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Phase transition for the existence of van Kampen 2–complexes
in random groups

TSUNG-HSUAN TSAI

Gromov (1993) showed that every reduced van Kampen diagram D of a random group at density d

satisfies the isoperimetric inequality j@Dj � .1� 2d � "/jDj`. Adapting Gruber and Mackay’s (2021)
method for random triangular groups, we obtain a nonreduced van Kampen 2–complex version of this
inequality.

The main result of this article is a phase transition: given a geometric form Y of 2–complexes, we
find a critical density dc.Y / such that, in a random group at density d , if d < dc , then there is no
reduced van Kampen 2–complex of the form Y ; while if d > dc , then there exists reduced van Kampen
2–complexes of the form Y .

As an application, we exhibit phase transitions for small-cancellation conditions in random groups, giving
explicitly the critical densities for the conditions C 0.�/, C.p/, B.p/ and T .q/.

20F06; 20F05, 20P05

1 Introduction

Random groups The first occurrence of random group presentations is the density model by M Gromov
[1993, 9.B]. Formally, a random group is a random variable with values in a given set of groups, often
constructed by group presentations with a fixed set of generators and a random set of relators. The goal is
to study the asymptotic behaviors of a sequence of random groups .G`/ when the maximal relator lengths
` goes to infinity. We say that G` satisfies some property Q` asymptotically almost surely (a.a.s.) if the
probability that G` satisfies Q` converges to 1 as ` goes to infinity.

Let us consider the permutation invariant density model of random groups introduced by Gromov [1993,
page 272] and developed in [Tsai 2022]. Fix the set of generators Xm D fx1; : : : ;xmg with m � 2 for
group presentations. Let B` be the set of cyclically reduced words of X˙m of length at most `. We shall
construct random groups by densable and permutation invariant random subsets of B`.

Definition 1.1 [Gromov 1993, page 272; Tsai 2022, Definitions 1.5 and 2.5] A sequence of random
subsets .R`/ of the sequence of sets .B`/ is called densable with density d 2 f�1g[ Œ0; 1� if the sequence
of random variables densB`

.R`/ WD logjB`j
.jR`j/ converges in probability to the constant d .

The sequence .R`/ is called permutation invariant if R` is a permutation measure-invariant random
subset of B`.
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Many natural models of random subsets are densable and permutation invariant. For example, the uniform
distribution on all subsets of cardinality bBd

`
c considered in [Ollivier 2004; 2005; 2007], or the Bernoulli

sampling of parameter jB`jd�1 considered in [Antoniuk et al. 2015] for random triangular groups.

Some other natural models are densable but not permutation invariant. For instance, consider the Bernoulli
sampling of parameter .2m/.d�1/` on the set of nonreduced words of length `, and reduce these words to
form a random subset of B`. This is also the case for Gromov’s expander graph model [2003], in which
the random relators are the words read on the simple cycles of a randomly labeled expander graph.

Definition 1.2 [Gromov 1993, page 273; Tsai 2022, Definition 4.1] A sequence of random groups
.G`.m; d// with m generators at density d is defined by

G`.m; d/D hXm jR`i;

where .R`/ is a densable sequence of permutation invariant random subsets of .B`/ with density d .

For detailed surveys on random groups, we refer the reader to work by E Ghys [2004], Y Ollivier [2005],
I Kapovich and P Schupp [2008], and F Bassino, C Nicaud and P Weil [Bassino et al. 2020].

Van Kampen 2–complexes We consider oriented combinatorial 2–complexes and van Kampen diagrams
as in [Lyndon and Schupp 1977, III.2 and III.9], with an additional precision that each face has an
orientation given by its boundary path.

A 2–complex is hence a triplet Y D .V;E;F / where V is the set of vertices, E is the set of oriented
edges and F is the set of oriented faces. Its underlying graph is denote by Y .1/ D .V;E/. Every edge
e 2E has a starting point ˛.e/ 2 V , an ending point !.e/ 2 V and an inverse edge e�1 2E, satisfying
˛.e�1/D !.e/, !.e�1/D ˛.e/ and .e�1/�1 D e. Every face f 2 F has a boundary path @f that is a
cyclically reduced loop on the underlying graph Y .1/, and an inverse face f �1 2 F whose boundary path
is the inverse. That is to say, it satisfies .f �1/�1 D f and @.f �1/D .@f /�1. The starting point of a
face f is the starting point of its boundary path. Note that f �1 has the same starting point as f .

A geometric edge is a pair of inverse edges fe; e�1g, denoted by Ne. Similarly, a geometric face is a pair
of inverse faces ff; f �1g, denoted by Nf . Throughout this article, we will carefully distinguish oriented
edges (faces) and geometric edges (faces). We denote by jY .1/j the number of geometric edges and jY j
the number of geometric faces.

Definition 1.3 A van Kampen 2–complex with respect to a group presentation G D hX j Ri is a 2–
complex Y D .V;E;F / with labels on edges by generators '1 WE!X˙ and labels on faces by relators
'2 W F !R˙ such that '1.e

�1/D '1.e/
�1, '2.f

�1/D '2.f /
�1 and '1.@f /D '2.f /.

We denote briefly Y D .V;E;F; '1; '2/.

The data of the labels '1; '2 on Y is equivalently given by a combinatorial map Y !K.X;R/, where
K.X;R/ is the standard 2–complex with respect to the group presentation G D hX jRi (with one vertex,
an edge for each generator and its inverse, and a face for each relator and its inverse).

Algebraic & Geometric Topology, Volume 24 (2024)
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Figure 1: A reducible pair of faces.

A van Kampen diagram D is a finite, planar (embedded in a Euclidean plane) and simply connected van
Kampen 2–complex. Its boundary length j@Dj is the length of a boundary path, passing once by every
edge adjacent to one face and twice by every edge adjacent to zero faces.

A pair of faces in a van Kampen 2–complex is called reducible if they have the same relator label and
their boundaries share a common edge at the same respective position (see Figure 1). A van Kampen
2–complex is called reduced if there is no reducible pair of faces.

Isoperimetric inequalities In order to prove the hyperbolicity of a random group at density d < 1
2

,
Gromov [1993, 9.B] showed that a.a.s. reduced local van Kampen diagrams of G`.m; d/ satisfy an
isoperimetric inequality depending on the density d .

