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Smallest nonabelian quotients of surface braid groups

CINDY TAN

We give a sharp lower bound on the size of nonabelian quotients of the surface braid group Bn.†g/ and
classify all quotients that attain the lower bound: depending on n and g, a quotient of minimum order is
either a symmetric group or a 2–step nilpotent p–group.

20F65; 57K20

1 Introduction

The Artin braid group Bn arises as the fundamental group of UConfn.D/, the configuration space of
n distinct unordered points on the open disk D. One can generalize this construction to define, for an
oriented closed genus-g surface †g, the surface braid groups

Bn.†g/D �1.UConfn.†g//:

It was shown by Kolay [4] that for n D 3 or n � 5, the smallest noncyclic finite quotient of Bn is the
symmetric group Sn, in the sense that Sn has minimum order amongst noncyclic quotients of Bn and Sn

is the unique noncyclic quotient of Bn of minimum order.

We consider the analogous question for surface braid groups. With our main result we show that whilst
Sn is a quotient of Bn.†g/, it is not in general the smallest nonabelian quotient.

For g � 1 the inclusion of a disk into †g induces an embedding Bn ,! Bn.†g/ (see Birman [2]); any
two such embeddings are conjugate in Bn.†g/. By a braid-free quotient of Bn.†g/ we mean a finite
quotient with (any such embedding of) Bn having cyclic image. Our main result is the following theorem:

Theorem 1 (Smallest nonabelian quotients of Bn.†g/) Let n� 5 and g � 1. Suppose that G is a finite
nonabelian quotient of Bn.†g/.

(a) If G is not braid-free then jGj � n! with equality if and only if G Š Sn.

(b) If G is braid-free then G is 2–step nilpotent and jGj � p2gCj , where p is the smallest prime
dividing gCn�1 and j D 1 or 2 according to whether p is odd or 2, respectively. Equality occurs
if and only if either G Š I.pj ;g/ or G Š II.pj ;g/ (these two groups are nonisomorphic 2–step
nilpotent p–groups defined in Construction 10).

In particular , the smallest nonnilpotent quotient of Bn.†g/ is Sn.
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Note that Theorem 1 implies the following qualitative result:

Corollary 2 (a) Fix g � 1. For all sufficiently large n, the smallest nonabelian quotients of Bn.†g/

are 2–step nilpotent p–groups (in particular , the smallest nonabelian quotient is not Sn).

(b) Fix n � 5. For all sufficiently large g, the smallest nonabelian quotient of Bn.†g/ is Sn. Also ,
there exists a (small ) g for which this not true.

Remarks 3 (Smaller cases) (a) If nD 1; 2; 3; 4 and g � 1 (with the exception of .n;g/D .1; 1/ where
Bn.†g/D �1.T

2/D Z2 is abelian) then the symmetric group S3 is the smallest nonabelian quotient
of Bn.†g/.

(b) If g D 0 then Bn.†g/ is the spherical braid group Bn.S
2/, which is an intermediate quotient of the

map Bn! Sn; see Fadell and Van Buskirk [3]. It follows from the result of Kolay [4] that the smallest
quotient of Bn.S

2/ is Sn for n� 5 and S3 for nD 3; 4. For nD 1; 2 we note that Bn.S
2/ is abelian.

From Theorem 1 we obtain partial confirmation of a conjecture of Chen [2, Conjecture 1.3]:

Corollary 4 Let n� 5 and m� 3, and let g; h� 0. If n>m then there are no surjective homomorphisms

Bn.†g/! Bm.†h/:

Proof method Theorem 1(a) follows from Kolay: By mapping a braid to its permutation on points, Sn

is a finite quotient of Bn.†g/. If Bn!Bn.†g/!G has noncyclic image then jGj � n! with the bound
attained only by G Š Sn.

Our primary contribution here is Theorem 1(b), which considers the braid-free quotients. We utilize
a presentation of Bn.†g/ (Theorem 13) due to Bellingeri [1] and assume that Bn has cyclic image to
reduce the relations, and conclude that a braid-free quotient G must be nilpotent. If we further assume
that G is a nonabelian braid-free quotient of minimum order, then G belongs to a class of nilpotent groups
called JN2 groups (Definition 5) which were classified by Newman in 1960 [5]. It then suffices to find
the smallest JN2 groups which can be realized as a quotient of Bn.†g/, a straightforward task given the
concrete nature of Newman’s classification.

