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Relatively geometric actions of Kähler groups on CAT.0/ cube complexes
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KEJIA ZHU

We prove that for n� 2, a nonuniform lattice in PU.n; 1/ does not admit a relatively geometric action on
a CAT.0/ cube complex. As a consequence, if � is a nonuniform lattice in a noncompact semisimple Lie
group G without compact factors that admits a relatively geometric action on a CAT.0/ cube complex,
then G is commensurable with SO.n; 1/. We also prove that if a Kähler group is hyperbolic relative to
residually finite parabolic subgroups, and acts relatively geometrically on a CAT.0/ cube complex, then it
is virtually a surface group.

20F65, 22E40; 32J05, 32J27, 57N65

1 Introduction

A finitely generated group is called cubulated if it acts properly cocompactly on a CAT.0/ cube complex.
Agol [1], building on the work of Wise [29] and many others, proved that cubulated hyperbolic groups
enjoy many important properties, and used this to solve several open conjectures in 3–manifold topology,
in particular the virtual Haken and virtual fibering conjectures. Wise [29, Section 17] proved the virtual
fibering conjecture in the noncompact finite-volume setting, using the relatively hyperbolic structure of
the fundamental group.

Einstein and Groves define the notion of a relatively geometric action of a group pair .�;P/ on a CAT.0/
cube complex [10]. For such an action, elements of P act elliptically. This allows the possibility that
even though the elements of P might not act properly on any CAT.0/ cube complex, there still may be a
relatively geometric action. Relatively geometric actions are a natural generalization of proper actions
and share many of the same features as in the proper case, especially when � is hyperbolic relative to P .

Uniform lattices in SO.3; 1/ always act geometrically, and thus relatively geometrically, on CAT.0/ cube
complexes; see Bergeron and Wise [5]. Bergeron, Haglund and Wise [4] prove that in higher dimensions,
lattices in SO.n; 1/ which are arithmetic of simplest type are cubulated. It also follows from this and
Wise’s quasiconvex hierarchy theorem [29] that many “hybrid” hyperbolic n–manifolds have cubulated
fundamental groups. In the relatively geometric setting, using the work of Cooper and Futer [7], Einstein
and Groves prove that nonuniform lattices in SO.3; 1/ also admit relatively geometric actions, relative to
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their cusp subgroups [10]. In fact, they prove that if .G;P/ is hyperbolic relative to free abelian subgroups
and the Bowditch boundary @.G;P/ is homeomorphic to S2, then G is isomorphic to a nonuniform lattice
in SO.3; 1/ if and only if .G;P/ admits a relatively geometric action on a CAT.0/ cube complex. This
is a relative version of the work of Markovic [24] and Haïssinsky [21] in the convex–cocompact setting,
giving an equivalent formulation of the Cannon conjecture in terms of actions on hyperbolic CAT.0/
cube complexes. It is not known whether the above results extend to all lattices in SO.n; 1/ for n� 4.

On the other hand, the work of Delzant and Gromov implies that uniform lattices in PU.n; 1/ are not
cubulated [8, Corollary, page 52]. Recall that a group � is Kähler if � Š�1.X / for some compact Kähler
manifold X . If � � PU.n; 1/ is a torsion-free uniform lattice, then � acts freely properly discontinuously
cocompactly on complex hyperbolic n–space Hn

C . The quotient M D�nHn
C is a closed negatively curved

Kähler manifold, and in particular � is a hyperbolic Kähler group. In this context, Delzant and Gromov
showed that any infinite Kähler group that is hyperbolic and cubulated is commensurable to a surface group
of genus g � 2 [8, Corollary, page 52]. Thus � is not cubulated for n� 2. Since every uniform lattice
in PU.n; 1/ is virtually torsion free, it follows that uniform lattices in PU.n; 1/ are not cubulated if n� 2.

On the other hand, uniform lattices in PU.1; 1/D SO.2; 1/, are finite extensions of hyperbolic surface
groups, and hence are hyperbolic and cubulated. Similarly, nonuniform lattices in PU.1; 1/ are the orbifold
fundamental groups of surfaces with finitely many cusps, and hence virtually free. Such lattices admit
both proper cocompact and relatively geometric actions on CAT.0/ cube complexes. Since the cusp
subgroups of a nonuniform lattice in PU.n; 1/ for n� 2 are virtually nilpotent but not virtually abelian, it
follows from a result of Haglund [20] that such a lattice does not admit a proper action on a CAT.0/ cube
complex (see Proposition 4.2).

However, the parabolic subgroups do not yield such an obstruction to the existence of a relatively geometric
action. Thus this leaves open the question of whether nonuniform lattices in PU.n; 1/ admit relatively
geometric actions on CAT.0/ cube complexes for n� 2. Our first result answers this in the negative:

Theorem 1.1 Let � � PU.n; 1/ be a nonuniform lattice with n� 2, and let P be the collection of cusp
subgroups of � . Then .�;P/ does not admit a relatively geometric action on a CAT.0/ cube complex.

Corollary 1.2 Let � be a lattice in a noncompact semisimple Lie group G without compact factors.
If either

(i) � is uniform and cubulated hyperbolic , or

(ii) � is nonuniform , hyperbolic relative to its cusp subgroups P , and .�;P/ admits a relatively
geometric action on a CAT.0/ cube complex,

then G is commensurable to SO.n; 1/ for some n� 1.

We say that a relatively hyperbolic group pair .�;P/ is properly relatively hyperbolic if P ¤ f�g. The
following result considers general relatively geometric actions of Kähler relatively hyperbolic groups on
CAT.0/ cube complexes (when the peripheral subgroups are residually finite):
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Theorem 1.3 Let .�;P/ be a properly relatively hyperbolic pair such that each element of P is residually
finite. If � is Kähler and acts relatively geometrically on a CAT.0/ cube complex, then � is virtually a
hyperbolic surface group.