Theorem 1.4 [Gromov 1993, page 274; Ollivier 2004, Chapter 2] Let .G`.m; d// be a sequence of
random groups with m� 2 generators at density d . For any " > 0 and K > 0, a.a.s. every reduced van
Kampen diagram D of G`.m; d/ with jDj �K satisfies the isoperimetric inequality

j@Dj � .1� 2d � "/jDj`:

Ollivier’s proof [2004] can achieve a slightly stronger1 inequality,

jD.1/
j �

�
1� d � 1

2
"
�
jDj`:

One may expect such an inequality to hold for every reduced van Kampen 2–complex Y with jY j �K.
D Gruber and J Mackay [2021, Section 2] showed that in the triangular model of random groups,2 the
above inequality holds for every nonreduced van Kampen 2–complex Y with jY j �K if the reduction
degree (Definition 2.1) Red.Y / is added in the left-hand side of the inequality.

However, the result fails in the regular Gromov density model: the condition jY j �K is not enough (see
Remark 2.4). In Section 2 of this paper, we introduce the notion of complexity (Definition 2.2) to adapt
Gruber and Mackay’s inequality in the Gromov density model, establishing a nonreduced van Kampen
2–complex version of Theorem 1.4. A similar approach was given in the preprint [Odrzygóźdź 2021].

1Note that every van Kampen diagram composed of relators of lengths at most ` satisfies 2jD.1/j � j@Dj � jDj`, so the given
inequality implies the isoperimetric inequality.
2A model where the relator length `D 3 is fixed, and we are interested in asymptotic behaviors when the number of generators
m goes to infinity.
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Theorem 1.5 Let .G`.m; d// be a sequence of random groups with m� 2 generators at density d . Let
" > 0, K > 0. For any d < 1

2
, a.a.s. every van Kampen 2–complex Y of complexity K of G`.m; d/

satisfies
jY .1/jCRed.Y /� .1� d � "/jY j`:

Phase transition for the existence of van Kampen 2–complexes We are now interested in the converse
of Theorem 1.5: Given a 2–complex Y satisfying the inequality of Theorem 1.5, is it true that a.a.s. there
exists a reduced van Kampen 2–complex of G`.m; d/ whose underlying 2–complex is Y ?

A 2–complex Y is said to be fillable by a group presentation G D hX jRi (or by the set of relators R) if
there exists a reduced van Kampen 2–complex of G whose underlying 2–complex is Y . An edge of a
2–complex is called isolated if it is not adjacent to any face. Since isolated edges do not affect fillability,
we will only consider finite 2–complexes without isolated edges in the following.

To better formulate the problem, we consider a sequence of 2–complexes .Y`/ and introduce the notion
of geometric form of 2–complexes .Y; �/ (Definition 3.1), together with its density dens Y and its
critical density densc Y (Definition 3.2). The main result of this article is the phase transition at density
1� densc.Y /, for the fillability of the 2–complex Y`.

Theorem 1.6 Let .G`.m; d// be a sequence of random groups with m� 2 generators at density d . Let
.Y`/ be a sequence of 2–complexes with some geometric form .Y; �/.

(i) If d < 1� densc Y , then a.a.s. Y` is not fillable by G`.m; d/.

(ii) If d > 1� densc Y and Y` is fillable by B`, then a.a.s. Y` is fillable by G`.m; d/.

In Section 3, we prove Theorem 1.6 using the multidimensional intersection formula for random subsets
(Theorem 3.6, [Tsai 2022, Theorem 3.7]), which generalizes the proof for the C 0.�/ phase transition
in [Tsai 2022, Theorem 1.4]. We will see in Remark 3.3 that the second assertion of the theorem is
equivalent to the following corollary.

Corollary 1.7 Let .G`.m; d// be a sequence of random groups with m� 2 generators at density d . Let
s > 0 and K > 0. Let .Y`/ be a sequence of 2–complexes of the same geometric form such that Y` is
fillable by B`. If every sub-2–complex Z` of Y` satisfies

jZ
.1/

`
j � .1� d C s/jZ`j`;

then a.a.s. Y` is fillable by G`.m; d/.

Note that we need Y` to have at least one filling by the set of all possible relators B`. It is automatically
satisfied for planar and simply connected 2–complexes. In addition, if every face boundary length of Y`

is exactly `, then the given inequality is equivalent to an isoperimetric inequality similar the inequality of
Theorem 1.4. Hence the following corollary.

Algebraic & Geometric Topology, Volume 24 (2024)
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Corollary 1.8 Let .G`.m; d// be a sequence of random groups with m� 2 generators at density d . Let
s > 0 and K > 0. Let .D`/ be a sequence of finite planar 2–complexes of the same geometric form such
that every face boundary length of D` is exactly `. If every sub-2–complex D0

`
of D` satisfies

j@D0`j � .1� 2d C s/jD0`j`;

then a.a.s. D` is fillable by G`.m; d/.

It is mentioned in [Ollivier and Wise 2011, Proposition 1.8] that when d < 1=p, a.a.s., a random group at
density d has the C.p/ small cancellation condition. As an application of Theorem 1.6, we show that
there is a phase transition: if d > 1=p, then a.a.s. a random group at density d does not have C.p/ (see
Proposition 4.2).

Acknowledgements The content of this article was completed during my PhD thesis at the University
of Strasbourg. I would like to thank my thesis advisor, Thomas Delzant, for his guidance and interesting
discussions on the subject.

2 Isoperimetric inequality for van Kampen 2–complexes

We shall prove Theorem 1.5 in this section.

2.1 Reduction degree and complexity

Given a (nonreduced) van Kampen diagram Y D .V;E;F; '1; '2/ with respect to a group presentation
hX j Ri, its reduction degree is the total number of geometric edges causing reducible pair of faces,
counted with multiplicity: for any edge e 2E, any relator r 2R and any integer j , we count the number
of faces f 2 F labeled by r and having e as the j th boundary edge. If this number is k, we add .k�1/C

to the reduction degree where . �/C is the positive part function. Here is the formal definition given by
Gruber and Mackay [2021].

Definition 2.1 (reduction degree [Gruber and Mackay 2021, Definition 2.5]) Let Y D .V;E;F; '1; '2/

be a van Kampen 2–complex of a group presentation GD hX jRi. Let ` be the maximal boundary length
of faces of Y . The reduction degree of Y is

Red.Y /D
X
e2E

X
r2R

X
1�j�`

�ˇ̌
ff 2 F j '2.f /D r; e is the j th edge of @f g

ˇ̌
� 1

�C
:

It is not hard to see that a van Kampen 2–complex Y is reduced if and only if Red.Y /D 0. Since isolated
edges (edges that are not attached by any face) do not affect the reduction degree, we will only consider
2–complexes without isolated edges in the following.