Section 2 provides a self-contained exposition of the classification of JN2 groups. In Section 3 we prove
Theorem 1(b), as well as Corollary 4.
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project and for detailed comments on many revisions of this paper, as well as for suggesting this problem
in the first place. I thank Peter Huxford for useful discussions about braid groups and small p–groups,
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time to read and comment on an earlier draft.

Algebraic & Geometric Topology, Volume 24 (2024)



Smallest nonabelian quotients of surface braid groups 3999

2 Just 2–step nilpotent groups

In this section we introduce and classify JN2 groups, a class of nilpotent groups which includes all
minimal nonabelian braid-free quotients of Bn.†g/.

Definition 5 A group G is just 2–step nilpotent (JN2) if G is 2–step nilpotent (in particular, nonabelian)
and every proper quotient of G is abelian.

Finite JN2 groups admit a complete and explicit classification due to Newman [5]: any finite JN2 group
can be assigned a unique class .pj ;m/ where p is a prime and j and m are positive integers; up to
isomorphism, there are precisely two JN2 groups of a given class .pj ;m/. We will state and prove this
classification theorem in Theorem 11, following the general ideas of [5].

All JN2 groups will hereafter be assumed to be finite. The following proposition will allow us to define
the class .pj ;m/ of a JN2 group:

Proposition 6 (Characterization of JN2 groups [5, Theorem 1]) A finite group G is JN2 if and only if
there exists a prime p such that

(a) G0 WD ŒG;G� is cyclic of order p,

(b) the center ZG is cyclic of order a power of p, and

(c) G=ZG is elementary abelian of exponent p.

In particular , a JN2 group is a p–group.

Proof ()) Let G be a finite JN2 group. For every nontrivial normal subgroup N E G, we have that
G0 �N since any proper quotient of G is abelian. Since G is 2–step nilpotent, G0 �ZG. Consequently:

(a) G0 is abelian and admits no proper nontrivial subgroups so G0 Š Z=pZ for some prime p.

(b) ZG cannot be properly decomposed as a direct sum: any nontrivial subgroup of ZG contains G0

so no two nontrivial subgroups intersect trivially. Since ZG is finite abelian, it must be cyclic of prime
power order. The prime must be p because G0 �ZG.

(c) G=ZG is abelian because G0�ZG. For x;y 2G, we have that Œxp;y�D Œx;y�p by using the identity

Œxz;y�D zŒx;y�z�1Œz;y�

and noting that Œx;y� is central because G0 � ZG. But G0 has order p, so in fact Œxp;y� D 1. Thus
xp 2ZG for all x 2G, which is to say that G=ZG has exponent p.

(() Suppose G is a finite group satisfying (a), (b), and (c). Then G0 ¤ f1g by (a) and G0 �ZG by (c),
so G is 2–step nilpotent.

If N E G is a normal subgroup with G0 —N then N \G0 D f1g by (a). Since N is normal, ŒN;G� �
N \G0 D f1g so N � ZG. But G0 � ZG, and (a) and (b) imply that any nontrivial subgroup of ZG

intersects G0 nontrivially. Thus N D f1g. We conclude that every proper quotient of G is abelian.
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An immediate corollary of (c) is that V WD G=ZG has the structure of an Fp–vector space. Note that
vector addition in V is written multiplicatively and scalar multiplication of an element x mod ZG 2 V

by a scalar r 2 Fp is written as
r.x mod ZG/D xr mod ZG:

Fix a generator z of ZG. This fixes a generator zpj�1

of G0, and hence an identification of G0 with Fp.
Define a pairing

V �V !G0 D Fp given by .x mod ZG;y mod ZG/ 7! Œx;y�:

This pairing is a well-defined bilinear nondegenerate alternating form, which makes V into a symplectic
vector space. In particular, dim V is even.

