bergner and

Rezk 2020, Section 8.1].

Given the natural equivalence of categories

Ho..d�W /pf/' h��‚W D Hogl W

and the natural weak equivalence

M�
.d�W /pf.a; b/'M�

d�W .a; b/Š Homgl
W
.a; b/

from [Bergner and Rezk 2020, Proposition 3.10] in sSet�
op

p;.1;1/
, we then obtain an equivalence to the

conditions (1) and (2) from the statement, as desired.

Aiming at providing a proof of the fundamental theorem for .1; 2/–categories in the complicial context,
recall the complicial hom construction

Homcmp
W .msSet.1;2//�;�!msSet.1;1/;
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as the right (Quillen) adjoint functor of the suspension †cmp, and the complicial homotopy category
construction

Hocmp
WmsSet.1;2/! Cat

given by
Hocmp X D c

\
1
sp1X;

where sp1 WmsSet!msSet is the right Quillen functor of [Verity 2008b, Notation 13] and c
\
1
WmsSet!Cat

is the left adjoint functor to the 1–dimensional natural nerve functor.

The homotopy category and hom constructions for the globular and complicial setting are compatible as
follows:

Lemma 4.10 Given a fibrant object X in msSet.1;2/, there is an isomorphism of categories

Hogl RX Š Hocmp X:

Proof Given a fibrant object X in msSet.1;2/, there is an isomorphism of categories

Hogl RX D h��‚RX Š hR1sp1X Š c
\
1
sp1X D Hocmp X;

as desired.

Using the Theorem 2.20, combined with Proposition 4.9, we can prove the following fundamental theorem
for .1; 2/–categories in the complicial setting.

Theorem 4.11 Let X and Y be fibrant in msSet.1;2/. A map f W X ! Y in msSet.1;2/ is a weak
equivalence if and only if

(1) the map f is essentially surjective , meaning f induces an essentially surjective functor of
homotopy categories

Hocmp f W Hocmp X ' Hocmp Y I

(2) the map f is homotopically fully faithful , namely f induces a weak equivalence in msSet.1;1/,

fc;d W Homcmp
X
.c; d/' Homcmp

Y
.fc; fd/:

Proof A map f W X ! Y is a weak equivalence in msSet.1;2/ if and only if, by (4-1), the map
Rf WRX !RY is a weak equivalence in sSet‚

op
2

p;.1;2/
. By Proposition 4.9, we can equivalently say that

Rf is a Dwyer–Kan equivalence, in that the map

.Rf /
gl
c;d
W Homgl

RX
.c; d/! Homgl

RY
.fc; fd/

is a weak equivalence in .sSet�
op
/p;.1;1/ for all c; d 2 .RX /0;Œ0� and that

Hogl Rf W Hogl RX ' Hogl RY
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is an essentially surjective functor of homotopy categories. By Remark 4.3, these conditions are equivalent
to having the analogous ones for R1.f

cmp/, namely, that the map

R1.f
cmp

c;d
/ WR1 Homcmp

X
.c; d/!R1 Homcmp

Y
.fc; fd/

is a weak equivalence in msSet.1;1/ for all c; d 2X0 and that the map

Hogl Rf W Hogl RX ! Hogl RY

is essentially surjective. Then applying Lemma 4.10, we can equivalently say that f cmp is a Dwyer–Kan
equivalence, in that the map

f
cmp

c;d
W Homcmp

X
.c; d/! Homcmp

Y
.fc; fd/

is a weak equivalence in msSet.1;1/ for all c; d 2X0 and that

Hocmp f W Hocmp X ! Hocmp Y

is an essentially surjective functor of homotopy categories, as desired.

A proof of this fact internal to the complicial setting was outlined in [Campbell 2019], and provided
recently in [Loubaton 2022, Corollary 3.2.11], but it relies on highly nontrivial combinatorics. Using our
comparison with the ‚2–model gives a much less technical proof.

Appendix The colossal model of .1; 2/–categories

In this section, we give a model categorical variant of the colossal model by Barwick–Schommer-Pries.

