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A qualitative description of the horoboundary of the Teichmiiller metric

AITOR AZEMAR

Two commonly studied compactifications of Teichmiiller spaces of finite type surfaces with respect
to the Teichmiiller metric are the horofunction and visual compactifications. We show that these two
compactifications are related, by proving that the horofunction compactification is finer than the visual
compactification. This allows us to use the straightforwardness of the visual compactification to obtain
topological properties of the horofunction compactification. Among other things, we show that Busemann
points of the Teichmiiller metric are not dense within the horoboundary, answering a question of Liu
and Su. We also show that the horoboundary of Teichmiiller space is path connected, determine for which
surfaces the horofunction compactification is isomorphic to the visual one and show that some horocycles
diverge in the visual compactification based at some point. As an ingredient in one of the proofs we
show that extremal length is not C? along some paths that are smooth with respect to the piecewise linear
structure on measured foliations.
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1 Introduction

The horofunction compactification of a metric space is defined in terms of the metric, so its properties are
well aligned for studying the metric properties of the space. For example, all geodesic rays converge to
points and isometries of the space can be extended to homeomorphisms of the compactification. This
compactification was first introduced by Gromov [16] as a natural, general compactification, based on
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previous ideas of Busemann. The horofunction compactification has since found many applications; it
was used to obtain asymptotic properties of random walks on weakly hyperbolic spaces by Maher and
Tiozzo [29], to determine the isometry group of some Hilbert geometries by Lemmens and Walsh [25]
and to obtain properties of quantum metric spaces by Rieffel [39]. The compactification is obtained
by embedding the metric space X into the space C(X) of continuous functions on X via the map
h: X — C(X) defined by

(1 h(p)(-) =d(p. ) —d(p.b).

where b € X is an arbitrarily chosen basepoint. As explained, for example, by Walsh [42, Section 2],
if the space X is proper then / is an embedding, the closure of /(X) is compact and the horofunction
compactification of X is defined as the pair (4, h(X)). By considering two functions equivalent if they
differ by a constant one can show that the compactification does not depend on the basepoint ». While
this compactification has been rather useful, it is sometimes hard to visualize, and there are not that many
examples where the horofunction boundary is explicitly known. Some cases where the horofunction
compactification is understood include Hadamard manifolds and some of their quotients, by Dal’bo,

Peigné, and Sambusetti [8], as well as the Heisenberg group with the Carnot—Carathéodory metric, by
Klein and Nicas [24], and Hilbert geometries, by Walsh [43].

On the other hand, for a proper, uniquely geodesic, straight metric space X (see Section 2 for definitions)
the visual compactification based at some point b € X is defined by pasting the set of geodesic rays
exiting b, denoted Dy, to the space X in such a way that a sequence (x,) C X converges to some ray
y € Dy if the distance d(b, x;,) goes to infinity as n — oo, and the geodesic ray between b and xj
converges uniformly on compacts to y. This compactification was introduced by Eberlein and O’Neil
[10] as a generalization of the Poincaré disk model, and we give a brief introduction in Section 2. This
compactification may depend on the basepoint b, which restricts its usefulness. It can even happen that
isometries of X that move the basepoint cannot be extended continuously to the compactification, as
Kerckhoff showed for Teichmiiller spaces [23]. However, the visual compactification usually has a simple
geometric interpretation. For example, for a Hadamard manifold, as well as for a Teichmiiller space with
the Teichmiiller metric, this compactification is homeomorphic to a closed ball of the same dimension
as the space, where the boundary of that ball is the space of geodesic rays based at 5. In the context of
Teichmiiller spaces with the Teichmiiller metric, the visual compactification is often called the Teichmiiller

compactification.
1.1 Horoboundary of proper, uniquely geodesic, straight metric spaces

To make this work as general as possible, we begin our analysis by using the aforementioned metric
properties of the Teichmiiller metric. The relationship between the horofunction compactification and the
visual compactification is established by observing that, for such a metric space, a sequence converging to
a point in the horofunction compactification also converges in the visual compactification. This allows us
to build a continuous map T}, from the horofunction compactification /(X)) to the visual compactification
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X U Dy, showing that the former is finer than the latter. In the context of Teichmiiller spaces without
boundary, the map ITj coincides with the one defined by Liu and Shi [27, Definition 3.3]. We may denote
this map as simply IT when the basepoint is not relevant to the discussion.

Given a geodesic y, the path y(¢) converges, as t — 00, to the Busemann point associated to y in the
horofunction compactification, which we denote by B),. As the map IT is defined in terms of sequences it
follows that I1(B)) = y. The existence of the map IT shows a strong relation between the horofunction
and the visual compactification, which we state in the following result.

Theorem 1.1 Let (X, d) be a proper, uniquely geodesic, straight metric space. For any basepoint b € X,
there is a continuous surjection I1 from the horofunction compactification to the visual compactification
based at b such that I1(B, ) = y for every ray y starting at b and I1(h(p)) = p forevery p € X.

In particular, the horofunction compactification of X is finer than the visual compactification of X based

at any point.

Most of the subsequent results in the paper follow as applications of this theorem.

It is not the first time that a map such as IT appears in the literature. Similar maps have been found
for —hyperbolic spaces by Webster and Winchester [45]. Walsh [43] defined such a map for Hilbert
geometries, which satisfy the hypothesis of the theorem whenever there are no coplanar noncollinear
segments in the boundary of the convex set, as shown by de la Harpe [17, Proposition 2].

The map IT does not induce a fiber bundle, as its fibers I1~!(y) vary from points to higher dimensional
sets (see Theorem 6.10). Still, Theorem 1.1 characterizes the horoboundary as the disjoint union of all
the fibers I1~!(y). Furthermore, our analysis of the topology of these fibers shows that they are path
connected (see Proposition 3.11), which gives the following characterization of the connectivity of the
horoboundary.

Proposition 1.2 The horoboundary of a proper, uniquely geodesic straight metric space is connected if
and only if its visual boundary based at some point (and hence, any) is connected.

The Busemann map B from the visual compactification X U Dy, to the horofunction compactification is
defined by setting B(y) = B,, for each geodesic ray y € Dy and B(p) = h(p) for each p € X. With this
definition, the map satisfies IT o B = id. As the next result shows, the continuity of this map is related
with the topology of the horofunction compactification.

Proposition 1.3 The visual compactification of a proper, uniquely geodesic, straight metric space based
at some point is isomorphic to its horofunction compactification if and only if the Busemann map is
continuous.

The Busemann map is essentially the identity inside X, so the only possible points of discontinuity are at
the boundary. It is therefore of interest to find a criterion for the continuity of B at the boundary, which
turns out to give a criterion for when the fibers IT~!(y) are singletons.
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Proposition 1.4 Let X be a proper, uniquely geodesic, straight metric space, b € X a basepoint and B
the corresponding Busemann map. Furthermore, let y be a geodesic ray based at b. Then the following
three statements are equivalent:

(1) The Busemann map B restricted to the boundary is continuous at y .
(2) The fiber I1~!(y) is a singleton.

(3) The Busemann map B is continuous at y .

In other words, we have reduced the continuity of B to the continuity restricted to the boundary. This
result can then be applied to different settings to obtain a more precise characterization. In the case
of Teichmiiller spaces, Proposition 1.4 can be used to get an explicit criterion for the continuity of
the Busemann map in terms of the quadratic differentials associated to the geodesic rays, giving us a
characterization of the fibers that are singletons.

1.2 Horoboundary of the Teichmiiller metric

Many compactifications have been defined for Teichmiiller space, such as Thurston’s compactification,
the visual compactification (also known as the Teichmiiller compactification) and the Gardiner—Masur
compactification. These compactifications play an important role in the study of mapping class groups
and asymptotic aspects of Teichmiiller space. See for example the articles by Thurston [41], Kerckhoff
[23] or Ohshika [36]. The main reason multiple compactifications have been introduced is that each one
has been designed with a certain application in mind.

Thurston’s compactification takes the rather simple shape of a ball, upon which the mapping class groups
acts as homeomorphisms. This facts make this compactification well suited for studying properties of the
mapping class group. Indeed, Thurston’s classification of the elements of the mapping class group relied on
this compactification [41]. However, the Teichmiiller metric is not directly related to the compactification,
which results in some quirks when trying to use it to study the asymptotic geometry. For example,
Lenzhen, Modami, and Rafi [26] prove that there exist geodesic rays with high-dimensional limit sets.

The visual compactification is defined directly using the metric, and takes the shape of a sphere where each
point in the boundary has a clear geometric interpretation. This makes the compactification a good tool to
interpret asymptotic geometric results. For example, Walsh [44, Theorem 7] has proven that all geodesic
rays converge to points in the visual boundary. However, as proved by Kerckhoff [23], the action of the
mapping class group does not extend continuously to this compactification, which implies that the compac-
tification depends on the choice of basepoint. This fact limits the usability of the visual compactification.

The Gardiner—Masur compactification was initially defined to study the asymptotic properties of extremal
lengths, following an analogous construction to that of the Thurston’s compactification. It was later
proved by Liu and Su [28] that this compactification is isomorphic to the horofunction compactification
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with respect to the Teichmiiller metric, giving it a geometric meaning. Furthermore, the mapping class
group extends continuously to the compactification. These two properties make the Gardiner—Masur
compactification a good candidate to study asymptotic properties of the Teichmiiller metric. However,
as noted by Miyachi [32] and Liu and Su [28], there is a lack of information on the shape of this
compactification. In this paper, we start working towards an understanding of the shape of this boundary.

Let S be a compact surface with (possibly empty) boundary and finitely many marked points, where
we allow marked points to be on the boundary. Denote by 7(S) its Teichmiiller space equipped with
the Teichmiiller metric. Furthermore, for any quadratic differential ¢ based at some basepoint b € T(S),
denote by R(q; -) the geodesic ray in 7 (.S) starting at b in the direction ¢, and V(g) the vertical foliation
associated to ¢, see Section 4 for a quick introduction or the book by Farb and Margalit [11] for a
more in-depth explanation of these concepts. Recall that a measured foliation is indecomposable if it
is either a thickened curve, or a component with a transverse measure that cannot be expressed as the
sum of two projectively distinct nonzero transverse measures. Furthermore, each measured foliation can
be decomposed uniquely into finitely many indecomposable components (see Section 4.1 for detailed
definitions). Walsh has shown the following characterization of the convergence of Busemann points in
terms of the convergence of the associated quadratic differentials.

Theorem 1.5 (Walsh [44, Theorem 10]) Let (¢,) be a sequence of unit area quadratic differentials
based at b € T(S). Then, Bg,,:.) converges to Bg(g.. if and only if both of the following hold:

(1) (gn) converges to g with respect to the L' norm on T, T(S).

(2) For every subsequence (G"); of indecomposable measured foliations such that, for eachn € N,
G" is a component of V(q,), we have that every limit point of G" is indecomposable.

While Walsh’s proof is done in the context of surfaces without boundary, it can be easily extended to our
setting. In view of this theorem, we say that a sequence of quadratic differentials (g,) converges strongly to
q if it satisfies the two conditions of Theorem 1.5. Furthermore, we say that ¢ is infusible if every sequence
of quadratic differentials converging to ¢ converges strongly. By Proposition 1.4, a quadratic differential g
is infusible if and only if the Busemann map is continuous at R(q; -). In Theorem 5.4, we derive a topologi-
cal characterization of the vertical foliations of infusible quadratic differentials. This allows us to determine
precisely which surfaces only admit infusible quadratic differentials, yielding the following result.

Theorem 1.6 Let S be a compact surtace of genus g with by, and b, boundary components with and
without marked points respectively and p interior marked points. Then the horofunction compactification
of T(S) is isomorphic to the visual compactification if and only if 3g 4+ 2b,, + b, + p < 4.

This result had been previously proven by Miyachi [32] for surfaces without boundary, that is, when
bm = by, = 0. For the cases where we do not have an isomorphism Miyachi found non-Busemann points
in the boundary. These points are in the closure of Busemann points, which prompted Liu and Su to ask
the following question:
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Question 1.7 (Liu and Su [28, Question 1.4.2]) Is the set of Busemann points dense in the horofunction
boundary?

We give a negative answer to this question, summed up in the following result.

Theorem 1.8 Let S be a closed surface of genus g with p marked points. Then the Busemann points are
not dense in the horotunction boundary of T (S) whenever 3g + p > 5.

To achieve this result we use Liu and Su’s [28] and Walsh’s [44] characterization of the horofunction
compactification as the Gardiner—Masur compactification. We use an equivalent but slightly different
definition than usual for the Gardiner—-Masur compactification, as the definition we use is more well
suited for our computations, and more easily extendable to surfaces with boundary (see Section 4.4 for the
precise definition). For each point in the horofunction compactification there is an associated real-valued
function on the set of measured foliations. We show that the functions associated to elements in the closure
of Busemann points are polynomials of degree 2 with respect to some variables (see Proposition 6.2
for the precise statement). We then show that the elements of the Gardiner—Masur boundary found by
Fortier Bourque [13] do not satisfy that condition. The main ingredient for this last part of the reasoning
is the following result, which shows that extremal length is not C? along certain smooth paths in M.F.

Theorem 1.9 Let S be a closed surface of genus g with p marked points and empty boundary satisfying
3g + p > 5. Then there is a point X € T(S) and a path G¢, t € [0, ty], in the space of measured foliations
on X, smooth with respect to the canonical piecewise linear structure of the space of measured foliations,
such that Ext(G;) is not C2.

The canonical piecewise linear structure of the space of measured foliations was developed by Bonahon [3;
4; 5]. The first derivative of the extremal length along such a path was determined by Miyachi [33], so our
proof is based on finding cases where Miyachi’s expression is not C''. This follows from an explicit com-
putation, whose complication is greatly reduced by using previous estimates established by Markovic [30].

The relation between the Thurston compactification and the horofunction compactification was studied by
Miyachi [34]. He proves that, while neither Thurston’s nor the horofunction compactification is finer
than the other, there is a bicontinuous map from the union of 7(.S) and uniquely ergodic foliations in
Thurston’s boundary to a subset of the horofunction compactification. Masur showed [31] that this result
can be interpreted to say that these two compactifications are the same almost everywhere according to the
Lebesgue measure on Thurston’s boundary. The image of uniquely ergodic foliations by the bicontinuous
map is the set of Busemann points associated to uniquely ergodic foliations. As we show in Theorem 7.5,
this set is nowhere dense within the horoboundary. Hence the map defined by Miyachi does not show that
these two are the same almost everywhere according to any strictly positive measure on the horoboundary.
In fact, any attempt to extend the identity map from the interior of the Thurston compactification to the
interior of the horoboundary compactification to a set of full measure within the Thurston compactification
results in the same problem.
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Corollary 1.10 Let v be any finite strictly positive measure on the horoboundary and let i be the
Lebesgue measure on the Thurston boundary. Furthermore, let ¢ be a map from the Thurston compactifi-
cation to the horofunction compactification satistying ¢|r(sy = h, where h is as in (1). Then there is no
subset U of the Thurston boundary with full u—measure such that ¢ is continuous at every point in U and
¢ (U) has full v—measure.

Under some smoothness assumptions satisfied by Teichmiiller metric, we are able to use the maps [T
to give an alternative definition of the horofunction compactification based on geometric notions. This
definition characterizes the horofunction compactification as the reachable subset of the product of all
visual compactifications obtained by choosing different basepoints (see Section 3.3 for details). Hence, the
horofunction compactification can be interpreted as a collection of the asymptotic information provided by
all visual compactifications. As a straightforward result of this alternative definition we get the following
characterization of converging sequences in the horofunction compactification.

Corollary 1.11 A sequence (x,) C T(S) converges in the horofunction compactification if and only if
the sequence converges in all the visual compactifications.

Considering the horocycles diverging in the horofunction compactification found by Fortier Bourque [13]
we get that there is some visual compactification in which these horocycles do not converge.

Corollary 1.12 Let S be a closed surface of genus g with p marked points, such that 3g + p > 5. There
is a basepoint such that a horocycle diverges in the visual compactification based at that point.

This contrasts with the behavior of Teichmiiller rays, which converge in all visual compactifications (see
[44, Theorem 7] by Walsh).

The structure of the horoboundary provided by Theorem 1.1, as well as the path-connectivity of the fibers,
allows us to prove the following connectivity result.

Theorem 1.13 The horoboundary of any Teichmiiller space of real dimension at least 2 is path connected.

Furthermore, we also prove that whenever the surface has empty boundary the map IT restricted to the
horoboundary admits a section, while it only admits a section for surfaces of low complexity if the
boundary is nonempty (see Theorem 8.1 for details).

Figure 1 shows a sketch of what we think the horoboundary looks like based on the results of this paper.
The outer circle represents the section given by Theorem 8.1. Each line perpendicular to the sphere
represents one of the fibers induced by the map II, so it is associated with a unique Teichmiiller ray
starting at b. Note that while by Proposition 3.11 the fibers are path connected, by Theorem 6.10 they are
bigger than segments in some cases. Furthermore, a priori they might not be contractible.
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Figure 1: The shape of the horoboundary of the Teichmiiller metric for surfaces without boundary.

The nearest point to the basepoint b of each fiber represents the Busemann point associated to the geodesic
joining b to the fiber. This point could indeed be considered the nearest point to » from the fiber, as one can
access it in a straight way, through a geodesic exiting b. On the other hand, the points in the outer circle
represents the points associated to the section alluded to earlier. These can be accessed through a sequence
of Busemann points whose associated fiber is a point, which can be considered as the most tangentially
possible way to reach points in the boundary. Following a result by Masur [31], with respect to the measure
on the fibers induced by the Lebesgue measure on the set of Teichmiiller rays exiting b, almost all the
fibers are actually points. As we shall see in Theorem 7.5 these points are nowhere dense in the boundary.

Note that there exist paths within the horoboundary connecting the fibers without passing through
the section, and a priori there may be paths not represented in the sketch along which the fibers vary
continuously. For surfaces for which the map IT does not admit a global section, a similar sketch could
be drawn, although there would be no continuous global section in some cases. Hence, the outer circle
would be broken at some places.

Finally, Liu and Su’s and Walsh’s characterization of the horofunction compactification as the Gardiner—
Masur compactification can be used to translate some of these findings to results regarding the asymptotic
value of extremal length functions. For example, we get the following estimate.

Theorem 1.14 Let (g,) be a sequence of unit quadratic differentials converging strongly to a unit
quadratic differential . Denote by G; the components of the vertical foliation associated to q, and H(q)
the horizontal foliation. Then, for any F € MJF and sequence (t,) of real values converging to positive
infinity we have
3 i(Gj, F)?

i(Gj. H(q))

This generalizes a previous result by Walsh [44, Theorem 1], where the same is shown for ¢, constant.

3 _Ztn —
Jim em " ExtR(g, ;r,) (F) = .
j
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1.3 Outline of the paper and a note for the reader interested in surfaces without boundary

The paper is structured as follows. In Section 2 we introduce the necessary metric notions used in the
paper. We follow in Section 3 by proving the results related to the more general metric setting, such as
showing that the horofunction compactification is finer than the visual one. In Section 4 we give a short
review of the necessary background on Teichmiiller spaces. In Section 5 we determine which quadratic
differentials are infusible, and find which surfaces admit infusible quadratic differentials, getting a proof
of Theorem 1.6. In Section 6 we characterize the points in the closure of Busemann points, and get some
bounds on the dimension of the fibers of the map IT. In Section 7 we show that Busemann points are not
dense. In Section 8 we determine which surfaces result in the map IT having a section, and prove that the
horoboundary is path connected. Finally, in Section 9 we use the previous results to obtain estimates

regarding asymptotic values of extremal lengths.

Some of the most dense parts of this paper are due to the added complexity of considering surfaces
with boundary. As such, the reader focused on surfaces with empty boundary might want to omit the
corresponding sections on a first reading. One of the largest related parts starts after the remark following
Theorem 5.4 and ends before the start of Section 5.2. The other sizable part starts with Proposition 8.3
and ends at the start of the proof of Theorem 1.13, where we note that the proof is significantly simpler in
the case of surfaces without boundary.
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2 Metric definitions

2.1 Compactifications

A compactification of a space serves, among other things, as a way of characterizing convergence to
infinity. Formally, a compactification of a topological space X is a pair ( f, X), where X is a compact
topological space and f: X — X is an embedding such that f(X) is dense in X. The boundary of a
compactification X = X — X describes the different ways of converging to infinity provided by that
compactification. We shall usually identify the points in X with the ones in X via the map f, and say
that a sequence (x,) C X converges in X if f(x,) converges.

A compactification ( f}, X1) is finer than another one ( /5, X>) if there exists a continuous map f>: X; — X
such that f>0 f; = f5. Since f>(X) is dense in X, the continuous extension f> is surjective. Furthermore,
we can restrict the map f_z to the boundary to get a surjective map f_2|a X, 0X1 — 0X>,, which can be
seen as a projection. Having a compactification finer than another ones means, from an intuitive point
of view, that the finer compactification catalogs more ways of converging to infinity than the other one.
Namely, any sequence in X converging in the finer compactification converges also in the coarser one,
while the opposite may not be true.
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We say that two compactifications are isomorphic if each one is finer than the other one. The following
lemma found in [44, Lemma 17] coincides with the intuitive notion of finer compactifications.

Lemma 2.1 Let (f1, X1) and (f>, X3) be two compactifications of a Hausdorff topological space X
such that f, extends continuously to an injective map ];2: X1 — X;,. Then the two compactifications are
isomorphic.

We will usually refer to the space X as the compactification when the embedding is clear from the
context. Since the images of X by the embedding are dense, the extensions we get to compare the
compactifications are unique. That is, we have the following result:

Lemma 2.2 Let (f1, X1) and (f>, X») be two compactifications of a Hausdortf topological space X
such that X is finer than X,. Then the extension fz: X1 — X3 is unique.

Proof For any x € X we have f>(f1(x)) = f>(x). Hence, the image of f5 is determined on a dense
subset of X7, so by continuity it is determined on X. |

2.2 Visual compactification of proper, uniquely geodesic, straight spaces

Let (X, d) be a metric space. We shall say that a map y from an interval / C R to X is a geodesic if it is
an isometric embedding, that is, if d(y(¢), y (s)) = |t —s|. We shall consider two geodesics to be equal if
their image is equal and have the same orientation. A space is uniquely geodesic if for any two distinct
points a, b € X there is a unique geodesic starting at a and ending at b.

Furthermore, we say that the space is proper if the closed balls D(x,r) ={p e X |d(p,x) <r} are
compact.