A maximal arc of a 2–complex is a reduced combinatorial path passing only by vertices of degree 2

whose endpoints are not of degree 2. The complexity of a 2–complex encodes the number of maximal
arcs with the number of faces.

Algebraic & Geometric Topology, Volume 24 (2024)
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Definition 2.2 (complexity of a 2–complex) Let Y be a 2–complex. Let K > 0. We say that Y is of
complexity K if jY j �K and if for any face f of Y , the boundary path @f is divided into at most K

maximal arcs.

If D is a planar and simply connected 2–complex with jDj �K, then the complexity of D is 6K. Indeed,
as the rank of its underlying graph is K, the number of its maximal arcs is at most 3K, and every boundary
path is divided into at most 6K maximal arcs (an arc may be used twice).

Lemma 2.3 Let K > 0. There exists a number C.K/, depending only on K, such that the number of
2–complexes of complexity K with face boundary lengths at most ` is bounded by C.K/`K 2

.

Proof Recall that we only consider 2–complexes without isolated edges, so the number of maximal
arcs in a 2–complex of complexity K is at most K2 (each of the K faces has at most K arcs). Since the
face boundary lengths are at most `, these K2 maximal arcs have lengths at most `. So there are at most
`K 2

choices for their lengths. Now let C.K/ be the number of choices to attach these K2 maximal arcs
to form a 2–complex. The number of ways to construct a 2–complex of complexity K with boundary
lengths at most ` is hence bounded by C.K/`K 2

.

Remark 2.4 While the number of 2–complexes with a bounded complexity grows polynomially with the
maximal face boundary length `, it is not the case for 2–complexes with a bounded number of faces, not
even for 2–complexes with a bounded number of maximal arcs.

For example, consider the set of 2–complexes with one single face of boundary length ` whose underlying
graph is 8–shaped with one vertex and two edges. There are only two maximal arcs, while the number of
such 2–complexes equals to the number of words on two letters and their inverses of length `, which
grows exponentially with `. Our polynomial bound will be useful in the proof of Theorem 1.5.

Remark 2.5 Actually, there are van Kampen 2–complexes that contradict the inequality of Theorem 1.5.
For instance, D Calegari and A Walker [2015] proved that at any density d < 1

2
, there exists a number

K depending only on d such that, in G`.m; d/ there is a.a.s. a reduced van Kampen 2–complex Y

homeomorphic to a surface of genus O.`/ (hence with complexity O.`/) with at most K faces.

Since every edge is adjacent to two faces in a surface, we have jY .1/j � 1
2
jY j`, while according to

Theorem 1.5 we expect that
jY .1/j � .1� d � "/jY j` > 1

2
jY j`:

2.2 Abstract van Kampen 2–complexes

Let .G`.m; d// be a sequence of random groups at density d , defined by G`.m; d/D hx1; : : : ;xm jR`i.
Recall that B` is the set of all cyclically reduced words of length at most ` and jB`j D .2m� 1/`CO.1/.
Let 0< " < 1� d . Since logjB`j

jR`j converges in probability to the constant d , the probability event

Q` WD
˚
.2m� 1/.d�."=4/`/ � jR`j � .2m� 1/.dC."=4/`/

	
is a.a.s. true (see [Tsai 2022, Proposition 1.8]).

Algebraic & Geometric Topology, Volume 24 (2024)
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If we consider the Bernoulli density model where the events fr 2R`g through r 2B` are independent of
the same probability .2m�1/.d�1/`, it is obvious that we have Pr.r1; : : : ; rk 2R`/D .2m�1/k.d�1/` for
distinct r1; : : : ; rk in B`. In the permutation invariant density model, we have the following corresponding
proposition, which is a variant of [Tsai 2022, Lemma 3.10].

Proposition 2.6 Let r1; : : : ; rk be pairwise different relators in B`. We have

Pr.r1; : : : ; rk 2R` jQ`/� .2m� 1/k.d�1C."=2//`:

Abstract van Kampen 2–complexes, as abstract van Kampen diagrams introduced by Ollivier [2004], is a
structure between 2–complexes and van Kampen 2–complexes that helps us solve 2–complex problems
in random groups. Recall that since isolated edges do not affect fillability, we will only consider finite
2–complexes without isolated edges.

Definition 2.7 (abstract van Kampen 2–complex) An abstract van Kampen 2–complex zY is a 2–complex
.V;E;F / with a labeling function on faces by integer numbers and their inverses

z'2 W F ! f1; 1
�; 2; 2�; : : : ; k; k�g

such that z'2.f
�1/D z'2.f /

�. We denote it simply by zY D .V;E;F; z'2/.

By convention .i�/� D i . The integers f1; : : : ; kg are called abstract relators. Similar to a van Kampen
diagram, a pair of faces f; f 0 2 F is reducible if they are labeled by the same abstract relator, and they
share an edge at the same position of their boundaries. An abstract diagram is called reduced if there is
no reducible pair of faces. Let ` be the maximal boundary length of faces. The reduction degree of the
2–complex zY can be similarly defined as

Red. zY /D
X
e2E

X
1�i�k

X
1�j�`

�ˇ̌
ff 2 F j z'2.f /D i; e is the j th edge of @f g

ˇ̌
� 1

�C
:

We say that an abstract van Kampen 2–complex with k abstract relators zY D .V;E;F; z'2/ is fillable by a
group presentation GDhX jRi (or by a set of relators R) if there exists k different relators r1; : : : ; rk 2R

such that the construction '2.f / WD rz'2.f / gives a van Kampen 2–complex Y D .V;E;F; '1; '2/
3 of G.

The k–tuple of relators .r1; : : : ; rk/, or the van Kampen 2–complex Y , is called a filling of zY ; see
Figure 2, left. As we picked different relators for different abstract relators, if Y is a filling of zY , then
Red.Y /D Red. zY /, and zY is reduced if and only if Y is reduced.

Denote `i the length of the abstract relator i for 1 � i � k. Let ` D maxf`1; : : : ; `kg be the maximal
boundary length of faces. The pairs of integers .i; 1/; : : : ; .i; `i/ are called abstract letters of i . The set
of abstract letters of zY is then a subset of the product set f1; : : : ; kg� f1; : : : ; `g. The geometric edges of
zY are decorated by abstract letters and directions: Let f 2 F be labeled by i and let e 2E be at the j th

3Note that the edge labeling '1 is determined by the face labeling '2 as there are no isolated edges.
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21 filling
���!

zY

r2r1

Y

21
.2
;
3
/.1

;
4
/

Figure 2: Left: filling an abstract van Kampen 2–complex. Right: a geometric edge decorated by
two abstract letters.

position of @f . The geometric edge Ne is decorated, on the side of Nf , by an arrow indicating the direction
of e and the abstract letter .i; j /. The number of decorations on a geometric edge is the number of its
adjacent faces with multiplicity (an edge may be attached twice by the same face); see Figure 2, right.

