
ATG

Algebraic & Geometric
Topology

Volume 24 (2024)

Issue 7 (pages 3571–4137)

msp



ALGEBRAIC & GEOMETRIC TOPOLOGY
msp.org/agt

EDITORS

PRINCIPAL ACADEMIC EDITORS

John Etnyre
etnyre@math.gatech.edu

Georgia Institute of Technology

Kathryn Hess
kathryn.hess@epfl.ch

École Polytechnique Fédérale de Lausanne

BOARD OF EDITORS

Julie Bergner University of Virginia
jeb2md@eservices.virginia.edu

Steven Boyer Université du Québec à Montréal
cohf@math.rochester.edu

Tara E Brendle University of Glasgow
tara.brendle@glasgow.ac.uk

Indira Chatterji CNRS & Univ. Côte d’Azur (Nice)
indira.chatterji@math.cnrs.fr

Alexander Dranishnikov University of Florida
dranish@math.ufl.edu

Tobias Ekholm Uppsala University, Sweden
tobias.ekholm@math.uu.se

Mario Eudave-Muñoz Univ. Nacional Autónoma de México
mario@matem.unam.mx

David Futer Temple University
dfuter@temple.edu

John Greenlees University of Warwick
john.greenlees@warwick.ac.uk

Ian Hambleton McMaster University
ian@math.mcmaster.ca

Matthew Hedden Michigan State University
mhedden@math.msu.edu

Hans-Werner Henn Université Louis Pasteur
henn@math.u-strasbg.fr

Daniel Isaksen Wayne State University
isaksen@math.wayne.edu

Thomas Koberda University of Virginia
thomas.koberda@virginia.edu

Markus Land LMU München
markus.land@math.lmu.de

Christine Lescop Université Joseph Fourier
lescop@ujf-grenoble.fr

Robert Lipshitz University of Oregon
lipshitz@uoregon.edu

Norihiko Minami Yamato University
minami.norihiko@yamato-u.ac.jp

Andrés Navas Universidad de Santiago de Chile
andres.navas@usach.cl

Robert Oliver Université Paris 13
bobol@math.univ-paris13.fr

Jessica S Purcell Monash University
jessica.purcell@monash.edu

Birgit Richter Universität Hamburg
birgit.richter@uni-hamburg.de

Jérôme Scherer École Polytech. Féd. de Lausanne
jerome.scherer@epfl.ch

Vesna Stojanoska Univ. of Illinois at Urbana-Champaign
vesna@illinois.edu

Zoltán Szabó Princeton University
szabo@math.princeton.edu

Maggy Tomova University of Iowa
maggy-tomova@uiowa.edu

Chris Wendl Humboldt-Universität zu Berlin
wendl@math.hu-berlin.de

Daniel T Wise McGill University, Canada
daniel.wise@mcgill.ca

Lior Yanovski Hebrew University of Jerusalem
lior.yanovski@gmail.com

See inside back cover or msp.org/agt for submission instructions.

The subscription price for 2024 is US $705/year for the electronic version, and $1040/year (C$70, if shipping outside the US) for print and
electronic. Subscriptions, requests for back issues and changes of subscriber address should be sent to MSP. Algebraic & Geometric Topology is
indexed by Mathematical Reviews, Zentralblatt MATH, Current Mathematical Publications and the Science Citation Index.

Algebraic & Geometric Topology (ISSN 1472-2747 printed, 1472-2739 electronic) is published 9 times per year and continuously online, by
Mathematical Sciences Publishers, c/o Department of Mathematics, University of California, 798 Evans Hall #3840, Berkeley, CA 94720-3840.
Periodical rate postage paid at Oakland, CA 94615-9651, and additional mailing offices. POSTMASTER: send address changes to Mathematical
Sciences Publishers, c/o Department of Mathematics, University of California, 798 Evans Hall #3840, Berkeley, CA 94720-3840.

AGT peer review and production are managed by EditFlow® from MSP.

PUBLISHED BY

mathematical sciences publishers
nonprofit scientific publishing

https://msp.org/
© 2024 Mathematical Sciences Publishers

http://dx.doi.org/10.2140/agt
mailto:etnyre@math.gatech.edu
mailto:kathryn.hess@epfl.ch
mailto:jeb2md@eservices.virginia.edu
mailto:cohf@math.rochester.edu
mailto:tara.brendle@glasgow.ac.uk
mailto:indira.chatterji@math.cnrs.fr
mailto:dranish@math.ufl.edu
mailto:tobias.ekholm@math.uu.se
mailto:mario@matem.unam.mx
mailto:dfuter@temple.edu
mailto:john.greenlees@warwick.ac.uk
mailto:ian@math.mcmaster.ca
mailto:mhedden@math.msu.edu
mailto:henn@math.u-strasbg.fr
mailto:isaksen@math.wayne.edu
mailto:thomas.koberda@virginia.edu
mailto:markus.land@math.lmu.de
mailto:lescop@ujf-grenoble.fr
mailto:lipshitz@uoregon.edu
mailto:minami.norihiko@yamato-u.ac.jp
mailto:andres.navas@usach.cl
mailto:bobol@math.univ-paris13.fr
mailto:jessica.purcell@monash.edu
mailto:birgit.richter@uni-hamburg.de
mailto:jerome.scherer@epfl.ch
mailto:vesna@illinois.edu
mailto:szabo@math.princeton.edu
mailto:maggy-tomova@uiowa.edu
mailto:wendl@math.hu-berlin.de
mailto:daniel.wise@mcgill.ca
mailto:lior.yanovski@gmail.com
http://dx.doi.org/10.2140/agt
http://www.ams.org/mathscinet
http://www.emis.de/ZMATH/
http://www.ams.org/bookstore-getitem/item=cmp
http://www.isinet.com/products/citation/wos/
https://msp.org/
https://msp.org/


msp

Algebraic & Geometric Topology 24:7 (2024) 3571–3604
DOI: 10.2140/agt.2024.24.3571

Published: 9 December 2024

Geography of bilinearized Legendrian contact homology

FRÉDÉRIC BOURGEOIS

DAMIEN GALANT

We study the geography of bilinearized Legendrian contact homology for closed connected Legendrian
submanifolds with vanishing Maslov class in 1–jet spaces. We show that this invariant detects whether
the two augmentations used to define it are DGA homotopic or not. We describe a collection of graded
vector spaces containing all possible values for bilinearized Legendrian contact homology and then show
that all these vector spaces can be realized.

53D42, 57R17

1 Introduction

Let ƒ be a closed Legendrian submanifold of the 1–jet space J 1.M/ of a manifold M . Given a generic
complex structure for the canonical contact structure on J 1.M/, one can associate to ƒ its Chekanov–
Eliashberg differential graded algebra .A.ƒ/; @/; see Chekanov [3] and Ekholm, Etnyre and Sullivan [7; 9].
The homology of .A.ƒ/; @/, called Legendrian contact homology, is an invariant of the Legendrian isotopy
class of ƒ, but it is often hard to compute. It is therefore useful to consider augmentations of .A.ƒ/; @/,
because such an augmentation " can be used to define a linearized complex .C.ƒ/; @"/. The homology is
denoted by LCH".ƒ/ and called the linearized Legendrian contact homology of ƒ with respect to ". The
collection of these homologies for all augmentations of .A.ƒ/; @/ is also an invariant of the Legendrian
isotopy class of ƒ. The geography (i.e. the determination of all possible values) of a similar homological
invariant defined using generating families was described by the first author with Sabloff and Traynor [2].
Using the work of Dimitroglou Rizell [4] on the effect of embedded surgeries on Legendrian contact
homology, this geography can be shown to hold for linearized Legendrian contact homology as well. On the
other hand, the first author and Chantraine [1] showed that it is possible to use two augmentations "1 and "2
of the Chekanov–Eliashberg DGA to define a bilinearized differential @"1;"2 on C.ƒ/. The corresponding
homology is called bilinearized Legendrian contact homology and is denoted by LCH"1;"2.ƒ/. Our object
is to describe the geography of bilinearized Legendrian contact homology. In other words, our goal is
to describe a collection of Legendrian submanifolds equipped with two augmentations such that their
bilinearized Legendrian contact homologies realize all possible values for this invariant.

When "1 D "2, bilinearized Legendrian contact homology coincides with linearized Legendrian contact
homology. More generally, if the two augmentations are DGA homotopic, LCH"1;"2.ƒ/ is isomorphic to

© 2024 MSP (Mathematical Sciences Publishers). Distributed under the Creative Commons Attribution License 4.0 (CC BY).
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3572 Frédéric Bourgeois and Damien Galant

LCH"1.ƒ/. Our first result describes a crucial difference in the behavior of bilinearized Legendrian contact
homology depending whether the two augmentations are DGA homotopic or not. More precisely, this
different behavior is detected by a map �n WLCH"1;"2

n .ƒ/!Hn.ƒ/ appearing in the duality exact sequence
for Legendrian contact homology (see Ekholm, Etnyre and Sabloff [6]) and described in Sections 2 and 3.

Theorem 1.1 Let ƒ be a closed connected Legendrian submanifold of J 1.M/ with dimM D n. Let "1
and "2 be two augmentations of the Chekanov–Eliashberg DGA of ƒ with coefficients in Z2. Then "1
and "2 are DGA homotopic if and only if the map �n W LCH"1;"2

n .ƒ/!Hn.ƒ/ is surjective.

In other words, the fundamental class of ƒ induces a class in linearized Legendrian contact homology,
while the class of the point in ƒ induces a class in bilinearized Legendrian contact homology with respect
to non-DGA homotopic augmentations.

Corollary 1.2 Bilinearized Legendrian contact homology is a complete invariant for DGA homotopy
classes of augmentations of the Chekanov–Eliashberg DGA.

The strength of this result will be illustrated in Section 3 by revisiting an important example of a Legendrian
knot featuring only a partial study of its augmentations; see Melvin and Shrestha [14]. We complete the
study of this Legendrian knot with a full description of its DGA homotopy classes of augmentations.

Our second result describes the geography of the Laurent polynomials that can be obtained as a Poincaré
polynomial for bilinearized Legendrian contact homology. We will introduce in Definition 4.1 the explicit
notion of a BLCH–admissible Laurent polynomial, and prove that only these polynomials can be obtained
as the Poincaré polynomial of bilinearized Legendrian contact homology.

Theorem 1.3 For any BLCH–admissible Laurent polynomial P , there exists a closed connected Legen-
drian submanifold ƒ of J 1.M/ and there exist two non-DGA homotopic augmentations "1 and "2 of the
Chekanov–Eliashberg DGA of ƒ, with the property that the Poincaré polynomial of LCH"1;"2.ƒ/ with
coefficients in Z2 is equal to P .

We also will establish a similar result, namely Theorem 4.17, in the specific case of Legendrian spheres.

The collection of Poincaré polynomials that is realized by bilinearized Legendrian contact homology
is considerably wider than the corresponding collection for the geography of linearized Legendrian
contact homology [2, Theorem 1.1]. For this reason, the examples of Legendrian submanifolds that are
constructed here in order to realize the geography of bilinearized Legendrian contact homology differ
substantially from those considered in [2] and exhibit new interesting phenomena. In particular, while
connected sums of Legendrian submanifolds played an important role in [2], such constructions cannot be
used here because these tend to produce pairs of unwanted generators in bilinearized Legendrian contact
homology. Moreover, we introduce a completely new construction in order to create pairs of generators
in arbitrary degrees, instead of degrees summing to n� 1 as in linearized Legendrian contact homology.
We also introduce another completely new construction in order to obtain bilinearized Legendrian contact

Algebraic & Geometric Topology, Volume 24 (2024)



Geography of bilinearized Legendrian contact homology 3573

homologies of different ranks, depending on the ordering of the two non-DGA homotopic augmentations.
Note that the examples we construct are convenient to work with, as they only have cusp singularities.

This paper is organized as follows. In Section 2 we review the definition of bilinearized Legendrian contact
homology and state its main properties. In Section 3 we study fundamental classes in bilinearized Legen-
drian contact homology, prove Theorem 1.1 and Corollary 1.2 and study the effect of connected sums on
bilinearized Legendrian contact homology. In Section 4 we study the geography of bilinearized Legendrian
contact homology and prove Theorem 1.3 and its counterpart Theorem 4.17 for Legendrian spheres.

Acknowledgments We are indebted to Josh Sabloff for providing us computer code that computes
linearized Legendrian contact homology of Legendrian knots in R3, using techniques of Henry and
Rutherford [11; 12]. Although our exposition is independent from these sources, the generalization of
this computer code by Galant to the calculation of bilinearized Legendrian contact homology played an
essential role at the beginning of this work, before its generalization to higher dimensions. We thank
Georgios Dimitroglou Rizell for a productive discussion of DGA homotopies of augmentations. An
important refinement in the constructions from Section 4 emerged after an interesting conversation with
Sylvain Courte. Special thanks go to Filip Strakoš for spotting a mistake in the proof of Proposition 4.2
impacting other parts of an earlier version of the paper. We also thank Cyril Falcon for his remarks on the
original manuscript. Bourgeois was partially supported by the Institut Universitaire de France and by
the ANR projects Quantact (16-CE40-0017), Microlocal (15-CE40-0007) and COSY (21-CE40-0002).
Galant is an FRS-FNRS research fellow.

2 Bilinearized Legendrian contact homology

The 1–jet space J 1.M/DT �M �R of a smooth n–dimensional manifoldM is equipped with a canonical
contact structure � D ker.dz � �/, where � is the Liouville 1–form on T �M and z is the coordinate
along R. Let ƒ be a closed Legendrian submanifold of this contact manifold, i.e. a closed embedded
submanifold of dimension n such that Tpƒ� �p for any p 2ƒ.

We first describe the definition of a differential graded algebra associated to ƒ, following its construction
by Ekholm, Etnyre and Sullivan [7]. The Reeb vector field associated to the contact form ˛ D dz ��

for � is simply R˛ D @=@z. A Reeb chord of ƒ is a finite nontrivial piece of integral curve for R˛ with
endpoints on ƒ. After performing a Legendrian isotopy, we can assume that all Reeb chords of ƒ are
nondegenerate, i.e. the canonical projections to the tangent space of T �M of the tangent spaces to ƒ
at the endpoints of each chord intersect transversally. Let us assume that the Maslov class �.ƒ/ of ƒ
vanishes; see [7, section 2.2].

We denote by A.ƒ/ the unital noncommutative algebra freely generated over Z2 by the Reeb chords
of ƒ. Each Reeb chord c is graded by its Conley–Zehnder �.c/ 2 Z; when ƒ is connected, this does not
depend on any additional choice since �.ƒ/D 0. The grading of c is defined as jcj D �.c/� 1. Hence,
in this case, the algebra A.ƒ/ is naturally graded.

Algebraic & Geometric Topology, Volume 24 (2024)



3574 Frédéric Bourgeois and Damien Galant

Let J be a complex structure on � which is compatible with its conformal symplectic structure. This
complex structure naturally extends to an almost complex structure, which we still denote by J , on the
symplectization .R�J 1.M/; d.et˛// by J@=@t DR˛ . We consider the moduli space zM.aI b1; : : : ; bk/

of J –holomorphic disks in R�J 1.M/ with boundary on R�ƒ and with kC1 punctures on the boundary
that are asymptotic at the first puncture to the Reeb chord a at t DC1 and at the other punctures to the
Reeb chords b1; : : : ; bk at t D�1. For a generic choice of J , this moduli space is a smooth manifold
of dimension jaj �

Pk
iD1 jbi j; see [7, Proposition 2.2]. This moduli space carries a natural R–action

corresponding to the translation of J –holomorphic disks along the t–coordinate. When fb1; : : : ; bkg¤fag,
let us denote by M.aI b1; : : : ; bk/ the quotient of this moduli space by this free action.

We define a differential @ on A.ƒ/ by

@aD
X

b1;:::;bk

dimM.aIb1;:::;bk/D0

#2M.aI b1; : : : ; bk/b1 � � � bk;

where #2M.aI b1; : : : ; bk/ is the number of elements in the corresponding moduli space, modulo 2. This
differential has degree �1 and satisfies @ ı @D 0.

The resulting differential graded algebra .A.ƒ/; @/ is called the Chekanov–Eliashberg DGA, and its
homology is called Legendrian contact homology and denoted by LCH.ƒ/. This graded algebra over Z2
depends only on the Legendrian isotopy class of ƒ.

Let us now turn to the definition of a linearized version of Legendrian contact homology. An augmentation
of .A.ƒ/; @/ is a unital DGA map " W .A.ƒ/; @/! .Z2; 0/. In other words, it is a choice of ".c/ 2Z2 for
all Reeb chords c of ƒ, it satisfies ".1/D 1, it extends to A.ƒ/ multiplicatively and additively, and it
satisfies " ı @D 0.

Such an augmentation can be used to define a linearization of .A.ƒ/; @/. Let C.ƒ/ be the vector space
over Z2 freely generated by all Reeb chords ofƒ. We also define the linearized differential @" on C.ƒ/ by

@"aD
X

b1;:::;bk

dimM.aIb1;:::;bk/D0

#2M.aI b1; : : : ; bk/

kX
iD1

".b1/ � � � ".bi�1/bi".biC1/ � � � ".bk/:

This differential has degree �1 and satisfies @" ı @" D 0. The homology of the resulting linearized
complex .C.ƒ/; @"/ is called linearized Legendrian contact homology (with respect to ") and denoted by
LCH".ƒ/. The collection of these graded modules over Z2 for all augmentations of ƒ depends only on
the Legendrian isotopy class of ƒ.

Linearized Legendrian contact homology fits into a duality long exact sequence [6] together with its
cohomological version LCH".ƒ/ and with the singular homology H.ƒ/ of the underlying n–dimensional
manifold ƒ:

� � � ! LCHn�k�1" .ƒ/! LCH"k.ƒ/
�k
�!Hk.ƒ/! LCHn�k" .ƒ/! � � � :

Algebraic & Geometric Topology, Volume 24 (2024)



Geography of bilinearized Legendrian contact homology 3575

Moreover, the map �n in the above exact sequence does not vanish. These properties induce constraints
on the graded modules over Z2 that can be realized as the linearized Legendrian contact homology of
some Legendrian submanifold, with respect to some augmentation. These constraints can be formulated
in terms of the Poincaré polynomial of LCH".ƒ/, which is the Laurent polynomial defined by

Pƒ;".t/D
X
k2Z

dimZ2
LCH"k.ƒ/t

k :

Whenƒ is connected, the duality exact sequence and the nonvanishing of �n imply that the above Poincaré
polynomial has the form

(2-1) Pƒ;".t/D q.t/Cp.t/C t
n�1p.t�1/;

where q is a monic polynomial of degree n with integral coefficients (corresponding to the image of the
maps �k) and p is a Laurent polynomial with integral coefficients (corresponding to the kernel of the
maps �k). We shall say that a Laurent polynomial of this form is LCH–admissible.

The first author together with Sabloff and Traynor [2] studied generating family homology GH.f /, an
invariant for isotopy classes of Legendrian submanifoldsƒ� .J 1.M/; �/ admitting a generating family f .
This invariant is also a graded module over Z2 and satisfies the same duality exact sequence as above. In
this study, the effect of Legendrian ambient surgeries on this invariant was determined and these operations
were used to produce many interesting examples of Legendrian submanifolds admitting generating families.
More precisely, for any LCH–admissible Laurent polynomial P , a connected Legendrian submanifold
ƒP admitting a generating family fP realizing P as the Poincaré polynomial of GH.fP / was constructed
using these operations. On the other hand, Dimitroglou Rizell [4] showed in particular that Legendrian
ambient surgeries have the same effect as above on linearized Legendrian contact homology (for more
details in the case of the connected sum, see the proof of Proposition 3.5). This result can be used step by
step in the constructions of [2] to show that, for any LCH–admissible Laurent polynomial P , there exists
an augmentation "P for ƒP such that LCH"P .ƒP /Š GH.fP /. Therefore, the geography question for
linearized Legendrian contact homology is completely determined by the above LCH–admissible Laurent
polynomials.

Finally, we turn to a generalization of linearized LCH introduced by the first author together with
Chantraine [1]. Using two augmentations "1 and "2 of .A.ƒ/; @/, we can define another differential
@"1;"2 on C.ƒ/, called the bilinearized differential:

@"1;"2aD
X

b1;:::;bk

dimM.aIb1;:::;bk/D0

#2M.aI b1; : : : ; bk/

kX
iD1

"1.b1/ � � � "1.bi�1/bi"2.biC1/ � � � "2.bk/:

As above, this differential has degree �1 and satisfies @"1;"2 ı @"1;"2 D 0. The homology of the resulting
bilinearized complex .C.ƒ/; @"1;"2/ is called bilinearized Legendrian contact homology (with respect to
"1 and "2) and denoted by LCH"1;"2.ƒ/. The collection of these graded modules over Z2 for all pairs of
augmentations of ƒ depends only on the Legendrian isotopy class of ƒ.

Algebraic & Geometric Topology, Volume 24 (2024)



3576 Frédéric Bourgeois and Damien Galant

Bilinearized Legendrian contact homology also satisfies a duality exact sequence [1], but one has to take
care of the ordering of the augmentations:

(2-2) � � � ! LCHn�k�1"2;"1
.ƒ/! LCH"1;"2

k
.ƒ/

�k
�!Hk.ƒ/

�n�k
���! LCHn�k"2;"1

.ƒ/! � � � :

Moreover, unlike in the linearized case, there exist [1, Section 5] connected Legendrian submanifolds ƒ
with augmentations "1 and "2 such that the map �n vanishes. Our goal here is to understand when the
map �n vanishes, and to study the geography of the Poincaré polynomials

Pƒ;"1;"2
.t/D

X
k2Z

dimZ2
LCH"1;"2

k
.ƒ/tk

for bilinearized Legendrian contact homology.

3 Fundamental classes in bilinearized Legendrian contact homology

There are several notions of equivalence for augmentations of DGAs that were introduced in the literature
and used in the context of the Chekanov–Eliashberg DGA. As the results of this section will show, it turns
out that the equivalence relation among augmentations that best controls the behavior of bilinearized LCH
is the notion of DGA homotopic augmentations [16, Definition 5.13]. Let "1 and "2 be two augmentations
of the DGA .A; @/ over Z2. Recall that a linear map K WA! Z2 is said to be an ."1; "2/–derivation if
K.ab/ D "1.a/K.b/CK.a/"2.b/ for any a; b 2 A. We say that "1 is DGA homotopic to "2, and we
write "1 � "2, if there exists an ."1; "2/–derivation K WA! Z2 of degree C1 such that "1� "2 DK ı @.
It is a standard fact that DGA homotopy is an equivalence relation [10, Lemma 26.3].

Note that the defining condition for a DGA homotopy admits a beautiful and convenient reformulation in
terms of the bilinearized complex.

Lemma 3.1 Two augmentations "1 and "2 are DGA homotopic if and only if there exists a linear map
K W C.ƒ/! Z2 of degreeC1 such that "1� "2 DK ı @"1;"2 on C.ƒ/.

Proof Suppose first that "1 is DGA homotopic to "2. This implies in particular that "1.c/�"2.c/DKı@c
for any c 2 C.ƒ/. Since K is an ."1; "2/–derivation, it directly follows from the definition of the
bilinearized differential that K ı @c DK ı @"1;"2c. It then suffices to take K to be the restriction of K
to C.ƒ/.

Suppose now that there exists a linear map K W C.ƒ/! Z2 of degree C1 such that "1� "2 DK ı @"1;"2

on C.ƒ/. The map K determines a unique ."1; "2/–derivation K WA! Z2 via the relation

K.a1 � � � an/D

kX
iD1

"1.a1 � � � ai�1/K.ai /"2.aiC1 � � � an/

for all a1; : : : ; an 2A. As above, these maps satisfyK ı@cDK ı@"1;"2c, so that "1�"2DK ı@ on C.ƒ/.
Now observe that "1.ab/� "2.ab/ D "1.a/."1.b/� "2.b//C ."1.a/� "2.a//"2.b/, and on the other
handK ı@.ab/D "1.@a/K.b/C"1.a/K.@b/CK.@a/"2.b/CK.a/"2.@b/D "1.a/K.@b/CK.@a/"2.b/.

Algebraic & Geometric Topology, Volume 24 (2024)
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Hence if a and b satisfy the DGA homotopy relation, then ab satisfies it as well. Since this relation holds
on C.ƒ/, it follows that it is also satisfied on A.

Note that, in the above proof, the extension of the linear map K to a unique ."1; "2/–derivation on A as
well as the extension of the homotopy relation from C.ƒ/ to A were first established in a more general
setup by Kálmán in [13, Lemma 2.18].

With this suitable notion of equivalence for augmentations, we can now turn to the study of the fundamental
class in bilinearized LCH, via the maps �0 and �n from the duality long exact sequence. The following
proposition generalizes [6, Theorem 5.5].

Proposition 3.2 Let "1 and "2 be augmentations of the Chekanov–Eliashberg DGA .A; @/ of a closed con-
nected n–dimensional Legendrian submanifold ƒ in .J 1.M/; �/. The map �0 W LCH"1;"2

0 .ƒ/!H0.ƒ/

from the duality long exact sequence vanishes if and only if "1 and "2 are DGA homotopic.

Proof Let f be a Morse function onƒ with a unique minimum at pointm, and g be a Riemannian metric
on ƒ. Since the stable manifold of m is open and dense in ƒ, for a generic choice of the Morse–Smale
pair .f; g/, the endpoints of all Reeb chords of ƒ are in this stable manifold. The vector space H0.ƒ/ is
generated by m and we identify it with Z2. By the results of [6], the map �0 counts rigid J –holomorphic
disks with boundary on ƒ, with a positive puncture on the boundary and with a marked point on the
boundary mapping to the stable manifold of m. This disk can have extra negative punctures on the
boundary; these are augmented by "1 if they sit between the positive puncture and the marked point, and
by "2 if they sit between the marked point and the positive puncture. Since mapping to m is an open
condition on ƒ, such rigid configurations can only occur when the image of the disk boundary is discrete
in ƒ. In other words, the holomorphic disk maps to the symplectization of a Reeb chord c of ƒ. Since
there is a unique positive puncture, this map is not a covering, and there is a unique negative puncture
at c. There is a unique such J –holomorphic disk for any chord c of ƒ. The marked point maps to the
starting point or to the ending point of the chord c in ƒ. If the marked point maps to the starting point
of c, the negative puncture sits between the positive puncture and the marked point on the boundary of
the disk, which therefore contributes "2.c/ to �0.c/ at chain level. If the marked point maps to the ending
point of c, the negative puncture sits between the marked point and the positive puncture on the boundary
of the disk, which therefore contributes "1.c/ to �0.c/. We conclude that the map �0 is given at chain
level by "1� "2.

If "1 and "2 are DGA homotopic, then by Lemma 3.1 the map �0 is nullhomotopic and therefore vanishes
in homology. On the other hand, if "1 and "2 are not DGA homotopic, Lemma 3.1 implies that the
map "1 � "2 W C0.ƒ/! Z2 does not factor through the bilinearized differential @"1;"2 . In other words,
there exists a 2 C0.ƒ/ such that @"1;"2a D 0 but "1.a/ � "2.a/ ¤ 0. But then the homology class
Œa� 2 LCH"1;"2

0 .ƒ/ satisfies �0.Œa�/¤ 0, so that �0 does not vanish in homology.

We are now in position to prove our first main result.
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Proof of Theorem 1.1 In the duality long exact sequence (2-2) for bilinearized LCH, the maps �k and
�k are adjoint in the sense of [6, Proposition 3.9] as in the linearized case. The proof of this fact is
essentially identical in the bilinearized case: the holomorphic disks counted by �k are still in bijective
correspondence with those counted by �k . In the bilinearized case, it is also necessary to use the fact that
the extra negative punctures on corresponding disks are augmented with the same augmentations in order
to reach the conclusion.

In particular, �n vanishes if and only if �n vanishes. Since H0.ƒ/ Š Z2, the exactness of the duality
sequence (2-2) implies that �n vanishes if and only if �0 does not vanish. By Proposition 3.2, this means
that �n vanishes if and only if the augmentations "1 and "2 are not DGA homotopic.

This difference in the behavior of bilinearized LCH can be used to determine DGA homotopy classes of
augmentations. More precisely, the next proposition shows that bilinearized LCH provides an explicit
criterion to decide whether two augmentations are DGA homotopic or not.

Proposition 3.3 Let "1 and "2 be augmentations of the Chekanov–Eliashberg DGA .A; @/ of a closed
connected n–dimensional Legendrian submanifold ƒ in .J 1.M/; �/. Then

dimZ2
LCH"2;"1

n .ƒ/� dimZ2
LCH"1;"2

�1 .ƒ/D

�
0 if "1 œ "2;

1 if "1 � "2:

Proof By the duality exact sequence (2-2), we have

H0.ƒ/Š Z2
�n
�! LCHn"2;"1

.ƒ/! LCH"1;"2

�1 .ƒ/!H�1.ƒ/D 0:

In other words, LCHn"2;"1
.ƒ/= im �n Š LCH"1;"2

�1 .ƒ/. Taking into account that

dimZ2
LCHn"2;"1

.ƒ/D dimZ2
LCH"2;"1

n .ƒ/;

we obtain the desired result since, as in the proof of Theorem 1.1, the rank of �n is 1 when "1 � "2 and
vanishes when "1 œ "2.

Corollary 1.2 follows immediately from the above proposition.

Example 3.4 Let us consider the Legendrian knot K2 studied by Melvin and Shrestha in [14, Section 3],
which is topologically the mirror image of the knot 821, and illustrated in Figure 1.

Figure 1: Front projection of the Legendrian knot K2.
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It is shown in [14, Section 3] that the Chekanov–Eliashberg DGA of this Legendrian knot K2 has exactly
16 augmentations, which split into a set A of 4 augmentations and a set B of 12 augmentations, such that
PK2;".t/D2tC4Ct

�1 if "2A and PK2;".t/D tC2 if "2B . This implies that augmentations inA are not
DGA homotopic to augmentations inB . However, the number of DGA homotopy classes of augmentations
for K2 was not determined in [14], as linearized LCH does not suffice to obtain this information.

Using Proposition 3.3, these DGA homotopy classes can be determined systematically. It turns out
that the augmentations in A are pairwise not DGA homotopic, because the Poincaré polynomial of any
such pair of augmentations is t C 3C t�1. On the other hand, the set B splits into six DGA homotopy
classes C1; : : : ; C6 of augmentations. The BLCH Poincaré polynomials are given by t C 2 for two DGA
homotopic augmentations in B , by 1 for two non-DGA homotopic augmentations both in C1[ C2[ C3 or
in C4[ C5[ C6, and by t C 2 and 2C t�1 otherwise.

These calculations are straightforward but tedious. Suitable Python code gives the above answer instantly.

We conclude our study of the fundamental classes in bilinearized LCH with a useful description of their
behavior when performing a connected sum. To this end, it is convenient to introduce some additional
notation about the map �n in the duality exact sequence (2-2). Its target space Hn.ƒ/ is spanned by the
fundamental classes Œƒi � of the connected components ƒi of the Legendrian submanifold ƒ. We can
therefore decompose �n as

P
i �n;i Œƒi �, where the maps �n;i take their values in Z2.

Proposition 3.5 Let ƒ be a Legendrian link in J 1.M/ equipped with two augmentations "1 and "2.
Let ƒ be the Legendrian submanifold obtained by performing a connected sum between two connected
components ƒ1 and ƒ2 of ƒ, and let N"1 and N"2 be the augmentations induced by "1 and "2.

If the map �n;1 � �n;2 constructed from the map �n in the duality exact sequence (2-2) vanishes , then
Pƒ;N"1;N"2

.t/D Pƒ;"1;"2
.t/C tn�1. Otherwise , Pƒ;N"1;N"2

.t/D Pƒ;"1;"2
.t/� tn.

Proof As explained in [1, Section 3.2.5], the map �n in the duality exact sequence (2-2) for ƒ counts
holomorphic disks in the symplectization of J 1.M/ with boundary on the symplectization of ƒ, having
a positive puncture asymptotic to a chord c of ƒ and a marked point on the boundary mapped to a
fixed generic point pj of a connected component ƒj of ƒ. This disk can also carry negative punc-
tures on the boundary; let us say that those located between the positive puncture and the chord (with
respect to the natural orientation of the boundary) are asymptotic to chords c�1 ; : : : ; c

�
r , while those

between the marked point and the positive puncture are asymptotic to c�rC1; : : : ; c
�
rCs . Let us denote by

M.cI c�1 ; : : : ; c
�
r ; pj ; c

�
rC1; : : : ; c

�
rCs/ the moduli space of such holomorphic disks, modulo translation

in the R direction of the symplectization. The map �n is then given by

�n.c/D
X
j

#2M.cI c�1 ; : : : ; c
�
r ; pj ; c

�
rC1; : : : ; c

�
rCs/"1.c

�
1 / � � � "1.c

�
r /"2.c

�
rC1/ � � � "2.c

�
rCs/Œƒj �:

On the other hand, the effect of a connected sum on bilinearized LCH can be deduced from the results of
Dimitroglou Rizell on the full Chekanov–Eliashberg DGA [4, Theorem 1.6]. There is an isomorphism

Algebraic & Geometric Topology, Volume 24 (2024)



3580 Frédéric Bourgeois and Damien Galant

of DGAs ‰ W .A.ƒ/; @ƒ/! .A.ƒIS/; @S / between the Chekanov–Eliashberg DGA of ƒ and the DGA
.A.ƒIS/; @S / generated by the Reeb chords ofƒ as well as a formal generator s of degree n�1, equipped
with a differential @S satisfying in particular @Ss D 0. In this notation, S stands for the pair of points
fp1 2 ƒ1; p2 2 ƒ2g in a neighborhood of which the connected sum is performed. Any augmentation
" of the Chekanov–Eliashberg DGA of ƒ can be extended to an augmentation of .A.ƒIS/; @S / by
setting ".s/D 0. Moreover, the pullback ‰�" of this extension to the Chekanov–Eliashberg DGA of ƒ
coincides with the augmentation induced on ƒ from the original augmentation " for ƒ via the surgery
Lagrangian cobordism between ƒ and ƒ. In particular, we have N"1 D‰�"1 and N"2 D‰�"2. Applying
the bilinearization procedure to the map ‰, we obtain a chain complex isomorphism ‰"1;"2 between the
bilinearized chain complex for ƒ and the chain complex .C.ƒ; S/; @"1;"2

S / generated by Reeb chords
of ƒ and the formal generator s. Since @"1;"2

S s D 0, the line spanned by s forms a subcomplex of
.C.ƒ; S/; @

"1;"2

S /. Moreover, the quotient complex is exactly the bilinearized chain complex for ƒ. We
therefore obtain a long exact sequence in homology

� � � ! LCHN"1;N"2

k
.ƒ/! LCH"1;"2

k
.ƒ/

�k
�! Z2Œs�k�1! LCHN"1;N"2

k�1
.ƒ/! � � �

that corresponds to the long exact sequence obtained in [2, Theorem 2.1] for generating family homology.
This exact sequence implies that bilinearized LCH remains unchanged by a connected sum, except
possibly in degrees n� 1 and n. The map �n is the part of the bilinearized differential @"1;"2

S from the
bilinearized complex for ƒ to the line spanned by s. According to the definition [4, Section 1.1.3] of @S
and the above description of �n, this map is given by �n D .�n;1� �n;2/s.

If �n D 0, the generator s injects into LCHN"1;N"2

n�1 .ƒ/, resulting in an exact term tn�1 in the Poincaré
polynomial. If �n ¤ 0, the map LCHN"1;N"2

n .ƒ/! LCH"1;"2
n .ƒ/ has a 1–dimensional cokernel, resulting

in the loss of a term tn in the Poincaré polynomial.

4 Geography of bilinearized Legendrian contact homology

In this section we study the possible values for the Poincaré polynomial Pƒ;"1;"2
of the bilinearized

LCH for a closed connected Legendrian submanifold ƒ in J 1.M/ with dimM D n, equipped with two
augmentations "1 and "2 of its Chekanov–Eliashberg DGA.

When "1 D "2, this geography question was completely answered in [2] for generating family homology.
As explained in Section 2, this result extends to linearized LCH via the work of Dimitroglou Rizell [4].
Moreover, bilinearized LCH is invariant under changes of augmentations within their DGA homotopy
classes [16, Section 5.3]. Therefore, the geography of bilinearized LCH is already known when "1 � "2.

4.1 Basic properties of BLCH Poincaré polynomials

We now turn to the case "1 œ "2, and describe the possible Poincaré polynomials for bilinearized LCH.
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Definition 4.1 A BLCH–admissible polynomial is the data of a Laurent polynomial P with nonnegative
integral coefficients together with a splitting P D q C p involving two Laurent polynomials with
nonnegative integral coefficients p and q such that

(i) q is a polynomial of degree at most n� 1 with q.0/D 1, and

(ii) p.�1/ is even if nD 1 and p.�1/� 1
2
.1� q.�1// if nD 2.

We first show that the Poincaré polynomial of bilinearized LCH always has this form.

Proposition 4.2 Let "1 and "2 be augmentations of the Chekanov–Eliashberg DGA .A; @/ of a closed
connected n–dimensional Legendrian submanifold ƒ with vanishing Maslov class in .J 1.M/; �/. If "1
and "2 are not DGA homotopic , then the Poincaré polynomial Pƒ;"1;"2

corresponding to LCH"1;"2.ƒ/ is
BLCH–admissible.

Proof Considering the map �k from the duality exact sequence (2-2), we have dimZ2
LCH"1;"2

k
.ƒ/D

dimZ2
ker �kC dimZ2

im �k . Let p and q be the Poincaré polynomials constructed using the terms in the
right-hand side of this relation: p.t/ D

P
k2Z dimZ2

ker �ktk and q.t/ D
P
k2Z dimZ2

im �kt
k . This

provides the desired splitting Pƒ;"1;"2
D qCp.

Let us prove (i). Since im �k � Hk.ƒ/, q is a polynomial of degree at most n. By Proposition 3.2,
since "1 œ "2, im �0 ¤ 0. But H0.ƒ/D Z2 as ƒ is connected, so that q.0/D 1. On the other hand, by
Theorem 1.1, since "1 œ "2 we have that �n D 0. Therefore the term of degree n in q vanishes and q is a
polynomial of degree at most n� 1.

Let us now prove (ii). Assume first that n is odd. Since the generators of the chain complex C.ƒ/ do not
depend on the augmentations, the Euler characteristic Pƒ;"1;"2

.�1/ does not depend on the augmentations
either. Equation (2-1) then implies that Pƒ;"1;"2

.�1/ has the same parity as 1
2

P
k2Z dimZ2

Hk.ƒ/,
since .�1/n�1 D 1 when n is odd. If n D 1, then condition (i) sets q.t/ D 1 so that q.�1/ D 1 while
1
2

P
k2Z dimZ2

Hk.ƒ/D 1. By subtraction, we deduce that p.�1/ must be even. Note that if n� 3, this
does not impose any condition on p.�1/ since q.�1/ can take arbitrary integer values.

Assume now that n is even. By [8, Proposition 3.3], the Thurston–Bennequin invariant of ƒ is given
by tb.ƒ/ D .�1/.n�1/.n�2/=2Pƒ;"1;"2

.�1/. On the other hand, tb.ƒ/ D .�1/n=2C1 1
2
X .ƒ/ when n is

even by [8, Proposition 3.2]. Hence Pƒ;"1;"2
.�1/ D 1

2
X .ƒ/. When n D 2, we have that 1

2
X .ƒ/ D

1
2
.1�dimZ2

H1.ƒ/C1/�
1
2
.1Cq.�1//. By subtraction, we get that p.�1/� 1

2
.1�q.�1//. Note that

if n� 4, this does not impose any condition on p.�1/ since 1
2
X .ƒ/ can take arbitrary integer values.

Remark 4.3 If we restrict ourselves to Legendrian spheres ƒ, the Laurent polynomials P D qCp that
can arise as the Poincaré polynomial of bilinearized LCH can also be characterized. More precisely,
revisiting the proof of Proposition 4.2 shows that in this case q and p satisfy the more restrictive conditions

(i0) q.t/D 1, and

(ii0) p.�1/ is even if n is odd and p.�1/D 0 if n is even.
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The duality exact sequence imposes fewer restrictions on LCH"1;"2.ƒ/ than in the case of linearized
LCH because it mainly relates this invariant to LCH"2;"1.ƒ/ with exchanged augmentations. This fact,
however, means that one of these invariants determines the other one. In order to formulate this more
precisely, let us consider the duality exact sequence obtained from (2-2) after reversing the ordering of
the augmentations:

(4-1) � � � ! LCHn�k�1"1;"2
.ƒ/! LCH"2;"1

k
.ƒ/

Q�k
�!Hk.ƒ/

Q�n�k
���! LCHn�k"1;"2

.ƒ/! � � � :

In the next proposition, we denote by Pƒ.t/ the Poincaré polynomial for the singular homology of ƒ
with coefficients in Z2.

Proposition 4.4 Let "1 and "2 be non-DGA homotopic augmentations of the Chekanov–Eliashberg
DGA .A; @/ of a closed connected n–dimensional Legendrian submanifold ƒ with vanishing Maslov
class in .J 1.M/; �/. If Pƒ;"1;"2

decomposes as qCp as in Definition 4.1, then Pƒ;"2;"1
decomposes as

QqC Qp with Qq.t/D Pƒ.t/� tnq.t�1/ and Qp.t/D tn�1p.t�1/.

Proof Let us decompose Pƒ;"2;"1
.t/ D Qq.t/ C Qp.t/ as in Definition 4.1. The polynomial p was

defined as p.t/ D
P
k2Z dimZ2

ker �ktk in the proof of Proposition 4.2. But ker �k is the image
of the map LCHn�k�1"2;"1

.ƒ/ ! LCH"1;"2

k
.ƒ/, which is isomorphic to a supplementary subspace of

im �n�k�1 in LCHn�k�1"2;"1
.ƒ/. Since �n�k�1 is the adjoint in the sense of [6, Proposition 3.9] of the map

Q�n�k�1 W LCH"2;"1

n�k�1
.ƒ/! Hn�k�1.ƒ/, the spaces ker �k and ker Q�n�k�1 are isomorphic. Therefore,

the polynomial Qp is given by Qp.t/D
P
k2Z dimZ2

ker �ktn�k�1 D tn�1p.t�1/.

On the other hand, we have Qq.t/ D
P
k2Z dimZ2

im Q�ktk as in the proof of Proposition 4.2. But
im Q�k D ker Q�n�k and since ��n�k is the adjoint in the sense of [6, Proposition 3.9] of the map �n�k , we
have that ker Q�n�k is isomorphic to a supplementary subspace of im �n�k in Hn�k.ƒ/. Hence

Qq.t/D
X
k2Z

.dimZ2
Hn�k.�/� dimZ2

im �n�k/t
k
D Pƒ.t/� t

nq.t�1/;

as announced.

Note that, since the data of Pƒ;"1;"2
and Pƒ;"2;"1

determine Pƒ, the question of finding ƒ, "1 and "2
with prescribed polynomials Pƒ;"1;"2

and Pƒ;"2;"1
is more complicated than our geography question. We

will not address this more complicated question.

4.2 Motivating example

We now describe a fundamental example in view of the construction of Legendrian submanifolds and
augmentations realizing BLCH–admissible polynomials.

Example 4.5 With nD 1, consider the right-handed trefoil knot ƒ with maximal Thurston–Bennequin
invariant, depicted in its front projection in Figure 2. The same Legendrian knot was studied in Section 5.1
of [1]. We consider it this time in the front projection, after applying Ng’s resolution procedure [15].
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b1 b2 b3
a2

a1

Figure 2: Front projection of the maximal tb right-handed trefoil.

The Chekanov–Eliashberg DGA has five generators: a1 and a2 correspond to right cusps and have
grading 1, while b1, b2 and b3 correspond to crossings and have grading 0. The differential is given by

@a1 D 1C b1C b3C b1b2b3 and @a2 D 1C b1C b3C b3b2b1:

This DGA admits 5 augmentations "1; : : : ; "5 given by

b1 b2 b3

"1 1 1 1
"2 1 0 0
"3 1 1 0
"4 0 0 1
"5 0 1 1

A straightforward calculation shows that Pƒ;"i ;"j .t/ D 1 for all i ¤ j . In view of Definition 4.1 and
Proposition 4.2, this is the simplest Poincaré polynomial that can be obtained using bilinearized LCH.

In order to produce other terms in this Poincaré polynomial, let us replace the portion ofƒ contained in the
dotted rectangle in Figure 2 by the fragment represented in Figure 3. This produces a Legendrian link ƒ0.

The additional generator a3 corresponds to a right cusp and has grading 1. The four mixed chords between
the unknot and the trefoil have a grading that depends on a shift k 2 Z between the Maslov potentials of
the trefoil and of the unknot. These gradings are given by

jc1j D k� 1; jc2j D k; jd1j D 1� k and jd2j D �k:

The augmentations "1; : : : ; "5 can be extended to this enlarged DGA by sending all new generators to 0.
The bilinearized differential of the original generators is therefore unchanged. The differential of the new
generators is, on the other hand, given by

@c1 D 0; @c2 D .1C b2b1/c1; @d1 D d2.1C b2b1/; @d2 D 0 and @a3 D d1c1C d2c2:

c1

c2

d1

d2

a3

Figure 3: Replacement for the dotted rectangle in Figure 2.
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9>=>; 1� k
Figure 4: Front projection of the Legendrian knot ƒ00.

If we choose "L D "1 or "3 and "R D "2, "4 or "5, then the bilinearized differential is

@"L;"Rc1 D 0; @"L;"Rc2 D 0; @"L;"Rd1 D d2; @"L;"Rd2 D 0 and @"L;"Ra3 D 0:

The Poincaré polynomial of the resulting homology is therefore Pƒ0;"L;"R
.t/D tkC tk�1C t C 1. We

now perform a connected sum between the right cusps corresponding to a2 and a3 in order to obtain
the connected Legendrian submanifold ƒ00 represented by Figure 4. A Legendrian isotopy involving a
number of first Reidemeister moves is performed before the connected sum in order to ensure that the
Maslov potentials agree on the cusps to be merged. This connected sum induces a Lagrangian cobordism
L from ƒ00 to ƒ0, and we can use this cobordism to pull back the augmentations "L and "R to the
Chekanov–Eliashberg DGA of ƒ00.

By Proposition 3.5, since Œa3� 2 LCH"L;"R

1 .ƒ0/ corresponds to the fundamental class of the Legendrian
unknot depicted in Figure 4, we obtain the Poincaré polynomial Pƒ00;"L;"R

.t/ D tk C tk�1C 1. This
corresponds to q.t/D 1 and p.t/D tkC tk�1 in Definition 4.1.

4.3 A family of Legendrian spheres with a basic BLCH Poincaré polynomial

In order to generalize Example 4.5 to higher dimensions, let us consider the standard Legendrian Hopf
link, or in other words the 2–copy of the standard Legendrian unknot ƒ.2/ � J 1.Rn/. This will lead to a
generalization of the trefoil knot from Figure 2, since it can be obtained from the standard Legendrian
Hopf link in R3 via a connected sum. Let us denote by l the length of the unique Reeb chord of the
standard Legendrian unknot and by " the positive shift (much smaller than l) in the Reeb direction
between the two components ƒ1 and ƒ2 of ƒ.2/. We assume that the top component is perturbed by a
Morse function of amplitude ı much smaller than " with exactly one maximum M and one minimum m.
In particular, among the continuum of Reeb chords of length " between the two components, only two
chords corresponding to these extrema persist after perturbation. We also assume that thanks to this
perturbation, all Reeb chords of ƒ.2/ lie above distinct points of Rn. In order to define the grading of
mixed Reeb chords in this link, we choose the Maslov potential of the upper component ƒ2 to be given
by the Maslov potential of the lower component ƒ1 plus k.
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Proposition 4.6 The Chekanov–Eliashberg DGA of ƒ.2/ � J 1.Rn/ has the following six generators:

grading length

c11 n l

c22 n l

c12 nC k l C "

c21 n� k l � "

m12 k� 1 "� ı

M12 nC k� 1 "C ı

Its differential is given by

@c12 DM12Cm12c11C c22m12; @c11 D c21m12 and @c22 Dm12c21;

and @M12 D @m12 D @c21 D 0.

Proof The front projection of each component in ƒ.2/ consists of two sheets, having parallel tangent
hyperplanes above a single point of Rn before the perturbation by the Morse function. The number
of Reeb chords above that point is the number of pairs of sheets, which is 1

2
4.4� 1/D 6. The chords

between the two highest or the two lowest sheets belong to a continuum of chords of length " between the
two components, which is replaced by two chords M12 for the maximum M and m12 for the minimum
m after the perturbation by the Morse function. Their lengths are therefore "˙ ı. Their gradings are
given by the Morse index of the corresponding critical point plus the difference of Maslov potentials
minus one, so that we obtain nC k� 1 and k� 1.

The four other chords will be denoted by cij , where i numbers the component of origin for the chord
and j numbers the component of the endpoint of the chord. Each of these chords corresponds to a
maximum of the local difference function between the heights of the sheets it joins. We therefore obtain
the announced gradings and lengths.

The link ƒ.2/ and its Reeb chords determine a quiver represented in Figure 5, in which each component of
the link corresponds to a vertex and each Reeb chord corresponds to an oriented edge. When computing
the differential of a generator, the terms to be considered correspond to paths formed by a sequence of
edges in this quiver with the same origin and endpoint as the generator, with total grading one less than
the grading of the generator and with total length strictly smaller than the length of the generator.

For @c12, the only possible terms are M12, m12c11 and c22m12. Such terms cannot contain c21 because
two other chords fromƒ1 toƒ2 would be needed as well. The resulting total length would be smaller than

c11 c22

c12

M12

m12

c21
ƒ1 ƒ2

Figure 5: Quiver corresponding to the standard Hopf link.
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the length of c12 only in the case ofm12c21m12, but this term is of grading 2 lower than c12. The generators
c11 and c22 can appear at most once due to their length, and due to total length constraint, only m12 can
appear (only once) as a factor, leading to the possibilities m12c11 and c22m12. Finally, if M12 appears,
then no other chord can appear as a factor by the previous discussion, leading to the possibility M12.

Let us show that each possible term in @c12 is realized by exactly one Morse flow tree [5], which in turn
corresponds to a unique holomorphic curve. To obtain M12, we start at the chord c12 and follow the
negative gradient of the local height difference function in the unique direction leading to the chord M12.
At this chord, we have a 2–valent puncture of the Morse flow tree and we continue by following the
negative gradient of the local height difference function corresponding to one of the componentsƒ1 orƒ2
(depending on which hemisphere the maximum M is located on). This gradient trajectory will generically
not hit any other Reeb chord and will finally hit the cusp equator of that component, which is the end
of the Morse flow tree. To obtain m12c11, we start at the chord c12 and follow the negative gradient of
the local height difference function in the unique direction leading to the chord c11. At this chord, we
have a 2–valent puncture of the Morse flow tree and we continue by following the negative gradient of
the local height difference function corresponding to the highest two sheets, which is the Morse function
used to perturb the Hopf link. Generically, this gradient trajectory will reach the minimum m so that we
obtain a 1–valent puncture of the Morse flow tree at m12. The term c22m12 is obtained similarly.

For @c11, the only possible term is c21m12. Indeed, when n > 1, the chord c21 is the only one available
to start an admissible path from ƒ1 to itself, because the empty path is not admissible. When nD 1, the
empty path is admissible but there are two holomorphic disks having c11 as a positive puncture and no
negative puncture, which cancel each other. Due to its length, the only chord we can still use is m12,
and after this no other chord can be added. Let us show that this possible term for @c11 is realized by
exactly one Morse flow tree. We start at the chord c11 and follow the negative gradient of the local height
difference function in the unique direction leading to the chord c21. At this chord, we have a 2–valent
puncture of the Morse flow tree and we continue by following the negative gradient of the local height
difference function corresponding to the lowest two sheets, which is the Morse function used to perturb
the Hopf link. Generically, this gradient trajectory will reach the minimum m so that we obtain a 1–valent
puncture of the Morse flow tree at m12. The calculation of @c22 is analogous.

For @c12, there are no possible terms because no other chord can lead from ƒ1 to ƒ2. For @M12, the
only chord which is short enough to appear is m12 but its grading k� 1 is strictly smaller when n > 1
than the necessary grading nCk�2. When nD 1, there are two gradient trajectories from the maximum
to the minimum of a Morse function on the circle, which cancel each other. Finally, @m12 D 0 because it
is the shortest chord and it joins different components.

Corollary 4.7 If k D 1, the Chekanov–Eliashberg DGA of ƒ.2/ � J 1.Rn/ has two augmentations "L
and "R such that "L.m12/D 0 and "R.m12/D 1, and that vanish on the other Reeb chords. When n > 1,
there are no other augmentations.
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Proof When n > 1, m12 is the only generator of degree 0, so that the maps "L and "R are the only two
degree-preserving algebra morphisms A!Z2. In order to show that these are augmentations, we need to
check that 1;m12 … im @. This follows from the fact that there is no term 1 and that m12 always appears
as a factor of another generator in the expression of @ in Proposition 4.6.

The above augmentations "L and "R can be used in order to obtain a bilinearized differential associated
to the differential from Proposition 4.6. We obtain @"L;"Rc12 DM12C c22 and @"L;"Rc11 D c21, while
the differential of the other four generators vanishes. The corresponding homology is therefore generated
by ŒM12�D�Œc22� in degree n and by Œm12� in degree 0. Hence, the Poincaré polynomial Pƒ.2/;"L;"R

.t/

is given by 1C tn.

After this preliminary calculation, let us consider a combination of several such links in view of obtaining
more general Poincaré polynomials than those in Example 4.5. To this end, consider the 2N –copy of the
standard Legendrian unknotƒ.2N/�J 1.Rn/ forN � 1. This link contains the componentsƒ1; : : : ; ƒ2N
numbered from bottom to top. If l denotes the length of the unique Reeb chord of ƒi and " denotes
the positive shift between any two consecutive components, we require that 2N" is much smaller than l .
We perturb the component ƒi for i D 2; : : : ; 2N by a Morse function fi with two critical points and of
amplitude ı much smaller than " such that all differences fi �fj with i ¤ j are Morse functions with two
critical points. In order to define the gradings of mixed Reeb chords in this link, we choose the Maslov
potential of the component ƒi to be given by the Maslov potential of the lowest component ƒ1 plus i �1.

A direct application of Proposition 4.6 to each pair of components ƒi and ƒj gives the chords of ƒ.2N/:

grading length

ci;i n l

ci;j nC j � i l C ".j � i/

cj;i n� j C i l � ".j � i/

mi;j j � i � 1 ".j � i/� ı

Mi;j nC j � i � 1 ".j � i/C ı

Here the indices i and j take all possible values between 1 and 2N such that i < j .

Proposition 4.8 The algebra morphisms "L and "R defined by "L.mi;iC1/ D 1 when i is even ,
"R.mi;iC1/D 1 when i is odd and that vanish on all other chords are augmentations of the Chekanov–
Eliashberg DGA of ƒ.2N/.

Proof Let us show that mi;iC1 … im @ for all i D 1; : : : ; 2N � 1. If mi;iC1 was a term in @a for some
a in the Chekanov–Eliashberg of ƒ.2N/, then a would have to be a linear combination of chords from ƒi

to ƒiC1. Indeed, @c does not contain the term 1 for any chord c of ƒ.2N/, say from ƒi to ƒj , because
it would give rise to a term 1 in Proposition 4.6 for the Legendrian Hopf link composed of ƒi and ƒj .
Therefore @ does not decrease the number of factors in terms it acts on. Since a must be a single chord from
ƒi to ƒiC1, if there were a term mi;iC1 in @a, then there would already be such a term in Proposition 4.6
for the Legendrian Hopf link composed of ƒi and ƒiC1. Hence mi;iC1 … im @, as announced.
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ƒ1 ƒ2 ƒ3
: : :

ƒ2N�2 ƒ2N�1 ƒ2N

Figure 6: Quiver corresponding to the 2N–copy of the standard Legendrian unknot.

This implies that "L and "R are augmentations, because any element of im @ is composed of monomials
having at least one factor which is not of the form mi;iC1, and in particular not augmented, so that "L
and "R vanish on im @.

Proposition 4.9 The bilinearized differential @"L;"R of ƒ.2N/ is given by

@"L;"Rci;i D Nici;i�1C NiciC1;i ; @"L;"Rci;j DMi;j C Nj ci;j�1C NiciC1;j ;

@"L;"Rcj;i D Nicj;i�1C Nj cjC1;i ; @"L;"Rmi;j D Njmi;j�1C NimiC1;j ;

@"L;"RMi;j D NjMi;j�1C NiMiC1;j ;

with i < j and where Ni and Nj are the modulo-2 reductions of i and j . In the above formulas , any
generator with one of its indices equal to 0 or 2NC1 or of the formmi;i orMi;i should be replaced by zero.

Proof The link ƒ.2N/ and its Reeb chords determine a quiver represented in Figure 6, and as in the
proof of Proposition 4.6, the terms in the differential of a chord from ƒi to ƒj must form a path from
vertex i to vertex j .

Let us compute @"L;"Rci;i . The only possible terms in @ci;i that could lead to a nonzero contribution to
@"L;"Rci;i are ciC1;imi;iC1 and mi�1;ici;i�1. Indeed, there are no other chords of ƒi , so a change of
component is needed. Since only chords of the form mi;iC1 are augmented by "L and "R, there must be
exactly one chord from ƒj to ƒk with j > k. Moreover, since neither "L nor "R augment consecutive
chords in the quiver determined by ƒ.2N/, we must have jj � kj D 1 and j D i or k D i . Considering
the Legendrian Hopf link composed of ƒi and ƒiC1, Proposition 4.6 gives the term ciC1;imi;iC1, while
considering the Legendrian Hopf link composed of ƒi�1 and ƒi , it gives the term mi�1;ici;i�1. With
the first term, since mi;iC1 has to be augmented by "R, we obtain the contribution ciC1;i when i is odd.
With the second term, since mi�1;i has to be augmented by "L, we obtain the contribution ci;i�1 when
i � 1 is even. In other words, we obtain @"L;"Rci;i D Nici;i�1C NiciC1;i , as announced.

Let us compute @"L;"Rci;j with i < j . All terms in @ci;j involving a single chord from ƒi to ƒj
correspond to terms with a single factor in the expression for @c12 in Proposition 4.6. We therefore
obtain the term Mi;j . The other terms must involve augmented chords; since "L and "R do not
have consecutive augmented chords, these other terms could come from mj�1;j ci;j�1, ciC1;jmi;iC1,
mj�1;j ciC1;j�1mi;iC1 or analogous terms with ck;l replaced withmk;l orMk;l . The last two possibilities
lead to elements with a too small grading, so that the unaugmented chord is of the type ck;l . The possibili-
ties mj�1;j ci;j�1 and ciC1;jmi;iC1 are each realized by a single holomorphic disk, corresponding to the
contribution m12c11C c22m12 in the expression for @c12 in Proposition 4.6. The remaining possibility
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mj�1;j ciC1;j�1mi;iC1 has a too small grading. Summing up, the possibility mj�1;j ci;j�1 leads to the
term ci;j�1 when j is odd and the possibility ciC1;jmi;iC1 leads to the term ciC1;j when i is odd, so
that we obtain @"L;"Rci;j DMi;j C Nj ci;j�1C NiciC1;j , as announced.

The computation of @"L;"Rcj;i with i < j is similar. Since there are no other chords from ƒi to ƒj ,
the only contributions involve augmented chords and come from mi�1;icjC1;i�1mj;jC1, mi�1;icj;i�1
or cjC1;imj;jC1, The first possibility has a too small grading, while the last two possibilities are each
realized by a single holomorphic disk, corresponding to the contributions c21m12 and m12c21 in the
expressions for @c11 and @c22 in Proposition 4.6. The possibility mi�1;icj;i�1 leads to the term cj;i�1

when i is odd and the possibility cjC1;imj;jC1 leads to the term cjC1;i when j is odd, so that we obtain
@"L;"Rcj;i D Nicj;i�1C Nj cjC1;i , as announced.

The computation of @"L;"Rmi;j and @"L;"RMi;j with i < j �1 involves only chords of the type mk;l and
Mk;l since all other chords are much longer. Let us start with @"L;"Rmi;j . Arguing as above, since mi;j
is the shortest chord from ƒi to ƒj , the only contributions involve augmented chords and come from
mi�1;imj;i�1,mjC1;imj;jC1 ormi�1;imjC1;i�1mj;jC1. The last possibility has a too small grading, and
the first two possibilities are each realized by a unique Morse flow tree [5], which in turn corresponds to a
unique holomorphic curve. Both Morse flow trees start with a constant gradient trajectory at mi;j , which
is the minimum of the difference function fj �fi . The only possibility to leave mi;j is to have a 3–valent
vertex, corresponding to the splitting of the gradient trajectory into two gradient trajectories, for fj�fk and
for fk�fi , for some k strictly between i and j . These trajectories converge to the corresponding minima
mk;j and to mi;k , so we obtain the desired trees for k D i C 1 and k D j � 1. Summing up, we obtain
as above @"L;"Rmj;i D Nimj;i�1C NjmjC1;i , as announced. The computation of @"L;"RMi;j is completely
analogous, except for the description of the Morse flow trees. Both Morse flow trees start with a gradient
trajectory fromMi;j to a priori any point of the sphere. In order to reachMiC1;j orMi;j�1 it is necessary
for the gradient trajectory to end exactly at the maximum of the corresponding height difference function.
There, we have a 2–valent puncture of the Morse flow tree and we continue with a gradient trajectory
converging to the minimummi;iC1 ormj�1;j . Again, @"L;"RMj;iDNiMj;i�1C NjMjC1;i , as announced.

Proposition 4.10 The Poincaré polynomial of ƒ.2N/ with respect to the augmentations "L and "R is
given by Pƒ.2N /;"L;"R

.t/DN.1C tn/.

Proof We need to compute the homology of the complex described in Proposition 4.9.

Let us first consider the subcomplex spanned by the chords mi;j with i < j . For any k; l D 1; : : : ; N with
k < l � 1, the generators m2k�1;2l�1, m2k;2l�1, m2k�1;2l�2 and m2k;2l�2 form an acyclic subcomplex.
When k D l � 1, we just have a subcomplex with the three generators m2l�3;2l�1; m2l�2;2l�1 and
m2l�3;2l�2, which has homology spanned by Œm2l�2;2l�1� D Œm2l�3;2l�2� in degree 0. We therefore
obtain N � 1 such generators. For any k D 1; : : : ; N � 1, the generators m2k�1;2N and m2k;2N form an
acyclic subcomplex. Finally, the generator m2N�1;2N survives in homology and has degree 0. The total
contribution of the chords mi;j to the polynomial Pƒ.2N /;"L;"R

is therefore the term N .
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Consider now the subcomplex spanned by the chordsMi;j with i <j and ci;j for all i; j D1; : : : ; 2N . For
any k; lD1; : : : ; N with k<l�1, the generators c2k�1;2l�1, c2k;2l�1, c2k�1;2l�2, c2k;2l�2,M2k�1;2l�1,
M2k;2l�1, M2k�1;2l�2 and M2k;2l�2 form an acyclic subcomplex. When k D l � 1, we just have a
subcomplex with the seven generators c2k�1;2l�1, c2k;2l�1, c2k�1;2l�2, c2k;2l�2,M2k�1;2l�1,M2k;2l�1

andM2k�1;2l�2, which has homology spanned by c2l�2;2l�2 in degree n. We therefore obtainN �1 such
generators. For any k D 1; : : : ; N � 1, the generators c2k�1;2N ,c2k;2N , M2k�1;2N and M2k;2N form an
acyclic subcomplex. But the subcomplex spanned by the three generators c2N�1;2N , c2N;2N , M2N�1;2N

has homology generated by Œc2N;2N �D ŒM2N�1;2N � in degree n. For any k; l D 1; : : : ; N with k � l and
k > 1, the generators c2l�1;2k�1, c2l;2k�1, c2l�1;2k�2 and c2l;2k�2 form an acyclic subcomplex. When
k D 1, we just have an acyclic subcomplex with the 2 generators c2l�1;1 and c2l;1. The total contribution
of the chords Mi;j with i < j and ci;j to the polynomial Pƒ.2N /;"L;"R

is therefore the term Ntn.

The sum of the above two contributions therefore gives Pƒ.2N /;"L;"R
.t/DN.1C tn/, as announced.

The next step is to perform some type of connected sum on the Legendrian link ƒ.2N/ in order to obtain
a Legendrian sphere zƒ.2N/ � J 1.Rn/. More precisely, for each i D 1; : : : ; N � 1, we consider the
Legendrian link formed by ƒ2i�1; ƒ2i ; ƒ2iC1 and ƒ2iC2 as the 2–copy of the Legendrian link formed
by ƒ2i�1 and ƒ2iC1, and we perform the 2–copy of the connected sum of ƒ2i�1 and ƒ2iC1 as follows:

We deformƒ2i�1 by a Legendrian isotopy corresponding to the spinning of two iterated first Reidemeister
moves on one half of the standard Legendrian unknot in J 1.R/. Since this front in J 0.R/ has a
vertical symmetry axis, we can spin it around this axis to produce a Legendrian surface in J 1.R2/ as
in [2, Section 3.2]. The resulting front has vertical symmetry planes, and hence is spinnable around such a
plane; iterating the spinning construction, we obtain the desired 2–component Legendrian link in J 1.Rn/
with cusp edges from (the deformation of) ƒ2i�1 and ƒ2iC1 facing each other and having the same
Maslov potentials. This is illustrated by Figure 7.

In this figure, we consider the rectangular area limited by a dashed line: its image in J 0.RC/� J 0.Rn/,
i.e. with all spinning angles set to zero, is a rectangular area intersecting ƒ2i�1; ƒ2i ; ƒ2iC1 and ƒ2iC2
in the 2–copy of two cusps facing each other. We then replace a neighborhood of this rectangular area
with the 2–copy of a connecting tube, as shown in Figure 8. This operation is equivalent to the 2–copy of
the connected sum operation described in [2, Section 4].

Figure 7: Isotopy of ƒ2i�1, ƒ2i , ƒ2iC1 and ƒ2iC2.
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Figure 8: Double tube.

Finally, after performing N � 1 times these 2–copies of connected sums, we are left with a Legendrian
link composed of two connected components: ƒodd, resulting from the connected sum of ƒ2i�1 for
i D 1; : : : ; N , and ƒeven, resulting from the connected sum of ƒ2i for i D 1; : : : ; N . We then perform an
(ordinary) connected sum between these components in order to obtain the Legendrian sphere zƒ.2N/.

Proposition 4.11 The augmentations "L and "R of ƒ.2N/ induce augmentations Q"L and Q"R of zƒ.2N/.

Proof It suffices to show that an augmentation induces another augmentation after a single 2–copy of a
connected sum. To this end, we describe this operation differently, in order to gain a better control on the
Reeb chords during this process. Before performing the 2–copy connected sum connecting ƒ2i�1 and
ƒ2i to ƒ2iC1 and ƒ2iC2, respectively, we deform these components by a Legendrian isotopy in order
to create a pair of canceling critical points m02i�1;2i of index 0 and s2i�1;2i of index 1 for the Morse
function f2i �f2i�1, and a similar pair m02iC1;2iC2 and s2iC1;2iC2 for f2iC2�f2iC1 near the attaching
locus of the connecting double tube. More precisely, the chords m02i�1;2i and m02iC1;2iC2 are contained
in the small balls that are removed during the connected sums, while the chords s2i�1;2i and s2iC1;2iC2
are just outside these balls. The connecting double tube is the thickening of an .n�1/–dimensional
standard Legendrian Hopf link, and we shape each tube so that its thickness in the z–direction is minimal
in the middle. We extend the Morse functions f2i �f2i�1 and f2iC2�f2iC1 by a Morse function on
the connecting tube decreasing towards its middle and having exactly two critical points (of index 0
and n�1) in its middle slice. All Reeb chords for the connecting double tube are contained in this middle
slice and correspond to the generators described in Proposition 4.6 with k D 1 and n replaced with n� 1:

grading length

ch2i�1;2i�1 n� 1 l 0 < l

ch2i;2i n� 1 l 0

ch2i�1;2i n l 0C "

ch2i;2i�1 n� 2 l 0� "

mh2i�1;2i 0 "� ı

M h
2i�1;2i n� 1 "C ı

The last two generators correspond to the critical points of the Morse function on the connecting tube
mentioned above. The unital subalgebra Ah generated by these six generators is a subcomplex of the
Chekanov–Eliashberg DGA, because Morse flow trees are pushed towards the middle of the double
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connecting tube due to its shape. By Corollary 4.7, this subcomplex has two augmentations such that only
mh2i�1;2i is possibly augmented. On the other hand, we have @s2i�1;2i Dm2i�1;2i Cm02i�1;2i with no
other terms because the length of s2i�1;2i is very short. Hence, for any augmentation ", we must have
".m02i�1;2i /D ".m2i�1;2i / and this forces the choice of the augmentation for Ah. More precisely, the
map Q" induced by " must satisfy Q".mh2i�1;2i /D ".m2i�1;2i /. Similarly, arguing with s2iC1;2iC2, we also
have Q".mh2i�1;2i /D ".m2iC1;2iC2/. Note that these relations are compatible since each of "L and "R
have the same value on m2i�1;2i and m2iC1;2iC2.

Let us check that the resulting maps Q"L; Q"R W A.zƒ.2N//! Z2 satisfy Q"L ı @D 0D Q"R ı @. We already
saw that these relations are satisfied on Ah as well as on s2i�1;2i and s2iC1;2iC2. On any other chord c,
the relation was satisfied before the 2–copy of connected sum. We claim that the augmented terms in
@c are modified by the 2–copy of connected sum in the following way: all occurrences of m02i�1;2i and
m02iC1;2iC2 are replaced with mh2i�1;2i . In particular, the maps Q"L and Q"R keep the same value on these
terms and the augmentation relation continues to hold after the 2–copy of connected sum.

To verify the claim, note that the region in which the 2–copy of connected sum is taking place is a trap
for Morse flow trees: any portion of such a tree entering this region cannot leave it, because all relevant
gradient vector fields are pointing inwards. We only have to consider augmented terms, since these are the
only ones that could harm the augmentation relation. We first consider an augmented term that contains
neither m02i�1;2i nor m02iC1;2iC2. If the corresponding Morse flow tree enters the region in which the
2–copy of connected sum is taking place, it must end at a cusp edge. Moreover, it cannot contain any
trivalent vertex, otherwise it would not be rigid. Hence, it is a single gradient trajectory ending at a
cusp edge. After the 2–copy of connected sum, it becomes another gradient trajectory, also ending at
a cusp edge. Hence the corresponding term is not affected by the 2–copy of connected sum. Consider
now an augmented term containing m02i�1;2i or m02iC1;2iC2. A rigid Morse flow tree cannot have a
2–valent negative puncture at such a chord, since it is a minimum of the Morse function f2i �f2i�1 or
f2iC2�f2iC1 [5, Lemma 3.7], so that these chords are 1–valent negative punctures. The only other way
a fragment of Morse flow tree contained in the region in which the 2–copy of connected sum is taking
place can end is at a cusp edge. As above, it cannot contain any trivalent vertex, otherwise it would not
be rigid. Hence, it is a single gradient trajectory ending at a minimum m02i�1;2i or m02iC1;2iC2. After
the 2–copy of connected sum, it becomes another gradient trajectory, also ending at a minimum mh2i�1;2i .
Conversely, consider an augmented term containing mh2i�1;2i after the 2–copy of connected sum. In
particular, the corresponding Morse flow tree can only end at the chord mh2i�1;2i (at a 1–valent negative
puncture, as above) or at a cusp edge. For the same reason as above, such a rigid tree cannot contain a
trivalent vertex in the 2–copy of the connecting tube. Hence, it is just a single gradient trajectory ending
at mh2i�1;2i . If we remove the 2–copy of the connecting tube and replace it with the regions containing
the minima m02i�1;2i and m02iC1;2iC2, this gradient trajectory is replaced with a single gradient trajectory
ending at one of these minima. In other words, such an augmented term involving mh2i�1;2i always comes
from the substitution of m02i�1;2i and m02iC1;2iC2 with mh2i�1;2i , proving the claim.
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We are now in position to show that these 2–copies of connected sums destroy almost all terms in the
Poincaré polynomial for bilinearized LCH.