If geodesic segments can be extended uniquely, that is, if for any geodesic segment y; there is a unique
biinfinite geodesic y, such that y; Ny, = Y1, we say that the space is straight.

Let then X be a proper, uniquely geodesic, straight space and let Dy be the set of infinite geodesic rays
starting at b, with the topology given by uniform convergence on compact sets. Furthermore, denote by
Sg ={x € X | d(x,b) = 1} the sphere of radius 1 around b.

Lemma 2.3 The map from Dy to S bl defined by sending y € Dy, to y (1) is a homeomorphism.

Proof Since the topology on Dy, is given by uniform convergence on compact sets, the point y (1) varies
continuously with respect to y.

On the other hand, since the space is straight and has unique geodesics, given any pointa € S bl there
is a unique geodesic ray starting at b and passing through @. This is the inverse to the map obtained
by evaluating the geodesics. To see that the relation is continuous we consider a sequence (a,) C S bl
converging to some «, and denote by (y,) and y the associated geodesics. Assume ¥, does not converge
to . Then we have a subsequence without y as an accumulation point. For any ¢ > 0, the geodesic
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segments ¥|[o,;] are contained in the ball of radius #, which is compact, as X is proper. As these are
geodesics we have equicontinuity, so by Arzela—Ascoli we can take a subsequence converging uniformly
to some path y’. Since the distance function is continuous, y’ is a geodesic. Furthermore, y’'(1) =
limy,— 00 ¥n(1) =lim,— o a, = a. By uniqueness of geodesics, Y’ and y are equal when restricted to [0, 1],
which by straightness implies they are equal. Hence, y;, converges to y uniformly on the compact [0, ¢]. O

Following a similar reasoning it is possible to show the following, still under the same hypotheses on X'.
Lemma 2.4 The space X is homeomorphic to Dy x [0, 00)/ Dy x {0}.

Proof We define the map C: Dy x[0,00)/ Dp x {0} — X given by C(6,r) = 6(r). This is well defined,
as C(0,0) =b for any 8 € Dy,. Furthermore, this is a bijection, since for every x € X —{b} there is a unique
geodesic ray from b to x. The map is continuous, as the topology on Dy, is given by uniform convergence
on compact sets. To see that the inverse is continuous consider a sequence a, € X converging to some
a€ X.Ifa=b,then d(ay, b) — 0, so we have continuity. Otherwise we let r, = d(ay, b) and r =d(a, b).
We have r,, — r, so denoting (y,,) and y the unique geodesic in Dy such that y;,(r,) =a, and y (r) =a and
applying Arzela—Ascoli’s theorem in the same way as in Lemma 2.3, we have that y,, converges to y. O

The space Dy x [0, 00)/ Dp x {0} can be included into the compact space Dp, x [0, co]/ Dp x {0}, which
can be written as (Dp x [0, 00)/ Dp x {0}) U Dy, x {oo}. Using the homeomorphism from Lemma 2.4, we
can use this inclusion to give a compact topology on the space X U Dy,. The visual compactification is
defined as the pair (i, X U Dp), where i is the inclusion i : X — X U Dj, and the topology on the space
X U Dy is the one we just defined. We shall denote X U Dy, as X?, or XV when the basepoint is not
relevant to the discussion.

2.3 Horofunction compactification

The second compactification that will play a part in this paper is slightly more involved and difficult to
visualize.

Let X be a proper, uniquely geodesic, straight metric space. Given a basepoint b € X, one can embed X
into the space of continuous functions from X to R via the map /#: X — C(X) defined by

h(x)(+) == d(x, -) —d(x, b).

The topology given to C(X) is that of uniform convergence on compact sets. The map 4 is indeed
continuous, as the distance function is continuous. Furthermore, / is injective, as /i(x) has a strict
global minimum at x. It can also be proven that since X is proper, 4 is an embedding. For more
details about this construction see [42, Section 2]. Furthermore, the properness of X implies it is second
countable, so the closure of /4 (X)) is compact, Hausdorff and second countable. We shall denote the
closure of #(X) on C(X) as X". The horofunction compactification is defined as the pair (i, X").
We call the set dX" = X" — X the horofunction boundary or horoboundary, and we call its members
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horofunctions. If we want to specify the chosen basepoint we write X 2 However, it is possible to see that
quotienting the compactification by letting /"~ g whenever the difference is constant we get an isomorphic
compactification, showing that the horofunction compactification does not depend on the basepoint.

Usually the easier points to identify in the horoboundary are the Busemann points. These are the ones that
can be reached as a limit along almost geodesics, which is a slight weakening of the notion of geodesic
by allowing an additive constant approaching 0. That is, a path y: [0, c0) — X is an almost geodesic if
for each ¢ > 0,

|d(y(0), ¥(s) +d(y(s). y (1) —t] <e

for all s and ¢ large enough, with s < ¢. Rieffel [39] proved that every almost geodesic converges to a
limit in 9X". A horofunction is called a Busemann point if there exists an almost geodesic converging to
it. We shall denote the Busemann point associated in this way to the almost geodesic y by B, .

3 Horofunction compactification of proper, uniquely geodesic, straight
metric spaces

3.1 The relation between the horofunction compactification and the visual compactification

Fix a uniquely geodesic, proper and straight metric space (X, d) and a basepoint b € X. We will assume
X satisfies these hypotheses through this section. For each geodesic ray y € XV starting at b there is
an associated Busemann point B, € dX". We can extend this map to all the visual compactification by
setting it as the identification with the map 4 on X given by the horofunction compactification. That is,
we define the Busemann map B: XV — X" by setting B(y) = B, fory € 90XV and B(x) = h(x) for
x € X. The relevance of this map can be seen with the following result.

Lemma 3.1 The visual compactification (i, X V) is finer than the horofunction compactification (h, X hy
if and only if the map B is continuous.

Proof We have that B(i (x)) = h(x), so B is an extension of / to XV. Hence, if B is continuous, then
the visual compactification is finer than the horofunction compactification.

On the other hand, if the visual compactification is finer than the horofunction compactification, then we
have a continuous map f: X¥ — X". Forevery x € X, we have f(i (x)) = h(x) = B(i(x)). Furthermore,
for any ray y starting at the basepoint we have f(y) =1lim;— f(i(y(¢)) =1limAh(y(z)) = B(y). Hence,
B = f, and B is continuous. O

In general, the Busemann map may not be surjective nor continuous. However, we have the following.

Proposition 3.2 For a proper, uniquely geodesic, straight metric space (X, d) the Busemann map is
injective.
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<th—t+ey v (tn)

Y (1)

Figure 2: The triangles involved in the proof of Proposition 3.2.

Proof For each x € X, the associated function /(x) has a global minimum at x, while B, is unbounded
below for every y € X V. Hence, in the interior of XV the map is injective and B(X) N B(dX?) = @.
Assume we have y,y’ € 9X? such that y # y’ and B(y) = B(y’) = &. Then, for a given sequence
tn — 00 we have limy_ o0 h(y (ty)) = limy— o0 h(Y'(ty)) = &. For any ¢ € R and any 7 such that z,, > ¢
we have

h(y ) (v (1) = d(y (tn). y(0)) =d(y(tn), y(0)) = tn —1 —tn = —1,
and similarly for y’. Hence &(y(¢)) = £(y/(¢)) = —t for all 7.

Fix now a t > 0. We have
—t=£(' () = lim (d(y' (), y(tn)) —d(b,y () = lim (d(y'(1),y(tn)) —tn).
n—>0o0 n—>o0
That is, there is a sequence &, with &, — 0 such that

th—t+en = dY' (1), y(tn) = th —t —&n.

for every n.

By straightness we can extend y in the negative direction towards y(—s) for some s > 0. We shall
now show that the geodesic y does not minimize the distance between y(—s) and y(z,) for n big
enough. Since the space is straight, the geodesic segment between y (—s) and b can be extended uniquely,
so concatenating it with the segment between b and y’(¢) does not result in a geodesic. Hence, the
distance between y’(¢) and y(—s) is strictly smaller than s + 7. That is, there is some § > 0 such that
d(y(—s),y’(t)) <t +s—35. As shown in Figure 2 we get a path going from y(—s), to y(t,), passing
through y’(¢) that has length less than t + 5 —6 +t, —t + &4, =ty + 5 — 8 + &,. Hence, taking n big
enough so that &, < § we get that the geodesic segment between y (—s) and y (#,) is not minimizing. This
is a contradiction, from which we conclude that y = y’. Therefore, B is injective. O

Hence, given a Busemann point £ in B(0X"V) we have a unique associated geodesic ray y € dX? such
that £(y(¢)) = —¢ for all ¢. Our next aim is to build a similar relation for all other horofunctions. Our
approach is similar to the one used by Walsh in [44, Section 7].
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Y (tn)

Yn(tn)

b

Figure 3: In the proof of Lemma 3.3, y,, converges to ¥, so y,(¢) converges to y(¢), and hence
the distance between y;,(f,) and y,, (¢) gets arbitrarily close to the distance between y;,(¢,) and y (¢).

We say that a geodesic y is an optimal geodesic for a certain horofunction & € X" if & (y (1)) —£ (y (0)) = —t
for all # € R. We shall now see that each function in the horoboundary has at least one optimal geodesic.

Lemma 3.3 Let X be a proper, uniquely geodesic, straight metric space and let £ € 0 X h be a horofunction.
Suppose that (x,) C X converges to £, with X, = Yy (tn), Yn € XV and (y,) converging to y as n — oo.
Then £(y(¢)) = —t for every t € R. That is, y(t) is an optimal geodesic for §.

Proof Fix . We have that

E(y (1)) = nli)Holo(d(V(t)v Yn(tn)) —d(b, yn (tn))) = nll)n;o(d()/(t)» Yn(tn)) — tn)~

As n goes to infinity, Y, converges to y. Hence by the given topology on the visual boundary, the maps
¥ (+) converge uniformly on compact sets to the geodesic y (-). In particular, denoting d(y (¢), yn(t)) = &5
we have ¢, — 0. We get then Figure 3, so by the triangle inequality,

|d(y (@), yn(tn)) — (tn —1)| = ‘d(]/(t), Yn(tn)) —d(yn(2), Vn([n))’ = én,
and so £(y(¢)) = —t. |

Since X is compact, for any horofunction £ € X" and sequence (x,) C X converging to £ we can
take a subsequence such that the hypotheses of Lemma 3.3 are satisfied, so each £ € XV does have at
least one optimal geodesic.

If £ has another optimal geodesic 3’ with y’(0) = y(0) we have at least two geodesics along which
E(y(t)) =&(y/(t)) = —t for all z. Following a reasoning similar to the one in the proof of Proposition 3.2,
we get a contradiction. This time, however, we have to be a bit more careful about the distances, as
instead of two fixed rays we have a fixed ray and a sequence converging to a distinct fixed ray.
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Proposition 3.4 Let£ € 9X" and b € X . Then there is a unique optimal geodesic for £ passing through b.

Proof Let (x,) = (¥a(tx)) be a sequence converging to &, with (y,) C X7, and take a subsequence
such that y,, converges to some geodesic y. By Lemma 3.3, y is an optimal geodesic. Assume that we
have a different optimal geodesic y’ passing through b.

Using that /& (y,(t,)) converges pointwise to &, we have
—~t=E£('©) = lim (d(' (), ya(ta) —d (b, yu(tn))) = lim (d(' (1), Yu(tn)) — tn)-
n—o0 n—o0
Hence, there is a sequence &, with &, — 0 such that

In—t+én= d()//(t), Yn(tn)) = th —1 — &n.

We proceed by showing that for n big enough there is some s > 0 such that the geodesic y,, does not
minimize the distance between y;,(—s) and y,(2,). As in the proof of Proposition 3.2, by applying the
triangle inequality between y’(¢), ¥ (—s) and b we have d(y'(¢), y(—s)) < s + ¢. Fix s > 0 and pick
§ > 0 such that d(y'(¢), y(—s)) <t + s — 4. Since y, converges to y uniformly on compact sets, y;,(—s)
converges to y(—s). Hence, d(y'(t), yn(—s)) converges to d(y'(t), y(—s)). Then for n big enough we
have d(y'(t), yn(—s)) <t + s —§. Consider then n big enough so that &, < §/2 as well. The triangle
between Y/ (t), yn(—s) and y,(t,) gives

d(yn(=5), vu(tn)) < d(yu(—s), V/(t)) + d()//(t), Yn(tn)) < +5—=38)+ (tn—1t +en) <ty +s.

This is a contradiction, which proves the uniqueness of y. O

Given a basepoint b € X we can now define a map I1p: X* — X 5 by sending any & € dX" to the unique
optimal geodesic y of & with y(0) = b, and by sending /(x) to x for any x € X. This map is indeed
an extension of the relation we had established for Busemann points in B(dX?), since if £ = B(y) for
y € Dy then y is an optimal geodesic of &, giving us I1;(B(y)) = y.

We will often write IT instead of I1; whenever the basepoint is not relevant to the discussion. To prove
that IT is continuous, we first have to see the following result.

Proposition 3.5 Let (x,) C X be a sequence converging to & € 3X". Then, (x,) has a unique accumula-
tion point in the visual compactification. Further, this accumulation point depends only on &.

Proof Since XV is compact, (x,) has accumulation points in the visual compactification. If (x;,) has
two accumulation points we can take two subsequences converging to two different geodesics, which by
Lemma 3.3 are optimal geodesics, contradicting Proposition 3.4.

If there is another sequence (y;) converging to & with a different accumulation point the result follows by

merging both sequences and repeating the reasoning. |

Hence, IT can be alternatively defined by sending any & € X h to the unique accumulation point in XV
of the sequences converging to & in X”, and by sending /(x) to x for any x € X. By Proposition 3.5,
this definition is equivalent to the previous one.
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By this second definition of the map IT, we see how it is mostly related to the convergence of sequences,
so using a diagonal sequence argument we can prove its continuity.

Proposition 3.6 The map I1 is continuous.

Proof Take a sequence (£,) C X" converging to &. If £ € h(X) we have that, as (X)) is open, &, € h(X)
for n big enough. Hence, I1(£,) = A~ (&,), which converges to 4! (£), as / is a homeomorphism with
its image.

If £ € 9X " we split the sequence into two subsequences, one contained in /(X) and one contained in 9 X",
The one contained in /(X)) converges to £, so by definition of IT and we have T1(£) = lim,— 00 A1 (£).

Assume then that (§,) C dX" converges to £. We want to see that y, = IT(£,) converges to y = II(£).

For each &, we can take a sequence (h(y,T (t,’,”)))m converging, as m — oo to &,. By Proposition 3.5 the

sequence ;" (¢/") converges to ¥,. Let y’ be an accumulation point of y,,. Take a convergent subsequence

of y, converging to 3/, and relabel it as y,,. Let (V) be a nested sequence of open neighborhoods of € in X

such that &, € V;, and (), Vi, = {&} and let (W},) be a nested sequence of open neighborhoods of y’ in XV

such that y, € W;, and (1), Wy, = {y’}. We can take such sequences of sets, as both spaces are metrizable.
m(n)

For each n, there exists m(n) big enough so that y, € W, and h(y;" (n)(l,'," ("))) € V. By the first

condition on m(n), we have that y," (=) converges to y’. By the second condition, /(y," () 4 (")))

converges to £, so by the definition of IT and Proposition 3.5 the sequence y;," ) converges to I[1(§) = y.
Hence, y = y’, so the only accumulation point of (};) is ¥ and by compactness of d X the sequence

(vn) converges to y. a

By combining Propositions 3.5 and 3.6 we get that IT is the map announced at the introduction, giving
us a proof of Theorem 1.1. As mentioned in the introduction, this map shows that the horofunction
compactification is finer than the visual compactification. By using the Busemann map to insert the visual
boundary inside the horoboundary, we can consider the map IT as a projection.

One straightforward consequence of the continuity of I is as follows.

Corollary 3.7 Let y be a geodesic ray, not necessarily starting at the basepoint b € X . Then, y converges
in the visual compactification of X based at b.

Proof The ray y converges in the horofunction compactification to B,,. Since Il is continuous, the ray
also converges in the visual compactification based at b to I1;(By). O
For Teichmiiller spaces with the Teichmiiller metric this result was first proved by Walsh [44, Theorem 7].

By Lemma 3.1, the visual compactification is finer than the horofunction compactification if and only if
the Busemann map is continuous. Hence, since the horofunction compactification is always finer than the
visual compactification, we obtain an isomorphism whenever this is the case, resulting in Proposition 1.3.
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3.2 The fiber structure

To get a better picture of the shape of the horoboundary we shall study the shape of the preimages of
the projection IT restricted to the boundary. That is, for a given point y in the visual boundary we are
interested in finding out information about the fiber IT~!(y). We first prove the following lemma, which
we will use to get bounds on the values of TI~!(y).

Lemma 3.8 Fix a geodesic ray y € X and p € X not in the biinfinite extension of the geodesic ray y.
Then, the function h(y(-))(p), with domain [0, 00), is strictly decreasing.

Proof Take ¢, s > 0 with s < ¢. By the triangle inequality we have

d(y(t).p) =d(y(s). p) +d(y ).y (s)) = d(y(s), p) +1 —s.

Further, we have strict inequality, as equality would give us two different paths with the same length
between y(¢) and p, with one of them being geodesic. Hence,

h(y @) (p) = d(y (1), p) =d(y(2).b) <d(y(s). p) + 1 —s—t = h(y(s))(p). O

The set C(X) can be partially ordered by saying that f > g whenever f(x) > g(x)forallxe X. If f > ¢
and f # g then we write f > g. If p =y (r) for some r and s < ¢ we have h(y (s))(p) =h(y())(p)=—r
forr <sand —s = h(y(s))(p) > h(y())(p) = —min(r, t) otherwise. Hence, adding the previous lemma
we have A(y(s)) > h(y(¢)) whenever s < . By attempting to extend this relation to the horofunction
boundary we get that Busemann points are maximal in their fibers.

Proposition 3.9 Lety € 90XV and & € TI~(y). Then, £ < B(y).

Proof Choose any sequence (x,) C X such that /(x,) converges to £. Since £ € IT~!(y) the sequence
(x,) converges to ¥ in X7, so we can write X, = Y, (t,) with ¢, converging to infinity and y, converging
to y.

Fix p € X and let € > 0. Denote s, = sup{t : d(y(t), yn(t)) < e and t < t,}. The geodesics y;, converge
to y uniformly on compact sets, so s, — 0o as n — oco. Hence, by definition of the Busemann point and
since d (yn(sn), v (sn)) <eé,

By(p) = lim h(y(sp))(p) = limsup h(yx(sn))(p) —2e.
n—0o0 n—>00
Furthermore, s, < #;, so by Lemma 3.8,

§(p) = lim h(yn(tn))(p) =limsup i(ya(sa))(p) = By (p) + 2e.

n—oo

Since € can be arbitrarily small we get the proposition. O

While it might not be possible to get a similar unique minimum in each fiber, we can get the following
result.
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Proposition 3.10 Lety € X" and £ € [T~ ! (y). Furthermore, let (x,) C X be a sequence converging
to & with x, = yy(ty). For any p, define n(p) = liminf, 0 B(y4)(p). Then & > 1.

Proof The proof follows a similar reasoning as the last one.

Fix p € X, choose a subsequence so B(y,)(p) converges to n(p) and let (g,,) be a sequence of positive
numbers converging to 0. For each &y, take n(m) big enough so that B(y,m))(p) = 1n(p) — &m. Further,
take s, bigger than #,(,,), and big enough so that

h(Vn(m)(Sm))(p) = B(Vn(m))(p) —&m-

Such an s;, always exists by the definition of B(y,)). In particular, we have that

lrinrgiélofh()/n(m)(sm))(P) >n(p).
By Lemma 3.8 we have

E(p) = mh—r>noo h(Vn(m) (tn(m)))(p) > lgnrgigofh(yn(m) (sm))(p) = n(p). o

The intuition one might get from these propositions is that approaching y “through the boundary”, that is,
through the furthest way possible from the interior of X, gives a lower bound on the possible values of
approaching through other angles, and approaching y in a straight way, that is, through the geodesic, gives
an upper bound. Hence, when these two ways of approaching y are the same, every other possible angle
of approach should also yield the same limit. Following this reasoning we get our next result, announced
in the introduction.

Proposition 1.4 Let X be a proper, uniquely geodesic, straight metric space, b € X a basepoint and B
the corresponding Busemann map. Furthermore, let y be a geodesic ray based at b. Then the following
three statements are equivalent:

(1) The Busemann map B restricted to the boundary is continuous at y .

(2) The fiber I1~!(y) is a singleton.

(3) The Busemann map B is continuous at y .

Proof (1) = (2) Take £ € II"!(y). By Proposition 3.9 we have £ < B(y). Since B is continuous
at y when restricted to the boundary we have that for any y,, — y the horofunctions B(y,) converge
to B(y). Hence, by Proposition 3.10, £ > B(y), so £ = B(y) and we have (2).

(2) = (3) Take then any (x,) C X converging to y, consider the sequence (B(x,)) C X" and let 5
be an accumulation point. By the definition of IT we have n € II~!(y), so n = B(y) since we assumed
that TI~!(y) is a singleton. This shows that B is continuous at y.

Finally, it is clear that (3) = (1). m|

The relation obtained in Lemma 3.8 can be exploited further. Indeed, trying to carry it to the boundary in
a more delicate manner we can see that the fibers are path connected.
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Proposition 3.11 Lety € dX". For any £ € I1"!(y) there exists a continuous path from B(y) to &
contained in TI71(y).

Proof Take a sequence (x,) C X converging to £ in the horofunction compactification, and write
Xn = vn(un). As we have seen in the proof of Proposition 3.10, we can take a sequence (/,) C R with
vn(ln) converging to By, such that /, < uy for all n. For each n we have a path &" (¢) connecting y; (/)
and vy, (u,) by setting &”(t) = yn(tun + (1 —1)1,) for ¢t € [0, 1]. We would like to carry this path to the
limit, getting a path between & and B(q). However, directly taking such a limit might result in some
discontinuities, so we have to choose a parametrization carefully.

To find a good parametrization we shall use a certain functional as a control. We want the functional to
carry discontinuities and strict increases in the path of functions to discontinuities and strict increases in
the value of the functional. Since X is proper, it is separable, so let (p;);en be a countable dense set
in X. We define the functional 7: X* — R given by

. S (pi)
I(f)= Z  30dtb. o)

Since | f(x)| < d(b, x) for all f € X", the summation in the definition of I( f) is absolutely convergent,
so () is defined, finite, continuous with respect to f, and for any two f, g € X" we have I(f + g) =
I(f) + I(g). Furthermore, since (py) is dense and we are taking continuous functions, we have that the
functional translates strict inequalities. That is, f > g implies I(f) > I(g). Hence, if I(f) = 0 and
f =0wehave f =0.