Definition 2.8 (free-to-fill) An abstract letter .i; j / of zD is free-to-fill if, for any edge Ne decorated by
.i; j /, it is the minimal decoration on Ne.

Denote ˛i the number of faces labeled by the abstract relator i and �i the number of free-to-fill edges
of i . We have the following estimation.

Lemma 2.9 Let zY D .V;E;F; z'2/ be an abstract van Kampen 2–complex with k abstract relators. Then
kX

iD1

˛i�i � j
zY .1/jCRed. zY /:

Proof Denote by E the set of geometric edges and F the set of geometric faces. For any geometric
edge Ne, an adjacent face Nf from which the decoration is minimal is called a preferred face of Ne. For any
face Nf , let E Nf be the set of geometric edges Ne on its boundary such that Nf is a preferred face of Ne. Note
that an edge will never be counted twice as the decorations given by one face are all different. According
to Definition 2.8, for any face f with z'2.f /D i , we have �i � jE Nf j. Hence,

kX
iD1

˛i�i �

X
Nf 2F

jE Nf j:

Denote by Red. Ne/ the reduction degree caused by the edge Ne. That is,

Red. Ne/ WD
X

1�i�k

X
1�j�`

�ˇ̌
ff 2 F j z'2.f /D i; e or e�1 is the j th edge of @f g

ˇ̌
� 1

�C
;

so that the number of preferred faces of Ne is bounded by 1CRed. Ne/. Hence,X
Nf 2F

jE Nf j �
X
Ne2E

.1CRed. Ne//D j zY .1/jCRed. zY /:

Probability of filling We shall estimate the probability that an abstract van Kampen 2–complex zY is
fillable by a random group G`.m; d/. This step is the key to prove Theorem 1.5. Recall that

Q` WD
˚
.2m� 1/.d�."=4/`/ � jR`j � .2m� 1/.dC."=4/`/

	
is an a.a.s. true probability event.
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Lemma 2.10 Let zY be an abstract van Kampen 2–complex with k abstract relators. We have

Pr. zY is fillable by G`.m; d/ jQ`/�
�

2m

2m�1

�k
.2m� 1/

Pk
iD1.�iC.d�1C"=2/`/:

Proof Let us estimate the number of fillings of zY . For every free-to-fill abstract letter .i; j /, there
are at most 2m ways to fill a generator if j D 1, at most .2m� 1/ ways to fill if j ¤ 1 for avoiding
reducible word. As there are �i free-to-fill abstract letters on the i th abstract relator, there are at most
2m.2m� 1/�i�1 ways to fill it. So there are at most

Qk
iD1.2m.2m� 1/�i�1/ ways to fill zY .

Let Y be a van Kampen 2–complex, which is a filling of zY . The 2–complex Y is labeled by k different
relators in B`, denoted r1; : : : ; rk . By Proposition 2.6,

Pr.Y is a 2–complex of G`.m; d/ jQ`/D Pr.r1; : : : ; rk 2R` jQ`/� .2m� 1/k.d�1C"=2/`:

Hence

Pr. zY is fillable by G`.m; d/ jQ`/�
X

Y fills zY

Pr.Y is a 2–complex of G`.m; d/ jQ`/

�

kY
iD1

.2m.2m� 1/�i�1/.2m� 1/k.d�1C"=2/`

�

�
2m

2m�1

�k
.2m� 1/

Pk
iD1.�iC.d�1C"=2/`/:

Lemma 2.11 Let zY be an abstract van Kampen 2–complex with k abstract relators. Suppose that zY does
not satisfy the inequality given in Theorem 1.5, ie

j zY .1/jCRed. zY / < .1� d � "/j zY j`;

then
Pr. zY is fillable by G`.m; d/ jQ`/�

�
2m

2m�1

�
.2m� 1/�."=2/`:

Proof Let zYi be the sub-2–complex of zY consisting of faces labeled by the i first abstract relators. Let
Pi D Pr. zYi is fillable by G`.m; d/ jQ`/. Apply Lemma 2.10 on zYi ; we have

Pi �

�
2m

2m�1

�i
.2m� 1/

Pi
j D1.�jC.d�1C"=2/`/:

Note that if zY is fillable by G`.m; d/ then its sub-2–complex zYi is fillable by the same group. So for any
1� i � k,

log2m�1.Pk/� log2m�1.Pi/�

iX
jD1

�
�j C

�
d � 1C 1

2
"
�
`C log2m�1

�
2m

2m�1

��
:

Without loss of generality, suppose that ˛1 � ˛2 � � � � � ˛k . Note that log2m�1.Pk/ is negative and
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˛1 � j
zY j, so j zY j log2m�1.Pk/ � ˛1 log2m�1.Pk/. By Abel’s summation formula, with convention

˛kC1 D 0,

j zY j log2m�1.Pk/� ˛1 log2m�1.Pk/D

kX
iD1

.˛i �˛iC1/ log2m�1.Pk/

�

kX
iD1

.˛i �˛iC1/

iX
jD1

h
�i C

�
d � 1C 1

2
"
�
`C log2m�1

�
2m

2m�1

�i

D

kX
iD1

˛i

h
�i C

�
d � 1C 1

2
"
�
`C log2m�1

�
2m

2m�1

�i

D

kX
iD1

˛i�i C

� kX
iD1

˛i

�h�
d � 1C 1

2
"
�
`C log2m�1

�
2m

2m�1

�i
:

Note that
Pk

iD1 ˛i D j
zY j. By Lemma 2.9 and the hypothesis of the current lemma,

kX
iD1

˛i�i � j
zY .1/jCRed. zY / < .1� d � "/j zY j`:

Hence,

j zY j log2m�1.Pk/� .1� d � "/j zY j`Cj zY j
h�

d � 1C 1
2
"
�
`C log2m�1

�
2m

2m�1

�i
� j zY j

h
�

1
2
"`C log2m�1

�
2m

2m�1

�i
:

2.3 Proof of Theorem 1.5

Under the condition Q` WD f.2m� 1/.d�."=4/`/ � jR`j � .2m� 1/.dC."=4/`/g, the probability that there
exists a van Kampen 2–complex of complexity K of G`.m; d/ satisfying the inverse inequality