We will deduce Theorem 1.1 from Theorem 1.3 in Section 4. In fact, nonuniform lattices in PU.n; 1/ are
Kähler for n� 3; see Toledo [28, Theorem 2]. Hence Theorem 1.1 follows immediately from Theorem 1.3
in this range. However, our proof of Theorem 1.1 will work for all n � 2, and will not use this fact.
In [9], Delzant and Py considered actions of Kähler groups on locally finite finite-dimensional CAT.0/
cube complexes that are more general than geometric ones (see Theorem A for precise hypotheses),
and showed that every such action virtually factors through a surface group. We remark that the cube
complexes appearing in relatively geometric actions will in general not be locally finite.

We conclude the introduction with a sample application of Theorem 1.3:

Corollary 1.4 Suppose that A and B are infinite residually finite groups which are not virtually free. No
C 0
�

1
6

�
–small cancellation quotient of A�B is Kähler.

Proof Let � be such a small cancellation quotient of A�B. By Einstein and Ng [13, Theorem 1.1], � is
residually finite and admits a relatively geometric action on a CAT.0/ cube complex. If � were Kähler, it
would be a virtual surface group by Theorem 1.3. However, A embeds in � as an infinite-index subgroup,
and the only infinite-index subgroups of virtual surface groups are virtually free.

Outline In Section 2 we review the definition of a relatively geometric action of a group pair on a
CAT.0/ cube complex and the notion of group-theoretic Dehn fillings, and then collect some known
results about these. In Section 3 we prove Theorem 1.3. In Section 4, after reviewing the Borel–Serre and
toroidal compactifications of nonuniform quotients of complex hyperbolic space, we prove Theorem 1.1.

Acknowledgments Bregman was supported by NSF grant DMS-2052801. Groves was supported by
NSF grants DMS-1904913 and DMS-2203343. Zhu would like to thank his advisor, Daniel Groves, for
introducing him to the subject and answering his questions. He would like to thank his coadvisor, Anatoly
Libgober, for his constant support and warm encouragement. We are also grateful to the referee for many
helpful comments that improved the paper.

2 Actions on CAT.0/ cube complexes

In this section we review the notion of a relatively geometric action of a group pair .�;P/ on a CAT.0/
cube complex, defined by Einstein and Groves in [10]. We then introduce Dehn fillings of group pairs
and recall some useful results from [11].
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4130 Corey Bregman, Daniel Groves and Kejia Zhu

Definition 2.1 Let � be a group and P a collection of subgroups of � . A (cellular) action of � on a cell
complex X is relatively geometric with respect to P if

(i) � nX is compact,

(ii) each element of P acts elliptically on X , and

(iii) each cell stabilizer in X is either finite or else conjugate to a finite-index subgroup of an element of P .

Recall that if .�;P/ is a relatively hyperbolic group pair and �0 � � has finite index then .�0;P0/ is also
a relatively hyperbolic group pair, where P0 is the set of representatives of the �0–conjugacy classes of

(1) fPg
\�0 j g 2 �; P 2 Pg

Since Œ� W �0� is finite, P0 is still a finite collection of subgroups. It follows that if � admits a relatively
geometric action on a cell complex X , then .�0;P0/ also admits a relatively geometric action on X by
restriction. Thus we have the following result:

Lemma 2.2 Let �0 � � be a finite-index subgroup. If .�;P/ has a relatively geometric action on a cell
complex X , then the restriction of this action to .�0;P0/ is also relatively geometric , where P0 is defined
as in (1).

2.1 Dehn fillings

Dehn fillings first appeared in the context of 3–manifold topology and were subsequently generalized to
the group-theoretic setting by Osin [26] and Groves and Manning [17]. We now recall the notion of a
Dehn filling of a group pair .G;P/:

Definition 2.3 (Dehn filling) Given a group pair .G;P/, where P D fP1; : : : ;Pmg, and a choice of
normal subgroups of peripheral groups N D fNi E Pig, the Dehn filling of .G;P/ with respect to N is
the pair .G; xP/, where G DG=K and K D

˝̋S
Ni

˛̨
is the normal closure in G of the group generated by˚S

i Ni

	
and xP is the set of images of P under this quotient. The Ni are called the filling kernels. When

we want to specify the filling kernels we write G.N1; : : : ;Nm/ for the quotient G.

Definition 2.4 (peripherally finite) If each normal subgroup Ni has finite index in Pi , the filling is said
to be peripherally finite.

Definition 2.5 (sufficiently long) We say that a property X holds for all sufficiently long Dehn fillings
of .G;P/ if there is a finite subset B�Gnf1g such that whenever Ni\BD∅ for all i , the corresponding
Dehn filling G.N1; : : : ;Nn/ has property X .

The proof of the next theorem relies on the notion of a Q–filling of a collection of subgroups Q of G.
Recall from [19] that given a subgroup Q < G, the quotient G.N1; : : : ;Nm/ is a Q–filling if, for all
g 2G and Pi 2 P , jQ\P

g
i j D1 implies N

g
i �Q. If QD fQ1; : : : ;Qlg is a family of subgroups, then

G.N1; : : : ;Nm/ is a Q–filling if it is a Q–filling for every Q 2Q.

Algebraic & Geometric Topology, Volume 24 (2024)
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Let Q be a collection of finite-index subgroups of elements of P such that any infinite cell stabilizer
contains a conjugate of an element of Q. The following is proved in [11]:

Theorem 2.6 [11, Proposition 4.1 and Corollary 4.2] Let .�;P/ be a relatively hyperbolic pair such
that the elements of P are residually finite. If .�;P/ admits a relatively geometric action on a CAT.0/
cube complex X , then

(i) for sufficiently long Q–fillings �!� D�=K, the quotient X DKnX is a CAT.0/ cube complex,
and

(ii) any sufficiently long peripherally finite Q–filling of � is hyperbolic and virtually special.

The following result is implicit in [11]. For completeness, we provide a proof.

Lemma 2.7 In the context of Theorem 2.6(i), the action of � on X is relatively geometric.