Proposition 4.12 The Poincaré polynomial P zƒ.2N /;Q"L;Q"R
is equal to 1.

Proof Let us show by induction that, after applying i successive 2–copies of connected sums on ƒ.2N/,
its Poincaré polynomial is given by .N � k/.1C tn/. Proposition 4.10 corresponds to the case i D 0. As
shorthand, we denote by C� the BLCH chain complex after i � 1 successive 2–copies of connected sums,
and by zC� the BLCH chain complex after i successive 2–copies of connected sums. Using the description
of the i th 2–copy of connected sum in the proof of Proposition 4.11, we see that this operation has two
effects on the complex C�. First, the generators m02i�1;2i and m02iC1;2iC2 are removed. Second, we
add generators of the BLCH complex C h� of the .n�1/–dimensional standard Legendrian Hopf link with
distinct augmentations. Recall that C h� forms a subcomplex of zC� (see the proof of Proposition 4.11).

Since the 2–copy of connected sum is performed away from rigid holomorphic disks connecting generators
of zC�=C h� , the differential on this quotient complex is directly induced from that of C�. In particular, we
have @s2i�1;2i Dm2i�1;2i and @s2iC1;2iC2 Dm2iC1;2iC2 in zC�=C h� . Hence, its homology coincides
with the homology of C�, except in degree 0, where it has two fewer generators. Hence, its Poincaré
polynomial is .N � i � 1/ C .N � i C 1/tn. On the other hand, the homology of C h� is given by
Proposition 4.10 with N D 1 and n replaced with n� 1. Hence its Poincaré polynomial is 1C tn�1.

In order to deduce the homology of zC�, we consider the long exact sequence

� � � !HkC1. zC�=C
h
� /!Hk.C

h
� /!Hk. zC�/!Hk. zC�=C

h
� /!Hk�1.C

h
� /! � � � :

When k D 0, we see that the generator Œmh2i�1;2i � of H0.C h� / injects into H0. zC�/, as it can only be hit
by s2i�1;2i and s2iC1;2iC2, but these do not survive in the homology of the quotient complex. Hence the
rank of H0. zC�/ is N � i .

When kDn, we see that the generator Œc2iC2;2iC2� inHn. zC�=C h� /, which was not affected by the i�1 first
2–copies of connected sums, hits the generator Œch2i;2i � of Hn�1.C h� /, because there exists a single Morse
flow tree connecting them. Indeed, in Figure 7 the chord c2iC2;2iC2 is in the middle of the uppermost
connected component, and the Morse flow tree starts from there to the right in the plane of the figure
(corresponding to all spinning angles set to zero), then enters the dotted rectangle (hence the upper tube
in Figure 8), until it reaches the chord ch2i;2i sitting in the middle of that tube. Hence, the rank of Hn. zC�/
is N � i . The Poincaré polynomial for the homology of zC� is therefore .N � i/.1C tn/, as announced.

After these N � 1 operations, we are therefore left with the Poincaré polynomial 1C tn. The last
step in the construction of zƒ.2N/ is an ordinary connected sum between the remaining two connected
components ƒeven (the connected sum of ƒ2i for i D 1; : : : ; N ) and ƒodd (the connected sum of ƒ2i�1
for i D 1; : : : ; N ). Let us denote the corresponding 2–component Legendrian link by ƒ0.

As in the proof of Proposition 3.2, the map Q�0 from the duality exact sequence (2-2) with "1 D Q"R and
"2D Q"L is given at chain level by Q"R�Q"L, except that we must refine according to the connected component
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ƒeven or ƒodd which is hit. Note that all chords augmented by Q"L start on ƒodd and all chords augmented
by Q"R end onƒodd. This means that Q�0 necessarily takes its values inH0.ƒodd/. By Proposition 4.4, since
Pƒ0;Q"L;Q"R

.t/D 1C tn and H�.ƒ0/ has rank 4, we must have p D 0, and hence Pƒ0;Q"R;Q"L.t/D 1C t
n as

well. Therefore, the image of the map Q�0 W LCHQ"R;Q"L
0 .ƒ0/!H0.ƒ

0/ is equal to H0.ƒodd/.

We deduce that ker Q�n D H0.ƒodd/ in the duality exact sequence (2-2) with "1 D Q"R and "2 D Q"L.
Consider now the map �n in the duality exact sequence (2-2) with "1 D Q"L and "2 D Q"R. Since Q�n and �n
are adjoint in the sense of [6, Proposition 3.9], im �n is the annihilator of H0.ƒodd/ for the intersection
pairing, which isHn.ƒeven/. In particular, the map �n;1��n;2D �n;odd��n;even from Proposition 3.5 does
not vanish, so that this last connected sum modifies the Poincaré polynomial by �tn. We are therefore
left with P zƒ.2N /;Q"L;Q"R

.t/D 1, as announced.

4.4 Geography of BLCH for Legendrian spheres

The next step in our construction is to add to zƒ.2N/ a standard Legendrian unknot ƒ0 which forms with
the bottom k components ƒ1; : : : ; ƒk a Legendrian link isotopic to the .kC1/–copy of the standard
Legendrian unknot, but which is unlinked with the 2N � k top components ƒkC1; : : : ; ƒ2N . We fix
the Maslov potential of the component ƒ0 to be given by the Maslov potential of ƒ1 plus m� 1, for
some integer m. We can deform this link by a Legendrian isotopy in order to widen the components
ƒ1; : : : ; ƒk � J

1.Rn/ so that their projection to Rn becomes much larger than the projection of the
components ƒkC1; : : : ; ƒ2N . We further narrow the component ƒ0 so that its projection to Rn does
not intersect the projection of the components ƒkC1; : : : ; ƒ2N . We denote the resulting Legendrian link
by zƒ.2N/

.k;m/
.

The addition of ƒ0 to zƒ.2N/ is illustrated by Figure 9 in the case k D 4, where the picture zooms in on
the bottom strata of the k components ƒ1; : : : ; ƒk , which are represented as portions of horizontal planes.

This Legendrian link zƒ.2N/
.k;m/

has several additional Reeb chords compared to zƒ.2N/. These are easily
identified within the .kC1/–copy of the standard Legendrian unknot formed by ƒ0; ƒ1; : : : ; ƒk and are
given by

grading length

c0;0 n l

c0;j nC j �m l C "j

cj;0 n� j Cm l � "j

m0;j j �m� 1 "j � ı

M0;j nC j �m� 1 "j C ı

where the index j takes all possible values between 1 and k.

We extend the augmentations Q"L and Q"R by zero on these additional chords in order to define augmentations,
still denoted by Q"L and Q"R, on the Chekanov–Eliashberg DGA of zƒ.2N/

.k;m/
. Since the mixed chords involving

ƒ0 are not augmented, it follows that the vector space generated by the above chords is a direct summand
of the bilinearized complex with respect to the differential @Q"L;Q"R .
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Figure 9: Additional component ƒ0 with k D 4.

Proposition 4.13 The bilinearized differential @Q"L;Q"R of zƒ.2N/
.k;m/

on the subcomplex generated by the
chords involving the component ƒ0 is given by

@Q"L;Q"Rc0;0 D 0; @Q"L;Q"Rc0;j DM0;j C Nj c0;j�1; @Q"L;Q"Rcj;0 D Nj cjC1;0;

@Q"L;Q"Rm0;j D Njm0;j�1; @Q"L;Q"RM0;j D NjM0;j�1;

for j D 1; : : : ; k, where Nj is the modulo-2 reduction of j and where in the right-hand sides ckC1;0, c0;0,
m0;0 and M0;0 should be replaced by zero.

Proof This result follows from the same computations as in Proposition 4.9, in which we replace 2N
with k, i with 0 and where all terms obtained by changing the index i are omitted since the mixed Reeb
chords involving ƒ0 are not augmented.

Proposition 4.14 Consider the Legendrian link zƒ.2N/
.k;m/

� J 1.Rn/. Its Poincaré polynomial with respect
to the augmentations Q"L and Q"R is given by

P zƒ.2N /

.k;m/
;Q"L;Q"R

.t/D 1C tnC t�mC ta;

where

(4-2) aD

�
k�m� 1 if k is even;
n� kCm if k is odd:

Proof Let us compute the homology of the subcomplex generated by all Reeb chords involving the
componentƒ0. First note that c0;0 is always a generator in homology, leading to the term tn in the Poincaré
polynomial. Moreover, the complex generated by the chords c0;1; : : : ; c0;k and M0;1; : : : ;M0;k is acyclic.

If k is even, the complex generated by the chords c1;0; : : : ; ck;0 is acyclic. On the other hand, the complex
generated by the chords m0;1; : : : ; m0;k has its homology generated by m0;1 and m0;k . These lead to the
terms t�m and tk�m�1 in the Poincaré polynomial.

If k is odd, the complex generated by the chords c1;0; : : : ; ck;0 has its homology generated by ck;0.
This leads to the term tn�kCm in the Poincaré polynomial. On the other hand, the complex generated
by the chords m0;1; : : : ; m0;k has its homology generated by m0;1. This leads to the term t�m in the
Poincaré polynomial.

Adding these contributions to the Poincaré polynomial of zƒ.2N/ from Proposition 4.12, we obtain the
announced result.
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Remark 4.15 As a variant of the above construction, if we chooseƒ0 to be unlinked withƒ1 in addition to
ƒkC1; : : : ; ƒ2N , then we obtain instead the Poincaré polynomial 1CtnCtnCm�2Cta with the same a as
in Proposition 4.14. This is because the subcomplex generated by all Reeb chords involving the component
ƒ0 considered in the above proof does not contain the generators c1;0 andm0;1 anymore. Therefore, when
k is even its homology is generated by c2;0 and m0;k , and when k is odd it is generated by c2;0 and ck;0.
Hence, in the Poincaré polynomial the exponent �mD jm0;1j is replaced with nCm� 2D jc2;0j.

The next step in our construction is to perform a connected sum between the component ƒ0 and the
original knot zƒ.2N/. This can be done after a Legendrian isotopy of ƒ0 similar to the one depicted in
Figure 7, so that a piece of cusp in the deformed ƒ0 faces a piece of cusp from the component ƒ1. In
this case, it will be necessary to use a different number of first Reidemeister moves as in Figure 4 before
spinning the resulting front, so that the Maslov potentials near the facing cusps agree. We denote by
ƒ
.2N/

.k;m/
the resulting Legendrian knot in J 1.Rn/. We denote by N"L and N"R the augmentations induced

from Q"L and Q"R via the exact Lagrangian cobordism between ƒ.2N/
.k;m/

and zƒ.2N/
.k;m/

.

Proposition 4.16 Consider the Legendrian knot ƒ.2N/
.k;m/

� J 1.Rn/. We have

P
ƒ

.2N /

.k;m/
;N"L;N"R

.t/D 1C t�mC ta;

where a is given by (4-2).

Proof By Proposition 4.14, the generator Œc0;0� 2 LCHQ"L;Q"R
n .zƒ

.2N/

.k;m/
/ corresponds to the fundamental

class Œƒ0� of the component ƒ0 of the Legendrian link zƒ.2N/
.k;m/

. By Proposition 3.5, the effect of the
connected sum with this component is to remove the term tn from the Poincaré polynomial, so that we
obtain the announced result.

Note that, instead of adding a single componentƒ0 to the Legendrian knot zƒ.2N/, we can add a collection
of components ƒ0;1; : : : ; ƒ0;r � J 1.Rn/ with similar properties. More precisely, for all i D 1; : : : ; r ,
ƒ0;i forms with the bottom ki components ƒ1; : : : ; ƒki

a Legendrian link isotopic to the .kiC1/–copy
of the standard Legendrian unknot, but the projection of ƒ0;i to Rn is disjoint from the projection of the
other components ƒkiC1; : : : ; ƒ2N . The Maslov potential of ƒ0;i is fixed as the Maslov potential of ƒ1
plus mi �1, for some integer mi . With Nk D .k1; : : : ; kr/ and xmD .m1; : : : ; mr/, we denote the resulting
Legendrian link by zƒ.2N/

. Nk; xm/
.

The addition of ƒ0;1; : : : ; ƒ0;r to zƒ.2N/ is illustrated by Figure 10 in the case r D 3 and fk1; k2; k3g D
f1; 3; 4g, where the picture zooms in on the bottom strata of the k components ƒ1; : : : ; ƒk , which are
represented as portions of horizontal planes.

Each additional component ƒ0;i gives rise to an additional subcomplex in the bilinearized complex as in
Proposition 4.13, and hence to additional terms in the Poincaré polynomial of the form tnC t�mi C tai

with ai given by (4-2). After the connected sum of these components with zƒ.N/, we obtain a Legendrian
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Figure 10: Additional components ƒ0;i with r D 3 and fk1; k2; k3g D f1; 3; 4g.

knot ƒ.2N/
.k;m/

and, arguing as in Proposition 4.16, its Poincaré polynomial is given by

(4-3) P
ƒ

.2N /

. Nk; xm/
;N"L;N"R

.t/D 1C

rX
iD1

.t�mi C tai /:

At this point of our constructions we have realized the geography of BLCH for Legendrian spheres ƒ.

Theorem 4.17 Let P D qCp be the sum of Laurent polynomials with nonnegative integral coefficients
satisfying conditions (i0) and (ii0) from Remark 4.3. Then there exists a Legendrian sphere ƒ in J 1.Rn/
and two non-DGA homotopic augmentations "1 and "2 of the Chekanov–Eliashberg DGA of ƒ, with the
property that the Poincaré polynomial of LCH"1;"2.ƒ/ with coefficients in Z2 is equal to P .

Proof Let us show that the Poincaré polynomials obtained in (4-3) realize all polynomials P D qCp
satisfying conditions (i0) and (ii0).

Indeed, let q.t/ D 1 and p be a Laurent polynomial satisfying (ii0). If n is even, p.�1/ D 0, so the
polynomial p can be expressed as a sum of polynomials of the form

Pr
iD1.t

ui C tvi /, where ui < vi
have different parities. If n is odd, p.�1/ is even, so the polynomial p can be expressed as the sum of
polynomials of the form

Pr
iD1.t

ui C tvi /, with no parity conditions on ui and vi .

In order to realize the polynomial tui C tvi when ui and vi have different parities, we can choose
mi D�ui and ki D vi �ui C 1, which is even. When ui and vi have the same parity, which can happen
only if n is odd, we proceed as follows. If uiCvi � n�1, we can choose mi D�ui and ki D n�ui �vi ,
which is odd. If uiCvi � n�1, we use the variant of the construction with ƒ0 described in Remark 4.15
with mi D ui C 2�n and ki D ui C vi C 3�n, which is even.

Let us define Nk D .k1; : : : ; kr/ and xmD .m1; : : : ; mr/, and let N be the smallest even integer such that
ki � 2N for all i D 1; : : : ; r . Then, in view of (4-3), the Legendrian sphere ƒ.2N/

. Nk; xm/
satisfies

P
ƒ

.2N /

. Nk; xm/
;N"L;N"R

.t/D 1Cp.t/D q.t/Cp.t/;

as desired.

4.5 Geography of BLCH for general Legendrian submanifolds

In order to obtain Poincaré polynomials with all possible polynomials q satisfying condition (i) from
Definition 4.1, we use the following construction from [2, Corollary 6.7]:
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Proposition 4.18 For any monic polynomial Nq of degree n satisfying Nq.0/D 0, there exists a connected
Legendrian submanifold ƒ Nq � J 1.Rn/ equipped with an augmentation " such that Pƒ Nq ;" D Nq.

If q is a polynomial satisfying condition (i) from Definition 4.1, then the polynomial Nq given by Nq.t/D
q.t/C tn� 1 satisfies the assumptions of Proposition 4.18.

Let ƒ.2N/
Nq;. Nk; xm/

be the disjoint union of the Legendrian knots ƒ.2N/
. Nk; xm/

and ƒ Nq such that the projections of
these components to Rn are disjoint. We denote by O"L and O"R the augmentations for ƒ.2N/

Nq;. Nk; xm/
induced

by the augmentation " for ƒ Nq and the augmentations N"L and N"R for ƒ.2N/
. Nk; xm/

. The Poincaré polynomial of
ƒ
.2N/

Nq;. Nk; xm/
is given by the sum of the Poincaré polynomials of its components:

P
ƒ

.2N /

Nq;. Nk; xm/
;N"L;N"R

.t/D tnC q.t/C

rX
iD1

.t�mi C tai /:

We then perform a connected sum on the Legendrian link ƒ.2N/
Nq;. Nk; xm/

in order to obtain a Legendrian knot
zƒ
.2N/

Nq;. Nk; xm/
, equipped with two augmentations still denoted by O"L and O"R. Since the augmentations N"L

and N"R coincide (with ") on the component ƒ Nq , by Proposition 3.2 the fundamental class Œƒ Nq� of this
component is in the image of the map �n in the duality exact sequence (2-2). By Proposition 3.5, the effect
of the connected sum with ƒ Nq is to remove a term tn from the Poincaré polynomial. We therefore obtain

P
ƒ

.2N /

Nq;. Nk; xm/
;N"L;N"R

.t/D q.t/C

rX
iD1

.t�mi C tai /:

Although these Poincaré polynomials realize all polynomials q satisfying condition (i) from Definition 4.1,
we are still missing some Laurent polynomials p, since these can be arbitrary when n > 2. In order to
realize these more general Laurent polynomials p, we describe a generalization of the embedded surgery
construction on which Proposition 4.18 and its proof in [2, Corollary 6.7] are based.

From now on, assume that n� 2. Consider a point on the cusp locus of the componentƒ1 of the 2N –copy
of the standard Legendrian unknot ƒ.2N/ � J 1.Rn/. By a Legendrian isotopy, it is always possible to
arrange so that, in a neighborhood of this point, the front of ƒ.2N/ in J 0.Rn/ with local coordinates
.x1; : : : ; xn; z/ is locally described as follows: the fragment of ƒ1 in this neighborhood is composed of a
bottom stratum z D 0 and of a top stratum satisfying z2 D x3n, both for xn � 0. Moreover, the fragments
of the bottom strata of the components ƒi in this neighborhood satisfy z D .i � 1/" for i D 2; : : : ; 2N ,
and no other parts of the front of ƒ.2N/ lie in this neighborhood. Note that it is possible to arrange so that
this local model still holds for the more sophisticated Legendrian ƒ.2N/

Nq;. Nk; xm/
after our above constructions.

For a given m0 2 f0; : : : ; n � 2g, we consider an embedded sphere Sm
0

of dimension m0 in the cusp
locus fxn D z D 0g of ƒ1. In view of our assumptions on the front of ƒ.2N/, this sphere bounds
an embedded disk of dimension m0C 1 with its interior disjoint from the front of ƒ.2N/. For a given
k02f2; : : : ; 2N g, we define a function f on the cusp locus ofƒ1, equal to

��
k0C 2

3

�
"
�2=3 along Sm

0

, given
by
���
k0C 2

3

�
"
�2=3

=r
1=2
0

�p
r0� r at distance r 2 .0; r0� from Sm

0

and extended by 0 everywhere else. We
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ƒ1

ƒ2

ƒj

ƒk0C1

c01;1

c01;j

c0j;1

Figure 11: Center of a generalized handle.

remove from the front of ƒ1 the region satisfying xn <f .x1; : : : ; xn�1/; the resulting front has boundary
diffeomorphic to the cartesian product of Sm

0

with a standard Legendrian sphere of dimension n�m0�1,
with a flat bottom stratum. We now perform an m0–surgery on ƒ.2N/ by attaching a standard Legendrian
handle diffeomorphic to Dm

0C1�Sn�m
0�1 to the above front along its boundary. By construction, along

the boundary of this handle, the standard Legendrian sphere of dimension n�m0�1 has height
�
k0C 2

3

�
".

We shape the handle so that this height decreases monotonically from the boundary of Dm
0C1 to its

center, where it takes the minimal value
�
k0C 1

3

�
". This is a standard Legendrian surgery on ƒ1, but it is

of a more general nature if we consider the whole ƒ.2N/, since the front of the attached handle intersects
the front of the components ƒ2; : : : ; ƒk0C1 (but not of the components ƒk0C2; : : : ; ƒ2N ). When this
operation is performed on the Legendrian submanifold ƒ.2N/

Nq;. Nk; xm/
, we denote the resulting Legendrian

submanifold by ƒ.2N/
Nq;. Nk; xm/;.k0;m0/

.

In order to minimize the number of Reeb chords created by this operation, we shape the standard Legendrian
sphere of dimension n�m0�1 as shown in Figure 11, with both top and bottom strata being the graphs of
concave functions. Assuming for simplicity that the minima of the perturbing Morse functions fi �fj for
i ¤ j are located in the bottom strata and that the corresponding maxima are located in the top strata, the
bottom strata of the ƒi are slightly moving away from each other in the z–direction as xn decreases to 0.
Hence, the bottom stratum of the standard Legendrian sphere of dimension n�m0� 1 is slightly moving
down from the boundary of Dm

0C1 to its center. In particular, all new Reeb chords are located very close
to the center of the handle: c01;1 with endpoints on the handle, c01;j from the handle toƒj and c0j;1 fromƒj

to the handle, for j D 2; : : : ; k0C1, as shown in Figure 11. On the other hand, we can perturb the resulting
Legendrian submanifold so that there are no Reeb chords between the attached handle and the components
ƒk0C2; : : : ; ƒ2N . Summarizing, the gradings and lengths of the new Reeb chords are given by

grading length

c01;1 n�m0� 1
�
k0C 1

3

�
"

c0j;1 n�m0� j
�
k0� j C 4

3

�
"

c01;j m0C j � 1 .j � 1/"
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Proposition 4.19 The augmentations O"L and O"R can be extended by zero on the new chords to augmenta-
tions of ƒ.2N/

Nq;. Nk; xm/;.k0;m0/
. The vector space spanned by the new chords c01;1, c01;j and c0j;1 is a subcomplex

with respect to the bilinearized differentials @O"L;O"R and @O"R;O"L . These differentials are given by

@O"L;O"Rc01;jC1 D j C 1c
0
1;j ; @O"L;O"Rc0j;1 D

Nj c0jC1;1 and @O"L;O"Rc0k0C1;1 D 0;

and respectively by

@O"R;O"Lc01;jC1 D

�
Nj c01;j if j ¤ 1;

0 if j D 1;
@O"R;O"Lc0j;1 D j C 1c

0
jC1;1 and @O"R;O"Lc0k0C1;1 D 0

for j D 1; : : : ; k0, where Nj is the modulo-2 reduction of j .

Proof We first show that O"L ı @c D O"R ı @c D 0 for any Reeb chord c of ƒ.2N/
Nq;. Nk; xm/;.k0;m0/

. If c is a Reeb
chord of ƒ.2N/

Nq;. Nk; xm/
, then @c consists of terms from the differential for ƒ.2N/

Nq;. Nk; xm/
, and hence in the kernel of

O"L and O"R, and of terms involving at least one new chord of ƒ.2N/
Nq;. Nk; xm/;.k0;m0/

. Since O"L and O"R vanish on
these new chords, we obtain the desired relations.

If c is a new chord of ƒ.2N/
Nq;. Nk; xm/;.k0;m0/

, we claim that any term in @c contains an unaugmented chord as a
factor, and hence is in the kernel of O"L and O"R. Indeed, the only augmented chords go from ƒj to ƒjC1,
with a parity condition on j depending on the augmentation. Moreover, Morse flow trees cannot entirely
go across a connecting tube (since they are attracted to its center), so chords are the only way to jump
from ƒi to ƒj with i ¤ j . Since the new chords have at least one endpoint on ƒ1, if a Morse flow tree
has all negative ends at augmented chords, it must start at c01;1 or at c01;2. But jc01;1j D n�m

0�1 equals 1
if and only if m0D n�2, and in that case a Morse flow tree with endpoints remaining on ƒ1 must remain
in the center of the handle, which is a 1–dimensional standard Legendrian knot, so that there are 2 such
Morse flow trees with no negative end, canceling each other. On the other hand, jc01;2j Dm

0C 1 equals 1
if and only if m0 D 0, and in that case a Morse flow tree with endpoints remaining on ƒ1 and ƒ2 must
connect the critical point c01;2 of f2�f1 of index 1 to the critical point m1;2 of f2�f1 of index 0. There
are two such Morse flow trees, corresponding to the two sides of the 1–dimensional unstable manifold
of c01;2, and these cancel each other.

Let us now compute the bilinearized differentials. If a rigid Morse flow tree starting at c01;j with
j D 1; : : : ; k0C1, has only one negative end, it will leave the handle radially and then flow to the minimum
m1;j of fj � f1. Such a configuration is rigid if and only if jm1;j j D j � 2D jc01;j j � 1Dm

0C j � 2,
but when m0 D 0 there are two such Morse flow trees as above, canceling each other. If it has more
negative ends and contributes to the bilinearized differential of c01;j , it can only have a negative end at
mj�1;j , and the other one must then be at c01;j�1. There is a unique such Morse flow tree, flowing from
c01;j to the position of c01;j�1 in the Dm

0C1–factor of the handle, then splitting at the bottom stratum of
ƒj�1, so that one part flows in the Sn�m

0�1–factor of the handle to c01;j�1 and the other part flows to
the minimum mj�1;j of fj � fj�1. This term mj�1;j c

0
1;j�1 gives rise to the term c01;j�1 in @O"L;O"Rc01;j

if and only if O"L.mj�1;j /D 1, i.e. when j is odd and > 1. It gives rise to the term c01;j�1 in @O"R;O"Lc01;j
if and only if O"R.mj�1;j /D 1, i.e. when j is even.
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Let us now consider a rigid Morse flow tree starting at c0j;1 with j D 2; : : : ; k0C 1. Such a tree cannot
have only one negative end, and if it contributes to the bilinearized differential of c0j;1, it must have two
negative ends, one at mj;jC1 and the other one at c0jC1;1. There is a unique such Morse flow tree, flowing
from c0j;1 to the position of c0jC1;1 in the Sn�m

0�1–factor of the handle, then splitting at the bottom
stratum of ƒjC1, so that one part flows in the Dm

0C1–factor of the handle to c0jC1;1 and the other part
flows to the minimum mj;jC1 of fjC1 � fj . This term c0jC1;1mj;jC1 gives rise to the term c0jC1;1 in
@O"L;O"Rc0j;1 if and only if O"R.mj;jC1/D 1, i.e. when j is odd and < k0C1. It gives rise to the term c0jC1;1
in @O"R;O"Lc0j;1 if and only if O"L.mj;jC1/D 1, i.e. when j is even and < k0C 1.

As an immediate consequence of Proposition 4.19, the homology with respect to @O"L;O"R of the subcomplex
generated by the new Reeb chords is generated by Œc0

k0C1;1
� in degree n�m0�k0�1 if k0 is even, and by

Œc0
1;k0C1

� in degree m0Ck0 if k0 is odd. Similarly, the homology with respect to @O"R;O"L of this subcomplex
is generated by Œc01;1� in degree n�m0� 1, Œc01;2� in degree m0C 1, and by Œc0

1;k0C1
� in degree m0C k0 if

k0 is even, and by Œc0
k0C1;1

� in degree n�m0� k0� 1 if k0 is odd.

Proposition 4.20 The BLCH Poincaré polynomials of ƒ.2N/
Nq;. Nk; xm/;.k0;m0/

are given by

P
ƒ

.2N /

Nq;. Nk; xm/;.k0;m0/
;O"L;O"R

.t/D P
ƒ

.2N /

Nq;. Nk; xm/
;O"L;O"R

.t/C tb

and by
P
ƒ

.2N /

Nq;. Nk; xm/;.k0;m0/
;O"R;O"L

.t/D P
ƒ

.2N /

Nq;. Nk; xm/
;O"R;O"L

.t/C tn�m
0�1
C tm

0C1
C tn�1�b;

where b D n�m0� k0� 1 if k0 is even and b Dm0C k0 if k0 is odd.

Proof Observe that the image of Œc01;1� by the map

Q�n�m0�1 W LCHO"R;O"L
n�m0�1.ƒ

.2N/

Nq;. Nk; xm/;.k0;m0/
/!Hn�m0�1.ƒ

.2N/

Nq;. Nk; xm/;.k0;m0/
/

from the duality exact sequence (4-1) is the homology class of the cocore sphere of the attached handle.
Indeed, all Morse flow trees starting at c01;1 and with no negative end must remain in the cocore sphere of
the handle, since it is narrowest there. The resulting Morse flow trees start at c01;1 in any direction and
finish at the cusp of the cocore sphere. The boundary of the corresponding holomorphic disks foliate the
cocore sphere minus the endpoints of c01;1 so that the image of the cycle c01;1 in the bilinearized complex
is the cycle corresponding to the cocore sphere in the singular complex of ƒ.2N/

Nq;. Nk; xm/;.k0;m0/
. Since the

corresponding homology class does not vanish in Hn�m0�1.ƒ
.2N/

Nq;. Nk; xm/;.k0;m0/
/, it follows that Œc01;1� does

not vanish in bilinearized homology either.

Similarly, observe that the image of Œc01;2� by the map

Q�m0C1 W LCHO"R;O"L
m0C1 .ƒ

.2N/

Nq;. Nk; xm/;.k0;m0/
/!Hm0C1.ƒ

.2N/

Nq;. Nk; xm/;.k0;m0/
/

from the duality exact sequence (4-1) is the Poincaré dual of the homology class of the cocore sphere
of the attached handle. Indeed, all Morse flow trees starting at c01;2 and with no negative end must follow
radii of the disk factor Dm

0C1 for the handle. Once such a Morse flow tree exits the handle, it will flow
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down the chord m1;2 corresponding to the minimum of the perturbing Morse function f2�f1. The chord
m1;2 is augmented for O"R so that the image by Q�m0C1 is obtained by considering the part of the boundary
of the corresponding holomorphic disks lying in ƒ1. This is a sphere of dimension m0C 1, intersecting
the cocore sphere at the endpoint of c01;2 in ƒ1. Since the corresponding homology class does not vanish
in Hm0C1.ƒ

.2N/

Nq;. Nk; xm/;.k0;m0/
/, it follows that Œc01;2� does not vanish in bilinearized homology either.

In view of the long exact sequence relating the bilinearized homology of our subcomplex with the
bilinearized homologies of our Legendrian submanifold before and after the generalized handle attachment,
the effect of Œc0

k0C1;1
� or Œc0

1;k0C1
� could either be to add a term in the BLCH Poincaré polynomial in the

degree of this generator, or to remove a term in the degree of this generator, plus one.

In terms of Proposition 4.4, we have just shown that the polynomial Qq gains the terms tn�m
0�1C tm

0C1

as an effect of this generalized handle attachment. Since the dimension of the singular homology of the
Legendrian submanifold increased by 2, it follows that the modifications due to Œc0

k0C1;1
� and Œc0

1;k0C1
�

are affecting the polynomials p and Qp. Since the relation Qp.t/D tn�1p.t�1/ must hold at all times, it
follows that the changes to both BLCH Poincaré polynomials must occur in degrees that add up to n� 1.
But since the sum of the gradings of Œc0

k0C1;1
� and of Œc0

1;k0C1
� is n� 1, it follows that the effect of these

generators is necessarily to add a term in their corresponding BLCH Poincaré polynomial.

Since the four generators

Œc01;1�; Œc01;2�; Œc0k0C1;1� and Œc01;k0C1�

each give rise to an additional term in one of the BLCH Poincaré polynomials of ƒ.2N/
Nq;. Nk; xm/;.k0;m0/

, the
announced relations follow.

We can repeat the above generalized handle attachment as many times as we want, with different values
of k0 and m0. Repeating it s times with parameters k0i and m0i , let us define Nk0 D .k01; : : : ; k

0
s/ and

xm0 D .m01; : : : ; m
0
s/, and after choosing N so that k0i C 1 � 2N for all i D 1; : : : ; s. Applying these

operations on ƒ.2N/
Nq;. Nk; xm/

, we denote the resulting Legendrian submanifold by ƒ.2N/
Nq;. Nk; xm/;. Nk0; xm0/

.

Corollary 4.21 The BLCH Poincaré polynomial of ƒ.2N/
Nq;. Nk; xm/;. Nk0; xm0/

is given by

P
ƒ

.2N /

Nq;. Nk; xm/;. Nk0; xm0/
;O"L;O"R

.t/D q.t/C

rX
iD1

.t�mi C tai /C

sX
iD1

tbi ;

where

ai D

�
ki �mi � 1 if ki is even ,
n� ki Cmi if ki is odd ,

and bi D

�
n� k0i �m

0
i � 1 if k0i is even ,

k0i Cm
0
i if k0i is odd.

Proof of Theorem 1.3 Note that if nD 1, any connected Legendrian submanifold ƒ is a circle. Since
we already showed that the BLCH geography for spheres is realized by the submanifolds ƒ.2N/

. Nk; xm/
with

Poincaré polynomial given by (4-3) with q.t/D 1 and p.�1/ even, we can assume that n� 2.
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Assume first that n > 2. Let qC p be a BLCH–admissible polynomial in the sense of Definition 4.1.
Writing p.t/D

Ps
iD1 t

wi , for any term i D 1; : : : ; s we can find k0i � 1 and 0 �m0i � n� 2 such that
bi D wi as in Corollary 4.21: if wi > 0 is odd we can choose m0i D 0 and k0i D wi , if wi > 0 is even
we can choose m0i D 1 and k0i D wi � 1, if wi � 0 has the same parity as n we can choose m0i D 1 and
k0i D n� 2�wi , and if wi � 0 has the same parity as n� 1 we can choose m0i D 0 and k0i D n� 1�wi .
Then the Legendrian submanifold ƒ.2N/

Nq;. Nk0; xm0/
has the desired BLCH Poincaré polynomial qCp.

Finally, in the case nD 2, we cannot use the above choices of parameters since we must have m0i D 0
for all i D 1; : : : ; s. Let qCp be a BLCH–admissible polynomial in the sense of Definition 4.1. Let us
decompose p as p0Cp1 where p0 and p1 are Laurent polynomials with nonnegative integral coefficients,
p0.�1/D 0 and p1.1/ is minimal with respect to these properties. We have already showed that there
exists a Legendrian sphere ƒ.2N/

. Nk; xm/
with BLCH Poincaré polynomial given by 1Cp0 in view of (4-3).

Since p1.1/ is minimal, it follows that all terms in p1 have degrees of the same parity.

If this parity is odd, all terms in p1 are of the form twi with wi odd. If wi � 1, we choose k0i D wi
odd, and if wi � �1, we choose k0i D 1 � wi even, as in Corollary 4.21. Therefore, using as many
generalized handle attachments as needed, we can realize the BLCH Poincaré polynomial 1Cp0Cp1,
regardless of the value of p1.�1/� 0. Then, by a connected sum with the Legendrian submanifold ƒ Nq
from Proposition 4.18, we realize the BLCH Poincaré polynomial qCp as desired.

If the terms in p1 have degrees of even parity, we use generalized handle attachments on ƒ2 instead
of ƒ1: the effect of this modified operation will be as described by Proposition 4.20, with the ordering of
the augmentations reversed. In other words, each such generalized handle attachment will add 2t C t1�bi

to the BLCH Poincaré polynomial of our Legendrian submanifold, with 1 � bi D 1 � k0i even, as in
Corollary 4.21. If q.t/D 1C at then we can perform up to

�
1
2
a
˘

such attachments. Therefore, for any
polynomial p1 such that p1.�1/ D p1.1/ � 1

2
a D 1

2
.1� q.�1//, we can realize the BLCH Poincaré

polynomial 1C 2p1.1/t Cp0Cp1. Setting q0.t/D q.t/� 2p1.1/t , we then perform a connected sum
with the Legendrian submanifold ƒ Nq0

from Proposition 4.18 in order to realize the BLCH Poincaré
polynomial qCp, as desired.
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The deformation spaces of geodesic triangulations of flat tori

YANWEN LUO

TIANQI WU

XIAOPING ZHU

We prove that the deformation space of geodesic triangulations of a flat torus is homotopically equivalent
to a torus. This solves an open problem proposed by Connelly et al. in 1983 in the case of flat tori. A key
tool of the proof is a generalization of Tutte’s embedding theorem for flat tori. While this paper was under
preparation, Erickson and Lin proved a similar result, which works for all convex drawings.

55Q52, 57N65, 57R19, 57S05, 58D10

1 Introduction

This paper is a continuation of the previous work [Luo et al. 2023], where we proved that the deformation
space of geodesic triangulations of a surface with negative curvature is contractible. The purpose of this
paper is to identify the homotopy type of the deformation space of geodesic triangulations of a flat torus.
This solves an open question proposed in [Connelly et al. 1983]. The main result of this paper is:

Theorem 1.1 The deformation space of geodesic triangulations of a flat torus is homotopically equivalent
to a torus.

It is conjectured in [Connelly et al. 1983] that the space of geodesic triangulations of a closed orientable
surface S with constant curvature deformation retracts to the group of orientation-preserving isometries
of S homotopic to the identity. This paper affirms this conjecture in the case of flat tori. The case of
hyperbolic surfaces was proved in [Luo et al. 2023]. In a very recent work, Erickson and Lin [2021]
proved independently a generalized version of our Theorem 1.1 for general graph drawings on a flat torus.

The study of the homotopy types of spaces of geodesic triangulations stemmed from [Cairns 1944]. A
brief history of this problem can be found in [Luo et al. 2023]. These spaces are closely related to diffeo-
morphism groups of surfaces. Bloch, Connelly and Henderson [Bloch et al. 1984] proved that the space of
geodesic triangulations of a convex polygon is contractible. The space of geodesic triangulations of a planar
polygon is equivalent to the space of simplexwise linear homeomorphisms. Hence, the Bloch–Connelly–
Henderson theorem can be viewed as a discrete analogue of Smale’s theorem, which states that the diffeo-
morphism group of the closed 2–disk fixing the boundary pointwise is contractible. Earle and Eells [1969]
proved that the group of orientation-preserving diffeomorphisms of a torus isotopic to the identity is
homotopically equivalent to a torus. Theorem 1.1 can be regarded as a discrete version of this theorem.

© 2024 MSP (Mathematical Sciences Publishers). Distributed under the Creative Commons Attribution License 4.0 (CC BY).
Open Access made possible by subscribing institutions via Subscribe to Open.
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Similar to the previous work [Luo et al. 2023], our key idea to prove Theorem 1.1 originates from Tutte’s
embedding theorem.

1.1 Set up and the main theorem

Let T2 DR2=Z2 D Œ0; 1�2=� be the flat torus constructed by gluing the opposite sides of the unit square
in R2.

A topological triangulation of T2 can be identified as a homeomorphism  from jT j to T2, where jT j
is the carrier of a 2–dimensional simplicial complex T D .V;E; F / with the vertex set V, and the edge
set E, and the face set F. For convenience, we label the vertices as v1; : : : ; vn, where n D jV j is the
number of the vertices. Denote by jEj the number of edges, by Eeij the directed edge from the vertex i to
its neighbor j , by EE D fEeij j ij 2Eg the set of directed edges, and by N.i/ the indices of neighboring
vertices of vi 2 V.

A geodesic triangulation with the combinatorial type .T ;  / is an embedding ' from the one-skeleton T .1/

to T2 satisfying that

(a) the restriction 'ij of ' on each edge eij , identified with a unit interval Œ0; 1�, is a geodesic of
constant speed, and

(b) ' is homotopic to the restriction of  on T .1/.

Let X DX.T2; T ;  / denote the set of all such geodesic triangulations, which is called a deformation
space of geodesic triangulations of T2. This space can be defined for other flat tori in a similar fashion.
Perturbing each vertex locally, we can construct a family of geodesic triangulations from an initial geodesic
triangulation. Therefore, the space X is naturally a 2n–dimensional manifold.

For any geodesic triangulation ' 2X, we can always translate ' on T2 to make the image '.v1/ of the
first vertex v1 be at the (quotient of the) origin .0; 0/. By this normalization, we can decompose X as
X DX0 �T2, where

X0 DX0.T
2; T ;  /D f' 2X j '.v1/D .0; 0/g:

Since there are affine transformations between any two flat tori, and an affine transformation always
preserves the geodesic triangulations, Theorem 1.1 reduces to the following.

Theorem 1.2 Given a topological triangulation .T ;  / of T2, the space X0 D X0.T2; T ;  / is con-
tractible.

1.2 Key tool: generalized Tutte’s embedding theorem

Let ' be a map from T .1/ to T2. Assume ' maps every edge in E to a geodesic arc parametrized by Œ0; 1�
with constant speed on T2. A positive assignment w 2R

EE
C

on the set of directed edges is called a weight

Algebraic & Geometric Topology, Volume 24 (2024)
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of T . We say ' is w–balanced at vi if X
j2N.i/

wij P'ij D 0;

where P'ij D P'ij .0/ 2 T'.vi /T
2 Š R2. Then P'ij indicates the direction of the edge '.eij / and k P'ij k

equals the length of '.eij /. A map ' is called w–balanced if it is w–balanced at each vertex in V. We
have the following version of Tutte’s embedding theorem, which is a special case of Gortler, Gotsman
and Thurston’s embedding result in [Gortler et al. 2006] and Theorem 1.6 in [Luo et al. 2023].

Theorem 1.3 Assume .T ;  / is a topological triangulation of T2, and ' is a map from T .1/ to T2 such
that ' is homotopic to  jT .1/ and the restriction 'ij of ' on each edge eij is a geodesic parametrized by
constant speed. If ' is w–balanced for some weight w 2R

EE
C

, then ' is an embedding , or equivalently '
is a geodesic triangulation.

To be self-contained, we will give a simple proof for Theorem 1.3, which is adapted from the argument in
[Gortler et al. 2006].

The classical Tutte’s embedding theorem [1963] states that a straight-line embedding of a simple 3–vertex-
connected planar graph can be constructed by fixing an outer face as a convex polygon and solving interior
vertices on the condition that each vertex is in the convex hull of its neighbors. Various new proofs
of Tutte’s embedding theorem have been proposed by Floater [2003b], Gortler, Gotsman and Thurston
[Gortler et al. 2006], et al.

Tutte’s embedding theorem has been generalized by Colin de Verdière [1991], Delgado and Friedrichs
[2005], and Hass and Scott [2015] to surfaces with nonpositive Gaussian curvatures. They showed that
the minimizer of a discrete Dirichlet energy is a geodesic triangulation. Here the fact that ' is a minimizer
of a discrete Dirichlet energy means that ' is w–balanced for some symmetric weight w in R

EE
C

with
wij D wj i . Their result also implies that X D X.T2; T ;  / is not an empty set for any topological
triangulation .T ;  /. Recently, Luo, Wu and Zhu [Luo et al. 2023] proved a new version of Tutte’s
embedding theorem for nonsymmetric weights and triangulations of orientable closed surfaces with
nonpositive Gaussian curvature.

Gortler, Gotsman and Thurston [Gortler et al. 2006] generalized Tutte’s embedding theorem to flat tori.
In contrast to the case of convex polygons and surfaces of negative curvatures, it is not always possible to
construct a geodesic triangulation of T2 such that it is w–balanced with respect to a given nonsymmetric
weight w. See [Chambers et al. 2021, Section 1.1] for a detailed discussion.

1.3 Outline of the proof

Fix a lifting .xi ; yi / 2 R2 of  .vi / 2 T2 for each i D 1; : : : ; n. Then for any Eeij 2 EE, there exists a
unique lifting Q ij W Œ0; 1�!R2 of  ij D  jeij

W Œ0; 1�! T2 such that Q ij .0/D .xi ; yi /. Then

Q ij .1/D .xj ; yj /C .b
x
ij ; b

y
ij /

Algebraic & Geometric Topology, Volume 24 (2024)
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for some lattice point .bxij ; b
y
ij / 2 Z2. Notice that for any j 2N.i/, the liftings Q ij have the same base

point .xi ; yi /, and bxij and byij are determined by the liftings Q i , .xi ; yi /, and .xj ; yj /.

A geodesic triangulation ' inX0 can be represented by .xi ; yi /2R2 for iD1; : : : ; nwith .x1; y1/D .0; 0/.
Under this representation, 'ij W Œ0; 1�! T2 is the quotient of the linear map

'ij .t/D t .xj C b
x
ij ; yj C b

y
ij /C .1� t /.xi ; yi /;

and the equations for w–balanced conditions at all the vertices can be written asX
j2N.i/

wij .xj � xi C b
x
ij /D 0 and

X
j2N.i/

wij .yj �yi C b
y
ij /D 0:

In a closed matrix form, we can write

(1) A.w/x D b.w/;

where the weight matrix A.w/ is

A.w/D

0BBBBB@
�
Pn
jD1w1j w12 w13 : : : w1n

w21 �
Pn
jD1w2j w23 : : : w2n

w31 w32 �
Pn
jD1w3j : : : w3n

:::
:::

:::
: : :

:::
wn1 wn2 wn3 : : : �

Pn
jD1wnj

1CCCCCA ;
and

x D

0BB@
x1 y1
x2 y2
:::

:::
xn yn

1CCA ; b.w/D

0BBB@
�
Pn
jD1w1j b

x
1j �

Pn
jD1w1j b

y
1j

�
Pn
jD1w2j b

x
2j �

Pn
jD1w2j b

y
2j

:::
:::

�
Pn
jD1wnj b

x
nj �

Pn
jD1wnj b

y
nj

1CCCA :
Here we write wij D 0 if eij …E.

A weight w in R
EE
C

is called admissible if (1) is solvable. Let W be the space of admissible weights. For
any w 2W, a solution x to (1) uniquely determines the coordinates of the vertices and a w–balanced
map ' that is homotopic to  jT .1/ . By Theorem 1.3, such a ' is an embedding, and ' 2X. Noticing that
A.w/ is weakly diagonally dominant and the graph T .1/ is connected, the solution to (1) is unique up to
a 2–dimensional translation, and is unique if we require .x1; y1/D .0; 0/. Define the Tutte map as

‰ WW !X0

sending an admissible weight w to the unique w–balanced geodesic triangulation in X0. The Tutte map
is continuous by the continuous dependence of the solutions to the coefficients in a linear system.

The Tutte map is also surjective, since there exists a smooth map � from X0 to W by the “mean value
coordinates”

wij D
tan.˛ji =2/C tan.ˇji =2/

lij
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˛
j
i

ˇ
j
i

vj

vi

Figure 1: The mean value coordinate.

introduced in [Floater 2003a]. Here ˛ji ; ˇ
j
i are two inner angles adjacent to eij at the vertex vi , and lij

is the edge length of 'ij . See Figure 1 for an illustration. Floater [2003a] showed that any geodesic
triangulation ' is �.'/–balanced, ie ‰ ı � D IdX0

.

Having the knowledge of the Tutte map and the mean value coordinates, Theorem 1.2 reduces to the
following proposition.

Proposition 1.4 There exists a continuous map ˆ WR EE
C
!W such that

ˆjW D IdW :

Proof of Theorem 1.2 assuming Proposition 1.4 By Proposition 1.4, W is contractible since there
exists a retraction ˆ from the contractible space R

EE
C

to W. So � ı‰ is homotopic to the identity map
on W. On the other hand ‰ ı � D IdX0

, and thus X0 is homotopic to W and contractible.

1.4 Organization of this paper

In Section 2, we will prove Proposition 1.4 by constructing a flow. In Section 3, we prove Theorem 1.3
following the idea in [Gortler et al. 2006].

Acknowledgements
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problem. The authors were supported in part by the NSF grants 1737876, 1760471, DMS-FRG-1760527
and DMS-1811878.

2 Proof of Proposition 1.4

Set an energy function on the weight space R
EE
C

as

E.w/D min
x2Rn�2

kA.w/x�b.w/k2 D min
x2Rn�2jx1Dy1D0

kA.w/x�b.w/k2;
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where the norm is the Frobenius norm of a matrix. The second minimization problem above is a least
square problem with 2.n�1/ real variables and a nondegenerate coefficient matrix. By the standard
formula in linear least squares (LLS) or quadratic programming (QP), the minimizer, denoted by x.w/, is
a smooth function of w, and thus E.w/ is also a smooth function of w. Note that E.w/D 0 if and only
if w is admissible, and intuitively E.w/ measures the deviation of w from being admissible. The key idea
of the proof is to construct a flow on R

EE
C
nW to minimize E.w/, as in the following lemma.

Lemma 2.1 There exists a smooth function ‚ WR EE
C
nW !R EE and a positive continuous function C.w/

on R
EE
C

such that , for any initial value w0 2R
EE
C

, the flow w.t/ defined by

(2)
�
Pw.t/D‚.w.t//;

w.0/D w0

satisfies that , for any t in the maximum existing interval Œ0; T /,

(a) 0� Pwij .t/� wij .t/, and

(b)
dE.w.t//

dt
� �C.w0/

p
E.w.t//.

Proposition 1.4 is proved in Section 2.1, assuming Lemma 2.1. Then we construct a flow in Section 2.2,
and in Section 2.3 show that this flow is satisfactory for Lemma 2.1.

2.1 Proof of Proposition 1.4 assuming Lemma 2.1

Assume‚.w/ and C DC.w0/ are as in Lemma 2.1. Given w0 2R
EE
C
nW, assume w.t/ is the flow defined

by equation (2), and Œ0; T / is the maximum existing interval.

We claim that T D T .w0/ <1 and w.t/ converges to some Nw as t ! T. Since

dE
dt
� �C

p
E ;

we have
d.
p
E/

dt
.t/� �

C

2
and p

E.w.t//�
p
E.w.0//�

Ct

2
;

which implies

T �
2
p
E.w0/

C.w0/
<1:

Since
0� Pwij .t/� wij .t/;

we have

(3) wij .t/� w
0
ij e

t
� w0ij e

T :
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Then by the monotone convergence theorem, w.t/ converges to some Nw. By the maximality of T , Nw has
to be in W. Let ˆ WR EE

C
!W be such that ˆ.w0/D Nw if w0 …W, and ˆ.w/D w if w 2W.

Now we prove that ˆ is continuous, ie for any w 2 R
EE
C

and � > 0 there exists ı > 0 such that
jˆ.w0/�ˆ.w/j1 � � for any w0 with jw0�wj1 < ı. We consider the two cases w 2W and w …W.

2.1.1 w 2 W Since C.w/ is continuous, there exist C1 > 0 and ı1 > 0 such that C.w0/� C1 for any
w0 with jw�w0j1 � ı1. Since E is continuous, there exists ı2 2 .0; ı1/ such that

E.w0/�
�
C1

2
log
�
1C

�

2jwj1C �

��2
if jw0 �wj1 < ı2. Then we will show that ı D minfı2; �=2g is satisfactory. Assume w0 satisfies that
jw0�wj1 < ı. If w0 2W, then jˆ.w0/�ˆ.w/j1 D jw0�wj1 < ı � �. If w0 …W,

T .w0/�
2
p
E.w0/

C.w0/
�
C1 log.1C �=.2jwj1C �//

C1
D log

�
1C

�

2jwj1C �

�
� log

�
1C

�

2jw0j1

�
:

So by inequality (3),

jˆ.w0/ij �ˆ.w/ij j � jˆ.w
0/ij �w

0
ij jC jw

0
ij �wij j<w

0
ij .e

T.w 0/
� 1/C

�

2
� �:

2.1.2 w … W Assume Nw D ˆ.w/ 2 W. Then by the result of the previous case, there exists ı1 > 0
such that jˆ.w0/�ˆ.w/j1 < � for any w0 with jw0� Nwj1 < ı1. Assume w.t/ is the flow determined
by (2) with the initial value w0 D w. Then there exists some t0, such that jw.t0/� Nwj1 < ı1=2. By
the continuous dependence of the solutions of ODEs on the initial values, there exists ı > 0 such that if
jw0�wj1 < ı, then jw0.t0/�w.t0/j< ı1=2, where w0.t/ is the flow determined by (2) with the initial
value w0 D w0. So if jw�w0j1 < ı, we have jw0.t0/� Nwj< ı1 and

jˆ.w0/�ˆ.w/j1 D jˆ.w
0.t0//�ˆ.w/j1 < �:

2.2 Construction of the flow

Denote by x.w/ the minimizer of the second minimization problem in the definition of the energy
function E.w/. Define the residual r.w/ as

r.w/D A.w/x.w/�b.w/;

where

r.w/D

0BBB@
rx1 .w/ r

y
1 .w/

rx2 .w/ r
y
2 .w/:::
:::

rxn .w/ r
y
n .w/

1CCCAD �rx.w/ ry.w/
�
D

0BB@
r1.w/

r2.w/
:::

rn.w/

1CCA 2Rn�2:

The vector ri is the residual at the vertex vi 2 V, and rx, ry are the projections of the total residual in the
directions of the x–axis and the y–axis respectively. Then by the minimality of x.w/,

AT .w/rx.w/D 0 and AT .w/ry.w/D 0:
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Equivalently,
rx.w/? A.w/.Rn/ and ry.w/? A.w/.Rn/:

Since rank.A.w//D n�1, we have rx k ry. So rank.r/� 1, and ri k rj for any 1� i; j � n. Here u k v
means that vectors u and v are parallel, ie linearly dependent.

Lemma 2.2 Assume r ¤ 0 and the following properties hold for r1; r2; : : : ; rn:

(a) The vectors have the same direction , namely,

hri ; rj i> 0 for all 1� i; j � n:
(b) If

C D max
Eeij2 EE

wij

wj i
;

then
krik2

krj k2
� C n�1 for all 1� i; j � n:

Proof Without loss of generality, after a rotation we can assume that all the vectors ri are parallel to the
x–axis, namely ry D 0.

To prove part (a), assume that hri ; rj iDrxi �r
x
j �0 for some 1� i; j �n. Then one can find a nonzero vector

pD .p1; : : : ; pn/
T 2Rn

�0 so that p? rx. Then p 2A.w/.Rn/ and there exists q D .q1; : : : ; qn/
T 2Rn

with p D A.w/q. Then if qi Dmaxj qj for some i ,

0� pi D

nX
jD1

wij .qj � qi /� 0;

and thus qj D qi if j 2N.i/. By this maximum principle and the connectedness of the graph, qj D qi
for any j 2 V, and p D A.w/q D 0. This contradicts that p is nonzero.

If part (b) is not true, ordering the set V based on the values of rxi monotonically, one can find a nonempty
proper subset V0 ¨ V such that

mini2V0
frxi g

maxi2V�V0
frxi g

> C:

Choose a vector p 2Rn such that pi D 1 if i 2 V0, and pi D 0 otherwise. Then the contradiction follows
from

0D hrx; A.w/pi D
X
i2V

rxi

X
j2N.i/

wij .pj �pi /D
X
Eeij2 EE

wij r
x
i pj �

X
i2V

rxi pi
X

j2N.i/

wij

D

X
Eeij2 EE
j2V0

wij r
x
i �

X
i2V0

rxi

X
j2N.i/

wij D
X

i2V0;j2V�V0
j2N.i/

.rxj wj i � r
x
i wij / < 0:

Assume nD n.w/ 2R2 is the unit vector that is parallel to r1 and hn; r1i> 0. Define for each directed
edge

uij D uij .w/D n � .xj �xi C .b
x
ij ; b

y
ij // for all Eeij 2 EE;
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where xi D .xi ; yi / is given by the minimizer x.w/. Note that

krik2 D n � ri D
X

j2N.i/

wijuij :

Lemma 2.3 There exists a constant ˇ D ˇ.T;  / > 0 such that for any w 2 R
EE
C

, there exists Eeij 2 EE
such that uij .w/� �ˇ.

Proof Since uij D �uj i for any ij 2 E, it suffices to find Eeij such that juij .w/j � ˇ. Assume
nD .n1; n2/ 2R2. Then jn1j � 1=

p
2 or jn2j � 1

p
2.

If jn1j � 1=
p
2, let 1DT �f0g be a horizontal simple loop in T2. Then  �1.1/ is a simple loop in the

carrier of T , and it is not difficult to show that there exists a sequence of vertices v.1/; : : : ; v.k/D v.0/
such that v.i/� v.i C 1/ for any i D 0; : : : ; k � 1, and the union

Sk�1
iD0 ev.i/v.iC1/ is a piecewise linear

loop in jT j, which is homotopic to  �1.1/. By choosing an appropriate orientation, we have

k�1X
iD0

.xv.i/C1�xv.i/C .b
x
v.iC1/v.i/; b

y

v.iC1/v.i/
//D .1; 0/:

So
k�1X
iD0

uv.i/v.iC1/ D n � .1; 0/D n1;

and there exists some i such that juv.i/v.iC1/j � jn1j=k � 1=.
p
2k/. Notice that here k is a constant

depending only on T and  .

Similarly, if jn2j � 1=
p
2, there exists some Eeij 2 EE such that juij j � 1=.

p
2k0/ for some constant

k0 D k0.T ;  /.

We define the smooth flow ‚ on the domain R
EE
C
nW on each edge as

(4)

(
Pwij D wij �g

�
1

˛
.wij Cwj i /uij

�
� h.wij �wj i /;

wij .0/D w
0
ij ;

where g and h are smooth nonincreasing functions such that

(a) g � 1 on .�1;�1/ and g � 0 on Œ0;C1/, and

(b) h� 1 on .�1; 1/ and h� 0 on Œ2;C1/, and

(c) ˛ D ˛.w/D ˇ �
�
2jEjC

X
Eeij2 EE

w�1ij

��1
.

Roughly speaking, the function g tends be positive if uij < 0, meaning that wijuij will decrease so as
to reduce the residual krik2. The function h controls the difference between wij and wj i , and note that
˛.w/ is smooth and very small. Specifically we have

(5) ˛.w/�
ˇ

2jEj
and ˛.w/� ˇL.w/;
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where L.w/Dmin
Eeij2 EE

wij is a continuous function on w 2R
EE
C

. Define

M.w/Dmax
n
2; max
Eeij2 EE

jwij �wj i j
o
;

which is another continous function on R
EE
C

.

Lemma 2.4 Assume the flow w.t/ satisfies (4). Then we have the following:

(a) 0� Pwij � wij .

(b) uij � 0 implies Pwij D 0. Then Pwijuij � 0 for all directed edges.

(c) wij �wj i � 2 implies Pwij D 0.

(d) L.w.t// is nondecreasing and M.w.t// is nonincreasing.

(e) For any edge ij ,
wij .t/

wj i .t/
� 1C

M

L
:

(f) The residual vectors ri .t/ satisfy

maxi2V kri .t/k2
mini2V kri .t/k2

� .1C
M

L
/n�1 for all 1� i; j � n:

(f) The residual vectors ri .t/ satisfy

(6)

p
E.w.t//

p
n.1CM=L/n�1

� kri .t/k2 for all 1� i � n:

Proof Parts (a)–(d) are straightforward from (4) and the defining properties of smooth functions g and h.
Part (e) follows from

wij .t/

wj i .t/
D 1C

wij .t/�wj i .t/

wj i .t/
� 1C

M

L
:

Part (f) follows from part (e) and Lemma 2.2. For part (g), by definition

E.t/D
nX

jD1

krj .t/k
2
2:

Part (f) implies that

E.t/� n
�
1C

M

L

�2n�2
kri .t/k

2
2 and

p
E.t/

p
n.1CM=L/n�1

� kri .t/k2 for all 1� i � n:

2.3 Proof of Lemma 2.1

Proof Let

C.w/D
ˇL=M

2
p
n.1CM=L/n�1

;
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where LDL.w/ and M DM.w/ are continous functions on R
EE
C

, on which C.w/ is also continuous. We
claim that such a function C.w/ and the flow ‚ defined as (4) are satisfactory. Assume w0 2R

EE
C
nW and

w.t/ is a flow defined by (4). By part (a) of Lemma 2.4 we only need to prove part (b) of Lemma 2.1. By
part (d) of Lemma 2.4, it is easy to see that C.w.t// is nondecreasing on t . So we only need to prove that

dE.w.t//
dt

� �C.w.t//
p
E.w.t//:

Given w 2R EE
C

and x 2Rn�2, define

zE.w;x/D kA.w/x�b.w/k2;

and then
dE.w. � //

dt
.t/D lim

�!0

E.w.t C �//� E.w.t//
�

� lim
�!0

zE.w.t C �/;x.w.t///� zE.w.t/;x.w.t///
�

D
@zE
@w
.w.t/;x.w.t/// � Pw:

So it suffices to show
@zE
@w
.w.t/;x.w.t/// � Pw � �C

p
E.w.t//:

Notice that

@zE
@wij

.w.t/;x.w.t///D

�
@

@wij

nX
iD1

 X
j2N.i/

wij .xj �xi C .b
x
ij ; b

y
ij //

2
2

�ˇ̌̌̌
.w;x.w//

D 2ri � .xj �xi C .b
x
ij ; b

y
ij //

D 2krik2n � .xj �xi C .b
x
ij ; b

y
ij //D 2krik2 �uij

and then,

(7)
@zE
@w
.w.t/;x.w.t/// � Pw D 2

X
Eeij2 EE

krik2uij Pwij �
2
p
E.w.t//

p
n.1CM=L/n�1

X
Eeij2 EE

uij Pwij :

Here we use the fact that Pwijuij � 0 for all directed edges (part (b) of Lemma 2.4), and inequality (6).
It remains to show that X

Eeij2 EE

uij Pwij � �
ˇL

2M
:

By Lemma 2.3 there exists a directed edge Eei 0j 0 with ui 0j 0 � �ˇ. Then we will consider the following
two cases:

Case 1 (wi 0j 0 �wj 0i 0 � 1) By the definition of the function h,

h.wi 0j 0 �wj 0i 0/D 1:

We also have
g
�
1

˛
.wi 0j 0 Cwj 0i 0/ui 0j 0

�
D 1;
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since

.wi 0j 0 Cwj 0i 0/ui 0j 0 � �2ˇL� �˛:

By (4), Pwi 0j 0 D wi 0j 0 . Notice that Pwijuij � 0 for any Eeij 2 EE by part (b) of Lemma 2.4, soX
Eeij2 EE

uij Pwij � ui 0j 0 Pwi 0j 0 D ui 0j 0wi 0j 0 � �ˇL� �
ˇL

2M
:

Case 2 (wi 0j 0 �wj 0i 0 � 1) Define

EE0 D fEeij 2 EE j uij < 0; .wij �wj i /uij � ˛g:

If Eeij 2 EE0, then obviously wij �wj i < 0 and

h.wij �wj i /D 1:

Also,

g
�
1

˛
.wij Cwj i /uij

�
D 1

since

.wij Cwj i /uij � .wj i �wij /uij � �˛:

By (4), Pwij D wij and

(8)
X
Eeij2 EE

Pwijuij �
X
Eeij2 EE0

Pwijuij D
X
Eeij2 EE0

wijuij � �
L

M

X
eij2E0

.wij �wj i /uij :

The last inequality uses the fact thatwij ��L.wij �wj i /=M , which is equivalent towj i=wij � 1CM=L.

By the fact that ui 0j 0 � �ˇ, and the assumption wi 0j 0 �wj 0i 0 � 1,

.wi 0j 0 �wj 0i 0/ui 0j 0 � �ˇ < 0 < ˛;

and thus Eei 0j 0 … EE0. Notice that

X
Eeij2 EE

wijuij D

nX
iD1

X
j2N.i/

wijuij D

nX
iD1

krik2 � 0;

and X
Eeij2 EE

wijuij D
X

Eeij2 EE Wuij<0

.wij �wj i /uij

D

X
Eeij2 EE0

.wij �wj i /uij C
X

eij2 EE� EE0�fei0j 0gWuij<0

.wij �wj i /uij C .wi 0j 0 �wj 0i 0/ui 0j 0

�

X
Eeij2 EE0

.wij �wj i /uij CjEj˛�ˇ:
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Then X
Eeij2 EE0

.wij �wj i /uij � ˇ� jEj˛ �
ˇ

2
;

and X
Eeij2 EE

uij Pwij � �
ˇL

2M
:

3 Proof of Theorem 1.3

We will first introduce the concept of discrete one-forms, and the index theorem proposed in [Gortler
et al. 2006].

3.1 Discrete one-forms and the index theorem

A discrete one-form is a real-valued function � on the set of directed edges such that it is antisymmetric
on each undirected edge. Specifically, let �ij D �.Eeij / be the value of � on the directed edge from vi

to vj ; then we have �ij D��j i .

For a discrete one-form, an edge is degenerate (resp nonvanishing) if the one-form is zero (resp nonzero)
on it. A vertex is degenerate (resp nonvanishing) if all of edges connected to it are degenerate (resp nonvan-
ishing). A face is degenerate (resp nonvanishing) if all of its three edges are degenerate (resp nonvanishing).
A one-form is degenerate (resp nonvanishing) if all the edges are degenerate (resp nonvanishing). Each
edge is either degenerate or nonvanishing. However, vertices or faces can be degenerate, nondegenerate
but vanishing on some edges, or nonvanishing.

Assume � is a discrete one-form. Denote by sc.�; v/ the number of sign changes of the nonzero values
of � on the directed edges starting from v, counted in counterclockwise order. For a vertex v 2 V, define
the index of v as Ind.�; v/D .2� sc.�; v//=2. Similarly, for a nondegenerate face t 2 F, the index of t is
Ind.�; t/D .2� sc.�; t//=2, where sc.�; t/ is the number of sign changes of the nonzero values of � on
the three edges of t , counted in counterclockwise order.

The following theorem is a special case of the index theorem from [Gortler et al. 2006], which is a discrete
version of the Poincaré–Hopf theorem for discrete one-forms.

Theorem 3.1 Let � be a nonvanishing discrete one-form on a triangulation of a torus. ThenX
vi2V

Ind.�; vi /C
X
tijk2F

Ind.�; tijk/D 0:

Assume ' satisfies the assumption in Theorem 1.3; then for any unit vector n 2 R2 we can naturally
construct a discrete one-form � by letting �ij D P'ij � n. If ' 2 X, a generic unit vector determines a
nonvanishing discrete one-form �. Further, if ' 2 X and such a constructed � is nonvanishing, it is
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v

v v

Figure 2: Typical vertex with positive (left), zero (middle), and negative (right) index.

not difficult to show that all the indices of the vertices and faces are zero. Figure 2 illustrates how the
neighborhood of v looks if it has positive, or zero, or negative index for the case nD .1; 0/.

Based on this construction, we have:

Lemma 3.2 Given a triangulation .T ;  / of T2, denote by tijk 2 F the triangle with three vertices vi ,
vj , and vk . There exists a nonvanishing discrete one-form � such that �ij > 0 and �jk > 0. Moreover , all
the indices of the vertices and faces of � are zero.

Proof By the result of [Colin de Verdière 1991] and [Hass and Scott 2015], the space X.T ;  / is not
empty for any .T ;  /. Let ' be a geodesic triangulation in X. Then it is not difficult to find a unit vector n

such that P'ij �n> 0 and P'jk �n> 0. Define the discrete one-form � as �ij D P'ij �n. We can perturb the
unit vector n a little bit to make � nonvanishing, and then such an � is satisfactory.

3.2 The proof of Theorem 1.3

Assume ' W T .1/! T2 satisfies the assumption of Theorem 1.3; then there exists a unique extension
N' W jT j ! T2 such that the restriction of N' to every face is linear. Such a N' is homotopic to  , and ' is a
geodesic triangulation in X if and only if N' is a homeomorphism.

For any triangle tijk 2X, we say that N'.tijk/ is degenerate if N'.tijk/ is contained in some geodesic �. If
N'.tijk/ is not degenerate, we can naturally define its inner angle � i

jk
at '.vi /. We claim that

(a) N'.tijk/ is not degenerate for any tijk 2 F, and

(b) N' is locally a homeomorphism.

Then N' is a proper local homeomorphism, and thus is a covering map. Since N' is homotopic to the
homeomorphism  , we know N' is indeed a degree-1 covering map, ie a homeomorphism.

3.2.1 Proof of claim (a) Assume there is some triangle t 2 F such that N'.t/ is degenerate and hence
contained in a geodesic �. Here � is assumed to be a closed geodesic, or a densely immersed complete
geodesic. Let C be the union of all triangles t such that N'.t/��. Then C is not the whole complex T ; other-
wise N' is not homotopic to the homeomorphism . So, we can find a vertex v02@C. Denote by star.v0/ the
star-neighborhood of v0 in T . Then N'.star.v0// is not in �, but N'.t0/� � for some triangle t0 in star.v0/.

Algebraic & Geometric Topology, Volume 24 (2024)
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Let n be a unit vector that is orthogonal to the geodesic �, and define � as �ij D P'ij � n. Then the
vertex v0 is nondegenerate with respect to �, but the face t0 is degenerate. Let � be a discrete one-form in
Lemma 3.2 with the triangle t0 and vj D v0. Scale � to make it very small so that �C � has the same
signs with � on the nondegenerate edges of �.

Notice that sc.�; v0/¤ 0, or equivalently sc.�; v0/� 2; otherwise all the edges connecting v0 lie on a half-
space, which contradicts the assumption that ' is balanced. Since t0 is degenerate in �, taking the opposite
�� instead of � if necessary, we can assume that sc.�; v0/ < sc.�C �; v0/, and thus Ind.�C �; v0/ < 0.

Noticing that �C � is nonvanishing, we will derive a contradiction with the index theorem (Theorem 3.1),
by showing that the index of �C � is nonpositive for any vertex and face.

If a face t is degenerate in �, then Ind.�C �; t/D Ind.�; t/D 0. If a face t is nondegenerate in �, then
Ind.�C �; t/D Ind.�/D 0. In fact, the index of any nondegenerate face is zero.

If a vertex v is degenerate in �, then Ind.�C �; v/D Ind.�; v/D 0. If a vertex v is nonvanishing, then
Ind.�C �; v/D Ind.�; v/. Since ' is balanced, Ind.�; v/� 0.

If a vertex v is nondegenerate but vanishing at some edges in �, then

Ind.�C �; v/� Ind.�; v/� 0;

since adding � can only introduce more sign changes.

3.2.2 Proof of claim (b) Since ' is w–balanced, it is not difficult to show that for any vertex i ,X
jkWtijk2F

� ijk � 2�;

and the equality holds if and only if all the edges around vi do not “fold” under the map N'. By the
Gauss–Bonnet theorem,

nX
iD1

�
2� �

X
jkWtijk2F

� ijk

�
D 0:

So X
jkWtijk2F

� ijk D 2�

for any vertex vi , and all the edges in E do not fold. Thus, N' is a local homeomorphism.
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Finite presentations of the mapping class groups
of once-stabilized Heegaard splittings

DAIKI IGUCHI

Let g � 2 and assume that we are given a genus g Heegaard splitting of a closed orientable 3–manifold
with distance greater than 2gC 2. We prove that the mapping class group of the once-stabilization of
such a Heegaard splitting is finitely presented.

57K30, 57M60

1 Introduction

Let .M; †/ be a Heegaard splitting of a compact orientable 3–manifold M . The mapping class
group MCG.M; †/ of the Heegaard splitting .M; †/ is defined to be the group �0.Diff.M; †// of
path-connected components of the group Diff.M; †/, where we denote by Diff.M; †/ the group of
diffeomorphisms of M that preserve † setwise. There is a natural homomorphism from MCG.M; †/ to
the mapping class group MCG.M / of M . Following Johnson [2011], we call the kernel of this natural
homomorphism the isotopy subgroup of MCG.M; †/, and denote it by Isot.M; †/.

In this paper, we are interested in the isotopy subgroup of the mapping class group of a once-stabilized
Heegaard splitting. Let .M; †0/ be a genus g.†0/ � 2 Heegaard splitting of a closed orientable 3–
manifold M . We say that a Heegaard splitting .M; †/ is a (once-)stabilization of .M; †0/ if it is obtained
from .M; †0/ by adding a 1–handle whose core is parallel into †0. Corresponding to two handlebodies
V �
†0 and V C

†0 in M with @V �
†0 D @V

C

†0 D †
0, there are two obvious subgroups of Isot.M; †/: one is

Isot.V �
†0 ; †

�/ and the other is Isot.V C
†0 ; †

C/, where †� (resp. †C) is the Heegaard surface obtained by
pushing † into V �

†0 (resp. V C
†0) slightly. It is natural to ask when these subgroups generate Isot.M; †/.