(�) jY .1/jCRed.Y / < .1� d � "/jY j`

is bounded by X
zY of complexity K , satisfying (�)

Pr. zY is fillable by G`.m; d/ jQ`/:

By Lemma 2.3 and the face that there at most K2K ways to label a 2–complex with K faces by abstract
relators f1˙; : : : ;K˙g, there are at most `3K �K2K terms in the sum. By Lemma 2.11, every term is
bounded by �

2m

2m�1

�
.2m� 1/�."=2/`:

So the sum is smaller than
`3K K2K

�
2m

2m�1

�
.2m� 1/�."=2/`;

which converges to 0 as `!1.
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By definition Pr.Q`/
`!1
����! 1, so the probability that there exists a van Kampen 2–complex of G`.m; d/

of complexity K satisfying (�) converges to 0 as ` goes to infinity. That is to say, a.a.s. every van Kampen
diagram of G`.m; d/ of complexity K satisfies the inequality

jY .1/jCRed.Y /� .1� d � "/jY j`:

Collapsible 2–complexes and closed surfaces Recall that an elementary collapse of a 2–complex, in the
sense of Whitehead [1939], is the removal of a face together with one of its edges that is not adjacent to
other faces. A 2–complex is called collapsible4 to a graph if it can be collapsed to a graph by a sequence
of elementary collapses.

Let Y be a 2–complex of complexity K. If Y is not collapsible, then after all possible elementary
collapses, we obtain a sub-2–complex Y 0 having only edges that are adjacent to at least 2 faces, which
gives jY 0.1/j � 1

2
jY 0j`, where ` is the maximal boundary length of faces. Since it contradicts the inequality

of Theorem 1.5 for any density d < 1
2

, the 2–complex Y cannot be fillable by any random group. Hence
the following proposition.

Proposition 2.12 Let .G`.m; d// be a sequence of random groups with m� 2 generators at density d .
For any d < 1

2
and K > 0, a.a.s. every reduced van Kampen 2–complex of complexity K of G`.m; d/ is

collapsible to a graph.

Consequently, a 2–complex with K faces that is homeomorphic to a closed surface of a fixed genus5 g is
not fillable by any random group, since a surface is not collapsible and the complexity is bounded by a
number depending only on K and g.

3 Phase transition for the existence of van Kampen 2–complexes

In this section, we work on the proof of Theorem 1.6.

Motivation and a counterexample Let .G`.m; d// be a sequence of random groups at density d . We
are interested in the converse of Theorem 1.5 without the reduction part: if a 2–complex Y` with bounded
complexity satisfies the inequality

jY
.1/

`
j � .1� d C s/jY`j`

with some s > 0, does there exist a face labeling by relators and an edge labeling by generators, so that
Y` becomes a reduced van Kampen 2–complex of G`.m; d/?

The motivation for this question comes from the well-known phase transition at density dD 1
2
�, mentioned

in [Gromov 1993, page 274]: if d < 1
2
� then a.a.s. G`.m; d/ has the C 0.�/ small cancellation condition;

4In the original context [Whitehead 1939], the removal of an isolated edge is also an elementary collapse, and a 2–complex is
collapsible if it can be collapsed to a point.
5Note that the genus g need to be fixed, otherwise by Calegari and Walker’s result [2015] there exists a closed surface (see
Remark 2.5).
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�`
0:9`

0:1`

0:1`

0:8`D`
0:9`

0:1`

0:1`

D0
`

Figure 3: Left: a van Kampen diagram denying the C 0.�/ condition. Middle and right: A 2–
complex that satisfies the isoperimetric inequality with a sub-2–complex that does not.

while if d > 1
2
� then a.a.s. G`.m; d/ does not have C 0.�/. The first assertion is a simple application of

Theorem 1.4. For the second assertion, we need to show that a.a.s. there exists a van Kampen 2–complex
D of G`.m; d/ with exactly 2 faces of boundary length `, sharing a common path of length at least �`
(Figure 3, left).

The first detailed proof of such an existence is given in [Bassino et al. 2020, Theorem 2.1], using an
analog of the probabilistic pigeonhole principle. Another proof is given in [Tsai 2022, Theorem 1.4]. An
intuitive explanation using the “dimension reasoning” is given in [Ollivier 2005, page 30]: The dimension
of the set of couples R` �R` is 2d`. Sharing a common subword of length L imposes L equations, so
the “dimension” of the set of couples of relators sharing a common subword of length �` is 2d`��`.
If d > �=2, then there will exist such a couple because the dimension will be positive. However, this
argument is not true for any 2–complex in general. Here is a counterexample:

At density d D 0:4, let .D`/ be a sequence of 2–complexes where D` is given in Figure 3, middle. The
given inequality is satisfied because jD.1/

`
j D 1:9` > 1:8` D .1� d/jD`j`. However, the subdiagram

D0
`

(Figure 3, right) gives jD0.1/
`
j D 1:1` < 1:2`D .1� d/jD0

`
j`), which contradicts the isoperimetric

inequality of Theorem 1.5 and cannot be a van Kampen diagram of G`.m; d/.

3.1 Geometric form and critical density

Let us define the geometric form of 2–complexes and the critical density of a geometric form. To simplify
the notation, for a 2–complex Y D .V;E;F /, we denote by Edge.Y / the set of geometric edges of Y

and e instead of Ne for geometric edges.

Definition 3.1 A geometric form of 2–complexes is a couple .Y; �/ where Y D .V;E;F / is a finite
connected 2–complex without isolated edges, and � is a length labeled on edges defined by

� W Edge.Y /! �0; 1�; e 7! �e;

such that for every face f of Y , the boundary length j@f j is bounded by 1.
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A sequence of 2–complexes .Y`/ is said to be of the geometric form .Y; �/ if Y` is obtained from Y by
dividing every edge e of Y into b�e`c edges6 of length 1.

A sequence of 2–complexes .Y`/ is briefly said to be of the same geometric form if the geometric form
.Y; �/ is not specified. Note that the boundary length of every face f of Y` is at most `. If Z is a
sub-2–complex of Y , we denote Z � Y . By convention, if .Z`/ is a sequence of 2–complexes of the
geometric form .Z; �jZ /, we have Z` � Y` for any integer `.

Definition 3.2 Let .Y; �/ be a geometric form of 2–complexes. The density of Y is

dens.Y / WD

P
e2Edge.Y / �e

jY j
:

The critical density of Y is
densc.Y / WD min

Z�Y
fdens.Z/g:

The intuition of this definition can be found in Lemma 3.8: the density of Y is actually the density of all
possible van Kampen 2–complexes that fill Y`.