Thus associated to each JN2 group G is a class .pj ;m/ where jZGj D pj and dim V D 2m, so G fits
into the short exact sequence

1! Z=pj Z!G! .Z=pZ/2m
! 0:

The symplectic structure on central factor groups V DG=ZG is key to the classification theorem because
symplectic automorphisms on central factor groups can be used to construct isomorphisms between
certain JN2 groups of the same class. The following lemma extracts from a JN2 group a normalized
symplectic basis on its associated vector space V :

Lemma 7 Let G be JN2 of class .pj ;m/ where pj ¤ 2, with a fixed generator z of ZG. Then there
exists a symplectic basis B D fai mod ZG; bi mod ZGgm

iD1
of V DG=ZG such that the representatives

ai ; bi 2G satisfy either

(I) a
p
i D b

p
i D 1 for all i , or

(II) a
p
1
D b

p
1
D z and a

p
i D b

p
i D 1 for 2� i �m.

We will say that B is type I or II accordingly.

Remark 8 (Nomenclature) For the reader familiar with existing terminology from [5], a “type I
(respectively II) basis” as named in our Lemma 7 corresponds to a “canonic normal basis with zero
(respectively one) pairs of type II” in the vocabulary of Newman.

Proof Note that xp 2ZG for all x 2G because G=ZG has exponent p. Let .ZG/p D fup W u 2ZGg

and identify ZG=.ZG/p with Fp by the mapping z mod .ZG/p 7! 1. Define a map

� W V !ZG=.ZG/p D Fp given by x mod ZG 7! xp mod .ZG/p:

Viewing V DG=ZG as a vector space written multiplicatively, � commutes with scalar multiplication and

�..x mod ZG/.y mod ZG//D .xy/p mod .ZG/p D Œy;x�p.p�1/=2xpyp mod .ZG/p

for x;y 2G, so � is a linear functional as long as Œy;x�p.p�1/=2 D 1 mod .ZG/p . This holds if pj ¤ 2:
If p is odd then p j 1

2
p.p� 1/, so Œy;x�p.p�1/=2 D 1 because G0 has order p. If j � 2 then G0 ˆ ZG

so G0 � .ZG/p.
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If � is the trivial linear functional on V , take B to be any symplectic basis of V . Otherwise there exists a
symplectic basis B of V such that � written with respect to B is the row vector

� D
�
1 1 0 � � � 0

�
;

because symplectic automorphisms act transitively on nontrivial vectors.

For each basis vector xj mod ZG 2B,

x
p
j mod .ZG/p D �.xj mod ZG/D z�j mod .ZG/p;

so there exists uj 2ZG such that x
p
j D z�j u

p
j . Then xj u�1

j � xj mod ZG and .xj u�1
j /p D z�j . Thus

xj u�1
j 2G are representatives of the basis B satisfying (I) if � is trivial and (II) otherwise.

We will now construct two standard nonisomorphic JN2 groups for each given class .pj ;m/. The proof
of the classification theorem will exhibit an isomorphism from any arbitrary JN2 group to a standard one.
The primary method of constructing larger JN2 groups from smaller ones is taking a central product.

Definition 9 (Central product) Let G and H be groups for which ZG Š ZH . Define the central
product of G and H (with respect to an isomorphism ' WZG!ZH ) to be

GˇH D .G �H /=N where N D h.g; '.g/�1/ W g 2ZGi;

i.e. identifying ZG � 1 with 1�ZH by the isomorphism '. By Gˇn we mean the central product of n

copies of G with the identity isomorphism on ZG.

Note that if G and H are JN2 of class .pj ;m1/ and .pj ;m2/, then GˇH is JN2 of class .pj ;m1Cm2/

by Proposition 6 since

(a) .GˇH /0 DG0 �H 0=N ŠG0 ŠH 0 Š Z=pZ,

(b) Z.GˇH /ŠZG ŠZH , and

(c) .GˇH /=Z.GˇH /Š .G=ZG/� .H=ZG/.

Construction 10 (Standard JN2 groups) Define the groups

M.pj /D hz; a; b W Œz; a�D Œz; b�D 1I Œa; b�D zpj�1

I zpj

D ap
D bp

D 1i;

N.pj /D hz; a; b W Œz; a�D Œz; b�D 1I Œa; b�D zpj�1

I zpj

D 1I ap
D bp

D zi;

I.pj ;m/DM.pj /ˇm;

II.pj ;m/DN.pj /ˇM.pj /ˇ.m�1/:

Observe the following:

(1) M.pj / and N.pj / are JN2 (by Proposition 6) of class .pj ; 1/, with each center generated by z and
fa; bg as a symplectic basis of V .

