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Smallest nonabelian quotients of surface braid groups

CINDY TAN

We give a sharp lower bound on the size of nonabelian quotients of the surface braid group B,(X) and
classify all quotients that attain the lower bound: depending on n and g, a quotient of minimum order is
either a symmetric group or a 2—step nilpotent p—group.

20F65; 57K20

1 Introduction

The Artin braid group By arises as the fundamental group of UConf,(ID), the configuration space of
n distinct unordered points on the open disk D. One can generalize this construction to define, for an
oriented closed genus-g surface X4, the surface braid groups

Bn(Xg) = m1(UConf,(Xg)).

It was shown by Kolay [4] that for » = 3 or n > 5, the smallest noncyclic finite quotient of B, is the
symmetric group Sy, in the sense that S, has minimum order amongst noncyclic quotients of B, and S,
is the unique noncyclic quotient of B,, of minimum order.

We consider the analogous question for surface braid groups. With our main result we show that whilst
Sy is a quotient of B, (Xg), it is not in general the smallest nonabelian quotient.

For g > 1 the inclusion of a disk into X induces an embedding B, — B, (Xg) (see Birman [2]); any
two such embeddings are conjugate in B,(Xg). By a braid-free quotient of B,(X¢) we mean a finite
quotient with (any such embedding of) B;, having cyclic image. Our main result is the following theorem:

Theorem 1 (Smallest nonabelian quotients of B,(Xg)) Letn > 5 and g > 1. Suppose that G is a finite
nonabelian quotient of B, (Xg).

(a) If G is not braid-free then |G| > n! with equality if and only if G = Sj,.

(b) If G is braid-free then G is 2—step nilpotent and |G| > p?8+J, where p is the smallest prime
dividing g +n—1 and j =1 or 2 according to whether p is odd or 2, respectively. Equality occurs
if and only if either G =~ 1(p’, g) or G = 1I(p/, g) (these two groups are nonisomorphic 2—step
nilpotent p—groups defined in Construction 10).

In particular, the smallest nonnilpotent quotient of B, (Xg) is Sy.
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Note that Theorem 1 implies the following qualitative result:

Corollary 2 (a) Fix g > 1. For all sufficiently large n, the smallest nonabelian quotients of B, (Xg)
are 2—step nilpotent p—groups (in particular, the smallest nonabelian quotient is not Sy).

(b) Fixn > 5. For all sufficiently large g, the smallest nonabelian quotient of B,(Xg) is Sy. Also,
there exists a (small) g for which this not true.

Remarks 3 (Smaller cases) (a) Ifn=1,2,3,4 and g > 1 (with the exception of (n, g) = (1, 1) where
Bu(Xg) = m1(T?) = Z? is abelian) then the symmetric group S is the smallest nonabelian quotient
of Bp(Xy).

(b) If g =0 then B,(Xy) is the spherical braid group B, (S 2), which is an intermediate quotient of the
map B, — Sj; see Fadell and Van Buskirk [3]. It follows from the result of Kolay [4] that the smallest
quotient of B, (S?) is Sy, for n > 5 and S3 for n = 3,4. For n = 1, 2 we note that B, (S?) is abelian.

From Theorem 1 we obtain partial confirmation of a conjecture of Chen [2, Conjecture 1.3]:

Corollary4 Letn>5and m >3, andlet g, h > 0. If n > m then there are no surjective homomorphisms

Bn(Xg) = Bm(Xp).

Proof method Theorem 1(a) follows from Kolay: By mapping a braid to its permutation on points, .S
is a finite quotient of B, (Zg). If B, — B,(Xg) — G has noncyclic image then |G| > n! with the bound
attained only by G = S,,.

Our primary contribution here is Theorem 1(b), which considers the braid-free quotients. We utilize
a presentation of B, (Z¢) (Theorem 13) due to Bellingeri [1] and assume that B, has cyclic image to
reduce the relations, and conclude that a braid-free quotient G must be nilpotent. If we further assume
that G is a nonabelian braid-free quotient of minimum order, then G belongs to a class of nilpotent groups
called JN2 groups (Definition 5) which were classified by Newman in 1960 [5]. It then suffices to find
the smallest N2 groups which can be realized as a quotient of B, (Xy), a straightforward task given the
concrete nature of Newman’s classification.