Remark 3.3 Taking Definitions 3.2 and 3.1 together, we have

dens.Y /D

P
e2Edge.Y / �e

jY j
D lim
`!1

P
e2Edge.Y /b�e`c

jY`j`
D lim
`!1

jY
.1/

`
j

jY`j`
:

Hence, the condition “densc.Y /C d > 1” is equivalent to the following statement: Given s > 0, for `
large enough, every sub-2–complex Z` of Y` satisfies

jZ
.1/

`
j � .1� d C s/jZ`j`:

This argument shows that the second assertion of Theorem 1.6 is equivalent to Corollary 1.7.

Proof of Theorem 1.6(i) We will use Theorem 1.5 without the reduction part. Let .G`.m; d// be a
sequence of random groups with m generators at density d . Recall that a 2–complex Y` is said to be
fillable by G`.m; d/ if there exists a reduced van Kampen 2–complex of G`.m; d/ whose underlying
2–complex is Y`.

Let .Y; �/ be a geometric form of 2–complexes with densc Y C d < 1. Let .Y`/ be a sequence of
2–complexes of the geometric form .Y; �/. We shall prove that a.a.s. the 2–complex Y` is not fillable by
the random group G`.m; d/. By the definition of critical density, there exists a sub-2–complex Z � Y

satisfying dens ZC d < 1. Let .Z`/ be the sequence of 2–complexes of the geometric form .Z; �jZ /.
We shall prove that a.a.s. Z` is not fillable by G`.m; d/.

6We can replace b�e`c by any function with �`C o.`/ and slightly smaller than �`. Note that the sum of edge lengths on every
face boundary of Y` is at most `
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Let " > 0 such that dens Z D 1� d � 3". By definition,

lim
`!1

jZ
.1/

`
j

jZ`j`
D 1� d � 3";

so for ` large enough,

jZ
.1/

`
j � .1� d � 2"/jZ`j` < .1� d � "/jZ`j`:

The complexity of Z` is

K Dmax
n
jZj; jZ.1/

j;max
n

1

�e

ˇ̌
e 2 Edge.Z/

oo
;

independent of `. By Theorem 1.5 with " and K given above, a.a.s. every van Kampen 2–complex Z` of
G`.m; d/ of complexity K should satisfy

jZ
.1/

`
j � .1� d � "/jZ`j`:

Hence, a.a.s. the given 2–complex Z` is not fillable by G`.m; d/, which implies that a.a.s. Y` is not
fillable by G`.m; d/.

3.2 The multidimensional intersection formula for random subsets

To prove the second assertion of Theorem 1.6, we need the multidimensional intersection formula for
random subsets with density, introduced in [Tsai 2022, Section 3].

Recall that B` is the set of cyclically reduced words of X˙m D fx
˙
1
; : : : ;x˙mg of length at most `, and that

jB`j D .2m� 1/`Co.`/. Let k � 1 be an integer. Denote by B
.k/

`
the set of k–tuples of pairwise distinct

relators .r1; : : : ; rk/ in B`. Such notation can be used for any set or any random set.

Note that jB.k/
`
jD .2m�1/k`Co.`/. Recall that a sequence of fixed subsets .Y`/ of the sequence .B.k/

`
/ is

called densable with density ˛ 2 f�1g[ Œ0; 1� if the sequence of real numbers .log
jB

.k/

`
j
jY`j/ converges

to ˛ (see [Gromov 1993, page 272; Tsai 2022, Definition 1.5]). That is to say, jY`j D .2m� 1/˛k`Co.`/.

Definition 3.4 (self-intersection partition [Tsai 2022, Definition 3.4]) Let .Y`/ be a sequence of fixed
subsets of the sequence .B.k/

`
/. Let 0� i � k be an integer. The i th self-intersection of Y` is

Si;` WD f.x;y/ 2 Y2
` j jx\yj D ig;

where jx\yj is the number of common elements between the sets xD .r1; : : : ; rk/ and y D .r 0
1
; : : : ; r 0

k
/.

The family of subsets fSi;` j 0� i � kg is a partition of Y2
`
, called the self-intersection partition of Y`.

Note that .Si;`/`2N is a sequence of subsets of the sequence ..B.k/
`
/2/`2N , with density smaller than

dens
..B

.k/

`
/2/
.Y2
`
/D dens

.B
.k/

`
/
.Y`/.
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Definition 3.5 (d–small self-intersection condition [Tsai 2022, Definition 3.5]) Let .Y`/ be a sequence
of fixed subsets of .B.k/

`
/ with density ˛. Let Si;` with 0� i � k be its self-intersection partition. Let

d > 1�˛. We say that .Y`/ satisfies the d–small self-intersection condition if, for every 1� i � k � 1,

dens
..B

.k/

`
/2/
.Si;`/ < ˛� .1� d/�

i

2k
:

Theorem 3.6 (multidimensional intersection formula [Tsai 2022, Theorem 3.6]) Let .R`/ be a sequence
of permutation invariant random subsets of .B`/ of density d . Let .Y`/ be a sequence of fixed subsets of
.B

.k/

`
/ of density ˛ > 1� d . If .Y`/ satisfies the d–small self-intersection condition , then the sequence

of random subsets .Y` \R
.k/

`
/ is densable with density ˛C d � 1.

In particular , a.a.s. the random subset Y` \R
.k/

`
of B

.k/

`
is not empty.

3.3 Proof of Theorem 1.6(ii)

Let .Y`/ be a sequence of 2–complexes of the same geometric form .Y; �/ with k faces. In the following,
we denote by Y` the set of pairwise distinct relators in B` that fill Y`, which is a subset of B

.k/

`
.

Let .G`.m; d// be a sequence of random groups at density d , defined by G`.m; d/D hXm jR`i, where
.R`/ is a sequence of random subsets with density d . The intersection Y` \R

.k/

`
is hence the set of

k–tuples of pairwise distinct relators in R` that fill Y`. We want to prove that this intersection is not empty,
so that Y` is fillable by G`.m; d/. According to Theorem 3.6, it remains to prove that if densc Y > 1�d ,
then the sequence .Y`/ is densable and satisfies the d–small self-intersection condition.

We will prove in Lemma 3.8 that .Y`/ is densable with density exactly dens.Y /, and in Lemma 3.9 that
it satisfies the d–small self-intersection condition.

