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Phase transition for the existence of van Kampen 2—complexes

in random groups

TSUNG-HSUAN TSAI

Gromov (1993) showed that every reduced van Kampen diagram D of a random group at density d
satisfies the isoperimetric inequality |dD| > (1 —2d — ¢)| D|{. Adapting Gruber and Mackay’s (2021)
method for random triangular groups, we obtain a nonreduced van Kampen 2—complex version of this
inequality.

The main result of this article is a phase transition: given a geometric form Y of 2—complexes, we
find a critical density d.(Y) such that, in a random group at density d, if d < d., then there is no
reduced van Kampen 2—complex of the form Y'; while if d > d,, then there exists reduced van Kampen
2—complexes of the form Y.

As an application, we exhibit phase transitions for small-cancellation conditions in random groups, giving
explicitly the critical densities for the conditions C’(A), C(p), B(p) and T (¢).

20F06; 20F05, 20P05

1 Introduction

Random groups The first occurrence of random group presentations is the density model by M Gromov
[1993, 9.B]. Formally, a random group is a random variable with values in a given set of groups, often
constructed by group presentations with a fixed set of generators and a random set of relators. The goal is
to study the asymptotic behaviors of a sequence of random groups (G¢) when the maximal relator lengths
¢ goes to infinity. We say that G satisfies some property Q asymptotically almost surely (a.a.s.) if the
probability that G, satisfies Qg converges to 1 as £ goes to infinity.

Let us consider the permutation invariant density model of random groups introduced by Gromov [1993,
page 272] and developed in [Tsai 2022]. Fix the set of generators Xy, = {x1, ..., Xn} with m > 2 for
group presentations. Let By be the set of cyclically reduced words of X, ,ff of length at most £. We shall
construct random groups by densable and permutation invariant random subsets of By.

Definition 1.1 [Gromov 1993, page 272; Tsai 2022, Definitions 1.5 and 2.5] A sequence of random
subsets (Ry) of the sequence of sets (By) is called densable with density d € {—oo}U[0, 1] if the sequence
of random variables densp, (Ry) := log, g, |(| R¢|) converges in probability to the constant d.

The sequence (Ry) is called permutation invariant if Ry is a permutation measure-invariant random
subset of By.
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Many natural models of random subsets are densable and permutation invariant. For example, the uniform
distribution on all subsets of cardinality LBgJ considered in [Ollivier 2004; 2005; 2007], or the Bernoulli

|d—1

sampling of parameter | By considered in [Antoniuk et al. 2015] for random triangular groups.

Some other natural models are densable but not permutation invariant. For instance, consider the Bernoulli
sampling of parameter (2m)@=DE op the set of nonreduced words of length £, and reduce these words to
form a random subset of By. This is also the case for Gromov’s expander graph model [2003], in which
the random relators are the words read on the simple cycles of a randomly labeled expander graph.

Definition 1.2 [Gromov 1993, page 273; Tsai 2022, Definition 4.1] A sequence of random groups
(Gy(m, d)) with m generators at density d is defined by

Ge(m,d) = (Xm | Ry),
where (Ry) is a densable sequence of permutation invariant random subsets of (By) with density d.

For detailed surveys on random groups, we refer the reader to work by E Ghys [2004], Y Ollivier [2005],
I Kapovich and P Schupp [2008], and F Bassino, C Nicaud and P Weil [Bassino et al. 2020].

Van Kampen 2—-complexes We consider oriented combinatorial 2—complexes and van Kampen diagrams
as in [Lyndon and Schupp 1977, II1.2 and II1.9], with an additional precision that each face has an
orientation given by its boundary path.

A 2—complex is hence a triplet Y = (V, E, F) where V is the set of vertices, E is the set of oriented
edges and F is the set of oriented faces. Its underlying graph is denote by YD) = (v, E). Every edge
e € E has a starting point a(e¢) € V, an ending point w(e) € V and an inverse edge e~! € E, satisfying
ale™!) =w(e), w(e™!) = a(e) and (e7!)~! = e. Every face f € F has a boundary path df that is a
cyclically reduced loop on the underlying graph ¥ ()| and an inverse face f~! € F whose boundary path
is the inverse. That is to say, it satisfies (f~!)™! = f and (/') = (3f)~!. The starting point of a
face f is the starting point of its boundary path. Note that #~! has the same starting point as f.

A geometric edge is a pair of inverse edges {e, e !}, denoted by é. Similarly, a geometric face is a pair
of inverse faces { f, /~!}, denoted by /. Throughout this article, we will carefully distinguish oriented
edges (faces) and geometric edges (faces). We denote by |Y(1)| the number of geometric edges and |Y|
the number of geometric faces.

Definition 1.3 A van Kampen 2—complex with respect to a group presentation G = (X | R) is a 2—
complex Y = (V, E, F) with labels on edges by generators ¢; : E — X'+ and labels on faces by relators

¢2: F — R* such that g1 (e™") = p1() ™", 2(/ ™) = 02(f) ™" and 91 (3f) = 92(/f).
We denote briefly Y = (V, E, F, @1, ¢2).
The data of the labels ¢1, ¢ on Y is equivalently given by a combinatorial map ¥ — K(X, R), where

K (X, R) is the standard 2—complex with respect to the group presentation G = (X | R) (with one vertex,
an edge for each generator and its inverse, and a face for each relator and its inverse).

Algebraic € Geometric Topology, Volume 24 (2024)
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Figure 1: A reducible pair of faces.

A van Kampen diagram D is a finite, planar (embedded in a Euclidean plane) and simply connected van
Kampen 2—-complex. Its boundary length |dD] is the length of a boundary path, passing once by every
edge adjacent to one face and twice by every edge adjacent to zero faces.

A pair of faces in a van Kampen 2—complex is called reducible if they have the same relator label and
their boundaries share a common edge at the same respective position (see Figure 1). A van Kampen
2—complex is called reduced if there is no reducible pair of faces.

Isoperimetric inequalities In order to prove the hyperbolicity of a random group at density d < %
Gromov [1993, 9.B] showed that a.a.s. reduced local van Kampen diagrams of Gy(m, d) satisfy an
isoperimetric inequality depending on the density d.