Section 2 provides a self-contained exposition of the classification of JN2 groups. In Section 3 we prove
Theorem 1(b), as well as Corollary 4.

Acknowledgements I am grateful to my advisor Benson Farb for continued support throughout this
project and for detailed comments on many revisions of this paper, as well as for suggesting this problem
in the first place. I thank Peter Huxford for useful discussions about braid groups and small p—groups,
and for many helpful suggestions during the editing process. I also thank Dan Margalit for taking the
time to read and comment on an earlier draft.
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2 Just 2—step nilpotent groups

In this section we introduce and classify JN2 groups, a class of nilpotent groups which includes all
minimal nonabelian braid-free quotients of B, (Xy).

Definition 5 A group G is just 2—step nilpotent (JN2) if G is 2—step nilpotent (in particular, nonabelian)
and every proper quotient of G is abelian.

Finite N2 groups admit a complete and explicit classification due to Newman [5]: any finite JN2 group
can be assigned a unique class (p/,m) where p is a prime and j and m are positive integers; up to
isomorphism, there are precisely two JN2 groups of a given class (p/, m). We will state and prove this
classification theorem in Theorem 11, following the general ideas of [5].

All IN2 groups will hereafter be assumed to be finite. The following proposition will allow us to define
the class (p7, m) of a IN2 group:
Proposition 6 (Characterization of JN2 groups [5, Theorem 1]) A finite group G is JN2 if and only if
there exists a prime p such that

(a) G':=[G,G]is cyclic of order p,

(b) the center ZG is cyclic of order a power of p, and

(¢) G/ZG is elementary abelian of exponent p.
In particular, a JN2 group is a p—group.
Proof (=) Let G be a finite JN2 group. For every nontrivial normal subgroup N < G, we have that
G’ < N since any proper quotient of G is abelian. Since G is 2—step nilpotent, G’ < ZG. Consequently:
(a) G’ is abelian and admits no proper nontrivial subgroups so G’ =~ Z/ pZ for some prime p.

(b) ZG cannot be properly decomposed as a direct sum: any nontrivial subgroup of ZG contains G’
so no two nontrivial subgroups intersect trivially. Since ZG is finite abelian, it must be cyclic of prime
power order. The prime must be p because G’ < ZG.

(¢) G/ZG is abelian because G’ < ZG. For x, y € G, we have that [x?, y] =[x, y]? by using the identity
ez, ¥l = z[x, y]z [z, )]

and noting that [x, y] is central because G’ < ZG. But G’ has order p, so in fact [x?, y] = 1. Thus

x? € ZG for all x € G, which is to say that G/ ZG has exponent p.

(<) Suppose G is a finite group satisfying (a), (b), and (c). Then G’ # {1} by (a) and G’ < ZG by (c),

so G is 2—step nilpotent.

If N < G is a normal subgroup with G’ £ N then N N G’ = {1} by (a). Since N is normal, [N, G] <
NNG' ={1}so N < ZG. But G’ < ZG, and (a) and (b) imply that any nontrivial subgroup of ZG
intersects G’ nontrivially. Thus N = {1}. We conclude that every proper quotient of G is abelian. O
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An immediate corollary of (c) is that V := G/ZG has the structure of an F,—vector space. Note that
vector addition in V is written multiplicatively and scalar multiplication of an element x mod ZG € V

by a scalar r € IF,, is written as
r(x mod ZG) = x" mod ZG.

Fix a generator z of ZG. This fixes a generator P of G , and hence an identification of G’ with .
Define a pairing

VxV -G =F, givenby (x mod ZG,y mod ZG) — [x, y].
This pairing is a well-defined bilinear nondegenerate alternating form, which makes V' into a symplectic
vector space. In particular, dim V is even.
Thus associated to each IN2 group G is a class (p/, m) where | ZG| = p’ and dim V = 2m, so G fits
into the short exact sequence

1> Z/p/7 — G — (Z)pZ)*™ — 0.