Lemma 3.7 Let Y` be the set of k–tuples of relators in B` that fill Y`, not necessarily pairwise distinct.
If Y` is fillable by B`, then

dens.Bk
`
/.Y`/D dens Y:

Proof We shall estimate the number jY`j by counting the number of labelings on edges of Y` that
produce van Kampen 2–complexes with respect to all possible relators B`.

We start by filling edges in the neighborhoods of vertices that are originally vertices of the geometric form
Y (before dividing). Consider the set of oriented edges of Y` starting at some vertex that is originally a
vertex of Y before dividing. A vertex labeling is a labeling on these edges by X˙m that does not produce
any reducible pair of edges on face boundaries: for every pair of different edges e1; e2 starting at the
same vertex, if they are labeled by the same generator x 2X˙m , then the path e�1

1
e2 is not cyclically part

of any face boundary loop. Since the 2–complex Y` is fillable, the set of vertex labelings is not empty.
Denote by C � 1 the number of vertex labelings of Y`.

As m� 2 and b�e`c� 3 for ` large enough, if there exists a vertex labeling, then the other edges of Y` can
be completed as a van Kampen 2–complex of B`, and the number C depends only on the geometric form Y .
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To label the remaining b�`c� 2 edges on the arc divided from the edge e 2 Edge.Y /, there are 2m� 1

choices for the first b�`c� 3 edges, and 2m� 2 or 2m� 1 choices for the last edge. So

C
Y

e2Edge.Y /

.2m� 1/b�e`c�3.2m� 2/� jY`j � C
Y

e2Edge.Y /

.2m� 1/b�e`c�2:

Recall that k D jY j D jY`j and that jBk
`
j D .2m� 1/k`Co.`/. We have

dens.Bk
`
/.Y`/D

P
e2Edge.Y / �e

jY j
D dens Y:

Lemma 3.8 If densc Y > 1
2

and Y` is fillable by B`, then .Y`/ is densable in .B.k/
`
/ and

dens
.B

.k/

`
/
.Y`/D dens Y:

Proof Suppose that jY j � 2. The case jY j D 1 is trivial. Let Z be a sub-2–complex of Y with exactly
two faces f1; f2. As dens Z � densc Y > 1

2
, by Definition 3.2, we haveX

e2Edge.Z/

�e >
1
2
jZj D 1� j@f1j:

Let YZ
`

be the set of fillings of Y` by B` such that the two faces of Z are filled by the same relator. By
the same arguments of the previous lemma,

jYZ
`
j � C.2m� 1/j@f1j

Y
e2Edge.Y /nEdge.Z/

.2m� 1/b�e`c�2;

so
dens.Bk

`
/.Y

Z
`
/�

1

jY j

� X
e2Edge.Y /

�eC

�
j@f1j �

X
e2Edge.Z/

�e

��

<

P
e2Edge.Y / �e

jY j
D dens Y D dens.Bk

`
/.Y`/:

Knowing that
Y` D Y`

/ [
Z<Y; jZ jD2

YZ
`
;

we have
jY`j �

X
Z<Y; jZ jD2

jYZ
`
j � jY`j � jY`j:

There are
�
jY j
2

�
terms in the sum, in every term we have dens.Bk

`
/.Y

Z
`
/ < dens.Bk

`
/.Y`/, so (see [Tsai

2022, Propositions 2.7 and 2.8])

dens.Bk
`
/.Y`/D dens.Bk

`
/.Y`/:

Together with Lemma 3.7, we have dens.Bk
`
/.Y`/D dens Y . As dens.Bk

`
/.B

.k/

`
/D 1, we get

dens
.B

.k/

`
/
.Y`/D dens Y:
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Lemma 3.9 Suppose that densc Y > 1� d . Let Si;` be the i th self-intersection of the set Y`. We have

dens
..B

.k/

`
/2/
.Si;`/ < dens Y � .1� d/�

i

2k
:

Proof Let Z, W be two sub-2–complexes of Y with jZj D jW j D i < k D jY j. Let .Z`/; .W`/ be
the corresponding sequences of 2–complexes of the geometric forms Z and W , respectively. Denote by
S`.Z;W / the set of pairs of pairwise distinct fillings ..r1; : : : ; rk/; .r

0
1
; : : : ; r 0

k
// of Y` by all possible

relators B` such that, the i relators in the first filling .r1; : : : ; rk/ corresponding to Z` are identical to the
i relators in the second filling .r 0

1
; : : : ; r 0

k
/ corresponding to W`, and that the remaining 2k � 2i relators

are pairwise different, not repeating the relators in Z` and W`.

Let us estimate the cardinality jS`.Z;W /j. First, fill the k–tuple .r1; : : : ; rk/ so the i relators in the next
k–tuple .r 0

1
; : : : ; r 0

k
/ corresponding to the sub-2–complex W` is determined. There are at most i ! choices

for ordering these i relators. To fill the remaining k� i relators in .r 0
1
; : : : ; r 0

k
/, by the same arguments of

Lemma 3.7, we get

jS`.Z;W /j � jY`j � i !�C
Y

e2Edge.Y /nEdge.W /

.2m� 1/b�e`c�2:

Recall that the density of Y is defined by .1=jY j/
�P

e2Edge.Y / �e

�
, and that dens W � densc Y > 1� d

by Definition 3.2. Together with the hypothesis densc Y > 1� d , we have

dens
..B

.k/

`
/2/
.S`.Z;W //�

1

2k

� X
e2Edge.Y /

�eC

X
e2Edge.Y /nEdge.W /

�e

�

D
1

2k

�
2

X
e2Edge.Y /

�e �

X
e2Edge.W /

�e

�
D dens Y �

i

2k
dens W

< dens Y �
i

2k
.1� d/:

Note that

Si;` D

[
Z<Y; W <Y
jZ jDjW jDi

S`.Z;W /:

It is a union of
�
k
i

�2
subsets of densities strictly smaller than dens Y � i

2k
.1� d/. According to [Tsai

2022, Proposition 2.7], we have

dens
..B

.k/

`
/2/
.Si;`/ < dens Y �

i

2k
.1� d/:

This completes the proof of Theorem 1.6.
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4 Phase transitions for small cancellation conditions

Let us recall small cancellation notions in [Lyndon and Schupp 1977, page 240]. A piece with respect to
a set of relators is a cyclic subword that appears at least twice. A group presentation satisfies the C 0.�/

small cancellation condition for some 0< � < 1 if the length of a piece is at most � times the length of
any relator in which it appears. It satisfies the C.p/ small cancellation condition for some integer p � 2

if no relator is a product of fewer than p pieces.