We define then the function F,(z) = I(h(y,(¢)). By continuity of I this function is continuous, and by
Lemma 3.8 it is strictly decreasing with respect to 7. That is, we have continuous strictly decreasing
functions Fy,: [ln, un]|— [Fn(un), Fyn(ly)]. Hence, we can define implicitly the continuous parametrizations
Sn: [0, 1] = [l un] by taking the unique value s, (¢) such that

Fu(sn(t)) = (1 = 1) Fu(ln) + t Fy(up).

Denote the F,(s,(¢)) as E,(¢). By the continuity of I we have that £, () converges to (1—¢)I (B, )+t1(§)
as n — 0o, which we denote by E(t).

Take now a countable dense set (1%);en C [0, 1] containing 0 and 1. We are now ready to start defining
the path o: [0, 1] — TT~'(y), and we begin defining it for the dense set (¢X). For k = 1 we define
a(t') as an accumulation point of h(yn (sn (tl))). Denote (¥,,1(,)) the subsequence of y, such that
h()/ml (n)(Sml(n)(tl))) converges to a(¢'). Define inductively a(rX) and (Vmk () by taking an accumula-
tion point and a corresponding converging subsequence of h(]/mk—l(n) (8yyk—1 (n)(lk ))). By the continuity
of I we have

H@(t®) = Hm (Fypery (St (1)) = E@F).
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For each pair i > j we have that m’(n) is a subsequence of m/ (1), so h()/mf(n)(sm;(n)(tj))) converges
to a(t/). Assume ¢! > t/. By Lemma 3.8 we have that h(ymi(n) (Smi (m) (ti))) < h()/mi(n)(smi(n)([j))),
so a(t) <a(t)).

We now have to prove that the definition we have given for o on (tk ) can be extended continuously
to [0, 1]. Fix any 7 ¢ (t¥) and take a subsequence of rX, labeled ¢%, such that tk» — r. We shall
now see that o (¢%n) converges to a function which does not depend on the chosen subsequence, and

define «(¢) as that limit. We can split and reorder the sequence (t%7) into (¢;7) and () satisfying
J’_ -

It n+1"

an increasing (or decreasing) sequence of values in R, bounded above (or below) by a(0)(p) (or a(1)(p)).

> >t > t, . The associated a(t,jt) are ordered, so for any p € X the sequence a(t,;t)( p)is
Hence, both sequences converge pointwise, which implies uniform convergence on compact sets, as these
functions are 1-Lipschitz. Furthermore, these limits do not depend on the chosen sequence, since if we
had any other we could intercalate them and the sequences would still converge. Denote then o the limit
associated to z,7, and @™ the limit associated to ¢, . Since a(z,") < a(t,,) for all n,m we have et <a™.

For each a(1%) we have I(a(¢X)) = E(¢%). Hence by the continuity of / we have that

I =E@lt)=I).
That is, we have

I« —at)=0.
Since @~ and a™ are continuous and @~ —at > 0 we have = = o™. We thus define «(¢) to be either
one. The same reasoning shows that ¢« is continuous. a

We would like to remark that several choices where made in the proof of the previous lemma, and the
obtained path may not be unique.

We can use the previous result to observe that the horoboundary is connected if and only if the visual
boundary is connected.

Proof of Proposition 1.2 Assume that the visual boundary is not connected. Then we have U,V C 0X7V
nonempty and open such that U NV = @ and U UV = dX . As I is continuous, the sets [T~'(U) and
I1~!(V) are open, so the horoboundary is not connected.

For the other implication, assume that the visual boundary is connected while the horoboundary is not
connected. Then we have U, V C 4 X" nonempty and open such that UNV =@ and UUV =9X hSince
fibers are path connected, each of them is contained in only one of U or V', so I[1(U) and I1(V') are disjoint.
Since U UV = dX" we have ITI(U) UTI(V) = X7, and since both U and V are nonempty, so are the
images. Hence, both images cannot be open at the same time, as d.X ¥ is connected. Therefore, these sets
cannot be both closed. Assume IT(U) is not closed. We then have a sequence (y;,) C I1(U) converging
to a point in TI(V). Again, since U UV = 3X", we have that U = IT"'TI(U) and V = I~ 'TI(V).
Hence, any lift of the sequence (y,) to II"'TI(U) is contained in U and, since dX” is compact, has
accumulation points which, by the continuity of the projection map, are be contained in IT~!TI(V) = V.
Hence, U is not closed and we get a contradiction. O
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3.3 An alternative definition of the horofunction compactification

Under what a priori seem to be more restrictive hypotheses on the space X it is possible to characterize
the horofunction compactification as a subset of the product of all of its visual compactifications. We
detail the construction in this section.

The new extra hypotheses are both related to the differentiability of the distance function. We say a
that a uniquely geodesic metric space X is C'! along geodesics if given a point p € X and a geodesic
segment y that does not intersect p, the distance function d(y (¢), p) is first differentiable and the value
of the derivative depends continuously on both ¢ and p. Furthermore, the space X has constant distance
variation if for any two distinct geodesics y, n with y(0) = n(0) we have either

d _d
@) LAy _ = Sdo@am)|
for all s > 0, or %d(y(t), n(s))!t:() does not exist for any s > 0.

Many commonly studied metric spaces have constant distance variation. For example, spaces with bounded
curvature, either above of below, have constant distance variation, as explained in the book by Burago,
Burago, and Ivanov [6, Section 4]. Importantly to our case, Teichmiiller spaces with the Teichmiiller
distance satisfy both hypotheses. Earle [9] proved that the distance function is C! by providing a formula
for its derivative. Applying the formula to (2) we get that the derivative depends only on the tangential
vector to y at 0 and the unit area quadratic differential associated to 1 at 0, so we also have constant
distance variation. Furthermore, Teichmiiller spaces with the Teichmiiller distance are also straight and
proper, so the results from this section can be applied to them.

Consider the product of all the possible visual compactifications obtained by changing the basepoint,
E=]] X}

with the usual product topology. See the book by Munkres [35, Chapters 2.19 and 5.37] for some
background on infinite products of topological spaces. Denote by 7, the projection from E to X - By
definition of the product topology, the diagonal inclusion i : X < E such that by 75 (i (x)) = x for
every x,b € X is continuous, and has continuous inverse restricted to i (X) given by 5. Hence, i (X) is
homeomorphic to X. That is, i is an embedding. Furthermore, by Tychonoff’s theorem the product is
compact, as each factor of the product is compact. Hence the closure 1(_X ), which we shall denote by XV,
is compact. The pair (i, X") is then a compactification of X, which tracks the information given by the
visual boundary at each point. That is, a sequence in X converges in the topology of X if and only if
it converges for every possible visual compactification X 5+ The main interest of this compactification
comes from the following result.

Theorem 3.12 Let X be a proper, uniquely geodesic, straight metric space which is C! along geodesics
and has constant distance variation. Then (i, X V') is isomorphic to (h, X hy.
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Denote by ITj, the continuous map from X ho X 5 given by Theorem 1.1. The isomorphism between Xt
and X'V is defined by recording the value of each possible IT; within X V' That is, we define O:X"—>XxV
in such a way that 7 o o= IT; for each b € X. The only property required to prove that I is an
isomorphism not following directly from previous results is the injectivity. By Proposition 3.4 we know that
if fe H;l () then y is an optimal geodesic of f. Thatis, f(y(¢))— f(y(s)) =—(t—s). Hence, if f, g €
H,;l (y), then jhey differ by a constant along the geodesic y. If f and g are horofunctions in the preimage
of a point by IT, then they differ by a constant along infinitely many geodesics, which cover X. However,
the constant might depend on the geodesic, so we need a way to connect these constants. We proceed by
strengthening Proposition 3.4 to show that any two functions in H;l (y) also have the same directional
derivatives at points in y, which allows us to connect the geodesics. Precisely, we prove the following.

Proposition 3.13 Let X be a proper, uniquely geodesic, straight metric space which is C! along
geodesics and has constant distance variation. Furthermore, let y be a geodesic ray starting at b, and let o
be a geodesic starting at some point on y. Then, %f o a(z)}t:() exists and its value is the same for all

eyl (y).

Proof For any b’ € y we have that y is an optimal geodesic of f passing through »’. Denoting y;
the geodesic ray starting at »” with the same biinfinite extension as y we have that f € H;,l (vp), by
Proposition 3.4. Hence, we can assume that &(0) = b by changing the basepoint if necessary. Let x, be a
sequence converging to f. Furthermore, let n be the geodesic from «(?) to x, and g,(?) be the value of
%h(xn) ocal(s) ‘s:t. By the definition of the map /# we have g,(¢) = %d(oz(s), Xn) }s:t. By the constant

distant variation we have g, () = %a’ (a(s), n?(l))! which since X is C'! along geodesics depends

s=t’
continuously on n%(1) and ¢.

By Proposition 3.5 the geodesics 1)} converge as n — oo to some geodesics 7, so 1% (1) converges
to 17;(1). Since the space is C! along geodesics, the value of %d (e(s), n’;(l))}s: , depends continuously
on 1} (1), and so g, converges pointwise to g(t) = %d(a(s), nt(l))’S=t.

Take some § > 0 and assume the convergence is not uniform on [—§, §]. Then there is some & > 0 such
that for each n there is at least one ¢, € [—§, §] such that |g,(#,) — g(¢,)| > €. Since [—§, §] is compact we
can take a converging subsequence such that z, converges to some 7" € [—4, §]. Hence, the point 1y (1)
does not converge to N (1), so by properness of X" we can take a subsequence such that 7y (1) converges
to some p € X different from n7(1). Let B be the geodesic starting at «(7') passing through p. The
geodesics 1} converge uniformly to 8, and B # nr. For any fixed 7 > 0 we have, following the same
reasoning than in the proof of Proposition 3.5,

J(B@) = f(BO0) = lim d(xn, B(1)) —d(xn, B(0)) = —t.

Hence, B is an optimal geodesic of f passing through «(7"). However, f € H;(IT)(UT), so 1 is also an
optimal geodesic passing through «(7"), contradicting Proposition 3.4.
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Hence, the convergence of (i1(x,) o) = gy to g is uniform on [—§, §]. Therefore, f is differentiable
and f/(0) = g(0) = %d(a(s), V(l))‘szo’ which is the same for all f € TI71(y). |

Proof of Theorem 3.12 Each [T is continuous, so by the definition of the product topology the map I is
continuous. Hence, by Lemma 2.1 to see that I is an isomorphism it is enough to show that Mis injective.

Let f,g € X" be such that ﬁ(f) = ﬁ(g). If there is some b € X such that o fl(f) € X then
f=h(rpo ﬁ(f)) = g. Assume then 7} o ﬁ(f) € BA_/I’; for all b € X. By Proposition 3.13 they have
the same directional derivatives at every point. Let o be a geodesic from a fixed basepoint b to any other
point. We have (f oa)’ = (gow)’, so /' — g is constant along «, and hence everywhere, since any point
can be connected to b by a geodesic. Hence, f and g are the same horofunctions. |

By the definition of the convergence in the product topology, this characterization gives us the following
equivalence for the convergence to points in the horoboundary.

Corollary 3.14 Let X be a proper, uniquely geodesic, straight metric space, C'! along geodesics and
with constant distance variation. A sequence (x,) C X converges in the horofunction compactification if
and only if the sequence converges in all the visual compactifications.

Restricting the result to the Teichmiiller metric we get Corollary 1.11 announced in the introduction.

4 Background on Teichmiiller spaces

A surface with marked points S is a pair (X, P), where X is a compact, orientable surface with possibly
empty boundary, and P C X is a finite, possibly empty, set of points, where we allow points to be on the
boundary. The Teichmiiller space T (S) is the set of equivalence classes of pairs (X, f), where X is a
Riemann surface and f: ¥ — X is an orientation-preserving homeomorphism. Two pairs (X, /) and
(Y, g) are equivalent if there is a conformal diffeomorphism /: X — Y such that g~ o /1o f is isotopic
to identity rel P.

The Teichmiiller distance between two points [(X, f)],[(Y, g)] € T(S) is defined as the value % loginf K,
where the infimum is taken over all K > 1 such that there exists a K—quasiconformal homeomorphism
h: X — Y with g7 1o ho f isotopic to identity rel P. Together with the smooth structure provided by
the Fenchel-Nielsen coordinates 7 (.S) satisfies all the metric properties discussed in the previous section.
That is, 7(S) with the Teichmiiller distance is a proper, uniquely geodesic and straight metric space
which is C! along geodesics and has constant distance variation. See [11, Part 2] for some background
on the Teichmiiller metric and the Fenchel-Nielsen coordinates.

A quadratic differential on a Riemann surface X is a map ¢: TX — C such that ¢(Av) = A%¢(v) for every
A €C and v € TX. Considering only holomorphic quadratic differentials with finite area |’ v lg| we geta
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characterization of the cotangent space to the Teichmiiller space based at [(X, f)]. Given a point p € T(.S)
and a quadratic differential ¢ € T; T (S) there is a unique geodesic y such that y(0) = p and y'(0) = |¢|/q.
We shall denote such a geodesic as R(q; -) and denote the associated Busemann points as B(q) or By.

4.1 Measured foliations

A multicurve on S is an embedded 1-dimensional submanifold of X\ P with boundary in X\ P such
that

¢ no circle component bounds a disk with at most 1 marked point;
¢ no arc component bounds a disk with no interior marked points and at most 1 marked point on d%; and

¢ no two components are isotopic to each other in X rel P.

Each of the components is called curve. A weighted multicurve is a multicurve together with a positive
weight associated to each curve. We shall consider (weighted) multicurves up to isotopy rel P. If a simple
curve is a circle we shall call it a closed curve, and a proper arc otherwise.

A measured foliation on S is a foliation with isolated prong singularities, where we allow 1—prong
singularities at marked points, equipped with an invariant transverse measure i g [12, exposé 5]. Denoting
«; and w; the components and the weights of « respectively, the intersection number i (o, F) is defined as
inf); w; [ o |/ p| do, where the infimum is taken over all representatives of o. Two measured foliations
F and G are equivalent if i (o, F) = i («, G) for every multicurve ov. We shall always consider measured
foliations up to this equivalence relation. The set of measured foliations is usually denoted as MF, and
its topology is defined in such a way that a sequence (F5) C MF converges to F if and only if i («, Fy)
converges to i («, F) for every multicurve .

Given a quadratic differential one can define the vertical foliation as the union of vertical trajectories, that
is, maximal smooth paths y such that ¢(y’(¢)) < 0 for every ¢ in the interior of the domain. This foliation
can be equipped with the transverse measure given by | Re ,/g|. This measured foliation is called the
vertical measured foliation of ¢, and shall be denoted as V(g). This map is actually a homeomorphism.
As such, given a measured foliation F and a complex structure X, there is a unique quadratic differential
gr,x on X such that V(qFr, x) = F. We call this quadratic differential the Hubbard—Masur differential
associated to /" on X [19]. Furthermore, for each A > 0 we have ¢ r, x = AgF, x. Similarly, the horizontal
foliation H(q) can be defined as the union of maximal smooth paths y such that ¢(y’(¢)) > 0, with the
transverse measure |Im ,/g|.

It is possible to associate a measured foliation to each weighted multicurve by thickening each proper
arc and closed curve to a rectangle or cylinder respectively with width equal to the weight of the curve,
and then collapsing the rest of the surface. The intersection numbers are maintained by this construction.
This association is injective, and hence we shall consider the set of weighted multicurves as a subset of
the measured foliations, and use both expressions of weighted multicurve indistinctly.
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By removing the critical graph, a measured foliation is decomposed into a finite number of connected
components, each of which is either a thickened curve, or a minimal component which does not intersect
the boundary, in which every leaf is dense [40, Chapter 24.3]. Each transverse measure within the minimal
components can be further decomposed into a sum of finitely many projectively distinct ergodic measures.
A foliation F’ is an indecomposable component of F if it is either a thickened curve or a minimal
component with a transverse measure that cannot be decomposed as a sum of more than one projectively
distinct ergodic measure. Every foliation can be decomposed uniquely into a union of indecomposable
foliations. For a surface of genus g with no boundaries nor marked points Papadopoulos shows [37] that
the maximum number of indecomposable components for any foliation is 3g — 3. It is possible to get an
upper bound for foliations on surfaces with boundary and marked points by swapping the marked points
for boundaries and using the doubling trick we will explain in Section 4.3.

It was shown by Thurston that for surfaces without boundary it is possible to achieve a dense subset by
restricting to simple closed curves, see Fathi, Laudenbach, and Poénaru [12] for a reference. When there
are boundaries the picture gets slightly more complicated, but it has been shown by Kahn, Pilgrim and
Thurston [21, Proposition 2.12] that multicurves can be seen as a dense subset. More precisely, they show
the following.

Proposition 4.1 (Kahn—Pilgrim—Thurston) Let F' be a measured foliation in S not containing proper
arcs. Then there exists a sequence of multicurves composed solely of closed curves approaching F'.

The result can be extended to any foliation by cutting along the proper arcs and approaching the foliation
in the resulting surfaces by multicurves. Then, joining the multicurves from the proposition with the
proper arcs and the adequate weights we get a sequence of multicurves converging to our original foliation.

4.2 Extremal length

Given a marked conformal structure on S, that is, a point X € T, the extremal length of F on X is defined
as

Exty (F) I=[ lgF x|
X

The map Ext: MF(S) x T(S) — R is continuous and homogeneous of degree 2 in the first variable.

Given two points x, y € T(S) we can define the function
Exty (F)

Kx,y:= sup ————,
B0 pep, Exty(F)

where Pp is the set of measured foliations F satisfying Exty(F) = 1. As revealed by Kerckhoff’s
formula [23], the value % log K,y coincides with the usual definition of the Teichmiiller distance d(x, y).

Algebraic € Geometric Topology, Volume 24 (2024)



3944 Aitor Azemar

Figure 4: Visual representation of the doubling trick.
4.3 The doubling trick

Let X be a Riemann surface with nonempty boundary. Denote by X the mirror surface, obtained by
composing each atlas of X with the complex conjugation. Gluing X to X along the corresponding
boundary components we obtain the conformal double X d—-xuXx /~ of X. Note that X 4 has empty
boundary. See Figure 4. Given a foliation F or a quadratic differential ¢ on X, we can repeat the same
process, obtaining the corresponding conformal doubles F 4 and qd on X“. For a more detailed treatment
of this argument see [1, Section II.1.5].

The main interest of the conformal doubles is that these are surfaces without boundary, so most of the
results relating to Teichmiiller theory of surfaces without boundary can be translated to surfaces with
boundary. We have the following.

Proposition 4.2 Let X be a Riemann surface with boundary, and F be a foliation on X . Then,
Extyq(F9) = 2Exty (F).

Proof We have gpa_ya = q% . so the result follows, as [y4 [q% | =2 [y |qpa_yal. ]

4.4 The Gardiner-Masur compactification

For a surface S with marked points and empty boundary we can embed 7 (.S) into the space of continuous
functions from the set S of simple closed curves on S to R via the map ¢: 7(S) — P(R®) defined by

¢(X) = [Exty (@) ?]es,

where the square brackets indicate a projective vector. Gardiner and Masur show [14] that this map
is indeed an embedding, and that ¢ (7 (S)) is precompact. The Gardiner—Masur compactification of a
surface without boundary is then defined as the pair (d), o (T(S ))).
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Alternatively, after choosing a basepoint b € 7(.5), it is also possible to consider the map

Exty(+) )1/ 2
Ky, x ’
This map is quite similar to the original map ¢, the differences being that £ considers all measured

E:T(S)—> CMF) definedby E(X)(:):= (

foliations instead of just the closed curves, and normalizes instead of projectivizing. Walsh proves [44]
that, for surfaces without boundary, the map £ defines a compactification in the same way that ¢ does,
and in fact this compactification is isomorphic to the one defined by ¢.

The compactification defined by £ fits better our goal, so we shall define the Gardiner—-Masur compacti-
fication of Teichmiiller spaces of surfaces with boundary as the one obtained by using £. With this in
mind, we first need the following result.

Proposition 4.3 Let S be a compact surface with possibly boundary and marked points. Then the map
E:T(S) — C(MF) is injective.

Proof Assume we have x, y € T(S) with £(x)(F) = E(y)(F) for all F € MF. Then,
Exty (F) _ Kp x Exty (F) _ Kb,y _ 1

Kx,y = sup = and K, x = sup = = .

BV Fep, Exty(F) K, PY T pep, Bxtx(F)  Kpy %
However, Ky, x = Ky, since the Teichmiiller distance is symmetric. Hence, K , =1 and, by Kerckhoff’s
formula, d(x, y) = %log Ky,y=0. |

Miyachi shows [32] that the set E(S) :={£(X) | X € T(S)} is precompact when S is a surface without
boundary. Given a surface with boundary .S, denote by MF d (S) the set of measured foliations on S d
obtained by doubling the foliations MF(S). The set E(Sd)|M]_—d(S) ={€X) | pras) | X € T(S%)3,
obtained by restricting the functions in E(S d) to MF4, is precompact. Furthermore, we can embed
E(S) into E(S9)| ra(s) by sending [ € E(S) to f¥ € E(SY)| zas) defined by [ (F9) = f(F).
Hence, E(S) is precompact.

We define the Gardiner—Masur compactification for a surface with boundary as the closure E of E(S),
together with the map £. We shall be using the same characterization for surfaces without boundary.

One of the relevant features of the Gardiner—-Masur compactification is that it coincides with the horofunc-
tion compactification. Indeed, Liu and Su [28] and Walsh [44] prove that for surfaces without boundary
these two compactifications are isomorphic. In the following, we shall extend the relevant results to
surfaces with boundary. We begin with the driving theorem from Walsh’s paper.

Theorem 4.4 (extension of [44, Theorem 1] to surfaces with boundary) Let R(gq;-): R4y — T(S) be
the Teichmiiller ray with initial unit-area quadratic differential q, and let F' be a measured foliation. Then,

i(Gj, F)?
; i(Gj. H(q))’

where the {Gj} are the indecomposable components of the vertical foliation V(q), and H(q) is the

lim e~ Extg(g:n)(F) =

t—>00

horizontal foliation.
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Proof If S does not have boundary the result follows from Walsh’s paper. Assume then that S has
boundary. Let p be the number of proper arcs of V(g), and reorder the components so G; is a proper arc
for j < p. The conformal double GI‘.I is indecomposable whenever G; is a proper arc, and decomposes
into two components otherwise, as it is not incident to the boundary of S. Denote G Jl and sz the two
components of G; for j > p. We have

i(G9, F?)? i(Gi, F%)?