The symplectic structure on central factor groups V = G/ ZG is key to the classification theorem because
symplectic automorphisms on central factor groups can be used to construct isomorphisms between
certain JN2 groups of the same class. The following lemma extracts from a JN2 group a normalized
symplectic basis on its associated vector space V':

Lemma 7 Let G be N2 of class (p’,m) where p’/ # 2, with a fixed generator z of ZG. Then there
exists a symplectic basis # = {a; mod ZG,b; mod ZG}* | of V = G/ZG such that the representatives
aij, b; € G satisfy either

) af’ :bip =1forall i, or

AD) a¥ =bf =zanda? =b =1for2<i <m.
We will say that 2 is type I or II accordingly.
Remark 8 (Nomenclature) For the reader familiar with existing terminology from [5], a “type I

(respectively II) basis” as named in our Lemma 7 corresponds to a “canonic normal basis with zero
(respectively one) pairs of type II” in the vocabulary of Newman.

Proof Note that x? € ZG for all x € G because G/ ZG has exponent p. Let (ZG)? ={u? :u e ZG}
and identify ZG/(ZG)? with [F,, by the mapping z mod (ZG)? > 1. Define a map

v:V - ZG/(ZG)? =F, givenby x mod ZG + x¥ mod (ZG)P.
Viewing V = G/ ZG as a vector space written multiplicatively, v commutes with scalar multiplication and
v((x mod ZG)(y mod ZG)) = (xy)? mod (ZG)? = [y, x]?P~D/2xP yP mod (ZG)P

for x, y € G, so v is a linear functional as long as [y, x]??~1/2 = | mod (ZG)?. This holds if p/ % 2:
If pis odd then p | 5 p(p — 1), so [y, x]?(P=1/2 = | because G’ has order p. If j > 2 then G’ 5 ZG
so G' < (ZG)P.
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If v is the trivial linear functional on V, take % to be any symplectic basis of V. Otherwise there exists a
symplectic basis % of V' such that v written with respect to 4 is the row vector

v=[110-- 0],
because symplectic automorphisms act transitively on nontrivial vectors.
For each basis vector x; mod ZG € %,
x;) mod (ZG)? = v(x; mod ZG) = z" mod (ZG)?,
so there exists #; € ZG such that x}’ =zVi uj.’. Then xj-uj_l = xj; mod ZG and (Xjuj_l)p = z"% . Thus

xju; e G are representatives of the basis &£ satisfying (I) if v is trivial and (II) otherwise. O

We will now construct two standard nonisomorphic JN2 groups for each given class (p/, m). The proof
of the classification theorem will exhibit an isomorphism from any arbitrary JN2 group to a standard one.
The primary method of constructing larger JN2 groups from smaller ones is taking a central product.

Definition 9 (Central product) Let G and H be groups for which ZG =~ ZH. Define the central
product of G and H (with respect to an isomorphism ¢ : ZG — ZH) to be

GOH=(GxH)/N where N = ((g.9(g)" ") :g€ZG),

i.e. identifying ZG x 1 with 1 x ZH by the isomorphism ¢. By G®” we mean the central product of 7
copies of G with the identity isomorphism on ZG.

Note that if G and H are JN2 of class (p/,m1) and (p/, m5), then G © H is N2 of class (p/, my +m>)
by Proposition 6 since

(a) (GOH)=G'xH'/N=2G'=~H ~7/pZ,
(b) Z(GOH)=ZG ~ZH, and
() (GOH)/Z(GOH)=(G/Z2G)x (H/ZG).

Construction 10 (Standard JN2 groups) Define the groups
M) = (z.a.b:[z,a] = [z,b] = l;[a,b] = 2P’ "' 2P =aP =pP = 1),
N(pi)=(z,a,b:[z,a) = [z,b] = 1:[a,b] = 27’ ":2P) = 1;aP = bP = z),
1(p/.m) = M(p/)°",
W(p’.m) = N(p7)© M(p/)"~D.
Observe the following:

(1) M(p’7) and N(p’) are IN2 (by Proposition 6) of class (p/, 1), with each center generated by z and
{a, b} as a symplectic basis of V.