Johnson [2011] proved that if the distance d.†0/ of the Heegaard splitting .M; †0/ is greater than
2g.†0/C 2, then the two subgroups defined above generate Isot.M; †/. As a consequence of this fact,
together with a result of Scharlemann [2013] that says Isot.V ˙

†0 ; †
˙/ are finitely generated, it follows that

Isot.M; †/ and MCG.M; †/ are finitely generated. In that paper, Johnson conjectured that Isot.M; †/

is an amalgamation of the two groups Isot.V �
†0 ; †

�/ and Isot.V C
†0 ; †

C/. This is the main result of the
paper:

Theorem 1.1 Suppose that .M; †0/ is Heegaard splitting of a closed orientable 3–manifold M with
d.†0/ > 2g.†0/C 2, and that .M; †/ is a once-stabilization of .M; †0/. Suppose that .V �

†0 ; †
�/ (resp.

© 2024 MSP (Mathematical Sciences Publishers). Distributed under the Creative Commons Attribution License 4.0 (CC BY).
Open Access made possible by subscribing institutions via Subscribe to Open.
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.V C
†0 ; †

C/) is the Heegaard splitting of V �
†0 (resp. V C

†0) obtained by pushing † into V �
†0 (resp. V C

†0)
slightly, where V �

†0 and V C
†0 are handlebodies in M bounded by †0. Then Isot.M; †/ is isomorphic to an

amalgamation of the two groups Isot.V �
†0 ; †

�/ and Isot.V C
†0 ; †

C/.

One might expect that the above theorem has something to do with van Kampen’s theorem. This idea can
be justified as follows. Following Johnson and McCullough [2013], we define the space H.M; †/ to be
Diff.M /=Diff.M; †/ and call it the space of Heegaard splittings equivalent to .M; †/. Let H denote the
path-connected component of H.M; †/ containing the left coset idM �Diff.M; †/. It is known that if a
3–manifold admits a Heegaard splitting with the distance greater than two, then such a 3–manifold must
be hyperbolic. By a result in [Johnson and McCullough 2013] (see Theorem 2.1 below for more details)
together with this fact, it follows that Isot.M; †/ is isomorphic to �1.H/.

Now fix a spine K DK�[KC of the Heegaard splitting .M; †0/, that is, K� and KC are finite graphs
embedded in M such that the complement M nK is diffeomorphic to †0 � .�1; 1/ and †0 is a slice
of this product structure. Denote by H� (resp. HC) the subspace of H consisting of those elements
represented by a Heegaard surface T such that T is a genus g.†0/C 1 Heegaard surface of the genus
g.†0/ handlebody M n Int.N.KC// (resp. M n Int.N.K�//), where N.KC/ (resp. N.K�/) is a small
neighborhood of KC (resp. K�). By the similar reason as above (see Theorem 2.2 below), we can identify
Isot.V �

†0 ; †
�/ and Isot.V C

†0 ; †
C/ with the fundamental groups �1.H

�/ and �1.H
C/ respectively. Set

H[ WDH�[HC. Theorem 1.1 is a corollary of the following.

Theorem 1.2 The inclusion H[!H is a homotopy equivalence.

It is well known that a genus gC 1 Heegaard splitting of a genus g handlebody is unique up to isotopy.
Similarly, a genus gC 1 Heegaard splitting of the space Fg � Œ�1; 1� is unique up to isotopy, where we
denote by Fg a closed genus g surface. In other words, HC, H� and H�\HC are all connected, and
hence van Kampen’s theorem applies to the triple .H�;HC;H�\HC/.

The proof of Theorem 1.2 is based on the concept of graphics, which was first introduced by Cerf [1968]
and then successfully applied to the study of Heegaard splittings by Rubinstein and Scharlemann [1996].
More precisely, we prove Theorem 1.2 by generalizing the method developed by Johnson [2010; 2011].
We also use an argument due to Hatcher [1976] crucially, which is a parametrized version of the innermost
disk argument.

In Section 5, we confirm that the isotopy subgroup of a genus gC 1 Heegaard splitting of a genus g

handlebody is finitely presented:

Theorem 1.3 Let V be a handlebody of genus g.V /� 2, and let .V; †/ be a genus g.V /C 1 Heegaard
splitting of V . Then Isot.V; †/ is finitely presented.

It follows from Theorem 1.3 that �1.H
�/ and �1.H

C/ are finitely presented. As a consequence, we have:

Algebraic & Geometric Topology, Volume 24 (2024)
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Corollary 1.4 Let .M; †0/ be a Heegaard splitting of a closed orientable 3–manifold M with

d.†0/ > 2g.†0/C 2:

Let .M; †/ be a once-stabilization of .M; †0/. Then Isot.M; †/ and MCG.M; †/ are finitely presented.

We remark that a problem related to this work was treated by Koda and Sakuma [2023]. In that paper,
the concept of the “homotopy motion group” was introduced, and they considered the question that asks
when the homotopy motion group ….M; †/ of a Heegaard surface in a 3–manifold M can be written as
an amalgamation of the two homotopy motion groups ….U�

†
; †/ and ….UC

†
; †/ corresponding to the

two handlebodies U�
†

and UC
†

with @U�
†
D @UC

†
D†.

The paper is organized as follows. In Section 2, we recall from [Johnson and McCullough 2013] some
facts about the space of Heegaard splittings. We also recall the definition of the distance of a Heegaard
splitting. To prove Theorem 1.2, we will need to deal with the graphic determined by a 4–parameter
family of Heegaard surfaces. In Section 3, we give a quick review of the theory of graphics, and then we
see that some ideas in [Johnson 2010] can be adapted to our setting. In Section 4, we prove Theorem 1.2.
Finally, we give the proof of Theorem 1.3 in Section 5.

Acknowledgements The author would like to thank his advisor Yuya Koda for much advice and sharing
his insight. He is also grateful to the referees for their valuable comments that improved the manuscript.
This work was supported by JSPS KAKENHI grant JP21J10249.

2 Preliminaries

Throughout the paper, we will use the following notation. For a topological space X , we denote by jX j
the number of path-connected components of X . For a subspace Y of X , Int.Y / and Cl.Y / denote the
interior and the closure of Y in X , respectively. We will denote by J the closed interval Œ�1; 1�.

2.1 The space of Heegaard splittings

Let M be a compact orientable 3–manifold (possibly with boundary). Let .M; †/ be a Heegaard splitting
of M . This means that†�M is a closed orientable embedded surface cutting M into the two compression
bodies. Here, a compression body is a 3–manifold with nonempty boundary admitting a Morse function
without critical points of index 2 and 3. A handlebody is a typical example of a compression body. The
space H.M; †/D Diff.M /=Diff.M; †/ is called the space of Heegaard splittings equivalent to .M; †/.
Note that there is a one-to-one correspondence between H.M; †/ and the set of images of † under
diffeomorphisms of M . We often identify an element of H.M; †/ with the corresponding Heegaard
surface. We always take the surface † as the basepoint of H.M; †/, which corresponds to the left coset
idM �Diff.M; †/. The space H.M; †/ admits a structure of a Fréchet manifold, and this implies that
H.M; †/ has the homotopy type of a CW complex.

Algebraic & Geometric Topology, Volume 24 (2024)
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Theorem 2.1 [Johnson and McCullough 2013, Corollary 1] Suppose that M is closed , orientable , irre-
ducible and �1.M / is infinite , and that M is not a non-Haken infranilmanifold. Then �k.H.M; †//D 0

for k � 2, and there is an exact sequence

1!Z.�1.M //! �1.H.M; †//! Isot.M; †/! 1:

A similar statement as above holds for handlebodies and the space Fg �J :

Theorem 2.2 Let g0 � g � 2. Suppose that M is a genus g handlebody or the space Fg �J , where Fg

denotes a closed orientable surface of genus g. Suppose that .M; †/ is a genus g0 Heegaard splitting
of M . Then �1.H.M; †//Š Isot.M; †/ and �k.H.M; †//D 0 for k � 2.

Proof By [Johnson and McCullough 2013, Theorem 1], �k.H.M; †//D �k.Diff.M // for k � 2, and
there is an exact sequence

1! �1.Diff.M //! �1.H.M; †//! Isot.M; †/! 1:

By Earle and Eells [1969] and Hatcher [1976], �k.Diff.M //D 0 for k � 1.

2.2 The distance of a Heegaard splitting

Let .M; †0/ be a genus g.†0/� 2 Heegaard splitting of a closed orientable 3–manifold M . Denote by
V �
†0 and V C

†0 the handlebodies in M with V �
†0 \V C

†0 D @V
�
†0 D @V

C

†0 D †
0. The curve graph C.†0/ is

the graph defined as follows. The vertices of C.†0/ are isotopy classes of nontrivial simple closed curves
in †0, and the edges are pairs of vertices that admit disjoint representatives. We denote by dC.†0/ the
simplicial metric on C.†0/.

Let D� (resp. DC) denote the set of vertices in C.†0/ that are represented by simple closed curves
bounding disks in V �

†0 (resp. V C
†0). Then the (Hempel) distance d.†0/ of the Heegaard splitting .M; †0/

is defined to be
d.†0/ WD dC.†0/.D

�;DC/:

For example, if M contains an essential sphere, then any Heegaard splitting of M has distance zero (see
Haken [1968]). If M contains an essential torus, then any Heegaard splitting of M has distance at most
two. Furthermore, any Heegaard splitting of a Seifert manifold has distance at most two. See Hempel
[2001] for these two facts. As a consequence of the geometrization theorem and these facts, we have:

Theorem 2.3 Suppose that .M; †0/ is a Heegaard splitting of a closed orientable 3–manifold M . If
d.†0/ > 2, then M admits a hyperbolic structure.

3 Sweep-outs and graphics

In this section, we recall the definition of graphics and summarize their properties. In what follows, let
M denote a closed orientable 3–manifold.

Algebraic & Geometric Topology, Volume 24 (2024)
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3.1 Graphics

Let .M; †/ be a Heegaard splitting of M . A sweep-out associated with .M; †/ is a function

h WM ! J D Œ�1; 1�

such that the level set h�1.t/ is a Heegaard surface isotopic to † if t 2 Int.J /, and h�1.t/ is a finite graph
in M if t 2 @J . The preimage h�1.@J / is called the spine of h.

Lemma 3.1 Let n > 0 and .M; †/ be a Heegaard splitting of a closed orientable 3–manifold M .
Let ' W Dn ! H.M; †/. Then there exists a family fhu WM ! J j u 2 Dng of sweep-outs such that
h�1

u .0/D '.u/ for u 2Dn.

Proof Take a sweep-out h WM ! J with h�1.0/D†. We note that

Diff.M /! Diff.M /=Diff.M; †/DH.M; †/

is a fibration [Johnson and McCullough 2013]. So, the map ' lifts to a map Q' WDn! Diff.M /. Now
define hu WD h ı Q'.u/�1 for u 2Dn.

Let .M; †/ and .M; †0/ be Heegaard splittings of M . Let f WM ! J be a sweep-out with f �1.0/D†0.
Furthermore, let fhu WM ! J j u 2D2g be a family of sweep-outs associated with .M; †/. We define
the map ˆ WM �D2! J 2 �D2 by ˆ.x;u/D .f .x/; hu.x/;u/.

Set L WD ˆ�1.@J 2 �D2/, and W WD .M �D2/ nL. Define S D S.ˆjW / to be the set of all points
w 2W such that rank d.ˆjW /w < 4. The image � of S in J 2 �D2 is called the graphic defined by f
and fhug.

After a small perturbation, we may assume that the map ˆ is generic in the following sense. First, for
u2D2, the spine h�1

u .@J / intersects each level set of f at finitely many points. Similarly, for u2D2, the
spine f �1.@J / intersects each level set of hu at finitely many points. Furthermore, ˆ is “excellent” on W .
This means that the set S of singular points ofˆjW is a 3–dimensional submanifold in W , and S is divided
into four parts, S2, S3, S4 and S5, where Sk consists of singular points of codimension k. (In the notation
of [Boardman 1967], we can write S2D†

2;0, S3D†
2;1;0, S4D†

2;1;1;0 and S5D†
2;1;1;1;0[†2;2;0.)

For k ¤ 5, ˆ has one of the following canonical forms around a point w 2 Sk :1 there exist local
coordinates .a; b; c;x;y/ centered at w and .A;B;X;Y / centered at ˆ.w/ such that

.A ıˆ;B ıˆ;X ıˆ;Y ıˆ/D

8̂̂̂̂
<̂̂
ˆ̂̂̂:

.a; b; c;x2Cy2/ definite fold (w 2 S2);

.a; b; c;x2�y2/ indefinite fold (w 2 S2);

.a; b; c;x3C ax�y2/ cusp (w 2 S3);

.a; b; c;x4C ax2C bxCy2/ definite swallowtail (w 2 S4);

.a; b; c;x4C ax2C bx�y2/ indefinite swallowtail (w 2 S4):

1We do not know if there exist canonical forms for the singularities of type †2;2;0. However, the singularities in S5 are not
important for our present purpose.
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Furthermore, for 2� k � 5, ˆjSk
is an immersion with normal crossings, and the images of the Sk are

in general position. The main reference about these materials is the book by Golubitsky and Guillemin
[1973]. Hatcher and Wagoner [1973] also contains a helpful review for our present purpose.

In the remaining part of the paper, we always assume that the map ˆ has the property described above.
Under this assumption, � has the natural stratification: we can write � D F3 [F2 [F1 [F0, where
dim Fk D k for 0� k � 3 and each Fk has the following description.

F3 This consists of those points y 2 � such that .ˆjS /�1.y/� S2 and j.ˆjS /�1.y/j D 1.

F2 This consists of those points y 2 � such that
� .ˆjS /

�1.y/� S2 and j.ˆjS /�1.y/j D 2, or
� .ˆjS /

�1.y/� S3 and j.ˆjS /�1.y/j D 1.

F1 This consists of those points y 2 � such that
� .ˆjS /

�1.y/� S2 and j.ˆjS /�1.y/j D 3,
� .ˆjS /

�1.y/� S2[S3 and j.ˆjS /�1.y/j D 2, or
� .ˆjS /

�1.y/� S4 and j.ˆjS /�1.y/j D 1.

F0 This consists of those points y 2 � such that
� .ˆjS /

�1.y/� S2 and j.ˆjS /�1.y/j D 4,
� .ˆjS /

�1.y/� S2[S3 and j.ˆjS /�1.y/j D 3,
� .ˆjS /

�1.y/� S2[S4 and j.ˆjS /�1.y/j D 2,
� .ˆjS /

�1.y/� S3 and j.ˆjS /�1.y/j D 2, or
� .ˆjS /

�1.y/� S5 and j.ˆjS /�1.y/j D 1.

3.2 Labeling the regions of J 2 � D2

In this subsection, we will see that some definitions in [Johnson 2010] can be modified slightly and
adapted to our setting.

Let .M; †/ be a Heegaard splitting. We assume that one component of M n† is assigned the label �
and the other is assigned the label C in some way. We denote by U�

†
and UC

†
the components of M n†

labeled by � and C respectively. (Typically, such a labeling is determined by a given sweep-out h with
h�1.0/D†. In this case, we can define U�

†
D h�1.Œ�1; 0�/ and UC

†
D h�1.Œ0; 1�/.) Such an assignment

of the labels � or C to the components of M n† is called a transverse orientation of †.

Definition Let .M; †/ and U˙
†

be as above. Suppose †0 �M is a closed embedded surface. Then we
say that †0 is mostly above † if †0 is transverse to †, and if every component of †0\U�

†
is contained

in a disk subset of †0. Similarly, we say that †0 is mostly below † if †0 is transverse to †, and if every
component of †0\UC

†
is contained in a disk subset of †0.

Suppose that f WM ! J is a sweep-out, and that † is a transversely oriented Heegaard surface of M . We
say that † is a spanning surface for f if there exist values a; b 2 Int.J / such that f �1.a/ is mostly above
† and f �1.b/ is mostly below †. We say that † is a splitting surface for f if it satisfies the following.
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First, there does not exist value s 2 Int.J / such that f �1.s/ is mostly above or mostly below †. Second,
f j† is almost Morse, that is, f j† has only nondegenerate critical points and f j† is Morse away from
�1 and 1, but there may be more than one minima and maxima at the levels �1 and 1 respectively. We
note that these definitions are coming from that in [Johnson 2010, Definitions 11 and 12].

Proposition 27 in [Johnson 2010], which will be used in the proof of Theorem 1.2, can be stated in our
term as follows:

Lemma 3.2 [Johnson 2010, Proposition 27] Let f WM ! J be a sweep-out associated with a Heegaard
splitting .M; †0/. If f admits a splitting surface †, then d.†0/� 2g.†/.

Let .M; †/ and .M; †0/ be Heegaard splittings of M . Assume that f WM ! J is a sweep-out with
f �1.0/D †0, and that fhu WM ! J j u 2D2g is a family of sweep-outs associated with .M; †/. Let
ˆ WM �D2! J 2 �D2 be as in the previous subsection. Following [Johnson 2010], let us consider the
two subsets Ra and Rb of J 2 �D2 defined as

Ra WD f.s; t;u/ 2 J 2
�D2

j f �1.s/ is mostly above h�1
u .t/g;

Rb WD f.s; t;u/ 2 J 2
�D2

j f �1.s/ is mostly below h�1
u .t/g:

Here, for each u 2D2 and t 2 J , the transverse orientation of h�1
u .t/ is determined by the sweep-out hu.

For example, if t is sufficiently close to �1, then the point .s; t;u/ is in Ra because f �1.s/\h�1
u .Œ�1; t �/

consists of finitely many properly embedded disks in the handlebody h�1
u .Œ�1; t �/. Similarly, if t is

sufficiently close to 1, then the point .s; t;u/ is in Rb . The regions Ra and Rb are nonempty open subsets
in J 2 �D2. The next proposition follows directly from the definition.

Proposition 3.3 The following hold :

(1) Ra and Rb are disjoint as long as g.†0/¤ 0.

(2) Ra and Rb are bounded by � .

(3) The regions Ra and Rb are convex in the t–direction , that is , if .s; t;u/ is in Ra (resp. Rb), then
so is .s; t 0;u/ for any t 0 � t (resp. t 0 � t ).

Set J 2
u WD J 2 � fug � J 2 �D2 for u 2 D2. Then, for u 2 D2, the intersection � \ J 2

u � J 2
u can be

viewed as the (2D) graphic defined by sweep-outs f and hu.

Definition Let f and hu be as above.

(i) We say that hu spans f if there exists t 2 J such that h�1
u .t/ is a spanning surface for f .

(ii) We say that hu splits f if there exists t 2 J such that h�1
u .t/ is a splitting surface for f .

We also say that the graphic defined by f and hu is spanned if hu spans f . Similarly, we say that the
graphic defined by f and hu is split if hu splits f .

Remark 3.4 By Lemma 3.2, the graphic defined by f and hu cannot be split if d.†0/ > 2g.†/.
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s

t

t0 t0

Ra Ra

Rb Rb

Figure 1: The graphic defined by f and hu is spanned if there exists a horizontal segment in
J 2

u intersecting both Ra and Rb (left). On the other hand, the graphic is split if there exists a
horizontal segment disjoint from both Cl.Ra/ and Cl.Rb/ (right).

Here are further remarks on the above definition. First, we remark that the condition (i) is equivalent
to the following: there exists t0 2 J such that the horizontal segment ft D t0g in J 2

u intersects both Ra

and Rb (the left in Figure 1). We also note that J 2
u intersects F3 transversely for u 2 D2, and hence

J 2
u \F3 consists of finitely many open arcs. This is because d.p3 ıˆ/w has maximal rank for w 2W ,

where p3 W J
2�D2!D2 denotes the projection onto the third coordinate. Furthermore, after perturbing

ˆ if necessary, J 2
u \Fk consists of finitely many points for 0� k � 2 and u2D2. Under this assumption,

condition (ii) is equivalent to the following: there exists t0 2 J such that the horizontal segment ft D t0g

in J 2
u is disjoint from both Cl.Ra/ and Cl.Rb/ (the right in Figure 1).

Proposition 3.5 If g.†0/� 2, then Cl.Ra/ and Cl.Rb/ intersect only at points of F0.

Proof We first note that by Proposition 3.3(1) and (2), the intersection between Cl.Ra/ and Cl.Rb/ is
contained in � . Suppose that Cl.Ra/\Cl.Rb/¤∅ and y 2 Cl.Ra/\Cl.Rb/� � . Let .s0; t0;u0/ be
the coordinate of y. Let l be the segment in J 2 �D2 defined by l WD fs D s0g \ fuD u0g. Note that
y 2 l by definition. Furthermore, it follows from Proposition 3.3(3) that l �Cl.Ra/[Cl.Rb/. Consider a
point .s0

0
; t0;u

0
0
/ obtained by perturbing the point .s0; t0;u0/ in the s– and u–directions. We may assume

that the segment Ql WD fs D s0
0
g\ fuD u0

0
g is transverse to each stratum of � . The preimage ˆ�1.Ql/ of Ql

is the genus g.†0/ Heegaard surface in M � fu0
0
g �M �D2, which can be naturally identified with †0.

Let h W†0! J denote the function defined to be the restriction of hu0
0

on ˆ�1.Ql/Š†0. Then h is almost
Morse.

Now suppose, for the sake of contradiction, that y is in Fk with k � 1. Let .s0
0
; t�;u

0
0
/ denote the

coordinate of the intersection point between Ql and the boundary of Cl.Ra/. Note that such a point is
unique by Proposition 3.3(3). Similarly, let .s0

0
; tC;u

0
0
/ denote the coordinate of the intersection point

between Ql and the boundary of Cl.Rb/. Then, h satisfies the following.

� For any regular value t 2 J n Œt�; tC�, every loop of h�1.t/ is trivial in †0.

� The interval Œt�; tC� contains at most three critical values of h.

It is easily seen that the Euler characteristic of such †0 must be at least �1, but this is impossible because
g.†0/� 2 by assumption.
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4 Proof of Theorem 1.2

Suppose that M is a closed orientable 3–manifold, and that .M; †0/ is a genus g.†0/ � 2 Heegaard
splitting with d.†0/ > 2g.†0/C2. Suppose that .M; †/ is a once-stabilization of .M; †0/. Let H denote
the path-connected component of H.M; †/ containing †. Let K˙ and H˙ �H be as in Section 1. Set
H[ WDH�[HC and H\ WDH�\HC.

By Theorem 2.2, �k.H
�/D �k.H

C/D �k.H
\/D 0 for k � 2. By the Mayer–Vietoris exact sequence,

it follows that Hk.H
[IZ/D 0 for k � 2. Applying Hurewicz’s theorem, we have �k.H

[/D 0 for k � 2.
On the other hand, by Theorems 2.1 and 2.3, �k.H/D 0 for k � 2. So, to prove Theorem 1.2, it is enough
to show the following.

Lemma 4.1 The inclusion H[!H induces the isomorphism �1.H
[/! �1.H/.

Johnson [2011] proved that �1.H/ is generated by �1.H
�/ and �1.H

C/, and hence the induced map is a
surjection. (In fact, using the notations in this paper, what he proved in [Johnson 2011] can be written as

�1.H;H
[/D 1:

See [Johnson 2011, Lemmas 2 and 3]. The following argument is motivated by this observation.) So in
this paper, we focus on the proof of the injectivity of the induced map. In other words, we will show the
following:

Lemma 4.2 The second homotopy group �2.H;H
[/ of the pair .H;H[/ vanishes.

Let e02@D
2 be the basepoint. Let ' W.D2; @D2; e0/!.H;H[; †/. We will show that Œ'�D02�2.H;H

[/.
Let f WM ! J be a sweep-out with f �1.0/D†0 and f �1.˙1/DK˙. By Lemma 3.1, there exists a
family fhu WM ! J j u 2D2g of sweep-outs such that h�1

u .0/D '.u/ for u 2D2. The key of the proof
is the following.

Lemma 4.3 For any u 2D2, the graphic defined by f and hu is spanned.

Proof Suppose, contrary to our claim, there exists u0 2D2 such that the graphic defined by f and hu0

is not spanned. Put J 2
u0
WD f.s; t;u/ 2 J 2 �D2 j uD u0g. For brevity, we denote the restriction of ˆ

on W D .M �D2/ nL by the same symbol ˆ in the following. Set � WD ˆ.S.ˆ//. The intersection
� \J 2

u0
� J 2

u0
is precisely the graphic defined by f and hu0

.

As noted in Remark 3.4, this graphic cannot be split. Then, there exists t0 2 J such that the horizontal
segment l WD ft D t0g � J 2

u0
intersects both Cl.Ra/ and Cl.Rb/ at their boundaries (Figure 2). By

Proposition 3.5, Cl.Ra/ and Cl.Rb/ intersect only at points of F0. So, pushing l out of J 2
u0

slightly, we
get an arc Ql � J 2 �D2 such that

� Ql is disjoint from both Ra and Rb , and

� Ql is transverse to each stratum of � .
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t

s

t0

l

J 2
u0

Ra Ra

Rb Rb

Figure 2: If the graphic defined by f and hu0
is not spanned, then there exists a horizontal

segment l � J 2
u0

intersecting Cl.Ra/ and Cl.Rb/ at their boundaries; the intersection is either
separate vertices (left) or a single common vertex (right). In either case l can be perturbed in
J 2 �D2 so that l does not meet Cl.Ra/[Cl.Rb/.

Furthermore, there is a family flt j t 2 Ig of arcs with l0 D l and l1 D Ql such that for any t 2 .0; 1�,
lt is transverse to each stratum of � . Note that d.p2 ıˆ/ and d.p3 ıˆ/ have maximal ranks, where
p2 W J

2 �D2! J is the projection onto the second coordinate and p3 W J
2 �D2!D2 is the projection

onto the third coordinate. This means that ˆ is transverse to l D l0. As a consequence, ˆ is transverse
to lt for all t 2 Œ0; 1�, and hence z† WD ˆ�1.Ql/ is a closed embedded surface in M �D2 isotopic to
†t0;u0

WDˆ�1.l/ (D h�1
u0
.t0/� fu0g). In particular, g.z†/D g.†0/C 1.

Let q1 WM �D2!M denote the projection onto the first coordinate. Since the restriction

q1j†t0;u0
W†t0;u0

!M

is an embedding, so is q1jz†
W z†!M . We see that q1.z†/ is a splitting surface for f . Consider the

restriction f ı q1jz†
on z†. The arc Ql intersects � only at points in F3, which correspond to fold points

of ˆ. Thus, f ı q1jz†
is almost Morse. Let s 2 J be any regular value of f ı q1jz†

. By definition, we can
write

.f ı q1jz†
/�1.s/D .h�1

u .t/� fug/\ .f �1.s/� fug/�M �D2

for some t 2 J and u 2 D2. Since Ql is disjoint from both Ra and Rb , the preimage .f ı q1jz†
/�1.s/

contains at least one loop that is nontrivial in the surface f �1.s/� fug. This implies that q1.z†/ is a
splitting surface for f . But it follows from Lemma 3.2 that d.†0/ � 2g.z†/ D 2g.†0/C 2, and this
contradicts the assumption.

We now return to the proof of Lemma 4.2.

Proof of Lemma 4.2 Let p2 W J
2 �D2 ! J denote the projection onto the second coordinate. For

u 2 D2, set Iu WD p2.Cl.Ra// \ p2.Cl.Rb//. Then t 2 J is in Int.Iu/ if and only if h�1
u .t/ is a

spanning surface for f . By Lemma 4.3, each Iu is a nonempty subset of J . Furthermore, it follows from
Proposition 3.3(3) that each Iu is a closed interval in J . So

F
u2D2 Iu is an (trivial) I–bundle over D2.

Algebraic & Geometric Topology, Volume 24 (2024)



Finite presentations of the mapping class groups of once-stabilized Heegaard splittings 3631

Let � WD2!
F

u2D2 Iu be a section of this I–bundle. Define Q� WD2!H by Q�.u/ WD h�1
u .�.u//. Recall

that '.u/D h�1
u .0/ for u 2D2. The straight line homotopy connecting the 0–section of J �D2!D2 to

� induces the homotopy f'r WD
2!H j r 2 Œ0; 1�g with '0 D ' and '1 D Q� . By Proposition 3.3(3), we

may choose � such that for u 2 @D2, '.u/ is isotopic to Q�.u/ through surfaces disjoint from K� or KC,
depending on if '.u/ 2HC or '.u/ 2H� holds. This means that 'r .u/ 2H[ for u 2 @D2 and r 2 Œ0; 1�.
Clearly, f'r g can be chosen so that it preserves the basepoint. Thus, ' and Q� represent the same element
of �2.H;H

[/. Applying the homotopy described above, from now on, we may assume that the map '
satisfies the following: for any u 2D2, †u WD '.u/ is a spanning surface for f .

We think about a fixed u 2 D2 for a moment. By assumption, there exist values a; b 2 J such that
†0C WD f �1.a/ is mostly above †u, and †0� WD f �1.b/ is mostly below †u. By definition, every loop
of †u\ .†

0C[†0�/ bounds a disk in †0C[†0�. The following observation is due to Johnson [2011].

Claim One of the two (possibly both ) holds:

(1) Every loop in †u\†
0C bounds a disk in †u.

(2) Every loop in †u\†
0� bounds a disk in †u.

Proof If we compress the surface†u along innermost loops in†0C[†0� repeatedly, we have a collection
of surfaces disjoint from both †0C and †0�. The point is that there is a surface S in the collection that
separates †0C from †0�, and so S is in the product region between †0C and †0�. Note that such S

must have genus at least g.†0/. This means that at most one of the two surfaces †0C and †0� contains
an actual compression for †u (ie a loop in †u \†

0C or †u \†
0� that is nontrivial in †u) because

g.†u/D g.†0/C 1. Therefore, either (1) or (2) holds.

Put T 0 D†0C[†0�. Take a loop ` in †u\T 0 satisfying the following condition:

(�) ` is trivial in †u and ` is innermost in T 0 among all the loops of †u\T 0.

If we compress †u along ` and discard the sphere component, then the loop ` (and possibly some other
loops in †u\T 0) is removed. Since M is irreducible, this process can actually be achieved by an isotopy.
Repeating this process as long as possible, all the loops in †u\T 0 satisfying the condition (�) are finally
removed. In particular, the resulting surface is disjoint from †0C or †0� depending on if (1) or (2) holds.

We wish to do the above process simultaneously for u 2 D2. In fact, it is always possible using an
argument of Hatcher [1976]. The following is a sketch of the argument in [Hatcher 1976].

We will construct a smooth family f‚u;r W †u!M j u 2D2; r 2 Œ0; 1�g of isotopies such that for any
u 2D2, ‚u;0.†u/D†u and ‚u;1.†u/ is disjoint from either K� or KC. By the above argument, we
can see that there exist a finite cover fBig of D2 with Bi Š D2 and a family fT 0i g of (disconnected)
surfaces with the following properties:

� T 0i is the union of the two level surfaces †0Ci and †0�i of f .

� If u 2 Bi , then †0Ci is mostly above †u, and †0�i is mostly below †u.
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For u 2D2, let zCu be the set of intersection loops between †u and
S

i T 0i , where the union is taken over
all i such that u 2 Bi . We denote by D0.`/ the disk in T 0i bounded by ` for ` 2 zCu. (Note that such a
disk is unique because each component of T 0i is not homeomorphic to S2.) For u 2D2, let Cu be the
subset of zCu consisting of those loops ` such that ` is trivial in †u, and that D0.`/ contains no other
intersection loop that is nontrivial in †u. Furthermore, for ` 2 Cu, we denote by D.`/ the disk in †u

bounded by `. (Again, note that such a disk is unique because †u ¤ S2.) For u 2 D2, we define the
partial order <0 on Cu by

` <0 m () D0.`/�D0.m/:

Let fB0ig be a finite cover of D2 obtained by shrinking each Bi slightly so that B0i � Int.Bi/ for i . Take a
family f˛u W Cu! .0; 2/ j u 2D2g of functions with the following properties:

� If `;m 2 Cu and ` <0 m, then ˛u.`/ < ˛u.m/.

� If u 2 B0i and `�†u\T 0i , then ˛u.`/ < 1.

� If u 2 @Bi and `�†u\T 0i , then ˛u.`/ > 1.

The function ˛u shows the times when intersection loops that belong to Cu are eliminated by compressing.
Let G denote the union of the images of the ˛u in D2 � Œ0; 2�. Note that for each intersection loop `,
the images of the loops corresponding to ` form a 2D sheet over some Bi , and so G can be written as
the union of these sheets. We can view G as a “chart” to compress the surface †u; if we compress †u

following this chart upward from r D 0 to r D 2, then we get the sequence of surfaces. Note that the
following subtle case may occur: if ` and m are loops of †u\T 0i with D.`/�D.m/ and ˛u.m/ < ˛u.`/,
then the loop ` is eliminated automatically before the time ˛u.`/. This example shows that we should
use the “reduced” chart yG rather than G, which is obtained from G by removing the parts of the sheets
corresponding to any such `.

For every u, we will define the isotopy ‚u;r as follows. Let N. yG/ denote a small fibered neighborhood
of yG. The interval fug � Œ0; 2� intersects N. yG/ at its subintervals J

.k/
u , where 1� k � nD n.u/. Define

z‚u;r to be the isotopy obtained by piecing together the isotopies � .1/u;r ; : : : ; �
.n/
u;r in the way suggested

by yG. Here each � .k/u;r is an isotopy with its r–support in J
.k/
u , and corresponds to the compression along

a loop in Cu. See Figure 3. Now we define ‚u;r as the restriction of z‚u;r on Œ0; 1�.

It remains to see that we can modify the above construction to get the isotopy f‚u;r g to be smooth for
u 2D2. It is enough to show that each factor � .k/u;r of ‚u;r can be chosen so that it varies smoothly for u.
For simplicity, we will think about the isotopy � .1/u;r in the following although the same argument applies to
any � .k/u;r . The isotopy � .1/u;r corresponds to the compression along a loop `u 2 Cu for each u. Assume that
`u � T 0i for any u. Denote by D3.`u/ the 3–ball in M bounded by the 2–sphere D.`u/[D0.`u/. (Note
that such a 3–ball is unique because M ¤ S3.) Let .D3;D;D0/ be the standard triple of disks, that is, D

and D0 are the upper and lower hemispheres in the boundary @D3 of the standard 3–ball D3, respectively.
There is an identification �u W .D

3.`u/;D.`u/;D
0.`u//! .D3;D;D0/ for every u. Then the arguments
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Figure 3: The isotopy z‚u;r is obtained by piecing together the isotopies � .1/u;r , � .2/u;r �
.3/
u;r and � .4/u;r .

(In this example, z‚u;r can be written as the concatenation � .1/u;r � �
.2/
u;r � �

.3/
u;r � �

.4/
u;r of the small

isotopies.) The r–support of � .k/u;r is contained in J
.k/
u .

in [Hatcher 1976] together with the Smale conjecture (the space Diff.D3 rel @D3/ is contractible), which
is proved in [Hatcher 1983], show that �u can be chosen such that it varies smoothly for u.2 Now we can
define � .1/u;r � �

�1
u ıFr ı�u on D.`u/�†u and � .1/u;r �‚u;0 on the complement of a small neighborhood

of D.`u/ in†u, where fFr WD
3!D3 j r 2 Œ0; 1�g is an isotopy that carries D to D0 across D3. Therefore,

it follows that f‚u;r g is smooth for u 2D2.

Finally, we see that‚u;1.†u/2H[ for u2D2. Let u be any point in D2. Take a path � W Œ0; 1�!D2 with
�.0/D e0 and �.1/D u. It suffices to show that the path Q� W Œ0; 1�!H defined by Q�.t/ WD‚�.t/;1.†�.t//
is wholly contained in H[.

For brevity, we denote by †t the surface ‚�.t/;1.†�.t// for t 2 Œ0; 1� in the following. The cover fBig

of D2 induces the cover fIk j 0 � k � ng of Œ0; 1� by finitely many closed intervals. By passing to a
subcover if necessary, we may assume that Ik \ Ij D ∅ if jk � j j > 1. As we have seen above, there
exists a family f†0C

k
[†0�

k
g (D fT 0

k
g) of level surfaces of f and the following hold:

� †0C
k

is mostly above †t if t 2 Ik . Similarly, †0�
k

is mostly below †t if t 2 Ik .

� For each k, one of the two surfaces †0C
k

and †0�
k

is disjoint from †t if t 2 Ik .

As is naturally expected, the following holds:

Claim Suppose that t 2 Ik . If †t \ †
0C

k
D ∅ and †t \ †

0�
k
¤ ∅, then †t 2 H�. Similarly , if

†t \†
0�
k
D∅ and †t \†

0C

k
¤∅, then †t 2HC.

2More specifically, we need the arguments at the end of Section 1 in [Hatcher 1976], where the sought isotopy, denoted by htu

in that paper, is constructed. It starts by taking a suitable triangulation of Dn and then proceeds by extending the isotopy over the
k–skeleton inductively. The homotopy group �k.Diff.D3 rel D// appears as an obstruction to extending a map. (As we work in
the smooth category, we use the Smale conjecture instead of the Alexander trick.)
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Proof The proof is by induction on k. The following argument is based on the idea in [Johnson 2011].
By definition, †t 2 H\ for t 2 I0. Thus our claim holds on I0. So, in what follows, we assume that
k > 0 and that our claim holds on any interval Ij with 0� j < k.

Let t 2 Ik . Without loss of generality, we may assume that †t \†
0C

k
D ∅ and †t \†

0�
k
¤ ∅. Fix

t0 2 Ik \ Ik�1. Note that †t0
and †t are isotopic through surfaces disjoint from KC. Thus it is enough

to show that †t0
2H�. There are three cases to consider.

Case 1 †t0
\†0C

k�1
D∅ and †t0

\†0�
k�1
¤∅.

By the assumption of induction, this implies that †t0
2H� and our claim holds in this case.

Case 2 †t0
\†0C

k�1
¤∅ and †t0

\†0�
k�1
D∅.

We will see that †t0
2H\. This is same as saying that †t0

is a Heegaard surface of

M n Int.N.KC[K�//Š†0 �J;

where N.KC[K�/ is a sufficiently small neighborhood of KC[K�. Since†t0
\†0�

k�1
D†t0

\†0C
k
D∅,

†t0
separates KC from K�. First, we see that †t0

is bicompressible in M n .KC[K�/. By assumption,
there exists a loop `�†t0

\†0C
k�1

bounding a disk D��†0C
k�1

such that ` is nontrivial in†t0
. Similarly,

there exists a loop m�†t0
\†0�

k
bounding a disk DC �†0�

k
such that m is nontrivial in †t0

. Since
D� and DC are in the opposite side of †t0

to each other, †t0
is bicompressible in M n .KC[K�/.

It is known that any genus g.†0/C1 bicompressible surface in †0�J separating †0�f1g from †0�f�1g

must be reducible (see [Johnson 2011]). This means that there exists a 2–sphere P �M n .KC[K�/

intersecting †t0
at a single nontrivial loop in †t0

. Since M is irreducible, P cuts .M; †t0
/ into the two

Heegaard splittings: one is a genus g.†0/ Heegaard splitting of M and the other is a genus 1 Heegaard
splitting of S3. If we denote by S the genus g.†0/ surface obtained by cutting †t0

along P , then S still
separates KC from K�. Thus, S is isotopic to †0 in the complement of KC[K�. This shows that †t0

is a genus g.†0/C1 Heegaard surface in M n Int.N.KC[K�//. Therefore, we conclude that †t0
2H\

in this case.

Case 3 †t0
\†0C

k�1
D†t0

\†0�
k�1
D∅.

Let j denote the minimal integer such that for any j < j 0 � k and t 2 Ij 0 , †t \†
0C
j 0 D†t \†

0�
j 0 D∅.

If j D 0, then †t0
is isotopic to †0 through surfaces disjoint from KC[K�. This shows that †t0

2H\.
So we may assume that j > 0 in the following. Let t1 2 Ij \ IjC1.

First, we assume that †t1
\†0Cj D∅ and that †t1

\†0�j ¤∅. By the assumption of induction, it follows
that †t1

2H�. Since †t1
and †t0

are isotopic in M n .KC[K�/, we have †t0
2H� in this case.

Next, we assume that †t1
\†0Cj ¤ ∅ and that †t1

\†0�j D ∅. Then, there exists a compression disk
D� � †0Cj for †t1

. Since †t1
and †t0

are isotopic in M n .KC [K�/, †t0
has a compression disk

disjoint from K� as well. On the other hand, as we have seen above, †0�
k

contains a compression disk
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DC for †t0
lying in the opposite side of †t0

to D�. Thus, †t0
is bicompressible in M n .KC[K�/.

Now applying the same argument as in Case 2, we have †t0
2H\ and this completes the proof.

The above claim implies that the image of Q� W Œ0; 1�!H is contained in H[. In particular, ‚u;1.†u/2H[.
Therefore, we conclude that Œ'�D 0 2 �2.H;H

[/ and this finishes the proof of Lemma 4.2.

5 The isotopy subgroup of a Heegaard splitting of a handlebody

5.1 Proof of Theorem 1.3

We now give a proof of Theorem 1.3. Let V be a genus g.V / � 2 handlebody, and let .V; †/ be
a genus g.V /C 1 Heegaard splitting of V . Fix a complete system E1; : : : ;Eg.V / of meridian disks
for V . Consider a properly embedded, boundary parallel arc I in V that is disjoint from

Sg.V /
iD1

Ei .
The surface † can be viewed as the boundary of a small neighborhood N.@V [ I/ of @V [ I . In the
same spirit in [Johnson and McCullough 2013], we define the space Unk.V; I/ of unknotted arcs to be
Diff.V /=Diff.V; I/. Then, the following holds:

Theorem 5.1 [Scharlemann 2013, Theorem 5.1] The group Isot.V; †/ is isomorphic to �1.Unk.V; I//.

Thus, it suffices to show that �1.Unk.V; I// is finitely presented.

Fix a parallelism disk E for I disjoint from
Sg.V /

iD1
Ei . Furthermore, fix a spine K of V such that

K\ED∅ and K intersects each Ei at a single point. We now consider the two subspaces of Unk.V; I/:

U1 WD fI
0
2 Unk.V; I/ j I 0 admits a parallelism disk E0 with E0\K D∅g;

U2 WD

�
I 0 2 Unk.V; I/

ˇ̌̌
I 0\

g.V /[
iD1

Ei D∅
�
:

Note that U1, U2 and U1\U2 are all connected.

The group �1.U1/ is identical to the group FE in [Scharlemann 2013], which is called the freewheeling
subgroup in that paper. This group is an extension of �1.@V / by Z, and generated by �i , �i (1� i �g.V /)
and � shown in Figure 4. For each i , �i is represented by an isotopy of parallelism disk E along a
longitudinal loop that intersects @Ei at a single point. Similarly, �i is represented by an isotopy of
the parallelism disk E along a meridional loop corresponding to @Ei . The set f�i ; �i j 1 � i � g.V /g

corresponds to a generating set of �1.@V /, and � is defined to be the half rotation of the parallelism disk E.
Let P denote the planar surface obtained by cutting @V along simple closed curves @E1; : : : ; @Eg.V /.
Then, the group �1.U2/ is isomorphic to the 2–braid group B2.P / of P . Following [Scharlemann 2013],
we define the anchored subgroup AE1;:::;Eg.V /

of �1.U2/ as follows. This is generated by 2g.V / elements
˛i and ˛0i (1� i � g.V /) shown in Figure 5. Here each of ˛i and ˛0i is represented by an isotopy of I that
moves the one endpoint p1 of I along a meridional loop and fixes the other endpoint p0. Note that we
can write ˛0i D �

�1
i ˛i�i as elements of �1.Unk.V; I//. The group �1.U2/ is generated by AE1;:::;Eg.V /

and �.
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�i : E1 Ei Eg.V /

I

�i :
E1 Ei Eg.V /

I

�:
E

�

Figure 4: The group �1.U1/ is generated by 2g.V /C 1 elements.

The groups �1.U1/, �1.U2/ and �1.U1\U2/ are all finitely presented. By van Kampen’s theorem, the
proof is finished if the following is shown:

Lemma 5.2 The inclusion U1[U2! Unk.V; I/ is a homotopy equivalence.

In fact, by the same argument as in Section 4, it is easily seen that �k.U1[U2/D �k.Unk.V; I//D 0 for
k � 2. (And of course, this fact is unnecessary for our present purpose.) So we will see that the natural
map �1.U1[U2/! �1.Unk.V; I// is an isomorphism.

Proof For brevity, set U WDUnk.V; I/. In [Scharlemann 2013], it was shown that �1.U / is generated by
the two subgroups �1.U1/ (D FE) and AE1;:::;Eg.V /

(� �1.U2/). It follows from this fact that the map

E1 Ei Eg.V /
E1

Ei Eg.V /

p0p1
p0p1

˛i
˛0i

Figure 5: The group AE1;:::;Eg.V /
� �1.U2/ is generated by 2g.V / elements.
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Figure 6: For u 2 @D2, the parallelism disk Eu intersects
Sg.V /

iD1
Ei only at arcs parallel to Iu

and intersects K at finitely many points.

�1.U1[U2/! �1.U / is a surjection. We will see that the map �1.U1[U2/! �1.U / is an injection.
In other words, we will see that �2.U;U1[U2/D 0. Let ' W .D2; @D2/! .U;U1[U2/. Put Iu WD '.u/

for u 2D2. In the same spirit of the proof of Lemma 3.1, we can show the following.

Claim 1 There exists a (smooth ) family of disks fEu j u 2D2g in V such that Eu is a parallelism disk
for Iu.

Proof By [Scharlemann 2013], the map Diff.V / ! Diff.V /=Diff.V; †/ is homotopy equivalent to
Diff.V /! Diff.V /=Diff.V; I/. The former is a fibration [Johnson and McCullough 2013], and so is the
latter. Thus, the map ' WD2! U lifts to a map Q' WD2! Diff.V /. Now define Eu WD Q'.u/.E/.

Since '.@D2/ � U1 [U2, the isotopy fIu j u 2 @D
2g represents an element of �1.U1 [U2/. So we

can write this isotopy as a product !1!2 � � �!n of the !k’s, where each !k is either �i , �i , �, ˛i ,
˛0i or their inverses. Corresponding to this factorization, there is a division of @D2 into the intervals
J1 D Œu0;u1�; : : : ;Jn D Œun�1;un� with u0 D un.

Claim 2 After a deformation of fEu j u 2D2g near @D2, the following hold for any u 2 @D2:

(i) Eu intersects
Sg.V /

iD1
Ei at finitely many arcs , and Eu intersects K at finitely many points.

(ii) Each arc of Eu\
Sg.V /

iD1
Ei is parallel to Iu in Eu.

(iii) If a and a0 are arcs of Eu\
Sg.V /

iD1
Ei , then a and a0 are nested in the following sense: if � and

�0 are bigons in Eu cut by a and a0 respectively, then either ���0 or �0 �� holds.

See Figure 6.

Proof The key is the following simple observation. For each interval Jk , there are the three possibilities:

� !k D �
�
i for some 1� i � g.V / and � D˙1. Then, during the move !k , some intersection arcs

of Eu\
Sg.V /

iD1
Ei are introduced or removed (possibly both may occur). All such arcs are parallel

to Iu in Eu. The intersection pattern of Eu\K is not changed by !k . See Figure 7, top.

� !k D ˛
�
i or !k D ˛

0�
i for some 1 � i � g.V / and � D˙1. Then, during the move !k , a single

intersection point of Eu\K is introduced or removed. The intersection pattern of Eu\
Sg.V /

iD1
Ei

is not changed by !k . See Figure 7, bottom.
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Ei

Ei

Ei

K

K

K

K

˛i

�i

Figure 7: The move �i introduces or removes arcs parallel to Iu (top), and the move ˛i introduces
or removes a single point (bottom).

� !kD�
�
i or !kD�

� for some 1� i �g.V / and �D˙1. Then, during the move !k , the intersection
pattern of Eu\

�Sg.V /
iD1

Ei [K
�

does not change.

Recall that Eu0
D Eun

D E by definition. In particular, Eu0
\
�Sg.V /

iD1
Ei [K

�
D ∅. By the above

observation, it follows that the conditions (i), (ii) and (iii) are satisfied on the interval J1. By an inductive
argument, we can see that these three conditions are satisfied on any interval Jk as well.

Put B WD fre
p
�1� 2 C j 0 � r � 1; 0 � � � �g. There is a smooth family ffu W Eu! B j u 2D2g of

diffeomorphisms between Eu and B. (More rigorously, this is a consequence of the fact that the space
Diff.D2 rel @D2/ is contractible [Smale 1959].) Furthermore, by Claim 2, we may choose ffug such that
for any u2@D2, each arc of Eu\

Sg.V /
iD1

Ei is mapped to an arc fre
p
�1� 2B j rD r0; 0�� ��g for some

0< r0 � 1. For t 2 Œ0; 1/, define �t WB!B by �t .re
p
�1� / WD .1� t/re

p
�1� . Set ‚u;t WD f

�1
u ı�t ıfu

for u 2 D2 and t 2 Œ0; 1/. Then, the isotopy ‚u;t shrinks Iu along Eu into a small neighborhood of
a point in Eu \ @V as t ! 1. If t is sufficiently close to 1, then ‚u;t .Iu/ 2 U1. Furthermore, by
definition, for u 2 @D2 and t 2 Œ0; 1/, ‚u;t .Iu/ is disjoint from either K or

Sg.V /
iD1

Ei . Let u 2 @D2 and
t 2 Œ0; 1/. If ‚u;t .Iu/\K D ∅, then ‚u;t .Iu/ 2 U1. On the other hand, if ‚u;t .Iu/\

Sg.V /
iD1

Ei D ∅,
then ‚u;t .Iu/ 2 U2. This means that ‚u;t .Iu/ 2 U1 [U2 for u 2 @D2 and t 2 Œ0; 1/. Therefore, we
conclude that Œ'�D 0 2 �2.U;U1[U2/.

5.2 Proof of Corollary 1.4

Proof of Corollary 1.4 By Theorems 1.1 and 1.3, Isot.M; †/ is finitely presented. It remains to show
that MCG.M; †/ is finitely presented. By definition, there exists an exact sequence

1! Isot.M; †/!MCG.M; †/!MCG.M /:
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By Theorem 2.3, M is hyperbolic, and hence MCG.M / is finite. Therefore, MCG.M; †/ is finitely
presented.
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On the structure of the top homology group of the Johnson kernel

IGOR A SPIRIDONOV

The Johnson kernel is the subgroup Kg of the mapping class group Mod.†g/ of a genus-g oriented
closed surface †g generated by all Dehn twists about separating curves. We study the structure of the
top homology group H2g�3.Kg;Z/. For any collection of 2g� 3 disjoint separating curves on †g, one
can construct the corresponding abelian cycle in the group H2g�3.Kg;Z/; such abelian cycles will be
called simple. We describe the structure of a ZŒMod.†g/=Kg �–module on the subgroup of H2g�3.Kg;Z/
generated by all simple abelian cycles and find all relations between them.

20F34; 20F36, 20J05, 57M07

1 Introduction

Let †g be a compact oriented genus-g surface. Let Mod.†g/D �0.HomeoC.†g// be the mapping class
group of †g, where HomeoC.†g/ is the group of orientation-preserving homeomorphisms of †g. The
group Mod.†g/ acts on H DH1.†g;Z/. This action preserves the algebraic intersection form, so we
have the representation Mod.†g/! Sp.2g;Z/, which is well known to be surjective. The kernel Ig of
this representation is known as the Torelli group. This can be written as the short exact sequence

(1) 1! Ig!Mod.†g/! Sp.2g;Z/! 1:

The Johnson kernel Kg is the subgroup of Ig generated by all Dehn twists about separating curves.
Johnson [15] proved that the group Kg can also be defined as the kernel of the surjective Johnson
homomorphism � W Ig!

V3
H=H , where the inclusion H ,!

V3
H is given by x 7! x^� and �2

V2
H

is the inverse tensor of the algebraic intersection form. Therefore we have the short exact sequence

(2) 1! Kg! Ig!
V3

H=H ! 1:

Denote by Gg the quotient group Mod.†g/=Kg. The exact sequences (1) and (2) imply that Gg can be
presented as the extension

1!
V3

H=H ! Gg! Sp.2g;Z/! 1

of the symplectic group by the free abelian group
V3

H=H . The group H�.Kg;Z/ has the natural structure
of a Gg–module.

In the case g D 1 the representation Mod.†1/! Sp.2;Z/D SL.2;Z/ is an isomorphism, so the group
I1 is trivial. Mess [16] proved that the group I2 D K2 is free with a countable number of generators.
Therefore below we assume that g � 3 unless explicitly stated otherwise.

© 2024 MSP (Mathematical Sciences Publishers). Distributed under the Creative Commons Attribution License 4.0 (CC BY).
Open Access made possible by subscribing institutions via Subscribe to Open.
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A natural problem is to study the homology of the group Kg for g � 3. The rational homology group
H1.Kg;Q/ was shown to be finitely generated for g � 4 by Dimca and Papadima [7]. This group was
computed explicitly for g � 6 by Morita, Sakasai and Suzuki [17] using the description due to Dimca,
Hain and Papadima [6]. Recently Ershov and Sue He [8] proved that Kg is finitely generated in the case
g � 12. This result was extended to any genus g � 4 by Church, Ershov and Putman [5]. This implies
that the group H1.Kg;Z/ is finitely generated, provided that g � 4. It is still unknown whether K3 and
H1.K3;Z/ are finitely generated.

Bestvina, Bux and Margalit [2] computed the cohomological dimension of the Johnson kernel cd.Kg/D

2g� 3. Gaifullin [11] proved that the top homology group H2g�3.Kg;Z/ contains a free Z
�V3

H=H
�
–

module of infinite rank. In particular, H2g�3.Kg;Z/ is not finitely generated.

Recall that for n pairwise commuting elements h1; : : : ; hn of the group G, one can construct the abelian
cycle A.h1; : : : ; hn/ 2Hn.G;Z/ defined as follows. Consider the homomorphism � WZn!G that maps
the generator of the i th factor to hi . Then A.h1; : : : ; hn/D ��.�n/, where �n is the standard generator
of Hn.Zn;Z/.

By a curve we always mean an essential simple closed curve on †g. By an (oriented) multicurve we
mean a finite union of pairwise disjoint and nonisotopic (oriented) curves on †g. An ordered multicurve
is a multicurve with a fixed order on its components. Usually we will not distinguish between a curve or
a multicurve and its isotopy class. We denote by T the left Dehn twist about a curve  .

Definition 1.1 An S–multicurve is an ordered multicurve consisting of 2g� 3 separating components.

For example, the multicurve ı1 [ � � � [ ıg [ �2 [ � � � [ �g�2 in Figure 1 is an S–multicurve. To an
S–multicurve M D 1 [ � � � [ 2g�3 we assign the abelian cycle A.M / D A.T1

; : : : ;T2g�3
/ 2

H2g�3.Kg;Z/. If an S–multicurve M 0 is obtained from M by a permutation � of its components,
then A.M 0/ D .sign�/A.M /. An easy computation of the Euler characteristic implies that any S–
multicurve separates †g into g one-punctured tori and g� 3 three-punctured spheres. Throughout the
paper we assume that the components of any S–multicurve are ordered so that the curves with numbers
1; : : : ;g bound one-punctured tori from †g.

Abelian cycles of the form A.M / 2 H2g�3.Kg;Z/ for some S–multicurve M will be called simple
abelian cycles. Denote by Ag �H2g�3.Kg;Z/ the subgroup generated by all simple abelian cycles. The
author does not know the answer to the following question, which is an interesting problem itself:

Question 1.2 Is the inclusion Ag �H2g�3.Kg;Z/ strict for some g � 3?

The natural problem is to study the structure of the group Ag. Let us identify †g with the surface shown
in Figure 1 and fix the multicurve �D ı1[ � � � [ ıg [ �2[ � � � [ �g�2 on †g. Denote by Pg � Ag the
subgroup generated by all simple abelian cycles A.M /, where M D ı1[ � � � [ ıg [ �

0
2
[ � � � [ �0

g�2
for

some separating curves �0
2
; : : : ; �0

g�2
.
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�2

�3

�4 �g�3

�g�2

ı1

ı2

ı3

ı4

ıg�2

ıg�1

ıg

Figure 1: The surface †g.

By an unordered symplectic splitting we mean an orthogonal (with respect to the intersection form)
decomposition of H into a direct sum of g subgroups of rank 2. Write N D ı1 [ � � � [ ıg, and for
each i let Xi be the one-punctured torus bounded by ıi . Set Vi D H1.Xi ;Z/ � H . Consider the
corresponding unordered symplectic splitting H D

L
i Vi . The group Sp.2g;Z/ acts on the set of all

unordered symplectic splittings. Denote by HgDSL.2;Z/�gÌSg the stabilizer of the unordered splitting
V D fV1; : : : ;Vng in Sp.2g;Z/, where Sg is the symmetric group.

The group StabMod.†g/.N / preserves the splitting V; therefore the image of the natural homomorphism
StabMod.†g/.N /! Sp.2g;Z/ coincides with Hg. Consider the corresponding mapping

� W StabMod.†g/.N /�Hg:

We check in Proposition 2.1 that ker.�/� Kg, so we have the commutative diagram

(3)

1 // Kg
// Mod.†g/ // Gg

(( ((

// 1

Sp.2g;Z/

1 // StabKg
.N / //
?�

OO

StabMod.†g/.N /
�
//

?�

OO

Hg
//

?�

OO

) 	
66
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1

2 3 g� 2 g� 1

g

Figure 2: The dual tree T0 D T .�/ to the S–multicurve �.

Therefore we have the maps Hg! Gg. Since the inclusion Hg ,! Sp.2g;Z/ passes through Gg, we have
the inclusion Hg ,! Gg. The second row of (3) implies that the group Hg D SL.2;Z/�g ÌSg acts on Pg.
The action of SL.2;Z/�g is trivial, and therefore Pg is an Sg–module. The first part of the main result is
as follows:

Theorem 1.3 There is an isomorphism of Gg–modules

Ag Š IndGg

SL.2;Z/�gÌSg
Pg:

In order to describe the Sg–module Pg, we need to introduce some notation. Denote by Tg the set of
trees T such that

(I) T has g leaves (vertices of degree 1) marked by 1; : : : ;g, and

(II) degrees of all other vertices of T equal 3.

We consider such trees up to an isomorphism preserving marking of the leaves. One can prove that
jTgj D 1 � 3 � 5 � � � � � .2g� 5/. For example, T3 consists of a single element.

For each S–multicurve M we consider the dual tree T .M /, ie the graph that has a vertex for each
connected component of †g nM and where two vertices are adjacent if and only if the corresponding
connected components are adjacent to each other. Since each component of M is separating, it follows
that T .M / is a tree. The tree T .M / has g leaves corresponding to one-punctured tori; degrees of all
other vertices equal 3. By definition components of M are ordered, so we also have an order on the set of
curves that bound one-punctured tori on†g. Each leaf of T .M / corresponds to a component of M with a
number from 1 to g. Therefore the leaves of T .M / are numbered from 1 to g. Hence T .M / is an element
of Tg. For example, the dual tree T0 D T .�/ for the multicurve � in Figure 1 is shown in Figure 2.

Recall that we have the fixed curves ı1; : : : ; ıg on †g as in Figure 1. For each T 2 Tg we can find a
multicurve �2[ � � � [ �g�2 disjoint from ı1; : : : ; ıg and consisting of separating components such that T
is the dual tree to the multicurve �T D ı1[ � � �[ ıg [ �2[ � � �[ �g�2. Such a multicurve �2[ � � �[ �g�2

is not unique, but we will prove that all such multicurves ı1 [ � � � [ ıg [ �2 [ � � � [ �g�2 belong to the
same Kg–orbit; see Proposition 2.4. Therefore the simple abelian cycle AT DA.�T / 2H2g�3.Kg;Z/

is defined uniquely up to a sign. The sign of AT depends on the ordering of the curves �2; : : : ; �g�2.
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Figure 3: A cyclic triple of trees.

Let h1D1;h2;h3; : : :2Sp.2g;Z/ be representatives of all left cosets Sp.2g;Z/=Hg and let Oh1; Oh2; Oh3; : : :2

Mod.†g/ be mapping classes that go to h1; h2; h3; : : : under the natural surjective homomorphism
Mod.†g/� Sp.2g;Z/. Gaifullin [11, Theorem 1.3] proved that the abelian cycles

Ohs �AT0
for s D 1; 2; 3; : : :

form a basis of a free Z
�V3

H=H
�
–submodule of H2g�3.Kg;Z/. In particular, these simple abelian

cycles are nonzero and generate a free abelian group.

Definition 1.4 A triple of trees fT1; T2; T3g � Tg is called cyclic if they differ only as shown in Figure 3
(upper and lower vertices in Figure 3 can be either leaves or not).

Theorem 1.5 The abelian group Pg has a presentation where the generators are fAT j T 2 Tgg and the
relations are

(4) fAT1
CAT2

CAT3
D 0 j fT1; T2; T3g is a cyclic tripleg:

Remark 1.6 Recall that the signs of the simple abelian cycles AT depend on the order of the components
of the corresponding S–multicurve. If fT1; T2; T3g is a cyclic triple, then the corresponding S–multicurves
�T1

, �T2
and �T3

differ by only one component. In (4) we mean that the components of these three
S–multicurves are ordered so that the orderings coincide at 2g� 4 positions.

Remark 1.7 The “hard part” of Theorem 1.5 is the fact that any relation between simple abelian cycles
follows from (4). However, the existence of such relations is not hard. For example, one can deduce (4)
from the Lantern relation; see Farb and Margalit [9, Proposition 5.1]. Our proof is based on Arnold’s
relations in the cohomology of the pure braid group.

Also, we find an explicit basis of Pg. For each tree T 2 Tg we say that the leaf with number g is the root,
so T is a rooted tree. In this case, for each vertex the set of its descendant leaves is well defined.

Definition 1.8 Let T 2 Tg. A vertex of T of degree 3 is called balanced if the paths from it to the two
descendant leaves with the two smallest numbers have no common edges. The tree T is called balanced
if all its vertices of degree 3 are balanced. The set of all balanced trees is denoted by T b

g � Tg.
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3 5

2 4

6 1

7

Figure 4: An example of a balanced tree in the case g D 7.

An example of a balanced tree for g D 7 is shown in Figure 4.

Theorem 1.9 The simple abelian cycles fAT j T 2T b
g g form a basis of Pg, and rkPg D jT

b
g j D .g�2/!.

Theorems 1.3, 1.5 and 1.9 provide a complete description of the group Ag.
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2 Preliminaries and sketch of proof

2.1 Mapping class group of a surface with punctures and boundary components

Let † be an oriented surface, possibly with punctures and boundary components. We do not assume
that † is connected. However, we require H�.†;Q/ be a finite-dimensional vector space. The mapping
class group of † is defined as Mod.†/D �0.HomeoC.†; @†//, where HomeoC.†; @†/ is the group of
orientation-preserving homeomorphisms of † that restrict to the identity on @†. By PMod.†/�Mod.†/
we denote the pure mapping class group of †, ie the subgroup consisting of those elements fixing each of
the punctures and each of the connected components. We have the exact sequence

(5) 1! PMod.†b
g;n/!Mod.†b

g;n/! Sn! 1;

where †b
g;n denotes the connected genus-g surface with n punctures and b boundary components. For

example, the pure mapping class group of the disk with n punctures is precisely the pure braid group
PBn D PMod.†1

0;n
/.
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2.2 The Birman–Lubotzky–McCarthy exact sequence

Let M be a multicurve on †g. Then, denoting by G.M / the group generated by Dehn twists about the
components of M , we have the Birman–Lubotzky–McCarthy exact sequence (see [3, Lemma 2.1])

(6) 1!G.M /! StabMod.†g/.M /!Mod.†g nM /! 1:

Take N D ı1 [ � � � [ ıg as in Figure 1 and consider the group StabMod.†g/.N /. We have †g nN D

†0;g tX1 t � � � tXg, where Xi is the one-punctured torus bounded by ıi . Since Mod.Xi/Š SL.2;Z/,
(5) and (6) imply the existence of the following commutative diagram:

(7)

ker � // //
� t

&&

PMod.†0;g/� _

��

1 // G.N /
?�

OO

// StabMod.†g/.N / //

�
)) ))

SL.2;Z/�g ÌMod.†0;g/ //

����

1

SL.2;Z/�g ÌSg

This yields the exact sequence

(8) 1!G.N /! ker �! PMod.†0;g/! 1:

Proposition 2.1 The following sequence is exact :

(9) 1! StabKg
.N /! StabMod.†g/.N /

�
�! SL.2;Z/�g ÌSg! 1:

Proof First let us show that StabKg
.N / � ker �. Indeed, any element � 2 StabKg

.N / stabilizes each
component of N , so it also stabilizes each Xi . Since Kg is contained in the Torelli group, it follows that
the restriction of � to Mod.Xi/Š SL.2;Z/� Sp.2g;Z/ is trivial for all i .

Let us prove the opposite inclusion. The groups G.M / and PMod.†g;n/ are generated by Dehn twists
about separating curves. The exact sequence (8) implies that the same is true for ker �, and therefore
ker �� Kg. Hence ker �� StabKg

.N /.

Lemma 2.2 There is an isomorphism

(10) StabKg
.N /Š Zg�1

�PBg�1 :

Proof We need the following fact:

Fact 2.3 [9, Section 9.3] The center of the group PBg�1 is the infinite cyclic group, which is generated
by the Dehn twist about the boundary curve. Moreover, we have the split exact sequence

1! Z
j1
�! PBg�1! PMod.†0;g/! 1;

where j1 is the inclusion of the center of PBg�1.
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ıg

ı1 ı2 ıg�1

Figure 5

Consider the obvious map
j W Zg

Š Zg�1
�Z ,! Zg�1

�PBg�1;

where the restriction of j on the first factor is the identity isomorphism and the restriction of j on the
second factor is j1. Fact 2.3 along with the exactness of (8) implies that in order to finish the proof
of Lemma 2.2 we need to construct the map  W Zg�1 � PBg�1! StabKg

.N / such that the following
diagram commutes:

1 // Zg // Zg�1 �PBg�1
//

 

��

PMod.†0;g/ // 1

1 // G.N / // StabKg
.N / // PMod.†0;g/ // 1

We define  as follows. The generator of the i th factor of Zg�1 maps to Tıi
. In order to define the

restriction of  on the factor PBg�1, let us identify †g with the surface shown in Figure 5. We have the
disk bounded by ıg with g� 1 handles bounded by ı1; : : : ; ıg�1. We can replace all these handles by
punctures and identify the group PBg�1 with the corresponding group PMod.†1

0;g�1
/. Then we extend

the mapping classes in PMod.†1
0;g�1

/ to the handles so that the handles do not rotate.

Since the pure braid group is generated by Dehn twists about separating curves it follows that the image
of  is contained in Kg. The 5–lemma completes the proof of Lemma 2.2.

2.3 Simple abelian cycles

Recall that for an S–multicurve M D 1[ � � � [ 2g�3 on †g there is the corresponding simple abelian
cycle A.M /D A.T1

; : : : ;T2g�3
/ 2H2g�3.Kg;Z/. We have already constructed the simple abelian

cycles AT DA.�T / for T 2 Tg.

Proposition 2.4 Let �T D ı1[ � � � [ ıg [ �2[ � � � [ �g�2 and �0T D ı1[ � � � [ ıg [ �
0
2
[ � � � [ � 0

g�2
be

two S–multicurves with the same dual tree T . Then �T and �0T belong to the same Kg–orbit (up to a
permutation of the components). In particular , the simple abelian cycles fAT j T 2 Tgg are well defined.
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Proof Since �T and �0T have the same dual tree, there is an element � 2Mod.†g/ such that after a
permutation of �2; : : : ; �g�2 we have �.�i/D � 0i and �.ıj /D ıj for all i and j . Also, we can assume
that �jXj

D id for all 1 � j � g. Then � 2 ker � (see the exact sequence (9)), so � 2 Kg. Therefore
all such S–multicurves �T belong to the same Kg–orbit, so the simple abelian cycle AT D A.�T / 2

H2g�3.K.†g;Z// is defined uniquely up to a sign.

Proposition 2.5 The simple abelian cycles fAT j T 2 Tgg generate Ag as a ZŒGg�–module.

Proof Consider an S–multicurve M 0 D 1 [ � � � [ 2g�3. We can assume that the curves 1; : : : ; g

bound one-punctured tori on †g. There is an element � 2Mod.†g/ such that �.j /D ıj for all j . Then
� �A.M 0/D˙AT .M 0/, so A.M 0/D˙��1 �AT .M 0/. This implies the proposition.

2.4 Sketches of the proofs of Theorems 1.3, 1.5 and 1.9

By Lemma 2.2 we can consider the simple abelian cycles fAT j T 2 Tgg as elements of the group
H2g�3.StabKg

.N /;Z/ŠH2g�3.Z
g�1�PBg�1/. The following proposition will be proved in Section 3.

Its proof is based on Arnold’s relations in the cohomology of the pure braid group.

Proposition 2.6 The abelian group H2g�3.PBg�1 �Zg�1;Z/ is generated by the elements AT , where
T 2 Tg. All relations among this generators follows from the relations

AT1
CAT2

CAT3
D 0

for each cyclic triple fT1; T2; T3g.

The next result will be proved in Sections 4 and 5. The proof is based on the spectral sequence for the
action of Kg on the contractible complex of cycles, introduced by Bestvina, Bux and Margalit in [2], and
certain new complexes which will be constructed below.

Proposition 2.7 Let f1 D 1; f2; f3; : : : 2 Gg be representatives of all left cosets Gg=Hg and let
Of1; Of2; Of3; : : : 2Mod.†g/ be their lifts in Mod.†g/. Then the inclusions

is W StabKg
. Ofs �N / ,! Kg for s 2N

induce an injective homomorphism

(11)
M
s2N

H2g�3.StabKg
. Ofs �N /;Z/ ,!H2g�3.Kg;Z/:

Proof of Theorem 1.5 By Proposition 2.7, the map

i1 WH2g�3.StabKg
.N /;Z/ ,!H2g�3.Kg;Z/

is injective. Since Pg D i1.H2g�3.StabKg
.N /;Z//, Proposition 2.6 implies the required result.

Proof of Theorem 1.3 By Propositions 2.7 and 2.5, (11) induces an isomorphismM
s2N

H2g�3.StabKg
. Ofs �N /;Z/ŠAg;
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so
Ag D

M
s2N

Ofs �Pg:

Therefore, by the definition of an induced module, we have

Ag Š Pg˝Hg
ZŒGg�D IndGg

Hg
Pg:

Theorem 1.9 will be deduced from Proposition 2.6 in Section 3.

3 Proof of Proposition 2.6

3.1 Cohomology of the pure braid group

In order to prove Proposition 2.6 we conveniently consider the pure braid group on g � 1 strands
q1; : : : ; qg�1. Let us recall Arnold’s results on the structure of the ring H�.PBg�1;Z/. The group PBg�1

has a standard set of generators ai;j for 1 � i < j � g� 1. These elements are the Dehn twists about
curves enclosing the i th and j th strands (see Figure 6). Denote by hi;j 2H1.PBg�1;Z/ the corresponding
homology classes. We denote by fwi;j g the dual basis of H 1.PBg�1;Z/. These cohomology classes can
be interpreted as the homomorphisms

(12) wi;j W PBg�1! PB2 Š Z

given by forgetting all strands besides qi and qj . It is convenient to put wj ;i D wi;j .

Theorem 3.1 [1, Theorem 1] The ring H�.PBg�1;Z/ is the exterior graded algebra with
�
g�1

2

�
generators wi;j of degree 1, satisfying

�
g�1

3

�
relations

wk;lwl;mCwl;mwm;k Cwm;kwk;l D 0

for all 1� k < l <m� n.