(2) I.pj ;m/ and II.pj ;m/ are JN2 of class .pj ;m/ by the remarks following Definition 9.
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(3) I.pj ;m/ and II.pj ;m/ are not isomorphic when pj ¤ 2: the group N.pj / has an element of
order pjC1 (for example, a or b) and therefore so does II.pj ;m/. On the contrary, the group M.pj /,
and consequently also I.pj ;m/ D M.pj /ˇm, has exponent at most pj : the linear functional � (as
in the proof of Lemma 7) is trivial on the symplectic basis fa; bg so M.pj /p � .ZG/p, and hence
M.pj /p

j

� .ZG/p
j

D 1.

Note If pj D 2, then I.pj ;m/ and II.pj ;m/ are still nonisomorphic: M.2/ is the dihedral group D8

and N.2/ is the quaternion group Q8, which contain two and six elements of order 4, respectively, and
both have centers of order 2. In particular no elements of order 4 are central. The larger groups I.pj ;m/

and II.pj ;m/ can then be distinguished by counting the number of elements of order 4 because only
central elements are identified in the central product. We will not require this case.

Theorem 11 (Classification of finite JN2 groups [5, Theorems 5 and 7(c) and Lemma 8(i)]) Let G be
JN2 of class .pj ;m/. Suppose that pj ¤ 2. Then G is isomorphic to either I.pj ;m/ or II.pj ;m/.

Proof Let z be a generator of ZG and let B be the symplectic basis given by Lemma 7. In the notation of
Lemma 7, let Hi Dhz; ai ; bii. If B is type I then Hi DM.pj / for all i . If B is type II then H1DN.pj /

and Hi DM.pj / for i � 2.

The subgroups Hi commute pairwise, together generate G, and intersect precisely in their centers hzi, so
G Š

Jm
iD1 Hi . Hence G is isomorphic to I.pj ;m/ or II.pj ;m/, according to the type of the basis B.

Remarks 12 (a) Generalizations For brevity, we have excluded the case of pj D 2 and specialized to
finite groups. With additional work, the pj D 2 case and some infinite JN2 groups (those with a countable
symplectic basis) also admit a classification as central products of elementary JN2 groups, see [5].

(b) Special cases Note that M.p/ and N.p/ are the only two groups of order p3. The group M.p/D

I.p; 1/ is isomorphic to the Heisenberg group over Fp . A generalization of the finite Heisenberg groups
are the extraspecial groups, which are defined to be p–groups G with ZG order p and G=ZG nontrivial
elementary abelian. In particular, extraspecial groups are JN2, and it follows from Theorem 11 that there
are precisely two distinct extraspecial groups of order p1C2m for each choice of a prime p and positive
integer m and that this exhausts all extraspecial groups.

3 Minimal nonabelian quotients of Bn.†g/

In this section we provide the proof of Theorem 1(b). The strategy of the proof will be to utilize an
explicit presentation of the surface braid groups (Theorem 13) to characterize braid-free quotients by the
relations that they must satisfy (Lemma 15). We will then show that many JN2 groups are realized as
nonabelian braid-free quotients of Bn.†g/ (Lemma 16) and finally prove that all nonabelian braid-free
quotients of minimum order belong to the list of JN2 groups in Lemma 16.
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Theorem 13 (Presentation of Bn.†g/, Bellingeri [1, Theorem 1.2]) For g � 1 and n� 2, the surface
braid group Bn.†g/ admits the presentation given by

� generators �1; : : : ; �n�1; a1; : : : ; ag; b1; : : : ; bg,

� braid relations

Œ�i ; �j �D 1 for 1� i; j � n� 1 and ji � j j � 2;

�i�iC1�i D �iC1�i�iC1 for 1� i � n� 2;

and mixed relations

Œar ; �i �D Œbr ; �i �D 1 for 1� r � g and i ¤ 1;(R1)

Œar ; �
�1
1 ar�

�1
1 �D Œbr ; �

�1
1 br�

�1
1 �D 1 for 1� r � g;(R2)

Œas; �1ar�
�1
1 �D Œbs; �1br�

�1
1 �D 1 for 1� s < r � g;(R3)

Œbs; �1ar�
�1
1 �D Œas; �1br�

�1
1 �D 1 for 1� s < r � g;

Œar ; �
�1
1 br�

�1
1 �D �2

1 for 1� r � g;(R4)

Œa1; b
�1
1 � � � � Œag; b

�1
g �D �1�2 � � � �

2
n�1 � � � �2�1:(TR)

Remark 14 (Geometric interpretation of the presentation) The Bellingeri generators �i can be identified
as the images of the Artin braid generators under a choice of embedding Bn ,! Bn.†g/. The remaining
generators ar and br can be understood loosely to be the standard generators of �1.†g/.