(2) 1(p?,m) and II(p/, m) are IN2 of class (p/,m) by the remarks following Definition 9.
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(3) 1(p’/,m) and I(p’/,m) are not isomorphic when p/ # 2: the group N(p’) has an element of
order p/ T (for example, a or b) and therefore so does II(p/, m). On the contrary, the group M (p/),
and consequently also 1(p/,m) = M(p/)©™, has exponent at most p/: the linear functional v (as
in the proof of Lemma 7) is trivial on the symplectic basis {a,b} so M(p/)? < (ZG)”, and hence
M(phy? <(zG)P =1.

Note If p/ =2, then I(p/,m) and II(p/, m) are still nonisomorphic: M (2) is the dihedral group Dg
and N(2) is the quaternion group (g, which contain two and six elements of order 4, respectively, and
both have centers of order 2. In particular no elements of order 4 are central. The larger groups I(p/, m)
and II(p/ , m) can then be distinguished by counting the number of elements of order 4 because only
central elements are identified in the central product. We will not require this case.

Theorem 11 (Classification of finite JN2 groups [5, Theorems 5 and 7(c) and Lemma 8(i)]) Let G be
JN2 of class (p’ , m). Suppose that p/ # 2. Then G is isomorphic to either 1(p/, m) or II(p7 , m).

Proof Let z be a generator of ZG and let # be the symplectic basis given by Lemma 7. In the notation of
Lemma 7, let H; = (z,a;, b;). If 2 is type I then H; = M (p/) for all i. If % is type Il then H; = N (p/)
and H; = M(p/) fori > 2.

The subgroups H; commute pairwise, together generate G, and intersect precisely in their centers (z), so
G =~ (DL, H;. Hence G is isomorphic to I(p/ . m) or II(p/, m), according to the type of the basis 2. O

Remarks 12 (a) Generalizations For brevity, we have excluded the case of p/ = 2 and specialized to
finite groups. With additional work, the p/ = 2 case and some infinite JN2 groups (those with a countable
symplectic basis) also admit a classification as central products of elementary JN2 groups, see [5].

(b) Special cases Note that M (p) and N(p) are the only two groups of order p3. The group M(p) =
I(p, 1) is isomorphic to the Heisenberg group over [F,,. A generalization of the finite Heisenberg groups
are the extraspecial groups, which are defined to be p—groups G with ZG order p and G/ ZG nontrivial
elementary abelian. In particular, extraspecial groups are JN2, and it follows from Theorem 11 that there
are precisely two distinct extraspecial groups of order p!*2™ for each choice of a prime p and positive
integer m and that this exhausts all extraspecial groups.

3 Minimal nonabelian quotients of B,(X,)

In this section we provide the proof of Theorem 1(b). The strategy of the proof will be to utilize an
explicit presentation of the surface braid groups (Theorem 13) to characterize braid-free quotients by the
relations that they must satisfy (Lemma 15). We will then show that many JN2 groups are realized as
nonabelian braid-free quotients of B,(X¢) (Lemma 16) and finally prove that all nonabelian braid-free
quotients of minimum order belong to the list of JN2 groups in Lemma 16.
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Theorem 13 (Presentation of By, (Xg), Bellingeri [1, Theorem 1.2]) For g > 1 and n > 2, the surface
braid group B, (X¢) admits the presentation given by
e generators oy,...,0y—1,d1,...,dg, by, ..., bg,
e braid relations
loi,0/]=1 for 1 <i,j<mn—1landl|i—j|>2,

0i0i4+10; = 0j4+10;0i4+1 for 1 <i <n-2,

and mixed relations

RD [ar,0i] =[br,0i]=1 for | <r <gandi # 1,

(R2) [a,,al_laral_l] = [br,ol_lbral_l] =1 for1 <r=<g,

(R3) [as,alaral_l] = [bs,albrol_l] =1 for 1 <s<r<g,
[bs,alaral_l]z[as,olbral_l]= 1 forl1 <s<r=<g,