Corollary 3.2 [1, Corollary 3] The products

(13) wk1;l1
wk2;l2

� � �wkp;lp where ki < li and l1 < � � �< lp

form an additive basis of H�.PBg�1;Z/.

qi qj

Figure 6: The element ai;j is the Dehn twist about the shown curve.
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Corollary 3.2 implies that the products

(14) wk1;2wk2;3 � � �wkg�2;g�1 where ki � i

form an additive basis of H g�2.PBg�1;Z/. We denote the cohomology class (14) by Wk DWk1;:::;kg�2
,

where k D .k1; : : : ; kg�2/. We denote by Kg the set of all sequences k D .k1; : : : ; kg�2/ satisfying
1� ki � i .

3.2 Abelian cycles in Hg�2.PBg�1; Z/

Corollary 3.2 implies that cd.PBn;Z/� n� 1. In fact cd.PBn/D n� 1. Indeed, let Mn be the ordered
configuration space of n points on the disk. This space is aspherical, and Mn 'K.PBn; 1/. We have
the fiber bundle Mn !Mn�1, where the fiber is homotopy equivalent to the wedge of n� 1 circles.
Hence, by induction, we obtain that Mn is homotopy equivalent to an .n�1/–dimensional CW–complex.
Therefore cd.PBn;Z/� n� 1.

So the isomorphism (10) implies

(15) H2g�3.StabKg
.N /;Z/ŠH2g�3.Z

g�1
�PBg�1;Z/ŠHg�2.PBg�1;Z/:

Let us recall the construction of the isomorphism StabKg
.N / Š Zg�1 � PBg�1. We consider the

surface†1
0;g�1

, given by replacing the boundary components corresponding to the curves ı1; : : : ; ıg�1 on
†0;g�†g by the punctures q1; : : : ; qg�1. Hence we obtain the pure braid group PBg�1DPMod.†1

0;g�1
/.

The i th factor in Zg�1 is generated by Tıi
.

Consider a simple abelian cycle

AT DA.Tı1
; : : : ;Tıg

;T�2
; : : : ;T�g�2

/ 2H2g�3.StabKg
.N /;Z/

for some T 2 Tg. Isomorphism (15) sends AT to the abelian cycle

A.Tıg
;T�2

; : : : ;T�g�2
/ 2Hg�2.PBg�1;Z/;

Let us set �1 D ıg and

yAT DA.T�1
;T�2

; : : : ;T�g�2
/DA.Tıg

;T�2
; : : : ;T�g�2

/ 2Hg�2.PBg�1;Z/:

Any simple closed curve on †1
0;g�1

divides it into two parts. We say that a puncture q is enclosed by a
curve  on †1

0;g�1
if q is contained in the part which does not contain the boundary component. For

k 2Kg, define the matrix Xk;T 2Mat.g�2/�.g�2/.Z/ by

(16) .Xk;T /i;j D

�
1 if the punctures qki

and qiC1 are enclosed by �j ;
0 otherwise:

Lemma 3.3 Let k 2Kg and T 2 Tg. Then hWk ; yAT i D .�1/.
g�2

2 / det.Xk;T /.

Algebraic & Geometric Topology, Volume 24 (2024)



3652 Igor A Spiridonov

Proof Consider a free abelian group Zg�2Dhc1; : : : ; cg�2i and the homomorphism f WZg�2! PBg�1

given by ci 7! T�i
. Denote by �g�2 the standard generator of the group Hg�2.Z

g�2;Z/. We have

hWk ; yAT i D hWk ; f�.�g�2/i D hf
�Wk ; �g�2i D h.f

�wk1;2/ � � � .f
�wkg�2;g�1/; �g�2i

D .�1/.
g�2

2 / det.hf �wki ;iC1; cj i/
g�2
i;jD1

D .�1/.
g�2

2 / det.hwki ;iC1; f�cj i/
g�2
i;jD1

D .�1/.
g�2

2 / det.hwki ;iC1;T�j i/
g�2
i;jD1

D .�1/.
g�2

2 / det.Xk;T /:

The last equality comes from the following corollary of (12):

hwk;l ;T�j i D

�
1 if the punctures qk and ql are enclosed by �j ;
0 otherwise:

Let us denote by fDk 2Hg�2.PBg�1;Z/ j k 2Kgg the dual basis to fWk j k 2Kgg.

Corollary 3.4 Let T 2 Tg. Then yAT D
P

k2Kg
.�1/.

g�2
2 / det.Xk;T /Dk .

3.3 Balanced trees

Recall that we consider the elements of Tg as marked trees such that the leaf with number g is the
root. Also, we have already defined the subset T b

g � Tg of balanced trees. Take any k 2 Kg. Our
goal is to construct a balanced tree Tk 2 Tg such that yATk

D .�1/.
g�2

2 /Dk and the map k 7! Tk is a
bijection between the sets Kg and T b

g . First let us construct the map k 7! Tk (then we will check that
yATk
D .�1/.

g�2
2 /Dk ; see Theorem 3.6).

Construction 3.5 We construct curves �1; : : : ; �g�2 such that yATk
DA.T�1

;T�2
; : : : ;T�g�2

/ by induction
on g. The case g D 3 is trivial since jT b

3
j D jT3j D jK3j D 1. Let us prove the induction step from

g� 1 to g. Consider any k D .k1; : : : ; kg�2/ 2Kg with g > 3. Let �g�2 be a curve enclosing exactly
two points qkg�2

and qg�1. Let us remove the curve �g�2 with its interior and denote the corresponding
puncture by q0

kg�2
. Also take q0i D qi for i � g� 2 and i ¤ kg�2. We obtain a disk with g� 2 punctures

q0
1
; : : : ; q0

g�2
and k 0D .k1; : : : ; kg�3/ 2Kg�1. The induction hypothesis implies that there is a balanced

tree Tk0 2 T b
g�1

corresponding to k 0 given by some curves �1; : : : ; �g�3. Now consider the curves
�1; : : : ; �g�3; �g�2 and denote the dual tree by Tk 2 Tg. It remains to show that Tk is balanced. Indeed,
since the vertex qg�1 has the greatest number, all common vertices of Tk0 and Tk are balanced. Also, this
property holds for the vertex of Tk corresponding to the curve �g�2, because it has only two descendant
leaves. This implies the induction step.

Since for different k; k 0 2Kg the corresponding trees Tk and Tk0 are also different, it follows that the map
k 7! Tk given by Construction 3.5 is injective. Moreover, direct computation shows that jKgj D .g� 2/!.
Therefore in order to prove that this map is a surjection to T b

g , it suffices to show that jT b
g j D .g� 2/!.

We use induction on g; the base case g D 3 is trivial. Consider a balanced tree T 2 T b
g with g � 4. Let
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q1; : : : ; qg�1 be its leaves (besides the root). Let p be the vertex adjacent to qg�1. Since T is balanced,
another descendant vertex of p is a leaf qi for some 1 � i � g� 2. Let us remove the vertices qi and
qg�1 (with the incident edges) and set qi D p; denote the obtained tree by T 0. Then T 0 2 T b

g�1
. Since

jT b
g�1
j D .g � 3/! and there are g � 2 ways to choose i , we have jT b

g j D .g � 2/!. This implies the
induction step.

Theorem 3.6 Suppose that k 2Kg. Then yATk
D .�1/.

g�2
2 /Dk .

Proof By Corollary 3.4 it suffices to show that for any k 0 2Kg, we have det.Xk0;Tk
/D 1 if k D k 0 and

det.Xk0;Tk
/D 0 otherwise.

Lemma 3.7 Let k 2Kg. Then det.Xk;Tk
/D 1.

Proof Let �1; : : : ; �g�2 be a multicurve with dual tree Tk . By Construction 3.5 the punctures qki

and qiC1 are enclosed by the curve �i for all 1 � i � g � 2. Indeed, for i D g � 2 this follows from
the construction of the curve �g�2, and for i < g � 2 this follows by the induction on g. Therefore
.Xk;Tk

/i;i D 1 for all i .

Now let us check that .Xk;Tk
/i;j D 0 whenever i < j . Indeed, for j D g � 2 this follows from the

construction of the curve �g�2, and for j < g� 2 this follows by the induction on g. Therefore Xk;Tk
is

lower unitriangular, so det.Xk;Tk
/D 1.

Lemma 3.8 Let k; k 0 2Kg and k ¤ k 0. Then det.Xk0;Tk
/D 0.

Proof Define s Dmaxfi j ki ¤ k 0ig. Let us check that the matrix Xk0;Tk
has the following form, where

the sth column is highlighted:

(17) Xk0;Tk
D

0BBBBBBBBBBBBBBB@

� � � � � � 0 0 0 � � � 0

� � � � � � 0 0 0 � � � 0
:::
:::
: : :

::: W
:::
:::
: : :

:::

� � � � � � 0 0 0 � � � 0

� � � � � � 0 0 0 � � � 0

� � � � � � � 1 0 � � � 0

� � � � � � � � 1 � � � 0
:::
:::
: : :

::: W
:::
:::
: : :

:::

� � � � � � � � � � � � 1

1CCCCCCCCCCCCCCCA
:

This will immediately imply det.Xk0;Tk
/D 0. We have ki D k 0i for all i > s, so similar arguments as in

the proof of Lemma 3.7 show that the last g� 2� s columns have the required form.

Let Tk be given by curves �1; : : : ; �g�2 as in Construction 3.5. Recall the construction of the curve �s .
At this step we have the punctures q0

1
; : : : ; q0

sC1
. Some of them coincide with the qi , others are identified

with the interiors of some curves �i , with i � sC 1. Nevertheless, qi is enclosed by �s if and only if q0i is
enclosed by �s for all 1� i � sC 1.
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By Construction 3.5, �s is a curve enclosing exactly two punctures q0
sC1

and q0
ks

from the set fq0
1
; : : : ; q0

sC1
g.

Therefore it does not enclose qk0s
as well as q0

k0s
, which implies .Xk0;Tk

/s;sD 0. Take any j with 1� j < s.
The curve �s encloses precisely one puncture among q0

1
; : : : ; q0s , and so it also encloses precisely one

puncture among q1; : : : ; qs . Consequently, the curve �s cannot enclose the punctures qjC1 and qk0
j

simultaneously since j C 1� s and k 0j � s. Hence, by formula (16), we have .Xk0;Tk
/j ;s D 0.

Therefore .Xk0;Tk
/j ;s D 0 for 1� j � s.

Theorem 3.6 immediately follows form Lemmas 3.7 and 3.8.

Corollary 3.9 The abelian cycles f yAT j T 2 T b
g g form a basis of the group Hg�2.PBg�1;Z/. For any

T 2 Tg we have yAT D
P

k2Kg
.�1/.

g�2
2 / det.Xk;T / yATk

.

Proof The result follows from Corollary 3.4 and Theorem 3.6.

Proof of Theorem 1.9 By Proposition 2.7 and the first part of Corollary 3.9 there is an isomorphism

Pg ŠH2g�3.Z
g�1
�PBg�1;Z/ŠHg�2.PBg�1;Z/;

which maps AT to yAT for all T 2 Tg. The theorem follows from the second part of Corollary 3.9.

3.4 Relations

Let fT1; T2; T3g � Tg be a triple of trees. For l D 1; 2; 3 denote by �l
1
; : : : ; �l

g�2
the corresponding sets of

curves given by Construction 3.5. As before, the leaves of T1, T2 and T3 (besides the root) are identified
with the corresponding punctures and marked by q1; : : : ; qg�1. One can check that the trees T1, T2

and T3 form a cyclic triple if and only if, after some permutations of the corresponding sets of curves, the
following conditions hold:

(a) There exists s with 1� s � g� 2 such that �1
i D �

2
i D �

3
i for i ¤ s and 1� i � g� 2.

(b) There exists t ¤ s with 1 � t � g � 2 and pairwise disjoint nonempty subsets B1;B2;B3 �

fq1; : : : ; qg�1g such that the set of punctures enclosed by the curve �1
t D �

2
t D �

3
t coincides with

B1[B2[B3.

(c) The set of punctures enclosed by �1
s coincides with B2[B3.

(d) The set of punctures enclosed by �2
s coincides with B3[B1.

(e) The set of punctures enclosed by �3
s coincides with B1[B2.

Lemma 3.10 Let fT1; T2; T3g � Tg be a cyclic triple of trees. Then

(18) yAT1
C yAT2

C yAT3
D 0:

Proof It suffices to prove that

(19) hWk ; yAT1
C yAT2

C yAT3
i D 0
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for all k 2Kg. The formula (19) is equivalent to

(20) det.Xk;T1
/C det.Xk;T2

/C det.Xk;T3
/D 0:

We can assume that (a)–(e) hold. The matrices Xk;T1
, Xk;T2

and Xk;T3
coincide everywhere besides the

sth column. Therefore the left-hand side of (20) equals the determinant of the matrix Y defined as follows.
The sth column of Y is the sth column of the matrix Xk;T1

CXk;T2
CXk;T3

and all other columns are the
corresponding columns of Xk;T1

(or, equivalently, Xk;T2
or Xk;T3

). By (c)–(e) we have

.Xk;T1
/i;sD

�
1 if i 2B2[B3;

0 otherwise;
.Xk;T2

/i;sD

�
1 if i 2B3[B1;

0 otherwise;
.Xk;T3

/i;sD

�
1 if i 2B1[B2;

0 otherwise:
Therefore,

Yi;s D .Xk;T1
CXk;T2

CXk;T3
/i;s D

�
2 if i 2 B1[B2[B3;

0 otherwise:

By (b) we have

Yi;t D .Xk;T1
/i;t D

�
1 if i 2 B1[B2[B3;

0 otherwise:

Therefore the matrix Y has two proportional columns, so det.Y /D 0. This implies (20).

Lemma 3.11 All relations between the abelian cycles f yAT j T 2 Tgg follow from (18).

Proof Consider the abelian cycle yAT for some T 2Tg. Corollary 3.9 implies that it suffices to decompose
yAT into a linear combination of abelian cycles f yAT j T 2 T b

g g using (18).

Recall that a vertex of T of degree 3 is called balanced if the paths from it to the descendant leaves with
the two smallest numbers have no common edges. If all vertices of T are balanced there is nothing to
prove. Otherwise take any nonbalanced vertex v with the largest height (distance to the root) h.v/. Let
v1 and v2 be its closest descendants and let w be its closest ancestor. Without loss of generality we may
assume that the paths from v to the two descendant leaves with the smallest numbers start with the edge
.v; v1/. Let u1 and u2 be the closest descendants of v1.

Consider the trees T 0 and T 00 that differ from T as shown in Figure 7. The triple fT ; T 0; T 00g is cyclic, so
yAT D� yAT 0 � yAT 00 . Note that the vertex v1 is balanced in T , and therefore the vertex v is balanced in T 0

w

v

v1

v2

u1 u2

w

v

v1

v2

u1 u2

w

v

v1

v2

u1 u2

Figure 7: The trees T , T 0 and T 00.
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and T 00. Consequently, T 0 and T 00 have fewer nonbalanced vertices of height h.v/ and no nonbalanced
vertices of greater height. Repeating this operation, we decompose yAT into a linear combination of
abelian cycles f yAT j T 2 T b

g g using (18).

Proof of Proposition 2.6 By Proposition 2.7 and the first part of Corollary 3.9 there is an isomorphism

Pg ŠH2g�3.Z
g�1
�PBg�1;Z/ŠHg�2.PBg�1;Z/;

which maps AT to yAT for all T 2 Tg. The abelian cycles f yAT j T 2 Tgg generate Hg�2.PBg�1;Z/.
Therefore the required assertion follows from Lemmas 3.10 and 3.11.

4 The complex of cycles and the spectral sequence

Consider the commutative diagram

1 //
V3

H=H // Gg
p

// Sp.2g;Z/ // 1

Hg D SL.2;Z/�g ÌSg

?�

OO

* 


88

Let us choose elements h1 D 1; h2; h3; : : : 2 Gg such that 1D p.h1/;p.h2/;p.h3/; : : : 2 Sp.2g;Z/ are
representatives of all left cosets Sp.2g;Z/=Hg. Let Oh1; Oh2; Oh3; : : : 2Mod.†g/ be mapping classes that
go to h1; h2; h3; : : : under the natural surjective homomorphism Mod.†g/� Gg.

It is convenient to denote by Ug the abelian group
V3

H=H with multiplicative notation. For each u 2Ug

let Ou 2 Ig be the mapping class that goes to u under the Johnson homomorphism � W Ig ! Ug. Let
f1 D 1; f2; f3; : : : 2 Gg be representatives of all left cosets Gg=Hg. Let Of1; Of2; Of3; : : : 2Mod.†g/ be
mapping classes that go to f1; f2; f3; : : : under the homomorphism Mod.†g/� Gg. For any s 2N the
element fs can be uniquely decomposed as fs D u � hr for some u 2 Ug and r 2N. We can choose Ofs

such that Ofs D Ou � Ohr .

For each r 2N denote by Gr the subgroup of H2g�3.Kg;Z/ generated by the images of homomorphisms

(21) H2g�3.StabKg
. Ou � Ohr �N /;Z/!H2g�3.Kg;Z/ for u 2 Ug:

In this section we prove the following result:

Lemma 4.1 The inclusions
Gr ,!H2g�3.Kg;Z/ for r 2N

induce an injective homomorphism M
r2N

Gr ,!H2g�3.Kg;Z/:

In our proof we follow ideas of [11].
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4.1 The complex of cycles

Bestvina, Bux and Margalit [2] constructed a contractible CW–complex Bg called the complex of cycles
on which the Johnson kernel acts without rotations. “Without rotations” means that if an element h 2 Kg

stabilizes a cell � setwise, then h stabilizes � pointwise. Let us recall the construction of Bg. More
details can be found in [2; 13; 12; 10].

We denote by C the set of all isotopy classes of oriented nonseparating simple closed curves on †g. Fix
any nonzero element x 2H . The construction of Bg D Bg.x/ depends on the choice of the homology
class x, however the CW–complexes Bg.x/ are pairwise homeomorphic for different x.

A basic 1–cycle for a homology class x is a formal linear combination  D
Pn

iD1 kii , where i 2 C and
ki 2N, such that

(I) the homology classes Œ1�; : : : ; Œn� are linearly independent,

(II)
Pn

iD1 ki Œi �D x, and

(III) the isotopy classes 1; : : : ; g contain pairwise disjoint representatives.

The oriented multicurve 1[ � � � [ g is called the support of  .

Denote by M.x/ the set of oriented multicurves M D 1[ � � � [ s such that

(i) no nontrivial linear combination of the homology classes Œ1�; : : : ; Œs � with nonnegative coefficients
equals zero, and

(ii) for each 1� i � s there exists a basic 1–cycle for x whose support is contained in M and contains i .

For each M 2M.x/ let us denote by PM �RC
�0

the convex hull of the basic 1–cycles supported in M .
We have that PM is a convex polytope. By definition, the complex of cycles is the regular CW–complex
given by Bg.x/D

S
M2M.x/ PM . Denote by M0.x/�M.x/ the set of supports of basic 1–cycles for x.

Then fPM jM 2M0.x/g is the set of 0–cells of Bg.x/.

Theorem 4.2 [2, Theorem E] Let g � 1 and 0¤ x 2H1.†g;Z/. Then Bg.x/ is contractible.

4.2 The spectral sequence

Suppose that a group G acts cellularly and without rotations on a contractible CW–complex X , let
C�.X;Z/ be the cellular chain complex of X and let R� be a projective resolution of Z over ZG.
Consider the double complex Bp;q DCp.X;Z/˝G Rq with the filtration by columns. The corresponding
spectral sequence (see (7.7) in [4, Section VII.7]) has the form

(22) E1
p;q Š

M
�2Xp

Hq.StabG.�/;Z/)HpCq.G;Z/;

where Xp is a set containing exactly one representative in each G–orbit of p–cells of X . Let us remark
that for an arbitrary CW–complex X , the spectral sequence (22) converges to the equivariant homology
H G

pCq.X;Z/. So for a contractible CW–complex X it converges to H G
pCq.X;Z/ŠHpCq.G;Z/.
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p2g� 30 1 2

0

1

2

q

2g� 3

2g� 4

2g� 5

Figure 8

Now let E��;� be the spectral sequence (22) for the action of Kg on Bg.x/ for some 0¤ x 2H1.†g;Z/.
The fact that Kg acts on Bg without rotations follows from a result of Ivanov [14, Theorem 1.2]: if an
element h 2 Ig stabilizes a multicurve M then h stabilizes each component of M . Bestvina, Bux and
Margalit proved [2, Proposition 6.2] that for each cell � 2 Bg.x/ we have

dim.�/C cd.StabKg
.�//� 2g� 3:

This immediately implies E1
p;q D 0 for pC q > 2g� 3. Hence all differentials d1; d2; : : : to the group

E1
0;2g�3

are trivial (see Figure 8, where the group E1
0;2g�3

is shaded), so E1
0;2g�3

DE1
0;2g�3

. Therefore
we have the following result:

Proposition 4.3 [11, Proposition 3.2] Let M�M0.x/ be a subset consisting of oriented multicurves
from pairwise different Kg–orbits. Then the inclusions StabKg

.M / � Kg, where M 2M, induce an
injective homomorphism M

M2M

H2g�3.StabKg
.M /;Z/ ,!H2g�3.Kg/;Z/:

Proof of Lemma 4.1 Denote by Xr;i � †g the one-punctured torus bounded by Ohrıi and Vr;i D

H1.Xr;i ;Z/�H . Then for each r we have the symplectic splittings H D
L

i Vr;i . Denote this unordered
splitting by Vr D fVr;1; : : : ;Vr;gg. Since Hg is the stabilizer of V1 in Sp.2g;Z/, it follows that the Vr

are pairwise distinct.
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Assume the converse to the statement of Lemma 4.1 and consider a nontrivial linear relation

(23)
kX

rD1

�r�r D 0 for �r 2 Z and �r 2Gr :

For any homology class x 2H1.†g;Z/ and for any 1� r � k we have a unique decomposition

x D

gX
iD1

xr;i for xr;i 2 Vr;i :

The following result is proved in [11]:

Proposition 4.4 [11, Lemma 4.5] There is a homology class x 2H such that

(I) all homology classes xr;i are nonzero for 1� r � k and 1� i � g, and

(II) for all 1� p ¤ q � k we have fxp;1; : : : ;xp;gg ¤ fxq;1; : : : ;xq;gg as unordered sets.

Take any x 2H satisfying the conditions of Proposition 4.4. For any 1� r � k and 1� i � g we have
xr;i D nr;iar;i where ar;i 2H is primitive and nr;i 2N. Let us check that for all 1� p¤ q � k we have
fap;1; : : : ; ap;gg ¤ faq;1; : : : ; aq;gg as unordered sets. Indeed, assume that there is a permutation � 2 Sg

with ap;i D aq;�.i/. Therefore we have

(24)
gX

iD1

.np;i � np;�.i//ap;i D 0:

Since ap;1; : : : ; apg
are linearly independent, (24) implies np;i D np;�.i/ for all 1 � i � g. Hence

xp;i D xp;�.i/ for all 1� i � g, which contradicts Proposition 4.4(II).

For any 1� r � k and 1� i � g let ˛r;i be a simple curve on Xr;i with Œ˛r;i �D ar;i 2H . Consider the
oriented multicurve Ar D ˛r;1[ � � � [˛r;g. By construction Ar 2M0.x/.

Proposition 2.6 implies that the group H2g�3.StabKg
. Ou � Ohr �N /;Z/ is generated by the primitive abelian

cycles f Ou � Ohr �AT j T 2 Tgg. Therefore for each u 2Ug the homomorphisms (21) can be decomposed as

(25) H2g�3.StabKg
. Ou � Ohr �N /;Z/!H2g�3.StabKg

.Ar /;Z/!H2g�3.Kg;Z/:

Consequently there exists � 0r 2H2g�3.StabKg
.Ar /;Z/which maps to �r under the second homomorphism

in (25).

Proposition 4.3 implies that the inclusions StabKg
.Ar /�Kg for r 2N induce the injective homomorphismM

r2N

H2g�3.StabKg
.Ar /;Z/ ,!H2g�3.Kg;Z/:

So (23) implies that
Pk

rD1 �r�
0
r D 0 as an element of the direct sum

L
r2N H2g�3.StabKg

.Ar /;Z/.
Therefore �r D 0 for all r , which gives a contradiction.
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5 Proof of Proposition 2.7

In this section we prove the following lemma, which implies Proposition 2.7. Recall that Gr is the
subgroup of H2g�3.Kg;Z/ generated by the images of homomorphisms

H2g�3.StabKg
. Ou � Ohr �N /;Z/!H2g�3.Kg;Z/ for u 2 Ug:

Lemma 5.1 Let r 2N. Then the inclusions

StabKg
. Ou � Ohr �N / ,! Kg for u 2 Ug

induce an injective homomorphismM
u2Ug

H2g�3.StabKg
. Ou � Ohr �N /;Z/ ,!Gr :

Proof of Proposition 2.7 We can prove Proposition 2.7 for an arbitrary choice of Ofs , so we can assume
that Ofs D Ou � Ohr for some u 2 Ug and r 2N. Combining Lemmas 4.1 and 5.1, we obtain

(26)
M
r2N

M
u2Ug

H2g�3.StabKg
. Ou � Ohr �N /;Z/ ,!

M
r2N

Gr ,!H2g�3.Kg;Z/:

Then the sets fs 2Ng and f Ou � Ohr j u 2 Ug; r 2Ng coincide, so (26) implies (11).

To prove Lemma 5.1 we need to construct a new CW–complex, which will be called the complex of
relative cycles. The idea is to introduce an analogue of Bg that makes sense for a sphere (ie the g D 0

case) with punctures.

5.1 The complex of relative cycles

Recall that †0;2g denotes a sphere with 2g punctures. In order to construct the complex of relative cycles
B0;2g we need to split the punctures into two disjoint sets: P D fp1; : : : ;pgg and QD fq1; : : : ; qgg.

By an arc on †0;2g we mean an embedded oriented curve with endpoints at punctures. By a multiarc we
mean a disjoint union of arcs (common endpoints are allowed). We always consider arcs and multiarcs
up to isotopy.

Denote by D the set of isotopy classes of arcs starting at a point in P and finishing at a point in Q. A
relative basic 1–cycle is a formal sum  D 1C � � �C g where i 2 D such that

(I) @
�Pg

iD1
i

�
D
Pg

iD1
.qi �pi/, and

(II) the isotopy classes 1; : : : ; g contain pairwise disjoint representatives.

The multiarc 1[ � � � [ g is called the support of  .

Denote by L the set of multiarcs LD 1[ � � � [ n (for arbitrary n) such that

(i) for each 1 � i � s there exists a relative basic 1–cycle, whose support is contained in L and
contains i .
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For each L 2 L we denote by PL �RD
�0

the convex hull of all relative basic 1–cycles supported in L.
We have that PL is a convex polytope. By definition, the complex of relative cycles is the regular
CW–complex given by B0;2g D

S
L2L PL. Denote by L0 � L the set of supports of all relative basic

1–cycles. Then fPL jL 2 L0g is the set of 0–cells of B0;2g.

Remark 5.2 By construction, B0;2g is the subset of RD
� consisting of the points (formal sums)

Pn
iD1 kii

where i 2 D and ki 2R�0 satisfying the following conditions:

(I) @.
Pn

iD1 kii/D
Pg

iD1
.qi �pi/.

(II) The isotopy classes 1; : : : ; n contain pairwise disjoint representatives.

5.2 Contractability

Theorem 5.3 Let g � 1. Then B0;2g is contractible.

In our proof we follow ideas of [2, Section 5]. Let us define an auxiliary complex zB0;2g. Denote by zD
the union of D and the set consisting of the isotopy classes of all oriented simple closed curves on †0;2g

(including contractible curves). Let us define zB0;2g as the subset of RzD
�0

consisting of all points (formal
sums)

Pn
iD1 kii where i 2

zD and ki 2R�0 satisfying the following conditions:

(I) @.
Pn

iD1 kii/D
Pg

iD1
.qi �pi/.

(II) The isotopy classes 1; : : : ; n contain pairwise disjoint representatives.

Remark 5.2 implies that B0;2g � zB0;2g. Denote by Drain W zB0;2g! B0;2g the retraction induced by the
natural projection RzD

�0
!RD

�0
.

Let d and d 0 be two points of B0;2g �RD
�0

and t 2 Œ0; 1�. The point c D td C .1� t/d 0 2RD
�0

may not
belong to B0;2g, because the arcs can have intersection points. We now explain how to do surgery to
convert c into a point Surger.c/ 2 zB0;2g �RzD

�0
which is canonical up to isotopy.

Let c D
Pn

iD1 kici where the ci 2 D are in minimal position and ki 2R�0. We have @
�Pn

iD1 kici

�
DPg

iD1
.qi � pi/. Now it is convenient to replace the punctures p1; : : : ;pg; q1; : : : ; qg by closed disks

P1; : : : ;Pg;Q1; : : : ;Qg. We thicken each ci to a rectangle RiD Œ0; 1��Œ0; ki � of width ki with coordinates
xi 2 Œ0; 1� and ti 2 Œ0; ki � such that the curves ti D const for different i are transverse to each other. We
assume that the sides of Ri given by x D 0 and x D 1 are subsets of @Pa and @Qb , respectively, where
@ci D qb �pa.

For a path ˛ W Œ0; 1�! †0;2g, define �i.˛/ D
R
˛ dti and �.˛/ D

Pn
iD1 �i.˛/. Here we assume that

dti D 0 outside Ri . Let us fix an arbitrary point y0 2†0;2g. For each point y 2†0;2g choose a path ˛y

from y0 to y and consider the map � W†0;2g! S1 DR=Z given by �.y/D �.˛y/ mod 1.

Let us check that the map � is well defined. We have that �.x/ depends only on the homotopy class
of ˛x . Therefore it suffices to check that �.@Pi/ 2 Z and �.@Qi/ 2 Z for all i . This follows from the
fact that @

�Pn
iD1 kici

�
D
Pg

iD1
.qi �pi/.
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The set of zeros of d� is precisely †0;2g n
Sg

iD1
Ri , that is, a finite disjoint union of connected open sets.

Therefore the map � has a finite number of critical values separating S1 into a finite number of intervals
w1; : : : ; wl . For any 1� j � l take any point yj 2wj . The preimage �j D �

�1.yj /�†0;2g is a smooth
1–dimensional oriented submanifold, where the orientation on �j is defined so that at each point of �j

the vector @=@ti and the positive tangent vector to �s form a positive basis of the tangent space to the
sphere. Moreover, �1; : : : ; �l are pairwise disjoint. Define Surger.c/ as the formal sum

Pl
jD1 jwj j�j .

We claim that Surger.c/ 2RzD
�0

. It suffices to show that each connected component of �j is either closed
or its initial point belongs to @Pa for some a and its terminal point belongs to @Qb for some b. This
follows from the orientation argument. Indeed, for all i the restrictions �j@Pi

and �j@Qi
have degrees �1

and 1, respectively. Hence �j@Pi
can only contain initial points of components of �j , while �j@Qi

can
only contain terminal points of components of �j . Consequently, no component of Surger.c/ connects
@Pa with @Pb or @Qa with @Qb . Moreover, since the restrictions �j@Pi

and �j@Qi
have degrees �1 and 1,

respectively, we obtain @.Surger.c//D
Pg

iD1
.qi �pi/, so Surger.c/ 2 zB0;2g.

Proof of Theorem 5.3 Take a point c 2 B0;2g. Then the map

d 7! Drain.Surger.tcC .1� t/d//

is a deformation retraction from B0;2g to the point c.

5.3 Stabilizer dimensions

Proposition 5.4 The group PMod.†0;2g/ acts on B0;2g without rotations.

Proof Assume the converse and consider an element � 2 PMod.†0;2g/ and a cell corresponding to a
multiarc  D 1[� � �[s such that �.i/D �.i/ for a nontrivial permutation � . Without loss of generality
can assume that there exist arcs 1, 2 and 3 from p 2 P to q 2 Q satisfying 1 ¤ 2 and 2 ¤ 3

(and possibly 1 D 3), such that �.1/D 2 and �.2/D 3. Denote by W1 �†0;2g and W2 �†0;2g

the subsurfaces bounded by the loops 1 N2 and 2 N3, respectively ( Ni denotes the arc i with opposite
direction). We assume that W1 and W2 are located on the left sides of 1 N2 and 2 N3, respectively.

By construction of B0;2g we see that 1 is not isotopic to 2, so W1 contains a nonempty set of punctures
¿¤Z1 � P tQ. Define ¿¤Z2 � P tQ in a similar way. Since 2 separates W1 from W2 we have
Z1 ¤Z2. The map f preserves the orientation, therefore f .W1/DW2 and so f .Z1/DZ2. However,
f 2 PMod.†0;2g/ preserves the punctures, so we come to a contradiction.

Theorem 5.5 Let � be a cell of B0;2g. Then

dim.�/C cd.StabPMod.†0;2g/.�//� 2g� 3:

Proof The cell � is given by a multiarc 1[ � � � [ E . Consider the planar graph ‡ on the sphere with
the vertices p1; : : : ;pg; q1; : : : ; qg and the edges 1; : : : ; E . It is convenient for us to denote the number
of vertices by V D 2g. Also let us denote by C the number of connected components of ‡ and by F the
number of its faces (ie the number of connected components of †0;2g n‡ ).
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Lemma 5.6 We have

(27) dim.�/D dim.H1.‡;R//DE �V CC:

Proof The condition @
�PE

iD1 kii

�
D
Pg

iD1
.qi �pi/ is a nonhomogeneous system of linear equation

in RE . The affine space of its solutions has the same dimension as the space of solutions of the
homogeneous system @

�PE
iD1 kii

�
D 0. This space is precisely H1.‡;R/. The cell � is given by the

intersection of this affine space with RE
�0

. Condition (i) in the construction of B0;2g implies that �
contains a point in the interior of RE

�0
. Therefore dim.�/D dim.H1.‡;R//. The second equality in (27)

is trivial.

Denote by Y1; : : : ;YF the connected components of †0;2g n‡ . We have Yi Š†0;ki
for some ki . Recall

that †k
0

denotes the sphere with k boundary components.

Proposition 5.7 StabPMod.†0;2g/.�/ŠMod.†k1

0
/� � � � �Mod.†kF

0
/.

Proof By construction we have StabPMod.†0;2g/.�/D StabPMod.†0;2g/.‡/. Denote by Y i the closure of
Yi D†0;ki

in the sphere. Let zYi Š†
ki

0
be the compactification of Yi given by replacing each puncture

by a boundary component. Let pi W
zYi! Y i be the natural projection. Then we have the corresponding

mapping ˆi WMod. zYi/! StabPMod.†0;2g/.‡/. It suffices to prove that the obvious mapping

ˆ WMod. zY1/� � � � �Mod. zYF /! StabPMod.†0;2g/.‡/

is an isomorphism. We use the Alexander method; see [9, Proposition 2.8]. In the proof we need to
distinguish between mapping classes and their representatives; the mapping class of a homeomorphism  

is denoted by Œ �.

First we prove the surjectivity of ˆ. Let Œ � 2 StabPMod.†0;2g/.‡/. Then  .ı/ is isotopic to ı for each
arc ı of ‡ . All such arcs are disjoint, so the Alexander method implies that there is a representative
 0 2 Œ � such that  0.ı/D ı for each arc ı of ‡ . Set �0i D 

0jY i
. Since �0i is identical on @Y i , there exist

�i 2 HomeoC. zYi/ such that pi ı�i D �
0
i ıpi . Hence ˆ.Œ�1�; : : : ; Œ�F �/D Œ �.

Now we prove that ˆ is injective. Let ˆ.Œ 1�; : : : ; Œ F �/ D Œid�. Since for each i the mapping  i j@ zYi

is identical, there exists  0i 2 HomeoC.Y i/ such that pi ı i D  
0
i ı pi . Consider the mapping  0 2

HomeoC.†0;2g/ such that  0jY i
D  0i for all i . By assumption  0 is isotopic to the identity map.

Let z‡ be a planar graph on the sphere obtained from ‡ by adding several arcs such that each face of z‡
is a disk. Let us show that there is an isotopy ‰t W †0;2g! †0;2g with ‰0 D  

0 such that ‰ restricts
to the identity on ‡ and ‰1. 

0.ı// D ı for each arc ı of z‡ . It suffices to prove the existence of this
isotopy in the case when we add only one arc  to ‡ . Let ‡ 0 D ‡ [ f g. We can assume that  0. /
is transverse to  . If  0. / is disjoint from  then these two arcs bound a disk on †0;2g. This disk is
contains no punctures, so it is disjoint from ‡ . Hence in this case such an isotopy exists. If  0. / and 
intersect, they form a bigon (see [9, Proposition 1.7]) that is disjoint from ‡ for the same reason. So we
can decrease the number of intersection points of  and  0. /.
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Set �0D‰1, �0i D �
0jY i

and ‰0i D‰jY i
. There exist homeomorphisms �i 2Homeo. zYi/ and isotopies ‰i

of zYi such that pi ı�i D �
0
i ıpi and pi ı‰i D‰

0
i ıpi . Therefore ‰i is an isotopy between  i and �i . By

construction �i is identical on a collection of arcs that fill zYi (fill means that each connected component
of the complement to this collection is a disk). Hence the Alexander method implies that �i is isotopic to
the identity for each i . Therefore  i is also isotopic to the identity.

For k � 2 we have Mod.†1
0;k�1

/ Š PBk�1. If we replace the punctures on the disk S1
0

by boundary
components, the corresponding mapping class groups will by related to each other via the following exact
sequence (see [9, Proposition 3.19]):

1! Zk�1
!Mod.†k

0/!Mod.†1
0;k�1/! 1:

Since the tangent bundle to the disk is trivial, this sequence splits. Therefore Mod.†k
0
/ŠZk�1�PBk�1.

Since cd.PBk�1/D k�2 we have cd.Zk�1�PBk�1/D 2k�3. When kD 1 we have cd.Mod.†1
0
//D 0.

Denote by D the number of Yi that are homeomorphic to the disk. Proposition 5.7 immediately implies
the following result:

Corollary 5.8 cd.StabPMod.†0;2g/.�//D

FX
iD1

.2ki � 3/CD:

Let us finish the proof of Theorem 5.5. By Lemma 5.6 and Corollary 5.8 we have

dim.�/Ccd.StabPMod.†0;2g/.�//DE�V CC C

FX
iD1

.2ki�3/CDDE�V CC CD�3FC2

FX
iD1

ki :

Let ‚1; : : : ; ‚C be the connected components of ‡ . Note that

(28)
FX

iD1

ki D jf.Yi ; ‚j / j Yi is adjacent to ‚j gj D

CX
jD1

.dim.H1.‚j ;R//C 1/

D dim.H1.‡;R//CC DE �V C 2C:
Therefore

E �V CC CD� 3F C 2

FX
iD1

ki DE �V CC CD� 3F C 2.E �V C 2C /

D 3E � 3V C 5C � 3F CD D 2C CD� 3.V �ECF �C /:
By Euler’s formula we have

(29) V �ECF �C D 1:

Therefore

(30) dim.�/C cd.StabPMod.†0;2g/.�//� 2C CD� 3:

In order to finish the proof of Theorem 5.5 we need the following result:

Lemma 5.9 Let a planar graph ‡ represent a cell of B0;2g and g � 2. Then 2C CD � 2g.

Proof We proceed by induction on the number of connected components of ‡ with only one edge.
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Base case: ‡ does not have a connected component with only one edge Since D � F and V D 2g, it
suffices to check that

(31) 2C CF � V:

Note that ‡ is a bipartite graph and does not contain isotopic edges. Since ‡ does not have a connected
component with only one edge, if Yi is adjacent to ‚j for some i and j , then Yi is adjacent to at least
four edges of ‚j . Then by (28) we have

E � 2

FX
iD1

ki D 2E � 2V C 4C D 2C C 2F � 2:

The last equality follows from (29). Since C � 1 we have

E � 2C C 2F � 2� 2F CC � 1:

We can rewrite this as

(32) 2C CF � 1CC �F CE:

Equation (29) implies that the right-hand side of (32) equals V . Therefore (31) holds.

Induction step: ‡ has a connected component with only one edge In the case g D 2 the graph ‡
is a disjoint union of two closed intervals, so C D 2 and D D 0; in this case the required inequality
2C CD � 2g is obvious. Hence we can assume that g � 3. Let pi and qj form such a component, that
is, pi and qj are vertices of ‡ of degree 1 connected by an edge ˛. Assume that after removing this
component the remaining graph ‡1 will not contain isotopic edges (and, consequently, will represent
some cell of B0;2g�2). Then C1 D C � 1 is the number of connected components of ‡1. Denote by D1

the number of faces of ‡1 homeomorphic to the disk. We have D1 �DC 1, since at most one disk can
appear. The graph ‡1 has fewer connected components with only one edge than ‡ . Since g� 1� 2, by
the induction assumption we have

2C CD � 2C1CD1C 1� 2g� 2C 1< 2g:

Now assume that our previous assumption does not hold, that is, after removing the component consisting
of one edge, the remaining graph will contain isotopic edges. This means that there exist punctures pr

and qs and edges ˇ1 and ˇ2 between them such that pi and qj are the only vertices of ‡ located inside
of the disks bounded by ˇ1 and ˇ2. There exists an arc 1 from pi to qs and an arc 2 from pr to qj

such that 1 and 2 are disjoint from ‡ and from each other. Consider the graph ‡ 0 obtained from ‡ by
adding the edges 1 and 2. Note that ‡ 0 has fewer connected components with exactly one edge than ‡
and also represents a cell of B0;2g. Then C 0 D C � 1 is the number of connected components of ‡ 0 and
D0 DDC2 is the number of faces of ‡ 0 homeomorphic to the disk. Therefore 2C CD � 2g if and only
if 2C 0CD0 � 2g. The induction assumption concludes the proof.

Lemma 5.9 and (30) imply that

dim.�/C cd.StabPMod.†0;2g/.�//� 2g� 3:
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5.4 The spectral sequence

Let K � PMod.†0;2g/ be a subgroup. Denote by yE��;� the spectral sequence (22) for the action of K on
B0;2g. Since cohomological dimension is monotonic, Theorem 5.5 implies that for any cell � of B0;2g

we have
dim.�/C cd.StabK .�//� 2g� 3:

This immediately implies yE1
p;q D 0 for p C q > 2g � 3. Hence all differentials d1; d2; : : : to the

group yE1
0;2g�3

are trivial (Figure 8 is also applicable here, where the group yE1
0;2g�3

is shaded), so
yE1

0;2g�3
D yE1

0;2g�3
. Therefore we have the following result:

Proposition 5.10 Let L� L0 be a subset consisting of multiarcs from pairwise different K–orbits. Then
the inclusions StabK .L/�K, L 2 L induce the injective homomorphismM

L2L

H2g�3.StabK .L/;Z/ ,!H2g�3.K/;Z/:

Proof of Lemma 5.1 It suffices to prove that the inclusions

ju W StabKg
. Ou �N / ,! Kg for u 2 Ug

induce the injective homomorphismM
u2Ug

H2g�3.StabKg
. Ou �N /;Z/ ,!G1 �H2g�3.Kg;Z/:

Assume the converse and consider a nontrivial linear relation

(33)
kX

sD1

�s.jus
/�.�s/D 0 for �s 2 Z and �s 2H2g�3.StabKg

. Ous �N /;Z/

for some pairwise different u1; : : : ;us 2 Ug. For each i D 1; : : : ;g take an essential simple closed curve
ˇi Dˇ1;i on the one-punctured torus Xi . Denote by bi D Œˇ1;i �2H1.†g;Z/ the corresponding homology
class. For each s 2N denote by yXs;i �†g the one-punctured torus bounded by Ous � ıi . Since Ous belongs
to the Torelli group Ig, we have H1. yXs;i ;Z/DH1. yXt;i ;Z/ for all 1� s; t � k. Denote by ˇs;i a unique
curve on yXs;i representing the homology class bi .

Let Bs D ˇs;1[ � � � [ˇs;g. Let fBd1
; : : : ;Bdl

g � fB1; : : : ;Bkg be the maximal subset consisting of the
multicurves from pairwise distinct Kg–orbits. Take the homology class x D

Pg
iD1

bi and consider the
complex of cycles Bg.x/. Proposition 4.3 implies that the inclusions

�i W StabKg
.Bdi

/ ,! Kg

induce the injective homomorphism

(34)
lM

iD1

H2g�3.StabKg
.Bdi

/;Z/ ,!H2g�3.Kg;Z/:
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Since the curves ˇs;i can be chosen in a unique way, we have the inclusions

Ojus
W StabKg

. Ous �N / ,! StabKg
.Bs/:

Since jui
D �i ı Ojui

, (34) and (33) imply that for each i D 1; : : : ; l we have

(35)
X

fzjBz2OrbKg .Bdi
/g

�z.juz
/�.�z/D 0:

Equality (35) implies that it is sufficient to prove the statement of the lemma in the case where the
multicurves B1; : : : ;Bk belong to the same Kg–orbit. Since we can prove Lemma 5.1 for an arbitrary
choice of yU , then by choosing the lifts Ou we can assume that B1 D � � � DBk DB. Let �s;i be a curve on
yXs;i intersecting ˇi once and let Ls D �s;1[ � � �[ �s;g. Consider the surface †g nB Š†0;2g. Denote by

pi and qi the punctures on †0;2g corresponding to the two sides of the curve ˇi .

Consider the exacts sequence (6) in the case M D B. We have

1! hTˇ1
; : : : ;Tˇg

i ! StabMod.†g/.B/!Mod.†0;2g/! 1:

Since the intersection hTˇ1
; : : : ;Tˇg

i\Kg is trivial, we have the inclusion KDStabKg
.B/ ,!Mod.†0;2g/.

The action of Kg on the homology of †g is trivial, so the image of this inclusion is contained in
PMod.†0;2g/. We have K ,!PMod.†0;2g/. Denote by �0s;i the arc on†0;2g from pi to qi corresponding
to the curve �s;i and let L0s D �

0
s;1
[ � � � [ �0s;g. Let us show that L0

1
; : : : ;L0

k
belong to pairwise distinct

K–orbits.

Assuming the converse, f .L0
1
/DL0

2
for some f 2K. Then f .L1[B/DL2[B. Note that the surface

†g n .Ls [B/ has g punctures, and each component of Ous �N is homotopic into a neighborhood of
its own puncture. Therefore the corresponding components of the multicurves f . Ou1 �N / and Ou2 �N

are homotopic into a neighborhood of the same puncture. Consequently, the multicurves f . Ou1 �N / and
Ou2 �N are isotopic. Since Ou1; Ou2 2 Ig, we obtain Ou�1

2
f Ou1 2 StabIg

.N /. It follows from the exactness
of (9) that StabIg

.N /� Kg. Hence Ou�1
2
f Ou1 2 Kg and we obtain

0D �. Ou�1
2 f Ou1/D �. Ou1/� �. Ou2/;

where � is the Johnson homomorphism. This implies u1 D u2, giving a contradiction.

Therefore L0
1
; : : : ;L0

k
belong to pairwise distinct K–orbits. Proposition 5.10 implies that the inclusions

StabK .L
0
s/�K, L0 2 L induce the injective homomorphismM

s

H2g�3.StabK .L
0
s/;Z/ ,!H2g�3.K;Z/:

By Proposition 4.3 we also have the inclusion H2g�3.K;Z/ ,! H2g�3.Kg;Z/ and so StabK .L
0
s/ D

StabKg
. Ous �N /. Therefore (33) implies �s D 0 for all s. This contradiction proves Lemma 5.1.
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The Heisenberg double of involutory Hopf algebras
and invariants of closed 3–manifolds

SERBAN MATEI MIHALACHE

SAKIE SUZUKI

YUJI TERASHIMA

We construct an invariant of closed oriented 3–manifolds using a finite-dimensional involutory unimodular
and counimodular Hopf algebra H . We use the framework of normal o–graphs introduced by R Benedetti
and C Petronio, in which one can represent a branched ideal triangulation via an oriented virtual knot
diagram. We assign a copy of the canonical element of the Heisenberg double H.H / of H to each
real crossing, which represents a branched ideal tetrahedron. The invariant takes values in the cyclic
quotient H.H /=ŒH.H /;H.H /�, which is isomorphic to the base field. In the construction we use only the
canonical element and structure constants of H , and not any representations of H . This, together with the
finiteness and locality conditions of the moves for normal o–graphs, makes the calculation of our invariant
rather simple and easy to understand. When H is the group algebra of a finite group, the invariant counts
the number of group homomorphisms from the fundamental group of the 3–manifold to the group.

57K31

1 Introduction

S Baaj and G Skandalis [1] and R M Kashaev [6] found a striking fact: for the Heisenberg double H.H /

of any finite-dimensional Hopf algebra H , there exists a canonical element T in H.H /˝2 satisfying the
pentagon equation

T12T13T23 D T23T12:

In [6], Kashaev also showed that the Drinfeld double D.H / of H can be realized as a subalgebra of
H.H /˝2, and observed that the universal R–matrix of D.H / can be represented as a combination of four
copies of T , where the quantum Yang–Baxter equation of the universal R–matrix follows from a sequence
of the pentagon equation of T . Using his results, the second author [16] reconstructed the universal
quantum D.H / invariant of framed tangles by assigning a copy of the canonical element T to each
branched ideal tetrahedron of the tangle complements, and expected that this construction leads to invariants
of pairs of a 3–manifold and geometrical input. We show that this construction defines an invariant of
closed oriented 3–manifolds when the Hopf algebra H is involutory unimodular and counimodular.

In the formulation of our invariant, we use a diagrammatic representation of closed oriented 3–manifolds
introduced by R Benedetti and C Petronio [3]. Their diagrams, which are called closed normal o–graphs,
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are oriented virtual knot diagrams satisfying certain conditions. They showed that homeomorphism
classes of closed oriented 3–manifolds are identified with equivalence classes of closed normal o–graphs
up to certain moves. A crossing of a closed normal o–graph represents a branched ideal tetrahedron in
the corresponding 3–manifold, and the orientation of the strand specifies a way to extend these local
branching structures to a global one. Our invariant is obtained by assigning a copy of the canonical
element T (or its inverse) to each crossing of closed normal o–graphs, and by reading them along the
strands. The invariant takes values in the cyclic quotient H.H /=ŒH.H /;H.H /�, which is isomorphic to
the base field through the character of the Fock space representation.

The proof of the invariance will be performed by checking the invariance under each move for normal
o–graphs. There are two important types: the MP–moves and the CP–move. An MP–move represents a
Pachner move equipped with a branching structure, which corresponds to a modified pentagon equation
in the level of the invariant. Here, the modification is related to the antipode of H , and we need to
assume that the antipode is involutive. Up to the MP–moves (and the 0–2 move), a closed normal o–graph
represents a closed oriented 3–manifold with a combing. The CP–move is a special move for branched
triangulations, which changes the combing. The invariance under the CP–move will be shown using
tensor networks, where we need to assume that H is in addition both unimodular and counimodular.
Using tensor networks, we will also show a connected sum formula of the invariant.

The main example of finite-dimensional involutory unimodular and counimodular Hopf algebras is the
group algebra CŒG� of a finite group G. We show that, in this case, the invariant is same as the number of
homomorphisms from the fundamental group of the 3–manifold to G. There are several other examples
of Hopf algebras which would be interesting to consider. The restricted enveloping algebras of restricted
Lie algebras (see Jacobson [5]) are finite-dimensional involutory Hopf algebras. In [14], S Majid and
A Pachol classified Hopf algebras of dimension � 4 over the field of characteristic 2. M Kim [8] also
gave some examples of finite-dimensional involutory unimodular and counimodular (commutative and
cocommutative) Hopf algebras which are not group algebras.

There are several invariants based on triangulations; see Barrett and Westbury [2] and Turaev and
Viro [17]. Ours uses only the structure constants of Hopf algebras and not representation categories, and
thus the construction is rather simple. It would be interesting to compare our invariant and the Kuperberg
invariant [11; 12], which also uses only the structure constants, and agrees with our invariant on group
algebras. We remark that the Kuperberg invariant is constructed based on Heegaard diagrams, and the
handle slide moves in Heegaard diagrams are global and infinite. The moves for closed normal o–graphs
are local and finite, and each of these finite moves corresponds nicely to an algebraic equation, like the
MP–moves and the pentagon equation. Thus the proof of the invariance is rather easy to understand.

The rest of the paper is organized as follows. In Section 2, we discuss Hopf algebras and their Heisenberg
doubles. In Section 3, following Benedetti and Petronio [3], we explain how to represent closed oriented
3–manifolds in a combinatorial manner using closed normal o–graphs. In Section 4, we explain the
construction of our invariant Z.M IH.H // D Z.�IH.H // using the Heisenberg double H.H / and a
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closed normal o–graph � which represents a 3–manifold M . The proof of the invariance will be given
in two sections. In Section 5, we prove the invariance under all moves except for the CP–move. In
Section 6, we reformulate our invariant using tensor networks, and use them to prove the invariance under
the CP–move. In Section 7, we show the connected sum formula, and study the case for the group algebra
CŒG� of a finite group G.

Acknowledgments We thank S Baseilhac, R Benedetti, K Hikami, M Ishikawa, R M Kashaev, A Kato,
Y Koda and T T Q Lê for valuable discussions. This work is partially supported by JSPS KAKENHI
grants JP17K05243 and JP19K14523, and by JST CREST grant JPMJCR14D6.

2 Hopf algebra and Heisenberg double

In this section, we quickly review the definition and some properties of the Heisenberg double of
Hopf algebras.

2.1 Hopf algebra

A Hopf algebra H over a field K is a vector space equipped with five linear maps,

M WH ˝H !H; 1 WK!H; � WH !H ˝H; � WH !K and S WH !H;

called multiplication, unit, comultiplication, counit and antipode, respectively, satisfying the standard
axioms of Hopf algebras. When the antipode is involutive, ie S2D idH , we call H involutory. Throughout
the paper, H will denote a finite-dimensional Hopf algebra and H� will denote the dual Hopf algebra
of H . We will also use the Sweedler notation �.x/D x.1/˝x.2/ for x 2H .

Recall that a right integral of a Hopf algebra H is an element �R 2H� satisfying �R � f D �Rf .1/

for every f 2H�. A left integral is defined similarly. Since H is finite-dimensional, a left (resp. right)
integral of the dual Hopf algebra H� is an element of H and is called a left (resp. right) cointegral of H .
It is well known that for a finite-dimensional Hopf algebra, an integral always exists and is unique up to
scalar multiplication. We say H is unimodular when the left cointegrals are also the right cointegrals,
and counimodular when the left integrals are also the right integrals. For more details on Hopf algebras
and their integrals, see [15; 11].

2.2 Heisenberg double

We use the left action of H on H� defined by .a* f /.x/ WD f .xa/, for a;x 2H and f 2H�. The
Heisenberg double

H.H /DH�˝H

of a Hopf algebra H is a K–algebra with unit �˝ 1 and multiplication given by

.f ˝ a/ � .g˝ b/D f � .a.1/ * g/˝ a.2/b;

for a; b 2H and f;g 2H�.
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Let feig be the basis of H and feig its dual basis. Then the canonical element is given by

(2-1) T D
X

i

.�˝ ei/˝ .e
i
˝ 1/ 2H.H /˝2

and its inverse by

(2-2) T D
X

i

.�˝S.ei//˝ .e
i
˝ 1/ 2H.H /˝2:

In the case of the Drinfeld double D.H / of H , the canonical element satisfies the quantum Yang–Baxter
equation, which in turn produces invariants of links and 3–manifolds [4; 7]. One important feature of
the Heisenberg double, which plays a central role in our construction of invariants, is that the canonical
element satisfies the pentagon equation.

Proposition 2.1 [1; 6] The pentagon equation

(2-3) T12T13T23 D T23T12

holds in H.H /˝3.

Proof Note that

T12T13T23 D

X
i;j ;k

.�˝ ei/.�˝ ej /˝ .e
i
˝ 1/.�˝ ek/˝ .e

j
˝ 1/.ek

˝ 1/

D

X
i;j ;k

.�˝ eiej /˝ .e
i
˝ ek/˝ .e

j ek
˝ 1/ 2 �˝ .H ˝H�/˝2

˝ 1;

T23T12 D

X
i;j

.�˝ ej /˝ .�˝ ei/.e
j
˝ 1/˝ .ei

˝ 1/

D

X
i;j

.�˝ ej /˝ .ei.1/ * ej
˝ ei.2//˝ .e

i
˝ 1/ 2 �˝ .H ˝H�/˝2

˝ 1:

Let us identify .H ˝H�/˝2 with End.H ˝H / through the map

� W x˝f ˝y˝g 7! .a˝ b 7! f .a/x˝g.b/y/;

for x;y; a; b 2H and f;g 2H�. Then, after identifying �˝ .H ˝H�/˝2˝ 1 with .H ˝H�/˝2, we
can see that the both elements T12T13T23 and T23T12 are sent by � to the same element as follows:

�.T12T13T23/.a˝ b/D ei.a/eiej ˝ ej ek.b/ek D aej ˝ ej .b.1//e
k.b.2//ek D ab.1/˝ b.2/;

�.T23T12/.a˝ b/D ej .ei.1/ * ej /.a/˝ ei.b/ei.2/ D ej ej .aei.1//˝ ei.b/ei.2/

D aei.1/˝ ei.b/ei.2/ D ab.1/˝ b.2/:

The Heisenberg double H.H / has a canonical left module F.H�/DH�, which we call the Fock space,
with the action � WH.H /! End.H�/ given by

(2-4) �.f ˝ a/.g/D .f ˝ a/Fg WD f � .a* g/;
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for .f ˝ a/ 2 H.H / and g 2 H�. Let �Fock be the character associated to the Fock space. For a
K–algebra A, let ŒA;A� be the subspace spanned by fxy �yx j x;y 2Ag over K. We are interested in
the quotient space H.H /=ŒH.H /;H.H /� since this is the space in which our invariant takes values.

Proposition 2.2 The character of the Fock space

�Fock WH.H /=ŒH.H /;H.H /�!K

is an isomorphism between vector spaces.

Proof In [13, Proposition 6.1] it was shown that for F 2 End.H�/, the elementX
i;j

F.ei/ej
˝S�1.ej /ei 2H.H /

is in the preimage of F by �, ie for any g 2H� we haveX
i;j

�.F.ei/ej
˝S�1.ej /ei/.g/D

X
i;j

F.ei/ej
� .S�1.ej /ei * g/

D

X
i;j

g.3/.ei/ �F.e
i/ �g.2/.S

�1.ej //e
j
�g.1/

D F.g.3// �S
�1.g.2// �g.1/ D F.g.2//�.g.1//D F.g/:

Since dimH.H /D dim End.H�/, it follows that � is bijective, and hence � is an algebra isomorphism.

Note that End.H�/ is a matrix algebra, and thus the canonical trace

tr W End.H�/=ŒEnd.H�/;End.H�/�!K

is also an isomorphism.

When the antipode S is involutive, �Fock can be given in terms of integrals. Let �R 2H� and eL 2H be
a right integral and a left cointegral satisfying �R.eL/D 1.

Proposition 2.3 For an involutory Hopf algebra H , we have

�Fock.f ˝ a/D f .eL/�R.a/

for f ˝ a 2H.H /.

Proof For F 2 End.H�/, the trace map is given (see [15, Chaper 10]) by

tr.F /D heL;F.�R.2//S.�R.1//i:

Thus

�Fock.f ˝ a/D heL; f .a*�R.2//S.�R.1//i D heL; �R.3/.a/f ��R.2/ �S.�R.1//i D f .eL/�R.a/:

The third equality follows from the fact that x.2/S.x.1// D S.x.1/S.x.2/// D �.x/1 for an involutory
Hopf algebra.
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Figure 1: Vertices of typeC (left) and � (right).

3 Closed normal o–graph

In order to define an invariant, we first recall the method introduced in [3] by Benedetti and Petronio to
represent closed oriented 3–manifolds in a combinatorial manner. This method is based on the theory of
branched spines, which are the dual of branched ideal triangulations.

Definition 3.1 [3] A closed normal o–graph is an oriented virtual knot diagram, ie a finite connected
4–valent graph � immersed in R2 with the following data and conditions:

N1 Only two types (C or �) of 4–valent vertices are considered, which are represented by the
over–under notation as in Figure 1.

N2 Each edge has an orientation such that it matches among two edges which are opposite to each
other at a vertex.

C1 If one removes the vertices and joins the edges which are opposite to each other, the result is a
unique oriented circuit.

This diagram satisfies the following additional conditions:

C2 The trivalent graph obtained from � by the rule defined in Figure 2 is connected.

C3 Consider the disjoint union of oriented circuits obtained from � by the rule defined in Figure 3.
The number of these circuits is exactly one more than the number of vertices of � .

Let G be the set of closed normal o–graphs and M the set of oriented closed 3–manifolds up to orientation-
preserving homeomorphisms. Given a closed normal o–graph � 2 G, one can canonically construct a
3–manifold ˆ.�/ 2M as follows. We fix an orientation of R3 and place a closed normal o–graph on
R2 �R3. Then we replace each of its vertices with a tetrahedron (with the orientation given by R3), and

Figure 2

Figure 3
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glue the faces of the ideal tetrahedra. This gluing is specified by the order of vertices of ideal tetrahedra
defined as in Figure 4: we glue faces by the orientation-reversing map which preserves the order of
vertices. Conditions on closed normal o–graphs ensure that the result is an ideally triangulated 3–manifold
with S2 boundary. Then, after we cap the boundary, the result defines an element ˆ.�/ 2M. Here,
for the geometrical meaning of the order of the vertices of ideal tetrahedra, see Remark 3.4, where the
meaning of the technical conditions C1, C2 and C3 are also explained. We denote the construction map
obtained in the above way by ˆ W G!M.

The mapˆ is not one-to-one, and in order to make it so we need the following local moves of the diagrams:

(1) planar isotopy of the diagram and the Reidemeister-type moves described in Figure 5, left,

(2) the 0–2 move and the Matveev–Piergallini moves (MP–moves), described in Figure 5, right, and
Figure 6, respectively,

(3) the combinatorial Pontryagin move (CP–move) in Figure 7.

All of the above local moves preserve the axioms of closed normal o–graphs. We say that two closed
normal o–graphs are equivalent if one can be obtained from the other by planar isotopy and a finite
sequence of moves defined above. Let us denote this equivalence relation by �. The following was
proved in [3]:

Proposition 3.2 The map

(3-1) ˆ W G=�!M

is well defined and bijective.

Figure 5: Left: the Reidemeister-type moves. Right: the 0–2 move.
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Figure 6: The MP–moves. The orientation of each nonoriented edge in the figure is arbitrary if it
matches before and after the move.

Example 3.3 The closed normal o–graph of the lens space L.p; 1/, for p � 1, is given by the following
graph with p vertices:

...

Remark 3.4 We briefly remark on the geometrical meaning of the representation of 3–manifolds by
closed normal o–graphs; see [3] for more details. The order of vertices of ideal tetrahedra as in Figure 4
specifies a branching structure for the ideal triangulation, which gives a combing, ie a nonvanishing
vector field up to homotopy, to the underlying 3–manifold. The technical conditions C1, C2 and C3
ensure that the 3–manifold corresponding to a closed normal o–graph has an S2 boundary with a nice
branching structure, where the associated combing can be extended canonically to the closed 3–manifold
after we can cap off the boundary by B3. In this case, a closed normal o–graph up to the 0–2 move
and the MP–moves represents a 3–manifolds with a combing. The CP–move in Figure 7 changes the
combing while preserving the underlying 3–manifold; thus one gets the complete representation of M as
in Proposition 3.2. Here the CP–move is an interpretation of the Pontryagin surgery in terms of branched
standard spines; see [3, Chaper 6] for details.

Figure 7: The CP–move.
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4 Invariant

In this section, we define a scalar Z.�IH.H // for a closed normal o–graph � . In the following section,
we show that this scalar is an invariant of closed oriented 3–manifolds when the Hopf algebra is involutory,
unimodular and counimodular.

Let A be a K–algebra. An A–decorated diagram is an oriented closed curve immersed in R2, where the
self-intersections are transverse double points, with a finite number of dots, each of which is labeled with
an element of A. These dots are called beads. We shall consider the A–decorated diagram up to planar
isotopy and moves in Figure 8. We also allow the beads to slide along the curve.

We define the scalar Z.�IH.H // as follows. Recall the definition of the canonical element T and its
inverse T given in (2-1)–(2-2). Using Sweedler notation, we write the canonical element as T DT1˝T2 2

H.H /˝2 and its inverse as T D T1˝ T2 2 H.H /˝2. Given a closed normal o–graph, we replace its
vertices with the diagram in Figure 10 to get an H.H /–decorated diagram C� .

Since a closed normal o–graph satisfies axiom C1 in Definition 3.1, we can perform the moves in Figure 8
and slide beads on C� to get a closed circle with a single bead labeled by J� in H.H /. Because one can
permute the beads as in Figure 9, J� is well defined in the quotient space H.H /=ŒH.H /;H.H /�, which
can be identified with K by Proposition 2.2.

Definition 4.1 Z.�IH.H // WD �Fock.J�/.

Recall from Section 2.1 that a Hopf algebra H is called unimodular if the left cointegrals are also the
right cointegrals, and counimodular if the left integrals are also the right integrals.

Theorem 4.2 Let H be a finite-dimensional involutory unimodular counimodular Hopf algebra over K,
and � a closed normal o–graph of a closed oriented 3–manifold M . Then Z.�;H.H // is an invariant
of M .

x1x2 � � �xn x2 � � �xn

x1

x2 � � �xnx1

DD

Figure 9
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T2 T1 T1 T2

Figure 10: How to associate beads to vertices.

We end this section with some calculations, and prove Theorem 4.2 in Section 5.

Example 4.3 The invariant of S3 DL.1; 1/ is given by

T2 T1

T1
T2

Thus Z.S3IH.H //D �Fock.T2T1/D
P

i �Fock.e
i ˝ ei/. By Proposition 2.3,

Z.S3
IH.H //D ei.eL/�R.ei/D �R.e

i.eL/ei/D �R.eL/D 1:

Example 4.4 The invariant of RP3 DL.2; 1/ is given by

T2 T1 T 0
2

T 0
1 T2

T1

T 01
T 0

2

Thus Z.RP3IH.H // D �Fock.T2T1T 0
1
T 0

2
/ D

P
i;j �Fock.e

i � .ei.1/ej.1/ * ej /˝ ei.2/ej.2// D tr.S/,
where S is the antipode.

5 Main theorem

In this section we prove Theorem 4.2. According to Proposition 3.2, in order to prove that Z.�;H.H //

is an invariant, we need to show that Z.�;H.H // is an invariant under planar isotopy and the local
moves (the Reidemeister-type moves, the 0–2 move, the MP–moves and the CP–move) of closed normal
o–graphs described in Figures 5–7. In [16], it was essentially proved that the value Z.�;H.H // is an
invariant under planar isotopy, the Reidemeister-type moves, the 0–2 move and the MP–moves. Here
the Reidemeister-type moves are nothing but the symmetry moves in [16], the 0–2 move is a special case
of the colored .0; 2/ moves and the MP–moves are obtained by the colored Pachner .2; 3/ moves and
the colored .0; 2/ moves. Even so, since the frameworks are slightly different, we give another proof in
this section. The invariance under the CP–move was not observed in [16], and we give the proof in the
following section, where we use a framework of tensor networks.

Proof of Theorem 4.2 Invariance under planar isotopy and the Reidemeister-type moves It is
obvious from the construction that Z.�;H.H // is an invariant under planar isotopy and the Reidemeister-
type moves described in the Figure 5, left.
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Invariance under the 0–2 move Let us calculate the local tensor associated to the right-hand side of
Figure 5, right:

T2

T1

T2

T1

T2T2T1T1

So we need to show T2T2T1T1D �˝1. Let T D
P

i.�˝ei/˝.e
i˝1/ and T D

P
j .�˝S.ej //˝.e

j˝1/.
Then

(5-1) T2T2T1T1 D

X
i;j

.ei
˝ 1/.ej

˝ 1/.�˝S.ej //.�˝ ei/D
X
i;j

eiej
˝S.ej /ei :

Identifying H�˝H with End.H /, the right side of (5-1) becomes x 7! S.x.2//x.1/. Since S is assumed
to be involutive, S.x.2//x.1/ D �.x/1. Thus T2T2T1T1 D �˝ 1.

Invariance under the MP moves There are 16 MP moves. We write the calculations in Figures 11–12.
Namely, we need to check the following 16 equalities:

MP 1.1 T23T13 D T21T13T21; MP 2.1 T32T31 D T12T31T12;

MP 1.2 T13T23 D T21T13T21; MP 2.2 T31T32 D T12T31T12;

MP 1.3 T23T13 D T 02T1T2˝T1T 01˝T2; MP 2.3 T32T31 D T 01T2T1˝T2T 02˝T1;

MP 1.4 T13T23 D T2T 01T2˝T1T1˝T 02; MP 2.4 T31T32 D T1T 02T1˝T2T2˝T 01;

MP 3.1 T23T31 D T31T23T21; MP 4.1 T31T23 D T21T23T31;

MP 3.2 T23T31 D T31T21T23; MP 4.2 T31T23 D T23T21T31;

MP 3.3 T23T31 D T2T 02˝T1T1˝T 01T2; MP 4.3 T31T23 D T2T2˝T1T 01˝T 02T1;

MP 3.4 T23T31 D T21T31T23; MP 4.4 T31T23 D T23T31T21:

We verify that each of these is equivalent to the pentagon equation (2-3). Define �H WH.H /˝2!H.H /˝2

by �H.x˝y/D y˝x for x;y 2H.H /. Then, for example, if we multiply MP 1.1 by T21 from the left
and apply �H˝ id, the result is exactly the pentagon equation. Similarly, we can reduce MP 1.2, MP 2.1,
MP 2.2, MP 3.1, MP 3.2, MP 3.4, MP 4.1, MP 4.2, and MP 4.4 to the pentagon equation.

For the other six equalities, define the map S WH.H /!H.H / by S.f ˝ a/D S.f /˝S.a/, where S

is the antipode of the Hopf algebra H . Then, for example, we can transform MP 1.3 into MP 1.1 by
applying id˝S˝ id to both sides as follows:

.id˝S˝ id/.T23T13/D.id˝S˝ id/.T 02T1T2˝T1T 01˝T2/

()

X
i;j

.�˝ej /˝.�˝S2.ei//˝.e
iej
˝1/D

X
i;j ;k

.ej .ei.1/*ek/˝ei.2//˝.�˝S.ej /S
2.ek//˝.e

i
˝1/

() T23T13DT21T13T21:
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Figure 11

Here we used the involutivity of S for the last equivalence. Thus MP 1.3 is also equivalent to the pentagon
equation. We can show that MP 1.4, MP 2.3, MP 2.4, MP 3.3 and MP 4.3 are also equivalent to the
pentagon equation in a similar manner.

Since the pentagon equation holds in the Heisenberg double H.H /, we conclude that Z is invariant under
the MP–moves.

Invariance under the CP–move This will be proved in Proposition 6.6 using tensor networks.
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1

Figure 12

Remark 5.1 The assumption of unimodularity and counimodularity of H will be used only for invariance
of the CP–move. Involutivity was used for the 0–2 move and the MP–moves MP 1.3, MP 1.4, MP 2.3,
MP 2.4, MP 3.3 and MP 4.3. The other 10 equalities for the MP–moves do not need any restriction on
Hopf algebras to hold.

Remark 5.2 In [16, Theorem 5.1], there is an error; even for an involutory Hopf algebra, J is not an
invariant under the colored Pachner .2; 3/ move in [16, Figure 16], which cannot be obtained by rotating
the allowed one. This excluded move corresponds to the MP–moves with some strands reversed, which
are not actually the MP–moves.
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T

o1i1

im on

i2 o2

:::
:::

Figure 13

6 Tensor network approach

In this section, we give a quick review of tensor networks, which enable graphical calculus of tensors and
linear maps. Then we reformulate the invariant using tensor networks, and prove the invariance under the
CP–move.