Theorem 1.4 [Gromov 1993, page 274; Ollivier 2004, Chapter 2] Let (G;(m, d)) be a sequence of
random groups with m > 2 generators at density d. For any ¢ > 0 and K > 0, a.a.s. every reduced van
Kampen diagram D of Gy(m, d) with |D| < K satisfies the isoperimetric inequality

10D| > (1 —2d — )| D|¢.

Ollivier’s proof [2004] can achieve a slightly stronger! inequality,
IDW| > (1-d - Le)|DJe.

One may expect such an inequality to hold for every reduced van Kampen 2—complex Y with |[Y| < K.
D Gruber and J Mackay [2021, Section 2] showed that in the triangular model of random groups,? the
above inequality holds for every nonreduced van Kampen 2—complex Y with |Y | < K if the reduction
degree (Definition 2.1) Red(Y') is added in the left-hand side of the inequality.

However, the result fails in the regular Gromov density model: the condition |Y| < K is not enough (see
Remark 2.4). In Section 2 of this paper, we introduce the notion of complexity (Definition 2.2) to adapt
Gruber and Mackay’s inequality in the Gromov density model, establishing a nonreduced van Kampen
2—complex version of Theorem 1.4. A similar approach was given in the preprint [Odrzygézdz 2021].

Note that every van Kampen diagram composed of relators of lengths at most £ satisfies 2| D(!)| — |dD| < | D|¢, so the given
inequality implies the isoperimetric inequality.

2 A model where the relator length £ = 3 is fixed, and we are interested in asymptotic behaviors when the number of generators
m goes to infinity.
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Theorem 1.5 Let (G¢(m,d)) be a sequence of random groups with m > 2 generators at density d. Let
e>0, K >0. Forany d < 1, a.a.s. every van Kampen 2—complex Y of complexity K of G¢(m, d)
satisfies

YD £ Red(Y) > (1—d —e)|Y|L.

Phase transition for the existence of van Kampen 2—complexes We are now interested in the converse
of Theorem 1.5: Given a 2—complex Y satisfying the inequality of Theorem 1.5, is it true that a.a.s. there
exists a reduced van Kampen 2—complex of Gy (m, d) whose underlying 2—complex is Y ?

A 2—complex Y is said to be fillable by a group presentation G = (X | R) (or by the set of relators R) if
there exists a reduced van Kampen 2—complex of G whose underlying 2—complex is Y. An edge of a
2—complex is called isolated if it is not adjacent to any face. Since isolated edges do not affect fillability,
we will only consider finite 2—complexes without isolated edges in the following.

To better formulate the problem, we consider a sequence of 2—complexes (Y;) and introduce the notion
of geometric form of 2—complexes (Y, A) (Definition 3.1), together with its density dens Y and its
critical density dens. Y (Definition 3.2). The main result of this article is the phase transition at density
1 —dens.(Y), for the fillability of the 2—complex Y.

Theorem 1.6 Let (G¢(m, d)) be a sequence of random groups with m > 2 generators at density d. Let
(Yy) be a sequence of 2—complexes with some geometric form (Y, 1).

(1) Ifd <1—dens. Y, then a.a.s. Yy is not fillable by G¢(m, d).
(i) Ifd > 1—dens. Y and Yy is fillable by By, then a.a.s. Yy is fillable by Gy(m, d).

In Section 3, we prove Theorem 1.6 using the multidimensional intersection formula for random subsets
(Theorem 3.6, [Tsai 2022, Theorem 3.7]), which generalizes the proof for the C’(A) phase transition
in [Tsai 2022, Theorem 1.4]. We will see in Remark 3.3 that the second assertion of the theorem is
equivalent to the following corollary.

Corollary 1.7 Let (Gy(m,d)) be a sequence of random groups with m > 2 generators at density d. Let
s> 0and K > 0. Let (Yy) be a sequence of 2—complexes of the same geometric form such that Y is
fillable by By. If every sub-2—complex Z; of Y, satisfies

1ZP = (1 —d + )| Zlt,
then a.a.s. Yy is fillable by Gy(m, d).

Note that we need Yy to have at least one filling by the set of all possible relators By. It is automatically
satisfied for planar and simply connected 2—complexes. In addition, if every face boundary length of Yy
is exactly £, then the given inequality is equivalent to an isoperimetric inequality similar the inequality of
Theorem 1.4. Hence the following corollary.
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Corollary 1.8 Let (Gy(m,d)) be a sequence of random groups with m > 2 generators at density d. Let
s> 0and K > 0. Let (Dy) be a sequence of finite planar 2—complexes of the same geometric form such
that every face boundary length of Dy is exactly £. If every sub-2—complex Dé of Dy satisfies

|0Dy| > (1 —2d + 5)| Dy |X,
then a.a.s. Dy is fillable by Gy(m, d).

It is mentioned in [Ollivier and Wise 2011, Proposition 1.8] that when d < 1/ p, a.a.s., a random group at
density d has the C(p) small cancellation condition. As an application of Theorem 1.6, we show that
there is a phase transition: if d > 1/ p, then a.a.s. a random group at density d does not have C(p) (see
Proposition 4.2).

Acknowledgements The content of this article was completed during my PhD thesis at the University
of Strasbourg. I would like to thank my thesis advisor, Thomas Delzant, for his guidance and interesting
discussions on the subject.

2 Isoperimetric inequality for van Kampen 2—complexes

We shall prove Theorem 1.5 in this section.
2.1 Reduction degree and complexity

Given a (nonreduced) van Kampen diagram Y = (V, E, F, ¢1, ¢2) with respect to a group presentation
(X | R), its reduction degree is the total number of geometric edges causing reducible pair of faces,
counted with multiplicity: for any edge e € E, any relator r € R and any integer j, we count the number
of faces f € F labeled by r and having e as the j boundary edge. If this number is k, we add (k —1)T
to the reduction degree where (-)* is the positive part function. Here is the formal definition given by
Gruber and Mackay [2021].