Proof Since � nX D � nX the action is cocompact. Let xP be the induced peripheral structure on � (the
image of P). The fact that elements of xP act elliptically on X follows from the fact that elements of P
act elliptically on X . Because each cell stabilizer of � Õ X is either finite or conjugate to a finite index
of subgroup of some Pi 2 P , this implies that the cell stabilizers of � Õ X are conjugate to finite-index
subgroups of Pi=.K\Pi/ (the elements of xP). Thus the action of � on X is relatively geometric.

3 Relatively geometric actions: the Kähler case

In this section we apply Theorem 2.6 to prove Theorem 1.3. The main idea is to use Dehn filling to
produce a minimal action of a finite-index subgroup of � on a tree with finite kernel. A deep result of
Gromov and Schoen implies that any Kähler group admitting a minimal action on a tree with finite kernel
must be virtually a hyperbolic surface group [16] (see also [27, Theorem 6.1] for a detailed discussion
and explanation).

Proof of Theorem 1.3 Suppose that .�;P/ acts relatively geometrically on a CAT.0/ cube complex.
Since the elements of P are residually finite, there exists a finite index �0 � � such that �0 is torsion
free and �0 nX is special, by [11, Theorem 1.4].

Cutting along an embedded two-sided hyperplane H in �0 nX yields a splitting of �0 according to
the complex of groups version of van Kampen’s theorem [6, III.C.3.11(5), III.C.3.12, page 552].1 The
edge group of such a splitting is a hyperplane stabilizer for the �0–action on X , which is relatively
quasiconvex by [12, Corollary 4.11]. We may choose a hyperplane whose stabilizer is infinite-index
in �0 (if the first such hyperplane does not satisfy this requirement, then replace X by the hyperplane,
and continue until we find such a hyperplane, possibly replacing �0 by a further finite-index subgroup

1One can also see this tree directly by considering the dual tree to the collection of hyperplanes of X which project to H . See
[19, Remark 1.1] for more details.
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along the way). The action of �0 on the Bass–Serre tree T associated to this splitting has finite kernel,
since any normal subgroup contained in an infinite-index relatively quasiconvex subgroup is finite (since
an infinite normal subgroup has full limit set in the Bowditch boundary, but an infinite-index relatively
quasiconvex subgroup does not). Let F denote the kernel of the action of �0 on T .

By a result of Gromov and Schoen in [16] (see [27, Theorem 6.1] for details), the induced action of �0

on T factors through a surjective homomorphism ' W �0!�0, where �0 � PSL2.R/ is a cocompact
lattice. The kernel of ' is contained in F , and hence finite, so �0 is commensurable up to finite kernels
with �0, which is itself virtually a hyperbolic surface group. Since any group commensurable up to finite
kernels with a hyperbolic surface group is virtually a hyperbolic surface group, this means that �0, and
hence � , is virtually a hyperbolic surface group, as desired.

4 Relatively geometric actions: lattices in PU.n; 1/

Let � be a nonuniform lattice in PU.n; 1/. Then � acts properly discontinuously on complex hyperbolic
space Hn

C and the quotient, which we henceforth denote by M D � nHn
C , is a noncompact orbifold

of finite volume with finitely many cusps. Each cusp corresponds to a conjugacy class of subgroups
stabilizing a parabolic fixed point in @1Hn

C . Farb [14] proved that � is hyperbolic relative to the collection
of these cusp subgroups, which we denote by P . In this section, we prove Theorem 1.1, namely that
.�;P/ does not admit a relatively geometric action on a CAT.0/ cube complex.

Throughout the course of the proof, we pass freely to finite-index subgroups by invoking Lemma 2.2.
In order to streamline the exposition, we do not refer to Lemma 2.2 each time. It is well known that �
has a torsion-free subgroup of finite index, so (passing to this finite-index subgroup if necessary) for the
remainder of this section we assume that � � PU.n; 1/ is torsion free.

4.1 The structure of cusps

We now briefly review the geometric structure of cusps in M . For more details see [15]. Recall that up
to scaling, each horosphere in Hn

C is isometric to H2n�1.R/, the .2n�1/–dimensional real Heisenberg
group, equipped with a left-invariant metric. The Heisenberg group is a central extension

(2) 1!R!H2n�1.R/!R2n�2
! 1

with extension 2–cocycle equal to the standard symplectic form

! D 2

n�1X
iD1

dxi ^ dyi ;

where .x1;y1; : : : ;xn�1;yn�1/ are coordinates on R2n�2. The Lie algebra h2n�1 is 2–step nilpotent
with basis fX1; Y1; : : : ;Xn; Yn; Zg, where

ŒXi ;Yi �DZ;

Algebraic & Geometric Topology, Volume 24 (2024)
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and all other brackets vanish. Thus Z generates the center of h2n�1 representing the kernel R in (2),
while the remaining coordinates project to the generators of R2n�2. Choosing the identity matrix
I2n�1 as the inner product on h2n�1, we see that the isometry group of H2n�1.R/ is isomorphic to
H2n�1.R/Ì U.n� 1/, where the H2n�1.R/ factor is the action of H2n�1.R/ on itself by left translation
and the unitary group U.n � 1/ is the stabilizer of the identity. Indeed, any isometry which fixes
1 2H2n�1.R/ must also be a Lie algebra isomorphism; it therefore preserves the center hZi and induces
an isometry of R2n�2Š hX1;Y1; � � � ;Xn�1;Yn�1i preserving !. We conclude that such an isometry lies
in U.n� 1/DO2n�2.R/\Sp2n�2.R/.

Definition 4.1 Let � WH2n�1.R/ÌU.n�1/!U.n�1/ be the projection. For g 2H2n�1.R/ÌU.n�1/,
we call �.g/ the rotational part of g.