6.1 Tensor network

A tensor network over a vector space V is an oriented graph which represents a tensor labeled by the set
of open edges, where each incoming (resp. outgoing) edge labels V � (resp. V ). For example, the diagram
in Figure 13 presents an .m; n/ tensor T 2 .V �/˝I˝V ˝O DHom.V ˝I ;V ˝O/, where I D fi1; : : : ; img
is the set of incoming edges and OD fo1; : : : ; ong is the set of outgoing edges.

One important feature of tensor networks, which makes this notion practical, is the contraction of tensors.
Given two tensor networks T and S , one gets a new tensor network by connecting an outgoing edge o

of T and an incoming edge i of S (see Figure 14), which represents the tensor obtained from T ˝S by
contracting Vo and .V �/i .

For example, the left diagram in Figure 15 represents the composition g ıf of two maps f;g W V ! V

and the right diagram represents the trace
P

i f
i

i D tr.f / 2K of a map f W V ! V .

Note that a tensor labeled by a set I does not fix the order of the tensorands. More precisely, V ˝I

is the tensor product constructed from the product V I D fv W I ! V g labeled by I. For example, for
I D fa; b; cg, the linear space V ˝I is isomorphic to V ˝3, but such an isomorphism is not canonical, ie
there is not a canonical order of labeled V to be written. On the other hand, for I D f1; 2; : : : ; ng, we
have the canonical isomorphism V ˝I ! V ˝n, v 7! v.1/˝ � � �˝ v.n/. In order to present calculations
of a Hopf algebra .H;M; 1; �; �;S/ using tensor networks over H , we fix an order of the incoming

T
:::

S

o
i

connect edge T

S:::

:::
:::

Figure 14
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f g
f

Figure 15

and the outgoing edges of the graphs representing multiplication M WH˝2!H and comultiplication
� WH !H˝2, respectively, as below:

M

1

2

�

1

2

Note that the incoming edges of multiplication are counted in counterclockwise order, and the outgoing
edges of comultiplication are counted in clockwise order. Using this notation, for example, the axioms of
Hopf algebras are represented in Figure 16, where we use the subscript 1 to make the order clear. This
subscript will be omitted sometimes when it is obvious.

6.2 Reformulation of invariant

Assume H D .H;M; 1; �; �;S/ is a finite-dimensional involutory unimodular counimodular Hopf algebra.

An o–tangle is an oriented virtual tangle diagram in Œ0; 1�2 such that each boundary point is on the bottom,
Œ0; 1��f0g, or on the top, Œ0; 1��f1g. For finite sequences " and "0 of ˙, an ."; "0/ o–tangle is an o–tangle
having boundary points on the bottom and top compatible to " and "0, respectively, where compatible
means that if an edge is oriented upwards (resp. downwards) then it is connected to C (resp. �).

M
D

1

empty diagram

M M
M

M M

M
M

M

M

M M

S

S

�

�
�

�
�

� ��
��

�

1 1
1

1 1

1

1

111
11

1

1 1
1 1

1 1 1
1 1

1

1
1

1 1
1

1
�

1

D

D
D

D

D

DD

D D

D D

�

�

�
�

�
�

�

Figure 16
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Let To be the category of o–tangles, where objects are finite sequences of ˙ including the empty
sequence ∅, and morphisms To."; "

0/ from " to "0 are isotopy classes of ."; "0/ o–tangles. As usual, To is
a strict monoidal category with the unit object ∅, and the composition � 0 ı� of ."; "0/ o–tangle � and
."0; "00/ o–tangle � 0 is obtained by connecting the "0-type boundary points on the top of � to these on the
bottom of � 0. We can construct a monoidal functor Z.� IH / from the category of o–tangles To to the
category of finite-dimensional vector spaces VectK as follows.

For the objectC (resp.�), we set Z.CIH / WDH� (resp. Z.�IH / WDH ). For a sequence "D ."1; : : : ; "n/

in ˙, let H " denote H "1 ˝ � � �˝H "n with HC DH� and H� DH . To a given ."; "0/ o–tangle � , we
associate a tensor network over H , which represents a linear map Z.�IH / 2 Hom.H ";H "0/ as follows;
we replace each positive (resp. negative) crossing of � with the tensor network as in the left (resp. right)
picture below, and then connect the boundary points of these tensor networks following the strands of � .
The boundary edges on the bottom and top of the resulting tensor network are counted from the left,
and an input element to Z.�IH / 2 Hom.H ";H "0/ is a tensor T 2 H " labeled by the bottom edges.
Then Z.�IH / sends T to the tensor Z.�IH /.T / 2H "0 (labeled by the top edges) which is obtained by
concatenating T to the bottom edges of the tensor network. Note that the corresponding strands of the
tensor network are oriented in the opposite direction to these of �:

M�
S

1
1

C C

C C

H� H�

H� H�˝

˝

M�1

1

H� H�˝

H� H�˝

C C

C C

Note that a maximum point plays the role of evaluation map, and a minimum point plays the role of
coevaluation map:

WH�˝H !K; f ˝ a 7! f .a/; WK!H ˝H�; 1 7!
X

ei ˝ ei ;

WH ˝H�!K; a˝f 7! f .a/; WK!H�˝H; 1 7!
X

ei
˝ ei :

Since a closed normal o–graph � is an .∅;∅/ o–tangle, it is sent to an endomorphism Z.�IH / of K,
which is represented by a scalar in K. By abusing notation we also denote the scalar by Z.�IH / 2K.

Example 6.1 For a closed normal o–graph � for S3, which is an .∅;∅/ o–tangle as in the left picture
below, the resulting tensor network Z.�IH / is the right picture below.

M�1

1
� M

D!

Thus Z.�IH /D tr.M ı � ı�/ 2K, where �.x˝y/D y˝x.

Let � be a closed normal o–graph and Z.�IH.H // the invariant defined in Section 4.
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Proposition 6.2 Z.�IH.H //DZ.�IH /.

Proof First, let us consider an oriented strand with a bead f ˝a2H.H / as in the left picture below. We
will think of this strand with a bead as the action of f ˝a on the Fock space F.H�/, which was given by
�.f ˝ a/ W g 7! f .a* g/ for g 2H�, where f .a* g/ W x 7! f .x.1//g.x.2/a/ for x 2H . Graphically
this map �.f ˝ a/ 2 Hom.H�;H�/ can be represented by the tensor network in the right picture below.

f ˝ a

�

M

fa

If there are multiple beads, we replace each one with the above tensor network. Since each map is an
action, the result is well defined under the move of Figure 8, right.

Then, let us consider the oriented closed curve with a bead f ˝ a 2H.H /. Recall that �Fock.f ˝ a/ is
the trace of the linear map defined by the action of f ˝ a. As remarked in Section 6.1, in terms of tensor
networks, taking a trace is just connecting the incoming edge with the outgoing edge. Thus

�Fock.f ˝ a/

�

M

faD

Finally, let � be a closed normal o–graph. Replacing its vertices as in Figure 10 and sliding beads, we
get a single bead J� 2H.H /, and the invariant Z.�;H.H // was defined as �Fock.J�/. Here, before the
sliding process, we replace each bead with a corresponding tensor network as above, and compare the
result to Z.�IH /. Since the beads only appear at the vertices of � , we just need to look at the associated
tensor network for these beads:

T2 T1
D

X
i

ei˝1 �˝ei D

X
i

� �

ei
ei

M

1

M

�
D

� M

T2T1 D

X
i

ei˝1�˝S.ei/ D

X
i

M M
ei S.ei/

�
1

�
�
D � M

S

These are the same tensor networks associated with vertices in the definition of Z.�IH /.
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6.3 Invariance under CP–move

We prove the invariance of Z.�IH / under the CP–move. Refer to Section 2 for the definition of integrals.
Let eL 2H and �L 2H� be a left cointegral and a left integral satisfying �L.eL/D 1. In terms of tensor
networks, we have

eL

M D

eL

�

�L

D

�L

1�

Lemma 6.3 [12, Lemma 3.3] The following equality holds in any Hopf algebra:

�L eL D M

S

�

S

1 1

Set eR WD S.eL/. Since S is an antialgebra map, eR is a (nonzero) right cointegral.

Lemma 6.4 [15, Theorem 10.5.4] For a finite-dimensional involutory counimodular Hopf algebra ,

�op.eR/D�.eR/;

where �op.x/ WD x.2/˝x.1/.

Lemma 6.5 Let H be an involutory Hopf algebra. Then

�L

eR

Z.� IH /

Proof Replacing the vertex of the o–tangle with the corresponding tensor network, we have

M�
D

M

�op

1

1

z.� IH /

Using Lemma 6.3 we get

�L eRD M

S

�

S

SDM

S2

�opM �op D
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Proposition 6.6 Let H be a finite-dimensional involutory unimodular counimodular Hopf algebra. Then
Z.�IH / is an invariant under the CP–move in Figure 7.

Proof First, we evaluate the left-hand side of the CP–move. Using Lemma 6.5, the twists in the closed
normal o–graph can be replaced by integrals, and thus

M

eR
�L eR

�L

�
D

�LeR

M

eR

�L

�
D

�LeR

eR�LZ.� IH /

Next, we evaluate a part of the right-hand side of the CP–move:

eR

�L

�

M

S

� �

M M

SS

D

eR

�L

�

M

S

�
M

S

Z.� IH /

1

1

1

1 1

1

We used the definition of left integral �L for the equality above. From Lemma 6.4, eR is cyclic. Thus
this equals

eR

�L

�

M

S

�
M

S

D

eR

�L1

M

S

eR

�L

�

M

M

S

D

�

S

The first equality follows from coassociativity of the comultiplication, and the second follows from the
property of the antipode. Thus right-hand side of the CP–move becomes

eR

�L1

M

S

�

M

S
D

M

�1

M

eL

�L

D eL�L

SZ.� IH /
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Finally, we show that the following equality holds for involutory unimodular counimodular Hopf algebra:

eL�L

�LeR

eR�L

D

Since H is unimodular, eR D keL for some nonzero k 2 K. Since �L.eL/ is 1, �L.eR/D k and the
left-hand side of the above tensor network is the same as right-hand side times k2. Applying S2 to eL

and using the fact that S is involutive, we see that k2 D 1, and the above equality follows.

7 Properties

We continue to assume that H is a finite-dimensional involutory unimodular counimodular Hopf algebra
over K. For a closed oriented 3–manifold M and a closed normal o–graph � representing M , set
Z.M IH / WDZ.�IH /.

7.1 Connected sum formula

For closed oriented 3–manifolds M and N , let M # N be their connected sum.

Proposition 7.1 Z.M # N IH /DZ.M IH /Z.N IH /.

Proof Let �M and �N be closed normal o–graphs representing M and N , respectively. Let �M #�N

be the connected sum of closed normal o–graphs defined in Figure 17.

In [10], Y Koda showed that for two closed normal o–graphs �M and �N , the 3–manifold represented
by �M #�N is M # N . We show the assertion by comparing the tensor networks for the closed normal
o–graphs in the left and right-hand sides of the Figure 17. Note that

�

M

�

S D �
S

M D 1

Thus

M �

1

M�

1

D

�

�

which implies the assertion.
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connected sum

�M �N

�M #�N

Figure 17

7.2 Group algebra

We show that the invariant Z.M ICŒG�/ with the group algebra CŒG� of a finite group G counts the
number jHom.�1M;G/j of group homomorphisms from the fundamental group �1M of M to G. The
proof essentially follows the line of [7].

The algebra CŒG� has a canonical basis given by fggg2G and the Hopf algebra structure is given by
�.g/D g˝g, �.g/D 1 and S.g/D g�1. Note that CŒG� is involutory, unimodular and counimodular.
The dual group algebra C.G/ WDCŒG�� has the dual basis fıggg2G , and the dual Hopf algebra structure
is given by

ıg � ıh D ıg;hıg; 1C.G/ D

X
g2G

ıg; �.ıg/D
X

hkDg

ıh˝ ık ; �.ıg/D ıg.e/; S.ıg/D ıg�1 ;

where ıg;h 2 f0; 1g is 1 if g D h and 0 otherwise, and e is the unit of G.

The left action of x 2G �CŒG� on ıg 2C.G/ is given by

x * ıg D ıgx�1 :

Proposition 7.2 For a closed oriented 3–manifold M and a finite group G, we have Z.M ICŒG�/D

jHom.�1M;G/j.

Proof Let � be a closed normal o–graph representing M . In [10; 9], Koda gave an explicit formula
for the fundamental group �1M in terms of the closed normal o–graph � . Let E be the set of all edges
of � . We consider the group generated by E and the relation set R consisting of g D l and hg D k for
the edges g, l , h and k around each vertex, as below. Then the resulting group hE jRi is isomorphic
to the fundamental group �1M of M , and the number jHom.�1M;G/j is equal to the number of edge
colorings c WE!G such that c.R/ holds in G.

l

g

h
k
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We show that the invariant Z.M ICŒG�/ indeed counts such edge colorings. As we explained in Section 6.2,
each vertex of a closed normal o–graph can be treated as a linear map between C.G/˝2:

WC.G/˝C.G/!C.G/˝C.G/; ıg˝ ıh 7! T1 F ıh˝T2 F ıg

WC.G/˝C.G/!C.G/˝C.G/; ıh˝ ıg 7! T2 F ıg˝T1 F ıh

Here

T1Fıh˝T2FıgD
X
x2G

.�˝x/Fıh˝.ıx˝e/FıgD
X
x2G

x*ıh˝ıx �ıgD
X
x2G

ıhx�1˝ıx;gıgDıhg�1˝ıg

and
T2 F ıg˝T1 F ıh D

X
x2G

.ıx˝ e/F ıg˝ .�˝x�1/F ıh D
X
x2G

ıx � ıg˝x�1 * ıh

D

X
x2G

ıx;gıg˝ ıhx D ıg˝ ıhg:

We draw these maps as follows:
ıhg�1 ıg

ıg ıh ıh ıg

ıg ıhg

Note that the subscripts of ı give nothing but an edge coloring (around the vertices) as desired. Furthermore,
to connect those vertices by strands means that we insert maximum and minimum points among them.
Recall from Section 6.2 that maximum and minimum points correspond to evaluations and coevaluations,
respectively. In the present case they are the maps shown below, which means after all we sum up all
edge colorings:

WC.G/˝CŒG�!C; ıg˝h 7! ıg;h; WC!CŒG�˝C.G/; 1 7!
X

g˝ıg;

WCŒG�˝C.G/!C; h˝ıg 7! ıg;h; WC!C.G/˝CŒG�; 1 7!
X

ıg˝g:
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We show that, in the character variety of surface group representations into the Lie group PSL.2;R/�
PSL.2;R/, the compactification of the maximal component introduced by the second author is a closed
ball upon which the mapping class group acts. We study the dynamics of this action. Finally, we describe
the boundary points geometrically as .A1�A1; 2/–valued mixed structures.

53C43, 57K20

1. Introduction 3693

2. Background 3697

3. Core of a product of trees 3699

4. Thurston’s compactification 3703

5. Fixed point for the mapping class group action 3706

6. aC–valued measured laminations and mixed structures 3710

References 3715

1 Introduction

A recurring theme in higher Teichmüller theory is to relate surface group representations into higher-rank
Lie groups with geometric objects. Taking its cue from classical Teichmüller theory, one is often interested
in studying the degeneration of these associated geometric objects when the representation leaves all
compact sets in the character variety. The celebrated Thurston compactification of Teichmüller space
regards Fuchsian representations as marked hyperbolic metrics, where degenerating families of hyperbolic
metrics subconverge to projectivized measured laminations. One key aspect of this compactification is
that it is a closed ball upon which the mapping class group acts. In years following, there have been
numerous different perspectives of the Thurston compactification, using a variety of methods, topological,
geometric, analytic and algebraic (see [Bonahon 1988; Bestvina 1988; Paulin 1988; Wolf 1989; Morgan
and Shalen 1984; Brumfiel 1988]).
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When the Lie group PSL.2;R/ is replaced with a higher-rank one, the relevant geometric object is
not always immediately clear. In rank 2 however, combined work of Schoen [1993], Labourie [2017],
Loftin [2001], Collier [2016], Alessandrini and Collier [2019], and Collier, Tholozan and Toulisse
[Collier et al. 2019] provides a geometric interpretation to representations in the various distinguished
components of the relevant character variety. These components are usually maximal components or
Hitchin components, which maximize a topological quantity, the Toledo invariant, or contain a deformation
of the classical Teichmüller space. Parreau [2012] compactifies them by attaching at infinity surface
group actions on a Euclidean building.

This paper will primarily be concerned with the rank-2 semisimple split Lie group G D PSL.2;R/�
PSL.2;R/. The product structure of G makes our study more amenable towards techniques from classical
Teichmüller theory. For S a closed, orientable, smooth surface of genus g > 1, work of Goldman
[1988] shows the connected components of the character variety �.�1.S/;PSL.2;R// are determined
by the Euler number. In particular, the distinguished component with maximal Euler number of 2g�2
is the Teichmüller space Teich.S/. If we denote the character variety for G D PSL.2;R/� PSL.2;R/
by �.�1.S/;G/, then the connected components are merely products of the connected components of
�.�1.S/;PSL.2;R//. The maximal component Max.S;G/ of �.�1.S/;G/ is the collection of conjugacy
classes of pairs of representations, each of which is a Fuchsian representation. Hence Max.S/ WD
Max.S;PSL.2;R/�PSL.2;R// is the product of two copies of Teichmüller space.

Elements in the component Max.S/ have a number of related geometric interpretations. Schoen [1993]
has shown these representations correspond to equivariant minimal Lagrangians in H2�H2. At the same
time, the group G D PSL.2;R/�PSL.2;R/ is the isometry group of AdS3, and Mess [2007] has shown
the holonomy representations of GHMC-AdS3 manifolds are precisely the ones in Max.S/. Krasnov and
Schlenker [2007] have shown to each GHMC-AdS3 manifold there is a unique equivariant space-like
maximal surface, whose image under the Gauss map is the aforementioned minimal Lagrangian.

In seeking a compactification of Max.S/ via degeneration of geometric objects, the second author in
his thesis [Ouyang 2023] showed the natural limits to the minimal Lagrangians were given by cores
of R–trees dual to measured laminations. These are topologically and group-theoretically defined
distinguished subcomplexes of the product of two trees, where some parts are two-dimensional and
the remaining parts are one-dimensional. Denote by Core.T;T /, the space of cores in the product of trees
dual to measured laminations. Observe that there is a natural RC–action on Core.T;T / and denote by
P Core.T;T / the resulting projectivization. We equip Max.S/ and P Core.T;T / with the equivariant
Gromov–Hausdorff topology. One natural question one might ask is what exactly is the topology of the
resulting compactification. Our first main result is the following.

Theorem A The disjoint union
BDMax.S/tP Core.T;T /

is homeomorphic to a closed ball of dimension 12g�12.
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More precisely, we will show that the interior of B can be identified with Teich.S/�Teich.S/ and its
boundary with P .MF.S/�MF.S//. A point in B will thus be represented by a pair .x1; x2/, where
x1 and x2 are either both marked hyperbolic structures or both measured foliations up to simultaneous
projective equivalence.

The key new contribution of Theorem A is the description of the topology of a compactification of
a higher Teichmüller space. Even in the case of Teichmüller space, Thurston’s original proof requires
the construction of charts in order to show that the compactified space has the structure of a manifold
with boundary and then uses the Schönflies theorem (see [Fathi et al. 2012, pages 162–164]). We
overcome these difficulties in proving Theorem A by considering a more analytic approach inspired by
the compactification of Teichmüller space using harmonic maps in [Wolf 1989]: we naturally identify
Max.S/ with a unit ball in a vector space of pairs of holomorphic quadratic differentials and P Core.T;T /
with its boundary. To the best of our knowledge, this is the first example of a higher Teichmüller
component of a closed surface that is compactified to a closed ball.

It is not too difficult to see from the construction of this compactification that the action of the mapping
class group extends continuously to the boundary. Following Thurston, we study the action of the mapping
class group MCG.S/ on our compactification B.

Proposition 1.1 Suppose � 2MCG.S/ and �.x/D x for some x D .x1; x2/ 2B, where B is as defined
in Theorem A.

(1) If � is periodic , then x1 and x2 are any two points fixed by � in the Thurston compactification of
Teichmüller space such that .x1; x2/ 2B.

(2) If � is pseudo-Anosov, then .x1; x2/ 2 @B and x1 D 0, or x2 D 0 or x1 D x2.

The action of the mapping class group appears to be more interesting if we consider its action on
a natural quotient of B. In fact, given a maximal representation �, there is a unique equivariant minimal
Lagrangian z†� in H2 �H2. The induced metric on z†� descends to a negatively curved Riemannian
metric on S. We denote by Ind.S/ the space of such metrics. It turns out that Ind.S/ D Max.S/=S1,
since there is an S1–family of maximal representations with intrinsically isometric equivariant minimal
Lagrangians. (However, these minimal Lagrangians are not extrinsically isometric in H2 �H2: their
second fundamental form, which is completely determined by a holomorphic quadratic differential on S,
differs under rotation; see [Ouyang 2023, Proposition 4.3]). Similarly, the distance on the core of the
product of two trees dual to a pair of measured laminations can be recovered from a mixed structure,
that is, a hybrid geometric object on S that is in part a measured lamination and in part a finite-area flat
metric induced by a meromorphic quadratic differential on subsurfaces glued along annuli. The space of
projectivized mixed structures can then be identified with the boundary of Ind.S/ in the length spectrum
topology [Ouyang 2023]. The mapping class group acts on Ind.S/ and we prove the following:
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Theorem B Assume � 2MCG.S/ fixes � 2 @Ind.S/.

(1) If � is purely flat , ie � is a mixed structure without laminar pieces , then � is periodic.

(2) If � is properly mixed , ie � is a mixed structure with at least one flat subsurface and one laminar
part , then � is not pseudo-Anosov.

Note that the remaining case of � a purely laminar mixed structure, in other words a genuine measured
lamination on S, is handled by the Nielson–Thurston classification theorem. Theorem 5.12 will give
a more detailed description of item (2) in Theorem B when � is reducible. In particular, we will show
that the subdivision of S induced by � is a refinement of the one induced by � if � has no trivial parts.

The absence of a product structure for the other simple split Lie groups of rank 2 makes the study of
the topology of any compactification considerably more difficult. Furthermore, for PSL.2;R/�PSL.2;R/,
quadratic differentials are intimately related to pairs of measured laminations, and for higher-order
differentials, which appear for the other rank-2 cases, there are no obvious analogous topological objects.
However, it is possible to describe our compactification without explicit references to R–trees, and we
conjecture this perspective can be extended to the other rank-2 Lie groups. In particular, given any
Lie algebra g with Cartan subalgebra a and positive Weyl chamber aC, we define aC–valued measured
laminations and .aC; k/–mixed structures obtained by gluing these vector-valued laminations together with
1=k–translation surfaces of finite area along annuli (see Section 6 for details). We will consider this notion
for the Lie algebra sl.2;R/�sl.2;R/: in this case its Cartan subalgebra is of type A1�A1 and we denote
by AC1 �A

C
1 the closure of a fixed positive Weyl chamber. Concretely, in this case the Cartan subalgebra

can be chosen to be the space of pairs of 2� 2 traceless diagonal matrices, so it is homeomorphic to R2

and AC1 �A
C
1 is homeomorphic to a quadrant. We can rephrase our main result as follows:

Theorem C The boundary of Max.S/ can be identified with the space of .AC1 �A
C
1 ; 2/–mixed structures

on S, which is thus topologically a sphere of dimension 12g�13.

Moreover, we prove in Lemma 6.8 that .AC1 �A
C
1 ; 2/–mixed structures are dual to the subcomplexes of

a Euclidean building introduced and studied in [Parreau 2022]. Theorem C has the advantage of being easily
adaptable to other higher Teichmüller components (see Conjecture 6.7 for the precise statements in rank 2).

Historical remarks

In analogy with the classical case, compactifications of higher Teichmüller spaces are fruitfully studied
using different techniques and perspectives. Parreau [2012] compactifies the character variety of surface
group representations into noncompact semisimple connected real Lie groups with finite center using
Euclidean buildings. For Hitchin and maximal connected components, one can obtain additional informa-
tion on the boundary points by using the (‚-)positivity properties of the representations as in [Alessan-
drini 2008; Burger and Pozzetti 2017; Fock and Goncharov 2006; Le 2016; Martone 2019a; 2019b;
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Parreau 2022]. For rank-2 Lie groups, the second and third authors used analytic methods to study
degenerations of geometric objects associated to these representations in [Ouyang 2023; Ouyang and
Tamburelli 2021; 2023]. In a series of papers, Burger, Iozzi, Parreau and Pozzetti [Burger et al. 2017;
2021a; 2024] use geodesic currents and real algebrogeometric methods to study the Weyl chamber length
spectrum compactification of general character varieties introduced in [Parreau 2012]. Their results
apply in particular to Hitchin and maximal components, which are fundamental examples of higher
Teichmüller spaces, and establish several structural properties of the boundary points. While we refer to
their announcement [Burger et al. 2021b] for an account of their general framework and results, here
we describe in greater detail their independent work [Burger et al. 2021c] on the compactification of
n–copies of Teich.S/. Burger, Iozzi, Parreau and Pozzetti identify the boundary of the Weyl chamber
length spectrum compactification of Teich.S/n with the projectivization of MF.S/n, which is a sphere
of dimension n.6g�6/�1. In addition, they show that MCG.S/ acts properly discontinuously on the
space of positive joint systole n–tuples of measured foliations [Burger et al. 2021c, Theorem 1.1]. This
result provides a new geometric description of the domain of discontinuity introduced in [Burger et al.
2021a] for the MCG.S/ action on the boundary of the Weyl chamber length spectrum compactification
in the case of the Lie group PSL.2;R/n. Finally, when n D 2, they describe the boundary points as
vector-valued mixed structures (in their language, R2–mixed structures) and associate to these objects a
dual tree-graded R2–space in the sense of [Druţu and Sapir 2005] (see Theorems 1.2 and 1.3 in [Burger
et al. 2021c]). Their results lead to an (a priori different) compactification of Max.S/.

2 Background

2.1 Foliations, laminations and R–trees

We recall some classical facts about measured foliations and laminations. This material can be found in
[Fathi et al. 2012]. Let S be a closed, orientable, smooth surface of genus g > 1. A measured foliation is
a singular foliation (with k–pronged singularities) equipped with a measure on transverse arcs, invariant
under transverse homotopy.

If S is given a hyperbolic metric � , then a measured lamination is a closed set of disjoint simple
geodesics on .S; �/ together with a transverse measure. There is a natural homeomorphism between the
space MF.S/ of measured foliations on S and the space ML.S/ of measured laminations on .S; �/, so that
the role of � is an auxiliary one. Thurston showed MF.S/ is topologically trivial, being a ball of dimension
6g�6. The space PMF.S/ is the boundary of Teichmüller space under the Thurston compactification.

If S is given a complex structure J, then to any holomorphic quadratic differential qD q.z/ dz2, one may
consider the foliation obtained by integrating the line field q.v; v/ > 0. When further given the transverse
measure defined by

R
˛jIm.

p
q/j, the resulting measured foliation is called the horizontal foliation of q.

Likewise integrating the line field q.v; v/ < 0 and taking the measure
R
˛jRe.

p
q/j gives the vertical

foliation of q. The theorem of [Hubbard and Masur 1979] states that for a fixed Riemann surface .S; J /
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and any measured foliation F on S, there is a unique holomorphic quadratic differential q, whose horizontal
foliation is Whitehead equivalent (ie it differs at most by isotopies or expanding or collapsing pronged
singularities along straight arcs) to F. Any measured foliation F on S lifts to a measured foliation zF on
the universal cover zS. Taking the leaf space of zF together with a distance induced by the pushforward of
the transverse measure gives an R–tree. When an R–tree is constructed from a measured foliation in this
way, the R–tree comes equipped with a �1.S/–action from zF. This action is small, that is, the stabilizer of
an arc never contains a free group of rank 2, and minimal, that is, the action does not preserve any proper
subtree. A result of [Skora 1996] says that any R–tree with a �1.S/–action which is both small and
minimal is constructed from a measured foliation on S. Such R–trees are said to be dual to a measured
foliation, and for our purposes, all R–trees we consider will be dual to a measured foliation.

2.2 Half-translation surfaces, flat metrics and mixed structures

A Riemann surface equipped with a holomorphic quadratic differential q is called a half-translation surface.
This terminology comes from the fact these can be realized by gluing polygons in C via translations or
rotations of angle � .

A half-translation surface is naturally endowed with a singular flat metric jqj, where the singularities
are at the zeros of q. Duchin, Leininger and Rafi [Duchin et al. 2010] have studied the degeneration of
unit-area quadratic differential metrics, and have shown the limits are precisely projectivized (quadratic)
mixed structures. A mixed structure is a collection of integrable meromorphic quadratic differential
metrics on subsurfaces and measured laminations on other subsurfaces, glued along flat annuli to recover
the surface S. Trivial examples of mixed structures include singular flat metrics on S and measured
laminations on S. We say that a mixed structure is properly mixed if it has a flat piece but it is not
a singular flat metric. Mixed structures, when the meromorphic differential is cubic or quartic, appear
in the compactification of Hitchin components for SL.3;R/ and Sp.4;R/ (see [Ouyang and Tamburelli
2021; 2023]).

A measured lamination � on S is said to fill if the complement S n� is a disjoint union of topological
disks. A pair F1;F2 of measured foliations on S is said to fill or is transverse if, for any third foliation G,
one has i.F1;G/C i.F2;G/ > 0. Here i. � ; � / denotes the Bonahon intersection pairing, which generalizes
the topological intersection number between curves. We remark that the intersection number for the
corresponding measured laminations is the same; therefore we can define filling for a pair of measured
laminations analogously. Notice that given a holomorphic quadratic differential q, the vertical and
horizontal foliations of q fill. Conversely, the result of [Gardiner and Masur 1991] says that, given
any pair of filling measured foliations, there exists a unique Riemann surface structure and a unique
holomorphic quadratic differential which realizes the original pair as its vertical and horizontal foliation
(up to Whitehead equivalence). In particular, a pair of filling measured foliations will determine a unique
half-translation surface structure and consequently a unique singular flat quadratic differential metric.
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2.3 Minimal Lagrangians in H2 �H2

A minimal Lagrangian z† in H2 �H2 is a minimal surface which is Lagrangian with respect to the
symplectic form !˚�!, where ! is the standard Kähler form on H2. Any � 2Max.S/ acts on H2�H2,
and Schoen [1993] has shown to each such � there is a unique �–equivariant minimal Lagrangian z†�
in H2 �H2, thereby providing a geometric interpretation to representations in Max.S/. The second
author [Ouyang 2023] has studied the degeneration of these minimal Lagrangians and has shown that one
may interpret the space P Core.T;T / as the boundary of the maximal component Max.S/.

2.4 Induced metrics and projectivized mixed structures

The induced metric on the unique �–equivariant minimal Lagrangian descends to a metric on S. It is not
too difficult (see [Ouyang 2023, Proposition 4.2]) to see this metric is in fact negatively curved. Hence, by
the result of [Otal 1990], its marked length spectrum determines the metric. The marked length spectrum
is the data of both the curve class and the length of its geodesic representative in the given homotopy class.
Let Ind.S/ denote the space of induced metrics coming from the �–equivariant minimal Lagrangians.
Then in fact one may embed Ind.S/ into the space of projectivized marked length spectra. Its closure is
then determined to be precisely the space Ind.S/ together with the projectivized mixed structures [Duchin
et al. 2010, Theorem 5; Ouyang 2023, Theorem 5.5].

3 Core of a product of trees

In this section we recall the notion of core of a product of trees and describe its geometry in the case of
trees dual to measured laminations. The core of a product of two R–trees can actually be defined for any
pair of R–trees each admitting a �1.S/–action. It is not necessary that the R–trees be dual to measured
foliations. However, we will specifically mention when particular properties of cores are germane only to
R–trees dual to measured foliations. The main reference for the material covered here is [Guirardel 2005].

Given an R–tree T, a direction ı based at a point p 2 T is a connected component of T n fpg. For a
product T1 �T2 of R–trees, a quadrant Q based at .p1; p2/ 2 T1 �T2 is a product ı1 � ı2 of directions.
If the R–trees T1; T2 are equipped with a �1.S/–action by isometries, then we say a quadrant Q is heavy
if there exists a sequence fng � �1.S/ for which, for i D 1; 2,

(i) n �pi 2 ıi , and

(ii) di .n �pi ; pi /!1 as n!1.

Otherwise the quadrant is said to be light. Following [Guirardel 2005], the core C.T1; T2/ of T1 �T2 is

T1 �T2 n
G
Q light

Q:

When T1 and T2 are dual to measured laminations, the core C.T1; T2/ is always nonempty since the
�1.S/–actions are irreducible [Guirardel 2005, Proposition 3.1].
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However, even when T1 and T2 are dual to measured foliations, one pathology may still occur: C.T1; T2/
may be disconnected. This happens, for instance, when T1 D T2 and T1 is dual to a multicurve. However,
in such cases, Guirardel introduced a canonical way of extending the core to a connected subset of T1�T2
with convex fibers. (Here, a subset E � T1�T2 has convex fibers if for every x 2 Ti the set E \p�1i .x/

is convex, where pi W T1�T2! Ti denotes the canonical projection.) With abuse of terminology, we will
still refer to this canonical extension as the core of T1�T2. The following result completely characterizes
when this extension needs to be considered.

Definition 3.1 Given two real trees T and T 0 endowed with an action of �1.S/, we say that T is a
refinement of T 0 if there is an equivariant map f W T ! T 0 such that for all x; y; z 2 T if z lies in the
geodesic Œx; y� connecting x and y, then f .z/ belongs to Œf .x/; f .y/�.

Proposition 3.2 [Guirardel 2005, Proposition 4.14] Let T1 and T2 be trees dual to measured laminations.
Then the core C.T1; T2/ is disconnected if and only if T1 and T2 are refinements of a common nontrivial
simplicial tree T.

For example the assumptions of Proposition 3.2 are satisfied if T1 and T2 are dual to measured laminations
�1 and �2 with common isolated leaves.

When T1 and T2 are both dual to measured laminations �1 and �2, we can actually realize the core
C.T1; T2/ more concretely. Before describing this construction, we need the following result, which can
be seen as a special case of the decomposition theorem for general geodesic currents in [Burger et al.
2017] (see also [Burger et al. 2021a]) about how two measured laminations interact on subsurfaces. Here,
when we refer to measured laminations on open surfaces S 0, usually arising as subsurfaces of S, we will
always assume them to be compactly supported in S 0.

Lemma 3.3 Let �1 and �2 be measured laminations on S. Then there is a system of nontrivial , pairwise
nonhomotopic , disjoint , simple closed curves 1; : : : ; n such that on each connected component S 0 of
S n

S
j j either

(i) �1C�2 is a (possibly zero) measured lamination on S 0, or

(ii) �1 and �2 are transverse and fill S 0; ie for all measured laminations � on S 0 we have

i.�1; �/C i.�2; �/¤ 0:

Proof Consider a maximal collection of nontrivial, pairwise nonhomotopic, disjoint, simple closed
curves j such that

i.�1; j /C i.�2; j /D 0:

We claim that this collection of curves satisfies the requirement of the lemma. Indeed, let S 0 be a connected
component of S n

S
j j . We need to show that if the pair .�1; �2/ does not fill the subsurface S 0, then
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�1C �2 is a lamination on S 0, or, equivalently, �1 and �2 are nowhere transverse on S 0. The claim is
clearly true if the support of either �1 or �2 does not intersect S 0, so we can assume that both have
support on S 0. Because the pair .�1; �2/ does not fill S 0 by assumption, there is a measured lamination �
on S 0 such that i.�1; �/C i.�2; �/D 0. On the other hand, by hypothesis, i.�1; /C i.�2; /¤ 0 for
all nonperipheral simple closed curves  on S 0. Therefore, the measured lamination � does not contain
isolated closed leaves. Let us first consider the case in which � fills the subsurface S 0, in the sense that
the complement of � (in S 0) only consists of disks and annuli. We note that then necessarily the support
of � must contain the support of �1 and �2 because otherwise �1 and �2 would intersect � transversely
somewhere. But this implies that �1 and �2 are nowhere transverse, being both contained in the support
of a measured lamination. We now reduce the general case to this, by showing that � must fill S 0. Assume
the opposite, and let S 00 � S 0 be a subsurface filled by �. Note that at least one between �1 and �2
intersects the boundaries of S 00 transversely. Without loss of generality we assume it is �1. Since �
fills S 00, the support of �1 intersects � transversely, but this contradicts the fact that i.�; �1/D 0.

The last ingredient we need is an explicit realization of a tree T� dual to a measured lamination �. The
construction goes as follows (see [Morgan and Otal 1993] for more details). Fix an auxiliary hyperbolic
metric on S and identify zS with H2. Let Q� be the lift of � under the covering map � WH2! S. We define
the metric space pre.T�/, where points of pre.T�/ are the connected components of H2n Q� and the distance
is computed as follows: if x; y 2 pre.T�/ correspond to connected components Cx; Cy of H2 n Q� then

d�.x; y/D inf
nZ

d Q�

ˇ̌
 W Œ0; 1�!H2; .0/ 2 Cx; .1/ 2 Cy

o
:

The tree T� is then the unique R–tree that contains pre.T�/ such that any point of T� lies in a segment
with vertices in pre.T�/. Note that we have a natural projection map p� W H2 n Q�! T�. If � has no
isolated leaves, this map extends continuously to a map, still denoted by p�, defined on the entire H2.
Otherwise, the continuous extension is obtained by first replacing each isolated leaf ` in Q� with a strip
`� Œ��; �� endowed with a uniform measure with total mass equal to Q�j` .

There is also another way of realizing the tree dual to a measured lamination using the language of
measured foliations. Let F denote the measured foliation corresponding to the measured lamination �
under the homeomorphism between MF.S/ and ML.S/. Let zF be its lift to H2. Then the tree T� can be
defined as the quotient H2=�, where � denotes the equivalence relation

x � y () dF.x; y/D 0

and
dF.x; y/D inffi. zF; / j  W Œ0; 1�!H2; .0/D x; .1/D yg:

More concretely, T� identifies with the leaf space of zF with distance given by integrating the measure
of zF along arcs transverse to the leaves. We denote by �� the natural projection �� WH2! T�.

We are now ready to describe the core of a product of two trees T1 and T2 dual to measured laminations �1
and �2 on S. Lemma 3.3 furnishes a decomposition of S into subsurfaces that we lift to a decomposition
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of H2. The regions of this decomposition come in two flavors according to whether they project to
subsurfaces where �1C�2 is a lamination or to subsurfaces where the pair .�1; �2/ fills. Following the
statement of Lemma 3.3, we call these regions of type i and type ii, respectively. On the regions��H2 of
type i , the union of the lifts Q�1 and Q�2 can be regarded as the lift of the measured lamination �0D�1C�2.
We denote by T0 the tree dual to �0. Note that, for each region � � H2 of type i , we have a map
p0 WD p�0 , as defined before, and two natural collapsing maps cj W T0! Tj for j D 1; 2. On the regions
of type ii, we replace the measured laminations Q�i with the corresponding measured foliations zFi and
consider the projections �i WD ��i as described previously. Following [Guirardel 2005, Example 4; 2005,
Proposition 6.1], the core C.T1; T2/ is the image of the map F W zS ! T1 �T2 defined as follows:

(1) F.x/D

�
.�1 ��2/.x/ if x belongs to a region of type ii,
.c1 � c2/.p0.x// if x belongs to a region of type i .

Note that F is well-defined and continuous on the boundary Q between two different regions of zS because
Q is the lift of a curve j given by Lemma 3.3 which, by definition, has vanishing intersection number
with �0, F1, and F2; hence .�1 ��2/. Q/ and .c1 � c2/.p0. Q// is a single point.

It follows from this explicit description of C.T1; T2/ that the core is, in general, a 2–dimensional subcom-
plex of T1 �T2 that is invariant under the diagonal action of �1.S/. Moreover, the 2–dimensional pieces
of C.T1; T2/ are exactly the images of regions of type ii and are foliated by two families of transverse
foliations. Their quotients under the group action are the union of the subsurfaces of S in which �1 and �2
fill, endowed with the foliations F1 and F2 [Guirardel 2005, Example 4]. In particular, the 2–dimensional
pieces of C.T1; T2/ are the universal covers of half-translation surfaces. On the other hand, the images
under F of regions � of type i are 1–dimensional subcomplexes of T1 �T2. Each such � can be seen
as the universal cover of a subsurface S 0 of S where the restriction of �1C�2 is a measured lamination.
Let T 01 � T1 and T 02 � T2 be the corresponding subtrees. It turns out [Guirardel 2005, Section 6] that
F.�/ is an R–tree that is a common refinement of T 01 and T 02 if endowed with the distance

d0.x; y/D d1.x1; y1/C d2.x2; y2/; x D .x1; x2/; y D .y1; y2/ 2 T
0
1 �T

0
2;

where dj denotes the distance on Tj .

Lemma 3.4 The R–tree .F.�/; d0/ is isometric to the tree dual to the measured lamination �0D�1C�2
restricted to S 0.

Proof The tree F.�/ inherits from T 01 � T
0
2 an isometric action of �1.S 0/. We can define a length

function
` W �1.S

0/!RC;  7! lim
n!C1

1

n
d0.x; 

n
� x/;

where x is any point in F.�/ (the definition is independent of the choice of x). The limit in the
formula above is well-defined and coincides, indeed, with the minimal translation distance of  2 �1.S 0/
[Guirardel and Levitt 2017, Section A.3]. Since the action of �1.S 0/ on F.�/ is minimal and irreducible,
by [Guirardel and Levitt 2017, Theorem A.5], the isometry class of .F.�/; d0/ is completely determined
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by its length function. However, it is clear from the definition of ` and d0 that `D `0 WD `1C `2, where

j̀ denotes the analogously defined length functions on T 01 and T 02. On the other hand, `0 is exactly the
length function of the tree dual to the measured lamination �0, and the claim follows.

The ambient space T1 �T2 has, however, another natural distance defined by

d.x; y/D
p
d1.x1; y1/

2
C d2.x2; y2/

2; x D .x1; x2/; y D .y1; y2/ 2 T1 �T2:

This induces a path metric dC on the core C of T1 �T2, where the dC–distance between two points in the
core is the infimum of the length of all paths connecting the points and entirely contained in the core, where
the length is computed using the distance d . Guirardel [2005, Proposition 4.9] showed that the core is a
CAT(0) space if endowed with this path distance dC. In particular, since F.�/ does not contain topological
circles by Lemma 3.4, we can conclude that F.�/ endowed with the restriction of dC is still an R–tree.

We will denote by Core.T;T / the space of cores of the product of two trees dual to measured laminations
on S endowed with this path distance.

Proposition 3.5 Core.T;T / is homeomorphic to ML.S/�ML.S/.

Proof Since the core of a product of trees is uniquely determined by the two factors, the result fol-
lows immediately from the homeomorphism between the space of trees dual to measured laminations
and ML.S/.

We note that there is a natural RC–action on Core.T;T / given by rescaling the induced metric on the core,
which, under the homeomorphism above, corresponds to the diagonal action of RC by scalar multiplication
on the measures. We denote by P Core.T;T / the quotient Core.T;T /=RC. It follows that P Core.T;T / is
homeomorphic to P .ML.S/�ML.S//. In particular, it is topologically a sphere of dimension 12g�13.

4 Thurston’s compactification

Recall that we denote by Max.S/ the space of conjugacy classes of representations �D .�1; �2/ of the
fundamental group of a closed connected oriented surface S of negative Euler characteristic into the Lie
group PSL.2;R/� PSL.2;R/ such that e.�1/C e.�2/D 4g� 4. Here, e denotes the Euler number of
the representation. It follows from [Goldman 1988] that �1 and �2 are both Fuchsian representations.
Therefore, as Max.S/ may be thought of as the product of two copies of Teichmüller space, it is
homeomorphic to an open cell of dimension 12g�12.

The main goal of this section is to prove Theorem A from the Introduction, which we restate below for
the convenience of the reader.

Theorem 4.1 The disjoint union
BDMax.S/tP Core.T;T /

is homeomorphic to a closed ball of dimension 12g�12.
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We begin by recalling the topology placed on B. The maximal component Max.S/ is naturally home-
omorphic to the product of two copies of Teichmüller space. This in turn, by the result of Schoen, is
homeomorphic to the space of equivariant minimal Lagrangians in H2�H2. Under the Gromov–Hausdorff
topology, diverging sequences of minimal Lagrangians subconverge to the (projective) core of a product
of two trees [Ouyang 2023, Theorem 8.1]. The two trees are dual to a pair of measured laminations,
and the topology on B is compatible with the Thurston compactification on Teich.S/� Teich.S/ in the
following way: if .�1;n; �2;n/! Œ�1; �2�, then the associated minimal Lagrangians converge to the core
of T1 �T2, where Ti is dual to �i .

Fix a complex structure J on S and denote by X the Riemann surface .S; J /. Then for any hyperbolic
metric h 2 Teich.S/ there is a unique harmonic map wh W X ! .S; h/ in the homotopy class of the
identity [Eells and Sampson 1964; Hartman 1967]. Harmonicity of wh ensures that the Hopf differential
qh D .w

�
h
h/.2;0/ is a holomorphic quadratic differential on X. The vector space QD.X/ of holomorphic

quadratic differentials on X has a natural norm given by the L2–norm with respect to the uniformizing
hyperbolic metric � of X. With an abuse of notation, we will still denote by X the hyperbolic surface
.S; �/. The map which assigns to a point in Teichmüller space its corresponding Hopf differential is a
homeomorphism [Wolf 1989].

Proof of Theorem 4.1 By Theorem 6.13 of [Ouyang 2023], the space Max.S/ t P Core.T;T / is
naturally homeomorphic to Teich.S/�Teich.S/tP .MF.S/�MF.S//, so it suffices to prove the latter
is homeomorphic to a closed ball of dimension 12g�12.

As P .MF.S/�MF.S// is homeomorphic to a sphere of dimension 12g�13, the remainder of the proof
consists of describing how to attach this topological space to the open cell Teich.S/�Teich.S/ to obtain
a closed ball.

We start by fixing a complex structure J on S. Let X D .S; J / be the resulting Riemann surface. By the
Wolf parametrization [1989]

Teich.S/�Teich.S/Š QD.X/˚QD.X/

via the map ˆ.�1; �2/D .q�1 ; q�2/. We equip QD.X/˚QD.X/ with the norm

kqk Dmax.kq1k; kq2k/;

and consider
BPQD.X/D fq D .q1; q2/ W kqk< 1g;

which is, topologically, a ball of dimension 12g�12. We will need the following lemma.

Lemma 4.2 The map

ˇ W QD.X/˚QD.X/! BPQD.X/; q D .q1; q2/ 7!
4q

1C 4kqk
;

is continuous , injective , and proper. Hence ˇ is a homeomorphism.
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Proof Suppose ˇ.q1; q2/ D ˇ.�1; �2/. It follows then that q1 D k�1 and q2 D k�2 for some k 2 R.
Writing out ˇ.q1; q2/D ˇ.q1=k; q2=k/, basic algebra shows k D 1. Continuity and properness follow
by inspection.

We will now describe the attaching map. Consider the map

 W Teich.S/�Teich.S/tP .MF.S/�MF.S//! BPQD.X/
defined by

 .x/D

�
ˇ.ˆ.x// if x 2 Teich.S/�Teich.S/;
limn!C1 ˇ.ˆ.xn// if x 2 P .MF.S/�MF.S// and xn! x:

We show first that the map  is well-defined. Suppose xnD .X1;n; X2;n/!x and x0nD .X
0
1;n; X

0
2;n/!x,

where x D Œ�1; �2� 2 P .MF.S/�MF.S//. That is to say, there exist sequences of real numbers cn; dn
for which the rescaled hyperbolic surfaces zXi;n=cn and zX 0i;n=dn converge to R–trees Ti ; T 0i dual to
laminations �i and �0i such that Œ.�1; �2/�D Œ.�01; �

0
2/�. By [Wolf 1989], the sequences cn and dn can be

taken to be kˆ.xn/k and kˆ.x0n/k. Note that, a priori, �0i D k�i for some k > 0. With such rescaling, the
harmonic maps hi;n W zX ! zXi;n=cn converge to the harmonic map hi W zX ! Ti given by projection onto
the leaf space of the measured foliation zFi corresponding to Q�i [Wolf 1995, Corollary 5.2]. Moreover
the sequence of Hopf differentials qi;n of hi;n converges to the Hopf differential qi of hi (here take the
quotient so that qi is a holomorphic quadratic differential on X and not zX ). Finally, the differential qi is
the unique holomorphic quadratic differential on X whose horizontal foliation is Whitehead equivalent
to Fi . Likewise the sequence of harmonic maps h0i;n W zX ! zX 0i;n=dn converges to the harmonic map
h0 W zX! T 0i , whose Hopf differential q0i is the limit of the Hopf differentials q0i;n of h0i;n and has horizontal
foliation F 0i corresponding to the lamination �0i . Notice, in addition, that .q1;n; q2;n/Dˆ.xn/=kˆ.xn/k
and similarly .q01;n; q

0
2;n/ D ˆ.x

0
n/=kˆ.x

0
n/k. It follows that the limits of ˇ.ˆ.xn// and ˇ.ˆ.x0n// as

n!C1 exist and coincide with .q1; q2/ and .q01; q
0
2/. As the distance functions di and d 0i on Ti and T 0i

satisfy di D k � d 0i , by homogeneity of the Hopf differential, one has qi D k � q0i . Since the pairs .q1; q2/
and .q01; q

0
2/ both have unit norm, we conclude that k D 1 and the limits of ˇ.ˆ.xn// and ˇ.ˆ.x0n// as

n!C1 are equal.

Continuity follows almost immediately: the map ˇ ıˆ is continuous on the interior and extends con-
tinuously to the boundary by a diagonal argument. Indeed, we can approximate a sequence along the
boundary by sequences in the interior.

Bijectivity of  on the interior also follows by [Wolf 1989] and Lemma 4.2. On the boundary, given
q D .q1; q2/ with kqk D 1, if Xi;t is the hyperbolic surface corresponding to the rays tqi in Wolf’s
parameterization of Teich.S/, we have that ˇ.ˆ.X1;t ; X2;t //! q as t !1; thus  is surjective on
the boundary. Since the limit of ˇ.ˆ.xn// along diverging sequences in xn 2 Teich.S/�Teich.S/ only
depends on the projective class of the limit of xn and not on the particular sequence, we deduce that  is
injective on the boundary, because every point in P .ML.S/�ML.S// can be obtained as a limit along
a ray defined above and the limit of ˇ ıˆ along distinct rays is different.

Algebraic & Geometric Topology, Volume 24 (2024)



3706 Giuseppe Martone, Charles Ouyang and Andrea Tamburelli

It remains to prove  �1 is continuous. We can actually write the inverse explicitly:

 �1.q1; q2/D

�
ˆ�1.ˇ�1.q1; q2// if k.q1; q2/k< 1;
Œ�1; �2� if k.q1; q2/k D 1,

where �i is the measured lamination corresponding to the horizontal foliation of qi . Continuity of  �1

on BPQD.X/ is then a consequence of Lemma 4.2 and Wolf’s parameterization. Continuity on the
boundary follows from the Hubbard–Masur theorem [1979]. In general, if qn D .q1;n; q2;n/ 2 BPQD.X/
converges to .q1; q2/ 2 @BPQD.X/, then there is a sequence of scaling factors cn such that the pair of
hyperbolic surfaces xn D  �1.q1;n; q2;n/ rescaled by cn converges to real trees T1; T2 dual to measured
laminations �1; �2. We need to show that  �1.q1; q2/ is equal to Œ�1; �2�. Assume not; then we would
have, by injectivity and continuity of  ,

.q1; q2/D  . 
�1.q1; q2//¤  .Œ�1; �2�/D lim

n!C1
 .xn/D lim

n!C1
.q1;n; q2;n/;

which contradicts the assumption on .q1;n; q2;n/.

Finally, we remark the compactification in [Ouyang 2023] is independent of the choice of a base point, so
that the role of the base point .S; J / is merely an auxiliary one. This completes the proof of the theorem.

5 Fixed point for the mapping class group action

In this section, we study the action of the mapping class group MCG.S/ on the compactification BD

Max.S/ constructed in Theorem 4.1. We wish to study the fixed points of this action. We will need the
following observations.

Lemma 5.1 The action of the mapping class group on Max.S/ extends continuously to the closure
BDMax.S/.

Corollary 5.2 For every � 2MCG.S/, there exists x 2B such that �.x/D x.

The first main goal of this section is to analyze these fixed points via the celebrated Nielsen–Thurston
classification, which we recall for future reference.

Theorem 5.3 (Nielsen–Thurston classification; see [Farb and Margalit 2012, Chapter 13]) Any diffeo-
morphism � on S is isotopic to a map �0 satisfying one of the following mutually exclusive conditions:

(1) Periodic �0 is of finite order.

(2) Reducible �0 is not periodic , and there is a nonempty set fc1; : : : ; crg of isotopy classes of
essential pairwise disjoint simple closed curves in S such that f�0.ci /griD1 D fcig

r
iD1.

(3) Pseudo-Anosov/pA There exist � > 1 and two transverse measured foliations F and F 0 such that

�0.F/D �F and �0.F 0/D
1

�
F 0:
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Remark 5.4 Note that our definition of reducible mapping class is nonstandard as we assume that if � is
reducible, then it is not periodic. We do so to improve our exposition. The set fc1; : : : ; crg in item (2) is
a reduction system of �. The canonical reduction system f Nc1; : : : ; Nckg of � reducible is the intersection of
all the maximal (with respect to inclusion) reduction systems. Equivalently, each Ncj is part of a reduction
system and if i. Ncj ; c/¤ 0 and n¤ 0, then �n.c/¤ c.

Remark 5.5 The Nielsen–Thurston classification theorem also applies to surfaces S 0 with boundary
[Fathi et al. 2012, Theorem 11.6]. In this case a diffeomorphism of S 0 is considered up to isotopies that
do not necessarily fix pointwise the boundary components. We can thus still talk about pseudo-Anosov
diffeomorphisms of S 0, which are exactly the mapping classes that are neither reducible nor periodic and
preserve two transverse measured foliations on S 0.

We are ready to characterize the fixed points of a mapping class acting on B and establish Proposition 1.1
from the Introduction.

Proposition 5.6 Suppose � 2MCG.S/ and �.x/D x for some x D .x1; x2/ 2B.

(1) If � is periodic , then x1 and x2 are any two points fixed by � in the Thurston compactification of
Teichmüller space such that .x1; x2/ 2B.

(2) If � is pA , then .x1; x2/ 2 @B and x1 D 0, or x2 D 0 or x1 D x2.

Proof (1) If � fixes x projectively, there exists ˛ > 0 such that �.x1; x2/ D .˛x1; ˛x2/. Since � is
periodic, we can check that ˛ D 1.

(2) Since � fixes the projective class of .x1; x2/, there exists ˛ > 0 such that �.x1; x2/D .˛x1; ˛x2/.
On the other hand, since � is pseudo-Anosov, there exist two measured laminations y1 and y2 and � > 1
such that �.y1/D �y1 and �.y2/D .1=�/y2. Since � does not fix any other projective class of measured
laminations [Fathi et al. 2012, Corollary 12.4], it follows that xi D 0, y1 or y2 for i D 1; 2. We claim
that x ¤ .y1; y2/ (and, symmetrically, x ¤ .y2; y1/). Otherwise, because i.y1; y2/¤ 0,

� � i.y1; y2/D i.�.y1/; y2/D ˛ � i.y1; y2/D i.y1; �.y2//D
1

�
� i.y1; y2/;

which is a contradiction.

There is a natural continuous projection map � W B ! Ind.S/ defined as follows. For x 2 Max.S/,
consider the corresponding equivariant minimal Lagrangian z†x . Then, �.x/ is the induced metric on z†x .
Otherwise, if x 2 @B, consider the core of the tree corresponding to x 2 P .ML.S/�ML.S//: its length
spectrum coincides with that of a mixed structure � on S. Set �.x/D �. This projection � is continuous
then by [Ouyang 2023, Theorem 6.13]. We consider the corresponding action of MCG.S/ on Ind.S/
given by push-forward.

Lemma 5.7 The actions of MCG.S/ on B and Ind.S/ commute. In other words , for every � 2MCG.S/

� ı� D � ı�:
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Proof If x D .x1; x2/ is in the interior of B, then �.�.x//D �.�.x// because �.�.x// has the same
length spectrum as the induced metric on the minimal Lagrangian associated to �.x1/ and �.x2/. Suppose
x 2 @B and consider a sequence .xn/n2N �Max.S/ such that xn! x. Since, �.�.xn//D �.�.xn//
for all n 2N, the result follows by continuity of � and � .

We are now ready to establish the main theorems of this section. In particular, Theorem 5.8 below is
Theorem B from the Introduction.

Theorem 5.8 Assume � 2MCG.S/ fixes � 2 @Ind.S/.

(1) If � is purely flat , then � is periodic.

(2) If � is properly mixed , then � is not pA.

Proof For item (1), if � fixes projectively a geodesic current coming from a flat metric, then � rescales
the flat metric by some positive constant. Therefore, it is an automorphism of the underlying conformal
structure, and hence is of finite order by the Hurwitz automorphism theorem.

We establish item (2). Suppose � is properly mixed, ie � is not flat but it has at least one flat piece. We
can decompose S as

.fS˛g˛2A; fdˇ gˇ2B; f�˛g˛2A/;

where �˛ is a flat structure or a (possibly zero) laminar structure on S˛ and dˇ is a maximal collection
of closed geodesics so that

i.dˇ ; dˇ 0/D 0 and i.dˇ ; �/D 0

for all ˇ; ˇ0 2B and for every c that intersects some dˇ transversely, i.c; �/ > 0. Note that there exists a
unique set fdˇ gˇ2B with these properties (see [Burger et al. 2017, Theorem 1.1]).

Claim 5.9 The map � fixes the set fdˇ gˇ2B.

Proof Observe that

i.�.dˇ /; �.dˇ 0//D i.dˇ ; dˇ 0/D 0 and i.�; �.dˇ //D i.�
�1.�/; dˇ /D 0:

If c is a curve that intersects �.dˇ / transversely, then

i.��1.c/; dˇ /D i.c; �.dˇ // > 0 and i.c; �/D i.��1.c/; ��1.�// > 0:

Thus, by uniqueness, f�.dˇ /gˇ2B D fdˇ gˇ2B.

Item (2) now follows immediately from the claim above as � must fix the set of closed curves fdˇ gˇ2B,
but pseudo-Anosov diffeomorphisms do not preserve any closed curve.

Remark 5.10 For an explicit example of� purely flat and � periodic such that �.�/D�, consider a singu-
lar flat metric on a surface of genus 2 obtained by doubling a singular flat metric on a torus with boundary.
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Remark 5.11 Theorem 5.8(1) holds more generally, and with the same proof, in the case in which S has
punctures and � gives a conformal class of metrics with a finite group of conformal automorphisms. In par-
ticular, conformal structures on a surface (with or without punctures) with negative Euler characteristic will
have finite conformal automorphism group; see [Oikawa 1956]. From this, we deduce that if � 2MCG.S/
fixes a purely flat structure � on a surface S (possibly with punctures), then � is necessarily periodic.

Theorem 5.12 Suppose � 2MCG.S/ is reducible and fixes � 2 @Ind.S/, which is properly mixed. Let
S D .S˛; fdˇ gˇ2B; �˛/ be the subdivision of S induced by �.

(1) If , for some N > 0, we have  ˛ D .�N /jS˛ W S˛! S˛ is pA , then �˛ D 0.

(2) If �˛ ¤ 0 for all ˛ 2A, then the canonical reduction system of � is contained in fdˇ gˇ2B.

Proof By the hypotheses, we can decompose S as .fS˛g˛2A; fdˇ gˇ2B; f�˛g˛2A/. By Claim 5.9, there
exists N > 0 such that �N fixes dˇ for all ˇ 2B and �N .S˛/D S˛. Set  ˛ D .�N /jS˛ W S˛! S˛.

In order to prove item (1), we need to consider three cases.

(a) If �˛ D 0, then  ˛ can be any element in MCG.S˛/.

(b) If .S˛; �˛/ is purely flat (there exists at least one ˛ for which this happens), then  ˛ can only be
periodic by Theorem 5.8 and Remark 5.11, as incompressibility of the subsurfaces rules out the case of
the once-punctured sphere and annuli.

(c) Suppose .S˛; �˛/ is purely laminar and nonzero. Since � has a flat piece �ˇ , we know that  ˇ is
periodic and hence it fixes �ˇ (not just projectively). We deduce that �N .�/D �; otherwise we could
find z ¤ 1 such that  ˛.�˛/D z�˛, but then �N would not fix � projectively. We can now conclude
that  ˛ cannot be pA. This is because if c is a curve such that i.�˛; c/ > 0, then

i.�˛; c/D i. 
�1
˛ .�˛/; c/D i.�˛;  ˛.c//;

but i.�˛;  ˛.c//¤ i.�˛; c/ because  ˛ would change the length of curves transverse to �˛.

This completes the proof of item (1).

For item (2), we wish to prove that the canonical reduction system f Nc1; : : : ; Nckg of � is a subset of
fdˇ gˇ2B under the additional assumption that �˛ ¤ 0 for all ˛ 2 A. First, observe that by Claim 5.9
fdˇ gˇ2B is contained in a maximal reduction system for �. In particular i. Ncj ; dˇ /D 0 for all j and ˇ.
Moreover, since � is properly mixed, there exists ˇ such that �ˇ is flat; hence  fixes �, not just its
projective class, as observed before.

Assume, by contradiction, Ncj 62 fdˇ gˇ2B. Suppose Ncj is contained in a purely flat piece .S˛; �˛/. Then,
by Theorem 5.8 and Remark 5.11,  ˛ is necessarily periodic. But this contradicts the property that if
i. Ncj ; c/¤ 0 and n¤ 0, then �n.c/¤ c since there exists m such that  m˛ is the identity. Therefore Ncj is
contained in a purely laminar piece �˛.
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By the definition of fdˇ gˇ2B,  ˛ fixes a measured lamination F which is filling in S˛. Hence, by the
Nielsen–Thurston classification theorem,  ˛ is necessarily pseudo-Anosov or periodic. If  ˛ is pA,
then this contradicts item (1). Assume that  ˛ is periodic, so that there exists m > 0 such that  m˛ is
the identity. Then, we achieve again a contradiction because there would exist c such that i. Ncj ; c/¤ 0
but �m.c/D c. Therefore, Ncj cannot be contained in a purely laminar part either. By the definition of
fdˇ gˇ2B, this forces the curve Ncj to be one of the dˇ ’s.

6 aC–valued measured laminations and mixed structures

In this final section we introduce Weyl-chamber-valued measured laminations and use them to refine
the notion of mixed structures on a closed surface defined in [Duchin et al. 2010], and generalized to
higher-order differentials in [Ouyang and Tamburelli 2021; 2023]. We show that the core of the product of
two trees dual to measured laminations is dual to such a mixed structure, thus giving a new interpretation
of the boundary objects in our compactification of Max.S/.

Let g be a real semisimple Lie algebra. The choice of a maximal compact subalgebra k induces an
orthogonal decomposition of g for the Killing form:

gD k˚m:

A Cartan subalgebra a� g is a maximal abelian subspace of m. This induces a decomposition of g in
ad.a/–eigenspaces

gD g0˚
M
˛2†

g˛:

Elements of †� a� D Hom.a;R/ are called restricted roots of a in g. Here we can extract a subset � of
simple roots with the property that any ˛ 2† can be expressed as a linear combination of simple roots
with coefficients all of the same sign. This distinguishes, thus, a subset of positive roots that we denote
by †C �†. The closed positive Weyl chamber of a associated to †C is then the cone

aC D fX 2 a j ˛.X/� 0 for all ˛ 2†Cg:

We also denote by W the Weyl group of g, ie W DN.a/=a, and by r the opposition involution. Moreover,
recall that a has a partial order: if x, y 2 a, then x � y if x�y 2 aC. The following definition is due to
[Parreau 2012, Section 2.2.3]:

Definition 6.1 A function daC W Y �Y ! aC on a topological space Y is an aC–valued distance if

(i) daC.x; y/D 0 if and only if x D y,

(ii) daC.x; y/D r.daC.y; x// for all x; y 2 Y ,

(iii) daC.x; y/� daC.x; z/C daC.y; z/ for all x; y; z 2 Y.
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We introduce the notion of Weyl-chamber-valued measured lamination.

Definition 6.2 An aC–valued measured lamination on a (not necessarily closed) surface S is a geodesic
lamination � on S that supports a measure � on transverse arcs that takes values in aC and satisfies the
following properties:

(a) �./¤ 0 if  intersects � transversely.

(b) If  and  0 are homotopic arcs transverse to � and there is a homotopy between them that preserves
transversality at every time, then �./D �. 0/.

(c) � is additive on concatenation of paths, ie �. 0/D �./C�. 0/ for all  and  0 transverse to �
such that concatenation is defined.

Remark 6.3 If gD sl.2;R/, then we can identify the closed positive Weyl chamber with R�0. Thus,
in this case, Definition 6.2 recovers the standard notion of measured laminations. Similarly, if g D

sl.2;R/˚ sl.2;R/, then aC–valued laminations can be identified with ordered pairs .�1; �2/ such that
�1, �2 and �1C�2 are measured laminations (ie �1 and �2 are nowhere transverse).

We can also extend the classical notion of trees dual to a measured lamination to this context.

Definition 6.4 Let .T; d/ be an R–tree acted upon by the fundamental group of S. We say that the action
of �1.S/ is dual to an aC–valued measured lamination � if there is an equivariant map p W zS! T and an
aC–valued distance daC W T �T ! aC such that:

(a) For all x; y 2 zS, we have daC.p.x/; p.y//D�./ for some (hence any) arc  W Œ0; 1�! zS transverse
to the support of � with .0/D x and .1/D y.

(b) Given a geodesic path  W Œ0; 1�! T, we have d..0/; .1//� kdaC..0/; .1//k. Here k �k denotes
the standard Euclidean norm of a vector in aC.

We now combine aC–valued measured laminations with the classical notion of 1=k–translation surfaces
in order to define a hybrid structure on S.

Definition 6.5 Let aC be a closed Weyl chamber and k � 1 an integer. An .aC; k/–mixed structure on a
closed surface S is the datum of

(a) a collection of nonhomotopically trivial, pairwise nonhomotopic, disjoint simple closed curves
1; : : : ; n on S ;

(b) for each connected component S 0 of S n
S
j j either

� an aC–valued measured lamination �, where we allow each j to be in the support; or
� a meromorphic k–differential of finite area that endows S 0 with a 1=k–translation surface structure.

These .aC; k/–mixed structures can be interpreted as dual to the .a; W /–complexes studied by Anne
Parreau [2022] in the context of gD sl.3;R/. Let us recall briefly how these complexes are defined and
explain in which sense these notions can be considered dual to each other.
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Following [Parreau 2022], an .a; W /–complex K is the union of (possibly degenerate) polygons in a

glued together along boundary segments via elements of Waff D W Ì R. More precisely, there is a
family of affine simplices P� � a and injective maps �� W P� ! K such that if K� D ��.P�/ and
K�0 D ��0.P�0/ have nonempty intersection then there is w�;�0 2Waff such that ��.x/D ��0.x0/ if and
only if x0 D w�;�0.x/ and P� \w�1�;�0.P�0/ is a face in P�. We only consider connected and simply
connected .a; W /–complexes acted upon by �1.S/. Note that, since the gluing maps between simplices
are Euclidean isometries, the Euclidean distance on a induces a distance on K. We will only work with
.a; W /–complexes whose induced distance is CAT(0). Similarly, K is also endowed with an aC–valued
distance inherited from a.

Examples of .a; W /–complexes are subcomplexes of an Euclidean building modeled on Waff. We will
see that cores of products of two trees dual to measured laminations are indeed .a; W /–complexes, where
a is the Cartan subalgebra of sl.2;R/˚ sl.2;R/ and W D f˙Idg.

Definition 6.6 We say that an .a; W /–complex K acted upon by �1.S/ is dual to an .aC; k/–mixed
structure � on S if we can decompose K into a 1–dimensional part K1 and a 2–dimensional part K2
such that

� K1 is the union of R–trees dual to the laminar part of �,

� K2 is endowed with a 1=k–translation surface structure isomorphic to the universal cover of the
flat parts of �.

Note that the 2–dimensional part of an .a; W /–complex can be endowed with a 1=k–translation surface
structure only if W contains the subgroup generated by rotations of angle 2�=k.

We believe that these mixed structures naturally appear in a harmonic map compactification of the
Hitchin and maximal components of the character variety for real Lie groups G of rank 2. In this context,
Labourie [2017], Collier [2016] and Collier, Tholozan and Toulisse [Collier et al. 2019] proved that given a
Hitchin or maximal representation � W �1.S/!G there exists a unique �–equivariant minimal surface z†�
in G=K, where K is a maximal compact subgroup of G. One could then find a compactification of these
components by studying the limiting behavior of z†�n when �n leaves all compact sets in the character
variety. Up to subsequences, and after rescaling the metric onG=K appropriately, z†�n should converge to a
subcomplex z†1�B, where B is a nondiscrete Euclidean building modeled on the affine Weyl group ofG.
We conjecture that†1 is dual to a mixed structure as in Definition 6.6, where aC is a Cartan subalgebra of
the Lie algebra of G and k depends on the particular group. More precisely, we conjecture the following:

Conjecture 6.7 (a) Let G be a real split semisimple Lie group of rank 2. Then the boundary of
Hit.S;G/ can be identified with the space of projective classes of .aC; k/–mixed structures where:

� If G D SL.3;R/, then aD A2 and k D 3.

� If G D Sp.4;R/, then aD B2 and k D 4.

� If G DGR
2 , then aDG2 and k D 6.
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(b) LetG be a real semisimple Lie group of Hermitian type and rank 2. Then the boundary of Max.S;G/
can be identified with the space of projective classes of .aC; k/–mixed structures where:

� If G D SL.2;R/�SL.2;R/, then aD A1 �A1 and k D 2.

� If G D SO.2; n/ with n� 3, then aD B2 and k D 4.

In support of this conjecture, we show that the core of the product of two trees dual to measured
laminations is dual to an .AC1 �A

C
1 ; 2/–mixed structure and that we can identify Core.T;T / with the

space of such structures, thus proving the conjecture for G D SL.2;R/� SL.2;R/. Moreover, in [Loftin
et al. 2022], Loftin, Wolf, and the third author give further evidence towards Conjecture 6.7 by describing
the geometry of the harmonic maps to buildings arising from some diverging sequences of SL.3;R/–
Hitchin representations. It would be interesting to introduce a higher-rank version of our vector-valued
mixed structures, at least for the case of SL.d;R/–Hitchin components, and relate it to the subspaces of
the Euclidean building studied in [Le 2016; Martone 2019a].

Lemma 6.8 Let T1 and T2 be real trees dual to measured laminations �1 and �2 and let C be the core of
T1 �T2. Then C is an .A1�A1; f˙Idg/–complex dual to an .AC1 �A

C
1 ; 2/–mixed structure on S.

Proof We already saw in Section 3 that C is the union of a 1–dimensional subcomplex C1 and a
2–dimensional subcomplex C2 of T1 � T2. Moreover, we showed that each connected component of
C2 is the universal cover of a half-translation surface structure on a subsurface S 0 of S, on which the
laminations �1 and �2 fill. Thus, it only remains to show that each connected component C 01 of C1 is a
tree dual to an AC1 �A

C
1 –valued measured lamination.