2 lim ™2 Extg(g:n(F)= lim e 2 Extgapn(FH)=Y —
t—o00 t—00 @0 ];P i(Gd, H(C])d) 16{212}12 Z(Gla H(q)d)

For foliations G, F € MF(S) we have i (G, F¥) = 2i (G, F). Hence, i(G;’, Fi) = 2i(Gj, F). Using
the symmetry, i (G}, F?) = i(G%, F%), so for j > p we have i (G}, F?) = i(Gj, F). Using these
identities we get the result. a

Following the same reasoning we can extend as well the next result.

Lemma 4.5 (extension of [44, Lemma 3] to surfaces with boundary) Let g be a unit area quadratic
differential. Then,

i(Gj, F)?
i(Gj. H(g))’

where t € R4 and {G;} are the indecomposable components of the vertical foliation V(q).

e~ EXtR(q;t)(F) > Z
J

Most of the results in Walsh’s paper use the previous theorem. In particular, we have the following.

Corollary 4.6 (extension of [44, Corollary 1] to surfaces with boundary) Let g be a quadratic differential
and denote by Gj the indecomposable components of its vertical foliation. Then, the Teichmiiller ray
R(q; -) converges in the Gardiner—Masur compactification to

(Z l(G], ')2 )1/2
7 1(G). H(q)
The relation between the Gardiner—Masur compactification and the horoboundary compactification is
given by the map E: E — T(S)" defined by
2
1 S(F)
= X) 1= 5 log su
E()(x): &SP E (B

The following result can be extended to surfaces with boundary by repeating the proof found in Walsh’s
paper in this context.

Theorem 4.7 (extension of [44, Lemma 21] to surfaces with boundary) The map E is an isomorphism
between the compactifications (€, E) and (h, T(S)").

Directly from the definition of & we have the following.
Corollary 4.8 Let f,gec E. If f > g, then E(f) > B(g).
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We shall denote the representation of the Busemann point B(g) in the Gardiner—Masur compactification
as £(q). By Corollary 4.6 we have an explicit representation of £(g). As we have seen in Propositions 1.3
and 1.4, the continuity of the Busemann map has some interesting implications, and it is enough to look
for continuity of the map restricted to the boundary. Related to this question we have the following result,
which can also be derived by the same proof found in Walsh’s paper, applied to this context.

Theorem 4.9 (extension of [44, Theorem 10] to surfaces with boundary) Let (¢,) be a sequence of
quadratic differentials based at b € T(S). Then B(gqy) converges to B(q) if and only if both of the
following hold:

(1) (gn) convergestoq.

(2) For every subsequence (G"), of indecomposable elements of MF such that, for eachn € N, G"
is a component of V(q,), we have that every limit point of G" is indecomposable.

In view of this theorem, we say that a sequence of quadratic differentials (g,) converges strongly to ¢ if
it does so in the sense described by the theorem.

Finally, while the following result may be extendable to surfaces with boundary, we only use it in the
context of surfaces without boundary, so we shall not be working on finding an extension.

Theorem 4.10 [44, Theorem 3] For the Teichmiiller space of a surface without boundary with the
Teichmiiller metric, for any basepoint X € T (.S), all Busemann points can be expressed as B(q) for some
quadratic differential ¢ based at X .

5 Horoboundary convergence for Teichmiiller spaces

5.1 Continuity of the Busemann map

We begin by using Proposition 1.4 to determine when the Busemann map is continuous. Recall that a
sequence (gy) converges to g strongly if and only if the sequence satisfies the conditions of Theorem 4.9.
That is, a sequence (g5) converges to g strongly if and only if the associated Busemann points B(gy)
converge to B(g). With this in mind we introduce the following notion.

Definition 5.1 Let ¢ be a quadratic differential. We say that ¢ is infusible if any sequence of quadratic
differentials converging to ¢ converges strongly. We say that ¢ is fusible if it is not infusible.

In other words, we say that ¢ is fusible when it can be approached by a sequence of quadratic differentials
(gn) such that there is some sequence (G™) of measured foliations with each G” being an indecomposable
component of V(g;), with (G") having at least one decomposable accumulation point. The following
statement follows directly from this definition, Proposition 1.4 and Walsh’s result.

Proposition 5.2 Let g be a unit area quadratic differential. The Busemann map B is continuous at q if
and only if ¢ is infusible.
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Proof If ¢ is fusible then we have a sequence converging to ¢ but not strongly. Hence, by Theorem 4.9
the sequence (B(gy)) does not converge to B(g), and so the Busemann map is not continuous at ¢.

If ¢ is infusible we have that any sequence (¢,) converging to ¢ does so strongly, and so we have that
B(qn) converges to B(q), so B is continuous at ¢ when restricted to the boundary. By Proposition 1.4
this implies that B is continuous at g. |

We shall now find a criterion on the vertical foliation to determine when a unit area quadratic differential
is infusible.

Definition 5.3 Let F be a measured foliation on a surface S and let G be one of its indecomposable
components. We say that G is a boundary annulus if it is an annulus parallel to a boundary with no
marked points, and a boundary component if it is a boundary annulus or a proper arc. If G is not a
boundary component, we shall call it an interior component. Each of the connected components of the
surface obtained after removing the proper arcs shall be called interior part. If each of these interior
parts has at most one interior component, then we say that F is internally indecomposable. If F is not
internally indecomposable we say that it is internally decomposable.

For surfaces without boundary, a foliation F is internally indecomposable if and only if it is indecompos-
able, as we do not have boundary components. Given these definitions we can state our main result of
this section.

Theorem 5.4 Let g be a quadratic differential. Then q is infusible if and only if its vertical foliation
V(q) is internally indecomposable.

This result is somewhat straightforward whenever S does not have boundary, as in order to have a sequence
(gn) that converges to g but not strongly we need a sequence of components of V(g,) converging to
a decomposable component of V(g), but if S is closed and V(g) is internally indecomposable, then
V(g) only has one indecomposable component. Conversely, if ¥ (¢) has more than one indecomposable
component, as S does not have boundary V(¢) can be approached by a sequence of simple closed curves,
so the associated sequence of quadratic differentials converges to ¢ but not strongly.

For surfaces with boundary the proof is more involved, as simple closed curves are no longer dense.
However, the density of multicurves from Proposition 4.1 allows us to follow a slightly similar reasoning.
We begin by proving some results regarding the shape that foliations have to take when approaching a
foliation with boundary components, namely, boundary components have to be eventually included in the
approaching foliations.

Proposition 5.5 Let (F},) be a sequence of measured foliations converging to a measured foliation F, let
G be the union of the boundary components of F and let H be such that F = H + G. Then, for n big
enough, F, = H, + a, G, with a, converging to 1 and H, converging to H.
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In particular, the proper arcs of the limiting foliation have to be included in the approaching foliations.
Hence, we will be able to separate the surface along these proper arcs into the interior parts of the limiting
foliation, and study the convergence in each of these parts.

We say that a subset of a boundary component is a boundary arc if it is homeomorphic to an open interval
or a circle, does not contain marked points and, if it is homeomorphic to an open interval, it is delimited
by marked points.

Repeating the argument by Chen, Chernov, Flores, Fortier Bourque, Lee, and Yang [7] to a more general
setting we get the following characterization of foliations on simple surfaces, which we shall use to solve

the simpler cases.

Lemma 5.6 Let S be a sphere with one boundary component possibly containing boundary marked
points and one interior marked point. Then every indecomposable foliation on S is a proper arc and there
are finitely many distinct proper arcs.

Proof Assuming that there is some foliation F' with a recurrent leaf to some part of S we get a
contradiction, as explained in the proof of [7, Lemma 4.1]. Hence, each indecomposable foliation is a
curve. Any closed curve in S is contractible to the marked point. Hence, a each indecomposable foliation
is a proper arc.

A proper arc in S must have two endpoints, which must be contained in the boundary arcs in the boundary
component of S. Denote b; and b, these two boundary arcs, which might be the same. We aim to
show that there are at most two classes of arcs with endpoints in b and b,. Fix three proper arcs with
endpoints on b and b,. Any intersection between these arcs can be removed by doing isotopies moving
the endpoints along the arcs b; or b,. Hence, these arcs can be isotoped to not intersect each other. Since
there is only one interior marked point, two of these arcs delimit a rectangle with no marked interior
marked points, so are isotopic. Hence, there are at most two different proper arcs between b; and b,.
There are finitely marked points in the boundary component, so there are finitely many boundary arcs.
Therefore, there are finitely many pairs of boundary arcs, and since we have at most two proper arcs per
pair, there are also finitely many different proper arcs. a

We shall first see the proposition for the case where G contains a proper arc and we are approaching with
a sequence of indecomposable foliations.

Lemma 5.7 Let S be a surface and let (F,) be a sequence of indecomposable foliations on S converging
to a measured foliation G. Then G is either a multiple of a proper arc y, in which case Fy, is also a
multiple of y for n big enough, or G does not contain a proper arc.

Proof Assume G contains a proper arc y with weight w > 0 and denote by b one of the boundary arcs
where y is incident.

Algebraic € Geometric Topology, Volume 24 (2024)



3950 Aitor Azemar

Figure 5: Sample curves used in the proof of Lemma 5.7.

Our first step is seeing that, for n big enough, Fj, intersects . We shall do this by finding different
test curves B depending on the shape of . If the boundary component containing b has at most one
marked point, we consider B to be a curve parallel to that boundary component as in Figure 5, left.
Otherwise we consider 8 to be the curve defined by taking a small arc starting at the boundary arc next
to b, concatenating with a curve parallel to b, and concatenating another segment with endpoint in the
boundary arc after b, as shown in Figure 5, right.

If the curve B is contractible then S is a sphere with one boundary component and at most one interior
marked point, so by Lemma 5.6 the result follows. Assume then that 8 is not contractible. We have
i(y,B)>0,s0i(G,B) >0 and hence i (Fy, ) > 0 for n big enough, which implies that F, intersects b.
Hence, since Fj, is indecomposable, it is a weighted proper arc, which we denote by wy ¥y, where w, >0
is the weight at y;, is a proper arc.

Denote b; and b, the boundary arcs where y has its endpoints, and denote by 8, and f, the associated
test curves shown in Figure 5. If both endpoints are in the same boundary arc we set b, and 8, as null
curves. We shall now find a multicurve A surrounding y, b; and b, such that any leaf of G intersecting
A but not y has an endpoint in either by or b,. The multicurve A is chosen so that, together with the
boundaries where y has its endpoints, delimits the smallest surface containing y. The precise shape of 4
depends on whether the endpoints of y are in the same boundary component or not, and the distribution
of marked points in these boundaries.

If both endpoints of y are in different boundary components we proceed differently according to the
distribution of marked points at these boundaries. If each of the boundaries contains at most one marked
point then we define A4 as the curve shown in Figure 6, left. If one of the boundary components has two
or more marked points, but the other has at most one marked point we define A as the arc shown in
Figure 6, middle. Finally, if each of the boundaries contains at least two marked points we define A4 as
the multicurve formed by the curves A; and A, as shown in Figure 6, right.

If both endpoints y are in the same boundary we also proceed differently according to the distribution of
marked points. In all cases A4 is defined as a multicurve formed by two curves. If each possible segment
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Figure 6: Construction of the curves A and A, whenever y has endpoints in different boundary
components in the proof of Lemma 5.7.

|A2 | A | Az
Figure 7: Construction of the curves A; and A, whenever y has endpoints in the same boundary
component in the proof of Lemma 5.7.

within the boundary component joining the two endpoints has at most one marked points we proceed as
in Figure 7, left. If one of these segments has two or more marked points, while the other has at most one
we proceed as in Figure 7, middle. Finally, if both of these segments have two or more marked points we

proceed as in Figure 7, right.

In any of the cases above if a component of A4 is nonessential we remove it from A. The following
argument also applies whenever A is a null curve. Put 4 and G in minimal position and denote by
P the surface containing y, delimited by A and the boundary components where y has its endpoints.
Let o be a connected component of a noncritical leaf of G restricted to P intersecting 4. Since G
contains y the proper arc o cannot intersect y. Furthermore, by observing the possible configurations,
if « has one endpoint in 41, the other one cannot be in 4,, as whenever we have both A and 4,,
these are separated within P by the proper arc y. Furthermore, if both endpoints are in A; then «
can be isotoped to not intersect A. Therefore, the other endpoint of « is in either b; or b,. Hence,
i(G,B1)+i(G,B2) =i(G,A)+wi(y,By1)+wi(y,B2) >i(G, A). Since w,y, converges to G, this
last inequality implies that for n big enough,

i(Vns B1) + i (Y, B2) > i(Yn, A).

Fix n such that y, satisfies the previous inequality. Assume y;, has just one endpoint inside P. Then,
i(Vn, B1) +i(Yn, B2) = 1,80 i(yy, A) = 0 and y, cannot leave P. If y, has both endpoints in P then
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i(Yn, B1) +i(yn, B2) = 2. Furthermore, if y, leaves P, then it has to reenter at some point, resulting in

i(Yn, A1 + A3) = 2. Hence, y, stays inside P.

The weights w, do not converge to 0, as wy,i (Y, B) converges to i (G, ), but i (yn, B) < 2. Since y is
contained in G we have i (G, y) = 0. Therefore, for any ¢ > 0 and 7 big enough we have w,i (y,,y) <&,
so for n big enough i (y,, y) = 0. Since y, does not intersect y and stays inside P, Y, can be isotoped
to stay inside one of the components obtained after removing y from P. Denote such a component by
C. The component C has either one or two boundary components and no interior marked points or one
boundary component and one interior marked point. By Lemma 5.6 the only case where we do not have
finitely many different proper arcs is when C has two boundary components. However, in that case one
of the boundary components is associated to a curve in A4, so ¥, does not intersect it and that boundary
can be treated as a marked point. Hence, in all cases there are finitely many possible proper arcs, and so
¥n 1s a multiple of ¢ for n big enough. a

When the boundary component is an annulus we have to be a bit more careful, so we start by proving it
for approaching curves.

Lemma 5.8 Let S be a surface and let (w,yy) be a sequence of weighted curves on S converging to a
foliation G, where (w,) are the weights and (y,,) are the curves. Then G is either a multiple of a boundary

annulus y, in which case y; is y for n big enough, or G does not contain a boundary annulus.

Proof If S is a polygon with at most one interior marked point, then G cannot contain a boundary
annulus. If S is a cylinder then, since we have a boundary annulus, at least one of the boundaries must
not contain marked points. Hence, the number of curves is finite, as there is only one possible closed
curve, and for counting the proper arcs we can consider the boundary without marked points as a marked
point and apply Lemma 5.6. In that case, the conclusion follows.

Assume then that S is neither a disk with at most one interior marked point nor a cylinder with no interior
marked points. Then there is a pair of pants P in S containing ¥ where each boundary component of P is
either noncontractible or contractible to a marked point. Denote by By the boundary component parallel
to y and B, and B3 the other two boundary components of P. Furthermore, assume that G contains y
with weight w.

Begin by assuming that B, and B3 are not contractible to marked points. Let C be the proper arc contained
in P with both endpoints in B;. Put B, B3 and C in a minimal position with respect to G, and consider a
connected component of a noncritical leaf of G intersecting C restricted to P. This noncritical leaf either is
isotopic to y, or to the curves F, E and D shown in Figure 8. Since the leaves of G do not intersect, there
cannot be leaves isotopic to E and leaves isotopic to D at the same time. Breaking symmetry, assume there
are no leaves isotopic to D. Then, i (C,G) =i(C,y)+i(B3,G) >i(B3,G) > i(B,, G). Doing the same
reasoning assuming that there are no leaves isotopic to £ we get i (C, G) > max(i(B,, G),i (B3, G)).
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Figure 8: Curve labeling for the proof of Lemma 5.8.

Hence, since wy ), converges to G, y, has to satisfy

i(C,yn) > max(i(Ba, yn), i (B3, yn))
for n big enough.

For each n put B3, B, and C in a minimal position with respect to ), and consider the restriction of )y,
to P. Assume ¥, is not y. Then, the curves on the restriction of y, to P intersecting C are isotopic to
either £, F and D, but not y. As before, this restriction cannot contain curves isotopic to E and curves
isotopic to D for the same 7, so assuming there are no curves isotopic to D we have i (C, y,) =i (B3, ¥n)
which is a contradiction. Doing the same reasoning assuming that there are no curves isotopic to £ also
gives a contradiction. Hence, y;, is y for n big enough.

If B, or B3 are contractible to marked points we have i (G, B;) or i (G, B3) is 0, and a similar reasoning
yields the same result. |

Proof of Proposition 5.5 Let (F},) be a sequence of measured foliations converging to F. As pointed out
before, Proposition 4.1 can be extended to get sequences of weighted multicurves (y,*),, converging to
each F;. Denote by y,:'fl , )/,:',’2, e, Z’k( n.m) the weighted curves of y,"*. For each n we take a subsequence
such that k(n, m) is constant with respect to m, and y,"; converges for each i as m — oo. Denoting Fy,;
the limit of )/,;”l. as m — 0o, we can write F, = Y Fy ;.

Denote by f; the boundary components of F. Thatis, ) 8; = G. Furthermore, denote by b, ; and b,’{f j
the weights of B; on F, and y,*, where we set the weight to be 0 if B; is not contained in the foliation. It
is clear that if b, ; = 0 then b,’l'fj — 0, as we must have b, ; > liminfy, oo b,’:',j. If by, j > 0 for some n,
then Fy ; contains B; for some i. Hence, by Lemmas 5.7 and 5.8 we have F}, ; and y,Z’i are both multiples
of B; for m big enough. Then, since each of the multicurves in ¥, has to be different, B; is not contained
in any other foliation Fy,; for that given 7, so Fy; = bp,jB; and y,"; can be written as b,"; B; for m big
enough, with b, converging to by, j as m — oc.
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Assume for some j we have b, ; not converging to 1. We can then take a subsequence such that b, ;

converges to some A # 1. Denote § = |1 — A|/2. For each n, there exists some mq(n) big enough so that
m(n)

[1-by! j | > 6 for all m > m(n). We can then take a diagonal sequence y,, *~ converging to F with m(n) >
mg(n). However, following the previous reasoning we get that y," ™ should contain Bj for n big enough,

m(n)
n,j
tradiction. Hence, b,,; converges to 1 for all j. Let then a, = min; (b, ;). Since b, ; > a, we can define

and the weight should converge to the weight in G, that is, to 1. However, |1 —5 | > §, giving us a con-

H, = F,,—a,G and we have F,, = H, +a,G. Finally, a, — 1 as n — 00, so the proposition is proved. O

Proposition 5.9 Let g be a unit area quadratic differential such that V(q) is internally indecomposable.
Then q is infusible.

Proof Assume ¢ is fusible, that is, we have a sequence of quadratic differentials (g,) converging to g but
not strongly. Let F}' be the indecomposable components of V(¢,). To have nonstrong convergence we
must have at least one sequence of indecomposable components converging to a decomposable component
G, which we assume is (F]'),. Let B be a boundary component of V(¢). By Proposition 5.5 for n big
enough a multiple of 8 must be contained in V' (g,). Furthermore, 8 cannot be contained in G. Since G
cannot contain boundary components, it must contain at least two interior components. On the other hand,
since V(q) is internally indecomposable, each interior part obtained by removing the proper arcs contains
at most one interior component. Hence, for n big enough F{' must intersect at least two interior parts,
that is, F{' must cross at least one proper arc. However, for each proper arc y there is some 7 big enough
such that y is contained in the foliation V(gy), so F”, a component of V(g,), intersects the foliation
V(qn), giving us a contradiction. O

To prove the other direction we shall first see the following lemma.

Lemma 5.10 Let S be a compact surface with possibly nonempty boundary and finitely many marked
points, let k > 2 and let « = {1, 2, ...,ak} be a collection of nonintersecting closed curves on S.
Furthermore, let p be the number of curves in « parallel to a boundary. Then there exists a collection of
max([(p/2)]), 1) nonintersecting curves intersecting each «; .

Our main interest in the lemma is that the amount of curves needed is strictly smaller than the amount of
closed curves in «. This will allow us, by doing Dehn twists along the closed curves in «, to create a
sequence of foliations converging to a foliation with strictly more components, which can be translated to
a sequence of quadratic differentials that converge but not strongly. The proof of this lemma is based on a
reasoning found in [11, Proposition 3.5].

Proof We start by replacing all boundaries of S without parallel curves in o by marked points. Let
then o’ be a completion of « to a pair of pants decomposition. Glue the remaining boundaries pairwise
until we have at most one left. After cutting the surface along the closed curves that were not parallel
to boundaries we get a collection of [ p/2] tori with one boundary component and some spheres with b
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Figure 9: Laying out of curve segments for the proof of Lemma 5.10.

boundary components and » marked points, with b +#n = 3 and b > 1. If p is odd, one of these spheres
has a boundary of S as a boundary. We join the boundaries of each of these surfaces with nonintersecting
arcs, as shown in Figure 9, that is, in such a way that each boundary component has two arcs incident to it.
We can then paste these surfaces back together in order to obtain a collection By, B, ..., f; of pairwise
disjoint curves in S. If p is odd this collection contains precisely one proper arc, as we only have two
endpoints coming from the boundary we did not paste. If p is even the collection does not contain any
proper arc. By the bigon criterion each f; is in minimal position with respect to each «;, and each «;
intersects either one or two of the ;. Furthermore, since we did not cut along the original boundaries we
pasted from S, each «; parallel to a boundary of S intersects precisely one of the 8. Suppose we have f;
and B intersecting a curve k € o’ and that 8; and ;- are distinct. Since we have at most one proper arc,
at least one of B; and B;- is a closed curve. Hence, doing a half twist about x, B; and ;- become a single
curve. Since this process does not create any bigons, the resulting collection is still in minimal position
with «. Continuing this way we obtain a single curve y intersecting each curve in «. Furthermore, y
intersects each pasted boundary once. Cutting along the pasted boundaries, we get the curves from the
lemma. If p is odd, B is a proper arc, so each cut along a pasted boundary increases the curve count by
one, totaling (p + 1)/2 curves. If p is even, B is a closed curve, so the first cut transforms it into a proper
arc, and the following ones increase the curve count by one, giving a total of max(p/2, 1) curves. O

Proposition 5.11 Let F be an internally decomposable measured foliation. Then, F can be approached
by a sequence of weighted multicurves with fewer components than F.