Definition 2.1 (reduction degree [Gruber and Mackay 2021, Definition 2.5]) Let Y = (V, E, F, ¢1, ¢2)
be a van Kampen 2—complex of a group presentation G = (X | R). Let £ be the maximal boundary length
of faces of Y. The reduction degree of Y is

Red(Y) = Z Z Z ({f € Floa(f)=r, eisthe 7 edge of8f}|—1)+.

ecEreR1<j=<¢(

It is not hard to see that a van Kampen 2—complex Y is reduced if and only if Red(Y) = 0. Since isolated
edges (edges that are not attached by any face) do not affect the reduction degree, we will only consider
2—complexes without isolated edges in the following.

A maximal arc of a 2—complex is a reduced combinatorial path passing only by vertices of degree 2
whose endpoints are not of degree 2. The complexity of a 2—complex encodes the number of maximal
arcs with the number of faces.
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Definition 2.2 (complexity of a 2—complex) Let Y be a 2—complex. Let K > 0. We say that Y is of
complexity K if |Y| < K and if for any face f of Y, the boundary path df is divided into at most K
maximal arcs.

If D is a planar and simply connected 2—complex with | D| < K, then the complexity of D is 6 K. Indeed,
as the rank of its underlying graph is K, the number of its maximal arcs is at most 3 K, and every boundary
path is divided into at most 6 K maximal arcs (an arc may be used twice).

Lemma 2.3 Let K > 0. There exists a number C(K), depending only on K, such that the number of
2—complexes of complexity K with face boundary lengths at most £ is bounded by C(K)¢X 2

Proof Recall that we only consider 2—complexes without isolated edges, so the number of maximal
arcs in a 2—complex of complexity K is at most K2 (each of the K faces has at most K arcs). Since the
face boundary lengths are at most £, these K> maximal arcs have lengths at most £. So there are at most
¢X? choices for their lengths. Now let C(K) be the number of choices to attach these K? maximal arcs
to form a 2—complex. The number of ways to construct a 2—complex of complexity K with boundary
lengths at most £ is hence bounded by C(K){X 2. |

Remark 2.4 While the number of 2—complexes with a bounded complexity grows polynomially with the
maximal face boundary length £, it is not the case for 2—complexes with a bounded number of faces, not
even for 2—complexes with a bounded number of maximal arcs.

For example, consider the set of 2—complexes with one single face of boundary length £ whose underlying
graph is 8—shaped with one vertex and two edges. There are only two maximal arcs, while the number of
such 2—complexes equals to the number of words on two letters and their inverses of length £, which
grows exponentially with £. Our polynomial bound will be useful in the proof of Theorem 1.5.

Remark 2.5 Actually, there are van Kampen 2—complexes that contradict the inequality of Theorem 1.5.

For instance, D Calegari and A Walker [2015] proved that at any density d < %

K depending only on d such that, in Gy(m, d) there is a.a.s. a reduced van Kampen 2—complex Y

, there exists a number

homeomorphic to a surface of genus O(¢) (hence with complexity O(£)) with at most K faces.

Since every edge is adjacent to two faces in a surface, we have |Y (V| < %|Y|€, while according to

Theorem 1.5 we expect that
YD|= 1 —d-g)r|e> Ly]e.

2.2 Abstract van Kampen 2—complexes

Let (Gy(m, d)) be a sequence of random groups at density d, defined by Gy (m,d) = (x1,...,xm | Ry).
Recall that By is the set of all cyclically reduced words of length at most £ and | By| = (2m — 1)¢+0(0),
Let 0 <& <1—d. Since logg,| | R¢| converges in probability to the constant d, the probability event

0¢ = {@m—1)@=CE/DY <|Ry| < @2m — 1)@ HEDOL
is a.a.s. true (see [Tsai 2022, Proposition 1.8]).
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If we consider the Bernoulli density model where the events {r € Ry} through r € By are independent of
the same probability (2m—1)@—DE it is obvious that we have Pr(ry, ..., 1, € Ry) = 2m—1)k@=DE for
distinct rq, . . ., r in By. In the permutation invariant density model, we have the following corresponding
proposition, which is a variant of [Tsai 2022, Lemma 3.10].

Proposition 2.6 Letrq,...,r; be pairwise different relators in By,. We have

Pr(r1,....1 € Ry | Op) < (2m — 1)k(d=1+(E/2)E .

Abstract van Kampen 2—complexes, as abstract van Kampen diagrams introduced by Ollivier [2004], is a
structure between 2—complexes and van Kampen 2—complexes that helps us solve 2—complex problems
in random groups. Recall that since isolated edges do not affect fillability, we will only consider finite
2—complexes without isolated edges.

Definition 2.7 (abstract van Kampen 2—complex) An abstract van Kampen 2—complex Yisa 2—complex
(V, E, F) with a labeling function on faces by integer numbers and their inverses

Go: F—{1,17,2,27, ... k. k}

such that & (f~!) = @ (f)~. We denote it simply by Y =(V,E,F, 02).

By convention (i7)” =i. The integers {1, ..., k} are called abstract relators. Similar to a van Kampen
diagram, a pair of faces f, ' € F is reducible if they are labeled by the same abstract relator, and they
share an edge at the same position of their boundaries. An abstract diagram is called reduced if there is
no reducible pair of faces. Let £ be the maximal boundary length of faces. The reduction degree of the
2—complex Y can be similarly defined as

Red(Y) = Z Z Z ({f € F1@(f) =i, eisthe j™ edge of 3/ }| — 1)+.
ecE 1<i<k 1<j=<{

We say that an abstract van Kampen 2—complex with k abstract relators Y = (V,E, F,p,) is fillable by a
group presentation G = (X | R) (or by a set of relators R) if there exists k different relators rq,...,r; € R
such that the construction @>( /) :=rg,(r) gives a van Kampen 2—complex Y = (V, E, F, ¢1, ©2)3 of G.
The k-tuple of relators (rq,...,r), or the van Kampen 2—complex Y, is called a filling of Y; see
Figure 2, left. As we picked different relators for different abstract relators, if Y is a filling of Y, then
Red(Y) = Red(?), and Y is reduced if and only if Y is reduced.