The center of H2n�1.R/ is normal in H2n�1.R/ and invariant under any isometry in U.n�1/. Therefore
we have a short exact sequence

(3) 1!RDZ.H2n�1.R//!H2n�1.R/Ì U.n� 1/!R2n�2 Ì U.n� 1/! 1:

Since � is torsion free, each cusp subgroup P � � is isomorphic to a discrete torsion-free cocompact
subgroup of Isom.H2n�1.R//. In particular, P0 D P \H2n�1.R/ is a discrete cocompact subgroup and
P \Z.H2n�1.R//Š Z. By (3), P fits into a short exact sequence

(4) 1! ZD P \Z.H2n�1.R//! P !ƒ! 1;

where ƒ is a discrete cocompact subgroup of R2n�2 Ì U.n� 1/. It follows that ƒ has a finite-index
subgroup ƒ0 isomorphic to Z2n�2, which is the image of P0.

On the level of quotient spaces, the sequence in (4) has the following translation: the quotient space
ODƒnR2n�2 is a Euclidean orbifold finitely covered by the .2n�2/–dimensional torus T Dƒ0nC

n�1,
and †D P nH2n�1.R/ is the total space of an S1–bundle over O, ie there is a fiber sequence

(5) S1 ,!†!O:

Since O need not be smooth, this is not generally a locally trivial fibration. However, as P is torsion free,
† is smooth. Passing to the torus cover, we obtain an actual fiber bundle

S1 ,! y†! T:

Choosing y† to be a regular cover with fundamental group P0, we see that the finite group F D P=P0

acts on y† preserving the fibration, and hence defines a finite group of isometries of T . Thus the stabilizer
of a point in T acts freely on the S1 fiber. Since the action of F on y† is free, it follows that point
stabilizers in T must be cyclic of finite order, and act by rotations on the fiber. Since F � U.n� 1/,
any abelian subgroup is diagonalizable. Thus, locally each point in T has a neighborhood of the form
.S1 �Dn�1/=.Z=mZ/ where D �C is the open unit disk, and Z=mZ acts on S1 by rotation by 2�=m

and on the polydisk Dn�1 by a diagonal unitary matrix � D diag.e2�k1=m; : : : ; e2�kn�1=m/ where at
least one ki is coprime to m. See Figure 1 for a schematic. Since F acts by rotation on each fiber, † is
the boundary of a disk bundle over O, which we denote by EO.
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Dn�1

Figure 1: The local picture of the fibration in (5) near a singular point of O. A nonsingular fiber
(not dashed) winds mD 2 times around the singular fiber (dashed).

Recall that the center of H2n�1.R/ is quadratically distorted. It follows that the center of P is quadratically
distorted as well. By [20, Theorem 1.5], there is no proper action of P on a CAT.0/ cube complex.
Therefore we have:

Proposition 4.2 Let � � PU.n; 1/ be a nonuniform lattice , and suppose � acts on a CAT.0/ cube
complex X . The action of each cusp subgroup of � is not proper. In particular , � is not cubulated.

4.2 The toroidal compactification of M

The toroidal compactification is a natural compactification of M which fills in the cusps with the Euclidean
orbifolds described in Section 4.1. Let Oi be the Euclidean orbifold quotient of †i , with corresponding
disk bundle Ei . Thus we can identify Ei nOi with the cusp Ci , then compactify M by adding

F
i Oi at

infinity. The result is a Kähler orbifold T .M / with boundary divisor D D
F

i Oi . The pair .T .M /;D/

is called the toroidal compactification of M . See [23; 2] for more details.

If the parabolic elements in � have trivial rotational part, then each Oi is a .2n�2/–dimensional torus,
T .M / is a smooth Kähler manifold and D is a smooth divisor in T .M /. Moreover, Hummel and
Schroeder show that T .M / admits a nonpositively curved Riemannian metric [23]. In particular, T .M / is
aspherical; if �D �1.T .M // then T .M / is a K.�; 1/. It is clear from the construction that �1.T .M //

is the quotient of �1.M / by all the centers of the peripheral subgroups. The following lemma ensures
that we can always find a finite cover of M whose toroidal compactification is smooth:

Lemma 4.3 Let � � PU.n; 1/ be torsion free and let M D � nHn
C be the quotient. There exists a finite

cover M 0!M such that the toroidal compactification of M 0 is smooth.

Proof By the main theorem of [22, page 2453] , there exists a finite subset F �� of parabolic isometries
such that if N E � is a normal subgroup satisfying F \N D ∅, then any parabolic isometry in N

Algebraic & Geometric Topology, Volume 24 (2024)
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has no rotational part. Since � is residually finite and F is finite, we can find a finite-index normal
subgroup � 0E� such that � 0\F D∅. Therefore the finite cover M 0 WD� 0 nHn

C of M admits a toroidal
compactification which is smooth.

4.3 Proof of Theorem 1.1

Proof By Lemma 4.3 we may assume that � � SU.n; 1/ is torsion free and the toroidal compactification
T .M / is smooth. In particular, � and all of its peripheral subgroups are residually finite.

Suppose .�;P/ admits a relatively geometric action on a CAT.0/ cube complex X . Given a finite-index
subgroup �0 � � , let P0 be the induced peripheral structure on �0, and let �0 be �1.T .M0//, where
M0D �0 nHn

C . Since the kernel of the quotient map �0!�0 is normally generated by subgroups in P0,
we get an induced peripheral structure .�0;A0/, where A0 is the collection of images of elements of P0.
Our strategy is to show that there exists a finite-index subgroup �0 � � such that the pair .�0;A0/ is
relatively hyperbolic and admits a relatively geometric action on a CAT.0/ cube complex. Since T .M0/

is smooth (since T .M / is), �0 is Kähler. Thus, as n� 2, we will get a contradiction by Theorem 1.3.