(R4) [ar,al_lbrol_l] = 012 for 1 <r<g,

(TR) [ay.b7 "]+ lag.by'|=0105---0p_ - 0201,

Remark 14 (Geometric interpretation of the presentation) The Bellingeri generators o; can be identified
as the images of the Artin braid generators under a choice of embedding B, — Bj(Xg). The remaining
generators a, and b, can be understood loosely to be the standard generators of 71 (Xg).

More precisely, let {pi, ..., pn} € UConf,(Xg) denote the basepoint of B,(Xg) and let D C g be an
open disk with p; € dD, with p,,..., p, in the interior of D. There is an inclusion

ﬂl(zg_D»pl) — Bn(zg)

which takes a loop y in Xy — D to the braid on X, with first strand y and all other strands trivial. The
group 1(Xg — D, py) is free on 2g generators and surjects onto ;(Xg, p1), which has a standard
presentation. The surface braid group generators a,, b, € B,(Zg) can then be understood as a choice of a
free generating set of 7 (Xg — D, p;) which lifts the standard generating set of 71 (X¢, p1). It should be
emphasized that the lifts are not canonical and that the presentation depends on the choices; the curious
reader may refer to [1] for illustrations of the loops which produce this particular presentation.

Lemma 15 (Characterization of braid-free quotients) Let n > 3 and g > 1. A finite group G is a

braid-free quotient of B,(X¢) if and only if G admits a generating set {0, a1, by, ... ,ag, be} satisfying
the relations

(R1) lar.0]=[b;.0]=1 for 1 <r<g,

(R3) las,a,) = [bs,by) = [bs,ar] = [as.by] =1 for1<s<r<g,

(R4 [ay,by] = o2 for1<r<g,

(TR') o2etn=1) — 1
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Proof A finite quotient of B, (X) is presented by Theorem 13 with additional relations. The condition
that B, has cyclic image in a quotient is equivalent to adding the relations

o; =04, 1<i=<n.

If we add these relations and write 0 = o, the relation (R2) is made redundant and (R1), (R3), and (R4)
respectively reduce to the relations (R1”), (R3’), and (R4’), as in the statement of the lemma. The final
relation (TR) reduces to
a1, by "]+ [ag. by '] = 027D,
which is equivalent to (TR’) because from (R4’) we can write a, = br_la_za,b, so that
lar. b7 =a,b a0 b, ) (b7 0™ 2a,be)b  a T by = b o 2b, B 62, O

The following lemma proves that many JN2 groups are braid-free quotients:

Lemma 16 Letn >3 and g > 1. Let p be a prime dividing g +n — 1.

(a) If p=2then1(2%,g) and II(2/, g) for all j > 2 are nonabelian braid-free quotients of By (Zy).
(b) If p is odd then1(p, g) and II(p’ , g) for all j > 1 are nonabelian braid-free quotients of By (Zy).

Proof Let p be a prime dividing g +7n—1. By Lemma 15 we need to exhibit a generating set {0, a,, b, }
of each group satisfying relations (R1), (R3'), (R4’), and (TR’).

In any of the JN2 groups in the statement of the theorem, fix a generator z of the center and choose
ap, by, ..., ag, be tobe the representatives of a symplectic basis of V' given by Lemma 7. By Theorem 11
this basis will be type I for [(22, g) and I(p, g), and type II for I1(2/, g) and II(p/, g). Note that with the
given symplectic form, the condition that a basis is symplectic is simply that all basis elements commute
except symplectic pairs [a,, b,| = 27! n particular, (R3’) is satisfied.

We will now choose o for each group and verify that {o, a,, b, } generate the group and satisfy (R4’).