More precisely, let fp1; : : : ;png 2 UConfn.†g/ denote the basepoint of Bn.†g/ and let D �†g be an
open disk with p1 2 @D, with p2; : : : ;pn in the interior of D. There is an inclusion

�1.†g �D;p1/ ,! Bn.†g/

which takes a loop 
 in †g �D to the braid on †g with first strand 
 and all other strands trivial. The
group �1.†g �D;p1/ is free on 2g generators and surjects onto �1.†g;p1/, which has a standard
presentation. The surface braid group generators ar ; br 2Bn.†g/ can then be understood as a choice of a
free generating set of �1.†g�D;p1/ which lifts the standard generating set of �1.†g;p1/. It should be
emphasized that the lifts are not canonical and that the presentation depends on the choices; the curious
reader may refer to [1] for illustrations of the loops which produce this particular presentation.

Lemma 15 (Characterization of braid-free quotients) Let n � 3 and g � 1. A finite group G is a
braid-free quotient of Bn.†g/ if and only if G admits a generating set f�; a1; b1; : : : ; ag; bgg satisfying
the relations

Œar ; � �D Œbr ; � �D 1 for 1� r � g;(R10)

Œas; ar �D Œbs; br �D Œbs; ar �D Œas; br �D 1 for 1� s < r � g;(R30)

Œar ; br �D �
2 for 1� r � g;(R40)

�2.gCn�1/
D 1:(TR0)
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Proof A finite quotient of Bn.†g/ is presented by Theorem 13 with additional relations. The condition
that Bn has cyclic image in a quotient is equivalent to adding the relations

�i D �1; 1� i � n:

If we add these relations and write � D �1, the relation (R2) is made redundant and (R1), (R3), and (R4)
respectively reduce to the relations (R10), (R30), and (R40), as in the statement of the lemma. The final
relation (TR) reduces to

Œa1; b
�1
1 � � � � Œag; b

�1
g �D �2.n�1/;

which is equivalent to (TR0) because from (R40) we can write ar D b�1
r ��2ar br so that

Œar ; b
�1
r �D ar b�1

r a�1
r br

(R40)
D .b�1

r ��2ar br /b
�1
r a�1

r br D b�1
r ��2br

(R10)
D ��2:

The following lemma proves that many JN2 groups are braid-free quotients:

Lemma 16 Let n� 3 and g � 1. Let p be a prime dividing gC n� 1.

(a) If p D 2 then I.22;g/ and II.2j ;g/ for all j � 2 are nonabelian braid-free quotients of Bn.†g/.

(b) If p is odd then I.p;g/ and II.pj ;g/ for all j � 1 are nonabelian braid-free quotients of Bn.†g/.

Proof Let p be a prime dividing gCn�1. By Lemma 15 we need to exhibit a generating set f�; ar ; br g

of each group satisfying relations (R10), (R30), (R40), and (TR0).

In any of the JN2 groups in the statement of the theorem, fix a generator z of the center and choose
a1; b1; : : : ; ag; bg to be the representatives of a symplectic basis of V given by Lemma 7. By Theorem 11
this basis will be type I for I.22;g/ and I.p;g/, and type II for II.2j ;g/ and II.pj ;g/. Note that with the
given symplectic form, the condition that a basis is symplectic is simply that all basis elements commute
except symplectic pairs Œar ; br �D zpj�1

. In particular, (R30) is satisfied.

We will now choose � for each group and verify that f�; ar ; br g generate the group and satisfy (R40).

(1) I.22;g/ is generated by � D z and far ; br g. These satisfy (R40) because Œar ; br �D z2 D �2.

(2) II.2j ;g/, for a given j � 2, is generated by far ; br g alone because a
p
1
D z. If we choose � D z2j�2

then (R40) is satisfied because Œar ; br �D z2j�1

D �2.