Let P DfP1; : : : ;Pkg be the induced peripheral structure on � . Now let Z.Pi/ be the center of Pi . As in
Section 2.1 let Q be a set of finite-index subgroups of elements of P such that any infinite stabilizer for the
�–action on X contains a conjugate of an element of Q. We apply Theorem 2.6(1) to a sufficiently long
Q–filling Z D fZ1; : : : ;Zkg where Zi �Z.Pi/ is a finite-index subgroup. Residual finiteness of Z.Pi/

implies the existence of such sufficiently long Q–fillings. We thus obtain a Dehn filling  W�!�D�=K

determined by the Zi such that Y DK nX is a CAT.0/ cube complex.

Let .�;A/ be the induced peripheral structure on �. By Theorem 2.6, we know that .�;A/ is relatively
hyperbolic. Lemma 2.7 implies that the action of � on Y is relatively geometric.

Finally, we claim that there exists a finite-index subgroup �0 �� that is torsion-free. Since the elements
of A are virtually abelian, and hence residually finite, � is also residually finite by [11, Corollary 1.7].
Since � is torsion free, by [18, Theorem 4.1] so long as the filling �!� is long enough (which we may
assume without loss of generality), any element of finite order in � is conjugate into some element of A.
As there are finitely many elements of A, each of which has only finitely many conjugacy classes of
finite-order elements, we can find a finite-index subgroup �0 �� which avoids each of these conjugacy
classes, and hence is torsion free.

The induced peripheral structure .�0;A0/ is relatively hyperbolic and �0 Õ Y is relatively geometric by
Lemma 2.2. Let �0D 

�1.�0/ and let P0D fP0;1; : : : ;P0;r g be the induced peripheral structure on �0.
Then K � �0, and since �0 is torsion free, this implies K \P0;i D Z.P0;i/ for each i . As P0 is the
collection of cusp subgroups of M0 D �0 nHn

C , we conclude that �0 D �1.T .M //. Thus �0 is Kähler
and acts relatively geometrically on Y . By Theorem 1.3, we conclude that �0 is virtually a hyperbolic
surface group, which is impossible because �0 contains a subgroup isomorphic to Z2n�2 and n� 2.
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4.4 Proof of Corollary 1.2

Proof A uniform lattice (resp. nonuniform lattice) � in a semisimple Lie group G is hyperbolic (resp.
hyperbolic relative to its cusp subgroups P) if and only if G has rank 1. One direction of this is proved
by Farb [14, Theorem 4.11], and the other by Behrstock, Drut,u and Mosher [3, Theorem 1.2]. Any
rank-1 noncompact semisimple Lie group is commensurable with one of SO.n; 1/, PU.n; 1/, Sp.n; 1/
for n � 2, or the isometry group of the octonionic hyperbolic plane H2

O. The last and Sp.n; 1/ have
property (T), while SO.n; 1/ and PU.n; 1/ do not. Hence if � is commensurable with a lattice in Sp.n; 1/
or Isom.H2

O/, then � has (T).

By a result of Niblo and Reeves [25, Theorem B], any action of a group with property (T) on a finite-
dimensional CAT.0/ cube complex has a global fixed point, so lattices in Sp.n; 1/ and Isom.H2

O/ admit
neither geometric nor relatively geometric actions on CAT.0/ cube complexes. Hence if � is as in the
statement of the result, it must be commensurable to a lattice in either PU.n; 1/ or SO.n; 1/. For n� 2, the
uniform case of � � PU.n; 1/ is eliminated by the work of Delzant and Gromov [8, Corollary, page 52].
The corollary now follows from Theorem 1.1.

References
[1] I Agol, The virtual Haken conjecture, Doc. Math. 18 (2013) 1045–1087 MR Zbl

[2] A Ash, D Mumford, M Rapoport, Y-S Tai, Smooth compactifications of locally symmetric varieties, 2nd
edition, Cambridge Univ. Press (2010) MR Zbl

[3] J Behrstock, C Drut,u, L Mosher, Thick metric spaces, relative hyperbolicity, and quasi-isometric rigidity,
Math. Ann. 344 (2009) 543–595 MR Zbl

[4] N Bergeron, F Haglund, D T Wise, Hyperplane sections in arithmetic hyperbolic manifolds, J. Lond. Math.
Soc. 83 (2011) 431–448 MR Zbl

[5] N Bergeron, D T Wise, A boundary criterion for cubulation, Amer. J. Math. 134 (2012) 843–859 MR Zbl

[6] M R Bridson, A Haefliger, Metric spaces of non-positive curvature, Grundl. Math. Wissen. 319, Springer
(1999) MR Zbl

[7] D Cooper, D Futer, Ubiquitous quasi-Fuchsian surfaces in cusped hyperbolic 3–manifolds, Geom. Topol.
23 (2019) 241–298 MR Zbl

[8] T Delzant, M Gromov, Cuts in Kähler groups, from “Infinite groups: geometric, combinatorial and
dynamical aspects” (L Bartholdi, T Ceccherini-Silberstein, T Smirnova-Nagnibeda, A Zuk, editors), Progr.
Math. 248, Birkhäuser, Basel (2005) 31–55 MR Zbl

[9] T Delzant, P Py, Cubulable Kähler groups, Geom. Topol. 23 (2019) 2125–2164 MR Zbl

[10] E Einstein, D Groves, Relative cubulations and groups with a 2–sphere boundary, Compos. Math. 156
(2020) 862–867 MR Zbl

[11] E Einstein, D Groves, Relatively geometric actions on CAT.0/ cube complexes, J. Lond. Math. Soc. 105
(2022) 691–708 MR Zbl