The C 0.�/ condition Let .G`.m; d// be a sequence of random groups at density d . It is known that
there is a phase transition at density d D �=2 for the C 0.�/ condition (see [Gromov 1993, page 274;
Bassino et al. 2020, Theorem 2.1; Tsai 2022, Theorem 1.4]). We give here a much simpler proof using
Theorem 1.6.

Proposition 4.1 Let 0< � < 1. Let .G`.m; d// be a sequence of random groups at density d . There is a
phase transition at density d D �=2:

(i) If d < �=2, then a.a.s. G`.m; d/ satisfies C 0.�/.

(ii) If d > �=2, then a.a.s. G`.m; d/ does not satisfy C 0.�/.

Proof (i) Let us prove by contradiction. Suppose that a.a.s. G`.m; d/ does not satisfy C 0.�/. That is to
say, a.a.s. there exists a piece w that appears in relators r1; r2 with jwj> �jr1j. It is possible that r1 D r2,
but the piece should be at different positions.

Construct a van Kampen diagram D by gluing two combinatorial disks with one face, labeled respectively
by r1 and r2, along with the paths where the piece w appears (Figure 4, left). As r1 ¤ r2 or r1 D r2 but
the piece appears at different positions, we obtain a reduced van Kampen diagram. The diagram satisfies
jD.1/j D jr1jC jr2jC jwj< `C `C�` < .1��=2/jDj`, which contradicts Theorem 1.5.

(ii) Consider a geometric form Y with two faces sharing a common edge of length �, the other two edges
are of length 1�� (Figure 4, right). We have dens Y D 1

2
.2.1��/C�/> 1�d , and every sub-2–complex

with one face is with density 1> 1� d . So densc Y > 1� d .

Let .Y`/ be a sequence of 2–complexes of the geometric form Y . By Theorem 1.6, a.a.s. Y` is fillable by
G`.m; d/, hence a.a.s. G`.m; d/ does not satisfy C 0.�/.

w r2r1 � 1��1��

Figure 4: Left: a van Kampen 2–complex constructed from a C 0.�/ group. Right: the geometric
form for the C 0.�/ condition.
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Figure 5: Left: a van Kampen 2–complex constructed from a non-C.p/ group. Middle: the
geometric form for the C.p/ condition. Right: the geometric form for the B.2p/ condition.

The C.p/ condition We shall prove by Theorem 1.6 that for random groups with density, there is a
phase transition at density 1=p for the C.p/ condition.

Proposition 4.2 Let p � 2 be an integer. Let .G`.m; d// be a sequence of random groups at density d .
There is a phase transition at density 1=p:

(i) If d < 1=p, then a.a.s. G`.m; d/ satisfies C.p/.

(ii) If d > 1=p, then a.a.s. G`.m; d/ does not satisfy C.p/.

Proof (i) Let us prove by contradiction. Suppose that a.a.s. G`.m; d/ does not satisfy C.p/. That is to
say, a.a.s. there is a relator that is a product of q pieces with q � p� 1. By this relator we construct a
reduced van Kampen diagram D with qC 1 faces, one face is placed in the center, attached by the other
q faces on the whole boundary, and there is no other attachments (Figure 5, left).

Observer that jDj D q C 1 and jD.1/j � q` (sum of the boundary lengths of the outer q faces). Let
"D .1=.qC 1/� d/=2, which is positive since d < 1=p � 1=.qC 1/. We have

1� d � "D
q

qC 1
C " >

q

qC 1
:

Hence jD.1/j< .1� d � "/jDj`, which contradicts Theorem 1.5.

(ii) Consider a geometric form Y with p faces, one of the faces is placed in the center, having p� 1

edges of length 1=.p� 1/, such that every edge is attached by another face with two edges of lengths
1=.p� 1/ and 1� 1=.p� 1/. There are no other attachments (Figure 5, middle).

The density of Y is .p � 1/=p > 1� d . If Z is a sub-2–complex of Y not containing the center face,
then dens Z D 1> 1� d . If Z contains the center face and i � p other faces, then

dens Z D
1C i.1� 1=.p� 1//

i C 1
> 1� d:

So densc Y > 1� d .
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d
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1� d

d
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r

r

r

x1x2

x2

Figure 6: Left: the geometric form for the T .q/ condition. Right: a random relator r denying the
T .q/ condition.

Let .Y`/ be a sequence of 2–complexes of the geometric form Y . By Theorem 1.6, a.a.s. Y` is fillable by
G`.m; d/, hence a.a.s. G`.m; d/ does not satisfy C.p/.

The B.2p/ condition The same argument holds for the B.2p/ condition, introduced in [Ollivier and
Wise 2011, Definition 1.7]: half of a relator cannot be the product of fewer than p pieces. One can
construct a geometric form with pC 1 faces, one of the faces is in the center, with half of its boundary
attached by the other p faces, each with length 1=p (Figure 5, right). Its critical density is

�
pC 1

2

�
=.pC1/,

so a phase transition occurs at density d D 1=.2pC 2/.

Proposition 4.3 Let p � 1 be an integer. Let .G`.m; d// be a sequence of random groups at density d .
There is a phase transition at density d D 1=.2pC 2/:

(i) If d < 1=.2pC 2/, then a.a.s. G`.m; d/ satisfies B.2p/.

(ii) If d > 1=.2pC 2/, then a.a.s. G`.m; d/ does not satisfy B.2p/.

The T.q/ condition Recall that [Lyndon and Schupp 1977, page 241] a group presentation satisfies the
T .q/ small cancellation condition for some q � 4 if, in every of its reduced van Kampen diagram, every
vertex of valency at least 3 is actually of valency at least q.

Proposition 4.4 For any density 0< d � 1, a.a.s. G`.m; d/ does not satisfy T .4/.

Proof We shall construct a reduced van Kampen diagram with a vertex of valency exactly 3. Consider
the geometric form Y with 3 faces sharing one common vertex, attaching to each other with common
segments of length d=2 (Figure 6, left). The critical density of Y is 1� d=2> 1� d , so by Theorem 1.6,
a.a.s. the random group G`.m; d/ has a van Kampen diagram of the form Y .

Remark 4.5 Proposition 4.4 holds for the few relator model. For example, for a one relator random
group hx1; : : : ;xm j ri with m � 2, a.a.s. (when jr j ! 1) the three subwords x1x2, x�2

2
and x2x�1

1

appear in the random relator r at different places. By these subwords, we can construct a reduced van
Kampen diagram with 3 faces that has a vertex of valency exactly 3 (Figure 6, right), denying the T .4/

small cancellation condition.

Algebraic & Geometric Topology, Volume 24 (2024)
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