Denote ¢; the length of the abstract relator i for 1 <i < k. Let £ = max{{,...,{;} be the maximal
boundary length of faces. The pairs of integers (i, 1),..., (i, £;) are called abstract letters of i. The set
of abstract letters of Y is then a subset of the product set {1,...,k} x{l,...,£}. The geometric edges of
Y are decorated by abstract letters and directions: Let /€ F be labeled by i and let e € E be at the j ™

3Note that the edge labeling ¢ is determined by the face labeling @, as there are no isolated edges.
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filling

~

Y Y

Figure 2: Left: filling an abstract van Kampen 2—complex. Right: a geometric edge decorated by
two abstract letters.

position of df". The geometric edge e is decorated, on the side of f , by an arrow indicating the direction
of e and the abstract letter (i, j). The number of decorations on a geometric edge is the number of its
adjacent faces with multiplicity (an edge may be attached twice by the same face); see Figure 2, right.

Definition 2.8 (free-to-fill) An abstract letter (7, j) of Dis free-to-fill if, for any edge e decorated by
(i, j), it is the minimal decoration on e.

Denote «; the number of faces labeled by the abstract relator i and 7n; the number of free-to-fill edges
of 7. We have the following estimation.

Lemma 29 LetY = (V, E, F,J,) be an abstract van Kampen 2—complex with k abstract relators. Then

k

Zaini < |?(1)| +Red(?).

i=1
Proof Denote by E the set of geometric edges and F the set of geometric faces. For any geometric
edge e, an adjacent face f from which the decoration is minimal is called a preferred face of e. For any
face f, let E 7 be the set of geometric edges e on its boundary such that fisa preferred face of e. Note
that an edge will never be counted twice as the decorations given by one face are all different. According
to Definition 2.8, for any face f with @,(f) =i, we have n; < |Ef|- Hence,

k
e = Y I
i=1 feF
Denote by Red(e) the reduction degree caused by the edge e. That is,

Red(e) := Z Z ({f € F1@2(f)=i, eore " isthe j™ edge of 0/}| — 1)+,

1<i<k 1<j<{
so that the number of preferred faces of ¢ is bounded by 1 + Red(¢). Hence,
Y IEf < ) (1+Red(@) = [T V] + Red(Y). O
feF ¢cE

Probability of filling We shall estimate the probability that an abstract van Kampen 2—complex Y is
fillable by a random group Gy (m, d). This step is the key to prove Theorem 1.5. Recall that

0 := {(2m_ 1)(d—(8/4)/3) <|R¢| <C2m— 1)(d+(8/4)4)}

is an a.a.s. true probability event.
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Lemma 2.10 Let Y be an abstract van Kampen 2—complex with k abstract relators. We have

~ k k
Pr(¥ is fillable by G¢(m, d) | Q) < (2;”11) (2m — 1) Zi=1 i +(d=1+2/D0)
Proof Let us estimate the number of fillings of Y. For every free-to-fill abstract letter (i, j), there
are at most 2m ways to fill a generator if j = 1, at most (2m — 1) ways to fill if j # 1 for avoiding
reducible word. As there are 1; free-to-fill abstract letters on the i abstract relator, there are at most
2m(2m —1)" =1 ways to fill it. So there are at most ]_[f-;l Q2m@2m —1)"~1) ways to fill Y.

Let Y be a van Kampen 2—complex, which is a filling of Y. The 2—complex Y is labeled by k different
relators in By, denoted rq, ..., ri. By Proposition 2.6,

Pr(Y is a 2—complex of Gy(m,d) | Qy) =Pr(ri,....rx € Ry | Q) < 2m — l)k(d—1+s/2)€‘

Hence

Pr(Y is fillable by G¢(m.d) | Q) < Z Pr(Y is a 2—complex of Gy(m,d) | Qy)
Y fills ¥
k
< 1_[(21’11(2}’1/1 . 1)771'—1)(2”,1 _ l)k(d—1+s/2)2
i=1

2m \k K (i +(d—
< — i=1Mi ( 1+8/2)€)
(2m_1) 2m—1) : O

Lemma 2.11 Let Y be an abstract van Kampen 2—complex with k abstract relators. Suppose that Y does
not satisfy the inequality given in Theorem 1.5, ie

1T D) +Red(¥) < (1 —d —o)|T|L,
then
5 2 _
Pr(Y is fillable by Gy(m, d) | Q¢) < (Wnil)(z,ﬂ _p)-ere

Proof Let Y; be the sub-2—complex of Y consisting of faces labeled by the i first abstract relators. Let
P; = Pr(f’} is fillable by G¢(m, d) | Q¢). Apply Lemma 2.10 on Y;: we have
2m_\ S (j+(d—148/2)C)
. << - — =1
P’_(2m—1)(2m ==t ‘
Note that if ¥ is fillable by G¢(m, d) then its sub-2—complex Y; is fillable by the same group. So for any

1<i <k,
i
2m
10g5,,—1 (Pr) < 10gy,,—1 (Pi) = Z(Uj +(d =14 3e)l + 10y, (m))
j=1

Without loss of generality, suppose that oy > o > -+ > ag. Note that log,,,_; (Py) is negative and
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ap < |?|, SO |)7| logs,—1(Pr) < ay10g,,,—1(Px). By Abel’s summation formula, with convention
a1 =0,

_ k

17110821 (P) < 11081 (PE) = > (et — 1) 10gy 1 (Pr)

i=1

k i

2

< (Oti—Oli+1)Z[7’i+(d_1+%8)€+10g2m—1(2mn11)]
i=1 Jj=1

k

=Y o [17,- +(d =14 38l +10gy,_; (234’111)]

k

= aini + (Zcxi) [(d — 1+ 1e)l+1ogy (23”—"11)]

i=1 i=1

Note that Zf-‘zl = |)7|. By Lemma 2.9 and the hypothesis of the current lemma,

k
Y ain; < YD)+ Red(¥) < (1-d — )|V |0
i=1

Hence,

~ ~ ~ 2
17 0ga_1 (P) < (1 =d )| T [+ 7| (d = 1 + Je) € +10gay (5 )]

= 2
< |Y|[—%8€ +1ogy,,—1 (—2mnil)] O
2.3 Proof of Theorem 1.5

Under the condition Qy := {(2m — 1)@—E/DD < |R,| < (2m — 1)@+ E/DOL the probability that there
exists a van Kampen 2—complex of complexity K of Gy (m, d) satisfying the inverse inequality

(%) YD +Red(Y) < (1—d —¢)|Y|€

is bounded by
> Pr(Y is fillable by Gy (m. d) | Qp).