Recall from Section 3 that C 01 is the image under the map F defined in (1) of a domain ��H2 that can
be identified with the universal cover of a subsurface S 0 of S on which �1 and �2 are nowhere transverse.
Moreover, we observe that C 01 has a natural distance d induced by the ambient space

d..x0; y0/; .x1; y1//D
p
d1.x0; y0/

2
C d2.x1; y1/

2

and a natural AC1 �A
C
1 –valued distance Ed defined by

Ed..x0; y0/; .x1; y1//D .d1.x0; y0/; d2.x1; y1//:

We claim that .C 01; d / is an R–tree dual to the AC1 �A
C
1 –valued measured lamination E�D .�1; �2/ (see

Remark 6.3). By Lemma 3.4, C 01 can be identified with the R–tree dual to the measured lamination
�0D �1C�2 if endowed with the distance d0 introduced in Section 3. In particular, there is a continuous
�1.S

0/–equivariant map p WD p�0 W�! C 01. It follows immediately from the definitions and the fact
that T1 and T2 are dual to the laminations �1 and �2 that for all x; y 2�0 we have

Ed.p.x/; p.y//D E�./

for all  W Œ0; 1�!� transverse to the support of �0 with .0/D x and .1/D y.
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Property (b) in Definition 6.4 also holds. Indeed, a geodesic path  D .1; 2/ W Œ0; 1�! C 01 � T1 �T2,
seen in the quadrant 1�2, consists of a concatenation of horizontal, vertical or diagonal paths in which
the projections onto the two factors are always nondecreasing. Hence,

d..0/; .1//� k Ed..0/; .1//k;

and the proof is complete.

Theorem 6.9 The space of .AC1 �A
C
1 ; 2/–mixed structures on S is homeomorphic to Core.T;T /.

Proof Let Y denote the set of .AC1 �A
C
1 ; 2/–mixed structures on S. We still need to define a topology

on Y. We will construct a bijection
' W Y !ML.S/�ML.S/

with the property that for all y 2 Y the core of the product of trees corresponding to '.y/ is dual to the
.AC1 �A

C
1 ; 2/–mixed structure y. We then give Y the topology that makes ' a homeomorphism, thus

proving the result.

Given y 2 Y, let 1; : : : ; n be the simple closed curves subdividing S into its laminar and flat parts, as in
Definition 6.5. Let Si for i D 1; : : : ; m denote the connected components of S n

S
j j . If Si is endowed

with a half-translation surface structure induced by a meromorphic quadratic differential qi of finite area,
then the horizontal and vertical foliations of qi determine a pair of measured laminations .�i1; �

i
2/. Here we

are implicitly using the well-known homeomorphism between the space of measured foliations arising this
way and the space of measured laminations; see for instance [Levitt 1983; Lindenstrauss and Mirzakhani
2008]. On the other hand, by Remark 6.3, if Si carries an aC–valued measured lamination, then this is
equivalent to a pair of measured laminations .�i1; �

i
2/ possibly containing some boundary curves j in their

support. We can then associate to y 2 Y the pair of measured laminations .�1; �2/ 2ML.S/�ML.S/

defined as �j D
Pm
i �

i
j for j D 1; 2. Since the horizontal and vertical measured foliations uniquely

determine a meromorphic quadratic differential of finite area [Gardiner and Masur 1991], using Remark 6.3
and Lemma 3.3, it is clear that ' is a bijection.

Moreover, comparing the definition of the map ' with Lemma 6.8, it is easy to verify that the core of the
product of trees dual to the pair '.y/ is dual to the .AC1 �A

C
1 ; 2/–mixed structure y we started with.
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An algorithmic discrete gradient field and the cohomology algebra
of configuration spaces of two points on complete graphs

EMILIO J GONZÁLEZ

JESÚS GONZÁLEZ

We introduce and study an algorithm that constructs a discrete gradient field on any simplicial complex.
With a computational complexity similar to that of existing methods, our algorithmic gradient field is
always maximal and in a number of cases even optimal. We make a thorough analysis of the resulting
gradient field in the case of Munkres discrete model for Conf.Km; 2/, the configuration space of ordered
pairs of noncolliding particles moving on the complete graph Km on m vertices. This allows us to
describe in full the cohomology algebra H�.Conf.Km; 2/IR/ for any commutative unital ring R. As
an application we prove that, although Conf.Km; 2/ is outside the “stable” regime, all its topological
complexities are maximal when m� 4.

55R80, 57Q70; 57M15

1 Introduction

Since the development of discrete Morse theory (DMT) by R Forman [15], the concept of a discrete
gradient field (DGF) has played an important role in a wide range of areas of mathematics and the sciences
alike. The idea arose as a combinatorial analogue of the concept of a smooth gradient field in differential
topology, and has proven to be just as important as its smooth predecessor. In particular, DGFs have become
one of the main tools in the relatively recent growth of computational topology techniques. For instance,
Forman’s DMT has been successfully used to deal with noise-reduction problems by Bauer, Lange and
Wardetzky [6], as well as in topological data analysis by Harker, Mischaikow, Mrozek and Nanda [22], and
within topological visualization and mesh compression applications by Lewiner, Lopes and Tavares [26].
DMT has also seen important applications in the purely theoretical realm, for instance, in the establishment
of minimal cellular structures with the homotopy type of the complement of hyperplane arrangements
and, more generally, of different sorts of configuration spaces; see Farley [10], Mori and Salvetti [28],
Salvetti and Settepanella [32] and Severs and White [33]. DGFs have also been used in the determination
of explicit homology bases for complexes of two-connected graphs, objects that play a relevant role in
Vassiliev’s study of knots in the standard 3–sphere; see Shareshian [34] and Vassiliev [35; 36; 37].

We review the basics on Forman’s DMT in Section 2.2. For the purposes of this introduction, the
nonspecialized reader should keep in mind that a DGF encodes an organized recipe to stretch the structure
of a CW complex X , without changing its homotopy type, with the aim of simplifying the original cell
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structure. During the stretching process, a typical (regular) cell ˛ gets squeezed by pushing one of its faces
ˇ towards the interior of ˛. The DGF consists of all such pairs .˛; ˇ/, the “Morse pairings”. Cells that
are not of the squeezable type nor the pushable type are called critical and carry much of the homotopy
information of X . Although the roots of the idea go back to Whitehead’s simple homotopy theory in
the 1930s, DGF technology currently stands as an important alternative to homotopy-minded methods in
algebraic topology, especially when the heart of the topological phenomenon under consideration has a
combinatorial origin.

In a typical application, the goal is to construct a DGF that renders an efficient and tractable simplification
of the cell structure of a given complex. Actually, in each of the applications noted above, the efficiency
goal is attained by constructing a suitable though ad-hoc DGF. In contrast, our first main contribution is the
description, in Section 3, of an algorithm that constructs, for any finite ordered abstract simplicial complex
.K;�/, a DGF W that reaches reasonable (even notable, in a number of cases) DGF-efficiency goals:

Theorem 1.1 The discrete gradient field W on .K;�/ constructed in Section 3 is maximal. Indeed , all
faces and all cofaces of a W –critical face are involved in a Morse pairing.

In particular, W is a steepness pairing in the sense of Lampret [25, Lemma 2.2]. More importantly,
it turns out that in many cases W is either optimal (perhaps after a convenient selection of the vertex
ordering �), or close to being so. Here optimality refers to the fact that in every dimension k � 0, the
resulting Morse complex, which is homotopy equivalent to jKj, has exactly as many k–cells as the kth

Betti number of the geometric realization jKj of K. Indeed, the algorithm constructing W can be thought
of as a generalization of the inclusion–exclusion (IE) process with respect to a chosen vertex. For instance,
the IE process gives an optimal gradient field collapsing a full simplex to the chosen vertex, and our
algorithm remains optimal for many other complexes. In fact, for a general ordered simplicial complex
.K;�/, the vertex ordering � plays a heuristic role that guides the IE process.

The flexibility and generality of our method should lead to many more applications of the sort discussed
in the first paragraph of this introduction, both in the theoretical and applied realms. So, in addition to
illustrating the efficiency/optimality feature of our algorithmic DGF in a number of standard examples,
as our second main contribution we obtain in Section 4 a full description of the cohomology ring of
configuration spaces of ordered pairs of points in complete graphs. This is attained through a thorough
study of the corresponding algorithmic DGF. Our results in this direction are described in the next
paragraphs, after placing our work in context.

Configuration spaces

Conf.X; n/D f.x1; : : : ; xn/ 2Xn W xi ¤ xj for i ¤ j g

are important ubiquitous objects in mathematics and its applications. They are reasonably well understood
when X DM , a manifold of dimension at least two. For X D � a graph, Conf.�; n/ has attracted much
attention in recent years due to its role in geometric group theory, and also because graph configuration
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spaces provide natural models for the problem of planning collision-free motion of multiple agents
performing on a system of tracks; see Farber [8], Ghrist [17] and Ghrist and Koditschek [19]. Yet,
the current understanding of the topology of Conf.�; n/ appears to be far more limited than that of
the higher-dimensional case Conf.M; n/. This is due in part to the lack of Fadell–Neuwirth fibrations
relating graph configuration spaces for different values of n. Informally, unlike the higher-dimensional
counterpart Conf.M; n/, one-dimensional motion planning actually requires global knowledge of the
ambient graph. Thus, while additive information about the homology of graph configuration spaces is
already available in the literature (see for instance Abrams [1], An, Drummond-Cole and Knudsen [3],
Chettih and Lütgehetmann [7], Farber and Hanbury [9], Ghrist [18], Ko and Park [24], Maciążek and
Sawicki [27] and Ramos [31]), explicit cup product descriptions seem to be scarcer. Notable exceptions
are the work of Farley and Sabalka [11; 13; 14] (see also González and Hoekstra-Mendoza [21]) and
Barnett and Farber [4]. The former relates the cohomology algebra of (unordered) configurations on trees
to exterior face rings, while the latter describes in full the rational cohomology algebra of ordered pairs
of points on planar graphs. We close the gap by focusing on a family of graphs which is diametrically
different to that considered by Barnett and Farber. Indeed, we give a full description of the cohomology
algebra, with any ring coefficients, of the configuration space of ordered pairs of points on a complete
graph Km with m vertices. The complete description is slightly technical and, for the purposes of this
introduction, it is more useful to offer the following detailed navigational chart for Section 4, where the
cohomology ring H�.Conf.jKmj; 2// is fully determined.

We start by reviewing a standard combinatorial homotopy model for Conf.jKmj; 2/ in the introductory
Section 2.1. The corresponding algorithmic DGF is described in Proposition 4.1, while the resulting Morse
(co)differential is described in Proposition 4.3. Bases of Morse cocycles are described in Definition 4.4 and
Proposition 4.6 (for dimension 1), and in Definition 4.8 (for dimension 2). Corresponding cohomological
bases are derived in Corollaries 4.7 (for dimension 1) and 4.11 (for dimension 2). The Morse-theoretic cup
product is fully determined at the cocycle level by (43) and Propositions 4.13 and 4.14. The cohomological
cup product can then be read off from (9) using the full power of Corollary 4.11, which gives explicit
formulae that allow us to recover the basis expression of the cohomology class represented by any given
Morse 2–cocycle. This renders a complete and fully computer-implementable description of the ring
H�.Conf.jKmj; 2//.

For the reader’s benefit we spell out in Example 4.15 the above navigational chart in the case of the
complete graph on five vertices. Our description of the cohomology algebra of Conf.jK5j; 2/ reflects
the well-known fact that this space is homotopy equivalent to a closed orientable surface of genus six.
More interestingly, Corollary 4.16 is a simple though partial description of the cup product structure in
the cohomology of any Conf.jKmj; 2/. In such terms, it is clear that certain cup product aspects coming
from the homotopy manifold structure of Conf.jK5j; 2/ are kept for Conf.jKmj; 2/ when m> 5.

We close with an application to motion planning in topological robotics. Namely, after reviewing in
Section 5 the basics of Farber and Rudyak’s sequential topological complexity TCs , we use Corollary 4.16
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to compute Farber and Rudyak’s homotopy invariant in the case of two ordered point-type robots moving
without collisions on a track system in the shape of a complete graph:

Theorem 1.2 For m� 4 and s � 2,

TCs.Conf.jKmj; 2//D s hdim.Conf.jKmj; 2//D
�
s if mD 4;
2s otherwise.

Here hdim stands for homotopy dimension. The relevance of Theorem 1.2 is fully discussed in the
paragraph of Section 5 containing (46)–(48).

2 Preliminaries

2.1 The Munkres model for 2–particle configuration spaces

Let D be a full subcomplex of a given abstract simplicial complex X , ie assume that every simplex of
X whose vertices lie in D is itself a simplex of D. Consider the (necessarily full) subcomplex C of X
consisting of the simplices � of X whose geometric realization j� j is disjoint from jDj. The vertices of X
are partitioned into those of D and those of C and, as observed in [30, Lemma 70.1], the linear homotopy

H W .jX j � jDj/� Œ0; 1�! jX j � jDj; H.x; s/D .1� s/xC s

rX
iD1

tiPr
kD1 tk

ci

exhibits jC j as a strong deformation retract of jX j � jDj. Here x D
Pr
iD1 tici C

P�
jD1 �jdj is the

barycentric expression of x 2 jX j � jDj having ti > 0 < �j for all i and j , with c1; : : : ; cr vertices of C
for r � 1 and d1; : : : ; d� vertices of D for � � 0.

Let K be a finite abstract ordered simplicial complex, meaning the vertex set V of K comes equipped
with a partial ordering � which is linear upon restriction to any face. We will be interested in Munkres
model C above when X DK�K is the ordered product, with D corresponding to the subcomplex whose
geometric realization is the diagonal �jKj in jK �Kj D jKj � jKj. The vertex set of K �K is V �V ,
with elements denoted by columns, while a k–simplex of K �K is a matrix array

(1)
�
v0;1 v1;1 � � � vk;1
v0;2 v1;2 � � � vk;2

�
of elements in V satisfying:

� For i D 1; 2, v0;i � v1;i � � � � � vk;i with fv0;i ; v1;i ; : : : ; vk;ig an l–face ofK (possibly with l � k).

� For j D 0; 1; : : : ; k� 1, at least one of the inequalities vj;1 � vjC1;1 or vj;2 � vjC1;2 is strict.

Such a matrix-type simplex belongs toD provided its two rows are repeated: vj;1Dvj;2 for j D0; 1; : : : ; k.
In particular, D is a full subcomplex of K �K, and we get a homotopy equivalence

(2) jC j ' Conf.jKj; 2/:

Note that a simplex (1) belongs to C precisely when vj;1 ¤ vj;2 for j D 0; 1; : : : ; k. In particular, the
vertex set of C is V �V n�V (with elements denoted by column matrices).
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2.2 Discrete Morse theory

We review the notation and facts we need from Forman’s discrete Morse theory. See [15; 16] for details.

As in the previous subsection, let K be a finite abstract ordered simplicial complex with ordered vertex
set .V;�/. Let .F ;�/ be the face poset of K, that is, F is the set of faces of K partially ordered by
inclusion. For a face ˛ 2 F , we write ˛.p/ to indicate that ˛ is p–dimensional, and use the notation
˛ D Œ˛0; ˛1; : : : ; p̨�, where

(3) ˛0 � ˛1 � � � � � p̨

is the ordered list of vertices of ˛. We choose the orientation on ˛ determined by (3). For faces
˛.p/ � ˇ.pC1/, consider the incidence number �˛;ˇ of ˛ and ˇ, (the coefficient ˙1 of ˛ in the expression
of @.ˇ/). Here @ stands for the standard boundary operator in the oriented simplicial chain complex C�.K/,

@.Œv0; v1; : : : ; vi �/D
X
0�j�i

.�1/j @vj
.Œv0; v1; : : : ; vi �/D

X
0�j�i

.�1/j Œv0; : : : ; Ovj ; : : : ; vi �;

where @vj
.Œv0;v1; : : : ;vi �/D Œv0; : : : ; Ovj ; : : : ;vi � is the face obtained by removing vj from Œv0;v1; : : : ;vi �.

We think of the Hasse diagramHF of F as a directed graph: the vertex set ofHF is F and the directed edges
are the ordered pairs .˛.pC1/; ˇ.p// with ˇ � ˛. Such a directed edge will be denoted by ˛.pC1/& ˇ.p/.

Definition 2.1 A partial matching W on HF is a directed subgraph of HF whose vertices have degree
one. The W –modified Hasse diagram HF;W is the directed graph obtained from HF by reversing the
orientation of all edges of W .

Note that the vertex set of W may be a proper subset of F . In such a case, faces in F that are not vertices
of W are called W –critical. On the other hand, a reversed edge is denoted by ˇ.p/% ˛.pC1/, in which
case ˛ is said to be W –collapsible and ˇ is said to be W –redundant. The words “critical”, “collapsible”
and “redundant” will also be used when the partial matching W is implicit from the context.

Definition 2.2 Let W be a partial matching on HF . A W –path is an alternating chain of up-going and
down-going directed edges of HF;W of either of the two forms

(4) ˛0% ˇ1& ˛1% � � � % ˇk& ˛k or 0& ı1% 1& � � � & ık% k :

A W –path as the one on the left (resp. right) side of (4) is called an upper (resp. lower) W –path, and the
W –path is called elementary (resp. constant) when k D 1 (resp. when k D 0). A mixed W –path Q� from a
face ˇ.pC1/ to a face ˛.p/ is the concatenation of a directed edge ˇ&  in HF;W and an upper W –path
� from  to ˛.

As above, we use the term “path” as a synonym of “W –path” when the partial matching is implicit from
the context. The sets of upper and lower paths that start on a p–cell ˛ and end on a p–cell ˇ are denoted
by �.˛; ˇ/ and �.˛; ˇ/, respectively. Note that concatenation of upper/lower paths yields product maps

(5) �.˛; ˇ/��.ˇ; /! �.˛; / and �.˛; ˇ/��.ˇ; /! �.˛; /:

Algebraic & Geometric Topology, Volume 24 (2024)



3724 Emilio J González and Jesús González

For instance, any nonconstant upper/lower path is a product of corresponding elementary paths.

Definition 2.3 The multiplicity of a constant path  is �./ WD 1, and of elementary upper/lower paths is

�.˛0% ˇ1& ˛1/ WD ��˛0;ˇ1
�˛1;ˇ1

and �.0& ı1% 1/ WD ��ı1;0
�ı1;1

:

The multiplicity of nonelementary nonconstant paths is defined to be a multiplicative function with respect
to the product maps (5). Likewise,

�. Q�/ WD �;ˇ�.�/

defines the multiplicity of the mixed path Q� given by the concatenation of the edge ˇ&  and the upper
path � 2 �.; ˛/.

Our central tools are discrete gradient fields:

Definition 2.4 A nonconstant path as in (4) is called a cycle if ˛0 D ˛k in the upper case, or 0 D k in
the lower case. Note that the cycle condition can only hold with k > 1. A partial matching W is said to be
a gradient field on K if no nonconstant path is a cycle. In such a case, paths are referred as gradient paths.

Note that W is a gradient field if and only if HF;W has no cycles (as a directed graph).

We close this preliminary section by recalling (Definition 2.5 and Proposition 2.7) the way in which the
structure of critical faces and gradient paths between them can be used to assemble a (co)chain complex
that recovers the (co)homology of K.

Definition 2.5 Let R be a commutative unital ring.1 As a graded additive R–module, the Morse chain
complex .��.K/; @/ is degreewise R–free, with basis in dimension p � 0 given by the oriented critical
faces ˛.p/ of K, and with Morse boundary map @ W ��.K/! ���1.K/ given at a critical face ˛.p/ by

(6) @.˛.p//D
X
ˇ .p�1/

�X
Q�

�. Q�/

�
ˇ;

where the outer summation runs over all critical faces ˇ.p�1/, and the inner summation runs over all mixed
gradient paths Q� from ˛ to ˇ. The Morse cochain complex .��.K/; ı/ is the R–dual2 of .��.K/; @/.

Thus �p.K/ is R–free with basis given by the duals of the oriented critical faces ˛.p/ of K. The value
of the Morse coboundary map ı W ��.K/! ��C1.K/ at a (dualized) critical face ˛.p/ is

(7) ı.˛.p//D
X
ˇ .pC1/

�X
Q�

�. Q�/

�
ˇ;

where the outer summation runs over all (dualized) critical faces ˇ.pC1/, and the inner summation runs
over all mixed gradient paths Q� from ˇ to ˛.

1We restrict to ring coefficients as we will ultimately be interested in cup products.
2For the sake of brevity, we will consistently omit writing asterisks for dualized objects; the context clarifies the intended
meaning.
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Remark 2.6 For critical faces  .p/1 and  .pC1/2 , the multiplicity-counted number of mixed gradient paths
� from 2 to 1, ie the sum Œ1I 2� WD

P
� �.�/, is called the Morse-theoretic incidence number of 1

and 2. In these terms, (6) and (7) take the more familiar forms

@.˛.p//D
X
ˇ .p�1/

ŒˇI˛�ˇ and ı.˛.p//D
X
ˇ .pC1/

Œ˛; ˇ�ˇ:

Gradient paths yield a homotopy equivalence between the Morse cochain complex ��.K/ and the usual
simplicial cochain complex C �.K/. For our purposes we need:

Proposition 2.7 The formulae

(8)

ˆ.˛.p//D
X
ˇ .p/

� X
�2�.ˇ;˛/

�.�/

�
ˇ for ˛ critical and ˇ arbitrary;

ˆ.ˇ.p//D
X
˛.p/

� X
�2�.˛;ˇ/

�.�/

�
˛ for ˇ arbitrary and ˛ critical;

determine cochain maps ˆ W ��.K/! C �.K/ and ˆ W C �.K/! ��.K/ inducing cohomology isomor-
phisms ˆ� and ˆ� with .ˆ�/�1 Dˆ�.

In particular, cup products can be evaluated directly at the level of the Morse cochain complex ��.K/.
Indeed, for Morse cocycles x; y2��.K/ representing respective cohomology classes x0; y02H�.��.K//,
the Morse-theoretic cohomology cup product x0 �y0 is represented by the Morse cocycle

(9) x
�
^y WDˆ.ˆ.x/ ^ˆ.y// 2 ��.K/;

where ^ stands for the simplicial cup product.

3 Algorithmic gradient fields

Let K be a finite abstract ordered simplicial complex of dimension d with ordered vertex set .V;�/.
Recall that the partial order � is required to restrict to a linear order on simplices of K. In this section, we
describe and study an algorithm A that constructs a discrete gradient field W (which depends on �) on K.

By the order-extension principle, we may assume � is linear from the outset. Let F i denote the set of
i–dimensional faces of K. Recall that a face ˛.i/ 2F i is identified with the ordered tuple Œ˛0; ˛1; : : : ; ˛i �,
with ˛0 � ˛1 � � � � � ˛i , of its vertices. In such a setting, we say that ˛r appears in position r of ˛. The
ordered tuple notation allows us to lexicographically extend � to a linear order (also denoted by �) on
the set F of faces of K. We write � for the strict version of �.

For a vertex v 2 V , a face ˛ 2 F i and an integer r � 0, let

�r.v; ˛/D

�
˛[fvg if ˛[fvg 2 F iC1 with v appearing in position r of ˛[fvg;
¿ otherwise.
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3.1 Acyclicity

At the start of the algorithm we set W WD ¿ and initialize auxiliary variables F i WD F i for 0 � i � d
which, at any moment of the algorithm, keep track of i–dimensional faces not taking part in a pairing
in W . Throughout the algorithm A, pairings .˛; ˇ/ 2 F i �F iC1 are added to W by means of a family
of processes P i running for i D d � 1; d � 2; : : : ; 1; 0 (in that order), where P i is executed provided (at
the relevant moment) both F i and F iC1 are not empty (so there is a chance to add new pairings to W ).
Process P i consists of three levels of nested subprocesses:

(i) At the most external level, P i consists of a family of processes P i;r for i C 1� r � 0, executed in
descending order with respect to r .

(ii) In turn, each P i;r consists of a family of subprocesses P i;r;v for v 2V , executed from the �–largest
vertex to the smallest.

(iii) At the innermost level, each process P i;r;v consists of a family of instructions P i;r;v;˛ for ˛ 2 F i ,
executed following the �–lexicographic order.

Instruction P i;r;v;˛ checks whether, at the moment of its execution, .˛; �r.v; ˛// is in F i �F iC1, that is,
whether .˛; �r.v; ˛// is “available” as a new pairing. If so, the pairing ˛% �r.v; ˛/ is added to W , while
˛ and �r.v; ˛/ are removed from F i and F iC1, respectively. Two immediate consequences stand from
the above construction. Namely, at the end of the algorithm, the resulting family of pairs W is a partial
matching in F , and all faces and cofaces of an unpaired cell are involved in a W –paring. The former fact
is part of the far more important Proposition 3.1 which, together with the latter, yields Theorem 1.1.

Proposition 3.1 W is a gradient field.

In preparation for the proof of Proposition 3.1, we need:

Definition 3.2 Let Wi;r;v denote the collection of pairings ˛ % ˇ in W constructed during P i;r;v.
Consider also the collection Pi;r;v of pairs .˛; ˇ/ 2 F i �F iC1 such that ˇ n˛ D fvg with v appearing in
position r of ˇ. Thus Wi;r;v D Pi;r;v \W .

We start by proving that, at the moment that A constructs a pairing ˛% ˇ, ˛ is in fact the smallest (with
respect to �) of the facets of ˇ that remain unpaired.

Lemma 3.3 Let ˛ D Œ˛0; : : : ; ˛r ; ˛rC1; : : : ; ˛i �% ˇ D Œ˛0; : : : ; ˛r ; ˇ0; ˛rC1; : : : ; ˛i � be a pairing in
Wi;rC1;ˇ0

and let  be a face of ˇ with  D Œ˛0; : : : ; ˛r ; ˇ0; ˛rC1; : : : ; y̨j ; : : : ; ˛i � for r C 1� j � i , ie
 � ˛. Then there is an integer l 2 fj C 1; j C 2; : : : ; i C 1g and a vertex ı0 with j̨ � ı0 such that

 % ı WD Œ˛0; : : : ; ˛r ; ˇ0; ˛rC1; : : : ; j̨�1; y̨j ; : : : ; ı0; : : :�

lies in Wi;l;ı0
. In particular , the pairing  % ı is constructed by A before the pairing ˛% ˇ.
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Proof Previous to the instruction P i;rC1;ˇ0;˛ that constructs ˛ % ˇ, the algorithm A executes the
instruction P i;jC1; j̨ ; that evaluates the potential pair .; ˇ/ 2 Pi;jC1; j̨

. This is not an element of W ,
as ˇ remains available until a later stage in A. So  must be paired by an instruction P i;l;ı0; previous to
P i;jC1; j̨ ; , which forces the conclusion.

Proof of Proposition 3.1 Assume for a contradiction that there is a W –cycle

(10) ˛0% ˇ0& ˛1% ˇ1& ˛2% � � � % ˇn& ˛nC1 D ˛0

(the condition n � 1 is forced by the definition of a gradient path). Without loss of generality, we can
assume that ˛0 % ˇ0 is constructed by A before any other pairing ˛j % ˇj with 1 � j � n. So
Lemma 3.3 forces the start of the cycle to have the form

˛0 D Œ˛00 ; : : : ; ˛
0
j0
; ˛0j0C1

; : : : ; ˛0k�;

ˇ0 D Œ˛00 ; : : : ; ˛
0
j0
; ˇ00 ; ˛

0
j0C1

; : : : ; ˛0k�;

˛1 D Œ˛00 ; : : : ; y̨
0
l ; : : : ; ˛

0
j0
; ˇ00 ; ˛

0
j0C1

; : : : ; ˛0k�:

Assume inductively ˛j D Œ: : : ; ˇ00 ; ˛
0
j0C1

; : : : ; ˛0
k
� with ˇ00 appearing in position j0 (so ˛j ¤ ˛0). The

choosing of ˛0 % ˇ0 implies that ˇj is obtained from ˛j by inserting a vertex v on the left of ˇ00
(v < ˇ00). A new application of Lemma 3.3 (together with the choosing of ˛0% ˇ0) then shows that
˛jC1 must be obtained from ˇj by removing a vertex other than ˇ00 ; ˛

0
j0C1

; : : : ; ˛0
k

. Thus ˛jC1 D
Œ: : : ; ˇ00 ; ˛

0
j0C1

; : : : ; ˛0
k
�, which is again different from ˛0. Iterating, we get a situation incompatible with

the equality in (10).

We have noted that, when K is a full simplex, A constructs the standard (and optimal) gradient field
determined by inclusion–exclusion of a fixed vertex (the largest one in the selected order �). As illustrated
in Examples 3.4, optimality is reached in other standard situations. Example 3.6 and Corollary 4.2 deal with
slightly less standard instances, while [20] deals with novel situations in which our gradient field is optimal.

Examples 3.4 Figure 1, left, gives a triangulation of the projective plane RP 2. The gradient field shown
by the heavy arrows is determined by A using the indicated ordering of vertices. The only critical faces
are Œ6� (in dimension 0), Œ2; 5� (in dimension 1) and Œ1; 3; 4� (in dimension 2), so optimality of the field

1
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1

2
3

4

5 6
1

1

1

1
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3 3

8 85
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94

Figure 1: Algorithmic gradient fields for the projective plane (left) and the 2–torus (right).
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follows from the known mod-2 homology of RP 2. Although the gradient field depends on the ordering
of vertices, we have verified with the help of a computer that, in this case, all possible 720 gradient fields
(coming from the corresponding 6Š possible orderings of vertices) are optimal. A corresponding optimal
gradient field on the 2–torus (and the vertex order rendering it) is shown in Figure 1, right. This time the
critical faces are Œ9� (in dimension 0), Œ2; 8� and Œ5; 8� (in dimension 1) and Œ1; 3; 7� (in dimension 2). The
torus case is interesting in that there are vertex orderings that yield nonoptimal gradient fields. In general,
a plausible strategy for choosing a convenient ordering of vertices consists of assuring the largest possible
number of vertices with high �–tag so that no two such vertices lie on a common face. For instance, in
our torus example, no pair of vertices taken from 7, 8 and 9 lie on a single face.

We address the option ˛ �  ruled out by the hypotheses in Lemma 3.3:

Lemma 3.5 Let ˛ D Œ˛0; : : : ; ˛i ; ˛iC1; : : : ; ˛k�% ˇ D Œ˛0; : : : ; ˛i ; ˇ0; ˛iC1; : : : ; ˛k� lie in Wk;iC1;ˇ0

and let  be a face of ˇ with ˛ �  , ie  D Œ˛0; : : : ; y̨j ; : : : ; ˛i ; ˇ0; ˛iC1; : : : ; ˛k� for 0� j � i . Assume
% ı is a pairing constructed after the pairing ˛% ˇ. Then ı is obtained from  by inserting a vertex ı0
which is �–smaller than ˇ0, ie ı D .: : : ; ı0; : : : ; ˇ0; ˛iC1; : : : ; ˛k/.

Proof The assertion follows from the definition of the algorithm A, noticing that ˛iC1 appears in position
i C 1 in  .

3.2 Gradient fields via a faster algorithm

The proof of Proposition 3.1 makes critical use of “timing” in the construction of W –pairs within the
algorithm A. We will modify this characteristic to get a more efficient and faster version of A. While the
timing of the W –pairs construction will be altered, we shall show that the new algorithm constructs the
same gradient field.

The algorithm A in this subsection, initialized with auxiliary variables W and F i analogous to those
for its counterpart A, consists of a family of processes P i running for i D d � 1; d � 2; : : : ; 1; 0 (in that
order). Each P i is executed under the same conditions (with respect to F i and F iC1) as its analogue P i ,
but consists only of two (rather than three) levels of nested subprocess. Namely, at the most external level,
P i consists of a family of processes P i;v for v 2 V , executed from the �–largest vertex to the smallest.
In turn, each process P i;v consists of a family of instructions P i;v;˛ for ˛ 2 F i , executed following the
�–lexicographic order. Instruction P i;v;˛ checks whether, at that moment, .˛; fvg [ ˛/ 2 F i �F iC1

(availability). If so, the pairing ˛% fvg[˛ is added to W , while ˛ and fvg[˛ are removed from F i

and F iC1, respectively. Thus the difference with the algorithm A is that, in order to construct a pairing
˛% fvg [ ˛ in W , we do not care about the position of v in fvg [ ˛. As we will explain next, such a
situation means that algorithm A constructs some gradient pairings ˛% ˇ earlier than they would be
constructed by A, thus avoiding the need to perform subsequent testing instructions related to ˛ or ˇ.
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Figure 2: Vertex order in the projective plane with the facet Œ1; 2; 3� removed.

Example 3.6 Consider the triangulation of the punctured projective plane shown in Figure 2. In the
algorithm A, the pairing Œ2; 3�% Œ2; 3; 4�, which is constructed during the process P1;2;4, comes before
the pairing Œ1; 5�% Œ1; 4; 5�, which is constructed during the process P1;1;4. Instead, these two pairings
arise in the opposite order in the algorithm A, and they both are constructed during the process Q1;4. As
the reader can easily check, the (common) resulting gradient field has only two critical faces, namely Œ6�
and Œ4; 5�, and is thus optimal (for the punctured projective plane has the homotopy type of the circle S1).

The goal of this subsection is to prove Theorem 3.7, which states thatW DW at the end of both algorithms.
The proof is best organized by setting W i;r;v WD Pi;r;v \W (cf Definition 3.2), as well as

Wk;v D
G
r

Wk;r;v and W k;v D

G
r

W k;r;v:

Theorem 3.7 The pairings constructed by A and A agree: Wk;r;v DW k;r;v for all relevant indices k, r
and v. In particular , W is acyclic.

The proof of Theorem 3.7 uses the following elementary observations for vertices v and w with v � w:

(11)
.˛; ˇ/ 2 Pk;r;v and .˛; / 2 Pk;s;w D) r � s; with equality provided v D w;

.˛; ˇ/ 2 Pk;r;v and .; ˇ/ 2 Pk;s;w D) r � s; with equality provided v D w.

Remark 3.8 In the proof of Theorem 3.7, it will be convenient to keep in mind the following closer view
of the central part of algorithms A and A. In the case of A, an efficient way to execute a process Pk;r;v

is by assembling the set Nk;r;v of .kC1/–dimensional faces  having v in position r and such that both
 and @v./ are available (neither  nor @v./ have been paired previous to the start of Pk;r;v). With
such a preparation, Pk;r;v simply adds3 to W all pairs .@v./; / with  2Nk;r;v (construction of new
pairings), and removes all faces  and @v./, for  2 Nk;r;v, from the corresponding lists of unpaired
faces (update of available faces). Likewise, an efficient way to execute process Pk;v in A is by assembling
the set N k;v of .kC1/–dimensional faces  containing v as a vertex (in any position) and such that both
 and @v./ are available at the start of Pk;v. With such a preparation, Lemma 3.9 shows that Pk;v

simply adds to W (in lexicographic order) all pairings .@v./; / with  2 N k;v (construction of new

3The adding of pairs is done following the �–lexicographic order (cf. Lemma 3.9), though this much is immaterial at this point.
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pairings), and removes all faces  and @v./, for  2N k;v , from the corresponding lists of unpaired faces
(update of available faces). In particular, Nk;r;v (resp. N k;v) is the set of collapsible faces for the block
of pairings constructed by Pk;r;v (resp. Pk;v), while the faces @v.ˇ/ for ˇ 2Nk;r;v (resp. ˇ 2N k;v) are
the corresponding redundant faces.

Lemma 3.9 Let ˛ and ˇ be .kC1/–dimensional faces each containing v as a vertex (in any position).
In terms of the �–lexicographic order , the condition ˛ � ˇ holds if and only if @v.˛/� @v.ˇ/.

Proof We provide a detailed proof for completeness. The lexicographic order is linear (we have assumed
so at the vertex level), so it suffices to show that @v.˛/ � @v.ˇ/ provided ˛ � ˇ. Say v appears in
positions i and j in ˛ and ˇ, respectively. The result is obvious if i D j (this is why we did not need
the lemma in our closer look at A), or if the lexicographic decision for the inequality ˛ � ˇ is taken at
a position smaller than m WDminfi; j g. Thus we can assume i ¤ j with ˛ and ˇ being identical up to
and including position m� 1. The inequality ˛ � ˇ then forces i > j Dm. Thus @v.˛/ and @v.ˇ/ are
identical up to position j � 1, while in position j ,

� @v.˛/ has the vertex j̨ , which is smaller than v D ˛i , and

� @v.ˇ/ has the vertex ǰC1, which is larger than v D ǰ .

Consequently @v.˛/� @v.ˇ/.

Proof of Theorem 3.7 Recall that d denotes the dimension of the simplicial complex under consideration.
Fix i 2 f0; 1; : : : ; d � 1g and assume

(12) the equality Wk;r;v DW k;r;v is valid whenever k > i;

for all relevant values of r and v. The inductive goal is to prove

(13) Wi;r;v DW i;r;v for all v 2 V and all r 2 f0; 1; : : : ; i C 1g:

(The induction is vacuously grounded by the fact thatWd;r;vD¿DW d;r;v at the start of both algorithms.)
We start by arguing the case r D i C 1 in (13), which in turn will be done by induction on the reverse
ordering of vertices (starting from the largest vertex vmax) and through a comparison of the corresponding
actions of A and A during simultaneous execution of these algorithms. In detail:

Case I (r D iC1 and vD vmax in (13)) Pairings in Wi;iC1;vmax are constructed during the execution of
process P i;iC1;vmax , while those in W i;iC1;vmax are constructed during the execution of process P i;vmax . In
principle, the latter process would also construct pairings outside W i;iC1;vmax . However, such a possibility
is prevented by the fact that vmax can only appear in the last position of any face. Taking into account the
inductive assumption (12), this means that processes P i;iC1;vmax in A and P i;vmax in A construct the same
new pairings, and consequently perform the same updating of sets of available faces (this justifies the
abuse of notation P i;iC1;vmax D P i;vmax). Furthermore, after these processes conclude, no further pairings
can be constructed by insertion of vmax (either in A or in A). Thus in fact

(14) Wi;vmax DWi;iC1;vmax DW i;iC1;vmax DW i;vmax ;
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which in particular grounds the inductive (on the vertices) argument for the case r D i C 1 in (13). As
explained in the paragraph preceding Lemma 3.9, the redundant entries in (14) are the i–dimensional
faces ˛ such that ˛[fvmaxg is an .iC1/–dimensional face (so vmax … ˛) available at the start of process
P i;iC1;vmax D P i;vmax (all i–dimensional faces are available at this point), whereas the collapsible entries
in (14) are the .iC1/–dimensional faces available at the start of P i;iC1;vmax D P i;vmax that contain vmax as
a vertex.

The above situation changes slightly in later stages of the algorithms and, in order to better appreciate
subtleties, it is highly illustrative to spend a little time analyzing in detail a few of the pairings constructed
right after (14).

Case II (r D i C 1 and v D vmax�1 in (13)) Let v1; v2; : : : ; vmax�1; vmax be the elements of the vertex
set V listed increasingly according to �. Pairings in Wi;iC1;vmax�1

(resp. W i;iC1;vmax�1
) are constructed

during the execution of the process P i;iC1;vmax�1 (resp. P i;vmax�1). In both processes, the construction is
done by considering the insertion of vmax�1 among available faces (these are common to both algorithms
up to this point), either in position iC1 in the case of A, or in any position in the case of A. As in Case I,

(15) P i;vmax�1 might construct pairings outside W i;iC1;vmax�1

and

(16) any such a pairing would have to lie in W i;i;vmax�1
;

as vmax�1 cannot appear in a position smaller than i in an .iC1/–dimensional face. In terms of the
notation introduced in the paragraph previous to Lemma 3.9, the possibility in (15) translates into a strict
inclusion Ni;iC1;vmax�1

�N i;vmax�1
. However, an element in N i;vmax�1

nNi;iC1;vmax�1
is forced to be an

.iC1/–dimensional face which, in addition to being available at the start of P i;iC1;vmax�1 and P i;vmax�1 ,
has vmax appearing in the last position (for, as indicated in (16), vmax�1 appears in the next-to-last
position). Such a situation conflicts with the description of collapsible faces noted at the end of Case I,
ruling out the possibility in (15). Thus, as above, P i;iC1;vmax�1 D P i;vmax�1 and

(17) Wi;vmax�1
DWi;iC1;vmax�1

DW i;iC1;vmax�1
DW i;vmax�1

:

While Cases I and II are essentially identical, the construction of subsequent pairings has a twist whose
solution is better appreciated by taking a quick glance at the next block of pairings (those constructed by
P i;iC1;vmax�2 in the case of A and by P i;vmax�2 in the case of A). Namely, this time the inclusion

(18) Ni;iC1;vmax�2
�N i;vmax�2

may actually fail to be an equality, as illustrated in Example 3.6. As a result, the particularly strong forms
of assertions (14) and (17) no longer hold true for subsequent blocks of pairings. In any case, what we
do recover from (18) — and the discussion previous to Lemma 3.9 — is the fact that Wi;iC1;vmax�2

D

W i;iC1;vmax�2
. We next inductively extend this conclusion to other vertices, and then explain how early

pairings constructed in A are eventually recovered in A.
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Case III (inductive step settling (13) for r D i C 1) Fix a vertex v 2 V and assume

(19) W i;iC1;w DWi;iC1;w

whenever v � w, allowing the possibility that process P i;w in A constructs more pairings than those
constructed by the corresponding process P i;iC1;w in A. In such a setting, faces available at the start of
P i;v are necessarily available at the start of P i;iC1;v, so

(20) W i;iC1;v �Wi;iC1;v:

Assume for a contradiction that this inclusion is strict, and pick a pairing

(21) .˛; ˇ/ in Wi;iC1;v and not in W i;iC1;v:

This means that ˛ or ˇ (or both) are not available at the start of P i;v; in view of (12), this can only happen
provided either

(i) .˛; ˇ0/ 2W i;r;w � Pi;r;w for some face ˇ0, some vertex w and some position r , or

(ii) .˛0; ˇ/ 2W i;r;w � Pi;r;w for some face ˛0, some vertex w and some position r ,

where in either case v�w and r � iC1. But .˛; ˇ/2Wi;iC1;v �Pi;iC1;v , so (11) yields in fact iC1D r .
Thus ˛ or ˇ is part of a pairing in W i;r;w D W i;iC1;w D Wi;iC1;w , where the latter equality comes
from (19) but contradicts (21). Thus (20) is an equality. Note that the above argument does not rule out
the possibility that P i;v constructs more pairings (by inserting v at a position smaller than i C 1) than are
constructed by P i;iC1;v.

The conclusion of the proof of Theorem 3.7 — the proof of (13) for r � i — proceeds by (inverse)
induction on r , with the above discussion for r D i C 1 grounding the induction. The new inductive
argument requires an entirely different viewpoint coming from the following fact: in A, after P i;iC1;v1 is
over, process P i continues with many more subprocesses, the first of which is P i;i;vmax . Yet in A, process
P i finishes as soon P i;v1 is over, ie when the final inductive stage in Case III concludes. Therefore, our
proof strategy from this point on requires pausing A in order to analyze the rest of the actions in P i .
In particular, we explain next how P i catches up with all the “early” pairings

S
v.W i;v nWi;iC1;v/

constructed by P i .

Case IV (double inductive step settling (13) for any r) Fix r 2 f0; 1; : : : ; ig and assume inductively
that, as P i progresses, P i;� yields W i;�;w DWi;�;w for any vertex w and any position of insertion � > r .
(The induction is grounded by Case III above.) The goal is to prove

(22) W i;r;w DWi;r;w for all vertices w:

Since r � i , we get W i;r;vmax D¿DWi;r;vmax . We can therefore assume in a second inductive level that,
for some vertex v with v � vmax, (22) holds true for all vertices w with v � w. The updated goal is to
prove W i;r;v DWi;r;v.
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Inclusion W i;r;v �Wi;r;v Suppose for a contradiction that

(23) .˛; ˇ/ 2W i;r;v

is an “early” pairing (constructed during the execution of P i;v) that cannot be constructed during the
execution of P i;r;v . Then ˛ or ˇ (or both) must be involved as a pairing of some Wi;s;w with s � r , and
in addition with v � w if in fact s D r . The double inductive equality Wi;s;w DW i;s;w , the dynamics
of A and (23) then force v D w, and consequently s > r . But this inequality contradicts (11) since
W i;r;v � Pi;r;v and W i;s;w � Pi;s;w .

Inclusion Wi;r;v �W i;r;v Suppose for a contradiction that

(24) .˛; ˇ/ 2Wi;r;v

is not one of the “early” pairings constructed during the execution of P i;v . Then ˛ or ˇ (or both) must be
involved in a pairing of some W i;s;w with v � w. As in the previous paragraph, (11) then yields r � s.
In turn, the double inductive hypothesis gives W i;s;w DWi;s;w , which thus contains a pairing involving
˛ or ˇ, in contradiction to (24).

3.3 Computational complexity and performance

Designing efficient algorithms and implementing fast software for the homological processing of large data
sets is a lively technological challenge. With this in mind, we now study the computational complexity of
our algorithm, and compare it with a closely related technique used within the realm of current applications.

Harker et al. [22] describe and study an efficient way of computing homology of complexes and their
maps. At the core of their method there is an algorithm H for constructing discrete gradient fields on
a well-suited class of complexes (à la Tucker). The idea is based on a Morse theory extension of the
coreduction method introduced in [29]. Namely, cells ˛ and ˇ form a coreduction pair of a complex K
provided ˛ is a codimension-1 free face of ˇ in K. Initializing K to be the whole initial complex, the
algorithm H constructs Morse pairings ˛% ˇ whenever ˛ and ˇ form a coreduction pair in K. Each
time such a coreduction pair is found, its entries are removed from K before looking for the next pair of
coreduction cells. If at any moment no coreduction pairs exist in K, faces of K with no boundary in K
are declared to be critical (and removed from K) until creating new coreduction pairs. The algorithm
repeats until K is empty, which completes the basic (iterative) building process H0 of H.

Although both A and H are based on a heuristic search of Morse pairs, the corresponding gradient
fields bear no resemblance to each other. Indeed, the coreduction heuristic in H is replaced in A by an
inclusion–exclusion strategy guided by the chosen vertex ordering �. More precisely, we highlight the
main conceptual differences and apparent similarities between A and H. For starters, note that there is
no reason to expect (and indeed it is usually not the case) that H0 yields a reasonably efficient gradient
field on the original complex. Nonetheless the Tucker viewpoint of complexes allows Harker et al. to
iterate H0 and, in doing so, the eventually stabilized gradient field turns out to be reasonably efficient —
optimal in some cases. On the other hand, as illustrated in Examples 3.4 and formalized by Theorem 1.1,
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the corresponding efficiency property is reached by A as a result of the �–guided search of Morse pairs.
But the most important issue to stress when comparing A and H is given in terms of computational
complexity. Aside from

(a) the cost of iterating H0 until reaching a stable gradient field, and

(b) the cost of processing the resulting Morse complex at the conclusion of each application of H0 in
order to gather the Tucker information needed for the next application of H0,

the computational cost of applying H0 (say for the first time) is linear on the starting complex mass

(25) mK D cardf.˛pC1; ˇp/ W p � 0 and ˛; ˇ are faces of K with ˇ � ˛g:

See [22, Proposition 5.1]. We prove (Proposition 3.10) that, if we think of the basic A–instruction P i;v;˛

in Section 3.2 as being performed in O.1/ time,4 then A also executes in O.mK/ time. Consequently,
for practical implementations, a profitable strategy reducing computational costs coming from (a) and
(b) above can be based on a combination of algorithms A and H. In fact, the maximality condition of
the gradient field W resulting from an initial application of A can potentially be bypassed (and possibly
turned into an optimality condition) by means of a subsequent (and then much quicker) application of H
on the Morse–Tucker complex resulting from W .

Proposition 3.10 For a finite abstract ordered simplicial complex K with complex mass (25), algorithm
A executes in O.mK/ time.

Proof An efficient implementation of A requires initializing a couple of functions, f .�/ and g.i; v/.
The former function is binary and answers, at any moment of the algorithm, the question of whether a
given face � of the original complex belongs to the set of “available” faces F dim.�/ (here and below we
reuse the notation set forth in Section 3.2). The latter function reports, at any moment of the algorithm,
the list of available faces in a given dimension i that contain a given vertex v. The cost of initializing f
(with values True) is linear on the number of faces of the original complex, and therefore can be safely
neglected for the purposes of this proof. On the other hand, for a given dimension i , we start by setting
g.i; v/D ¿ for all vertices v. Then, for each face � 2 F i and for each vertex v 2 � , we append � to
g.i; v/. This last task takes O

�P
�2F i m�

�
time, where m� stands for the boundary mass of � , ie the

cardinality of the set of facets of � . Thus initializing g (and f ) takes O.mK/ time. With this preparation,
A can then be executed in O.mK/ time following the indications in Remark 3.8. Namely, to execute
process P i;v, select the faces � 2 g.i C 1; v/ with f .@v.�//D True, so that

(26) @v.�/% �

is a new Morse pair — in which case the corresponding values of f and g have to be updated. Naturally,
some faces � 2 g.iC1; v/ will not lead to the “v–type” Morse pairing (26), and will have to be accounted
for by later processes P i;w (with w < v). But, just as in the initialization of g, a fixed such � will have to
be processed at most m� times. Therefore the actual algorithm A is executed in O.mK/ time too.

4Such an assumption is easily achieved through an efficient implementation of A; see the proof of Proposition 3.10.
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Note that the estimation O.mK/ for the complexity in the final part of the previous proof is rather
coarse. Indeed, none of the i–dimensional redundant faces paired during the execution of P i will have
to be processed during the execution of P i�1. It is in this sense that the maximality of our algorithm
(Theorem 1.1) leads, paradoxically, to a computational complexity that, in practical situations, is lower
than what is estimated here.

3.4 Collapsibility conditions

This section is devoted to theoretical aspects of our gradient field. Precisely, we describe a set of “local”
conditions that allow us to identify gradient pairings without having to actually run any of the two
versions of our algorithm. Our local conditions determine in full the gradient field in a number of
instances.5 The main result in this section (Theorem 3.19) is presented through a series of preliminary
complexity-increasing results in order to isolate the role of each of the condition ingredients.

Definition 3.11 A vertex ˛i of a face ˛D Œ˛0; : : : ; ˛k�2Fk is said to be maximal in ˛ if @˛i
.˛/[fvg…Fk

for all vertices v with ˛i � v. When ˛i is nonmaximal in ˛, we write ˛.i/ WD @˛i
.˛/[f˛ig, where

˛i WDmaxfv 2 V W ˛i � v and @˛i
.˛/[fvg 2 Fkg:

Note that ˛i is maximal in ˛.i/, and that ˛i is not a vertex of ˛. Iterating the construction, for a given
face ˛ D Œ˛0; : : : ; ˛k� 2 Fk and a sequence of integers 0� i1 < i2 < � � �< ip � k, we say that the face
Œ˛i1 ; ˛i2 ; : : : ; ˛ip � is nonmaximal in ˛ provided:

� ˛i1 is nonmaximal in ˛, so we can form the face ˛.i1/.

� ˛i2 is nonmaximal in ˛.i1/, so we can form the face ˛.i1; i2/ WD ˛.i1/.i2/.
:::

� ˛ip is nonmaximal in ˛.i1; : : : ; ip�1/, so we can form the face ˛.i1; : : : ; ip/ WD˛.i1; : : : ; ip�1/.ip/.

When p D 0 (so there is no constructing process), ˛.i1; i2; : : : ; ip/ is interpreted as ˛.

Lemma 3.12 No vertex of a redundant k–face ˛ 2 Fk is maximal in ˛.

Proof Assume a pairing ˛ D Œ˛0; : : : ; ˛k�% ˇ D Œ˛0; : : : ; ˛r�1; ˇ0; ˛r ; : : : ; ˛k� and consider a vertex
˛i of ˛. If i < r , the k–face @˛i

.ˇ/D Œ˛0; : : : ; y̨i ; : : : ; ˛r�1; ˇ0; ˛r ; : : : ; ˛k� shows that the vertex ˛i is
nonmaximal in ˛. If i � r , Lemma 3.3 gives a pairing

 WD Œ˛0; : : : ; ˛r�1; ˇ0; ˛r ; : : : ; y̨i ; : : : ; ˛k�% Œ˛0; : : : ; ˛r�1; ˇ0; ˛r ; : : : ; y̨i ; : : : ; ı0; : : :�DW ı

by insertion of a vertex ı0 with ˛i � ı0, so that the k–face @ˇ0
.ı/ shows that vertex ˛i is nonmaximal

in ˛.

While maximal vertices in a face ˛ can be thought of as giving obstructions for redundancy of ˛,
maximality of the largest vertex in ˛ is actually equivalent to collapsibility of ˛ in a specific way:

5This holds, for instance, in the case of the projective plane and the torus in Examples 3.4, as well as in our application to spaces
of ordered pairs of points on complete graphs; see Section 4.1.
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Corollary 3.13 The following conditions are equivalent for a k–face ˛ D Œ˛0; : : : ; ˛k� 2 Fk:

(i) ˛k is maximal in ˛.

(ii) @˛k
.˛/% ˛.

Proof Assuming (i), both ˛ and @˛k
.˛/ are available at the start of process Pk�1;k;˛k ; the former face in

view of Lemma 3.12, and the latter face by the maximality hypothesis. The W –pairing in (ii) is therefore
constructed by the process Pk�1;k;˛k . On the other hand, if (i) fails, there is a vertex v of K which is
maximal with respect to the conditions ˛k � v and @˛k

.˛/[fvg 2Fk . As v is maximal in @˛k
.˛/[fvgD

Œ˛0; : : : ; ˛k�1; v�, the argument in the previous paragraph gives Œ˛0; : : : ; ˛k�1�% Œ˛0; : : : ; ˛k�1; v�, thus
ruling out the W –pairing in (ii).

Under additional restrictions (spelled out in (27)), maximality of other vertices also forces collapsibility
in a specific way. We start with the case of the next-to-last vertex, where the additional restrictions are
simple, yet the if and only if situation in Corollary 3.13 is lost; see Remark 3.15.

Proposition 3.14 Let ˛D Œ˛0; : : : ; ˛k�2Fk . If ˛k�1 is maximal in ˛ but ˛k is not , then @˛k�1
.˛/% ˛.

Proof By Lemma 3.12, ˛ is available at the start of process Pk�1 and, in fact, at the start of process
Pk�1;k�1;˛k�1 , in view of Corollary 3.13 and the hypothesis on ˛k . The asserted pairing follows since
@˛k�1

.˛/D Œ˛0; : : : ; y̨k�1; ˛k� is also available at the start of process Pk�1;k�1;˛k�1 . Indeed, a potential
pairing @˛k�1

.˛/% @˛k�1
.˛/[fvg constructed at a stage before Pk�1;k�1;˛k�1 would have ˛k�1 � v,

contradicting the maximality of ˛k�1 in ˛.

Remark 3.15 Consider the gradient field on the projective plane in Examples 3.4. Neither 5 nor 2 are
maximal in Œ1; 2; 5� (due to the faces Œ1; 2; 6� and Œ1; 3; 5�), yet the pairing Œ1; 5�% Œ1; 2; 5� holds.

More generally,

Proposition 3.16 For a face ˛ D Œ˛0; : : : ; ˛k� 2 Fk and an integer r 2 f0; 1; : : : ; kg with ˛r maximal
in ˛, the pairing @˛r

.˛/% ˛ holds provided

(27) for any sequence r C 1� t1 < � � �< tp � k; the face Œ˛t1 ; : : : ; ˛tp � is nonmaximal in ˛:

Proof We argue by decreasing induction on r D k; k�1; : : : ; 0. The grounding cases r D k and r D k�1
are covered by Corollary 3.13 and Proposition 3.14, respectively. For the inductive step, the maximality
of ˛r in ˛ assures both that ˛ is available at the start of Pk�1 (Lemma 3.12), and that @˛r

.˛/ is available
at the start of Pk�1;r;˛r . It thus suffices to note that (27) implies that ˛ is also available at the start
of Pk�1;r;˛r . But a potential pairing Œ˛0; : : : ; y̨t1 ; : : : ; ˛k�% Œ˛0; : : : ; ˛k� previous in A to the intended
pairing @˛r

.˛/% ˛, ie with t1 2 frC1; : : : ; kg, is inductively ruled out by the (yet previous in A) pairing

Œ˛0; : : : ; y̨t1 ; : : : ; ˛k�% ˛.t1/D Œ˛0; : : : ; y̨t1 ; f˛
t1 ; ˛t1C1; : : : ; ˛kg�;

where the use of curly braces is meant to indicate that ˛t1 may occupy any position among the ordered
vertices ˛t1C1; : : : ; ˛k .
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Not all conditions in (27) would be needed in concrete instances of Proposition 3.16. For instance, this
will be (recursively) the case if, in the previous proof, some ˛t1 turns out to be larger than some of the
vertices ˛t1C1; : : : ; ˛k .

Example 3.17 The pairing @˛k�2
.˛/% ˛ D Œ˛0; : : : ; ˛k� holds provided

(i) ˛k�2 is maximal in ˛,

(ii) ˛k�1 is nonmaximal in ˛, and

(iii) ˛k is nonmaximal in ˛ as well as in ˛.k� 1/.

Note that (ii) is used in order to state (iii).

Theorem 3.19, a far-reaching extension of Proposition 3.16, provides sufficient conditions that allow us
to identify “exceptional” pairings such as the one noted in Remark 3.15.

Definition 3.18 A vertex ˛r of a face ˛ D Œ˛0; : : : ; ˛k� 2 Fk is said to be collapsing in ˛ provided

(i) the face ˛ is not redundant,

(ii) condition (27) holds, and

(iii) for every v with ˛r � v and @˛r
.˛/[fvg 2 Fk , there is a vertex j̨ of ˛ with v � j̨ such that j̨

is collapsing in @˛r
.˛/[fvg.

Definition 3.18(i) and (iii) hold when ˛r is maximal in ˛. Note the recursive nature of Definition 3.18.

Theorem 3.19 If ˛r is collapsing in ˛, then @˛r
.˛/% ˛.

Proof The proof is parallel to that of Proposition 3.16. This time the induction is grounded by
Corollary 3.13 and the observation that, when r D k, Definition 3.18(iii) implies that ˛k is maximal
in ˛. The rest of the argument in the proof of Proposition 3.16 applies with two minor adjustments. First,
Lemma 3.12 is not needed — neither can it be applied — in view of condition (i). Second, the fact that
@˛r
.˛/ is available at the start of Pk�1;r;˛r comes directly from (iii) and induction.

4 Application to configuration spaces

We use the gradient field in the previous section to describe the cohomology ring of the configuration
space of ordered pairs of points on a complete graph.

4.1 Gradient fields on the Munkres homotopy simplicial model

Let Km be the 1–dimensional skeleton of the full .m�1/–dimensional simplex on vertices Vm D
f1; 2; : : : ; mg. Thus jKmj is the complete graph on the m vertices. The homotopy type of Conf.jKmj; 2/
is well understood for m� 3, so we assume m� 4 from now on. We think of Km as an ordered simplicial
complex with the natural order on Vm, and study Conf.jKmj; 2/ through its simplicial homotopy model

Algebraic & Geometric Topology, Volume 24 (2024)



3738 Emilio J González and Jesús González

Cm in (2). The condition m� 4 implies that Cm is a pure 2–dimensional complex, ie all of its maximal
faces have dimension 2. Furthermore, 2–dimensional faces of Cm have one of the forms

(28)
�
a a d

b c c

�
or

�
a0 c0 c0

b0 b0 d 0

�
where

(29) d > a … fb; cg; b < c ¤ d; d 0 > b0 … fa0; c0g and a0 < c0 ¤ d 0:

Note that the matrix-type notation in (28) is compatible with the notation ˛ D Œ˛0; : : : ; ˛k� in previous
sections; each ˛i now stands for a column-type vertex a

b
(with a¤ b). In what follows, the conditions

in (29) on the integers a; b; c; d; a0; b0; c0; d 0 2 Vm will generally be implicit and omitted when writing a
2–simplex or one of its faces. For instance, the forced relations a¤ b < d ¤ a are omitted in item (a) of:

Proposition 4.1 Let Wm be the gradient field on Cm constructed in Section 3 with respect to the
lexicographic order on the vertices a

b
D .a; b/ 2 Vm �Vm n�Vm

of Cm. The full list of Wm–pairings is:

(a)
�
a
b
a
d

�
%
�
a
b
a
d
m
d

�
for a < m > d .

(b)
�
a
b
a
m

�
%
�
a
b
a
m
m�1
m

�
for a < m� 1.

(c)
�
a
b
c
b

�
%
�
a
b
c
b
c
m

�
for b < m > c.

(d)
�
a
b
m
b

�
%
�
a
b
m
b

m
m�1

�
for b < m� 1.

(e)
�
a
b
c
d

�
%
�
a
b
c
b
c
d

�
for a < c, b < d , b ¤ c and either c < m > d or c Dm> d C 1.

(f)
�
a
b
c
d

�
%
�
a
b
a
d
c
d

�
for a < c, b < d , a¤ d and either b D c < m > d or cC 1 < mD d .

(g)
�
a
b

�
%
�
a
b

m
m�1

�
for either b < m� 1 or a < m� 1D b.

(h)
�
a
m

�
%
�
a
m
m�1
m

�
for a < m� 1.

(i)
�
m�1
m

�
%
�
m�1
m�2

m�1
m

�
.

In particular:

(j) In dimension 0, the critical face is the vertex
�
m
m�1

�
.

(k) In dimension 1, the critical faces are the simplices

(k.1)
�
a
b
m�1
m

�
with either aDm� 1 > bC 1 or a < m� 1� b,

(k.2)
�
m
b
m
d

�
with d < m� 1,

(k.3)
�
a
m
c
m

�
with c < m� 1.

(l) In dimension 2, the critical faces are the simplices
�
a
b
a
d
c
d

�
with b ¤ c < m > d .

Note that the condition a¤ d in (f) is forced to hold in the stronger form a < d .

Proof All pairings, except for the one in (f) when b ¤ c (so that c C 1 < m D d ), are given by
Corollary 3.13 and Proposition 3.14. The exceptional case requires the stronger Theorem 3.19. On the
other hand, direct inspection shows that the faces listed as critical are precisely those not taking part in the
list of Wm–pairings. The proof is then complete by observing that the criticality of any d–dimensional

Algebraic & Geometric Topology, Volume 24 (2024)



An algorithmic discrete gradient field and the cohomology algebra of configuration spaces 3739

face ˛ in (j)–(l) is forced by the fact that all possible .d�1/–faces and all possible .dC1/–cofaces of ˛
are involved in one of the pairings (a)–(i). For instance, a face

�
a
b
a
d
c
d

�
in (l) is not collapsible since the

three potential pairings�
a a

b d

�
Ü

�
a a c

b d d

�
;

�
a c

b d

�
Ü

�
a a c

b d d

�
and

�
a c

d d

�
Ü

�
a a c

b d d

�
are ruled out by (a), (e) and (c), respectively.

The next-to-last sentence in the proof above reflects the maximality of Wm in Theorem 1.1. On the other
hand, a straightforward counting shows that the number cd of critical faces in dimension d 2 f0; 1; 2g is
given by

(30) c0 D 1; c1 D 2.m� 2/
2
� 1 and c2 D

1
4
.m� 1/.m� 2/.m� 3/.m� 4/:

In particular, the Euler characteristic of Conf.jKmj; 2/ is given by
1
4
m.m3� 10m2C 27m� 18/;

which yields an explicit expression for the conclusion of [4, Corollary 1.2] in the case of complete graphs.
Note in particular that the gradient field W4 is optimal:

Corollary 4.2 There is a homotopy equivalence Conf.jK4j; 2/'
W
7 S

1.

Corollary 4.2 should be compared to the fact that the configuration space of unordered pairs of points in
jK4j has the homotopy type of

W
4 S

1; see [12, Example 4.5].

4.2 The Morse cochain complex

The Morse coboundary map ı W �i .Cm/! �iC1.Cm/ is forced to vanish for i D 0 since c0 D 1. It is
more interesting to describe the situation for i D 1:

Proposition 4.3 The coboundary ı W �1.Cm/! �2.Cm/ vanishes on the duals of the critical faces of
types (k.2) and (k.3) in Proposition 4.1. For the duals of the critical faces of type (k.1) we have

(31) ı

��
a m� 1

b m

��
D

X �
a a x

y b b

�
�

X �
a a x

b y y

�
C

X �
x x a

b y y

�
�

X �
x x a

y b b

�
;

where all four summands on the right hand-side of (31) run over all integers x and y that render critical
2–faces. Explicitly , a < x < m in the first and second summations , x < a in the third and fourth
summations , b < y < m in the second and third summations , y < b in the first and fourth summations ,
and b ¤ x ¤ y ¤ a in all four summations.

Note that the first two summations in (31) are empty when aDm� 1 (so b < m� 2).

Proof The complete trees of mixed paths ˇ&%� � �%& ˛ from critical 2–dimensional faces ˇ to either
critical or collapsible 1–dimensional faces ˛ are given in Figures 3–11, where we indicate a positive (resp.
negative) face with a bold (resp. regular) arrow. Types of pairings involved are indicated using the item
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ˆ̂̂<̂
ˆ̂̂̂̂̂:
&
�
a
d
c
m

� .f/
%
�
a
d
a
m
c
m

� 8̂<̂:&
�
a
d
a
m

� .b/
%
�
a
d
a
m
m�1
m

� (& �
a
d
m�1
m

�
.C/

&
�
a
m
m�1
m

�
.h/

&
�
a
m
c
m

�
.C/

&
�
c
d
c
m

� .b/
%
�
c
d
c
m
m�1
m

� (& �
c
d
m�1
m

�
.�/

&
�
c
m
m�1
m

�
.h/

Figure 3: Gradient paths evolving from
�
a
b
a
d
c
d

�
&&&
�
a
d
c
d

� .c/
%%%
�
a
d
c
d
c
m

�
for b ¤ c �m� 2� d .

names (a)–(i) in Proposition 4.1. At the end of each branch we indicate either the type of paring that shows
˛ is collapsible or, if ˛ is critical, the multiplicity with which the path must be accounted for in (6) and (7).

The first assertion follows by observing that, in Figures 3–11, there are two mixed paths departing from a
fixed critical 2–dimensional face and arriving to a fix critical 1–dimensional face of the form (k.2) or (k.3).
These two mixed paths have opposite multiplicities, so they cancel each other out in (7). For instance,
each mixed path from

�
a
b
a
d
c
d

�
to
�
a
m
c
m

�
in Figure 3 cancels out the corresponding path in Figure 4.

To get at (31), start by noticing from Figures 3–11 that there are only four types of mixed paths departing
from a given critical 2–dimensional face

�
a
b
a
d
c
d

�
that arrive to some critical 1–dimensional faces of

type (k.1). Namely:

� There is a mixed path
�
a
b
a
d
c
d

�
&% � � � %&

�
a
d
m�1
m

�
with multiplicity C1; see Figures 3, 6 and 9,

� There is a mixed path
�
a
b
a
d
c
d

�
&% � � �%&

�
a
b
m�1
m

�
with multiplicity �1; see Figures 4, 7 and 10,

� There is a mixed path
�
a
b
a
d
c
d

�
&%� � �%&

�
c
b
m�1
m

�
with multiplicityC1; see Figures 4, 7 and 10.

� There is a mixed path
�
a
b
a
d
c
d

�
&% � � � %&

�
c
d
m�1
m

�
with multiplicity �1 provided .c; d/ ¤

.m� 1;m� 2/; see Figures 3, 6 and 9.8̂̂̂̂
ˆ̂̂̂̂̂̂
ˆ̂̂̂̂̂̂
ˆ̂̂<̂
ˆ̂̂̂̂̂̂
ˆ̂̂̂̂̂̂
ˆ̂̂̂̂̂:

&
�
a
b
c
b

� .c/
%
�
a
b
c
b
c
m

�
8̂̂̂̂
ˆ̂̂<̂
ˆ̂̂̂̂̂:
&
�
a
b
c
m

� .f/
%
�
a
b
a
m
c
m

� 8̂<̂:&
�
a
b
a
m

� .b/
%
�
a
b
a
m
m�1
m

� (& �
a
b
m�1
m

�
.�/

&
�
a
m
m�1
m

�
.h/

&
�
a
m
c
m

�
.�/

&
�
c
b
c
m

� .b/
%
�
c
b
c
m
m�1
m

� (& �
c
b
m�1
m

�
.C/

&
�
c
m
m�1
m

�
.h/

&
�
c
b
c
d

� .a/
%
�
c
b
c
d
m
d

�
8̂̂̂̂
ˆ̂̂<̂
ˆ̂̂̂̂̂:
&
�
c
b
m
d

� .e/
%
�
c
b
m
b
m
d

� 8̂<̂:&
�
c
b
m
b

� .d/
%
�
c
b
m
b

m
m�1

� (& �
c
b

m
m�1

�
.g/

&
�
m
b

m
m�1

�
.g/

&
�
m
b
m
d

�
.�/

&
�
c
d
m
d

� .d/
%
�
c
d
m
d

m
m�1

� (& �
c
d

m
m�1

�
.g/

&
�
m
d

m
m�1

�
.g/

Figure 4: Gradient paths evolving from
�
a
b
a
d
c
d

�
&
�
a
b
c
d

� .e/
%
�
a
b
c
b
c
d

�
for b ¤ c �m� 2� d .
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ˆ̂<̂
ˆ̂̂̂̂:
&
�
a
b
m
d

� .e/
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Figure 5: Gradient paths evolving from
�
a
b
a
d
c
d

�
&&&
�
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b
a
d

� .a/
%%%
�
a
b
a
d
m
d

�
for b ¤ c �m� 2� d .

Therefore the value of the boundary map @ W�2.Cm/!�1.Cm/ at a critical face
�
a
b
a
d
c
d

�
for b¤ c <m>d

with .c; d/¤ .m� 1;m� 2/ is

(32) @

��
a a c

b d d

��
D

�
a m� 1

d m

�
�

�
a m� 1

b m

�
C

�
c m� 1

b m

�
�

�
c m� 1

d m

�
;

whereas, for .c; d/D .m� 1;m� 2/,

(33) @

��
a a m� 1

b m� 2 m� 2

��
D

�
a m� 1

m� 2 m

�
�

�
a m� 1

b m

�
C

�
m� 1 m� 1

b m

�
:

(Note that (32) is valid when .c; d/D .m� 1;m� 2/ provided the fourth noncritical term�
m� 1 m� 1

m� 2 m

�
is omitted.) That (31) follows by dualizing (32) and (33) is a straightforward exercise left to the reader.

4.3 Cohomology bases

By Corollary 4.2, we can assume m � 5 throughout the rest of the paper. We start by identifying
(in Corollary 4.7) an explicit basis for H 1.Conf.jKmj; 2//, ie for the kernel of the Morse coboundary
ı W �1.Cm/! �2.Cm/. By Proposition 4.3, it is enough to focus on the submodule �10.Cm/ of �1.Cm/
generated by the duals of the basis elements of type (k.1). Thus �10.Cm/ is free on elements

˚
a
b

	
satisfying

a < m > b ¤ a and .a; b/¤ .m� 1;m� 2/, where
˚
a
b

	
stands for the dual of

�
a
b
m�1
m

�
.

Definition 4.4 Consider the elements
˝
a
b

˛
2�10.Cm/ defined for a<m>b¤a and .a; b/¤ .m�1;m�2/

according to the following cases (see Figure 12):

(R1) For 1� a � 2, or for 1� a �m� 3 with b Dm� 1, or for .a; b/D .3; 1/,D
a

b

E
WD

X
a¤j�b

n
a

j

o
:

8<:&
�
a
d
m�1
m

�
.C/

&
�
m�1
d

m�1
m

� .�/ if d < m� 2
.i/ if d Dm� 2

Figure 6: Gradient paths evolving from
�
a
b
a
d
m�1
d

�
&&&
�
a
d
m�1
d

� .c/
%%%
�
a
d
m�1
d

m�1
m

�
for b ¤m� 1 > d .
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Figure 7: Gradient paths evolving from
�
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�
&
�
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b
m�1
d

� .e/
%
�
a
b
m�1
b

m�1
d

�
for b ¤m� 1 > d .

(R2) For 4� a �m� 1 with b D 1, or for aDm� 1 with 1� b �m� 4,D
a

b

E
WD

X
b¤i�a

n
i

b

o
:

(R3)
˝
3
2

˛
WD
˚
3
2

	
C
˚
3
1

	
C
˚
2
3

	
C
˚
2
1

	
C
˚
1
3

	
C
˚
1
2

	
.