Proof By the extension to Proposition 4.1, we have a sequence of weighted multicurves y” converging
to F, with the only proper arcs being the ones contained in F. Cutting the surface along the proper arcs
of ™ and quotienting these proper arcs to points we get k many surfaces Z1, Z,, ..., Z} with boundary.
Let y;" be the restriction of " to Z;, and let F; be the limit of ;. The foliation F" is the union of the
foliations F; and the proper arcs.

Fix some i such that F; is nonempty, and let a1, . .., oy be the closed curves parallel to the boundaries
of Z;. Let a’l’, ... ,az be the weights of ay,...,ap in y/'. We can take a subsequence such that a;’
converges for each j to some a;. If a; > 0, the closed curve «; is contained in F;. If aj = 0, then the

weights a;? can be set to 0 on the multicurves y;* while leaving the limit intact. Hence, we can assume
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that a;.’ = 0 for all j such that a; = 0. Let p and u be the number of closed curves with a; > 0 parallel to
boundaries with or without marked points respectively. Since we have removed all the closed curves with
aj = 0, the multicurve y; contains precisely p and u closed curves parallel to boundaries with or without
marked points for # big enough. Denote by B the set of closed curves parallel to boundary components
without marked points. Applying Lemma 5.10 to the multicurve y;* minus B we get max([(p/2)]). 1)
curves B! intersecting all closed curves in ;' except the ones parallel to boundaries without marked
points. Doing the appropriate Dehn twists along the closed curves of /" and rescaling to the curves 7,
and adding with the corresponding weights the curves in B, we get a sequence converging to y;* with
max([(p/2)]), 1) + u many components. As such, taking a diagonal sequence we can get a sequence of
multicurves converging to F; with each multicurve containing max([(p/2)]), 1) + u components.

Finally, since F is internally decomposable, there is at least one F; with at least 2 interior components, so
one of these multicurves has strictly less components than the limiting foliations, and we have nonstrong
convergence. d

Theorem 5.4 follows by combining Propositions 5.9 and 5.11.

We do not need .S to have a lot of topology to find internally decomposable foliations. In fact, determining
which surfaces do not support internally decomposable foliations we get the following result.

Proposition 5.12 Let S, 4, 5,,p be a surface of genus g with by, and b, boundaries with and without
marked points respectively and p interior marked points. Then the Busemann map is continuous if and
only it3g +2by, + by + p < 4.

We shall split the proof in the following two lemmas

Lemma 5.13 Let Sg 4, p,,p be a surface with 3g + 2by, + by + p > 4. Then it admits an internally
decomposable foliation.

Proof A multicurve consisting of two interior closed curves generates an internally decomposable
foliation, so we just have to find such a pair for each possible surface satisfying the hypothesis. If S has
genus at least 2 we can take a multicurve consisting of 2 nonseparating closed curves. If S is a torus with
at least 2 boundaries or marked points, or a boundary with marked points, we can take a nonseparating
closed curve and a separating closed curve around 2 boundaries or marked points, or around a boundary
with marked points. If S is a sphere with at least 5 marked points or boundaries, we can take a closed
curve around two interior points or boundaries, and a closed curve around two different interior points or
boundaries. If S is a sphere with 1 boundary with marked points and at least 3 other boundaries or interior
points we can take a closed curve around the boundary with marked points, and a closed curve around two
other interior points or boundaries. Lastly, if S’ is a sphere with 2 boundaries with marked points and another
interior marked point or boundary we take a closed curve around each boundary with marked points. O

Lemma 5.14 Let Sg p,, p,,p be a surface with 3g + 2by, + by, + p < 4. Then every foliation on S is
internally indecomposable.
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Proof Assume we have an internally decomposable foliation on Sg 5, 5,.,- Then we can get an
internally decomposable foliation on Sy ¢.0,5, + p+25,, by removing the boundary components, replacing
the boundaries without marked points with marked points and each boundary with marked points for 2
marked points. Furthermore, if we have at least one marked point, we can get an internally decomposable
foliation in Sg 00,5, + p+2b,,+k> K € N, by replacing a marked point with a k + 1 marked points.

Hence, we only need to prove that a torus with one marked point and a sphere with 4 marked points do
not admit internally decomposable foliations. However, since these do not have boundaries, a foliation
being internally decomposable translates to a foliation having at least two indecomposable components.

Assume the torus with one marked point admits a foliation with two indecomposable components. We
can replace the marked point with a boundary, and add to the foliation a boundary component parallel to
that boundary. Considering the doubled surface explained in Section 4.3 we get a closed surface of genus
2 without boundaries nor marked points, with at least 5 indecomposable components. Recall that the
maximum number of indecomposable components for a foliation on a surface of genus g is 3g — 3, so for
genus 2 the maximum is 3, giving us a contradiction. A similar process applies for the sphere with 4
marked points. |

Proof of Proposition 5.12 The Busemann map is continuous at every point in the interior of Teichmiiller
space, as it is the identity when restricted in there and X7 is closed. Hence, we only need to prove
continuity or discontinuity at the points on the boundary. By Lemma 5.13 if 3g + 2b,, + b, + p > 4
then S admits an internally decomposable foliation F, so by Theorem 5.4 the Hubbard—Masur quadratic
differential associated to F at the basepoint X is fusible and hence the Busemann map is not continuous
at that point. On the other hand, if 3g + 2b,, + b, + p < 4 then by Lemma 5.14 for any quadratic
differential ¢, the vertical foliation V'(g) is internally indecomposable, so again by Theorem 5.4 every
quadratic differential is infusible an B is continuous at every boundary point. O

By combining Proposition 5.12 with Proposition 1.3, we get the precise classification of surfaces with
horofunction compactification isomorphic to visual compactification announced in Theorem 1.6 from the
introduction.

Proof of Theorem 1.6 As shown in Proposition 1.3, the visual compactification and the horofunction
compactification are isomorphic if and only if the Busemann map is continuous, so the theorem follows
by applying Proposition 5.12. |

5.2 Criteria for convergence

One straightforward consequence of the horofunction compactification being finer than the visual com-
pactification is the following criterion regarding the convergence of sequences in the horofunction
compactification.
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Corollary 5.15 Let (x,) C T(S) be a sequence. If (x,) converges to a quadratic ditferential ¢ in the
visual compactification, then all accumulation points of (x,) in the horofunction compactification are
contained in 171 (q). In particular, if V(q) is internally indecomposable, then (x,) converges in the
horofunction compactification.

Furthermore, if (x,) does not converge in the visual compactification, then it does not converge in the
horofunction compactification.

Proof If x, converges in the visual compactification to a quadratic differential ¢ then by the continuity of
IT all its accumulation points are in T1~!(g). If V(g) is internally indecomposable, then by Theorem 5.4
the quadratic differential ¢ is infusible, so the Busemann map is continuous at ¢ and by Proposition 1.4
the fiber T1~1(g) is a singleton. Therefore x, converges to I171(¢), as that is the only accumulation
point of x; and the horofunction compactification is compact.

On the other hand, if x, converges to £ in the horofunction compactification, by continuity of I, x,
converges to I1(£) in the visual compactification. |

A frequent topic in the study of compactifications of Teichmiiller spaces is the convergence of certain
measure-preserving paths. We shall see now how the previous results can be applied in that study.

Let X € T(S) be a point in Teichmiiller space and ¢ be a unit quadratic differential based at X. It is a well
known fact that there exists a unique orientation-preserving isometric embedding ¢: H — 7°(.S) from the
hyperbolic plane H to the Teichmiiller space such that ¢(i) = X and (*(¢) = i, see the work of Herrlich
and Schmithiisen [18] for a detailed explanation. The path ¢(i + ¢) for t € R is called the horocycle
generated by ¢. Since ¢ is an isometric embedding, #/(X)(p) = d('X, "' p) —d( "' X, 1b) for
X, b, pet(H). That is, if we restrict the evaluations of horofunctions to the image of the Teichmiiller disc,
the value coincides with the values in the hyperbolic plane. Hence, since the path i 4 is a horocycle of the
Busemann point obtained by moving along the geodesic ¢’i along the hyperbolic plane, the path ¢ (i +1) is
also a horocycle of the corresponding Busemann point B(q), obtained by moving along the geodesic t(e’i).

Since ¢ is an isometric embedding, the geodesic between X and ¢(i +¢) is contained in ¢ (H). Furthermore,
the pushforward and pullback maps are continuous, so denoting ¢, the unit quadratic differential spawning
the geodesic between X and ((i + ), we have lim; o0 t™(g;) =i, and 14x(i) = ¢, so lim;—0 ¢; = q.
The distance between ¢(i 4 ¢) and X grows to infinity, so any horocycle path generated by some ¢ based
at X converges to ¢ in the visual compactification based at X. Hence, horocycles generated by infusible
quadratic differentials converge in the horofunction compactification, which had been previously shown
by Jiang and Su [20] and Alberge [2] in the context of surfaces without boundary.

Corollary 5.16 Let S be a compact surface with possibly nonempty boundary and finitely many marked
points and let ¢ be an infusible quadratic differential based at any X € T (S). Then the horocycle generated
by q converges in the horofunction compactification.
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Proof The horocycle path converges to ¢ in the visual compactification based at X, so by Corollary 5.15
all accumulation points in the horofunction compactification are contained in H)_(1 (¢). Furthermore,
since ¢ is infusible, H)_(1 (g) is a singleton, so the horocycle path has a unique accumulation point in the
horofunction compactification, and hence it converges. |

On the other hand, Fortier Bourque found some diverging horocycles in the horofunction compactification.

Theorem 5.17 (Fortier Bourque [13, Theorem 1.1]) Let S be a closed surface of genus g with p marked
points, such that 3g + p = 5. Then there is some fusible quadratic differential g based at some basepoint
X € T(S) such that the associated horocycle path does not converge in the horofunction compactification.

Corollary 5.15 gives an upper limit on the set of accumulation points, as it has to be contained in H)_(1 (q).

Furthermore, by Corollary 3.14 we have that a path converges in the horofunction compactification if
and only if it converges in each visual compactification. Hence, such a divergent horocycle also diverges
in some visual compactification. That is, we get Corollary 1.12. This contrasts with the behavior of
Teichmiiller rays, which by Corollary 3.7 or [44, Theorem 7] converge in all visual compactifications.

6 Dimension of the fibers

Our first approach in determining the shape of the fibers is looking at the limits of Busemann points,
which by Proposition 3.10 give us bounds on the elements of I1~!(g). For a given quadratic differential
¢ and a foliation G we define W4(G) as the map from measured foliations to R given by

i(G,-)?
(G, H(q))
if i(G, H(g)) > 0, and W?(G) = 0 otherwise. By the extension of Walsh’s Corollary 4.6 describing
Busemann points in the Gardiner-Masur compactification, we see that the element £; = i B, has the
form \/m, where V; are the indecomposable components of V' (g). Hence, a reasonable path to
follow for understanding the limits of Busemann points is understanding the limits of WY as ¢ varies.

W (G) =

Lemma 6.1 Letq, be a sequence of quadratic differentials on X converging to q, and let Vj”, 1<j=<c(n)
be the indecomposable components of V(g,). Let G" be a sequence of nonzero measured foliations of
the form ) (xj’.’ V}”, converging to a measured foliation G. Then
lim Wi (G") = W1(G)
n—o0

if G is nonzero and lim,_—o W7 (G") = 0 if G is zero, where the convergence is pointwise in both
cases.

Proof For any measured foliation F' we have
i(G", F)?

dn Gn —
WO =G H gy
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so if G is nonzero the lemma follows by continuity of the intersection number.

If G is zero the result follows from applying the same proof than in [44, Lemma 27]. |

Denote B the set of Busemann points, B its closure and B(g) the intersection BN IT~1(g). We can use
the previous lemma to show that the elements of B(q) satisfy certain properties.

Proposition 6.2 Let S be a closed surface with possibly marked points, £ € B(¢q) and V;, i € {1,...,k}
be the indecomposable components of V(q). Let x; = i(V;,-)/i(Vi, H(q)). Then, the square of the
representation of £ in the Gardiner—-Masur compactification, (2~'£)?, is a homogeneous polynomial of
degree 2 in the variables x;, whose coefficients sum to 1.

Recall that we are using a normalized version of the Gardiner—Masur compactification. Under the
projectivized version the sum of the coefficients cannot have any fixed value.

Proof Since the surface does not have boundary, all Busemann points are of the form B(g’) for some
quadratic differential of unit area ¢’. Consider a sequence (g5) such that B(g,) converges to & and gy,
converges to ¢. Let ¢(n) be the number of indecomposable vertical components of V(gy), and let V,
0 < j < c(n) be those components. We know that ¢(#) is bounded by some number depending on the
topology of the surface. Take a subsequence such that ¢(#) is equal to some constant ¢ and V]” converges
for each j. The sum ) ¢ i=1 V” converges as 1 — oo to Zf-;l Vi, so the limit of each VJ” has to be of
the form Zl_l a; LV;. Furthermore >t ol =1, since

J
c

ZVi=V(q) lim V(g) = lim ZV”—ZZa V,—Z(Z ’)V,

i=1 j=1 j=1i=1 i=1

The element associated to the Busemann point B(g,) in the Gardiner—-Masur compactification satisfies

c
= Wainp.
ji=1

Hence, applying Lemma 6.1 we get the following expressions for the square of the limit of Busemann
points:

(16 = qu(za V,) ¥ (Ti i Vi Hgxi)*

k j -
i=1 o1 2i=1 @i (Vio H(g))

That is, we get a homogeneous polynomial of degree 2 in the variables x;. Since ¢ has unit area, the sum
of the coefficients is

Zza i(Vi. H(g) = Zi(v,-,H(q» =1,

j=1li=1 i=1

which completes our claim. O
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By Proposition 3.9, the Busemann point B(g) gives an upper bound on all functions in IT~!(g). While
Proposition 3.10 does not give us a lower bound directly, we can use Lemma 2.1 to get one. For a unit
area quadratic differential g, let Z; be the interior parts of V(¢), and denote by G; the union of interior
indecomposable components within Z;. Further, let P; be the boundary components of V(g). We define
the minimal point at q as

1/2
Mg =2( S+ L))
i J

Proposition 6.3 Let g be a quadratic differential. Then, for any £ € TI~1(q), we have
E =8 M(g)

in the Gardiner—-Masur compactification. Furthermore, M (q) € T17!(q) whenever each G; has at most
two annuli parallel to the boundaries of Z; with marked points.

In the context of surfaces without boundary the previous result has been also proven by Liu and Shi
[27, Lemma 3.10]. In such context we have M (q) = Ei(V(q), -)*, which by the proposition is always
contained in TT71(g).

The minimality is essentially derived from the following well-known inequality.

Lemma 6.4 (Titu’s lemma) For any positive realsay, ...,a, and by, ..., b, we have

@ _(Z9)
S o> =)
Z bj B Zj bj

J
Proof The inequality can be written as
a? 2
. J .
Eng=(Te),
i J J
so the result follows after applying the Cauchy—Schwartz inequality. a

The implication this lemma has for our discussion is that WW4(-) is convex, in the sense that for any
G =), G; and any measured foliation F we have

D WAGH(F) = WA(G)(F).

i
Proof of Proposition 6.3 If g is infusible then each G; is indecomposable, so M (q) = B(q), the fiber
IT1~!(g) has one point and the proposition is satisfied.
Consider then ¢ fusible and & € TT™1(¢). Let (x,,) = (R(gn;tx)) C T converging to £. By Lemma 4.5

we have 27! (h(x,)) > E~! B(gy). Hence, E~'£ > liminf, o0 2! B(gn).
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Given a measured foliation F, take a subsequence so that
liminf 7' B(¢,)(F) = lim E7' B(gn)(F).
n—o0 n—o0

The foliations V(g,) converge to V(q), so by Proposition 5.5 for n big enough all boundary components
P; are contained within V'(g,). Hence, for n big enough the foliations V' (¢g,) can be split to the interior
parts Z; by cutting along the proper arcs. Denote by GJ’.’ the interior components of the foliation V(gy)
restricted to Z;. Let G}l, x be the indecomposable components of G]'.’. The sequence GJ’.’ converges to Gj,
so we can take a subsequence such that each GJ’.” & converges to some foliation G;  with ) ; G; x = Gj.
Applying Lemma 6.1 we have

lim E7'B(gn)(F) = lim Y WH(P)+) ) WG ) =) WIP)+) Y WH(Gjp)
i j k k

i J
Hence, applying Lemma 6.4 to the second sum we get the first part of the proposition.
To observe that the limit is actually reached we can repeat the proof of Proposition 5.11 and observe that

a proper arc for each interior part is enough to approach the foliation whenever each interior part of the
foliation has at most two annuli parallel to boundaries with marked points. a

By Corollary 4.8 this lower bound is carried to the horofunction representation and by Proposition 3.9 we
have an upper bound. Hence, we have the chain of inequalities

M(q) =& < B(q).

for any & € I17!(g). As we see in the next proposition, this chain can be translated as well to the
Gardiner—-Masur compactification.

Proposition 6.5 Let£ € T171(q). Then,

g7t <87 B(g).

Proof We have a sequence of points R(qy; ;) converging to &, with ¢, converging to ¢. By Lemma 3.3
we have £(R(q;t)) = —t. Further, R(qy:t,) converges in the Gardiner—-Masur compactification to the
function f(G)? = limy_, o e~ 2 ExtR(g,:1,)(G), and we have E f(x) = £(x). Hence,

| S(F) f(G)

3 log ———— < Jlog sup ————— =—1.
2 ExtR(q;t)(F) 2 GeP EXtR(q;t)(G)

Upon exponentiating and reordering the terms, we get
lim e~ Extg(g, ) (F) = f2(F) < e > Extg(gu)(F)

n—o0

for all z. Letting 1 — oo, the right hand side converges to (E ! B(¢)(F))?, so we get the proposition. 0

Using these bounds we can further refine the characterization of points in 2 1T17!(¢).
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Proposition 6.6 Let g be a quadratic differential, let V;, i € {1, ..., k} be the indecomposable compo-
nents of V(q) and let x; (F) = i(V;, F)/i(V;, H(q)). Given f € E~'TI71(¢q) and ¢ > 0 we have, for all
F e MF,

SHF) = +2¢ Y i(Vi, H@)(xi(F) =) + Y O((xi(F) — ¢)(x; (F) = ¢)).
i i,j
In particular, as a function of the values x; (F) at the point x; = ¢ foralli, f?(x,...,X)) takes value c?,

is differentiable and satisfies

0
sz(xl,...,xk) =2ci(Vi, H(q)).
Xi

Proof We have that (E~1M(¢))?> < f2 <(E7'B(q))?. Letting a; = i (V;, H(g)) and x; = x; (), we
have by Lemmas 6.4 and 6.3 that (Z a,—xi)2 < (E~'M(q))?*. Writing the bounds on f? in terms of the

variables x;, we obtain
2
(D ai) = /2=y axd.

Adding that }_a; = 1, we have that f? is bounded below by the arithmetic mean, and above by the
quadratic mean. Rewriting both sides as a polynomial in x; — ¢, we get

2 +2cZai(xi —c)+ (Zai(x,- —c))z < f2 < c? +2(’Zai(xi —c) —i—Zai(Xj —0)2,

so the first part of the proposition is satisfied. Subbing in the value x;(F) = ¢ we get the second part. O

By Propositions 3.4 and 3.13 all members of I1~!(g) share their values along R(q: -), as well as the
directional derivatives at the points of the geodesic. For a given ¢ we have x;(AH (g)) = A for all i and
all A > 0. Hence, Proposition 6.6 shows a similar relation for the representations of the elements of
I1~!(g) in the Gardiner-Masur compactification, as they share their value, as well as some derivatives, at
all foliations of the form A H(g).

As shown by Fortier Bourque [13], the Gardiner—Masur boundary contains extremal length functions, so
we can use Proposition 6.6 to get some information on the differentials of these functions. Namely, we
recover in a more restricted setting the following result, proven in [33, Theorem 1.1].

Theorem 6.7 (Miyachi) Let Gy, t € [0, ty] be a path in the space of measured foliations on X which
admits a tangent vector Go att = 0 with respect to the canonical piecewise linear structure. Then, the
extremal length Ext(G, X) is right-differentiable at t = 0 and satisfies

d »
dt_+ EXt(Gt, X) o = 2l (G(), FGo,X)v

where Fg, x is the horizontal foliation of the Hubbard—Masur differential associated to Go on X .
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The concrete extremal length functions in the Gardiner—-Masur boundary we are going to use are given by

the following theorem.

Theorem 6.8 (Fortier Bourque) Let{wy,...,w} be weights with w; > 0, let ¢, = rlL"u”J o-- -or,&"w"'J
be a sequence of Dehn multitwist around a multicurve {«1, ..., o} in a surface S and let X € T(S).

Then the sequence ¢, (X ) converges to

k
|:EXt1/2 ( Z wil (F, o), X)]

in the projective Gardiner—Masur compactification as n — oQ.

The precise statement of this result is slightly weaker [13, Corollary 3.4], but the same proof yields this

extension.
Fix a multicurve {1, ..., o}, weights {wy, ..., w;} and let « = ) w;«;. Furthermore, normalize the
weights {wy, ..., wg} so that there is a unit area quadratic differential ¢ such that V(¢) = «. Denote

by V; the vertical components of V(g). That is, V; = w;«;. We are able to recover Miyachi’s formula
when i (V;, H(q)) = w; for all i. The sequence ¢, (X ) converges in the visual compactification based
at X to ¢ € Ty T(S). By Theorem 6.8 the function f(F) = AY/2 Ext"/2(YF_ | w;i (F,ai)a;, X) is in
E-1T1~1(g) for some A > 0. We have i (F, a;) = x; (F)i (V;, H(q))/w;. So, assuming i (V;, H(q)) = w;
we can write X
f2(F) = AExt(in(F)I/i, X).
i=1

We have x;(H(g)) = 1 for all i, so by Proposition 6.6 the value of A satisfies

2(H(q)) = »Ext(V(g), X) = 1.
Since ¢ has unit area, Ext(V(g), X) = 1, so A = 1. Let I be any foliation such that H(q) + I is well
defined, and let F; = H(g) +tI. We have

S2(F) :EXt(Z Vi +Z2xi(1)Vi,X).

Hence, letting J = >_ x;(1)V; and G; = V(q) + tJ, we can apply Proposition 6.6 to get

x| a2
_ZW

i t=0 axl

0Dy, .
o~ 2w ) A H@) =21 V@D

On the other hand, applying Miyachi’s Theorem 6.7 directly, we get

d
d[_+ EXt(Gt, X)

t=0

d
g B(Ge X)) =2i(H(g). ) =2 ?‘(H(q), Vi)xi(I)
N iDL
= 2ZZz<H<q), e = 2 V@D,

so both expressions coincide, and we have recovered Theorem 6.7 in this rather restricted setting. We
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would like to note that Proposition 6.6 also gives some information for finding the second derivatives
around the point H(q). Namely, the second derivatives cannot diverge to infinity as we approach H(g).