Y of complexity K, satisfying ()

By Lemma 2.3 and the face that there at most K2X ways to label a 2—complex with K faces by abstract
relators {1F, ..., KT}, there are at most £3K x K2X terms in the sum. By Lemma 2.11, every term is
bounded by

(2;—”’11)(2;74 — 1)L,
So the sum is smaller than

ESKKZK(zri_”il)(zm 1)~/
which converges to 0 as £ — oo.
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L
By definition Pr(Qy) = 1, so the probability that there exists a van Kampen 2—complex of G¢(m, d)
of complexity K satisfying () converges to 0 as £ goes to infinity. That is to say, a.a.s. every van Kampen
diagram of G, (m, d) of complexity K satisfies the inequality

YD 4 Red(Y) > (1—d —e)|Y|L. O

Collapsible 2—complexes and closed surfaces Recall that an elementary collapse of a 2—complex, in the
sense of Whitehead [1939], is the removal of a face together with one of its edges that is not adjacent to
other faces. A 2—complex is called collapsible* to a graph if it can be collapsed to a graph by a sequence
of elementary collapses.

Let Y be a 2—complex of complexity K. If Y is not collapsible, then after all possible elementary
collapses, we obtain a sub-2—complex Y’ having only edges that are adjacent to at least 2 faces, which
gives |[Y'(D| < %|Y/ |¢, where £ is the maximal boundary length of faces. Since it contradicts the inequality
of Theorem 1.5 for any density d < % the 2—complex Y cannot be fillable by any random group. Hence
the following proposition.

Proposition 2.12 Let (G¢(m, d)) be a sequence of random groups with m > 2 generators at density d.
For any d < % and K > 0, a.a.s. every reduced van Kampen 2—complex of complexity K of Gy(m, d) is
collapsible to a graph.

Consequently, a 2—complex with K faces that is homeomorphic to a closed surface of a fixed genus® g is
not fillable by any random group, since a surface is not collapsible and the complexity is bounded by a
number depending only on K and g.

3 Phase transition for the existence of van Kampen 2—complexes

In this section, we work on the proof of Theorem 1.6.

Motivation and a counterexample Let (G,(m,d)) be a sequence of random groups at density d. We
are interested in the converse of Theorem 1.5 without the reduction part: if a 2—complex ¥, with bounded
complexity satisfies the inequality

Y D= (1—d + )|t
with some s > 0, does there exist a face labeling by relators and an edge labeling by generators, so that
Y, becomes a reduced van Kampen 2—complex of Gy (m, d)?
The motivation for this question comes from the well-known phase transition at density d = %k, mentioned

in [Gromov 1993, page 274]: if d < %)\ then a.a.s. Gy(m, d) has the C’(1) small cancellation condition;

“In the original context [Whitehead 1939], the removal of an isolated edge is also an elementary collapse, and a 2—complex is
collapsible if it can be collapsed to a point.

SNote that the genus g need to be fixed, otherwise by Calegari and Walker’s result [2015] there exists a closed surface (see
Remark 2.5).
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Figure 3: Left: a van Kampen diagram denying the C’(1) condition. Middle and right: A 2—
complex that satisfies the isoperimetric inequality with a sub-2—complex that does not.

while if d > %)\ then a.a.s. G¢(m, d) does not have C’()). The first assertion is a simple application of
Theorem 1.4. For the second assertion, we need to show that a.a.s. there exists a van Kampen 2—complex
D of Gy(m, d) with exactly 2 faces of boundary length £, sharing a common path of length at least A£
(Figure 3, left).

The first detailed proof of such an existence is given in [Bassino et al. 2020, Theorem 2.1], using an
analog of the probabilistic pigeonhole principle. Another proof is given in [Tsai 2022, Theorem 1.4]. An
intuitive explanation using the “dimension reasoning” is given in [Ollivier 2005, page 30]: The dimension
of the set of couples Ry x Ry is 2d{. Sharing a common subword of length L imposes L equations, so
the “dimension” of the set of couples of relators sharing a common subword of length A€ is 2d{ — AL.
If d > X /2, then there will exist such a couple because the dimension will be positive. However, this
argument is not true for any 2—complex in general. Here is a counterexample:

At density d = 0.4, let (Dy) be a sequence of 2—complexes where Dy is given in Figure 3, middle. The
given inequality is satisfied because |D§1)| =1.9¢ > 1.8¢ = (1 — d)|Dy|€. However, the subdiagram
Dy, (Figure 3, right) gives |D2(1)| =1l.lU<120=(1- d)|D2|E), which contradicts the isoperimetric
inequality of Theorem 1.5 and cannot be a van Kampen diagram of Gy (m, d).

3.1 Geometric form and critical density

Let us define the geometric form of 2—complexes and the critical density of a geometric form. To simplify
the notation, for a 2—complex Y = (V, E, F'), we denote by Edge(Y) the set of geometric edges of ¥
and e instead of e for geometric edges.

Definition 3.1 A geometric form of 2—complexes is a couple (Y, A) where Y = (V, E, F) is a finite
connected 2—complex without isolated edges, and A is a length labeled on edges defined by

A:Edge(Y) —10,1], e A,
such that for every face f of Y, the boundary length |df’| is bounded by 1.
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A sequence of 2—complexes (Yy) is said to be of the geometric form (Y, 1) if Yy is obtained from Y by
dividing every edge e of Y into |A.{]| edges® of length 1.

A sequence of 2—complexes (Y) is briefly said to be of the same geometric form if the geometric form
(Y, 1) is not specified. Note that the boundary length of every face f of Y is at most £. If Z is a
sub-2—complex of Y, we denote Z < Y. By convention, if (Z;) is a sequence of 2—complexes of the
geometric form (Z, A|z), we have Z; < Y, for any integer £.

Definition 3.2 Let (Y, A) be a geometric form of 2—complexes. The density of Y is

ZeEEdge(Y) )\e

dens(Y) := v

The critical density of Y is
dens.(Y) := énﬁnll/{dens(Z)}.