(3) I.p;g/ for odd prime p is generated by � D z.p
jC1/=2 and the ar and br . Then (R40) is satisfied

because Œar ; br �D z D �2.

(4) II.pj ;g/, for given odd prime p and j � 1, is generated by ar and br alone because a
p
1
D z. Then

set � D z.p
jCpj�1/=2 so that (R40) is satisfied because Œar ; br �D zpj�1

D �2.

In all cases � was chosen to be central, and hence (R10) is satisfied.

It remains to check that (TR0) holds, namely that j� j divides 2.gC n� 1/. Recall that we are assuming
that p j .gC n� 1/. In cases (1) and (2), we have p D 2 and j� j D 4D 2p j 2.gC n� 1/. In cases (3)
and (4), we have j� j D p j .gC n� 1/.
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Proof of Theorem 1(b) Let G be a nonabelian braid-free quotient and let f�; a1; b1; : : : ; ag; bgg denote
the generating set of G as given by Lemma 15. By (R10) and (R30), all pairs of these generators commute
except for pairs ar and br , so G0 D h�2i by (R40). Then G0 is central and nontrivial, which is to say
that G is 2–step nilpotent.

Assume now that G is of minimum order amongst nonabelian braid-free quotients of Bn.†g/. Then G

has no proper nonabelian quotients and thus is JN2 of some class .pj ;m/.

We make three claims:

(1) pj ¤ 2,

(2) mD g, and

(3) p j .gC n� 1/.

These claims will complete the proof: Since jGj D p2mCj , it follows from claims (1) and (2) that
jGj � p2gC1 if p is odd and jGj � 22gC2 if p D 2. Claims (1) and (3) along with the minimality of G

together imply that G is one of (in particular, the smallest of) the quotients constructed in Lemma 16.
Explicitly, if gC n� 1 is even then pj D 22. Otherwise pj D p, where p is the smallest prime dividing
gC n� 1. Finally, G must be isomorphic to either I.pj ;g/ or II.pj ;g/ by Theorem 11.

Proof of claims Let d D j� j. By (R10), � is central so d jpj . But p D jG0j D j�2j so d j 2p. Thus
either p is odd and p D d , or p D 2 and d D 4.

(1) If p is odd then pj ¤ 2. If p D 2 then pj � d D 4 so pj ¤ 2.

(2) We will show that dim V D 2g by proving that

B D far mod ZG; br mod ZGg
g
rD1

is a basis of V . Every element x 2G can be written uniquely in the form

x D �ka
i1

1
� � � a

ig

g b
j1

1
� � � b

jg

g

using commuting relations (R10), (R30), and (R40) so B is a generating set. To prove that B is linearly
independent, let

y D a
i1

1
� � � a

ig

g b
j1

1
� � � b

jg

g 2G

and suppose that y D 0 mod ZG, which is to suppose that an arbitrary linear combination of elements of
B is trivial in V . Then y is central, so

Œy; b1�D Œa
i1

1
; b1�D �

�2i1 D 1;

which implies that d j 2i1 and thus i1 D 0 mod p: If p is odd then d D p, so p j i1. If p D 2 then
d D 4 j 2i1 so, p D 2 j i1.

Similarly ir D jr D 0 mod p for all r , which is to say that all coefficients of the linear combination are
trivial over the base field Fp. This proves the linear independence of B.
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(3) The relation (TR0) imposes the relation d j 2.gCn�1/. Either d D p is odd or d D 4 and pD 2; in
both cases (TR0) implies that p j .gC n� 1/.

Proof of Corollary 4 Let n� 5 and m� 3, and let g; h� 0. If there is a surjection Bn.†g/!Bm.†h/

then the composition Bn.†g/!Bm.†h/!Sm is also surjective. Since Sm is not nilpotent when m� 3,
we must have m� n.

Remark 17 (Punctured surfaces, surfaces with boundary) Bellingeri [1] also gives a presentation of
the braid group of a genus-g surface with m punctures (equivalently for the purposes of braid groups,
m boundary components). The above methods can be used nearly verbatim to prove that the smallest
nonabelian quotient of Bn.†g;m/ is the smaller of Sn or I.22;g/ and II.22;g/.
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