Combining Proposition 6.6 with Proposition 6.2 we get fairly restrictive necessary conditions for the
points in B(g) for surfaces without boundary. We shall be using these conditions in Section 7 to prove that
Busemann points are not dense in the horoboundary. Now we prove a more straightforward consequence.
For a topological space U, denote by dim(U) its Lebesgue dimension. See the book by Munkres [35,
Chapter 5.80] for some background on basic dimension theory. Given an embedding U < V' we have
dim(U) < dim(V), so the conditions for the points on B(g) gives us the following result.

Corollary 6.9 Let S be a surface without boundary. Let g be a quadratic differential such that V(q) has
n indecomposable components. Then,

dim(B(¢)) < 3 (n(n—1)).

Proof By Proposition 6.2 we have an embedding of B(g) into the space of homogeneous polynomials
of degree 2. For a given & € B(q), let bf’ j be the coefficient of x;x;. Adding the restriction b; ; = b; ;
we have a coefficient for each possible pair, so the dimension of homogeneous polynomials of degree 2 is
equal to the number of possible pairs, that is, n(n 4+ 1) /2. Furthermore, by Proposition 6.6 we know the
value of the first derivatives at x; = ¢ for all i. For each i this gives us the linear equation

> bE 265, =2i (Vi H(g)).

J#i
These n equations are linearly independent, as bl.’l. is only contained on the equation related to x;. As
such, the dimension of the coefficients is at most n(n + 1)/2—n=n(n—1)/2.

We note that the sum of the coefficients being 1 is the equation we get when summing the n equations
given by the derivatives, so we cannot use that to restrict further the dimension. |

Recall that the number of indecomposable components # is bounded in terms of the topology of the
surface. Hence, the previous corollary gives us a uniform upper bound on the dimension of B(¢). More
interestingly, we can also get a lower bound for the dimension of B(¢). This allows us to get a lower bound
on the dimension of TT~!(g). Furthermore, as this is a lower bound, we do not need to restrict ourselves
to surfaces without boundary, as the set of Busemann points always contains the set of Busemann points
of the form B(g). The bound is obtained by finding a dimensionally big set of different ways to approach
a certain ¢ along the boundary and showing that each of these different approaches results in different
limits for the associated Busemann points.

Theorem 6.10 Let S be a surface of genus g with by, and b,, boundaries with and without marked points
respectively and p interior marked points. Then there is some unit quadratic differential q such that

dim(B(q)) = 2| 3(g + bm) + 5 (bu + p) —0(g.bu + p) .
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G G, Gic-2 G3c-1

[ [

Figure 10: Labeling of the curves when the surface has no boundaries nor marked points. If g is
odd then there is an unused handle.

where
0 ifg=>2,
L ifg=1landb,+p= 1,
o= % ifg:1&Hdbu+p=()org:()andbu+p22’
% ifg=0andb, + p =1,
1 ifg=0andb,+ p=0.

Proof For simplicity we shall first do the proof in the case where b,, = b, = p =0, and g > 2. Let
g be the quadratic differential such that V(g) is the union of the closed curves Vi,..., V3¢ shown in
Figure 10, where C = |g/2]. Let U C R3C be the space of vectors (a1, s, ..., a3c) with positive
coefficients and such that

1
3) U3f+1 T X342 + U343 = ok

Each independent linear restriction reduces the dimension of the set U by 1, so dim U = 2C. Hence, to
prove the simplest case of the theorem it suffices to build an injective continuous map from U to B(q).

Choose @ € U and consider the multicurve y® = ) «;G;, where G; are as in Figure 10. We will shortly
show that by applying Dehn twists about the closed curves V; to y* we can get a sequence of multicurves
approaching V(g). We can then take the sequences of associated Busemann points, which as we will see
converge to distinct points in II71(¢). We will define the injective continuous map from U to IT™!(¢)
by setting it as the limit of the associated sequence of Busemann points, giving us the theorem.

Let 7; be the Dehn twist around V;, and let wf‘ be such that

1
@ wi g @kg2 Fo3py3) = Wh o (X3k43 T 03k41) = W3k 3(Aapt1 T A3k 42) = 30
Define

oY = .L,1|-w1nJ orszsz OH_OTBLZ.?»C”J.
For1 <k <C and j €{l1,2,3}, let
= Z W3kt Vako+i
i€{1,2,3}—j

By counting the intersections between the curves V; and G; we have that there is some sequence A, such
that A,¢, G4 j converges to F,‘f’j for all k, j as n — oo. By the conditions on the weights, A,¢5 y*
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converges to V(g). Let g5 be the quadratic differential associated to A,¢p y. Since A,¢5 y* converges
to V(g), we have that g, converges to ¢, so all accumulation points of (B(gy)) are in TI~1(g). We know
that (27! B(¢%))? = Y_; W4(aiAn¢2G;), so by Lemma 6.1 we have

C—-1
(2= lim (E7'B@)? =) Y s, WUEL ).
k=0j€{1,2,3}

Define then the map from U to I171(¢) sending o € U to EE¥ € T17!(g). As before, we shall let
xi:=i(V;,-)/i(Vi, H(q)) = 3Ci(V;, -). With this notation we have

l(F/?,j’ ) _ (Zi¢{l,2,3}—j w‘;‘k+,~X3k+i)
HFE H@)  3C Yigrim-) Wik

That is, given o we know precisely the shape of the polynomial £*. Since o has positive coefficients,

WAF ;) =

each of the w{ depends continuously on «, so £% depends continuously on a.

It remains to show injectivity. Let 8 € U be such that £ = & B While we have equated two polynomials,
we cannot conclude directly that the coefficients are equal, as these cannot be evaluated for arbitrary values.
However, we can evaluate at elements of the form b; G3x+1 + 02G354+2 + 03G3p 43 for by, by, b3 >0,
which is enough to prove that £% and &2 have the same coefficients.

Equating then the coefficients for X35 4+1X35+2, X3%k4+2X3k+3 and X34 1X3%43 We get

o o B B
F3k+1Wap 4 o Wag i3 P3k+1 Wik 42W3g 43

o o B B ’
Wigyr T Wikis Wig 1o T Wakys
o o 'B ﬁ
3k+2Wag+1Wak+3 _ Pak+2Wsies Wakrs and
w®, | +w? B B
3k+1 3k+3 Wi T Wik

o o B B
3k +3Wak1Wak+2 _ Pak+3W3p 11 W3k ys
o o .
Wik1 T Wakga wka + w£k+z
Dividing these equalities and using equations (3) and (4) we get

k1 (1/C+aspyr) _ Bakr1 (1/C+ Bakyo)
342 (1/C +azpr1)  Baks2 (1/C+ Baggr)’
@sk+2 (1/C +asky3) _ Bak+a (1/C + Bak+s)
@343 (1/C +azg42)  Bak+3 (1/C + B3g+2)
@sp43 (1/CHaspy1) _ Bakys (1/C+ Bagyi)
askr1 (1/CHasgys)  Baxsr (1/C + Bskys)

Rearranging the first equality we have

A3k+1 Bak+2 _ (1/C +azg41) (1/C + Bsg42)
Bsk+1 3k4+2  (1/C+ Bsry1) (1/C +azp41)

&)
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G3k41 Gir42 Gkt Gikta

Figure 11: Each pair of marked points and boundary components without marked points can
replace a genus, as well as each boundary with marked points.

If
D1 _ | hen (1/C +azg41) - 053k+1’
B3k +1 (1/C + Bak+1)  B3k+1
and if
D342 _ | then (1/C+a3p41)  @3gs1

B3k+2 (1/C+ Bsk+1)  Bsk+1

Assume then that a3x+1 < B3r+1- One of the factors of the left hand side of the product in (5) is
replaced in the right hand side by a larger value. Hence, the other factor has to be replaced by a smaller
value. That is, the inequality @35 42 < B3x+2 has to be satisfied. Similarly, if &34+, < B3r42 We have
3k +3 < B3k+3. Equation (3) leads to

1 1
C = @k+1 03kt T U3kys < Bak+1 + Bakt2 + Bakssz = ok

which is a contradiction. Similarly, o35 +1 > B3+ leads to another contradiction, so @35 +1 = B3k +1-
which leads to a = . Therefore, dim(B(g)) > dim(U) = 2|g/2].

Assume now that g > 2 and there are some marked points or boundaries. For each pair of marked points
or unmarked boundaries, or for each marked boundary we can repeat the proof with an extra genus, by
replacing the curves G; by the curves shown in Figure 11, and halving the associated weights for w;, as
the curves intersect now twice the vertical components instead of once.

If g = 1 we need to place at least one feature at one of the ends to prevent the curve G| from being
contractible or parallel to a unmarked boundary, so if we have marked points or boundaries without
marked points we place these, as boundaries with marked points are more effective at increasing the
dimension. In this way we get that if b, + p > 1 then

dim(B(¢)) = 2| 5(g + bm) + 5 (bu + p—1)
and if b, + p = 0 then
dim(B(¢)) = 2| 3(g +bm —1)].
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Lastly, if g = 0 we need to place two elements, one at each end. Using the same choice as we took for

g =1 we get
dim(B(q)) = 2| 2 (bm) + Y(bu+ p—2)| forb, + p =2,
dim(B(g)) > 2| 5 (bm —1) | for by, +p =1,
dim(B(q)) = 2| $(bm —2) | for b, + p = 0. O

We would like to note that this lower bound is does not look optimal to us. Furthermore, the method used
is restricted to getting to the dimension of the closure of Busemann points, so the dimension of the whole
fiber may be significantly larger than what could be achieved by refining the strategy from the proof.

7 Nondensity of the Busemann points

7.1 Busemann points are not dense in the horoboundary

By Proposition 6.2 we know that points in the closure of Busemann points are smooth in the Gardiner—
Masur representation with respect to certain variables. By showing that at least one point in the horo-
boundary is not smooth with respect to the corresponding variables we will prove that Busemann points
are not dense. The points we use for this analysis are once again the ones found by Fortier Bourque in
Theorem 6.8.

Following Fortier Bourque’s reasoning, we shall first prove the nondensity for the sphere with five marked
points, and then lift to general closed surfaces by using the branched coverings given by the following
lemma, found in [15, Lemma 7.1].

Lemma 7.1 (Gekhtman—Markovic) Let S be a closed surface of genus g with p marked points, such
that 3g + p > 5. Then there is a branched cover SE, — % that branches at all preimages of marked
points that are not marked and induces an isometric embedding T (So,5) <= T (Sg,p)-

The particular conformal structure given to So 5 is obtained as follows. Let .S I'=R/Z and let C =
S1 x[—1,1]. We obtain a sphere ¥ by sealing the top and bottom of C via the relation (x, y) ~ (—x, y)
for all (x,y) € S x{—1,1}. Let P be set consisting of the five points (0, 1), (%, :i:l) and (0, 0). The
pair S = (X, P), where we view X as a topological space, is the sphere with five marked points. We get
a point X in 7(S) by considering the complex structure on X obtained by the construction, using the
identity map as our marking.

Let a(t) = (¢.1) and B(t) = (t,—3) for t € S'. Denote by 7, and g the Dehn twists along o and
B. By Fortier Bourque’s theorem, the sequence (X;) = ((tq © 74)" X) converges to a multiple of
Ext!/ 2(i(a, ) +i(B, -)B, X)) in the Gardiner—Masur compactification. Furthermore, the sequence (Xj,)
converges in the visual compactification based at X to the geodesic spawned by the quadratic differential
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Figure 12: (Lemma 7.2) Left: sphere with five marked points, with curves & and . We show that
the extremal length is not C? along the path a 48, t € [0, #o]. Right: doubling of the L—shaped
polygon together with the curves « and S.

da+p,x - Indeed, as detailed in [13, Section 4], the elements (X} ) diverge to infinity along the horocycle
defined by the quadratic differential g, 4 g x. Hence, inside embedded hyperbolic plane associated to
da+B,x - the sequence (Xy) converges in the visual boundary to the geodesic spawned by g4 4 g, x» and so
the same occurs in the ambient space. That is, & Extl/z(l‘ (o, Y +i(B,)B, X) eI} (Ga+8,x ), SO by
Proposition 6.2 if we show that Ext(i («, - ) + i (B, -) B, X) is not smooth with respect to the values of
i(a,-) and i (B, -), then & Ext'/2(i(a, -)a +i (B, -)B, X) & B(qe+p.x)> and hence it is also not in B.

Lemma 7.2 Let X € T(So,5) and G, t € [0, o] be the foliation o + tf on So 5. The map f(t) :=
Ext(G;, X) is not C2.

Proof By Miyachi’s Theorem 6.7 we have

d
E EXt(Gt, X) = 21(/3’ FGtaX)’

where we remind that Fg, x is the horizontal foliation of the unique Hubbard-Masur differential associated
to G; on X . Hence, the Lemma is equivalent to proving that g(¢) =i (B, Fg, x) is not C'.

For a general surface finding a precise expression of Fg x is a complicated problem, as the relation
established by Hubbard and Masur is not explicit. However, in our case the surface is topologically simple,
and one can use Schwartz—Christoffel maps to get a map from G to Fg, x. In particular, it is possible to
show that the sphere with 5 marked points is conformally equivalent to the Riemannian surface obtained
by doubling an L—shaped polygon, marking the inner angles as shown in Figure 12, right, and setting
certain values for a,b and /. Furthermore, the quadratic differential obtained by dz? has « and B as
vertical foliations, with weights @ and b. Hence g, x is dz* on the L—shaped pillowcase where a = 1
and b =1, s0i(B, Fg, x) = 2/. Markovic estimated in [30, Section 9] the values of a, b and / around
b = 0 depending on a common parameter ». Up to rescaling, these values are given by

a(r) = a(0) + Dyr + O(r?), b(r) = Dor + O(r?) and I(r) = [(0) + Dsr log % +0(r log %)
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where A(r) = B(r) + O(f(r)) means |A(r) — B(r)|/ f(r) is bounded around r = 0, and A(r) =
B(r) +o(f(r)) means |A(r) — B(r)|/ f(r) converges to 0 as r converges to 0.

Rescaling the pillowcase by 1/a(r) we see that the parameter ¢ can be expressed as ¢(r) = b(r)/a(r),
and g(t(r)) =i(B, Fg,,x) = 2I(r)/a(r). Observing that 7(0) = 0, we can evaluate the first derivative of
g(t) at 0 by evaluating the limit

o g =g _ gD —g(0) _ | 20(r)/a(r) = 21(0)/a(0)
h—0 h r—0 t(r) r—0 b(r)/a(r)
i [0 =10)a()/a(0)
TS50 b(r)
. Dsrlog(1/r) +o(rlog(1/r)) — (1(0) Dy /a(0))r
=2 lim
r—0 Dyr + O(r?)
= 00.
And so0, g(¢) is not differentiable at # = 0, and hence f(¢) is not C2. |

Repeating Fortier Bourque’s reasoning we can lift this example to any surface of genus g with p marked
points as long as 3g + p > 5. Besides the Gekhtman—Markovic lemma (Lemma 7.1), the other key
ingredient for the lifting is the following result.

Lemma 7.3 (Fortier Bourque) Letm: Sg , — So 5 be a branched cover of degree d and let

1: T(So,5) = T(Sg,p)

be the induced isometric embedding. For any measured foliation F on Sy s and any X € T (So,s), we
have the identity

Ext(z ™ (F), (X)) = d Ext(F, X).

Proof Recall that ¢ y is the Hubbard—Masur differential associated to y. We have that 7*gFr x =

Ar—1(F),(X)> SO

Bt (F).100) = | laamimracnl =4 [ larxl = dBxE ). 0
[4

Lifting the foliation G; from Lemma 7.2 we get an upper bound for the smoothness of the extremal
length.

Theorem 7.4 Let S be a closed surface of genus g with p marked points, such that 3g+ p > 5. Then there
exist two nonintersecting multicurves &, ,3 and some X € T (S) such that the map f(t) := Ext(& +t B, X),
t €0, 1] is not C2.
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Proof Since 3g + p > 5 we have a map 7: Sg , — Sp 5, with an induced isometric embedding
t:T(So,5) = T(Sg,p). By Lemma 7.2 we have two curves «, B € Sy 5 such that, for any X € 7(So,5)
the map ¢t — Ext(a +¢8, X) isnot C2. Let&@ = 7~ ! () and,é =n7~1(B). We have o?—i—t,é =Y a+1p),
so applying Lemma 7.3 we get Ext(& + l/é, i(X)) = dExt(a + 8, X). By Lemma 7.2 the function
Ext(a +tB, X) is not C2, so we get the theorem. m|

Theorem 1.9 is essentially a rephrasing of the previous theorem. Finally, we are able to prove that
Busemann points are not dense.

Proof of Theorem 1.8 Let o and B be as in Lemma 7.2. Furthermore, let 7: Sg , — So,5 and
t: T(So,5) <> T(Sg,p) be as in Lemma 7.1. For the X € T(Sy s) described before Lemma 7.2 the
sequence (X;) = (tg o 74)" X is contained in the horocycle generated by ¢4+ x and the distance
d(Xy, X) goes to infinity. Therefore (X3) converges in m); to the geodesic spawned by ¢4, x -
Following Fortier Bourque’s reasoning in the proof of [13, Theorem 1.1], using half translation structures,
applying the Dehn twist 7o 0 Tg to X is equivalent to applying the shearing transformation

1 m
=)

to the half translation structure defined by ¢4 4 g, x. This action commutes with the pull-back coming
from the branched cover, so the elements (X},) are associated with the half translation structure defined
by hp7* (qa+,x)- These points diverge to infinity along the horocycle defined by 7* (g4 +,x), and so
converge in 7'(TM):)( x) to the geodesic spawned by ¢ —1(q)+7—1(8),.(X)-

Let ¢;, 1 <i <k, be the components of the half translation structure associated to 7 ~!(a + 8, X). Each
¢; covers either & or § with some degree d; € N. Hence, each component ¢; corresponds to a curve and is
a cylindrical with height 1 and circumference d;. Therefore, if m is the common multiple between all d;,
and y; is the curve associated to the component c;, shifting the flat metric via the matrix /i, is equivalent
to performing m/d; Dehn twists around each curve y;. Letting ¢ be the composition of such Dehn
twists, we have (X)) = ¢"1(X). Hence, by Fortier Bourque’s Theorem 6.8, in the Gardiner—Masur
compactification the sequence (t(X;,,)), converges, as n — 00, to
k

£ = [Extl/z(z LitF L(X))] |

i=1 FeMF(Sg.n)
Therefo_re, OFS H_l(qn—l(a)_i_n—l(ﬂ)!L(X)). To see that E£ is not in B it remains to see that it is
not in B(q—1(g)+7—1(8),u(x))- We have, i(ci, H(Gr~1()+x-1(8),.(x)) = di, s0 by Proposition 6.2 it
remains to prove that there is some path of foliations G; such that the functions x; =i (y;, G;)/d; vary
smoothly, while the function f(xy,...,Xxx) = Ex‘[(Zf-‘:1 (1/di)xiyi, (X )) does not. Reorder the curves
so there is some p > 1 such that 7 'o = yy + -+ + yp and n 18 = Yp+1 + -+ Vk. It follows from
Dehn-Thurston coordinates that for any natural numbers n;, 1 < j <k there is a multicurve G ;) such
that i (G(n,), i) = ni. See, for example, the book by Penner and Harer [38, Theorem 1.2.1]. Allowing
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renormalizations of the multicurves we get that n; can be any nonnegative rationals. Finally, doing a
limit argument in the space of projective measured foliations we can take n; to be any nonnegative real
numbers. That is, for any # > 0 there exists a measured foliation G such that i (G¢, y;) = d; fori < p, and
i(Gy, yi) = td; otherwise. Hence, along such foliations we have x; = 1 for i < p and x; = ¢ otherwise.
Therefore, along this path,

FA,. ) =Ext(r (@) + 1 (B), (X)),

which by Theorem 7.4 is not smooth, as 7~ () and 7~ (B) are the curves used in the proof of the
theorem. |

7.2 Busemann points with one indecomposable component are nowhere dense

The Thurston compactification can be build in a similar way as the Gardiner—Masur compactification, by
using the hyperbolic length of the curves instead of the extremal length. Let ¢» be the map between 7 (.S)
and PR‘}; defined by sending X € 7 (S) to the projective vector [£(®, X)]yes. The pair (¢, o(T(S )))
defines a compactification, and the boundary is given by the space of projective measured foliations,
denoted PMF.

As explained by Miyachi [34], neither the Thurston nor the horofunction compactification is finer than
the other one. However, it is possible to get some relation. Let PMFYE C PMF be the set of uniquely
ergodic foliations. Following the work of Masur [31], PMF UE has full Lebesgue measure within PM.F.
Miyachi [34, Corollary 1] shows that the mapping ¢ on 7 (.S) can be extended to an homeomorphism 1
between ¢ (7(S)) U PMFUE and h(T(S)) U Byg such that for x € T(S) we have f(¢(x)) = h, where
By are the Busemann points associated to quadratic differentials whose vertical foliation is uniquely
ergodic. One might understand this result as stating that the two compactifications are the same almost
everywhere with respect to the Lebesgue measure on PMF. As we shall see, the same does not follow
with respect to any strictly positive measure on the horoboundary.

The homeomorphism f described by Miyachi is obtained by first defining a map between the boundaries.
For a given x € T (), the map on the boundary is denoted G, and by its definition we have Gy (F) =
B(qF.x), where we recall that g , is the quadratic differential on x with V(q¢F ) = F. Denote by
B the set of Busemann points associated to foliations with one indecomposable component. We have
Gx (PMFUE) = Bug C B;. However, the following is also satisfied.

Theorem 7.5 Let S be a closed surface of genus g with p marked points, such that 3g + p > 5. Then
the set B, is nowhere dense in the horoboundary.

Proof The action of MCG(S) on T(S) is extended to the projectivized version of the Gardiner—-Masur
compactification by ¥[ f(@)]ues = [ f (¥ @)]xes. For any g such that V' (g) is an indecomposable measured
foliation, & = E~'B(¢) = [i(V(q), ®)]aes, 50 & = [i(V(q), ¥ (@))]ues = [ (¥~ (V(@)), ®)]ues-
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Hence, ¥ &, is equal to the representation of the Busemann point in the Gardiner-Masur compactification
associated to the quadratic differential with vertical foliation ¥ ~!V(g), which also is an indecomposable
measured foliation. Therefore, /31 is invariant under the action of MCG(SS'), and since MCG(S) acts by
homeomorphisms, the complement of the closure is also invariant.