(R4) For 4� a �m� 2, D
a

2

E
WD

X
2¤i�a

n
i

2

o
C

X
i�a�1

n
i

a

o
:

(R5) For a; b 2 f3; 4; : : : ; m� 2g,D
a

b

E
WD

X
j¤i�a¤j�b

n
i

j

o
C

X
i�a�1

n
i

a

o
:

(R6)
˝
m�1
m�3

˛
WD
˚
m�1
m�3

	
�
P
i;j

˚
i
j

	
, where the sum runs over i and j with m� 3¤ j ¤ i �m� 2� j .

(R7)
˝
m�2
m�1

˛
WD
˚
m�2
m�1

	
�
P
i;j

˚
i
j

	
, where the sum runs over i and j with m� 2� j ¤ i �m� 3.

Direct inspection of the defining formulae yields:

Lemma 4.5 The following relations hold under the indicated conditions:

(i)
˝
a
b

˛
�
˝
a
b�1

˛
D
P
b¤i�a

˚
i
b

	
, provided 3� a �m� 2 and 4� b �m� 2 with a¤ b ¤ aC 1.

(ii)
˝
a
3

˛
�
˝
a
2

˛
�
˝
a
1

˛
D
P
3¤i�a

˚
i
3

	
, provided 4� a �m� 2.

(iii)
˝
b�1
b

˛
�
˝
b�1
b�2

˛
D
P
i<b

˚
i
b

	
, provided 5� b �m� 2.

(iv)
˝
3
4

˛
�
˝
3
2

˛
D
P
i�3

˚
i
4

	
, provided m� 6.

Proposition 4.6 The elements
˝
a
b

˛
for a<m>b¤a and .a; b/¤ .m�1;m�2/ yield a basis of �10.Cm/.
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Figure 8: Gradient paths evolving from
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Proof In view of the one-to-one correspondence
˚
a
b

	
$
˝
a
b

˛
, it suffices to check that

(34) each
˚
a
b

	
is a Z–linear combination of the elements

˝
a0

b0

˛
.

In most cases (34) follows by a simple recursive argument based on the observation that, in all cases,

(35)
n
a

b

o
D

D
a

b

E
C

X
.a0;b0/¤.a;b/

˙1
n
a0

b0

o
:

Namely, the recursive argument applies for (R1) when a � 2 or b D 1, for (R2) when b D 1, and for (R3).
The recursive argument also applies in the cases (R6) and (R7), as well as in the remaining instances of
(R1) and (R2) provided

(36) (34) holds true when a and b fall in cases (R4) and (R5).

Since (R4) and (R5) are empty for mD 5, we only need to verify (36) assuming m� 6.

Direct computation gives
˚
4
2

	
D
˝
4
2

˛
�
˝
3
4

˛
C
˝
3
1

˛
C
˝
2
3

˛
C
˝
1
3

˛
�
˝
1
2

˛
, while Lemma 4.5(iii) and (iv) yieldn

a

2
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D

�D
a

2

E
�

D
a� 1

2

E�
C

�D
a� 2

a� 1

E
�

D
a� 2

a� 3

E�
�

�D
a� 1

a

E
�

D
a� 1

a� 2

E�
for 5� a �m� 2, which establishes (36) in the case of (R4). The validity of (36) in the case aD 3 of
(R5) is established in a similar way. Note first that the idea in the recursive argument based on (35) works
to give (36) for .a; b/D .3; 4/; then use Lemma 4.5(i) to getn
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Figure 9: Gradient paths evolving from
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for 5 � b � m� 2. The validity of (36) in the case b D 3 of (R5) is established using the idea in the
recursive argument at the beginning of the proof, except that (35) is replaced by the expressionn

a

3

o
D

D
a

3

E
�

D
a

2

E
�

D
a

1

E
�

X
3¤i<a

n
i

3

o
coming from Lemma 4.5(ii). Lastly, the validity of (36) in the remaining case a; b 2 f4; : : : ; m� 2g
of (R5) is established by the formulae

�
˚
a
b

	
D
�˝
a
b

˛
�
˝
a
b�1

˛�
�
�˝
a�1
b

˛
�
˝
a�1
b�1

˛�
, when aC 1¤ b ¤ a� 1,

�
˚
a
b

	
D
�˝

a
a�1

˛
�
˝
a
a�2

˛�
�
�˝
a�2
a�1

˛
�
˝
a�2
a�3

˛�
, when b D a� 1 (so a � 5),

�
˚
a
b

	
D
�˝

a
aC1

˛
�
˝
a
a�1

˛�
�
�˝
a�1
aC1

˛
�
˝
a�1
a

˛�
, when b D aC 1 (so a �m� 3),

which use Lemma 4.5(i), (iii) and (iv).

Recall that the Morse coboundary ı W�0.Cm/!�1.Cm/ is trivial, so that the 1–dimensional cohomology
of Conf.jKmj; 2/ is given by the kernel of ı W �1.Cm/! �2.Cm/.

Corollary 4.7 A basis for H 1.Conf.jKmj; 2// is given by

(i) the duals of the critical 1–dimensional faces of type (k.2) and (k.3) in Proposition 4.1, and

(ii) the (already dualized ) elements
˝
a
b

˛
satisfying aDm� 1, b Dm� 1 or .a; b/D .m� 2;m� 3/.

Proof Recall m � 5. A straightforward counting shows that the number of elements in (i) and (ii) is
.m� 1/.m� 2/, which is also the first Betti number of Conf.jKmj; 2/; see [9, Corollary 23]. Since the(
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Figure 11: Gradient paths evolving from
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for b ¤ c < m� 1.
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Figure 12: Defining regions for the basis elements
˝
a
b

˛
.

homology of Conf.jKmj; 2/ is torsion-free [9, Proposition 2], Proposition 4.6 implies that the proof will
be complete once it is checked that ı W�1.Cm/!�2.Cm/ vanishes on each of the elements in (i) and (ii).
Indeed, this actually implies that ı is injective on the submodule generated by the basis elements

˝
a
b

˛
not

included in (ii).

The vanishing of ı on the elements in (i) comes directly from Proposition 4.3, whereas the vanishing of ı
on the elements in (ii) is verified by direct calculation using the expression of ı in Proposition 4.3. The
arithmetic manipulations needed are illustrated next in a representative case, namely, that of

˝
m�1
m�3

˛
.

Use Proposition 4.3 and the defining formula (R6) to get

ı
D
m� 1

m� 3

E
D

X
x;y

h
x x m� 1

m� 3 y y

i
�

X
x;y

h
x x m� 1

y m� 3 m� 3

i
�

X
m�3¤j¤i�m�2�j

�X
x;y

h
i i x

y j j

i
�

X
x;y

h
i i x

j y y

i
C

X
x;y

h
x x i

j y y

i
�

X
x;y

h
x x i

y j j

i�
:

The summands with y Dm� 1 in the second inner summation cancel out the corresponding ones in the
third inner summation. (The corresponding fact for y < m� 1, dealt with below, is more subtle since
i �m� 2 in the third inner summation, while x �m� 1 in the second inner summation.) Noticing in
addition that y Dm� 2 is forced in the first outer summation, we then get

ı
D
m� 1

m� 3

E
D

X
x

h
x x m� 1

m� 3 m� 2 m� 2

i
�

X
x;y

h
x x m� 1

y m� 3 m� 3

i
�

X
m�3¤j¤i�m�2�j

�X
x;y

h
i i x

y j j

i
�

X
x

y�m�2

h
i i x

j y y

i
C

X
x

y�m�2

h
x x i

j y y

i
�

X
x;y

h
x x i

y j j

i�
:
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In the last expression, the summands with x �m� 2 in the second inner summation cancel out the third
inner summation, so

ı
D
m� 1

m� 3

E
D

X
x

h
x x m� 1

m� 3 m� 2 m� 2

i
�

X
x;y

h
x x m� 1

y m� 3 m� 3

i
�

X
m�3¤j¤i�m�2�j

�X
x;y

h
i i x

y j j

i
�

X
y�m�2

h
i i m� 1

j y y

i
�

X
x;y

h
x x i

y j j

i�
:

Likewise, in the last expression, summands with x �m� 2 in the first inner summation cancel out the
third inner summation, so

ı
D
m� 1

m� 3

E
D

X
x

h
x x m� 1

m� 3 m� 2 m� 2

i
�

X
x;y

h
x x m� 1

y m� 3 m� 3

i
�

X
m�3¤j¤i�m�2�j

�X
y

h
i i m� 1

y j j

i
�

X
y�m�2

h
i i m� 1

j y y

i�
:

Lastly, merge the first (resp. second) outer summation and the second (resp. first) inner summation in the
last expression to get

ı
D
m� 1

m� 3

E
D

X
j¤i�m�2�y

h
i i m� 1

j y y

i
�

X
j¤i�m�2�j

h
i i m� 1

y j j

i
D 0;

as asserted.

We next identify (in Corollary 4.11) an explicit basis for H 2.Conf.jKmj; 2//, ie for the cokernel of the
Morse coboundary ı W�1.Cm/!�2.Cm/. In what follows, the conditions 1� a < c <m, 1� b <d <m
and c ¤ d ¤ a¤ b ¤ c <m> d for critical faces

�
a
b
a
d
c
d

�
identified in Proposition 4.1(l) will be implicit

(and generally omitted).

Definition 4.8 Let C be the collection of the critical faces
�
a
b
a
d
c
d

�
of one of the four types�

1
2
1
d
c
d

�
with c; d 2 f3; 4; : : : ; m� 1g;(37) �

1
3
1
d
2
d

�
with d 2 f4; 5; : : : ; m� 1g;(38) �

2
1
2
3
c
3

�
with c 2 f4; 5; : : : ; m� 1g;(39) �

2
1
2
4
3
4

�
;(40)

and let B stand for the collection of all other critical faces
�
a
b
a
d
c
d

�
.

The following change of basis is used to show that the duals of critical faces in B form a basis of
H 2.Conf.jKmj; 2//:

Definition 4.9 For each
�
a
b
a
d
c
d

�
2 B, consider the element

˝
a
b
a
d
c
d

˛
2 �2.Cm/ defined through:

(i) Case aD 1 and c � 3 with
�
a
b
a
d
c
d

�
not fitting in (37):

(a)
˝
1
b
1
d
c
d

˛
WD
�
1
b
1
d
c
d

�
�
�
1
2
1
d
c
d

�
C
�
1
2
1
b
c
b

�
, for b � 3.
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(ii) Case aD 1 and c D 2 with
�
a
b
a
d
c
d

�
not fitting in (38):

(b)
˝
1
b
1
d
2
d

˛
WD
�
1
b
1
d
2
d

�
�
�
1
3
1
d
2
d

�
C
�
1
3
1
b
2
b

�
, for b � 4.

(iii) Case aD 2, b D 1 and c � 4 with
�
a
b
a
d
c
d

�
not fitting in (39):

(c)
˝
2
1
2
d
c
d

˛
WD
�
2
1
2
d
c
d

�
�
�
2
1
2
3
c
3

�
C
�
1
3
1
d
2
d

�
�
�
1
2
1
d
c
d

�
C
�
1
2
1
3
c
3

�
, for d � 4.

(iv) Case aD 2, b D 1 and c D 3 with
�
a
b
a
d
c
d

�
not fitting in (40):

(d)
˝
2
1
2
d
3
d

˛
WD
�
2
1
2
d
3
d

�
�
�
2
1
2
4
3
4

�
C
�
1
3
1
d
2
d

�
�
�
1
3
1
4
2
4

�
C
�
1
2
1
4
3
4

�
�
�
1
2
1
d
3
d

�
, for d � 5.

(v) Case aD 2 and b � 3:

(e)
˝
2
3
2
d
c
d

˛
WD
�
2
3
2
d
c
d

�
C
�
1
3
1
d
2
d

�
�
�
1
2
1
d
c
d

�
C
�
1
2
1
3
c
3

�
,

(f)
˝
2
b
2
d
c
d

˛
WD
�
2
b
2
d
c
d

�
�
�
1
3
1
b
2
b

�
C
�
1
3
1
d
2
d

�
�
�
1
2
1
d
c
d

�
C
�
1
2
1
b
c
b

�
, for b � 4.

(vi) Case aD 3 and b D 1:

(g)
˝
3
1
3
2
c
2

˛
WD
�
3
1
3
2
c
2

�
C
�
2
1
2
4
3
4

�
�
�
2
1
2
3
c
3

�
C
�
1
3
1
4
2
4

�
�
�
1
2
1
4
3
4

�
C
�
1
2
1
3
c
3

�
,

(h)
˝
3
1
3
4
c
4

˛
WD
�
3
1
3
4
c
4

�
C
�
2
1
2
4
3
4

�
�
�
2
1
2
3
c
3

�
C
�
1
3
1
4
2
4

�
�
�
1
2
1
4
c
4

�
C
�
1
2
1
3
c
3

�
,

(i)
˝
3
1
3
d
c
d

˛
WD
�
3
1
3
d
c
d

�
C
�
2
1
2
4
3
4

�
�
�
2
1
2
3
c
3

�
C
�
1
3
1
4
2
4

�
�
�
1
2
1
d
c
d

�
C
�
1
2
1
3
c
3

�
�
�
1
2
1
4
3
4

�
C
�
1
2
1
d
3
d

�
, for d � 5.

(vii) Case aD 3 and b � 2:

(j)
˝
3
2
3
d
c
d

˛
WD
�
3
2
3
d
c
d

�
�
�
1
2
1
d
c
d

�
C
�
1
2
1
d
3
d

�
,

(k)
˝
3
b
3
d
c
d

˛
WD
�
3
b
3
d
c
d

�
�
�
1
2
1
d
c
d

�
C
�
1
2
1
b
c
b

�
�
�
1
2
1
b
3
b

�
C
�
1
2
1
d
3
d

�
, for b � 4.

(viii) Case a � 4:

(l)
˝
a
1
a
2
c
2

˛
WD
�
a
1
a
2
c
2

�
�
�
1
2
1
3
a
3

�
C
�
1
2
1
3
c
3

�
�
�
2
1
2
3
c
3

�
C
�
2
1
2
3
a
3

�
,

(m)
˝
a
1
a
3
c
3

˛
WD
�
a
1
a
3
c
3

�
�
�
2
1
2
3
c
3

�
C
�
2
1
2
3
a
3

�
,

(n)
˝
a
1
a
d
c
d

˛
WD
�
a
1
a
d
c
d

�
�
�
2
1
2
3
c
3

�
C
�
2
1
2
3
a
3

�
�
�
1
2
1
d
c
d

�
C
�
1
2
1
3
c
3

�
�
�
1
2
1
3
a
3

�
C
�
1
2
1
d
a
d

�
, for d � 4,

(o)
˝
a
2
a
d
c
d

˛
WD
�
a
2
a
d
c
d

�
�
�
1
2
1
d
c
d

�
C
�
1
2
1
d
a
d

�
,

(p)
˝
a
b
a
d
c
d

˛
WD
�
a
b
a
d
c
d

�
�
�
1
2
1
d
c
d

�
C
�
1
2
1
b
c
b

�
�
�
1
2
1
b
a
b

�
C
�
1
2
1
d
a
d

�
, for b � 3.

Direct inspection shows that

(41) each
˝
a
b
a
d
c
d

˛
�
�
a
b
a
d
c
d

�
is a linear combination of basis elements in C:

Therefore B0[C is a new basis of �2.Cm/, where B0 stands for the collection of elements
˝
a
b
a
d
c
d

˛
. Further,

routine verifications using (32) and (33) show that B0 lies in the kernel of @ W �2.Cm/! �1.Cm/. In fact:

Lemma 4.10 B0 is a basis of the kernel of the Morse boundary map @ W �2.Cm/! �1.Cm/.

Proof The argument is parallel to that in the proof of Corollary 4.7. Namely, by direct counting, the
cardinality of C is jCj Dm2� 5mC 5. In view of (30), this leads to

jB0j D jBj D 1
4
m.m� 2/.m� 3/.m� 5/C 1;
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which is the second Betti number of Conf.jKmj; 2/; see [9, Corollary 23]. Hence @ W �2.Cm/! �1.Cm/

is forced to be injective on the submodule spanned by C and, in particular, B0 spans (and is thus a basis of)
ker.@ W �2.Cm/! �1.Cm//.

The two sequences

(42)
0!H2.Conf.jKmj; 2// �,! �2.Cm/

@! �1.Cm/;

0 H 2.Conf.jKmj; 2// �� �2.Cm/
ı �1.Cm/;

are exact; the first one by definition, and the second one, which is the dual of the first one, because
H1.Conf.jKmj; 2// is torsion-free. Thus the cohomology class represented by an element e 2 �2.Cm/ is
given by the ��–image of e. Such an interpretation of cohomology classes is used in the proof of:

Corollary 4.11 A basis of H 2.Conf.jKmj; 2// is given by the classes represented by the duals of
the critical faces in B. Furthermore , the expression (as a linear combination of basis elements) of the
cohomology class represented by the dual of a critical face in C is obtained from the following equations ,
which are congruences modulo the image of ı W �1.Cm/! �2.Cm/:

(E1)
P
x

�
x
2
x
3
c
3

�
�
P
x

�
c
2
c
3
x
3

�
�
P

y¤3
z2f1;3g

�P
x

�
x
z
x
y
c
y

�
�
P
x

�
c
z
c
y
x
y

��
for c > 3.

(E2)
P
x

�
x
2
x
4
3
4

�
�
P
x

�
3
2
3
4
x
4

�
�
P

y¤4
z2f1;4g

�P
x

�
x
z
x
y
3
y

�
�
P
x

�
3
z
3
y
x
y

��
.

(E3)
P
x;y

�
x
y
x
d
c
d

�
�
P
x;y

�
c
y
c
d
x
d

�
�
P
x;y

�
x
d
x
y
c
y

�
�
P
x;y

�
c
d
c
y
x
y

�
for 3� c¤d �4with .c; d/¤ .3; 4/.

(E4)
P
x;y

�
x
y
x
4
2
4

�
�
P
.x;y/¤.3;1/

�
2
y
2
4
x
4

�
�
�P

x;y

�
x
4
x
y
2
y

�
�
P
x;y

�
2
4
2
y
x
y

��
�
�P

y>4
x

�
x
1
x
y
3
y

�
�
P
x;y

�
3
1
3
y
x
y

��
.

(E5)
P
x;y

�
x
y
x
d
2
d

�
�
P
x;y

�
2
y
2
d
x
d

�
�
P
x;y

�
x
d
x
y
2
y

�
�
P
x;y

�
2
d
2
y
x
y

�
for d > 4.

(E6)
P
x;y

�
x
1
x
y
c
y

�
�
P
x;y

�
c
1
c
y
x
y

�
for c > 2.

Note that .E5/ says that the congruence in .E3/ also holds for c D 2 provided d > 4. Likewise, .E1/ and
.E2/ can be stated simultaneously asX

x

h
x x c

2 q q

i
�

X
x

h
c c x

2 q q

i
�

X
y¤q
z2f1;qg

�X
x

h
x x c

z y y

i
�

X
x

h
c c x

z y y

i�
;

with c > 3D q or c D 3D q�1. We have chosen the structure stated in .E1/–.E6/ for proof-organization
purposes; see Figure 13.

Proof The first assertion follows from (41) and (42). For the second assertion, start by noting that
the listed congruences are obtained by dualizing the 16 formulae (in Definition 4.9) that describe the
inclusion �. Indeed, the validity of the congruences is obtained by a straightforward verification (left
as an exercise for the reader) of the fact that both sides of each congruence evaluate the same at each
basis element

˝
a
b
a
d
c
d

˛
. Furthermore, direct inspection shows that, in each equation .Ei/, there is a single
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i 1 2 3 4 5 6 6

si
�
1
2
1
3
c
3

� �
1
2
1
4
3
4

� �
1
2
1
d
c
d

� �
1
3
1
4
2
4

� �
1
3
1
d
2
d

� �
2
1
2
3
c
3

� �
2
1
2
4
3
4

�
type (37) (37) (37) (38) (38) (39) (40)

restrictions c > 3
3� c ¤ d � 4

.c; d/¤ .3; 4/
d > 4 c > 3

Figure 13: Elements coming from C in the congruences (Ei) of Corollary 4.11.

summand si (spelled out in Figure 13) that fails to come from B. Therefore .Ei/ can be thought of as
expressing the cohomology class represented by si as a Z–linear combination of basis elements. The
second assertion of the corollary then follows by observing, from Figure 13, that each element in C arises
as one, and only one, of the special summands si .

4.4 Cohomology ring

In previous sections we have described explicit cocycles in ��.Cm/ representing basis elements in
cohomology. We now make use of (9) to assess the corresponding cup products at both the critical cochain
and homology levels. Since cup products in C �.Cm/ are elementary (see Remark 4.12), the bulk of
the work amounts to giving a (suitable) description of the cochain maps ˆ W ��.Cm/! C �.Cm/ and
ˆ W C �.Cm/! ��.Cm/.

Remark 4.12 Recall that basis elements in C 1.Cm/ are given by the dualized 1–dimensional faces
�
a
b
c
d

�
.

(As in earlier parts of the paper, upper stars for dualized elements are omitted, and arithmetic restrictions
among the numbers assembling critical faces are usually not written down.) From the usual formula for
cup products in the simplicial setting, we see that the only nontrivial products in C �.Cm/ have the form

(43)
h
a a

b d

i
^
h
a c

d d

i
D

h
a a c

b d d

i
or

h
a c

b b

i
^
h
c c

b d

i
D

h
a c c

b b d

i
:

(So every 2–face is uniquely a product of two 1–faces.) In particular, for the purposes of applying (9), all
basis elements

�
a
b
c
d

�
with a < c and b < d can be ignored in the expression for ˆ.

Proposition 4.13 The values of the cochain mapˆ W�1.Cm/!C 1.Cm/ on the basis elements (k.1)–(k.3)
of Proposition 4.1 satisfy the following family of congruences taken modulo basis elements

�
a
b
c
d

�
with

a < c and b < d :

(i) ˆ
��
a
b
m�1
m

��
�
�
a
b
a
m

�
C
P�

a
b
x
b

�
�
P�y

b
a
b

�
, where the first summation runs over x 2 f1; : : : ; m�1g

with a < x ¤ b, and the second summation runs over y 2 f1; : : : ; m� 1g with b ¤ y < a.

(ii) ˆ
��
m
b
m
d

��
�
P�

x
b
x
d

�
, where the summation runs over x 2 f1; : : : ; mg with b ¤ x ¤ d .

(iii) ˆ
��
a
m
c
m

��
�
P�

a
y
c
y

�
, where the summation runs over y 2 f1; : : : ; mg with a¤ y ¤ c.
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.b <m�2/�
m�1
b

m�1
m

�
.

.b¤y <m�1/�y
b
m�1
b

m�1
m

� .c/
-
�y
b
m�1
b

�
8̂̂̂<̂
ˆ̂:
.

.b <f <m�1/�y
b
m�1
b

m�1
f

� .e/
-
�y
b
m�1
f

�
.

.y¤f /�y
b
y
f
m�1
f

�
(critical)

.

.y¤ z <b/�
y
z
y
b
m�1
b

�
(critical)

Figure 14: Gradient paths landing on a critical cell
�
m�1
b

m�1
m

�
of type (k.1) with b < m� 2.

Proof The congruences follow from (8) and from direct inspection of Figures 14–17, where we spell out
the complete trees of gradient paths landing on critical 1–dimensional faces. Here we follow the notational
conventions used in Figures 3–11, except that we now keep track of relevant numerical restrictions and, at
the start of each path, we indicate the reason that prevents the path from pulling back one further step.

Proposition 4.14 For critical 1–faces x and y, the product ˆ.x/ ^ ˆ.y/ appearing in (9) is a linear
combination

P
˙z of dualized 2–faces z, each of which has one of the following forms:

(i)
�
a
b
a
d
c
d

�
for a<c <m>d >b and b¤ a¤d ¤ c, with trivialˆ–image unless b¤ c, in which case

ˆ
�h
a a c

b d d

i�
D

h
a a c

b d d

i
;

(ii)
�
a
b
c
b
c
d

�
for a < c � m� 1 > d > b and a ¤ b ¤ c ¤ d , with trivial ˆ–image unless a ¤ d , in

which case

ˆ
�h
a c c

b b d

i�
D�

h
a a c

b d d

i
;

8̂̂̂̂
ˆ̂̂̂̂̂̂
ˆ̂̂̂̂̂̂
ˆ̂̂̂̂̂̂
ˆ̂̂̂̂̂̂
<̂
ˆ̂̂̂̂̂̂
ˆ̂̂̂̂̂̂
ˆ̂̂̂̂̂̂
ˆ̂̂̂̂̂̂
ˆ̂̂:

.
�a
b
a
m
m�1
m

� .b/
-
�a
b
a
m

�

8̂̂̂̂
ˆ̂̂̂̂̂̂
ˆ̂̂̂̂̂̂
ˆ̂̂̂<̂
ˆ̂̂̂̂̂̂
ˆ̂̂̂̂̂̂
ˆ̂̂̂̂̂̂
:

.

.b¤y<a/�y
b
a
b
a
m

� .c/
-
�y
b
a
b

�
8̂̂̂̂
ˆ̂̂<̂
ˆ̂̂̂̂̂:

.

.y¤w<b;w¤a/� y
w
y
b
a
b

�
(critical)

.

.a<b/�y
a
y
b
a
b

� .f/
-
�y
a
a
b

�
(free)

.

.b<z<m;z¤a/�y
b
a
b
a
z

� .e/
-
�y
b
a
z

�
.

.y¤z/�y
b
y
z
a
z

�
(critical)

.

.a<x<m�1/�a
b
a
m
x
m

� .f/
-
�a
b
x
m

�
.

.x¤b/�a
b
x
b
x
m

� .c/
-
�a
b
x
b

�
8̂̂̂̂
ˆ̂̂<̂
ˆ̂̂̂̂̂:

.

.b<r <m;r¤x/�a
b
x
b
x
r

� .e/
-
�a
b
x
r

�
.

.a¤r/�a
b
a
r
x
r

�
(critical)

.

.a¤s<b;s¤x/�a
s
a
b
x
b

�
(critical)

.

.x<b/�a
x
a
b
x
b

� .f/
-
�a
x
x
b

�
(free)

.

.b<m�1/�a
b
m�1
b

m�1
m

� .c/
-
�a
b
m�1
b

�
8̂̂̂<̂
ˆ̂:
.

.b<x<m�1/�a
b
m�1
b

m�1
x

� .e/
-
�a
b
m�1
x

�
.

.x¤a/�a
b
a
x
m�1
x

�
(critical)

.

.a¤y<b/�a
y
a
b
m�1
b

�
(critical)

Figure 15: Gradient paths landing on a critical cell
�
a
b
m�1
m

�
of type (k.1) with a<m�1�b.
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.d <m�1/�
m
b
m
d

�
.

.b¤x<m/�
x
b
m
b
m
d

� .e/
-
�
x
b
m
d

�
.

.x¤d/�
x
b
x
d
m
d

� .a/
-
�
x
b
x
d

�
8̂̂̂̂
ˆ̂̂̂<̂
ˆ̂̂̂̂̂̂
:

.

.x<y<m; b¤y¤d/�
x
b
x
d
y
d

�
(critical)

.

.x<b/�
x
b
x
d
b
d

� .f/
-
�
x
b
b
d

�
(free)

.

.b¤z<x/�
z
b
x
b
x
d

� .e/
-
�
z
b
x
d

�
.

.d¤z/�
z
b
z
d
x
d

�
(critical)

Figure 16: Gradient paths landing on a critical cell
�
m
b
m
d

�
of type (k.2).

(iii)
�
a
b
a
m
c
m

�
for a<c <m�1� b and b¤ a¤m¤ c, with trivialˆ–image unless b¤ c, in which case

ˆ
�h
a a c

b m m

i�
D

X
y<b
a¤y¤c

h
a a c

y b b

i
�

X
b<x<m
a¤x¤c

h
a a c

b x x

i
;

(iv)
�
a
b
c
b
c
m

�
for a < c �m�1� b, a¤ b¤ c and either c <m�1 or cDm�1> bC1, withˆ–image

ˆ
�h
a c c

b b m

i�
D

X
b<x<m
a¤x¤c

h
a a c

b x x

i
�

X
y<b
a¤y¤c

h
a a c

y b b

i
:

Proof By (43), the only 1–faces in the expression of ˆ.ı/ that can lead to a summand ˙
�
r
s
r
u
t
u

�
in the

product ˆ./ ^ ˆ.ı/ have the form ˙
�
r
u
t
u

�
. From the expressions of ˆ in Proposition 4.13, this can

hold only with t < m and in fact t < m� 1 whenever uDm, in view of the form of the basis elements
of type (k.3). So

�
r
s
r
u
t
u

�
fits either (i) or (iii). Likewise, the only 1–faces in the expression of ˆ.ı/ that

can lead to a summand ˙
�
r
s
t
s
t
u

�
in ˆ./ ^ˆ.ı/ have the form ˙

�
t
s
t
u

�
, which can hold only under one

of the following conditions:

� uDm and t �m�1, as well as s <m�2 if tDm�1 (recall the form of basis elements of type (k.1)).

� u < m� 1 (recall the form of basis elements of type (k.2)).

In the former possibility,
�
r
s
t
s
t
u

�
fits (iv). In the latter,

�
r
s
t
s
t
u

�
fits (ii) unless t Dm, in which case

(44) the expression of ˆ./ should include a summand of the form ˙
�
r
s
m
s

�
.

.c<m� 1/�
a
m
c
m

�
.

.a¤y<m/�
a
y
a
m
c
m

� .f/
-
�
a
y
c
m

�
.

.c¤y/�
a
y
c
y
c
m

� .c/
-
�
a
y
c
y

�
8̂̂̂̂
ˆ̂̂̂<̂
ˆ̂̂̂̂̂̂
:

.

.y<z<m; z¤c/�
a
y
c
y
c
z

� .e/
-
�
a
y
c
z

�
.

.a¤z/�
a
y
a
z
c
z

�
(critical)

.

.a¤z<y; z¤c/�
a
z
a
y
c
y

�
(critical)

.

.c<y/�
a
c
a
y
c
y

� .f/
-
�
a
c
c
y

�
(free)

Figure 17: Gradient paths landing on a critical cell
�
a
m
c
m

�
of type (k.3).
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�41 �42 �14 �24 �34 �32 ı12 ı13 ı23 �12 �13 �23

�41 �g

�42 g �g g g g

�14 �g

�24 g

�34 �g g g �g g

�32 �g g �g �g g �g

ı12 �g g

ı13 g �g g �g

ı23 �g g �g g

�12 �g �g g

�13 g �g

�23 g �g �g g

Table 1: Here g stands for the generator ofH 2.Conf.jKmj; 2//, zeros are not shown, and brackets
for cohomology classes are omitted.

But inspection of the expressions of ˆ in Proposition 4.13 rules out (44). Lastly, the four asserted
expressions for the cochain map ˆ follow from (8) and the analysis of gradient paths in Figures 3–11.

Example 4.15 For mD 5, Corollaries 4.7 and 4.11 render the following list of cocycles representing
a graded basis for H�.Conf.jKmj; 2//. In dimension 2 there is the single cocycle

�
3
1
3
2
4
2

�
, while in

dimension 1 there are the twelve cocycles:

ı12 WD
�
5
1
5
2

�
; �12 WD

�
1
5
2
5

�
; ı13 WD

�
5
1
5
3

�
; �13 WD

�
1
5
3
5

�
; ı23 WD

�
5
2
5
3

�
; �23 WD

�
2
5
3
5

�
;

�14 WD
�
1
4
4
5

�
C
�
1
3
4
5

�
C
�
1
2
4
5

�
; �24 WD

�
2
4
4
5

�
C
�
2
3
4
5

�
C
�
2
1
4
5

�
;

�41 WD
�
4
1
4
5

�
C
�
3
1
4
5

�
C
�
2
1
4
5

�
; �42 WD

�
4
2
4
5

�
�
�
3
1
4
5

�
�
�
2
3
4
5

�
�
�
2
1
4
5

�
�
�
1
3
4
5

�
;

�32 WD
�
3
2
4
5

�
C
�
3
1
4
5

�
C
�
2
3
4
5

�
C
�
2
1
4
5

�
C
�
1
3
4
5

�
C
�
1
2
4
5

�
; �34 WD

�
3
4
4
5

�
�
�
2
3
4
5

�
�
�
2
1
4
5

�
�
�
1
3
4
5

�
�
�
1
2
4
5

�
:

Then the complete algebra structure of H�.Conf.jKmj; 2// is spelled out by the matrix of cup products in
Table 1. In particular, replacing �42 by �042 WD�42C�41C�34C�32C�24C�14, �34 by �034 WD�34C�32
and �32 by �032 WD �32C�42, we get a cohomology basis whose only (up to anticommutativity) nontrivial
products are

(45) �042^�12 D �24^ ı13 D �
0
32^�13 D g and �14^ ı23 D �41^�23 D �

0
34^ ı12 D�g:

The cohomology ring H�.Conf.jKm; 2j// becomes richer as m increases (with Conf.jKmj; 2/ no longer
being a homotopy closed surface). Yet, some aspects of the particularly simple structure in (45) are
kept for all m> 5. Explicitly, let �a;c , ıb;d and �e;f stand for the basis elements of H 1.Conf.jKm; 2j//
represented, respectively, by the 1–cocycles

�
a
m
c
m

�
,
�
m
b
m
d

�
and

˝
e
f

˛
described in Corollary 4.7. Then:
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ıb;d � �a;c , a 2 fb; dg �a;c � ıb;d , c 2 fb; dg

�m�1;f1
��m�1;f2

, 1� fi �m� 4 �m�1;f ��e;m�1, 1� f �m� 4 and 1� e �m� 3
�m�1;f ��m�1;m�3, 1� f �m� 4
�m�1;f ��m�2;m�3, 1� f �m� 4
�m�1;f ��m�2;m�1, 1� f �m� 4
�m�1;m�3 ��m�2;m�3 �m�1;m�3 ��e;m�1, 1� e �m� 3
�m�1;m�3 ��m�2;m�1

�e1;m�1 ��e2;m�1, 1� ei �m� 3 with e1 > e2
�m�2;m�3 ��m�2;m�1 �m�2;m�3 ��e;m�1, 1� e �m� 3

�m�2;m�1 ��e;m�1, 1� e �m� 3

Table 2

Corollary 4.16 Any cup product of the form ıb1;d1
� ıb2;d2

, �a1;c1
� �a2;c2

or �e1;f1
� �e2;f2

vanishes.
On the other hand , a cup product ıb;d ��a;c is nonzero if and only if fa; bg\ fc; dg D¿, in which case
ıb;d � �a;c is represented by

�
a
b
a
d
c
d

�
.

Proof This is a straightforward calculation using Proposition 4.13. We only indicate the two main
checking steps for the reader’s benefit. In what follows we assume m� 6. First, Proposition 4.13(i) is
used to check that, modulo 1–faces not taking part on nonzero products (43), ˆ

˝
e
f

˛
is congruent to

�
P
i<m

�
i
f
i
m

�
for e Dm� 1 and 1� f �m� 4,

�
P
j<m

��
e
j
e
m

�
C
P
x<m

�
e
j
x
j

�
�
P
y<m

�
y
j
e
j

��
for 1� e �m� 3 and f Dm� 1,

�
�
m�1
m�3

m�1
m

�
�
P
i<m�1>j
j¤m�3

�
i
j
i
m

�
�
P
i<m�1>j

�
i
j
m�1
j

�
for .e; f /D .m� 1;m� 3/,

�
�
m�2
m�1

m�2
m

�
C
�
m�2
m�1

m�1
m�1

�
�
P
y

�
y
m�1

m�2
m�1

�
�
P
i<m�1>j
i¤m�2

��
i
j
i
m

�
C
P
xDm�"
"2f1;2g

�
i
j
x
j

��
for .e; f /D

.m� 2;m� 1/,

�
P
i<m�1>j

��
i
j
i
m

�
C
�
i
j
m�1
j

��
for .e; f /D .m� 2;m� 3/.

The above congruences together with those in Proposition 4.13(ii) and (iii) are then used to check that
each of the products asserted to vanish do so because there is no room for nonzero products (43) in the
corresponding portion ˆ.x/ ^ˆ.y/ of (9). Such an assertion is easily seen for products ıb1;d1

� ıb2;d2

and �a1;c1
� �a2;c2

, but the explicit details are not so direct for ıb;d � �a;c and �e1;f1
��e2;f2

. In fact, in
the latter two cases, a convenient order of factors needs to be chosen in order to ensure the vanishing
of the corresponding ˆ.x/ ^ˆ.y/; see Table 2. The order chosen is immaterial for the trivial-product
conclusion, as cohomology cup products are anticommutative. Keep in mind that H�.Conf.jKmj; 2// is
torsion-free, so cup squares of 1–dimensional classes are trivial for free.

Lastly, the fact that ıb;d � �a;c is represented by
�
a
b
a
d
c
d

�
when fa; bg \ fc; dg D¿ follows by noticing

that ˆ
�
ˆ
�
m
b
m
d

�
^ˆ

�
a
m
c
m

��
D
�
a
b
a
d
c
d

�
. Here

�
a
b
a
d
c
d

�
fails to represent one of our basis elements when
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.a; b/D .1; 2/, .a; b; c/D .1; 3; 2/, .a; b; d/D .2; 1; 3/ or .a; b; c; d/D .2; 1; 3; 4/; recall (37)–(40). In
each such case, one of Corollary 4.11.E1/–.E6/ applies to write (the cohomology class of)

�
a
b
a
d
c
d

�
in

terms of basis elements. Either way, inspection of .E1/–.E6/ shows that
�
a
b
a
d
c
d

�
represents a nonzero

cohomology class.

5 Topological complexity

Fix a positive integer s � 2 and a path-connected space X . The sth topological complexity TCs.X/ of X
is the sectional category of the evaluation map es W PX!Xs which sends a (free) path on X ,  2 PX, to

es./D
�

�
0

s�1

�
; 
�
1

s�1

�
; : : : ; 

�
s�1

s�1

��
:

The term “sectional category” is used in the reduced sense, so TCs.X/C1 stands for the smallest number
of open sets covering Xs on each of which es admits a section. For instance, the (reduced) Lusternik–
Schnirelmann category cat.X/ of X is the sectional category of the evaluation map e1 WP0X!X sending
a based path  2 P0X (ie .0/D ? for a fixed base point ? 2X ) to e1./D .1/.

Proposition 5.1 [5, Theorem 3.9] For a c–connected space X having the homotopy type of a CW
complex,

cl.X/� cat.X/� hdim.X/=.cC 1/ and zcls.X/� TCs.X/� s cat.X/:

Here hdim.X/ denotes the minimal dimension of cell complexes homotopy equivalent to X , while cl.X/
and zcls.X/ stand, respectively, for the cup length ofX and the sth zero-divisor cup length ofX . Explicitly,
cl.X/ is the largest integer l � 0 such that there are classes6 cj 2 zH�.X/ for 1 � j � l with nonzero
cup product. Likewise, zcls.X/ is the largest integer l � 0 such that there are classes zj 2H�.Xs/ for
1� j � l (“zero divisors”) with nonzero cup product and such that each factor restricts trivially under
the diagonal X ,!Xs .

Let � be a 1–dimensional cell complex — a graph. While the fundamental group of Conf.�; n/ is a central
character in geometric group theory, the topological complexity of Conf.�; n/ becomes relevant for the
task of planning collision-free motion of n autonomous distinguishable agents moving on a �–shaped
system of tracks. It is known that hdim.Conf.�; n// is bounded from above by mDm.�/, the number of
essential vertices of �; see for instance [12, Theorem 4.4]. Thus Proposition 5.1 yields

(46) TCs.Conf.�; n//� sm:

For s D 2, Farber proved in [8] that (46) is an equality when � is a tree and n � 2m, with the single
(and well known) exception of .n;m/D .2; 1/ where the (unique) essential vertex of � has valency 3—
which we call the “Y2–exception”. Farber also conjectured that the tree restriction is superfluous in
obtaining equality in (46). The conjecture has recently been confirmed in [23] by Knudsen, who proved

6For the purposes of this section, cohomology will be taken with mod 2 coefficients.
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equality in (46) for any s � 2 and any graph � , as long as the “stable” restriction n� 2m is kept (and the
Y2–exception is avoided). Note that the stable condition forces hdim.Conf.�; n//Dm. More generally,
it would be interesting to characterize the triples .s; �; n/ for which the (in principle) improved bound

(47) TCs.Conf.�; n//� s hdim.Conf.�; n//

holds as an equality, preferably determining the value of hdim.Conf.�; n//. For instance, it is known
from [2, Section 5] that, for any s and n (possibly with n < 2m),

(48) hdim.Conf.�; n//D cat.Conf.�; n//Dminfbn=2c; mg

when � is a tree, in which case (47) is an equality — the Y2–exception still applies. The goal of this
section is to prove Theorem 1.2, which adds a new and completely different family of instances where
equality holds in (47) outside the stable regime n� 2m.

Note that Conf.jKmj; 2/ is empty formD 1, and disconnected formD 2, while Conf.jK3j; 2/ leads to the
Y2–exception. On the other hand, the cases mD 4 and mD 5 in Theorem 1.2 are well known in view of
Corollary 4.2 and the last assertion in Example 4.15. We prove Theorem 1.2 for m� 6 by constructing 2s
zero divisors in Conf.jKmj; 2/ with a nonzero cup product, and using Proposition 5.1 together with the
obvious fact that hdim.Conf.jKmj; 2//� 2. It is natural to think that the expected richness of cup products
in general graph configuration spaces might lead to many more instances where (47) would hold as an
equality — even if n < 2m.

For integers 1� i � s � 2 and a cohomology class x in a space X , consider the exterior tensor product
x.i/ WD 1˝ � � �˝ 1˝ x˝ 1˝ � � �˝ 1 2H

�.X/˝s DH�.Xs/, where the tensor factor x appears in the
i th position. The following result is straightforward to check:

Lemma 5.2 Let x, y, z and w be four elements in the mod 2 cohomology of a space X satisfying the
relations x2 D y2 D xz D yz D yw D 0. Then� sY
iD2

.x.1/C x.i//

�� sY
iD2

.y.1/Cy.i//

�
.z.1/C z.s//.w.1/Cw.s//

D zw˝ xy˝ xy˝ � � �˝ xyC xy˝ xy˝ � � �˝ xy˝ zw:

Proof of Theorem 1.2 for m� 6 In view of Corollary 4.16 and Lemma 5.2, the 1–dimensional basis
elements x WD ı1;2; y WD�3;4; z WD�1;3; w WD ı2;4 2H� Conf.jKmj; 2/ yield a product of 2s zero divisors,
with product-representative

(49)
h
1 1 3

2 4 4

i
˝

h
3 3 4

1 2 2

i
˝

h
3 3 4

1 2 2

i
˝� � �˝

h
3 3 4

1 2 2

i
C

h
3 3 4

1 2 2

i
˝

h
3 3 4

1 2 2

i
˝� � �˝

h
3 3 4

1 2 2

i
˝

h
1 1 3

2 4 4

i
:

The tensor factor
�
3
1
3
2
4
2

�
represents one of the basis elements in the previous section. However, as

indicated in Figure 13, we need to apply relation (E2) in Corollary 4.11 in order to write the (cohomology
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class of the) tensor factor
�
1
2
1
2
3
4

�
as a sum

P
bi of basis elements bi (recall, we work mod 2). If m� 6,

the basis element
�
3
2
3
4
5
4

�
appears as a summand bi , from which the nontriviality of the cohomology class

represented by (49) follows.
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Spectral diameter of Liouville domains

PIERRE-ALEXANDRE MAILHOT

The group of compactly supported Hamiltonian diffeomorphisms of a symplectic manifold is endowed
with a natural bi-invariant distance, due to Viterbo, Schwarz, Oh, Frauenfelder and Schlenk, coming from
spectral invariants in Hamiltonian Floer homology. This distance has found numerous applications in
symplectic topology. However, its diameter is still unknown in general. In fact, for closed symplectic
manifolds there is no unifying criterion for the diameter to be infinite. We prove that for any Liouville
domain this diameter is infinite if and only if its symplectic cohomology does not vanish. This generalizes a
result of Monzner, Vichery and Zapolsky and has applications in the setting of closed symplectic manifolds.
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1 Introduction and results

Liouville domains are a special kind of compact symplectic manifold with boundary. They are char-
acterized by their exact symplectic form ! D d� and the fact that their boundary is of contact type.
Liouville domains allow us to study under a common theoretical framework many important classes of
symplectic manifolds. Examples of such manifolds include cotangent disk bundles over closed manifolds,
complements of Donaldson divisors [Giroux 2017], preimages of some intervals under exhausting
functions of Stein manifolds [Cieliebak and Eliashberg 2012], positive regions of convex hypersurfaces
in contact manifolds [Giroux 1991] and total spaces of Lefschetz fibrations.

A key invariant of a Liouville domain D is its symplectic cohomology SH�.D/. It was first defined
in [Floer and Hofer 1994; Cieliebak et al. 1995] and later developed in [Viterbo 1999]. Symplectic
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3760 Pierre-Alexandre Mailhot

cohomology allows one to study the behavior of periodic Reeb orbits on the boundary of D. It is defined
in terms of the Floer cohomology groups of a specific class of Hamiltonian functions on the completion yD
of D which results from the gluing of the cylinder Œ1;1/� @D to @D.

The primary goal of this paper is to relate symplectic cohomology and spectral invariants, an important tool
in Hamiltonian dynamics. When defined on a symplectic manifold .M;!/, spectral invariants associate
to any pair .˛;H/ 2 H�.M/�C1c .S

1 �M/ a real number c.˛;H/ that belongs to the spectrum of the
action functional associated to H.1 Spectral invariants were first defined in R2n from the point of view of
generating functions in [Viterbo 1992]. They were then constructed on closed symplectically aspherical
manifolds in [Schwarz 2000] and general closed symplectic manifolds in [Oh 2005] (see also [Usher 2013]).

Frauenfelder and Schlenk [2007] constructed spectral invariants on Liouville domains. These spectral
invariants are homotopy invariant in the Hamiltonian term in the following sense. If two compactly
supported Hamiltonians H and F generate the same time-1 map, 'H D 'F , then c.˛;H/D c.˛; F /.
Thus c.˛; � / descends to the group of compactly supported Hamiltonian diffeomorphisms Hamc.D/.
This allows one to define a bi-invariant norm  on Hamc.D/, called the spectral norm, by

.'/D c.1; '/C c.1; '�1/:

One key feature of the spectral norm  is the fact that it acts as a lower bound to the celebrated Hofer
norm [1990] (see [Lalonde and McDuff 1995] and the book [Polterovich 2001] for further developments
in the subject). It is thus natural to ask whether the spectral diameter

diam .M/D supf.'/ j ' 2 Hamc.M/g

is finite or not. In particular, if diam .M/ D C1 then the Hofer norm is assured to be unbounded.
Further links between the spectral norm and Hofer geometry are discussed in Section 1.4.

1.1 Main results

We find a characterization of the finiteness of diam .D/ in the case of a Liouville domain .D; d�/ in
terms of its symplectic cohomology.

Our main technical result shows that if SH�.D/¤ 0 then c.1;H/ can be made arbitrarily large. This,
combined with the converse implication which was proved in [Benedetti and Kang 2022], implies:

Theorem A1 Let .D; �/ be a Liouville domain. Then diam .D/DC1 if and only if SH�.D/¤ 0.

As an intermediate step to proving Theorem A1, we show the following auxiliary result.

Lemma B Let H be a compactly supported Hamiltonian on a Liouville domain .D; �/. Then ,

c.1;H/� 0:

1At least if the Hamiltonian satisfies certain technical conditions.
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Lemma B is a cohomological adaptation for Liouville domains of a result of [Ganor and Tanny 2023,
Lemma 4.1]. They show that c.Œpt�; F / � 0 for Hamiltonians F supported in certain incompressible
domains of closed aspherical manifolds. It follows from [loc. cit., Section 5.1], that this inequality extends
to Liouville domains. We remark that the inequality c.ŒM �; F /� 0 for the same class of Hamiltonians F
was already shown by Humilière, Le Roux and Seyfaddini [Humilière et al. 2016]. It follows directly
from [loc. cit., Theorem 45]. The main difference in Lemma B here is that we consider spectral invariants
on Floer cohomology (instead of Floer homology) with respect to the unit (instead of the point class).
Furthermore it applies to general Liouville domains without any ambient symplectic manifold. The proof
uses an adaptation to Floer cohomology on Liouville domains of the barricade construction introduced in
[Ganor and Tanny 2023].

In fact, when the symplectic cohomology of a Liouville domain is nonvanishing, the implication of
Theorem A1 follows from a sharper result. Denote by d .';  /D .' ı �1/ the spectral distance on
Hamc.D/ and by dst the standard Euclidean distance on R.

Theorem A2 Let .D; �/ be a Liouville domain such that SH�.D/¤ 0. Then there exists an isometric
group embedding .R; dst/! .Hamc.D/; d /.

The proof of Theorem A2 uses an explicit construction of an isometric group embedding. This construction
is a generalization of the procedure used by Monzner, Vichery and Zapolsky to prove Theorem 3 below.
The construction of the aforementioned embedding relies primarily on the computation of spectral
invariants of Hamiltonians which are constant on the skeleton of D, a special subset of Liouville domains
which we define in Section 2.1.

Lemma C Suppose .D; �/ is a Liouville domain such that SH�.D/¤0. LetH be a compactly supported
autonomous Hamiltonian on D such that

H jSk.D/ D�A and �A�H jD � 0

for a constant A > 0. Then
c.1;H/D A:

1.2 What is already known for Liouville domains

Following the [Benedetti and Kang 2022], it is known that the spectral diameter of a Liouville domain D
is bounded if its symplectic cohomology vanishes. This result was achieved using a special capacity
derived from the filtered symplectic cohomology of D. To better understand how this is done, let us give
an overview of the construction of SH�.D/ following [Viterbo 1999].

Consider the class of admissible Hamiltonians H W yD!R which are affine in the radial coordinate on
the cylindrical part of yD.2 We can define the filtered Floer cohomology groups HF�

.a;b/
.H/ of such

2See Definition 7 for the precise conditions.
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Hamiltonians by considering only the 1–periodic orbits with action inside the interval .a; b/.3 Taking
an increasing sequence of admissible Hamiltonians fHigi with corresponding slopes f�igi satisfying
�i !C1, one can define the filtered symplectic cohomology SH�.a;b/.D/ of D as

SH�.a;b/.D/D lim
�!
Hi

HF�.a;b/.Hi /:

It follows from the above definition that for a � a0 and b � b0 there is a natural map

�
b;b0

a;a0 W SH�.a;b/.D/ // SH�.a0;b0/.D/:

Moreover, the full symplectic cohomology SH�.D/D SH�.�1;1/.D/ comes with a natural map

v� W H�.D/ // SH�.D/

called the Viterbo map. The failure of v� to be an isomorphism signals the presence of Reeb orbits on the
boundary of D. Thus, SH�.D/ is a useful tool to study the Weinstein conjecture [1979], which claims
that on any closed contact manifold the Reeb vector field should admit at least one periodic orbit. For
instance, Viterbo [1999] proved the Weinstein conjecture for the boundary of subcritical Stein manifolds.

We can extend any compactly supported Hamiltonian H 2 C1c .S
1 �D/ to an admissible Hamiltonian

with small slope H " and define its Floer cohomology as HF�.H/D HF�.H "/. A key property of Floer
cohomology on Liouville domains is that if an admissible Hamiltonian F has a slope close enough to
zero, then we have an isomorphism ˆF W H�.D/! HF�.F /. Thus, the Floer cohomology of compactly
supported Hamiltonians on D is well-defined.

Let H be a compactly supported Hamiltonian. Following [Frauenfelder and Schlenk 2007], the spectral
invariant associated to .˛;H/ 2 H�.D/�C1c .S

1 �D/ corresponds to the real number

c.˛;H/D inffc 2R jˆH .˛/ 2 im �<cg;

where
�<c D �

c;C1
�1;�1 W HF�

.�1;c/
.H/ // HF�.H/

is the map induced by natural inclusion of subcomplexes.

Now, define the SH-capacity of D as

cSH.D/D inffc > 0 j �";c�1;�1 D 0g 2 .0;1�;

where, for � > 0 sufficiently small,

�
";c
�1;�1 W SH�.�1;"/.D/ // SH�.�1;c/.D/:

It is known that cSH.D/ is finite if and only if SH�.D/ vanishes. Using this, Benedetti and Kang proved the
following upper bound on spectral invariants of compactly supported Hamiltonians with respect to the unit.

3See Section 2.2.1 for details on the action convention we use in this paper.
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Theorem 1 [Benedetti and Kang 2022] Let .D; d�/ be a Liouville domain with SH�.D/D 0. Then ,

supfc.1;H/g � cSH.D/ <C1;

where the supremum is taken over all compactly supported Hamiltonians in D.

In particular, by the definition of the spectral norm, if SH�.D/D 0, then for any compactly supported
Hamiltonian H generating 'H 2 Hamc.D/, we have

.'/D c.1; '/C c.1; '�1/� 2cSH.D/ <C1:

Therefore, Theorem 1 provides the only if part of Theorem A1.

On the other hand, symplectic cohomology is known to be nonzero in many cases [Seidel 2008, Section 5].
Since we will be using Z2 coefficients throughout this article, one case of particular interest to us is the
following.

Proposition 2 [Viterbo 1999] Suppose D contains a closed exact Lagrangian submanifold L. Then ,
SH�.D/¤ 0.

This result of Viterbo can be used, in conjunction with Theorem A1, to prove that the spectral diameter is
infinite for quite general classes of Liouville domains.

1.2.1 Cotangent bundles Monzner, Vichery and Zapolsky [Monzner et al. 2012] showed the following.

Theorem 3 Let N be a closed manifold. There exists an isometric group embedding of .R; dst/ in
.Hamc.T

�N/; d /.

Note that Theorem 3 follows directly from Theorem A2 and Proposition 2. Indeed, since the zero section
N �DT �N is an exact closed Lagrangian submanifold, Proposition 2 assures us that SH�.DT �N/¤ 0.
Therefore, Theorem A2 guarantees the existence of an isometric group embedding

.R; dst/ // .Hamc.T
�N/; d /:

Theorem 3 immediately implies:

Corollary 4 Let N be a closed manifold. Then diam .DT �N/DC1.

Similarly to Theorem 3, Corollary 4 follows directly from Proposition 2 and Theorem A1.

1.3 The spectral diameter of other symplectic manifolds

It has been known for a long time [Entov and Polterovich 2003] that for .CP n; !FS/,

diam .CP n/�
Z

CP 1
!FS:

Algebraic & Geometric Topology, Volume 24 (2024)
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The above upper bound was latter optimized in [Kislev and Shelukhin 2021, Theorem G] to

diam .CP n/D
n

nC1

Z
CP 1

!FS:

However, for a surface †g of genus g � 1, the spectral diameter is infinite. This case is covered by the
following theorem [Kislev and Shelukhin 2021, Theorem D], which is a sharpening of [Usher 2013,
Theorem 1.1].

Theorem 5 Let .M;!/ be a closed symplectic manifold that admits an autonomous Hamiltonian
H 2 C1.M;R/ such that

(U1) all the contractible periodic orbits of XH are constant.

Then diam .M/DC1.

Theorem 5 allows one to prove that the spectral diameter is infinite in many cases. A list of examples
in which condition (U1) holds can be found in [Usher 2013, Section 1]. As mentioned above, surfaces
of positive genus satisfy (U1). Also, if .N; !N / satisfies (U1) then so does .M �N;!M ˚!N / for any
other closed symplectic manifold .M;!M /.

Kawamoto [2022b] proved that the spectral diameters of the quadrics Q2 and Q4 (of real dimensions 4
and 8 respectively), and certain stabilizations of them, are infinite.

1.3.1 Symplectically aspherical manifolds Recall that a symplectic manifold .M;!M / is symplecti-
cally aspherical if both !M and the first Chern class c1.M/ of M vanish on �2.M/; namely, for every
continuous map f W S2!M,

hŒ!M �; f�ŒS
2�i D 0D hc1.M/; f�ŒS

2�i:

An open subset U �M is said to be incompressible if the map �1.U /!�1.M/ induced by the inclusion
is injective.

As pointed out in [Buhovsky et al. 2021], it has been conjectured that diam .M/DC1 on all closed
symplectically aspherical manifolds. Here, we prove that conjecture in the case of the twisted product
.M �M;!˚�!/ of a closed symplectically aspherical manifold .M;!/ with itself. But first, a more
general result.

Proposition D Let .M;!/ be a closed symplectically aspherical manifold of dimension 2n. Suppose
there exists an incompressible Liouville domainD of codimension 0 embedded insideM with SH�.D/¤0.
Then , diam .M/DC1.

Algebraic & Geometric Topology, Volume 24 (2024)
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Proof Let H be a compactly supported Hamiltonian in D and denote by � WD!M the embedding. By
a cohomological analogue of [Ganor and Tanny 2023, Claim 5.2], we have that

cD.ˇ;H/D max
˛2H�.M/
��.˛/Dˇ

cM .˛;H/

for all ˇ 2 H�.D/, where cD and cM are the spectral invariants on D and M respectively. In particular,
we know that the unit 1M 2H�.M/ is sent to the unit 1D 2H�.D/ under the map �� WH�.M/!H�.D/.
Moreover, it is well known that the spectral invariant with respect to the unit can be implicitly written as

cM .1M ;H/D max
˛2H�.M/

cM .˛;H/

(see Lemma 26). Therefore, fixing ˇ D 1D , we have

cD.1D;H/D cM .1M ;H/:

Using Theorem A1, the above equation thus yields the desired result.

Corollary E Let .M;!/ be a closed symplectically aspherical manifold. Then ,

diam .Ham.M �M;!˚�!//DC1:

Proof Consider the closed Lagrangian given by the diagonal L D � inside .M �M;!M ˚�!M /.
By virtue of the Weinstein neighborhood theorem, there exists an open neighborhood U of L and a
symplectomorphism  W U ! D"T

�L such that '.L/ coincides with the zero section of an �–radius
codisk bundle D"T �L over L. The Liouville structure on D"T �L pulls back to a Liouville structure
on U. Note that, inside M �M, L is incompressible; ie the map �1.L/! �1.M �M/ of first homotopy
groups induced by the inclusion L!M �M is injective. Therefore, by homotopy equivalence, U and
D"T

�L are also incompressible. The desired result follows directly from Proposition D.

1.4 Hofer geometry

As hinted at above, the finiteness of the spectral diameter plays a role in Hofer geometry. In particular, it
can be used to study the following question posed in [Le Roux 2010]:

Question For any A > 0, let

EA.M;!/ WD f' 2 Ham.M;!/ j dH .Id; '/ > Ag

be the complement of the closed ball of radius A in Hofer’s metric. For all A > 0, does EA.M;!/ have
nonempty C 0–interior?

Indeed, in the case of closed symplectically aspherical manifolds with infinite spectral diameter, a positive
answer to the Question above was given by Buhovsky, Humilière and Seyfaddini (see also [Kawamoto
2022a; 2022b] for the positive and negative monotone cases).

Algebraic & Geometric Topology, Volume 24 (2024)
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Theorem 6 [Buhovsky et al. 2021] Let .M;!/ be a closed , connected and symplectically aspherical
manifold. If diam .M/DC1, then EA.M;!/ has nonempty C 0–interior for all A > 0.

Using Theorem 6 in conjunction with Corollary E, we directly obtain the following answer to the Question
above in the specific setting of Corollary E.

Corollary F Let .M;!/ be a closed symplectically aspherical manifold. Then , EA.M �M;!˚�!/
has a nonempty C 0–interior for all A > 0.
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2 Liouville domains and admissible Hamiltonians

In this subsection we recall the definition of Liouville domains, specify the class of Hamiltonians we will
restrict our attention to and describe how their Floer trajectories behave at infinity.

2.1 Completion of Liouville domains

A Liouville domain .D; d�; Y / is an exact symplectic manifold with boundary on which the vector
field Y, defined by Y yd�D � and called the Liouville vector field, points outwards along @D. Denote by
yDDD[Œ1;1/�@D the completion ofD and .r; x/ the coordinates on Œ1;1/�@D. Here, we glue @D and
f1g�@D with respect to the reparametrization  ln r

Y of the Liouville flow generated by Y. Given ı > 0, let

Dı D  ln ı
Y .D/D yD n .ı;1/� @D:

We extend the Liouville form � to yD by defining O� W T yD!R as

O� jDD � and O� j yDnDD r˛;

where ˛ D �j@D . The cylindrical portion Œ1;1/� @D of yD is thus equipped with the symplectic form
! D d.r˛/. See Figure 1.
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! D d�

@D

! D d.r˛/

Œ1;1/� @D

D

. yD;!/

Figure 1: A Liouville domain with its completion.

The skeleton Sk.D/ of .D; d�; Y / is defined by

Sk.D/D
\

0<r<1

 ln r
Y .D/:

Denote by R˛ the Reeb vector field on @D associated to ˛, meaning

R˛ y d˛ D 0; ˛.R/D 1:

We define Spec.@D; ˛/ to be the set of periods of closed characteristics, the periodic orbits generated
by R˛, on @D and put

T0 Dmin Spec.@D; �/:

As a subset of R, Spec.@D; ˛/ is known to be closed and nowhere dense. For any A 2R, let �A denote
the distance between A and Spec.@D; �/.

2.2 Admissible Hamiltonians and almost-complex structures

2.2.1 Periodic orbits and action functional Given a Hamiltonian H W S1 � yD! R, one defines its
time-dependent Hamiltonian vector field X tH W yD! T yD by

X tH y! D�dHt ;

whereHt .p/DH.t; p/. We denote by 'tH W yD! yD the flow generated by X tH . The set of all contractible
1–periodic orbits of 'tH is denoted by P.H/. An orbit x 2 P.H/ is said to be nondegenerate if

det.id� dx.0/'
1
H /¤ 0

and transversally nondegenerate if the eigenspace associated to the eigenvalue 1 of the map dx.0/'1 is of
dimension 1.

Let L yD be the space of contractible loops in yD. For a Hamiltonian H W S1 � yD!R, the Hamiltonian
action functional AH W L yD!R associated to H is defined as

AH .x/D
Z 1

0
x� O��

Z 1

0
Ht .x.t// dt:

Algebraic & Geometric Topology, Volume 24 (2024)
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h.r/

1 r0

�0
r

Figure 2: An r0–admissible Hamiltonian.

It is well known that the elements of P.H/ correspond to the critical points of AH ; see [Audin and
Damian 2014, Section 6]. The image of P.H/ under the Hamiltonian action functional is called the
action spectrum of H and is denoted by Spec.H/. For an open set U � yD we define

PU .H/D fx 2 P.H/ j im x � U g:

2.2.2 Admissible Hamiltonians The completion of a Liouville domain is obviously noncompact. We
thus need to control the behavior at infinity of Hamiltonians we use in order for them to have finitely
many 1–periodic contractible orbits.

Definition 7 Let r0 > 1. A Hamiltonian H is r0–admissible if there exists �0 2 .0; r0/ such that

� H.t; x; r/D h.r/ on yD nD�0 ,

� h.r/D �H r C �H on .r0;C1/ for �H 2 .0;1/ nSpec.@D; ˛/,

� H is regular: every element of PD�.H/ is nondegenerate and every element of P yDnD�.H/ is
transversally nondegenerate.

We denote the set of such Hamiltonians by Hr0 . See Figure 2.

We will also consider the set H0r0 � Hr0 of r0–admissible Hamiltonians which are negative on D. In
some cases, it is not necessary to specify r0 as long as it is greater than 1. For that purpose, we define

HD
[
r0>1

Hr0 ; H0 D
[
r0>1

H0r0 :

Remark 8 Suppose H 2 H. If x 2 P yDnD�0 .H/ is nonconstant, then it is necessarily transversally
nondegenerate. Indeed, since H is time-independent there by definition, for any c 2R, we know x.t � c/

is also a 1–periodic orbit of H.

Lemma 9 If H 2H, then jPD�0 .H/j is finite and P yDnD�0 .H/ consists of a finite number of periodic
orbits and S1 families of periodic orbits.

Proof Since D�0 is compact and elements of PD�0 .H/ are nondegenerate, there is a finite number of
1–periodic orbits of H inside it.
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�AH .r
0/

AH .r
0/

h.r/

r
r 0

Figure 3: Action value of a periodic orbit contained in fr 0g � @D.

Next, we look at the elements of P yDnD�0 .H/. On yD nD�0 , we know that H D h.r/ and ! D d O�.
Therefore, on yD nD�0

XH y! DXH y .dr ^˛C rd˛/

D dr.XH /˛�˛.XH /dr C rXH y d˛

and dH D h0.r/dr . Hamilton’s equation thus yields

dr.XH /D 0DXH y d˛; ˛.XH /D h
0.r/:

The three equations above imply the following two facts:

� On yD nD�0 , XH D h0.r/R˛.

� If x 2 P.H/ is such that x\ yD nD�0 ¤¿, then im x � frg � @D for some r > �0.

We conclude that a 1–periodic orbit x of H which lies inside frg � @D corresponds to a Reeb orbit of
period h0.r/. Notice that since �H … .0;C1/\ Spec.@D; ˛/, we have P yDnD�0 .H/ D PDr0nD�0 .H/.
Therefore, sinceDr0 nD�0 is compact and every element of PDr0nD�0 .H/ is transversally nondegenerate
by definition, PDr0nD�0 .H/ is finite.

Remark 10 The fact that admissible Hamiltonians are radial on the cylindrical part of yD allows us to
express the action of the 1–periodic orbits inside yD nD in terms of that radial function. To see this, we
fix H 2H and compute the action of a nonconstant orbit x 2 P.H/\ . yD nD/ which we suppose lies
inside frg � @D for r > 1:

AH .x/D
Z 1

0
x� O��

Z 1

0
H ı x dt D

Z 1

0
r˛.XH / dt �

Z 1

0
h.r/ dt D rh0.r/� h.r/:

The function AH .r/D rh0.r/� h.r/ on the right-hand side of the above equation has a nice geometric
interpretation. Looking at the graph of h, we notice that AH .r 0/ corresponds to minus the y–coordinate
of the intersection of the tangent at the point .r 0; h.r 0// and the y–axis. See Figure 3.

2.2.3 Monotone homotopies We will need to also restrict the types of Hamiltonian homotopies we
consider to the following class.
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Definition 11 Let Hs D fHsgs2R be a smooth homotopy from HC 2Hr0 to H� 2Hr 00 We say that Hs
is a monotone homotopy if the following conditions hold:

� There exists S > 0 such that Hs0 DH� for s0 < �S and Hs0 DHC for s0 > S .

� Hs D hs.r/ on yD nD� for �Dmaxf�0; �00g.

� For RDmaxfr0; r 00g, we have hs.r/D �sr C �s on .R;C1/ for smooth functions �s , �s of s.

� @sHs.t; p/� 0 for .t; p; s/ 2 S1 � yD �R.

ForHC 2Hr0 andH� 2Hr 00 such thatHC�H� pointwise everywhere on yD, we can explicitly construct
a monotone homotopy in the following way. Fix a positive constant S > 0. Let ˇ WR! Œ0; 1� be a smooth
function such that ˇ.s/D 0 for s � �S , ˇ.s/D 1 for s � S and ˇ0.s/ > 0 for all s 2 .�S; S/. Define

Hs DH�Cˇ.s/.HC�H�/:

Notice that, since ˇ0.s/� 0 and HC �H�, we have

@sHs D ˇ
0.s/.HC�H�/� 0:

For RDmaxfr0; r 00g we have, on yD nDR,

Hs.t; r; p/D .ˇ.s/.�C� ��/C ��/r Cˇ.s/.�C� ��/C �� D hs.r/

as desired and

(1) @s@rhs.r/D ˇ.s/
0.�C� ��/� 0:

This inequality will be needed for the maximum principle of Section 2.3.2. Equation (1) also holds for
general monotone homotopies. Indeed, by definition, Hs.r/ decreases in s and Hs.r/ is affine for r �R.

2.2.4 Admissible almost-complex structures Let J be an almost-complex structure on yD. Recall
that J is !–compatible if the map gJ W TM ˝TM !R defined by

gJ .v; w/D !.v; Jw/

is a Riemannian metric. To control the behavior of !–compatible almost-complex structures at infinity,
we make the following definition.

Definition 12 Let J be an !–compatible almost-complex structure on yD. We say that J is admissible if
J1 D J j yDnD is of contact type. Namely, we ask that

J �1
O�D dr:

We denote the set of such almost-complex structures by J. A pair .H; J /, where H 2Hr0 and J 2 J, is
called an r0–admissible pair.
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2.3 Floer trajectories and maximum principle

In this subsection, we recall some analytical aspects of Floer theory on Liouville domains. Issues regarding
transversality will be dealt with in the next section.

2.3.1 Floer trajectories Consider a HamiltonianH WS1� yD!R and two 1–periodic orbits x˙2P.H/.
Let J be an !–compatible almost-complex structure on yD. A Floer trajectory between x� and xC is a
solution u WR�S1! yD to the Floer equation

@suCJ.@tu�XH /D 0

that converges uniformly in t to x� and xC as s!˙1:

lim
s!˙1

u.s; t/D x˙.t/:

We denote the moduli space of such trajectories by M0.x�; xCIH/. We may reparametrize a solution
u2M0.x�; xCIH/ in the R–coordinate by adding a constant. Thus, Floer trajectories occur in R–families.
The space of unparametrized solutions is denoted by M.x�; xCIH/DM0.x�; xCIH/=R. When the
context is clear, we will drop H from the notation and simply write M.x�; xC/.

If we replace H with a monotone homotopy H� D fHsgs2R, then we can instead consider solutions
u WR�S1! yD to the s-dependent Floer equation

@suCJ.@tu�XHs /D 0

that converge uniformly in t to x˙ 2P.H˙/ as s!˙1. The moduli space of such trajectories is denoted
by M.x�; xCIH�/. Unlike the s–independent case, M.x�; xCIH�/ does not admit a free R–action by
which we can quotient.

2.3.2 Maximum principle To define Floer cohomology of yD, we need to control the behavior of
the Floer trajectories. In particular, we have to make sure they do not escape to infinity. Admissible
Hamiltonians and admissible complex structures allow us to achieve that requirement. The first result in
that direction is the maximum principle for Floer trajectories. In what follows we say that v is a local
Floer solution of .H; J / in yD nD if

v D uj
u�1.imu\ yDnD/ W u

�1.imu\ yD nD/ // yD nD

for some u 2M.x�; xCIH/.

Lemma 13 (generalized maximum principle [Viterbo 1999]) Let .H; J / be an r0–admissible pair on yD.
Suppose v is a local Floer solution of .H; J / in yD nDr0. Then , the r–coordinate r ıv of v does not admit
an interior maximum unless r ı v is constant.
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Remark 14 The generalized maximum principle still holds if we replaceH 2H by a monotone homotopy
Hs between HC 2Hr0 and H� 2Hr 00 and if v is a local solution of the s–dependent Floer equation

@svCJ.@tv�XHs /D 0

inside yD nDR, where r Dmaxfr0; r 00g. Here it is crucial that @s@rhs.r/� 0 for large enough r . From
the maximum principle above, we immediately obtain the following corollary which guarantees that Floer
trajectories do not escape to infinity.

Corollary 15 Let .H; J / be an r0–admissible pair on yD and let x˙ 2 P.H/. If u 2M.x�; xC/, then

imu�DR for RDmaxfr ı x�; r ı xC; r0g:

If Hs is a monotone homotopy between H� 2Hr0 and HC 2Hr 00 and u is a solution to the s–dependent
Floer equation between x� 2 P.H�/ and xC 2 P.HC/, then

imu�DR; for RDmaxfr ı x�; r ı xC; r0; r 00g:

2.3.3 Energy An important quantity which is associated to a Floer trajectory is its energy. It is defined as

E.u/D
1

2

Z
R�S1

.j@suj
2
J Cj@tu�XH j

2
J / ds ^ dt;

where j � jJ is the norm corresponding to gJ . Using the Floer equation, we can write

j@tu�XH j
2
J D !.J@su;�@su/D !.@su; J @su/D j@suj

2
J :

Thus, the energy can be written more compactly as

E.u/D
Z

R�S1
j@suj

2
J ds ^ dt:

It is often useful to estimate the difference in Hamiltonian action of the ends of a Floer trajectory in terms
of the energy of that trajectory. This can be achieved using the maximum principle and Stokes’ theorem.