Algebraic & Geometric Topology, Volume 24 (2024)

https://doi.org/10.4171/dm/421
http://msp.org/idx/mr/3104553
http://msp.org/idx/zbl/1286.57019
https://doi.org/10.1017/CBO9780511674693
http://msp.org/idx/mr/2590897
http://msp.org/idx/zbl/1209.14001
https://doi.org/10.1007/s00208-008-0317-1
http://msp.org/idx/mr/2501302
http://msp.org/idx/zbl/1220.20037
https://doi.org/10.1112/jlms/jdq082
http://msp.org/idx/mr/2776645
http://msp.org/idx/zbl/1236.57021
https://doi.org/10.1353/ajm.2012.0020
http://msp.org/idx/mr/2931226
http://msp.org/idx/zbl/1279.20051
https://doi.org/10.1007/978-3-662-12494-9
http://msp.org/idx/mr/1744486
http://msp.org/idx/zbl/0988.53001
https://doi.org/10.2140/gt.2019.23.241
http://msp.org/idx/mr/3921320
http://msp.org/idx/zbl/1444.57013
https://doi.org/10.1007/3-7643-7447-0_3
http://msp.org/idx/mr/2195452
http://msp.org/idx/zbl/1116.32016
https://doi.org/10.2140/gt.2019.23.2125
http://msp.org/idx/mr/3988093
http://msp.org/idx/zbl/1512.20132
https://doi.org/10.1112/s0010437x20007095
http://msp.org/idx/mr/4079630
http://msp.org/idx/zbl/1481.20167
https://doi.org/10.1112/jlms.12556
http://msp.org/idx/mr/4411337
http://msp.org/idx/zbl/1521.20096


Relatively geometric actions of Kähler groups on CAT.0/ cube complexes 4137

[12] E Einstein, D Groves, T Ng, Separation and relative quasiconvexity criteria for relatively geometric
actions, Groups Geom. Dyn. 18 (2024) 649–676 MR Zbl

[13] E Einstein, T Ng, Relative cubulation of small cancellation free products, preprint (2021) arXiv 2111.03008

[14] B Farb, Relatively hyperbolic groups, Geom. Funct. Anal. 8 (1998) 810–840 MR Zbl

[15] W M Goldman, Complex hyperbolic geometry, Clarendon, New York (1999) MR Zbl

[16] M Gromov, R Schoen, Harmonic maps into singular spaces and p–adic superrigidity for lattices in groups
of rank one, Inst. Hautes Études Sci. Publ. Math. 76 (1992) 165–246 MR Zbl

[17] D Groves, J F Manning, Dehn filling in relatively hyperbolic groups, Israel J. Math. 168 (2008) 317–429
MR Zbl

[18] D Groves, J F Manning, Dehn fillings and elementary splittings, Trans. Amer. Math. Soc. 370 (2018)
3017–3051 MR Zbl

[19] D Groves, J F Manning, Hyperbolic groups acting improperly, Geom. Topol. 27 (2023) 3387–3460 MR
Zbl

[20] F Haglund, Isometries of CAT.0/ cube complexes are semi-simple, Ann. Math. Qué. 47 (2023) 249–261
MR Zbl

[21] P Haïssinsky, Hyperbolic groups with planar boundaries, Invent. Math. 201 (2015) 239–307 MR Zbl

[22] C Hummel, Rank one lattices whose parabolic isometries have no rotational part, Proc. Amer. Math. Soc.
126 (1998) 2453–2458 MR Zbl

[23] C Hummel, V Schroeder, Cusp closing in rank one symmetric spaces, Invent. Math. 123 (1996) 283–307
MR Zbl

[24] V Markovic, Criterion for Cannon’s conjecture, Geom. Funct. Anal. 23 (2013) 1035–1061 MR Zbl

[25] G Niblo, L Reeves, Groups acting on CAT.0/ cube complexes, Geom. Topol. 1 (1997) 1–7 MR Zbl

[26] D V Osin, Peripheral fillings of relatively hyperbolic groups, Invent. Math. 167 (2007) 295–326 MR Zbl

[27] P Py, Lectures on Kähler groups, preprint (2024) https://www-fourier.ujf-grenoble.fr/~py/
Documents/Livre-Kahler/lectures.pdf

[28] D Toledo, Examples of fundamental groups of compact Kähler manifolds, Bull. London Math. Soc. 22
(1990) 339–343 MR Zbl

[29] D T Wise, The structure of groups with a quasiconvex hierarchy, Annals of Mathematics Studies 209,
Princeton Univ. Press (2021) MR Zbl

Department of Mathematics, Tufts University
Medford, MA, United States
Department of Mathematics, Statistics and Computer Science, University of Illinois at Chicago
Chicago, IL, United States
Department of Mathematics, University of California at Riverside
Riverside, CA, United States

corey.bregman@tufts.edu, dgroves@uic.edu, kejia.zhu@ucr.edu

https://sites.google.com/view/cbregman, http://homepages.math.uic.edu/~groves/,
https://sites.google.com/view/kejiazhu

Received: 21 August 2023 Revised: 5 January 2024

Geometry & Topology Publications, an imprint of mathematical sciences publishers msp