Let ¢o be a quadratic differential such that there is some /' € E~'TI~!(go) notin E~!B. Such a quadratic
differential exists, by Theorem 1.8. By the proof of the theorem, we can assume that V' (g) is a multicurve.
Furthermore, let ¢ be a quadratic differential such that V(q) and H(gq) are the stable and unstable
foliations respectively of some pseudo-Anosov element ¢ € MCG(S). It is well known [12, exposé 12]
that for any closed curve « we have that A™"¢" («) converges to (i (o, V(g))/i(H(q), V(q)))H (9),
where A is the stretch factor of ¢. For any foliation F we have that 2~ M (g)(F) = 0 if and only if
i(V(qgo), F) = 0, where M(qq) is the minimal point defined in Section 6. Hence, since H(q) is the
unstable foliation of a pseudo-Anosov element and V' (gg) is a multicurve, we have i (V(qo), H(q)) # 0,
and so f(H(q)) > E'M(q9)(H(g)) > 0. We have ¢"[ f(&)]ues = [/ (¢"())]aes. Taking limits and
using that the functions in the Gardiner—-Masur compactification are homogeneous of degree 1, we get that

H(q)
i(V(g), H(q))

Hence, in the normalized version, ¢” f converges to i (-, V(q)) = E~' B(q), as V(gq) is uniquely ergodic

(6" /(@)as = [i (@ V(q))f( )} =l Vi@ lees.

lim
n—>o00

and therefore indecomposable. That is, B(g) can be approached through a sequence of elements contained
in the complement of the closure of 5;.

Let B(q') be any element in By, where ¢’ is any quadratic differential such that V(¢’) has one indecom-
posable component. The set of pseudo-Anosov foliations is dense in MF(S), so we have a sequence
of quadratic differentials (g,) converging to ¢’ with V(g,) being a pseudo-Anosov foliation. Since ¢’
has one indecomposable component, the convergence is strong, and so B(gy) converges to B(q’). Each
B(gy) can be approached through a sequence of elements contained in the complement of the closure of
Bj, so taking a diagonal sequence the same can be said for B(q’). O

Corollary 7.6 Let .S be a closed surface of genus g with p marked points, such that 3g + p > 5. Then,
for any finite strictly positive measure v on the horoboundary, the set By does not have full v—measure.

Proof By Theorem 7.5, the complement of 3 is open and nonempty, so it must have positive v—measure.
O

This last result tells us that the image of Miyachi’s homeomorphism does not have full v—measure within
the horoboundary for any strictly positive measure v. However, as announced in the introduction, any
attempt to extend the identity from the Thurston compactification to the horoboundary compactification
to a set of full measure within the Thurston compactification results in the same problem. We restate here
the result as we shall use the notation for the proof.
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Corollary 1.10 Let v be any finite strictly positive measure on the horoboundary and let . be the
Lebesgue measure on the Thurston boundary. Furthermore, let ¢ be a map from the Thurston compactifi-
cation to the horofunction compactification satistying ¢|r(sy = h, where h is as in (1). Then there is no
subset U of the Thurston boundary with full u—measure such that ¢ is continuous at every point in U and
¢ (U) has full v—measure.

Proof Assume such a U exists. Choose then a basepoint x € 7(S) and let U’ = U N PMFYE, For each
element of F € U’ the associated Hubbard—Masur quadratic differential ¢ x satisfies R(¢F x:t) = F
as t — oo. Hence, since ¢ is continuous at F we have ¢ (F) = B(qF x). Thatis, ¢(U’) C By.

Let G € U. The set PMFYE has full i measure, so U’ = PMFUEN U also has full measure. Hence,
since the Lebesgue measure is strictly positive, U’ is dense within P MF. Therefore G can be accessed
through a sequence (F,) C U’. Hence, since ¢ is continuous in G we have ¢(G) = lim ¢ (Fy), so
¢(U) C By and ¢(U) cannot have full v—measure. O

Another natural family of measures on the boundary is obtained by considering harmonic measures. Given
a nonelementary measure @ on MCG(S) it is possible to define a random walk (w;) as the sequence of
random variables defined by

Wn = 808182 ---8n>

where g; are independent, identically distributed random variables on MCG(SS) sampled according to
the distribution p. As proven by Kaimanovich and Masur [22, Theorem 2.2.4], random walks generated
by a nonelementary probability measure converges almost surely in Thurston’s compactification, so we
can define the hitting measure v in PMF. Furthermore, the walk converges almost surely to uniquely
ergodic projective foliations, so we can translate this result to the horofunction compactification in the
following way.

Corollary 7.7 Let j4 be a nonelementary measure on MCG(S'). Then the associated harmonic measure
on the horoboundary is supported in a nowhere dense set.

Proof For any x € 7(S) the sequence (w,x) converges almost surely in Thurston compactification to
some F € PMFUE. Hence, by [34, Corollary 1], the sequence (w,x) converges almost surely to the
Busemann point generated by a quadratic differential ¢ with V(g) being a multiple of /. Hence, the
support of the harmonic measure is contained in B;, which is nowhere dense by Theorem 7.5. a

8 Topology of the horoboundary

In this section we make some progress towards determining the global topology of the horoboundary. We
begin by showing that the minimal point M (g) introduced in Proposition 6.3 serves as a section for the
map IT whenever S does not have a boundary. Our main goal for this section is proving the following
theorem.
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Theorem 8.1 Let S be a surface of genus g with by, and b,, boundaries with and without marked points
respectively and p interior marked points. Then, the map I restricted to the boundary has a global
continuous section 37 ¥ — dT" if and only if at least one of the two following conditions is satisfied:

L4 bm:bu:(),or

e 20+ 2by + by + p—max(1—>5,,0) <4,

The section is given by sending the ray in the direction of ¢ to the point M (q) defined before Proposition 6.3.
Furthermore, if the map does not admit a global section, then it does not admit any local section around
some points.

We begin by proving the theorem for surfaces without boundary, as it is significantly easier to prove.

Proposition 8.2 Let S be a surface without boundary. Then the projection map Il restricted to the
boundary admits a global section, given by the map M : 9T " — T

Proof By Proposition 6.3 every preimage I1~!(g) contains M (q). We have M(q) = E (z' (V(g), -)),
which is continuous, as the map & is continuous. |

The rest of the cases of Theorem 8.1 require a more careful analysis.

Proposition 8.3 Let S be either

e a torus with up at most two unmarked boundaries or interior marked points,
¢ a torus with one marked boundary and one interior marked point,
¢ a sphere with one marked boundary and up to three interior marked points, or

¢ a sphere with two marked boundaries and interior marked point.

Then the projection map I1 restricted to the boundary admits a global section, given by the map
M: 9TV — 3T

Proof We shall build the section in the same way we built it in Proposition 8.2, that is, sending ¢
to M(q).

Our first step in the proof is seeing that if V' (g) contains a separating proper arc then only one of the two
parts separated by the proper arc admit interior components. We shall do this by inspecting each possible
case. Assume then that V' (¢) has a separating proper arc.

If S is a torus with up to two unmarked boundaries or marked points or a torus with one marked boundary
and one marked point, then the separating proper arc splits the surface into a torus with a marked boundary
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and a sphere with a marked boundary and a marked point or unmarked boundary. The latter does not

admit an interior component.

If S is a sphere with one marked boundary and up to three boundaries then the separating proper arc
splits the surface into two spheres, both with one marked boundary, one of them with two marked points
and the other one with one marked point. Again, the latter does not admit an interior component.

Finally, if S is a sphere with two marked boundaries and one marked point or unmarked boundary, the
proper arc splits the surface into one sphere with two marked boundaries and a sphere with one marked
boundary and one marked point, which again does not admit an interior component.

Take then a sequence of unit quadratic differentials (¢,) converging to ¢. Let P;, i € {1,...,c} be the
boundary components of V(g). Furthermore, denote by G the union of the interior components. By the
first part of the proof, all the interior components are contained in the same interior part. We thus have

1/2
BT M(q) = (Z WI(Py) +Wq(G)) :

By Proposition 5.5 all boundary components of V(g) are contained in V(g,) for n big enough, and all
other boundary components of V(g,), denoted P”, vanish in the limit. Denote by G" the union of the
interior components of V(g;). As before, each indecomposable component of G”" is contained in the
same interior part, so we have

1/2
B~ M(gn) = (Z Wi (! P;) + W (P™) + Win (G”)) :
i
which converges to 7! M (q). m|

Proposition 8.4 Let S be either

e a surface of genus at least two and at least one boundary,

e a torus with at least one boundary and two more boundaries or interior marked points,

e atorus with at least two boundaries, one being marked, and possibly interior marked points,
¢ a sphere with at least one boundary, and four more boundaries or interior marked points,

¢ a sphere with at least two boundaries, one being marked, and two interior marked points, or

e a sphere with at least three boundaries, two being marked, and possibly interior marked points.
Then the projection map I1 restricted to the boundary does not admit a local section around some points.

Proof We shall prove this by finding a quadratic differential ¢ and sequences (g) and (¢2) converging
to ¢ such that their preimages by I are singletons, but such that TI™!(¢,}) and TT~1(¢2) converge to
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different points in TI~!(g). If we had a section around ¢, then its value at g} and ¢2 would be TI"!(g,)
and IT~! (q,zl) respectively, giving us a contradiction.

In all cases the construction will be similar. For ¢} we build a foliation with a separating proper arc
P such that each of the parts has precisely one interior component consisting of a closed curve, which
we denote by Gy and G,. Letting the weight of the proper arc diminish to 0 we can get a sequence
of quadratic differentials (¢)) converging to a quadratic differential ¢ such that V(g) = G| + G,. Let
Fn1 = P +nGy +nG,, A,11 and A the area of the Hubbard—Masur differentials ¢ Fl.X and 4G, +G,, x>
respectively. Denote (1/ @)q Flx as q}. These quadratic differentials have unit area, and converge
to (1/ \/Z)qu +G,.x» Which we denote by ¢. By construction, V(g,) is internally indecomposable, so
~1(q}) is a singleton, and

oty 1y [ (WVIP) + W (Gy) + v (G) \ 1
ETIT (g, = .
VA
The sequences P/\/AL, nGy/+/ A} and nG,// A} converge, respectively, to 0, G/~ A and G,/ A.
Hence, by Lemma 6.1

W4(G)) +wq<G2>)”2}
VA '

For building q,f we take a curve y intersecting G; and G, at b; and b, times, where by, b, € {1,2}.

Denote by 7; and 1, the Dehn twists around G; and G,. Let F); 2 — rlz n/b1 2"/ bzy and A2 the area of

the Hubbard—Masur differential ¢ F2.x- As before, denote by (1/+/A42)q? the quadratic differentials

(1/vA2)q F2.X . These quadratic differentials have unit area, and converge to ¢. Furthermore, each

T ]

The sequence (z;72)"y/+/ A2 converges to (G; + G,)/A, so by Lemma 6.1

W4(G, +G2))1/2}
— ) |

the sequence I1~! (q,i) converges to {(

V(q ) is a singleton and

the sequence 27T~ 1(q,l) converges to {(

which is different than the limit of 271 TT7!(g}).

It remains then to find such a multicurve. For genus at least two we take P to be a separating proper
arc such that each of the parts is of genus at least one, and G and G, to be noncontractible curves, not
parallel to unmarked boundaries on each part, as shown in Figure 13, left.

For the torus we take P to be a separating proper arc with both endpoints in the unmarked boundary, or a
marked boundary if there are no unmarked boundaries. Further, we choose the proper arc such that, after
cutting along the arc, one part is a torus with one boundary. That is, every other feature of the surface lies
in the other part. Then we let G| and G, be noncontractible curves on each part, as shown in Figure 13,
middle.
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Figure 13: Curves chosen in the proof of Proposition 8.4.

Finally, for the sphere we let P be a separating proper arc with both endpoints on an unmarked boundary,
or a marked boundary if there are no boundaries without marked points. Further, we choose the arc such
that each interior part has at least either a combination of two marked points or boundaries without marked
points, or a boundary with marked points. Hence, each interior part supports an interior component
formed by a curve, as shown in Figure 13, right. a

Proof of Theorem 8.1 This is a combination of the results from Propositions 8.2, 8.3 and 8.4. O

By Proposition 1.2 we know that the horoboundary is connected whenever the real dimension of Teich-
miiller space is at least 2. In the following result we go a bit further, by showing that it is actually path
connected.

Proof of Theorem 1.13 Let x, y € 37 (S)". If S does not have boundary then IT has a global section,
so we can lift any path between IT(x) and I1(y) to a path between M (IT(x)) and M (I1(y)). Then, since
IT~!(x) and IT~!(y) are path connected, we can connect x to M (IT(x)) and y to M (I1(y)) via paths.

If S has boundary we might have to be a bit more careful, as we might not have a global section.
However, as we shall see, we can take a path ¢g; between I1(x) and IT(») such that B(g;) has finitely
many discontinuities. Then, since each of the preimages is path connected these discontinuities can be
fixed by using paths in the fibers, so we will have a path between x and y.

Choose a boundary component of .S, denote by b a curve parallel to that boundary and let F,, = V(I1(x)).
If Fx contains b then all the expressions of the form (1 —¢) Fy 4+ ¢b with ¢ € [0, 1] correspond to foliations
on S, which we denote by F;. Denote by ¢, the unit area quadratic differential such that V(g;) is a
multiple of F;. This defines a continuous path joining IT(x) and the unit area quadratic differential
associated to a multiple of . Let V; be the vertical components of Fy that are not b, and let wy be the
weight of b in Fy. Then,

1

VArea(qr, x)

which gives a continuous path from B(gg) € IT™'TI(x) to B(g;) € 17 (¢q;). If Fy does not contain

Blg)? = (=0 W+ -+ 1= uowe ).

b, but b can be added to the foliation then we proceed just as before. Hence, if both x and y result in
foliations where b can be added, we create a path by concatenating the paths between x, the Busemann
point in TT~!TI(x), the Busemann point associated to b, the Busemann point in IT~!TI(y) and y.
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If b cannot be added to the foliation F then there must be some set P of proper arcs in F incident
to the boundary component associated to b. Let F, be the foliation Fx without the proper arcs P and
assume F’, is nonempty. Denote by F; the foliations (1 —¢)P + (1 + 1) F},, t € [0, 1], and ¢, the unit
area quadratic differentials such that V(g;) is a multiple of F;. Denoting V; the vertical components of
F}, and P; the proper arcs incident to the boundary component associated to b, we have

B(Qt)2 =

1
VArea(qr, x) (

for ¢t < 1, which is continuous. Furthermore, lim;_,; B(g;) € I1"1(g;). Hence, we can concatenate a

(1=1) Y W9 (P)) + (1 +1) qut(v,-))
J

paths between x, the Busemann point in IT~!TT(x), the limit lim,_,; B(g;), the Busemann point B(g;)
and Busemann point associated to b.

If F. is empty we want to add some other components to Fy. If it admits some other component k then
we repeat the previous reasoning with F; = (1— %) Fx + £k, which does not result in any discontinuity. If
F does not admit any other component then there must be at least 2 proper arcs incident to the boundary
component associated to b, so we choose one of them, denoted p, and repeat the previous reasoning with
F; = (1 —t)Fx + tp, which does not result in any discontinuity. Finally, we concatenate this last path
with the previous paths. |

9 Formulas for limits of extremal lengths

We finish by reframing the bounds we got for the elements of E ! TT171(g) as results regarding limits of
extremal lengths, getting in this way some extensions of [44, Theorem 1].

Proposition 9.1 Let F' be a measured foliation, (g,) be a sequence of unit area quadratic differentials
converging to a quadratic differential ¢ and (t,) be a sequence of real numbers converging to infinity.
Then,
(E"'M(¢))* < liminfe 2 EXtR(g,:t,) (F) < lim sup e 2n Extgr(g,:t,)(F) = (E ~1B(g))>.
n—>o0

n—>oo

Proof Take a subsequence such that e =2/ Ext R(gn:ty) (F) converges to the liminf. Furthermore, take
a subsequence such that R(qy:t,) converge to a point £ € I17!(g). By Proposition 6.3 we have
(=M (g))? < £2. Since e~2n EXtR(g,:1,) (F) converges to £2(F) we have the lower bound. For
the upper bound we repeat the process taking the limsup and using Proposition 6.5. a

By noting that E~! M (q)(F) and E~! B(q)(F) evaluate to 0 if and only if i (V(g), F) = 0, we get
the following corollary, which has also been proven for surfaces without boundary by Liu and Shi [27,
Corollary 3.11].
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Corollary 9.2 Let (g,) be a sequence of unit area quadratic differentials converging to a quadratic
differential g, and (t,) be a sequence of real numbers converging to infinity. Then,

liminfe 2 Extg(g, ) (F) =0 <> i(V(q), F) = 0.

n—o0

Proposition 9.1 can be strengthened slightly in the following manner.

Proposition 9.3 Let (q5,) be a sequence of unit area quadratic differentials converging to a quadratic dif-
ferential q. Furthermore, denote by V" the indecomposable components of g, If the vertical components
can be reordered so that for each i we have that V;* converges to a foliation V;, then

m i —2ty qd(V/.

lkrggcl)fe ExtR(gn:tn) (F) = ZW (V).

l

Proof Take a sequence such that the limit is equal to the liminf, and such that we have convergence
in the Gardiner—Masur compactification. Let £ be the limit in the horofunction compactification. By
Lemma 4.5 we have e~ Extg(g,,:1,)(F) = (7! B(gy))?, and by Corollary 4.6 we have (E~!' B(gn))* =
> Wi (V!"). Hence, by Lemma 6.1, taking limits on both sides we get the proposition. a

If we have strong convergence the upper bound from Proposition 9.1 and the lower bound from
Proposition 9.3 coincide, so adding Walsh’s formula for the Busemann points [44, Theorem 1] we
have a proof of Theorem 1.14.

Finally, the path connectedness of the fibers can be translated to the following result.

Proposition 9.4 Let (¢,) be a sequence of unit quadratic differentials converging to ¢, and (t,) be a se-
quence of times converging to infinity. Further, for any F € MF let L(F) := liminf, o0 EXtg(g,,:z,) ().
Then, for any s € [L(F), Eg(F )] there is a subsequence of qns and a sequence (1) of times such that, for
any G € MF the limit

N
lim e~ %% Ext (G
k—>o0 R(q"?c ’tk)( )

is defined, and if G = F it has value s.

Proof We can take a subsequence such that limy— oo Extg(g,:s,,)(F) converges to the liminf, and a
further subsequence such that we have convergence in the Gardiner—Masur compactification to a point
E71£ € E71I17!(¢). By Proposition 3.11 we have a path between £ and B(g) contained in 17! (q),
and hence a path y between E~1& and 27! B(¢g) contained in 2~ 'TT~!(g). By continuity there is a
point in that path such that y;(F) = /s, and by the way we constructed y;, it is reached by taking a
subsequence of (qn}v() and a sequence (¢;) of times converging to infinity. Finally, since y; is a point in
the Gardiner-Masur compactification approached by R(yg, x 1), the value of y; (G)? is equal to the limit
from the proposition. O

Algebraic € Geometric Topology, Volume 24 (2024)



3982

Aitor Azemar

References

(1]

(2]

(8]

(9]
[10]
(1]

[12]

[13]

[14]

[15]

[16]

(17]

(18]

(19]

W Abikoff, The real analytic theory of Teichmiiller space, Lecture Notes in Math. 820, Springer (1980)
MR Zbl

V Alberge, Convergence of some horocyclic deformations to the Gardiner—Masur boundary, Ann. Acad.
Sci. Fenn. Math. 41 (2016) 439-455 MR Zbl

F Bonahon, Shearing hyperbolic surfaces, bending pleated surfaces and Thurston’s symplectic form, Ann.
Fac. Sci. Toulouse Math. 5 (1996) 233-297 MR Zbl

F Bonahon, Geodesic laminations with transverse Holder distributions, Ann. Sci. Ecole Norm. Sup. 30
(1997) 205240 MR Zbl

F Bonahon, Transverse Holder distributions for geodesic laminations, Topology 36 (1997) 103-122 MR
Zbl

D Burago, Y Burago, S Ivanov, A course in metric geometry, Grad. Stud. Math. 33, Amer. Math. Soc.,
Providence, RI (2001) MR Zbl

Y Chen, R Chernov, M Flores, M F Bourque, S Lee, B Yang, Toy Teichmiiller spaces of real dimension
2: the pentagon and the punctured triangle, Geom. Dedicata 197 (2018) 193-227 MR Zbl

F Dal’bo, M Peigné, A Sambusetti, On the horoboundary and the geometry of rays of negatively curved
manifolds, Pacific J. Math. 259 (2012) 55-100 MR Zbl

CJ Earle, The Teichmiiller distance is differentiable, Duke Math. J. 44 (1977) 389-397 MR Zbl
P Eberlein, B O’Neill, Visibility manifolds, Pacific J. Math. 46 (1973) 45-109 MR

B Farb, D Margalit, A primer on mapping class groups, Princeton Math. Ser. 49, Princeton Univ. Press
(2012) MR Zbl

A Fathi, F Laudenbach, V Poénaru, Thurston’s work on surfaces, Math. Notes 48, Princeton Univ. Press
(2012) MR Zbl

M Fortier Bourque, A divergent horocycle in the horofunction compactification of the Teichmiiller metric,
Ann. Inst. Fourier (Grenoble) 73 (2023) 1885-1902 MR Zbl

F P Gardiner, H Masur, Extremal length geometry of Teichmiiller space, Complex Variables Theory Appl.
16 (1991) 209-237 MR Zbl

D Gekhtman, V Markovic, Classifying complex geodesics for the Carathéodory metric on low-dimensional
Teichmiiller spaces, J. Anal. Math. 140 (2020) 669-694 MR Zbl

M Gromov, Hyperbolic manifolds, groups and actions, from “Riemann surfaces and related topics: Pro-
ceedings of the 1978 Stony Brook Conference”, Ann. of Math. Stud. 97, Princeton Univ. Press (1981)
183-213 MR Zbl

P de l1a Harpe, On Hilbert’s metric for simplices, from “Geometric group theory, I, Lond. Math. Soc. Lect.
Note Ser. 181, Cambridge Univ. Press (1993) 97-119 MR Zbl