The intuition of this definition can be found in Lemma 3.8: the density of Y is actually the density of all
possible van Kampen 2—complexes that fill Yy.

Remark 3.3 Taking Definitions 3.2 and 3.1 together, we have
1
ZeGEdge(Y) )\e . ZeGEdge(Y) Lkeﬁj . |Ye( )|
— = = lim = lim .
|Y| {—00 |Y(|£ {—o00 |Yg|£

Hence, the condition “dens.(Y) + d > 1” is equivalent to the following statement: Given s > 0, for £

dens(Y) =

large enough, every sub-2—complex Z; of Y, satisfies
1201 = (1 =d + )| Z¢t.

This argument shows that the second assertion of Theorem 1.6 is equivalent to Corollary 1.7.

Proof of Theorem 1.6(i) We will use Theorem 1.5 without the reduction part. Let (G¢(m, d)) be a
sequence of random groups with m generators at density d. Recall that a 2—complex Y is said to be
fillable by Gy(m, d) if there exists a reduced van Kampen 2—complex of G¢(m, d) whose underlying
2—complex is Yy.

Let (Y,A) be a geometric form of 2—complexes with dens, Y + d < 1. Let (¥y) be a sequence of
2—complexes of the geometric form (Y, A). We shall prove that a.a.s. the 2—complex Yy is not fillable by
the random group Gy (m, d). By the definition of critical density, there exists a sub-2—complex Z <Y
satisfying dens Z + d < 1. Let (Zy) be the sequence of 2—complexes of the geometric form (Z, A| 7).
We shall prove that a.a.s. Zy is not fillable by G, (m, d).

®We can replace |Ao£| by any function with A£ 4 o(£) and slightly smaller than A£. Note that the sum of edge lengths on every
face boundary of Yy is at most £
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Let & > 0 such that dens Z = 1 —d — 3&. By definition,

1
1z
lim
t—o0 | Zy|l

=1-—d -3¢,

so for £ large enough,
1ZMV < (1 —d —26)| Zglt < (1 —d — )| Z L.

The complexity of Zy is
K = max{|Z|, |Z(1)|,max{)\L ‘ eec Edge(Z)}},
e

independent of £. By Theorem 1.5 with ¢ and K given above, a.a.s. every van Kampen 2—complex Z, of
Gy (m, d) of complexity K should satisfy

1201 = (1 —d )| Zy|t.

Hence, a.a.s. the given 2—complex Z; is not fillable by G¢(m, d), which implies that a.a.s. Y is not
fillable by G, (m, d). O

3.2 The multidimensional intersection formula for random subsets

To prove the second assertion of Theorem 1.6, we need the multidimensional intersection formula for
random subsets with density, introduced in [Tsai 2022, Section 3].

Recall that By is the set of cyclically reduced words of X, ,ﬂf = {xli, . ,xi} of length at most £, and that
|By| = 2m —1)¢+2®) Let k > 1 be an integer. Denote by Bék) the set of k—tuples of pairwise distinct
relators (rq,...,r;) in By. Such notation can be used for any set or any random set.

Note that |Bék)| = (2m—1)kt+o®)  Recall that a sequence of fixed subsets (V) of the sequence (Bék)) is

called densable with density a € {—oo} U0, 1] if the sequence of real numbers (log| B |Yy|) converges
¢

to & (see [Gromov 1993, page 272; Tsai 2022, Definition 1.5]). That is to say, |¥,| = (2m — 1)*kt+o©)

Definition 3.4 (self-intersection partition [Tsai 2022, Definition 3.4]) Let (%) be a sequence of fixed

subsets of the sequence (Bék)). Let 0 <i <k be an integer. The i™ self-intersection of Y is
Sig=10x,y) €Y} | |xny| =i},

where |x N y| is the number of common elements between the sets x = (ry,....,7g) and y = (r{,..., r,/c).

The family of subsets {S; ;|0 <7 <k} is a partition of Y2 called the self-intersection partition of Y.

Note that (S; ¢)¢en is a sequence of subsets of the sequence ((Bék))z) ¢eN, With density smaller than
2y _
dens((Bék))z)(Oye) = del’lS(B((zk))(Oy().
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Definition 3.5 (d—small self-intersection condition [Tsai 2022, Definition 3.5]) Let (¥Y,) be a sequence
of fixed subsets of (Bék)) with density . Let S; ¢ with 0 <i <k be its self-intersection partition. Let
d > 1 —oa. We say that (¥,) satisfies the d—small self-intersection condition if, for every 1 <i <k —1,

i
dens((sz))z)(Si’g) <a—(1—d)x %

Theorem 3.6 (multidimensional intersection formula [Tsai 2022, Theorem 3.6]) Let (Ry) be a sequence
of permutation invariant random subsets of (By) of density d. Let (Yy) be a sequence of fixed subsets of
(Bék)) of density « > 1 —d. If (Yy) satisfies the d—small self-intersection condition, then the sequence
of random subsets (‘Y; N Rg{)) is densable with density o +d — 1.

In particular, a.a.s. the random subset Y, N Rék) of ng) is not empty.

3.3 Proof of Theorem 1.6(ii)

Let (Yy) be a sequence of 2—complexes of the same geometric form (Y, A) with k faces. In the following,
we denote by Y, the set of pairwise distinct relators in By that fill Y,, which is a subset of Bék).

Let (Gy(m, d)) be a sequence of random groups at density d, defined by G;(m,d) = (X, | Ry), where
(Ry) is a sequence of random subsets with density d. The intersection Yy N Rék) is hence the set of
k—tuples of pairwise distinct relators in Ry that fill Y,. We want to prove that this intersection is not empty,
so that Yy is fillable by G (m, d). According to Theorem 3.6, it remains to prove that if dens, ¥ > 1 —d,
then the sequence (%) is densable and satisfies the d—small self-intersection condition.

We will prove in Lemma 3.8 that (%) is densable with density exactly dens(Y'), and in Lemma 3.9 that
it satisfies the d—small self-intersection condition.

Lemma 3.7 Let ¥, be the set of k—tuples of relators in By that fill Yy, not necessarily pairwise distinct.