https://doi.org/10.4171/ggd/774
https://doi.org/10.4171/ggd/774
http://msp.org/idx/mr/4729821
http://msp.org/idx/zbl/07903053
http://msp.org/idx/arx/2111.03008
https://doi.org/10.1007/s000390050075
http://msp.org/idx/mr/1650094
http://msp.org/idx/zbl/0985.20027
http://msp.org/idx/mr/1695450
http://msp.org/idx/zbl/0939.32024
https://doi.org/10.1007/BF02699433
https://doi.org/10.1007/BF02699433
http://msp.org/idx/mr/1215595
http://msp.org/idx/zbl/0896.58024
https://doi.org/10.1007/s11856-008-1070-6
http://msp.org/idx/mr/2448064
http://msp.org/idx/zbl/1211.20038
https://doi.org/10.1090/tran/7017
http://msp.org/idx/mr/3766840
http://msp.org/idx/zbl/1427.20058
https://doi.org/10.2140/gt.2023.27.3387
http://msp.org/idx/mr/4674833
http://msp.org/idx/zbl/1528.20067
https://doi.org/10.1007/s40316-021-00186-2
http://msp.org/idx/mr/4645691
http://msp.org/idx/zbl/1528.20069
https://doi.org/10.1007/s00222-014-0552-x
http://msp.org/idx/mr/3359053
http://msp.org/idx/zbl/1360.20035
https://doi.org/10.1090/S0002-9939-98-04289-0
http://msp.org/idx/mr/1443390
http://msp.org/idx/zbl/0898.22005
https://doi.org/10.1007/s002220050027
http://msp.org/idx/mr/1374201
http://msp.org/idx/zbl/0860.53025
https://doi.org/10.1007/s00039-013-0228-5
http://msp.org/idx/mr/3061779
http://msp.org/idx/zbl/1276.20051
https://doi.org/10.2140/gt.1997.1.1
http://msp.org/idx/mr/1432323
http://msp.org/idx/zbl/0887.20016
https://doi.org/10.1007/s00222-006-0012-3
http://msp.org/idx/mr/2270456
http://msp.org/idx/zbl/1116.20031
https://www-fourier.ujf-grenoble.fr/~py/Documents/Livre-Kahler/lectures.pdf
https://www-fourier.ujf-grenoble.fr/~py/Documents/Livre-Kahler/lectures.pdf
https://doi.org/10.1112/blms/22.4.339
http://msp.org/idx/mr/1058308
http://msp.org/idx/zbl/0711.57024
https://doi.org/10.2307/j.ctv1574pr6
http://msp.org/idx/mr/4298722
http://msp.org/idx/zbl/1511.20002
mailto:corey.bregman@tufts.edu
mailto:dgroves@uic.edu
mailto:kejia.zhu@ucr.edu
https://sites.google.com/view/cbregman
http://homepages.math.uic.edu/~groves/
https://sites.google.com/view/kejiazhu
http://msp.org
http://msp.org


ALGEBRAIC & GEOMETRIC TOPOLOGY
msp.org/agt

EDITORS

PRINCIPAL ACADEMIC EDITORS

John Etnyre
etnyre@math.gatech.edu

Georgia Institute of Technology

Kathryn Hess
kathryn.hess@epfl.ch

École Polytechnique Fédérale de Lausanne

BOARD OF EDITORS

Julie Bergner University of Virginia
jeb2md@eservices.virginia.edu

Steven Boyer Université du Québec à Montréal
cohf@math.rochester.edu

Tara E Brendle University of Glasgow
tara.brendle@glasgow.ac.uk

Indira Chatterji CNRS & Univ. Côte d’Azur (Nice)
indira.chatterji@math.cnrs.fr

Alexander Dranishnikov University of Florida
dranish@math.ufl.edu

Tobias Ekholm Uppsala University, Sweden
tobias.ekholm@math.uu.se

Mario Eudave-Muñoz Univ. Nacional Autónoma de México
mario@matem.unam.mx

David Futer Temple University
dfuter@temple.edu

John Greenlees University of Warwick
john.greenlees@warwick.ac.uk

Ian Hambleton McMaster University
ian@math.mcmaster.ca

Matthew Hedden Michigan State University
mhedden@math.msu.edu

Hans-Werner Henn Université Louis Pasteur
henn@math.u-strasbg.fr

Daniel Isaksen Wayne State University
isaksen@math.wayne.edu

Thomas Koberda University of Virginia
thomas.koberda@virginia.edu

Markus Land LMU München
markus.land@math.lmu.de

Christine Lescop Université Joseph Fourier
lescop@ujf-grenoble.fr

Robert Lipshitz University of Oregon
lipshitz@uoregon.edu

Norihiko Minami Yamato University
minami.norihiko@yamato-u.ac.jp

Andrés Navas Universidad de Santiago de Chile
andres.navas@usach.cl

Robert Oliver Université Paris 13
bobol@math.univ-paris13.fr

Jessica S Purcell Monash University
jessica.purcell@monash.edu

Birgit Richter Universität Hamburg
birgit.richter@uni-hamburg.de

Jérôme Scherer École Polytech. Féd. de Lausanne
jerome.scherer@epfl.ch

Vesna Stojanoska Univ. of Illinois at Urbana-Champaign
vesna@illinois.edu

Zoltán Szabó Princeton University
szabo@math.princeton.edu

Maggy Tomova University of Iowa
maggy-tomova@uiowa.edu

Chris Wendl Humboldt-Universität zu Berlin
wendl@math.hu-berlin.de

Daniel T Wise McGill University, Canada
daniel.wise@mcgill.ca

Lior Yanovski Hebrew University of Jerusalem
lior.yanovski@gmail.com

See inside back cover or msp.org/agt for submission instructions.

The subscription price for 2024 is US $705/year for the electronic version, and $1040/year (C$70, if shipping outside the US) for print and
electronic. Subscriptions, requests for back issues and changes of subscriber address should be sent to MSP. Algebraic & Geometric Topology is
indexed by Mathematical Reviews, Zentralblatt MATH, Current Mathematical Publications and the Science Citation Index.

Algebraic & Geometric Topology (ISSN 1472-2747 printed, 1472-2739 electronic) is published 9 times per year and continuously online, by
Mathematical Sciences Publishers, c/o Department of Mathematics, University of California, 798 Evans Hall #3840, Berkeley, CA 94720-3840.
Periodical rate postage paid at Oakland, CA 94615-9651, and additional mailing offices. POSTMASTER: send address changes to Mathematical
Sciences Publishers, c/o Department of Mathematics, University of California, 798 Evans Hall #3840, Berkeley, CA 94720-3840.

AGT peer review and production are managed by EditFlow® from MSP.