F Herrlich, G Schmithiisen, On the boundary of Teichmiiller disks in Teichmiiller and in Schottky space,
from “Handbook of Teichmiiller theory, I, IRMA Lect. Math. Theor. Phys. 11, Eur. Math. Soc., Ziirich
(2007) 293-349 MR Zbl

J Hubbard, H Masur, Quadratic differentials and foliations, Acta Math. 142 (1979) 221-274 MR Zbl

Algebraic € Geometric Topology, Volume 24 (2024)


http://msp.org/idx/mr/590044
http://msp.org/idx/zbl/0452.32015
https://doi.org/10.5186/aasfm.2016.4132
http://msp.org/idx/mr/3467720
http://msp.org/idx/zbl/1370.30021
https://doi.org/10.5802/afst.829
http://msp.org/idx/mr/1413855
http://msp.org/idx/zbl/0880.57005
https://doi.org/10.1016/S0012-9593(97)89919-3
http://msp.org/idx/mr/1432054
http://msp.org/idx/zbl/0871.57027
https://doi.org/10.1016/0040-9383(96)00001-8
http://msp.org/idx/mr/1410466
http://msp.org/idx/zbl/0871.57027
https://doi.org/10.1090/gsm/033
http://msp.org/idx/mr/1835418
http://msp.org/idx/zbl/0981.51016
https://doi.org/10.1007/s10711-018-0325-6
https://doi.org/10.1007/s10711-018-0325-6
http://msp.org/idx/mr/3876303
http://msp.org/idx/zbl/1403.30016
https://doi.org/10.2140/pjm.2012.259.55
https://doi.org/10.2140/pjm.2012.259.55
http://msp.org/idx/mr/2988483
http://msp.org/idx/zbl/1260.53068
http://projecteuclid.org/euclid.dmj/1077312238
http://msp.org/idx/mr/445013
http://msp.org/idx/zbl/0352.32006
https://doi.org/10.2140/pjm.1973.46.45
http://msp.org/idx/mr/336648
https://www.jstor.org/stable/j.ctt7rkjw
http://msp.org/idx/mr/2850125
http://msp.org/idx/zbl/1245.57002
https://doi.org/10.2307/j.ctv1n35fh9
http://msp.org/idx/mr/3053012
http://msp.org/idx/zbl/1244.57005
https://doi.org/10.5802/aif.3564
http://msp.org/idx/mr/4655380
http://msp.org/idx/zbl/1533.32006
https://doi.org/10.1080/17476939108814480
http://msp.org/idx/mr/1099913
http://msp.org/idx/zbl/0702.32019
https://doi.org/10.1007/s11854-020-0102-y
https://doi.org/10.1007/s11854-020-0102-y
http://msp.org/idx/mr/4093921
http://msp.org/idx/zbl/1444.32013
https://doi.org/10.1515/9781400881550-016
http://msp.org/idx/mr/624814
http://msp.org/idx/zbl/0467.53035
https://doi.org/10.1017/CBO9780511661860.009
http://msp.org/idx/mr/1238518
http://msp.org/idx/zbl/0832.52002
https://doi.org/10.4171/029-1/7
http://msp.org/idx/mr/2349673
http://msp.org/idx/zbl/1141.30011
https://doi.org/10.1007/BF02395062
http://msp.org/idx/mr/523212
http://msp.org/idx/zbl/0415.30038

A qualitative description of the horoboundary of the Teichmiiller metric 3983

(20]

(21]

(22]

(23]
(24]

[25]

[26]

(27]

(28]

[29]

(30]

(31]

(32]

(33]

[34]

(35]
(36]

[37]

(38]

(39]

[40]

M Jiang, W Su, Convergence of earthquake and horocycle paths to the boundary of Teichmiiller space, Sci.
China Math. 59 (2016) 1937-1948 MR Zbl

J Kahn, KM Pilgrim, D P Thurston, Conformal surface embeddings and extremal length, Groups Geom.
Dyn. 16 (2022) 403-435 MR Zbl

V A Kaimanovich, H Masur, The Poisson boundary of the mapping class group, Invent. Math. 125 (1996)
221-264 MR Zbl

S P Kerckhoff, The asymptotic geometry of Teichmiiller space, Topology 19 (1980) 23—41 MR Zbl

T Klein, A Nicas, The horofunction boundary of the Heisenberg group: the Carnot—Carathéodory metric,
Conform. Geom. Dyn. 14 (2010) 269-295 MR Zbl

B Lemmens, C Walsh, Isometries of polyhedral Hilbert geometries, J. Topol. Anal. 3 (2011) 213-241 MR
Zbl

A Lenzhen, B Modami, K Rafi, Teichmiiller geodesics with d—dimensional limit sets, J. Mod. Dyn. 12
(2018) 261-283 MR Zbl

L Liu, Y Shi, On the properties of various compactifications of Teichmiiller space, Monatsh. Math. 198
(2022) 371-391 MR Zbl

L Liu, W Su, The horofunction compactification of the Teichmiiller metric, from “Handbook of Teichmiiller
theory, IV”, IRMA Lect. Math. Theor. Phys. 19, Eur. Math. Soc., Ziirich (2014) 355-374 MR Zbl

J Mabher, G Tiozzo, Random walks on weakly hyperbolic groups, J. Reine Angew. Math. 742 (2018)
187-239 MR Zbl

V Markovic, Carathéodory’s metrics on Teichmiiller spaces and L—shaped pillowcases, Duke Math. J. 167
(2018) 497-535 MR Zbl

H Masur, Interval exchange transformations and measured foliations, Ann. of Math. 115 (1982) 169-200
MR Zbl

H Miyachi, Teichmiiller rays and the Gardiner—Masur boundary of Teichmiiller space, Geom. Dedicata
137 (2008) 113-141 MR Zbl

H Miyachi, A differential formula for extremal length, from “In the tradition of Ahlfors—Bers, VI”, Contemp.
Math. 590, Amer. Math. Soc., Providence, RI (2013) 137-152 MR Zbl

H Miyachi, Teichmiiller rays and the Gardiner—Masur boundary of Teichmiiller space, II, Geom. Dedicata
162 (2013) 283-304 MR Zbl

J R Munkres, Topology: a first course, Prentice-Hall, Englewood Cliffs, NJ (1975) MR Zbl

K Ohshika, Compactifications of Teichmiiller spaces, from “Handbook of Teichmiiller theory, IV”, IRMA
Lect. Math. Theor. Phys. 19, Eur. Math. Soc., Ziirich (2014) 235-254 MR Zbl

A Papadopoulos, Deux remarques sur la géométrie symplectique de I’espace des feuilletages mesurés sur
une surface, Ann. Inst. Fourier (Grenoble) 36 (1986) 127-141 MR Zbl

R C Penner, J L Harer, Combinatorics of train tracks, Ann. of Math. Stud. 125, Princeton Univ. Press
(1992) MR Zbl

M A Rieffel, Group C*-algebras as compact quantum metric spaces, Doc. Math. 7 (2002) 605-651 MR
Zbl

K Strebel, Quadratic differentials: a survey, from “On the work of Leonhard Euler”, Birkhzuser, Basel
(1984) 219-238 MR Zbl

Algebraic € Geometric Topology, Volume 24 (2024)


https://doi.org/10.1007/s11425-016-5138-1
http://msp.org/idx/mr/3549934
http://msp.org/idx/zbl/1364.30051
https://doi.org/10.4171/ggd/673
http://msp.org/idx/mr/4502611
http://msp.org/idx/zbl/07624148
https://doi.org/10.1007/s002220050074
http://msp.org/idx/mr/1395719
http://msp.org/idx/zbl/0864.57014
https://doi.org/10.1016/0040-9383(80)90029-4
http://msp.org/idx/mr/559474
http://msp.org/idx/zbl/0439.30012
https://doi.org/10.1090/S1088-4173-2010-00217-1
http://msp.org/idx/mr/2738530
http://msp.org/idx/zbl/1218.22005
https://doi.org/10.1142/S1793525311000520
http://msp.org/idx/mr/2819195
http://msp.org/idx/zbl/1220.53090
https://doi.org/10.3934/jmd.2018010
http://msp.org/idx/mr/3915549
http://msp.org/idx/zbl/1464.32016
https://doi.org/10.1007/s00605-022-01680-7
http://msp.org/idx/mr/4421914
http://msp.org/idx/zbl/1492.30092
https://doi.org/10.4171/117-1/9
http://msp.org/idx/mr/3289706
http://msp.org/idx/zbl/1314.30080
https://doi.org/10.1515/crelle-2015-0076
http://msp.org/idx/mr/3849626
http://msp.org/idx/zbl/1434.60015
https://doi.org/10.1215/00127094-2017-0041
http://msp.org/idx/mr/3761105
http://msp.org/idx/zbl/1486.32006
https://doi.org/10.2307/1971341
http://msp.org/idx/mr/644018
http://msp.org/idx/zbl/0497.28012
https://doi.org/10.1007/s10711-008-9289-2
http://msp.org/idx/mr/2449148
http://msp.org/idx/zbl/1165.30023
https://doi.org/10.1090/conm/590/11736
http://msp.org/idx/mr/3087932
http://msp.org/idx/zbl/1351.32022
https://doi.org/10.1007/s10711-012-9727-z
http://msp.org/idx/mr/3009545
http://msp.org/idx/zbl/1257.30048
http://msp.org/idx/mr/464128
http://msp.org/idx/zbl/0306.54001
https://doi.org/10.4171/117-1/6
http://msp.org/idx/mr/3289703
http://msp.org/idx/zbl/1311.30025
https://doi.org/10.5802/aif.1052
https://doi.org/10.5802/aif.1052
http://msp.org/idx/mr/850748
http://msp.org/idx/zbl/0576.57026
https://doi.org/10.1515/9781400882458
http://msp.org/idx/mr/1144770
http://msp.org/idx/zbl/0765.57001
https://doi.org/10.4171/dm/133
http://msp.org/idx/mr/2015055
http://msp.org/idx/zbl/1031.46082
https://doi.org/10.1007/978-3-662-02414-0
http://msp.org/idx/mr/753331
http://msp.org/idx/zbl/0547.30038

3984 Aitor Azemar

[41] WP Thurston, On the geometry and dynamics of diffeomorphisms of surfaces, Bull. Amer. Math. Soc. 19
(1988) 417-431 MR Zbl

[42] C Walsh, The horoboundary and isometry group of Thurston’s Lipschitz metric, from “Handbook of
Teichmiiller theory, IV, IRMA Lect. Math. Theor. Phys. 19, Eur. Math. Soc., Ziirich (2014) 327-353 MR
Zbl

[43] C Walsh, The horofunction boundary and isometry group of the Hilbert geometry, from “Handbook of
Hilbert geometry”, IRMA Lect. Math. Theor. Phys. 22, Eur. Math. Soc., Ziirich (2014) 127-146 MR Zbl

[44] C Walsh, The asymptotic geometry of the Teichmiiller metric, Geom. Dedicata 200 (2019) 115-152 MR
Zbl

[45] C Webster, A Winchester, Boundaries of hyperbolic metric spaces, Pacific J. Math. 221 (2005) 147-158
MR Zbl

School of Mathematics and Statistics, University of Glasgow
Glasgow, United Kingdom

aitor@azemar.xyz

https://aitor.azemar.xyz

Received: 28 November 2022 Revised: 3 November 2023

:'msp

Geometry & Topology Publications, an imprint of mathematical sciences publishers


https://doi.org/10.1090/S0273-0979-1988-15685-6
http://msp.org/idx/mr/956596
http://msp.org/idx/zbl/0674.57008
https://doi.org/10.4171/117-1/8
http://msp.org/idx/mr/3289705
http://msp.org/idx/zbl/1311.30028
https://doi.org/10.4171/147-1/5
http://msp.org/idx/mr/3329879
http://msp.org/idx/zbl/1155.53335
https://doi.org/10.1007/s10711-018-0364-z
http://msp.org/idx/mr/3956189
http://msp.org/idx/zbl/1419.30029
https://doi.org/10.2140/pjm.2005.221.147
http://msp.org/idx/mr/2194149
http://msp.org/idx/zbl/1177.53042
mailto:aitor@azemar.xyz
https://aitor.azemar.xyz
http://msp.org
http://msp.org

ALGEBRAIC & GEOMETRIC TOPOLOGY
msp.org/agt

EDITORS

PRINCIPAL ACADEMIC EDITORS

John Etnyre
etnyre @math.gatech.edu
Georgia Institute of Technology

Kathryn Hess
kathryn.hess @epfl.ch
Ecole Polytechnique Fédérale de Lausanne

BOARD OF EDITORS

Julie Bergner

Steven Boyer

Tara E Brendle

Indira Chatterji
Alexander Dranishnikov
Tobias Ekholm

Mario Eudave-Mufioz
David Futer

John Greenlees

Tan Hambleton
Matthew Hedden
Hans-Werner Henn
Daniel Isaksen
Thomas Koberda

Markus Land

University of Virginia
jeb2md@eservices.virginia.edu
Université du Québec a Montréal
cohf@math.rochester.edu
University of Glasgow
tara.brendle @ glasgow.ac.uk
CNRS & Univ. Cote d’ Azur (Nice)
indira.chatterji @math.cnrs.fr
University of Florida
dranish@math.ufl.edu

Uppsala University, Sweden
tobias.ekholm @math.uu.se
Univ. Nacional Auténoma de México
mario @matem.unam.mx

Temple University
dfuter@temple.edu

University of Warwick
john.greenlees @warwick.ac.uk
McMaster University
ian@math.mcmaster.ca
Michigan State University
mhedden @math.msu.edu
Université Louis Pasteur
henn@math.u-strasbg.fr

Wayne State University

isaksen @math.wayne.edu
University of Virginia
thomas.koberda@virginia.edu
LMU Miinchen

markus.land @math.Imu.de

Christine Lescop
Robert Lipshitz
Norihiko Minami
Andrés Navas
Robert Oliver
Jessica S Purcell
Birgit Richter
Jéréme Scherer
Vesna Stojanoska
Zoltan Szabo
Maggy Tomova
Chris Wendl
Daniel T Wise

Lior Yanovski

Université Joseph Fourier
lescop@ujf-grenoble.fr
University of Oregon
lipshitz@uoregon.edu

Yamato University
minami.norihiko @yamato-u.ac.jp
Universidad de Santiago de Chile
andres.navas @usach.cl
Université Paris 13

bobol @math.univ-paris13.fr
Monash University
jessica.purcell@monash.edu
Universitit Hamburg
birgit.richter @uni-hamburg.de
Ecole Polytech. Féd. de Lausanne
jerome.scherer@epfl.ch

Univ. of Illinois at Urbana-Champaign
vesna@illinois.edu

Princeton University

szabo @math.princeton.edu
University of Towa
maggy-tomova@uiowa.edu
Humboldt-Universitit zu Berlin
wendl @math.hu-berlin.de
McGill University, Canada
daniel.wise@mcgill.ca

Hebrew University of Jerusalem
lior.yanovski @ gmail.com

See inside back cover or msp.org/agt for submission instructions.

The subscription price for 2024 is US $705/year for the electronic version, and $1040/year (4-$70, if shipping outside the US) for print and
electronic. Subscriptions, requests for back issues and changes of subscriber address should be sent to MSP. Algebraic & Geometric Topology is
indexed by Mathematical Reviews, Zentralblatt MATH, Current Mathematical Publications and the Science Citation Index.

Algebraic & Geometric Topology (ISSN 1472-2747 printed, 1472-2739 electronic) is published 9 times per year and continuously online, by
Mathematical Sciences Publishers, c/o Department of Mathematics, University of California, 798 Evans Hall #3840, Berkeley, CA 94720-3840.
Periodical rate postage paid at Oakland, CA 94615-9651, and additional mailing offices. POSTMASTER: send address changes to Mathematical
Sciences Publishers, c¢/o Department of Mathematics, University of California, 798 Evans Hall #3840, Berkeley, CA 94720-3840.

AGT peer review and production are managed by EditFlow® from MSP.
PUBLISHED BY
:I mathematical sciences publishers
nonprofit scientific publishing

https://msp.org/
© 2024 Mathematical Sciences Publishers


http://dx.doi.org/10.2140/agt
mailto:etnyre@math.gatech.edu
mailto:kathryn.hess@epfl.ch
mailto:jeb2md@eservices.virginia.edu
mailto:cohf@math.rochester.edu
mailto:tara.brendle@glasgow.ac.uk
mailto:indira.chatterji@math.cnrs.fr
mailto:dranish@math.ufl.edu
mailto:tobias.ekholm@math.uu.se
mailto:mario@matem.unam.mx
mailto:dfuter@temple.edu
mailto:john.greenlees@warwick.ac.uk
mailto:ian@math.mcmaster.ca
mailto:mhedden@math.msu.edu
mailto:henn@math.u-strasbg.fr
mailto:isaksen@math.wayne.edu
mailto:thomas.koberda@virginia.edu
mailto:markus.land@math.lmu.de
mailto:lescop@ujf-grenoble.fr
mailto:lipshitz@uoregon.edu
mailto:minami.norihiko@yamato-u.ac.jp
mailto:andres.navas@usach.cl
mailto:bobol@math.univ-paris13.fr
mailto:jessica.purcell@monash.edu
mailto:birgit.richter@uni-hamburg.de
mailto:jerome.scherer@epfl.ch
mailto:vesna@illinois.edu
mailto:szabo@math.princeton.edu
mailto:maggy-tomova@uiowa.edu
mailto:wendl@math.hu-berlin.de
mailto:daniel.wise@mcgill.ca
mailto:lior.yanovski@gmail.com
http://dx.doi.org/10.2140/agt
http://www.ams.org/mathscinet
http://www.emis.de/ZMATH/
http://www.ams.org/bookstore-getitem/item=cmp
http://www.isinet.com/products/citation/wos/
https://msp.org/
https://msp.org/

ALGEBRAIC & G

Volume 24 Issue 7 (page

Geography of bilinearized Legendrian contact homology
FREDERIC BOURGEOIS and DAMIEN GALANT
The deformation spaces of geodesic triangulations of flat tori

YANWEN LUO, TIANQI WU and XIAOPING ZHU

Finite presentations of the mapping class groups of once-stabilized Heegaard splittings
DAIKI IGUCHI
On the structure of the top homology group of the Johnson kernel
IGOR A SPIRIDONOV
The Heisenberg double of involutory Hopf algebras and invariants of closed 3—manifo
SERBAN MATEI MIHALACHE, SAKIE SUZUKI and Y UJI TERASHIMA
A closed ball compactification of a maximal component via cores of trees
GIUSEPPE MARTONE, CHARLES OUYANG and ANDREA TAMBURELLI
An algorithmic discrete gradient field and the cohomology algebra of configuration sp:
EMILIO J GONZALEZ and JESUS GONZALEZ
Spectral diameter of Liouville domains
PIERRE-ALEXANDRE MAILHOT
Classifying rational G—spectra for profinite G
DAVID BARNES and DANNY SUGRUE
An explicit comparison between 2—complicial sets and ®>—spaces
JULIA E BERGNER, VIKTORIYA OZORNOVA and MARTINA ROVELLI
On products of beta and gamma elements in the homotopy of the first Smith—Toda sp
KATSUMI SHIMOMURA and MAO-NO-SUKE SHIMOMURA
Phase transition for the existence of van Kampen 2—complexes in random groups
TSUNG-HSUAN TSAI
A qualitative description of the horoboundary of the Teichmiiller metric
AITOR AZEMAR
Vector fields on noncompact manifolds
TSsuYOsHI KATO, DAISUKE KISHIMOTO and MITSUNOBU TSUTAYA
Smallest nonabelian quotients of surface braid groups
CINDY TAN
Lattices, injective metrics and the K (7, 1) conjecture
THOMAS HAETTEL
The real-oriented cohomology of infinite stunted projective spaces
WILLIAM BALDERRAMA
Fourier transforms and integer homology cobordism
MIKE MILLER EISMEIER
Profinite isomorphisms and fixed-point properties
MARTIN R BRIDSON
Slice genus bound in D T'S? from s—invariant
QIUYU REN
Relatively geometric actions of Kihler groups on CAT(0) cube complexes

COREY BREGMAN, DANIEL GROVES and KEJIA ZHU


http://dx.doi.org/10.2140/agt.2024.24.3571
http://dx.doi.org/10.2140/agt.2024.24.3605
http://dx.doi.org/10.2140/agt.2024.24.3621
http://dx.doi.org/10.2140/agt.2024.24.3641
http://dx.doi.org/10.2140/agt.2024.24.3669
http://dx.doi.org/10.2140/agt.2024.24.3693
http://dx.doi.org/10.2140/agt.2024.24.3719
http://dx.doi.org/10.2140/agt.2024.24.3759
http://dx.doi.org/10.2140/agt.2024.24.3801
http://dx.doi.org/10.2140/agt.2024.24.3827
http://dx.doi.org/10.2140/agt.2024.24.3875
http://dx.doi.org/10.2140/agt.2024.24.3897
http://dx.doi.org/10.2140/agt.2024.24.3919
http://dx.doi.org/10.2140/agt.2024.24.3985
http://dx.doi.org/10.2140/agt.2024.24.3997
http://dx.doi.org/10.2140/agt.2024.24.4007
http://dx.doi.org/10.2140/agt.2024.24.4061
http://dx.doi.org/10.2140/agt.2024.24.4085
http://dx.doi.org/10.2140/agt.2024.24.4103
http://dx.doi.org/10.2140/agt.2024.24.4115
http://dx.doi.org/10.2140/agt.2024.24.4127

	1. Introduction
	1.1. Horoboundary of proper, uniquely geodesic, straight metric spaces
	1.2. Horoboundary of the Teichmüller metric
	1.3. Outline of the paper and a note for the reader interested in surfaces without boundary
	Acknowledgments

	2. Metric definitions
	2.1. Compactifications
	2.2. Visual compactification of proper, uniquely geodesic, straight spaces
	2.3. Horofunction compactification

	3. Horofunction compactification of proper, uniquely geodesic, straight metric spaces
	3.1. The relation between the horofunction compactification and the visual compactification
	3.2. The fiber structure
	3.3. An alternative definition of the horofunction compactification

	4. Background on Teichmüller spaces
	4.1. Measured foliations
	4.2. Extremal length
	4.3. The doubling trick
	4.4. The Gardiner–Masur compactification

	5. Horoboundary convergence for Teichmüller spaces
	5.1. Continuity of the Busemann map
	5.2. Criteria for convergence

	6. Dimension of the fibers
	7. Nondensity of the Busemann points
	7.1. Busemann points are not dense in the horoboundary
	7.2. Busemann points with one indecomposable component are nowhere dense

	8. Topology of the horoboundary
	9. Formulas for limits of extremal lengths
	References
	
	