(1) 1(22%, g) is generated by o = z and {a,, b, }. These satisfy (R4') because [a,, b,] = z? = 02.

j—2
P — 7 If we choose o = z2

(2) 1(27,g), for a given j > 2, is generated by {a,, b, } alone because ay =

then (R4’) is satisfied because [a,, b,] = 27 62,

(3) 1(p, g) for odd prime p is generated by o = (P +1)/2 anq the a, and b,. Then (R4') is satisfied

because [a,,b,] =z = o2.

4 1(p/, g), for given odd prime p and j = 1, is generated by a, and b, alone because af = z. Then
set 0 = 2P/ +P77D/2 g4 that (R4) is satisfied because [ay,b,] = P =52,

In all cases o was chosen to be central, and hence (R1’) is satisfied.

It remains to check that (TR’) holds, namely that |o| divides 2(g + n — 1). Recall that we are assuming
that p | (g +n—1). In cases (1) and (2), we have p =2 and |6| =4 =2p|2(g +n—1). In cases (3)
and (4), we have |o| = p|(g+n—1). O
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Proof of Theorem 1(b) Let G be a nonabelian braid-free quotient and let {0, a;, by, ..., ag, bg} denote
the generating set of G as given by Lemma 15. By (R1”) and (R3’), all pairs of these generators commute
except for pairs a, and b,, so G’ = (02) by (R4). Then G’ is central and nontrivial, which is to say
that G is 2—step nilpotent.

Assume now that G is of minimum order amongst nonabelian braid-free quotients of B,(Xg). Then G
has no proper nonabelian quotients and thus is JN2 of some class (p/,m).

‘We make three claims:
() p/ #2,
2) m=g,and
3) plg+n-1).

These claims will complete the proof: Since |G| = p>™1/, it follows from claims (1) and (2) that
|G| > p?8T1if pisoddand |G| > 22672 if p = 2. Claims (1) and (3) along with the minimality of G
together imply that G is one of (in particular, the smallest of) the quotients constructed in Lemma 16.
Explicitly, if g +n — 1 is even then p/ = 22. Otherwise p/ = p, where p is the smallest prime dividing
g +n — 1. Finally, G must be isomorphic to either I(p/, g) or II(p/, g) by Theorem 11.

Proof of claims Let d = |o|. By (R1'), o is central so d | p/. But p = |G'| = |0?| so d | 2p. Thus
either pisoddand p=d,or p=2and d = 4.

(1) If pis odd then p/ # 2. If p =2 then p/ >d =4 so p/ #2.
(2) We will show that dim V' = 2g by proving that
% = {a, mod ZG, b, mod ZG};‘T:1
is a basis of V. Every element x € G can be written uniquely in the form
x=okdll - af bl bl

using commuting relations (R1), (R3"), and (R4’) so % is a generating set. To prove that 4 is linearly
independent, let . o .
y=dl-afbl' b €G

and suppose that y = 0 mod ZG, which is to suppose that an arbitrary linear combination of elements of
4 is trivial in V. Then y is central, so

. bl =la}!, byl = 0721 =1,

which implies that d | 2i; and thus iy = 0 mod p: If p is odd then d = p, so p|i;. If p = 2 then
d =4|2i;s0, p=2]i.

Similarly i, = j, = 0 mod p for all r, which is to say that all coefficients of the linear combination are
trivial over the base field IF,. This proves the linear independence of 4.
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(3) The relation (TR") imposes the relation d | 2(g +n —1). Either d = pisodd ord =4 and p = 2; in
both cases (TR’) implies that p | (g +n—1). O

Proof of Corollary 4 Letn > 5and m > 3, and let g, 7 > 0. If there is a surjection B,(2g) — B, (Zp)
then the composition B, (Xg) — B (Xj;) — Sm is also surjective. Since S, is not nilpotent when m > 3,
we must have m > n. |

Remark 17 (Punctured surfaces, surfaces with boundary) Bellingeri [1] also gives a presentation of
the braid group of a genus-g surface with m punctures (equivalently for the purposes of braid groups,
m boundary components). The above methods can be used nearly verbatim to prove that the smallest
nonabelian quotient of By (Xg ;) is the smaller of S, or 1(2%, g) and I1(22, g).
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