In order to recall the original definition of the colossal model, we fix the following notations. We denote
by ‡2 the indexing category for the colossal model, namely the full subcategory of 2Cat as described
by [Barwick and Schommer-Pries 2021, Definition 6.2]. In particular, .‡op

2
/1 is the .1; 1/–category

obtained by regarding the category ‡op
2

as an .1; 1/–category. We denote by S1 the .1; 1/–category
of spaces, namely S1 D .sSet.1;0//1.

Definition A.1 [Barwick and Schommer-Pries 2021] The colossal model is the .1; 1/–category

L1
�
S
.‡

op
2
/1

1

�
;

obtained by localizing the presheaf .1; 1/–category S
.‡

op
2
/1

1 at the set of maps from [Barwick and
Schommer-Pries 2021, Notation 8.3].

From the definition, we see that the colossal model is obtained by considering the .1; 1/–category
of spaces, taking a presheaf .1; 1/–category valued in it, and then localizing. By contrast, one could
instead present the same .1; 1/–category by considering the Quillen model structure, which presents
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the .1; 1/–category of spaces, taking the injective model structure on a presheaf category of functors
valued in the Quillen model structure, and then a left Bousfield localization of it. More precisely, one can
consider the following model structure.

Proposition A.2 The category sSet‡
op
2 of ‡2–spaces supports a cofibrantly generated model structure

obtained by taking the left Bousfield localization of the injective model structure sSet‡
op
2

inj with respect to
the set of elementary acyclic cofibrations from [Barwick and Schommer-Pries 2021, Notation 6.5]. We
denote this model structure by sSet‡

op
2

.1;2/
.

We want to prove that this model structure does present the colossal model, in the sense of the following
theorem.

Theorem A.3 There is an equivalence of .1; 1/–categories

L1
�
.sSet.1;0//

.‡
op
2
/1

1

�
'
�
sSet

‡
op
2

.1;2/

�
1
:

The proof is an application of the following result, which guarantees that one can build localizations of
presheaf categories either as model categories or directly as .1; 1/–categories.

Proposition A.4 Let A be a category , M a left proper combinatorial simplicial model category, and ƒ a
set of maps in MA. There is an equivalence of .1; 1/–categories

L1.M
A1
1 /' .L.MA

inj//1;

where L.MA
inj/ denotes the Bousfield localization of the injective model structure MA

inj atƒ, and L1.M
A1
1 /

denotes the localization of the .1; 1/–category MA1
1 at ƒ.

The proof of the proposition requires the following two ingredients.

Theorem A.5 [Lurie 2009a, Proof of Proposition A.3.7.8] Let N be a left proper combinatorial simplicial
model category, and ƒ be a set of maps in N. There is an equivalence of .1; 1/–categories

L1N1 ' .LN/1;

where LN denotes the Bousfield localization of the model structure N at ƒ, and L1N1 denotes the
localization of the .1; 1/–category N1 at ƒ1.

Theorem A.6 [Lurie 2009a, Proposition 4.2.4.4] Let A be a category and M a combinatorial simplicial
model category. There is an equivalence of .1; 1/–categories

MA1
1 ' .MA

inj/1;

where MA
inj denotes the injective model structure on MA.

We can now prove the proposition.
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Proof of Proposition A.4 Combining Theorems A.5 and A.6, we obtain an equivalence of .1; 1/–
categories

L1.M
A1
1 /' L1.M

A/1 ' .L.M
A//1;

as desired.

We can now prove the theorem.

Proof of Theorem A.3 Applying Proposition A.4 with MDSD sSet.1;0/, AD‡
op
2

and ƒDS , the set
of maps in sSet‡

op
2 from [Barwick and Schommer-Pries 2021, Notation 8.3], we obtain the equivalence of

.1; 1/–categories

L1
�
S
.‡

op
2
/1

1

�
D L1

�
.sSet.1;0//

.‡
op
2
/1

1

�
'
�
L
�
sSet

‡
op
2

.1;0/

��
1
D
�
sSet

‡
op
2

.1;2/

�
1
;

as desired.
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