PUBLISHED BY

mathematical sciences publishers
nonprofit scientific publishing

https://msp.org/
© 2024 Mathematical Sciences Publishers

http://dx.doi.org/10.2140/agt
mailto:etnyre@math.gatech.edu
mailto:kathryn.hess@epfl.ch
mailto:jeb2md@eservices.virginia.edu
mailto:cohf@math.rochester.edu
mailto:tara.brendle@glasgow.ac.uk
mailto:indira.chatterji@math.cnrs.fr
mailto:dranish@math.ufl.edu
mailto:tobias.ekholm@math.uu.se
mailto:mario@matem.unam.mx
mailto:dfuter@temple.edu
mailto:john.greenlees@warwick.ac.uk
mailto:ian@math.mcmaster.ca
mailto:mhedden@math.msu.edu
mailto:henn@math.u-strasbg.fr
mailto:isaksen@math.wayne.edu
mailto:thomas.koberda@virginia.edu
mailto:markus.land@math.lmu.de
mailto:lescop@ujf-grenoble.fr
mailto:lipshitz@uoregon.edu
mailto:minami.norihiko@yamato-u.ac.jp
mailto:andres.navas@usach.cl
mailto:bobol@math.univ-paris13.fr
mailto:jessica.purcell@monash.edu
mailto:birgit.richter@uni-hamburg.de
mailto:jerome.scherer@epfl.ch
mailto:vesna@illinois.edu
mailto:szabo@math.princeton.edu
mailto:maggy-tomova@uiowa.edu
mailto:wendl@math.hu-berlin.de
mailto:daniel.wise@mcgill.ca
mailto:lior.yanovski@gmail.com
http://dx.doi.org/10.2140/agt
http://www.ams.org/mathscinet
http://www.emis.de/ZMATH/
http://www.ams.org/bookstore-getitem/item=cmp
http://www.isinet.com/products/citation/wos/
https://msp.org/
https://msp.org/


ALGEBRAIC & GEOMETRIC TOPOLOGY
Volume 24 Issue 7 (pages 3571–4137) 2024

3571Geography of bilinearized Legendrian contact homology

FRÉDÉRIC BOURGEOIS and DAMIEN GALANT

3605The deformation spaces of geodesic triangulations of flat tori

YANWEN LUO, TIANQI WU and XIAOPING ZHU

3621Finite presentations of the mapping class groups of once-stabilized Heegaard splittings

DAIKI IGUCHI

3641On the structure of the top homology group of the Johnson kernel

IGOR A SPIRIDONOV

3669The Heisenberg double of involutory Hopf algebras and invariants of closed 3–manifolds

SERBAN MATEI MIHALACHE, SAKIE SUZUKI and YUJI TERASHIMA

3693A closed ball compactification of a maximal component via cores of trees

GIUSEPPE MARTONE, CHARLES OUYANG and ANDREA TAMBURELLI

3719An algorithmic discrete gradient field and the cohomology algebra of configuration spaces of two points on complete graphs

EMILIO J GONZÁLEZ and JESÚS GONZÁLEZ

3759Spectral diameter of Liouville domains

PIERRE-ALEXANDRE MAILHOT

3801Classifying rational G–spectra for profinite G

DAVID BARNES and DANNY SUGRUE

3827An explicit comparison between 2–complicial sets and‚2–spaces

JULIA E BERGNER, VIKTORIYA OZORNOVA and MARTINA ROVELLI

3875On products of beta and gamma elements in the homotopy of the first Smith–Toda spectrum

KATSUMI SHIMOMURA and MAO-NO-SUKE SHIMOMURA

3897Phase transition for the existence of van Kampen 2–complexes in random groups

TSUNG-HSUAN TSAI

3919A qualitative description of the horoboundary of the Teichmüller metric

AITOR AZEMAR

3985Vector fields on noncompact manifolds

TSUYOSHI KATO, DAISUKE KISHIMOTO and MITSUNOBU TSUTAYA

3997Smallest nonabelian quotients of surface braid groups

CINDY TAN

4007Lattices, injective metrics and the K.�;1/ conjecture

THOMAS HAETTEL

4061The real-oriented cohomology of infinite stunted projective spaces

WILLIAM BALDERRAMA

4085Fourier transforms and integer homology cobordism

MIKE MILLER EISMEIER

4103Profinite isomorphisms and fixed-point properties

MARTIN R BRIDSON

4115Slice genus bound in DTS2 from s–invariant

QIUYU REN

4127Relatively geometric actions of Kähler groups on CAT.0/ cube complexes

COREY BREGMAN, DANIEL GROVES and KEJIA ZHU

A
L

G
E

B
R

A
IC

&
G

E
O

M
E

T
R

IC
T

O
P

O
L

O
G

Y
2024

Vol.24,
Issue

7
(pages

3571–4137)

http://dx.doi.org/10.2140/agt.2024.24.3571
http://dx.doi.org/10.2140/agt.2024.24.3605
http://dx.doi.org/10.2140/agt.2024.24.3621
http://dx.doi.org/10.2140/agt.2024.24.3641
http://dx.doi.org/10.2140/agt.2024.24.3669
http://dx.doi.org/10.2140/agt.2024.24.3693
http://dx.doi.org/10.2140/agt.2024.24.3719
http://dx.doi.org/10.2140/agt.2024.24.3759
http://dx.doi.org/10.2140/agt.2024.24.3801
http://dx.doi.org/10.2140/agt.2024.24.3827
http://dx.doi.org/10.2140/agt.2024.24.3875
http://dx.doi.org/10.2140/agt.2024.24.3897
http://dx.doi.org/10.2140/agt.2024.24.3919
http://dx.doi.org/10.2140/agt.2024.24.3985
http://dx.doi.org/10.2140/agt.2024.24.3997
http://dx.doi.org/10.2140/agt.2024.24.4007
http://dx.doi.org/10.2140/agt.2024.24.4061
http://dx.doi.org/10.2140/agt.2024.24.4085
http://dx.doi.org/10.2140/agt.2024.24.4103
http://dx.doi.org/10.2140/agt.2024.24.4115
http://dx.doi.org/10.2140/agt.2024.24.4127

	1. Introduction
	2. Actions on CAT(0) cube complexes
	2.1. Dehn fillings

	3. Relatively geometric actions: the Kähler case
	4. Relatively geometric actions: lattices in PU(n,1)
	4.1. The structure of cusps
	4.2. The toroidal compactification of M
	4.3. Proof of Theorem 1.1
	4.4. Proof of Corollary 1.2

	References
	
	