If'Yy is fillable by By, then
dens(Bg)(Oyg) =densY.

Proof We shall estimate the number |%;| by counting the number of labelings on edges of Y that

produce van Kampen 2—complexes with respect to all possible relators By.

We start by filling edges in the neighborhoods of vertices that are originally vertices of the geometric form
Y (before dividing). Consider the set of oriented edges of Y, starting at some vertex that is originally a
vertex of Y before dividing. A vertex labeling is a labeling on these edges by X, ,f that does not produce
any reducible pair of edges on face boundaries: for every pair of different edges ey, e, starting at the
same vertex, if they are labeled by the same generator x € X, njf, then the path el_l e, is not cyclically part
of any face boundary loop. Since the 2—complex Yy is fillable, the set of vertex labelings is not empty.
Denote by C > 1 the number of vertex labelings of Yp.

Asm >2and |A.£] = 3 for £ large enough, if there exists a vertex labeling, then the other edges of Y, can
be completed as a van Kampen 2—complex of By, and the number C depends only on the geometric form Y.
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To label the remaining |A£| — 2 edges on the arc divided from the edge e € Edge(Y), there are 2m — 1
choices for the first [A£| — 3 edges, and 2m — 2 or 2m — 1 choices for the last edge. So

c [] em-p*3am-<py<c ] @m-prt=2
e€Edge(Y) ecEdge(Y)
Recall that k = |Y| = |Y;| and that | Bf| = (2m — 1)k We have

ZeeEdge(Y) )\-e

=densY. O
Y|

dens(Béc)(@) =

Lemma 3.8 If dens; Y > L and Y, is fillable by By, then (%) is densable in (B{")) and
dens(Bém)(Oyg) =densY.

Proof Suppose that |Y'| > 2. The case |Y| = 1 is trivial. Let Z be a sub-2—complex of Y with exactly
two faces f1, f>. As dens Z > dens, Y > %, by Definition 3.2, we have

S ke dZI=1210f.

ecEBdge(Z)

Let OJJ_ZZ be the set of fillings of Y; by By such that the two faces of Z are filled by the same relator. By
the same arguments of the previous lemma,

WZ| < Cm— 1) I1 (2m —1)retl=2,
ecEdge(Y)\Edge(Z)
o)
~— 1
dens(Bg)(ong) = m[ Z he + (|3f1|— Z )»e)j|
ecEBdge(Y) ecEdge(Z)

> A _

%{ne =densY = dens(Bg)(Oyg).
Knowing that L

Z<Y, |Z|=2
we have L
Wel— Y IWEI=1Y = [Vl
Z<Y, |Z|=2

There are ('g') terms in the sum, in every term we have dens Bé()(ﬁy_ez) < dens Bf)(@)’ so (see [Tsai

2022, Propositions 2.7 and 2.8])
dens(Bé')(Oyg) = dens(szz)(Oy_g).

Together with Lemma 3.7, we have dens( Béf)(oylf) =dens Y. As dens( Bé)(Bék)) =1, we get

dens ( (Yy) =densY. O

Bék))
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Lemma 3.9 Suppose thatdens. Y > 1—d. Let S; ¢ be the i th self-intersection of the set ¥,. We have

dens B(k))z)(S, ¢) <densY — (1 —d) x —

(« 2k

Proof Let Z, W be two sub-2—complexes of Y with |Z| = |W| =i <k = |Y|. Let (Zy), (Wy) be
the corresponding sequences of 2—complexes of the geometric forms Z and W, respectively. Denote by
S¢(Z, W) the set of pairs of pairwise distinct fillings ((ry,....7%), (r{...., r,/c)) of Y, by all possible
relators By such that, the i relators in the first filling (rq, ..., rx) corresponding to Z; are identical to the
i relators in the second filling (r{, cees r//c) corresponding to Wy, and that the remaining 2k — 2i relators
are pairwise different, not repeating the relators in Z; and Wp.

Let us estimate the cardinality |Sy(Z, W)|. First, fill the k—tuple (rq, ..., ) so the i relators in the next
k—tuple (ry, ..., r,’c) corresponding to the sub-2—complex W, is determined. There are at most i! choices
for ordering these i relators. To fill the remaining k — i relators in (r{, ey r,/(), by the same arguments of

Lemma 3.7, we get

|Se(Z, W)| < |¥g| xilx C I1 (2m —1)retl =2,
e€Edge(Y)\Edge(W)

Recall that the density of Y is defined by (1/|Y|)(Ze€Edge(Y) ), and that dens W > dens, ¥ > 1 —d
by Definition 3.2. Together with the hypothesis dens, ¥ > 1 —d, we have

dens((B(k))z)(Sg(Z W)) = 2k( Z )\e + Z )Le)

ecEdge(Y) ecEdge(Y)\Edge(W)
1
(> T - X k)
ecEdge(Y) ecEdge(W)

i
=densY — ﬁ dens W

<densY — —(1 —d).
Note that

Se= U Suz.w.
Z<Y, W<Y
| Z|=|W|=i

2 .
It is a union of (]l‘) subsets of densities strictly smaller than dens ¥ — 2’—k(1 —d). According to [Tsai
2022, Proposition 2.7], we have

i
dens((Bék))z)(S,-’g) <densY — ﬁ(l —d). m]

This completes the proof of Theorem 1.6.
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4 Phase transitions for small cancellation conditions

Let us recall small cancellation notions in [Lyndon and Schupp 1977, page 240]. A piece with respect to
a set of relators is a cyclic subword that appears at least twice. A group presentation satisfies the C’(1)
small cancellation condition for some 0 < A < 1 if the length of a piece is at most A times the length of
any relator in which it appears. It satisfies the C(p) small cancellation condition for some integer p > 2
if no relator is a product of fewer than p pieces.

The C’(L) condition Let (Gy(m,d)) be a sequence of random groups at density d. It is known that
there is a phase transition at density d = A/2 for the C’(X) condition (see [Gromov 1993, page 274;
Bassino et al. 2020, Theorem 2.1; Tsai 2022, Theorem 1.4]). We give here a much simpler proof using
Theorem 1.6.

Proposition 4.1 Let0 < XA < 1. Let (G¢(m, d)) be a sequence of random groups at density d. There is a
phase transition at density d = A /2:

(i) Ifd <\/2, then a.a.s. Gy(m, d) satisties C'(L).
(it) Ifd > A/2, then a.a.s. Gy(m, d) does not satisfy C’()).

Proof (i) Let us prove by contradiction. Suppose that a.a.s. G¢(m, d) does not satisfy C’(A). That is to
say, a.a.s. there exists a piece w that appears in relators ry, ¥, with |w| > A|rq|. It is possible that r; = r;,
but the piece should be at different positions.

Construct a van Kampen diagram D by gluing two combinatorial disks with one face, labeled respectively
by r; and r;, along with the paths where the piece w appears (Figure 4, left). As ry % r, or r; = r, but
the piece appears at different positions, we obtain a reduced van Kampen diagram. The diagram satisfies
|IDD| = |r1| + |ra] + |lw| < £+ £+ Al < (1 —A/2)| D|¢, which contradicts Theorem 1.5.

(i1) Consider a geometric form Y with two faces sharing a common edge of length A, the other two edges
are of length 1 —A (Figure 4, right). We have dens Y = %(2(1 —X)+X) > 1—d, and every sub-2—complex
with one face is with density 1 > 1 —d. Sodens, Y > 1—d.

Let (Yy) be a sequence of 2—complexes of the geometric form Y. By Theorem 1.6, a.a.s. Yy is fillable by
G¢(m,d), hence a.a.s. Gy(m, d) does not satisfy C’(1). |

Figure 4: Left: a van Kampen 2—complex constructed from a C’ (1) group. Right: the geometric
form for the C’(A) condition.

Algebraic € Geometric Topology, Volume 24 (2024)



Phase transition for the existence of van Kampen 2—complexes in random groups 3915

Figure 5: Left: a van Kampen 2—complex constructed from a non-C(p) group. Middle: the
geometric form for the C(p) condition. Right: the geometric form for the B(2p) condition.

The C(p) condition We shall prove by Theorem 1.6 that for random groups with density, there is a
phase transition at density 1/ p for the C(p) condition.

Proposition 4.2 Let p > 2 be an integer. Let (G¢(m, d)) be a sequence of random groups at density d.
There is a phase transition at density 1/ p:

(i) Ifd <1/p, then a.a.s. G¢(m, d) satisfies C(p).
(ii) Ifd > 1/p, then a.a.s. Gy(m, d) does not satisty C(p).

Proof (i) Let us prove by contradiction. Suppose that a.a.s. Gy (m, d) does not satisfy C(p). That is to
say, a.a.s. there is a relator that is a product of ¢ pieces with ¢ < p — 1. By this relator we construct a
reduced van Kampen diagram D with ¢ + 1 faces, one face is placed in the center, attached by the other
q faces on the whole boundary, and there is no other attachments (Figure 5, left).

Observer that |D| = ¢ + 1 and |D™| < g£ (sum of the boundary lengths of the outer ¢ faces). Let
e=(1/(q +1)—d)/2, which is positive since d < 1/p < 1/(¢q + 1). We have
1—d—8=L+8>L.
qg+1 qg+1

Hence | D] < (1 —d —¢)| D|{, which contradicts Theorem 1.5.

(i1)) Consider a geometric form Y with p faces, one of the faces is placed in the center, having p — 1
edges of length 1/(p — 1), such that every edge is attached by another face with two edges of lengths
1/(p—1)and 1—1/(p —1). There are no other attachments (Figure 5, middle).

The density of Y is (p —1)/p > 1 —d. If Z is a sub-2—complex of ¥ not containing the center face,

then dens Z =1 > 1 —d. If Z contains the center face and i < p other faces, then

1+i(-1/(p-1))
i+1

dens Z = >1—d.

Sodens, Y >1—d.
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: ‘0

Figure 6: Left: the geometric form for the 7' (¢) condition. Right: a random relator  denying the
T (¢) condition.

1—-d

Let (Y;) be a sequence of 2—complexes of the geometric form Y. By Theorem 1.6, a.a.s. Yy is fillable by
Gy(m,d), hence a.a.s. Gy(m, d) does not satisfy C(p). |

The B(2p) condition The same argument holds for the B(2p) condition, introduced in [Ollivier and
Wise 2011, Definition 1.7]: half of a relator cannot be the product of fewer than p pieces. One can
construct a geometric form with p 4 1 faces, one of the faces is in the center, with half of its boundary
attached by the other p faces, each with length 1/ p (Figure 5, right). Its critical density is ( p+ %) /(p+1),
so a phase transition occurs at density d = 1/(2p + 2).

Proposition 4.3 Let p > 1 be an integer. Let (G¢(m, d)) be a sequence of random groups at density d.
There is a phase transition at density d = 1/(2p + 2):

(1) Ifd <1/Q2p+2), then a.a.s. Gy(m, d) satisfies B(2p).
(i) Ifd >1/(2p+2), then a.a.s. Gy(m, d) does not satisty B(2p). |

The T (¢q) condition Recall that [Lyndon and Schupp 1977, page 241] a group presentation satisfies the
T (q) small cancellation condition for some g > 4 if, in every of its reduced van Kampen diagram, every

vertex of valency at least 3 is actually of valency at least q.

Proposition 4.4 For any density 0 < d < 1, a.a.s. Gy(m, d) does not satisty T (4).

Proof We shall construct a reduced van Kampen diagram with a vertex of valency exactly 3. Consider
the geometric form Y with 3 faces sharing one common vertex, attaching to each other with common
segments of length d/2 (Figure 6, left). The critical density of Y is 1 —d/2 > 1 —d, so by Theorem 1.6,
a.a.s. the random group Gy (m, d) has a van Kampen diagram of the form Y. |

Remark 4.5 Proposition 4.4 holds for the few relator model. For example, for a one relator random
group (Xi,...,Xn, | ¥) with m > 2, a.a.s. (when |r| — o0) the three subwords x1x», xz_2 and xle_l
appear in the random relator r at different places. By these subwords, we can construct a reduced van
Kampen diagram with 3 faces that has a vertex of valency exactly 3 (Figure 6, right), denying the 7' (4)

small cancellation condition.
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