Lemma 16 Let .H; J / be an r0–admissible pair and let u 2M0.x�; xCIH/ for x˙ 2 P.H/. Then ,

0�E.u/DAH .xC/�AH .x�/:

If Hs is a monotone homotopy between HC 2Hr0 and H� 2Hr 00 that is constant in the s–coordinate for
s > jS j then

0�E.u/�AHC.xC/�AH�.x�/C sup
s2Œ�S;S�;

t2S1;p2DR

@sHs.t; p/;

where RDmaxfr ı x�; r ı xC; r0; r 00g.
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3 Filtered Floer and symplectic cohomology

We present in this section a brief overview of Floer cohomology for completions of Liouville domains
and their symplectic cohomology. For more details we refer the reader to [Cieliebak et al. 1995; 1996;
2010; Viterbo 1999; Weber 2006; Ritter 2013].

3.1 Filtered Floer cohomology

3.1.1 The Floer cochain complex Let .H; J / be an admissible pair. As mentioned in Remark 8, the
1–periodic orbits of H on yD nD�0 come in a finite number of S1–families, which we denote by Oxi . To
break each Oxi in a finite number of isolated periodic orbits, we first choose an open neighborhood Ui of
each Oxi such that Ui \Uj D¿ for i ¤ j . Then, we define on each Oxi a Morse function fi having exactly
two critical points: one of index 0 and another of index 1. We extend each fi to its corresponding Ui .
When added to H, these perturbations, which can be chosen as small as we want, break each of the
S1–families into two critical points. By virtue of the action formula derived in Remark 10, the actions of
the new critical points are as close as we want to the action of their original S1–family. We denote by H1
the Hamiltonian resulting from this procedure. By abuse of notation we will write P.H/ for the set of
1–periodic orbits of H1.

We define the Floer cochain group of H as the Z2–vector space4

CF�.H/D
M

x2P.H/

Z2hxi:

As the notation above suggests, CF�.H/ is in fact a graded Z2–vector space. Assuming that the first
Chern class c1.!/ 2 H2. yDIZ/ of .T yD;J / vanishes on �2. yD/, the Conley-Zehnder index CZ.x/ 2 Z

of a 1–periodic orbit x 2 P.H/ is well-defined [Salamon and Zehnder 1992]. We can therefore equip
CF�.H/ with the degree

jxj D 1
2

dim yD�CZ.x/

and define
CFk.H/D

M
x2P.H/
jxjDk

Z2hxi:

Here, CZ is normalized such that for a C 2–small time-independent admissible Hamiltonian F,

CZ.x/D 1
2

dim yD� ind.x/;

where ind.x/ corresponds to the Morse index of x 2 Crit.F / D P.F /. In particular, if x is a local
minimum of F, then jxj D 0. This convention therefore ensures that the cohomological unit has degree 0.

4We use Z2 coefficients here for simplicity but the cohomological construction that follows can be carried out with any coefficient
ring.
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Figure 4: The differential in Floer cohomology goes from right to left.

For a generic perturbation of J, the space M.x�; xCIH/ is a smooth manifold of dimension

dimM.x�; xCIH/D CZ.xC/�CZ.x�/� 1:

In the case where jx�j D jxCjC1, Corollary 15 and Lemma 16 allow us to use the standard compactness
arguments, as in [Audin and Damian 2014, Chapter 8], to show that M.x�; xCIH/ is a compact manifold
of dimension 0. Knowing that, we define the coboundary operator @ W CFk.H/! CFkC1.H/ by

@xC D
X

jx�jDkC1

#2M.x�; xCIH/x�;

where #2M.x�; xCIH/ is the count modulo 2 of components in M.x�; xC;H/. See Figure 4.

Using once again Corollary 15, @ ı @ D 0 holds by standard arguments which appear in [Audin and
Damian 2014, Chapter 9]. The pair .CF�.H/; @/ is thus a graded cochain complex that we call the Floer
cochain complex of H.

3.1.2 Filtered Floer cochain complex The Hamiltonian action functional induces a filtration on the
Floer cochain complex. For a 2 .R[f˙1g/ nSpec.H/, we define

CFk<a.H/D
M

x2P.H/
jxjDk; AH .x/<a

Z2hxi:

By definition, we have CF�.H/D CF�<C1.H/. Lemma 16 assures that @ decreases the action. Thus, the
restriction @<a WCFk<a.H/!CFkC1<a .H/ of the coboundary operator is well-defined and .CF�<a.H/; @<a/
is a subcomplex of .CF�.H/; @/. Now, for a; b 2 .R[f˙1g/nSpec.H/ such that a < b, we can define
the Floer cochain complex in the action window .a; b/ as the quotient

CF�.a;b/.H/D
CF�<b.H/
CF�<a.H/

;

on which we denote the projection of the coboundary operator by

@.a;b/ W CFk.a;b/.H/ // CFkC1
.a;b/

.H/:
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Therefore, for a; b; c 2 .R[f˙1g/nSpec.H/ such that a < b < c, we have an inclusion and a projection

�
b;c
a;a W CF�.a;b/.H/ // CF�.a;c/.H/; �

c;c
a;b
W CF�.a;c/.H/ // CF�.b;c/.H/

that produce the short exact sequence

0 // CF�.a;b/.H/
�
b;c
a;a
// CF�.a;c/.H/

�
c;c
a;b
// CF�.b;c/.H/ // 0:

For simplicity, we define �<c D �C1;c�1;�1 and �>b D �
C1;C1
�1;b

.

3.1.3 Filtered Floer cohomology Let a; b 2 .R[f˙1g/nSpec.H/ such that a<b. The above filtered
cochain complexes allow us to define the Floer cohomology group of H in the action window .a; b/ as

HF�.a;b/.H/D
ker @.a;b/
im @.a;b/

:

The full Floer cohomology group of H is defined as HF�.H/ D HF�
.�1;C1/

.H/. For a; b; c 2
.R[f˙1g/nSpec.H/ such that a < b < c, the short exact sequence on the cochain level induces a long
exact sequence in cohomology:

(2)

HF�
.a;b/

.H/

Œ�
b;c
a;a�

''

HF�
.a;c/

.H/

Œ�
c;c
a;b
�ww

HF�
.b;c/

.H/

ŒC1�

OO

For C 2–small admissible Hamiltonians with small slope at infinity, the Floer cohomology recovers the
standard cohomology of D.

Lemma 17 [Ritter 2013, Section 15.2] Let H 2 H be a C 2–small Hamiltonian with �H < T0 for
T0 Dmin Spec.@D; �/. Then , we have an isomorphism

ˆH W H�.D/ // HF�.H/:

Remark 18 We can endow HF�.H/ with a ring structure [Ritter 2013] where the product is given by
the pair of pants product. The unit in HF�.H/, which we denote by 1H , coincides with ˆH .eD/, where
eD is the unit in H�.D/.

3.1.4 Compactly supported Hamiltonians We can define the Floer cohomology of compactly sup-
ported Hamiltonians on Liouville domains by first extending to affine functions on the cylindrical portion
of yD.
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h".r/

1 r0� " r0� "=2 r0
r

Figure 5: The �–extension of a compactly supported Hamiltonian.

Definition 19 Denote by C.D/ the set of Hamiltonians with support in S1 � .D n @D/. Let H 2 C.D/.
For � 2 .0;1/ nSpec.@D; �/, we define the �–extension H � 2H1 of H as follows. Fix 0 < " < 1 and
r0 > 1 so that 1 < r0� ",

� H � DH on D and H � D 0 on Dr0�" nD,

� H � D h".r/ on yD nDr0�",

� h".r/ is convex for r 2 Œr0�"; r0�, with h.k/" .1/D 0 for all k� 0, h0".1C"/D � and h.`/" .1C"/D 0
for all ` > 1,

� h".r/D �.r � .r0� "=2// for r 2 Œr0;C1/.

We perturb H � so that it is r0–admissible. The Floer cohomology of H is defined as

HF�.a;b/.H/D HF�.a;b/.H
� /;

where 0 < � < T0. See Figure 5.

Since we take a slope � smaller than the minimum Reeb period to define HF�
.a;b/

.H/, the above definition
doesn’t depend on the choice of � , " and r0, as we will see in Lemma 20 below.

3.1.5 Continuation maps Let K 2 Hr0 and F 2 Hr 00 such that F � K. Consider a monotone
homotopy H� from F to K. Then from Corollary 15 and Lemma 16 in the case of homotopies, we
can apply the techniques shown in [Audin and Damian 2014, Chapter 11] to show that, for x� 2 P.K/
and xC 2 P.F / with jx�j D jxCj, M.x�; xCIH�/ is a smooth compact manifold of dimension 0. The
continuation map ˆH� W CFk.F /! CFk.K/ induced by Hs on the cochain level is defined as

ˆH�.xC/D
X
jx�jDk

#2M.x�; xCIH�/x�;

where #2M.x�; xCIH�/ is the count modulo 2 of components in M.x�; xCIH�/. The map

ŒˆH� � W HF�.F / // HF�.K/
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is independent of the chosen monotone homotopy and we can denote it by ŒˆK;F �. Consider the monotone
homotopy

Hs DKCˇ.s/.F �K/

described in Section 2.2. We note that @sHs � 0 since F �K and ˇ0 � 0. Thus the action estimate given
by Lemma 16 for homotopies yields

AK.x�/�AH .xC/C sup
s2Œ�S;S�;

t2S1;p2DR

@sHs.t; p/�AH .xC/

for x� 2 P.K/ and xC 2 P.F /. Therefore, the continuation map decreases the action and hence induces
maps

Œˆ
K;F
.a;b/

� W HF�
.a;b/

.F / // HF�
.a;b/

.K/

that commute with the inclusion and restriction maps as follows [Ritter 2013, Section 8]:

(3)

� � � // HF�
.a;b/

.F /
Œ�
b;c
a;a�

//

Œˆ
K;F
.a;b/

�

��

HF�
.a;c/

.F /
Œ�
c;c
a;b
�

//

Œˆ
K;F
.a;c/

�

��

HF�
.b;c/

.F / //

Œˆ
K;F
.b;c/

�

��

� � �

� � � // HF�
.a;b/

.K/
Œ�
b;c
a;a�

// HF�
.a;c/

.K/
Œ�
c;c
a;b
�

// HF�
.b;c/

.K/ // � � �

Suppose we are given another Hamiltonian H �K. Then we have the commutative diagram

HF�
.a;b/

.F /
Œˆ
K;F
.a;b/

�
//

Œˆ
H;F
.a;b/

�

OO

HF�
.a;b/

.K/
Œˆ
H;K
.a;b/

�
// HF�

.a;b/
.H/:

As opposed to the closed case, for completion of Liouville domains, continuation maps do not necessarily
yield isomorphisms. One case in which they do is when both Hamiltonians have the same slope.

Lemma 20 [Ritter 2009, Section 2.12] Let F;K 2H and suppose �F and �K are both contained in an
open interval that does not intersect Spec.@D; ˛/. Then , if �F � �K ,

ŒˆK;F � W HF�.F / // HF�.K/

is an isomorphism. Under ŒˆK;F �, 1F and 1K are identified.

In action windows, we have the following isomorphisms.

Lemma 21 [Viterbo 1999, Proposition 1.1] Let H� be a monotone homotopy between H˙ 2H that is
constant in the s–coordinate for jsj > S > 0. Suppose as; bs W R! R are functions which are constant
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outside Œ�S; S� and as; bs … Spec.Hs/ for all s. Then ,

ŒˆH�;HC � W HF�
.aC;bC/

.HC/
Š
// HF�

.a�;b�/
.H�/

for a˙ D lims!˙1 as and b˙ D lims!˙1 bs .

3.2 Filtered symplectic cohomology

Equip the set of admissible Hamiltonians H0 negative on D with the partial order

H �K () H.t; p/�K.t; p/ for all .t; p/ 2 S1 � yD:

Let fHigi2I �H0 be a cofinal sequence with respect to �. We define the symplectic cohomology of D
as the direct limit

SH�.a;b/.D/D lim
�!
Hi

HF�.a;b/.Hi /

taken with respect to the continuation maps

Œˆ
Hj ;Hi
.a;b/

� W HF�
.a;b/

.Hi / // HF�
.a;b/

.Hj /

for i < j . We let SH�.D/D SH�.�1;C1/.D/. The long exact sequence on Floer cohomology carries
through the direct limit and we also have a long exact sequence on symplectic cohomology:

SH�.a;b/.D/

Œ�
b;c
a;a�

&&

SH�.a;c/.D/

Œ�
c;c
a;b
�

xx

SH�.b;c/.D/

ŒC1�

OO

The Viterbo map Let F 2 H and consider H 2 H0 with �H D �F . Then, by Lemma 20, we have
HF�.F /Š HF�.H/ and there exist, by the definition of symplectic cohomology, a map

(4) jF W HF�.F /Š HF�.H/ // SH�.D/

sending each element of HF�.H/ to its equivalence class. Now, for H 2H0 with slope �H < T0 we can
define, by Lemma 17, the map v� W H�.D/! SH�.D/ first introduced in [Viterbo 1999] by

H�.D/
ˆH

//

v�

OO
HF�.H/

jH
// SH�.D/:

This map induces a unit on symplectic cohomology. Recall that 1H denotes the unit in HF�.H/ (see
Remark 18).
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Theorem 22 [Ritter 2013] The ring structure on HF�.H/ induces a ring structure on SH�.D/. The
unit on SH�.D/ is given by the image of the unit eD 2 H�.D/ under the map v�. Moreover ,

v�.eD/ 2 im. Œ�";1�1;1� W SH�.�1;"/.D/ // SH�.�1;1/.D/ /:

4 Spectral invariants and spectral norm

4.1 Spectral invariants

Denote by Hamc.D; d�/ the group of compactly supported Hamiltonian diffeomorphisms of .D; d�/ and
by Sympc.D; d�/ the group of compactly supported symplectomorphisms of .D; d�/. The Hofer norm
of a compactly supported Hamiltonian H 2 C.D/ is defined as

kHk D
Z 1

0

�
sup
p2D

H.t; p/� inf
p2D

H.t; p/
�

dt:

Using the Hofer norm, we can define a bi-invariant metric [Hofer 1990; Lalonde and McDuff 1995] on
Hamc.D; d�/ by

dH .';  /D dH .' 
�1; id/; dH .'; id/D inffkHk j ' D 'H g:

Recall that C.D/ forms a group under the multiplication

H #K.t; p/DH.t; p/CK.t; .'tH /
�1.p//;

with the inverse of some H 2 C.D/ given by H.t; p/D�H.t; 'tH .p//.

From Lemma 17 and by the definition of HF�.H/ for H 2 C.D/, we know that HF�.H/Š H�.D/. For
ˇ 2 H�.D/, we define, following [Schwarz 2000], the spectral invariant of H relative to ˇ as

c.ˇ;H/D inf
˚
` 2R jˆH .ˇ/ 2 im

�
Œ�`;1�1;�1� W HF�.�1;`/.H/! HF�.H/

�	
;

which is, by exactness of the long exact sequence (2), equivalent to

c.ˇ;H/D inff` 2R j Œ�1;1
�1;`

� ıˆH .ˇ/D 0g:

The following proposition gathers all the properties of spectral invariants we need for the rest of the text.
Proofs of these properties can be found5 in [Frauenfelder and Schlenk 2007, Section 5].

Proposition 23 Let ˇ; � 2H�.D/ and let H;K 2 C.D/. Then:

� Continuity
R 1
0 minx2D.K �H/ dt � c.ˇ;H/� c.ˇ;K/�

R 1
0 maxx2D.K �H/ dt .

� Spectrality c.ˇ;H/ 2 Spec.H/.

� Triangle inequality c.ˇ ^ �;H #K/� c.ˇ;H/C c.�;K/.

� Monotonicity If H.t; x/�K.t; x/ for all .t; x/ 2 Œ0; 1��D, then c.ˇ;H/� c.ˇ;K/.

5Note that the signs for continuity and monotonicity differ from [Frauenfelder and Schlenk 2007, Section 5] because of differences
in sign conventions.
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Remark 24 The continuity property of Proposition 23 allows us to define spectral invariants of compactly
supported continuous Hamiltonians H 2 C 0c .Œ0; 1��D/. They satisfy continuity, the triangle inequality
and monotonicity.

4.1.1 Additional properties of c The following lemma assures us that spectral invariants are well-
defined on Hamc.D; d�/. The proof relies on the spectrality and the triangle inequality.

Lemma 25 Let H;K 2 C.D/ such that 'H D 'K and let ˇ 2 H�.D/. Then ,

c.ˇ;H/D c.ˇ;K/:

Proof We have 'H#K D '0 D id and in that case Spec.H #K/D f0g. Now, by spectrality of spectral
invariants, c.ˇ;H #K/D 0. Thus, the triangle inequality yields

c.ˇ;H/D c.ˇ;H #K #K/� c.ˇ;H #K/C c.ˇ;K/D c.ˇ;K/:

Repeating the same argument with K # H instead of H # K, we obtain c.ˇ;K/ � c.ˇ;H/, which
concludes the proof.

The spectral invariant with respect to the cohomological unit admits an implicit definition which depends
on the spectral invariants with respect to all other cohomology classes in H�.D/. This follows directly
from the triangle inequality.

Lemma 26 Let H 2 C.D/. Then ,
c.1;H/D max

ˇ2H�.D/
c.ˇ;H/:

Proof Let ˇ 2H�.D/. By the definition of the unit and the concatenation of Hamiltonians, we have

c.ˇ;H/D c.ˇ ^ 1;H/D c.ˇ ^ 1; 0 #H/:

Then, since c.ˇ; 0/D 0, the triangle inequality guarantees that

c.ˇ;H/D c.ˇ ^ 1; 0 #H/� c.ˇ; 0/C c.1;H/D c.1;H/:

The choice of ˇ being arbitrary, this concludes the proof.

4.1.2 The symplectic contraction principle We conclude this section by recalling the symplectic
contraction technique introduced in [Polterovich 2014, Section 5.4]. This principle allows one to describe
the effect of the Liouville flow f log r

Y g0<r<1 on spectral invariants.

First, we need to describe how the Liouville flow acts on the symplectic form ! ofD and on compactly sup-
ported Hamiltonians onD. Since LY!D!, we have that the Liouville flow contracts the symplectic form:

. 
log r
Y /�! D r!:
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Now, consider a Hamiltonian H 2 C.D/ supported in U �D. For fixed 0 < r < 1 define the Hamiltonian

(5) Hr.t; x/D

�
rH.t; . 

log r
Y /�1.x// if x 2  log r

Y .U /;

0 if x …  log r
Y .U /:

It then follows from the two previous equations that Spec.Hr/D r Spec.H/. This allows one to prove:

Lemma 27 [Polterovich 2014] Suppose H 2 C.D/ and let Hr 2 C.D/ be as in (5). Then ,

c.1;Hr/D rc.1;H/:

4.2 Spectral norm

We define the spectral norm .H/ of H 2 C.D/ as

.H/D c.1;H/C c.1;H/:

For ' 2 Hamc.D; d�/ such that ' D 'H , define

.'/D .H/:

By virtue of Lemma 25, this is well-defined.

From [Frauenfelder and Schlenk 2007, Section 7], we have the following theorem which justifies calling
 a norm.

Theorem 28 Let '; 2 Hamc.D; d�/ and let � 2 Sympc.D; d�/. Then:

� Nondegeneracy .id/D 0 and .'/ > 0 if  ¤ id.

� Triangle inequality .' /� .'/C . /.

� Symplectic invariance .� ı' ı��1/D .'/.

� Symmetry .'/D .'�1/.

� Hofer bound .'/� dH .'; id/.

5 Cohomological barricades on Liouville domains

Ganor and Tanny [2023] introduced a particular perturbation of Hamiltonians compactly supported inside
contact incompressible boundary domains (CIB) of closed aspherical symplectic manifolds. For instance,
if U �M is an incompressible open set which is a Liouville domain, then U is a CIB. In Floer homology,
the aforementioned Hamiltonian perturbation, which is called a barricade, prohibits the existence of
Floer trajectories exiting and entering the CIB. We consider barricades in the particular case of Liouville
domains and adapt them to Floer cohomology.

In the present setting, we define barricades for a special class of admissible Hamiltonians.

Algebraic & Geometric Topology, Volume 24 (2024)



3782 Pierre-Alexandre Mailhot

h.r/

1 r0

�0 "
r

Figure 6: An r0–barricade-admissible Hamiltonian.

Definition 29 A Hamiltonian H is said to be r0-barricade-admissible if H 2 Hr0 and the following
conditions hold:

� H.t; x; r/D h.r/ on yD nD�0 for some �0 2 .0; 1/.

� h.r/ is C 2–small on .1; r0� "/.

� h.r/ is strictly convex on .r0� "; r0/.

(See Figure 6.) Here ">0 is small enough so that 1< r0�". We denote the set of r0–barricade-admissible
Hamiltonians by Hr0 .

We say that .F�; J / is an r0-barricade-admissible pair if F� is a monotone homotopy such that Fs 2Hr0
for all s and J is an admissible almost-complex structure.

Remark 30 By Definition 19, the extension H � of any Hamiltonian H compactly supported in D can
be chosen so that it is r0–barricade-admissible.

Definition 31 Let r0>1 and 0<"<r0�1. DefineBr0;"DD
r0�"nD, where, for �>0, D�D‰log�

Y .D/.
Suppose .F�; J / is an r0–barricade-admissible pair from FC to F�. We say that .F�; J / admits a barricade
on Br0;" if for every x˙ 2 P.F˙/ and every Floer trajectory u WR�S1! yD connecting x˙, we have,
for Db WDD

r0�" DD[Br0;":

(1) If x� 2D, then im.u/�D.

(2) If xC 2Db , then im.u/�Db.

Remark 32 In the language of [Ganor and Tanny 2023], a barricade on Br0;" as described above would
be called a barricade in Dr0�" around D.

5.1 How to construct barricades

To construct barricades, we need to consider special classes of pairs of Hamiltonians and almost-complex
structures. These are defined using a refinement of Definition 3.5 in [Ganor and Tanny 2023].
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yD n .Br0;"[D/
yD n .Br0;"[D/

Br0;" Br0;"

D D

allowed Floer trajectories forbidden Floer trajectories

Figure 7: Floer cylinders in a barricade. The arrows follow the direction of the Floer differential
and the continuation map: from xC to x�.

Definition 33 Let r0 > 1, � 2 .0;C1/ nSpec.@D; �/ and 0 < " < r0� 1. An r0–barricade-admissible
pair .F�; J / admits a cylindrical bump of slope � on Br0;" if:

(1) F D 0 on @Br0;" �S
1 �R.

(2) J Y DR˛ for Y the Liouville vector field on D, on a neighborhood of @Br0;"; ie J is cylindrical
near @Br0;" D @D t .fr0� "g � @D/.

(3) rJF D �Y near .f1g�@D/�S1�R and rJF D��Y near .fr0� "g�@D/�S1�R. Here, rJ
denotes the gradient induced by the metric gJ .

(4) All 1–periodic orbits of F˙ contained in Br0;" are critical points with values in the interval .��; �/.
(In particular, � < T0.)

A cohomological adaptation of Lemma 3.3 in [Ganor and Tanny 2023] yields the following action
estimates for pairs with cylindrical bumps.

Lemma 34 Suppose that the r0–barricade-admissible pair .F; J / admits a cylindrical bump of slope �
on Br0;". For every finite-energy solution u connecting x˙ 2 P.F˙/:

(1) im x� �D and im xC � yD nD D) AFC.xC/ > � .

(2) im xC �Db and im x� � yD nDb D) AF�.x�/ < �� .

See Figure 7.

Lemma 34 and the maximum principle are all we need to prove that every pair with a cylindrical bump
admits a barricade. More precisely, we have:

Proposition 35 Let .F; J / be an r0–barricade-admissible pair with a cylindrical bump of slope � onBr0;".
Then , .F; J / admits a barricade on Br0;".

Proof Suppose u WR�S1! yD is a Floer trajectory between x˙ 2 P.F˙/. We only need to study the
case where im x� �D and the case where im xC �Db.
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Suppose that im x� �D. We first establish that xC must lie inside D. Indeed, if im xC � yD nD, part (1)
of Lemma 34 assures us that AFC.xC/ > � , which contradicts the fact that orbits on yD nD must have
action in the interval .��; �/ by the construction of the cylindrical bump. Therefore, im xC � D as
desired. Now, since im x˙ �D, the maximum principle guarantees that imu�D.

To finish the proof, we look at the case where im xC � Db. Similarly to the previous case, we prove
that x� also lies inside Db. If im x� � yD nDb, part (2) of Lemma 34 imposes AF�.x�/ < �� , which
is again impossible by construction of the cylindrical bump. Therefore, im x� �Db and the maximum
principle implies imu�Db.

Given a pair .F; J / and � > 0 small, we can add to F a C1–small radial bump function � with support
inside Br0;" such that .F C �; J / has a cylindrical bump of slope � on Br0;". By Proposition 35, the
perturbed pair will also admit a barricade on Br0;". A second perturbation of the Hamiltonian term at its
ends, under which the barricade survives, allows us to achieve Floer regularity for the pair. This procedure
is carried out carefully in [Ganor and Tanny 2023, Section 9] and yields the following.

Theorem 36 [Ganor and Tanny 2023] Let F� be a monotone homotopy. Then , there exists a C1–small
perturbation f� of F� and an almost-complex structure J such that the pairs .f�; J / and .f˙; J / are
Floer-regular and have a barricade on Br0;".

5.2 Decomposition of the Floer cochain complex

Let us investigate what structure barricades impose on the Floer cochain complex. Let H 2 Hr0 and
suppose the pair .H; J / admits a barricade on Br0;". For an open subset U � yD, denote by C�.U;H/ the
set of 1–periodic orbits ofH in U. By the definition of the differential @ on Floer cohomology, C�.Db;H/

is closed under @ and it therefore forms a subcomplex of CF�.H/. Moreover, for Dc D yD nDb, we also
have that

C�.Dc;H/D
CF�.H/

C�.Db;H/

is a well-defined cochain complex. In terms of vector spaces, we have the decomposition

CF�.H/Š C�.Db;H/˚C�.Dc;H/:

The direct product gives us injections �Hb , �Hc and projections �Hb , �Hc for which the diagram

C�.Db;H/

C�.Db;H/
�Hb

//

id

::

0
$$

CF�.H/

�Hb

OO

�Hc

��

C�.Dc;H/

0

dd

id
zz

�Hc

oo

C�.Dc;H/
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commutes and the equation
�Hb ı�

H
b .q/C �

H
c ı�

H
c .q/D q

holds for any q 2 CF�.H/. Here, the projection �Hc coincides with the canonical projection

CF�.H/ // //
CF�.H/

C�.Db;H/
:

The differential @b on C�.Db/ is simply the restriction of the differential @ of CF�.H/ on C�.Db/. The
differential @c on C�.Dc/ is the quotient complex differential defined by

@c�
H
c .p/D �

H
c .@p/:

5.2.1 Continuation maps Let .F�; J / be an r0–barricade-admissible pair that admits a barricade
on Br0;". Then, since the continuation map ˆF� W CF�.FC/! CF�.F�/ counts Floer trajectories of F
connecting 1–periodic orbits of FC to 1–periodic orbits of F�, it restricts, due to the barricade, to a chain
map

ˆb
F W C

�.Db; FC/ // C�.Db; F�/:

Moreover, in virtue of Lemma 38 below, ˆF projects to a chain map

ˆc
F W C

�.Dc; FC/ // C�.Dc; F�/

such that the following diagram commutes

CF�.FC/
ˆF�

//

�
C
b

��

CF�.F�/

��b

��

C�.Dc; FC/
ˆc
F�

// C�.Dc; F�/

where we write �Cb D �
FC
b and ��b D �

F�
b .

5.2.2 Chain homotopies Let .F˙; J / be r0–barricade-admissible pairs that admit cylindrical bumps
of slope � on Br0;" such that FC and F� have the same slope �C D �� at infinity. Consider the linear
homotopy

Fs D F�Cˇ.s/.FC�F�/;

where ˇ WR! Œ0; 1� is a smooth function such that ˇ.s/D 0 for s ��1, ˇ.s/D 1 for s � 1 and ˇ0.s/ > 0
for all s 2 .�1; 1/. Denote by F � the inverse homotopy defined by F s D F�s . For � > 1 large, we define
the concatenation F #F � as

.F #F /s D
�
FsC� for s � 0;
F s�� for s � 0:

Using the definition of F� and F �, we can simply write

.F #F /s D F�Cˇ�.s/.FC�F�/
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for ˇ�.s/Dˇ.�jsjC�/. The homotopy F #F � generates the composition of continuation homomorphisms
ˆF ıˆF W CF�.F�/! CF�.F�/, which is chain homotopic to the identity on CF�.F�/,

ˆF� ıˆF � � id� D @� ı‰��‰� ı @�

for ‰� W CF�.F�/! CF��1.F�/ and @� the differential on CF�.F�/. The chain homotopy ‰� is built
by counting Floer solutions of the homotopy f��g�2Œ0;1� between F #F � and the constant homotopy F�,
which is defined by

��s D F�C �ˇ�.s/.FC�F�/:

For x 2 P.F�/ and y 2 P.FC/, define

M�.x; y/D f.�; u/ j � 2 Œ0; 1�; u 2M.x; yI�k
�
/g:

We can perturb � with a C1–small function in order to make it regular [Audin and Damian 2014,
Chapter 11]. Now, since the pairs .F˙; J / admit cylindrical bumps of slope � on Br0;", and thus have
barricades on Br0;", solutions to the parametric Floer equation for �� also admit cylindrical bumps of
slope � on Br0;" and have barricades on Br0;". To see this, first fix � 2 Œ0; 1�, We need to show that ��

satisfies conditions (1) through (4) of Definition 33. For (1), we have, on @Br0;" �S
1 �R,

�� D F�C �ˇ�.s/.FC�F�/D 0C �ˇ�.s/.0� 0/D 0:

Condition (2) is automatically satisfied since J is fixed. For condition (3), we have on .f1g�@D/�S1�R,

rJ�
�
DrJF�C �ˇ�.s/.rJFC�rJF�/D �Y C �ˇ�.s/.�Y � �Y /D �Y

and, by the same computation, rJ�� D��Y on .fr0�"g�@D/�S1�R. Condition (4) is also satisfied
since ��

˙1
D F�. All of this still holds with regular perturbations of � .

Lemma 37 Let F�; FC2Hr0 with same slope at infinity and suppose they both admit barricades onBr0;".
Furthermore , suppose that solutions to the parametric Floer equation for �� also admit barricades on Br0;".
Then , for any C1–small perturbation � 0 of � which satisfies P.F 0

˙
/D P.F˙/, Floer trajectories in M� 0

follow the rules of the barricade on Br0;".

Proof The proof follows the same ideas as the proof of Proposition 9.21 in [Ganor and Tanny 2023]. By
Gromov compactness, any sequence .�n; un/2M�.x�; yC/ of solutions to the parametric Floer equation
converges, up to taking a subsequence, to a broken trajectory .�; Nv/, where NvD .v1; : : : ; vk; w; v01; : : : ; v

0
`
/

connects two orbits x˙ 2 P.F˙/. The fact that F˙ both admit a barricade on Br0;" assures us that

� x� 2D D) Nv �D,

� xC 2D D) Nv �Db.

Now, consider a sequence of regular homotopies f�ngn with ends lims!˙1 �s;nDFn˙ converging to �
such that P.Fn˙/D P.F˙/ for all n. Then, the above two implications regarding broken trajectories
imply that every trajectory .�n; u0n/ 2M� 0.x�; xC/, for x˙ 2 P.F˙/, obey the rules of the barricade.
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Thus, ‰� restricts to a map ‰b� W C
�.Db; F�/! C��1.Db; F�/ and by Lemma 39 below, we can define

its projection ‰c� W C
�.Dc; F�/! C��1.Dc; F�/.

Technical lemmas When adapting computations from homology to cohomology, we often have to rely
on quotient complexes instead of subcomplexes. Here are a few simple results from homological algebra
which will be useful in that regard. Let .A; dA/ and .C; dC / be cochain complexes and let B � A and
D � C be subcomplexes.

Lemma 38 Suppose f W .A;B/ ! .C;D/ is a chain map. Then , there exists a unique chain map
Nf W A=B! C=D such that the following diagram commutes

A
f

//

�B

��

C

�D

��

A=B
Nf

// C=D

for �B and �D the canonical projections. It follows that , on cohomology, we have the following
commutative diagram:

H�.A/
Œf �

//

Œ�B �

��

H�.C /

Œ�D�

��

H�.A=B/
Œ Nf �

// H�.C=D/

Proof Define, for all x 2 A,
Nf .�B.x//D �D.f .x//:

We first need to show that Nf is well-defined. Suppose x0 D xC b for x 2 A and b 2 B . Then, since f
restricts to a map from B to D, there exists d 2D such that f .b/D d and we have

Nf .�B.x
0//D �D.f .xC b//D �D.f .x/C d/D �D.f .x//:

Thus, Nf is well-defined.

To prove uniqueness, we simply use the definition of Nf . Suppose we have another map Ng W A=B! C=D

which makes the above diagram commute as well. Then, for all x 2 A,

Nf .�B.x//� Ng.�B.x//D �D.f .x//��D.f .x//D 0:

Lemma 39 Suppose f W .A;B/! .C;D/ and g W .C;D/! .A;B/ are chain maps such that f ı g is
chain homotopic to the identity

f ıg� idC D dC ı � ı dC ;

where the chain homotopy is a map  W .C;D/! .C;D/. Then , Nf ı Ng W C=D ! C=D is also chain
homotopic to the identity.
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Proof Since the chain homotopy  W .C;D/! .C;D/ is a chain map of pairs, Lemma 38 allows us to
define its projection N W C=D! C=D. Thus, for all y 2 C ,

Nf ı Ng.�D.y//� idC=D.�D.y//D Nf ı�B.g.y//��D.idC .y//

D �D.f ıg.y//��D.idC .y//

D �D..dC ı � ı dC /.y//

D .dC=D ı�D ı ��D ı ı dC /.y/

D dC=D ı N .�D.y//� N ı dC=D.�D.y//;

which proves that Nf ı Ng is chain homotopic to the identity on C=D since any z 2 C=D is of the form
z D �D.y/.

6 Proofs of main results

6.1 Proof of Theorem A1

Fix A 2 .0;1/ n Spec.@D; �/. The idea of the proof is to construct a special admissible Hamiltonian
for which c.1; � / is bounded from below by A� " for " a small constant which depends on A. This
construction is inspired by [Cieliebak et al. 2010, Proposition 2.5]. Then, we use the fact that c.1; � /� 0
to conclude.

6.1.1 Construction of the Hamiltonian Fix some r0 > 1. For any ı 2 .0; 1/ and � 2 .0; T0/, we define
the Hamiltonian Hı;A as follows:

� Hı;A is the constant function A.ı� 1/ on Dı .

� Hı;A.r; x/D A.r � 1/ on D nDı .

� Hı;A.r; x/D 0 on Dr0 nD.

� Hı;A.r; x/D �.r � r0/ on yD nDr0 .

See Figure 8. We add a small perturbation to Hı;A so that it lies in Hr0 . Denote by hı;A the function
of one variable for which Hı;A D hı;A ı r on Dc. If  is a 1–periodic orbit of hı;A inside the level set
frg � @D, its action can be written as

AHı;A./DAHı;A.r/D rh
0
ı;A.r/� hı;A.r/:

The 1–periodic orbits of Hı;A can be classified into three different categories. Recall that �A denotes the
distance between A and Spec.@D; ˛/.

(I) Critical points in Dı with action close to r I WD .1� ı/A.

(II) Nonconstant 1–periodic orbits near fıg � @D with action in a small neighborhood of the interval

III D ŒıT0C .1� ı/A;A� ı�A�:
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A.ı� 1/

ı 1

r0
r

Hı;A

Figure 8: Radial portion of the Hamiltonian Hı;A.

r IV IIII r I III

0 A� "

T0 �A� " "� ıA ıT0

Figure 9: Distances that separate the action windows under consideration.

(III) Nonconstant 1–periodic orbits near f1g � @D with action in a small neighborhood of the interval

IIII D ŒT0; A� �A�:

(IV) Critical points in Dr0 nD with action close to r IV WD 0.

Note that there are no nonconstant 1–periodic orbits near fr0g � @D, since the slope of the Hamiltonian
there ranges from 0 to � , which is less than T0 by assumption.

We now want to construct a Floer complex C�I,II which will contain the orbits of type (I) and (II) and
another complex C�III,IV containing orbits of type (III) and .IV/. To that end, pick 0 < ı < 1 small enough
so that ıA < �A. Now choose " > 0 such that

ıA < " < �A:

Then, we have the inequalities
r IV < IIII < A� " < r I < I II:

As shown in Figure 9, rI, III, IIII and r IV are all separated by distances which depend only on T0, A, �A,
ı and ". Thus, we can choose the perturbation we add to Hı;A to be small enough so that, in terms of
action, we have

.IV/ < .III/ < A� " < .I/ < .II/:

Therefore, since the Floer differential decreases the action, we can define the Floer cochain complexes as

C�III,IV D CF�.�1;A�"/.Hı;A/; C�I,II D
CF�.Hı;A/

C�III,IV
D CF�.A�";1/.Hı;A/
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A.ı� 1/
Hı;A

ı

yHı;A

1 r0
r

Figure 10: Homotopy from Hı;A to yHı;A:

and they yield the Floer cohomology groups

H�.C�III,IV/D HF�.�1;A�"/.Hı;A/; H�.C�I,II/D HF�.A�";1/.Hı;A/:

A quick look at the action windows under consideration informs us that the above complexes fit into the
short exact sequence

0 // C�III,IV
�
A�";C1
�1;�1

// CF�.Hı;A/
�
C1;C1
�1;A�"

// C�I, II
// 0;

which in turn yields an exact triangle in cohomology:

H�.C�III,IV/
Œ�
A�";C1
�1;�1 �

// HF�.Hı;A/

Œ�
C1;C1
�1;A�" �

{{

H�.C�I,II/

ŒC1�

cc

6.1.2 Factoring a map to SH�.D/ We now build maps ‰ and ‰I,II such that the diagram

(6)

HF�.Hı;A/
Œ�
1;1
�1;A�"�

//

‰
''

H�.C�I,II/

‰I,II

��

SH�.D/

commutes. We need to construct ‰ so that it coincides with the map jHı;A W HF�.Hı;A/! SH�.D/
(see (4)). By virtue of Theorem 22, this assures us that ‰ is a map of unital algebras.

First, we construct ‰I,II in three steps.

Step 1 Œˆ1� WH�.C�I,II/ŠHF�
.ıA�";1/

.Hı;ACA.1�ı//. This isomorphism follows from a simple shift
of A.1� ı/ in the Hamiltonian term, which translates to a shift of A.ı� 1/ in action (see Figure 10). In
what follows, we let yHı;A WDHı;ACA.1� ı/.
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Kr1;� .r/

r1

�.r � r1/

r

Figure 11: Radial portion of the Hamiltonian Kr1;� .

For the next steps, we need to define another special family of Hamiltonians. Given r1 2 .0;C1/ and
� 2 .0;1/ nSpec.@D; �/, define the Hamiltonian Kr1;� as follows (see Figure 11):

� Kr1;� is the constant zero function on Dr1 .

� Kr1;� .x; r/D �.r � r1/ on yD nDr1 .

We add a small perturbation to Kr1;� so that it r1–admissible. The 1–periodic orbits of Kr1;� fall in two
categories:

(I0) Critical points in Dr1 with action near zero.

(II0) Nonconstant 1–periodic orbits near fr1g � @D with action in a small neighborhood of the interval

Œr1T0; r1� � r1�� �:

By the same argument used for Hı;A, the action windows .I0/ and .II0/ are separated if we choose a small
enough perturbation.

Step 2 Œˆ2� W HF�
.ıA�";1/

. yHı;A/Š HF�.Kı;A/. Consider the homotopy

Fs D .1�ˇ.s//Kı;ACˇ.s/ yHı;A;

where ˇ WR! Œ0; 1� is a smooth function such that ˇ.s/D 0 for s ��1, ˇ.s/D 1 for s � 1 and ˇ0.s/ > 0
for all s 2 .�1; 1/ (see Figure 12). Denote by

ˆF� W CF�. yHı;A/ // CF�.Kı;A/

the continuation map generated by F�.

Notice that since Hı;A �Kı;A we can restrict the continuation map on the action window .ıA� ";1/.
Thus,

ŒˆF� � W HF�
.ıA�";1/

. yHı;A/ // HF�
.ıA�";1/

.Kı;A/

is well-defined. Moreover, since ıA� " < 0, Kı;A has no orbits outside the action window .ıA� ";1/

and thus
Œ�
�1;1
ıA�";1

� W HF�
.ıA�";1/

.Kı;A/ // HF�.Kı;A/

is an isomorphism. We define Œˆ2� to be the composition Œ��1;1
ıA�";1

� ı ŒˆF� �.
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ı 1 r0

Kı;A

yHı;A

r

Figure 12: Homotopy from yHı;A to Kı;A.

Step 3 Recall from (4), that we have a natural map

jKı;A W HF�.Kı;A/ // SH�.D/:

We define ‰I,II W H�.C�I,II/! SH�.D/ to be the composition

‰I,II D jKı;A ı Œˆ2� ı Œˆ1�:

The morphism ‰ is built in a similar fashion. We define it as the following composition of maps:

HF�.Hı;A/
Š

Œˆ01�

// HF�. yHı;A/

Œˆ02�

��

HF�.Kı;A/
jKı;A

// SH�.D/

Here, the isomorphism Œˆ01� follows from the fact that both Hı;A and yHı;A have the same slope at infinity.
We defined Œˆ02� to be the continuation map ŒˆKı;A yHı;A �. The last map is given, just as in Step 3, by
jKı;A W HF�.Kı;A/! SH�.D/. By construction, we therefore have

‰ D jKı;A ı Œˆ
0
2� ı Œˆ

0
1�D jKı;A ı ŒˆKı;A yHı;A

� ı Œˆ01�D jHı;A

as desired.

Now, we need to prove that diagram (6) commutes. Writing the maps ‰ and ‰I,II explicitly, we have the
following diagram:

(7)

HF�.Hı;A/
Œ�
C1;C1
�1;A�" �

//

Œˆ01�

��

H�.C�I,II/

Œˆ1�
��

HF�. yHı;A/

Œˆ
Kı;A

yHı;A
�

��

Œ�
C1;C1
�1;ıA�"

�
// HF�

.ıA�";C1/
. yHı;A/

Œˆ2�

��

HF�.Kı;A/
id

// HF�.Kı;A/

jKı;A
��

SH�.D/
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The top square in diagram (7) commutes because, since yHı;A �Hı;A, there exists a continuation map
from HF�.Hı;A/ŠHF�

.ıA�";1/
.Hı;A/ to HF�

.ıA�";C1/
. yHı;A/, where the isomorphism follows from the

fact thatHı;A has no orbits outside the action window .ıA�";1/. Now, since the projection Œ�C1;C1
�1;ıA�"

�

commutes with continuation maps (see diagram (3)), the bottom square in diagram (7) also commutes.
Therefore, we can conclude that diagram (6) commutes.

6.1.3 Spectral invariant and spectral norm of Hı;A Recall that, by definition,

c.1;Hı;A/D inff` 2R j Œ�C1;C1
�1;`

� ı Œ�`;C1�1;�1�.1/D 0g:

Since ‰ is a morphism of unital algebras, the commutative diagram (6) assures us that

Œ�
C1;C1
�1;A�" �.1Hı;A/¤ 0

since we assume that SH�.D/¤ 0. Thus, from the exact triangle in cohomology induced by Œ�A�";C1�1;�1 �

and Œ�C1;C1
�1;A�" �, we have 1 … imŒ�A�";C1�1;�1 � and therefore

c.1;Hı;A/� A� ":

Now, we turn our attention to the spectral norm .Hı;A/. We know from Lemma B that

c.1;Hı;A/; c.1;H ı;A/� 0:

It thus follows from the previous inequality that

.Hı;A/D c.1;Hı;A/C c.1;H ı;A/� A� "

as desired. This completes the proof.

6.2 Proof of Lemma B

We give a proof of Lemma B which relies on the decomposition of the Floer complex induced by the
barricade. We expect that Lemma B could also be proven using Poincaré duality between filtered Floer
cohomology and filtered Floer homology (as in [Cieliebak and Oancea 2018, Section 3]) and Lemma 4.1
of [Ganor and Tanny 2023].

LetH 2Hr0 with slope 0<�H <T0. Consider a linear homotopy F� from FCDKr0;�H (see Figure 11) to
F�DH. There exists a small perturbation f� of F� and an almost-complex structure J such that the pairs
.f�; J / and .f˙; J / admit a barricade on Br0;" for " > 0 small enough. Fix ı > 0. The construction of
Theorem 36 allows us to choose J time independent [Ganor and Tanny 2023, Remark 3.7] and f such that

�ı �
Z 1

0
min

x2 yDn.r0;C1/�@D

.f��H/ dt � ı:

We may assume further that fC has a local minimum point p 2Dc D yD nDb, since fC is C 2–small
there. It follows from Lemma 17 that 1fC D Œp� 2 HF�.fC/ is the image of the unit eD 2 H�.D/ under
the isomorphism f̂C W H

�.D/! HF�.fC/. Moreover, since fC and f� have the same slope at infinity,
Lemma 20 assures us that the isomorphism Œ f̂� � W HF�.fC/! HF�.f�/ induced by the continuation
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morphism f̂� W CF�.fC/! CF�.f�/ preserves the unit. To summarize, we have

f̂C.eD/D Œp�D 1fC and Œ f̂�.p/�D Œ f̂� �.1fC/D 1f� :

By the continuity of spectral invariants, we know that

c.1;H/� c.1; f�/�
Z 1

0
min
x2Dr0

.f��H/ dt:

Therefore, by our choice of f�, we have c.1;H/� �ıC c.1; f�/. To complete the proof, it suffices to
show that c.1; f�/ � �kı for k � 0 independent of f�. However, the definition of spectral invariants
guarantees the existence of q 2 CF�.f�/ cohomologous to 1 for which c.1; f�/�Af�.q/� ı. We thus
only need to prove that Af�.q/� �ı. In the case where q is a combination q1C � � �C qk of orbits, the
action of q is defined as

Af�.q/Dmax
i

Af�.qi /:

Recall from Section 5.2 that the barricade construction assures that we have, in terms of vector spaces,
the decomposition

CF�.f˙/Š C�.Db; f˙/˚C�.Dc; f˙/

with inclusions and projections respectively given by

�˙~ W C
�.D~; f˙/! CF�.f˙/ and �˙~ W CF�.f˙/! C�.D~; f˙/

for ~ 2 fb; cg. Moreover, Floer trajectories starting in Db must have ends in Db and Floer trajectories
starting in Dc can have ends in Db and Dc. Thus,

f̂�.p/D pbCpc and q D pbCpcC @.rbC rc/

for pb; rb 2 im i�b and pc; rc 2 im ��c . Furthermore,

@.rb/D rbb and @.rc/D rcbC rcc;

where rbb; rcb 2 im ��b and rcc 2 im ��c . See Figure 13 for an illustration of the Floer trajectories under
consideration here.

Notice that since f� is C 2–small on Dc, we have Af�.pcC rcc/� �ı. Thus, if pcC rcc ¤ 0, we have

Af�.q/DAf�.pbCpcC rbbC rcbC rcc/�Af�.pcC rcc/� �ı:

We now prove that pcC rcc ¤ 0. This is equivalent to showing that the class Œ��c .pc/� in H�.Dc; f�/ is
nonzero. Indeed, if pcC rcc D 0, we have, by the definition of rcc, pc D�@rc and thus

Œ��c .pc/�D Œ�
�
c .�@rc/�D Œ�@c�

�
c .rc/�D 0:

Denote byˆ Nf� W CF�.f�/! CF�.fC/ the continuation map generated by the inverse homotopy NfsDf�s .
We know that both ˆ Nf� ı f̂� and f̂� ıˆ Nf�

are chain homotopic to the identity:

ˆ Nf�
ı f̂� � idC D @C ı‰C�‰C ı @C;

f̂� ıˆ Nf�
� id� D @� ı‰��‰� ı @�
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Db Dc

rbb

@

rb

rc

@

rcb

@

rcc

p

f̂�

pc

pb
f̂�

Figure 13: The possible trajectories for the differential of rb, rc and the continuation map applied
to p according to the rules of the barricade.

for the differentials @˙ W CF�.f˙/! CF�C1.f˙/ and chain homotopies ‰˙ W CF�.f˙/! CF��1.f˙/.
(In fact, for our purpose here, we only need the first homotopy relation.) Since ‰˙ also obey the rules
of the barricade by Lemma 37, the composition of the projections ˆc

f�
W C�.Dc; fC/ ! C�.Dc; f�/

and ˆc
Nf�
W C�.Dc; f�/! C�.Dc; fC/ is chain homotopic to the identity on C�.Dc; fC/ by Lemma 39.

Therefore, on cohomology, the morphism

Œˆc
Nf�
ıˆcf� � W H

�.Dc; fC/! H�.Dc; fC/

is given by the identity. Moreover, recall that by definition, p 2Dc, which guarantees that, as a cycle,
p 2 im �Cc and since Œp�D 1fC , we have Œ�Cc .p/�¤ 0. Therefore,

Œ��c .pc/�D Œˆ
c
f�
ı�Cc .p/�D Œˆ

c
f�
�.Œ�Cc .p/�/¤ 0:

This concludes the proof.

6.3 Proof of Lemma C

Let 0 < ı < 1 be small enough so that
ıA < ıAC ı�A < �A:

Then, following the proof of Theorem A1 with "D ı.AC �A/, we have that

c.1;Hı;A/� A� ı.AC �A/:

Notice that Hı;A converges uniformly as ı! 0 to the continuous function H0;A (see Figure 14). Then,
by continuity of spectral invariants and the previous equation, we have

c.1;H0;A/D lim
ı!0

c.1;Hı;A/� lim
ı!0

.A� ı.AC �A//D A:

Moreover, since H0;A � �A, continuity of spectral invariants yields

c.1;H0;A/�max
x2D
�H0;A D A;

which allows us to conclude that c.1;H0;A/D A.
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�A

A.ı� 1/

H0;A

1ı

r0
r

Figure 14: The continuous Hamiltonian H0;A.

V Vr 0 r 0

Fr0 Fr0

F
H

r r

�A �A

�A=r 0

Figure 15: The Hamiltonians F, Fr0 and H.

First, we prove the lemma for Hamiltonians which are constant on an open neighborhood of the skeleton
of D. Consider an autonomous Hamiltonian H 2 C.D/ such that H jV D�A and �A �H � 0 for an
open neighborhood V of Sk.D/ and a constant A>0. The last condition onH allows us to use continuity
of spectral invariance to conclude that

(8) c.1;H/� A:

All we need to do now is prove that A bounds c.1;H/ from below.

Define F 2 C.D/ to be the continuous autonomous Hamiltonian that agrees with H0;A=r 0 on D for some
0 < r 0 < 1. Since H jV D�A, we can choose r 0 so that the r 0–contraction Fr 0 of F under the Liouville
flow (see (5) and Figure 15) has support in V and �A� Fr 0 � 0. Therefore,

(9) Fr 0.x/�H.x/ for all x 2D:

From the contraction principle stated in Lemma 27 and the computation of c.1;H0;A/ above, we have

c.1; Fr 0/D r
0c.1; F /D r 0c.1;H0;A=r 0/D A:

This computation and (9) yield, by virtue of the monotonicity of spectral invariants, the lower bound
AD c.1; Fr 0/� c.1;H/ as desired. In conjunction with (8), we conclude that c.1;H/D A.
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Now, we prove the lemma in general. Suppose H jSk.D/ D �A and �A � H � 0. For any " 2 .0; 1/,
there exists a compactly supported Hamiltonian H" such that H"jV" D�A for an open neighborhood V"
of Sk.D/ and H" �H everywhere. Indeed, define H" as follows: H"jSk.D/ D�A,

H"jD"nSk.D/ D ˇ".r/H C .1�ˇ".r//.�A/;

where ˇ" W .0; 1/!R is such that

� ˇ"j.0;"� � 0,

� ˇ0"j.";2"=3/ > 0,

� ˇ"j.2"=3;1/ � 1.

Then, H" satisfies the required conditions and converges uniformly to H as "! 0. We have c.1;H"/DA
by the previous computation, and by continuity of spectral invariants, we can conclude that

c.1;H/D c.1;H"/D A:

This completes the proof.

6.4 Proof of Theorem A2

Let H 2 C.D/ be an autonomous Hamiltonian such that H jV D�1 and �1�H � 0 everywhere for an
open neighborhood V of Sk.D/.

Define � WR! Hamc.D/ as
�.s/D 'sH ;

where 'sH 2 Hamc.D/ is the time-1 map associated to sH. We claim that � is the desired embedding.

We first bound d .�.s/; �.s0// from above. If F 2 C.D/, then .'F / � kF k. Moreover, since H is
autonomous, sH # s0H D .s� s0/H. Therefore,

d .�.s/; �.s
0//D .�.s/�.s0/�1/� k.s� s0/Hk D js� s0j:

Now, we bound d .�.s/; �.s0// from below. Since d is symmetric, we can assume that s � s0. Then, by
Lemmas B and C, we have

d .�.s/; �.s
0//� c.1; .s� s0/H/D s� s0;

which completes the proof.
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For G an arbitrary profinite group, we construct an algebraic model for rational G–spectra in terms of
G–equivariant sheaves over the space of subgroups of G. This generalises the known case of finite groups
to a much wider class of topological groups. It improves upon earlier work of the first author on the case
where G is the p–adic integers.

As the purpose of an algebraic model is to allow one to use homological algebra to study questions of
homotopy theory, we prove that the homological dimension (injective dimension) of the algebraic model
is determined by the Cantor–Bendixson rank of the space of closed subgroups of the profinite group G.
This also provides a calculation of the homological dimension of the category of rational Mackey functors.
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1 Introduction

The usefulness of equivariant cohomology theories in equivariant (stable) homotopy theory has long been
proven. Examples of equivariant cohomology theories include the equivariant K–theory of Segal [1968]
and the equivariant cobordism spectra used in Hill, Hopkins and Ravenel, [Hill et al. 2016]. To effectively
study equivariant cohomology theories, one studies the category of their representing objects: equivariant
spectra. That is, Brown representability holds equivariantly.

The study of equivariant spectra up to homotopy is even more demanding than the nonequivariant
case, so one often works with rational equivariant spectra. Under Brown representability, rational
equivariant spectra correspond to equivariant cohomology theories that take values in rational vector
spaces. Rationalising preserves most of the interesting behaviour coming from the group, while removing
much of the topological complexity.

© 2024 The Authors, under license to MSP (Mathematical Sciences Publishers). Distributed under the Creative Commons
Attribution License 4.0 (CC BY). Open Access made possible by subscribing institutions via Subscribe to Open.

http://msp.org
http://dx.doi.org/10.2140/agt.2024.24.3801
http://www.ams.org/mathscinet/search/mscdoc.html?code=55P91, 54B40, 55P42, 55Q91
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://msp.org/s2o/


3802 David Barnes and Danny Sugrue

A major goal in the study of rational equivariant stable homotopy theory is to find a more tractable model
category that has the same homotopy theory as rational equivariant spectra. That is, one chooses a group
G of interest, constructs an abelian category A.G/ and a Quillen equivalence between the algebraic model
Ch.A.G// and the model category of rational G–spectra. The Quillen equivalence induces an equivalence
of categories between the homotopy category of rational G–spectra and the homotopy category of the
algebraic model. The primary advantage of having an algebraic model is that one can use the simplicity
of the abelian category A.G/ and the tools of homological algebra to construct objects and calculate sets
of maps in the rational G–equivariant stable homotopy category. For an introduction to algebraic models
and summary of the known cases see [Barnes and Kędziorek 2022].

In this paper, the authors generalise the known case of algebraic models for finite groups (see [Schwede
and Shipley 2003, Example 5.1.2]) to profinite groups. Profinite groups are a commonly encountered
class of compact topological groups, appearing most often as Galois groups or when one has a diagram
of finite groups. They are defined as the compact Hausdorff totally disconnected topological groups. It
can be shown that a group is profinite if and only if it is the limit of a filtered system of finite groups. For
example, the Morava stabiliser group Sn from chromatic homotopy theory is profinite. Profinite groups
occur in many other mathematical fields: number theory makes substantial use of profinite groups, as
seen in [Bley and Boltje 2004], and the étale fundamental groups of algebraic geometry are profinite.
This ubiquity drives our interest in rational G–spectra for profinite G and hence our interest in finding
algebraic models in the profinite case.

1.1 Main results

Let G be a profinite group and let SG be the space of closed subgroups of G, topologised as the inverse
limit of the finite discrete spaces SG=N, for N open and normal in G. There is an abelian category of
rational G–equivariant sheaves over SG. Consider the full subcategory of those equivariant sheaves E

such that the stalk EK over the closed subgroup K is K–fixed. These are called rational Weyl-G–sheaves
and are introduced in earlier work of the authors, [Barnes and Sugrue 2023; 2022]. In this paper, the
category of rational Weyl-G–sheaves occur as the abelian category A.G/ used to make the algebraic
model Ch.A.G// for rational G–spectra.

Theorem A (Corollary 4.10) For G a profinite group , there is a zigzag of Quillen equivalences between
the model category of rational G–spectra and the model category of chain complexes of rational Weyl-G–
sheaves.

This result generalises work of the first author [Barnes 2011] on the case where G D Z^p is the p–adic
integers. As with the current work, that paper uses the tilting theory (Morita theory) of Schwede and
Shipley [2003, Theorem 5.1] to obtain a Quillen equivalence between rational G–spectra and a category of
chain complexes in an abelian category. The p–adic case uses a hand-crafted abelian category designed for
that specific group. Contrastingly, the current work uses rational G–Mackey functors in the tilting theory
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step, then applies the equivalence between rational G–Mackey functors and rational Weyl-G–sheaves of
[Barnes and Sugrue 2023, Theorem A] to obtain the final result.

There are two reasons why the sheaf description of the algebraic model is important. The first is that
Greenlees’ conjecture [2006] on algebraic models (for compact Lie groups) is described in terms of
sheaves over SG, the space of closed subgroups of G. This result is the first realisation of that conjecture,
albeit for profinite groups.

The second is that using the sheaf description we can calculate the homological dimension (also called
the injective dimension) of the abelian category. This dimension is a measure of the complexity of the
abelian model. In this case, the result is phrased in terms of the Cantor–Bendixson rank of the space
of subgroups SG; see Section 5 for details. When G is profinite, SG is a profinite space (one that is
compact, Hausdorff and totally disconnected). The Cantor–Bendixson rank of a profinite space can be
thought of as a measure of how far the space is from being discrete. To illustrate, a discrete space has
rank 1 and SZ^p , consisting of countably many points with one accumulation point, has rank 2.

Theorem B (Corollary 5.16) Let G be a profinite group whose space of subgroups SG is scattered of
Cantor–Bendixson rank n. The homological dimension of the category of rational Weyl-G–sheaves is n�1.

If SG has infinite Cantor–Bendixson rank , then the homological dimension of the category of rational
Weyl-G–sheaves is infinite.

Using the equivalence between rational G–Mackey functors and rational Weyl-G–sheaves, [Barnes and
Sugrue 2023, Theorem A], this result gives the homological dimension of categories of rational G–Mackey
functors.

Corollary C Let G be a profinite group whose space of subgroups SG is scattered of Cantor–Bendixson
rank n. The homological dimension of the category of rational G–Mackey functors is n� 1.

If SG has infinite Cantor–Bendixson rank , then the homological dimension of the category of rational
G–Mackey functors is infinite.

As well as the two cases in the previous results there is a third possibility, that SG is of finite rank, but
not scattered. We make the following conjecture for this case, which occurs as Conjecture 5.17 in the
main body.

Conjecture D Let G be a profinite group. If the G–space X has finite Cantor–Bendixson rank and
nonempty perfect hull , then the homological dimension of rational G–sheaves over X is infinite.

If X D SG, then the homological dimension of the category of rational Weyl-G–sheaves is infinite.

1.2 Future questions

The question of how the change of groups functors on spectra compare with functors relating algebraic
models for varying G is surprisingly involved. The currently known cases are for (co)free equivariant
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spectra; see [Williamson 2022]. For the case of (pro)finite groups, the authors expect that having the
sheaf description and the Mackey functor description will be vital.

The Quillen equivalences as given are not monoidal. There are two sources of difficulty, firstly that the
Quillen equivalences of the tilting theory of Schwede and Shipley are not monoidal. Resolving this
would require a fundamentally different approach to the classification. Secondly, it is not known how the
equivalence of [Barnes and Sugrue 2023] interacts with the tensor product of sheaves and the two known
monoidal structures on G–Mackey functors: the box product and the equivariant tensor product of Hill
and Mazur [2019].

A further question is whether one can construct an Adams spectral sequence which takes values in the
abelian category. The difficulty here is expected to be around constructing a suitable set of geometric
fixed point functors for the closed subgroups of G, which should be the topological equivalent of taking
the stalk of an equivariant sheaf and hence detect equivalences in the homotopy category of rational
G–spectra. The geometric fixed point functors and the Adams spectral sequence are needed to give a
good set of examples of rational G–spectra and their image in the algebraic model.

1.3 Strategy of the classification

The following diagram gives the major steps in the classification of rational G–spectra, for profinite G.
The tilting theorem (Morita theory) of Schwede and Shipley [2003, Theorem 5.1] is used in Section 4.2
to create a Quillen equivalence between rational G–spectra and a category of (chain complexes of)
“topological Mackey functors”. This gives the upper horizontal functor. The key input to apply the
tilting theorem is Theorem 2.14, which proves that the homotopical information of rational G–spectra is
concentrated in degree zero.

In Section 3 we study spans and the stable orbit category. The aim is to prove Theorem 3.11, which
gives an equivalence between �0.OG/, the G–equivariant stable orbit category and Span.Gdf –sets/, a
category of spans of finite discrete G–sets. That equivalence provides the upper vertical functor of the
diagram. The lower vertical functor is an equivalence of categories describing Mackey functors in terms
of spans, as detailed in Section 4.1. Theorem 4.4 is where these results are combined to give the zigzag
of Quillen equivalences between rational G–spectra and chain complexes of rational G–Mackey functors.

The lower horizontal functor is an equivalence by earlier work of the authors, [Barnes and Sugrue 2023,
Theorem A], which proves that the category of rational G–Mackey functors is equivalent to the category
of rational Weyl-G–sheaves over the space of closed subgroups of G.

rational G–spectra oo '
// Ch

�
FuncAb.�0.O

Q
G
/;Q–mod/

�
OO

Š
��

Ch
�
FuncAb.Span.Gdf –sets/;Q–mod/

�
OO

Š
��

Ch.Weyl-G–sheafQ.SG// Ch.MackeyQ.G//
//

Š
oo
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In Section 5 we look at the homological dimension of the algebraic model and relate it to the Cantor–
Bendixson rank of SG.
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2 Basics on equivariant spectra for profinite G

We recap the construction of the model category of rational orthogonal G–spectra, for G a profinite group.
We then give various properties of this homotopy theory that will be used in the classification. Along the
way we will need some facts about profinite groups, profinite sets, and topological spaces with a profinite
group action. The constructions will all be generalisations of the finite group case. The expert reader may
like to skip to Section 3.

2.1 Profinite groups

We give a few reminders of useful facts on profinite groups. More details can be found in [Wilson 1998]
or [Ribes and Zalesskii 2000].

A profinite group is a compact, Hausdorff, totally disconnected topological group. A profinite group G is
homeomorphic to the inverse limit of its finite quotients:

G Š lim
N P

open
G

G=N �
Y

N P
open

G

G=N:

The limit has the canonical topology which can either be described as the subspace topology on the
product or as the topology generated by the preimages of the open sets in G=N under the projection map
G!G=N, as N runs over the open normal subgroups of G.

Closed subgroups and quotients by closed subgroups of profinite groups are also profinite. A subgroup of
a profinite group is open if and only if it is finite index and closed. The trivial subgroup feg is open if and
only if the group is finite. The intersection of all open normal subgroups is feg. Any open subgroup H

contains an open normal subgroup, the core of H in G, which is defined as the finite intersection

CoreG.H /D
\
g2G

gHg�1:

2.2 Equivariant orthogonal spectra

Recall that an orthogonal spectrum is a sequence of based spaces indexed by finite dimensional inner
product spaces, related by suspension maps that are suitably compatible with linear isometries of those
vector spaces. For details, see the work of Mandell, May Schwede and Shipley [Mandell et al. 2001] or
work of Barnes and Roitzheim [2020].
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Equivariantly, the picture is similar, starting from based spaces with G–action indexed by finite dimensional
G–inner product spaces, with suspension maps that are compatible with both the linear isometries and
G–actions. This construction was first given in work of Mandell and May [2002] and adapted to the
profinite setting by Fausk [2008].

The starting point is to describe the model category of based topological G–spaces that we will use to
create our G–spectra. We focus on those model structures built using the open subgroups H of G as
then G=H is a finite set. This ensures that the forgetful functor from G–spaces to spaces is a left Quillen
functor. Throughout this section G will be a profinite group.

Proposition 2.1 There is a cofibrantly generated proper model structure on the category of based
topological G–spaces with weak equivalences those maps f such that f H is a weak equivalence of
spaces , for all open subgroups H of G. Similarly, fibrations are those maps f such that f H is a fibration
of based spaces for all open subgroups H of G. This model structure is denoted GTop�.

The generating cofibrations are the standard inclusions

G=HC ^Sn�1
C !G=HC ^Dn

C; G=HC ^Dn
C!G=HC ^ .D

n
� Œ0; 1�/C

for H an open subgroup of G and n > 0.

Just as CW–complexes are built from iteratively attaching cells by taking the pushout over the inclusion
Sn�1!Dn, one can define G–CW–complexes using the inclusions

G=H �Sn�1
!G=H �Dn:

That is, take X0 to be a disjoint union of copies of G=HC, then attach cells of the above form with
nD 1 and H varying to obtain X1. Continuing inductively gives Xn and X is defined as the union of
the Xn. We see that if X is built using finitely many cells, the stabiliser of X (the intersection of all
open subgroups H used in the cells) is also open. The evident pointed analogue gives the definition
of pointed G–CW–complexes. Since the spaces G=H are finite, we see that every G–CW–complex is
indeed a CW–complex, after forgetting the group action. Note that our choices mean that G itself is not a
G–CW–complex. Indeed, as it has no fixed points, the space G is weakly equivalent to the empty set.

Our category of G–spectra will be indexed by the finite dimensional sub-G–inner product spaces of a
complete G–universe U , as defined below.

Definition 2.2 A G–universe U is a countably infinite direct sum U D
L1

iD1 U of a real G–inner product
space U , such that

(1) there is a canonical choice of trivial representation R� U ,

(2) U is topologised as the union of all finite dimensional G–subspaces of U (each equipped with the
norm topology).

A G–universe is said to be complete if every finite dimensional irreducible representation is contained
(up to isomorphism) within U .
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A complete G–universe always exists, one can be obtained by setting U to be direct sum of a representative
of each isomorphism class of irreducible representations of G, then defining U to be the direct sum of
countably many copies of U .

Remark 2.3 Since a profinite group G is compact and Hausdorff, the action of G on a finite dimensional
G–inner product space factors through a Lie group quotient by [Fausk 2008, Lemma A.1]. The only such
quotients of a profinite group are finite, hence if V is a finite dimensional G–inner product space, there is
an open normal subgroup N of G such that V N D V.

In particular, the one-point compactification of V, denoted SV is fixed by some open normal subgroup
N. Thus, SV can be given the structure of a finite (pointed) G=N –CW–complex, by [Illman 1983], and
hence is a finite (pointed) G–CW–complex.

For brevity we define equivariant orthogonal spectra in terms of enriched functors from a particular
enriched category made using Thom spaces. Recall that GTop� is enriched over itself, via the space of
(not-necessarily equivariant) maps, where G acts by conjugation

.f WX ! Y / 7! .gY ıf ıg�1
X WX ! Y /:

Definition 2.4 Define an indexing space to be a finite dimensional sub-G–inner product space of U . We
define L to be the category of all real G–inner product spaces that are isomorphic to indexing G-spaces
in U and morphisms the (not-necessarily equivariant) linear isometries.

Definition 2.5 For each V �W there is a vector bundle (a subset of the product bundle)

 .V;W /D f.f;x/� L.V;W /�W j x 2W �f .V /g

over L.V;W /, where W �f .V / is the orthogonal complement of f .V / in W.

Let J .V;W / be the Thom space of  .V;W /, with G–action given by g.f;x/D .gfg�1;gx/.

Lemma 2.6 For inclusions of indexing spaces U � V �W the G–equivariant map

 .V;W /�  .U;V /!  .U;W /; ..f;x/; .k;y// 7! .f ı k;xCf .y//

induces a composition for the GTop�–enriched category J whose objects are the objects of L and
morphism G–spaces are given by J .V;W /.

Definition 2.7 An orthogonal G–spectrum X on a universe U is an GTop�–enriched functor from J to
GTop�. A map of orthogonal G–spectra is a GTop�–enriched natural transformation. The category of
orthogonal G–spectra is denoted GSpO .

In particular, an orthogonal G–spectrum X defines based G–spaces X.V / for each indexing space V � U
and based G–maps

�V;W W S
W �V

^X.V /!X.W /
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for each V �W. A map f WX ! Y of orthogonal G–spectra defines a set of G–maps f WX.V /! Y .V /,
which commute with the maps �V;W for each V �W.

2.3 Model categories of spectra

With the category of G–spectra defined, the next step is to give model structures. This follows the usual
path, a levelwise model structure, then a stable model structure and finally a rational model structure (as a
Bousfield localisation of the stable model structure). In each case, the weak equivalences are defined
using the open subgroups of G. For brevity, we state the existence of the rational model structure as a
theorem, giving the essential properties afterwards. These results are standard, details can be found in
[Barnes 2008, Section 2.2].

Definition 2.8 Let X be a G–spectrum and n a nonnegative integer. We define the H -homotopy groups
of X as

�H
n .X /D colim

V
�H

n .�V X.V //; �H
�n.X /D colim

V�Rn
�H

0 .�V�Rn

X.V //:

In the first case the colimit runs over the indexing spaces of U , in the second case over the indexing
spaces of U that contain Rn.

A map f WX ! Y of orthogonal G–spectra is called a ��–isomorphism if �H
k
.f / is an isomorphism for

all open subgroups H of G and all integers k. We call f a rational ��–isomorphism if �H
k
.f /˝Q is

an isomorphism for all open subgroups H of G and all integers k.

The rational model structure on G–spectra is made using the rational sphere spectrum S0Q; see [Barnes
2008, Definition 1.5.2] for a construction as an equivariant Moore spectrum for Q.

Theorem 2.9 There is a cofibrantly generated proper stable model structure on the category of orthogonal
G–spectra whose weak equivalences are the class of rational ��–isomorphisms and whose cofibrations
are the class of q–cofibrations. This model structure is called the rational model structure and we write
GSpO

Q for the model category of orthogonal G–spectra equipped with the rational model structure.

Proof The stable model structure on orthogonal G–spectra is cofibrantly generated, proper and stable.
Thus [Barnes and Roitzheim 2020, Theorem 7.2.17] implies that any left Bousfield localisation of the
stable model structure at a set of maps which are closed under desuspension is also cofibrantly generated,
proper and stable.

We construct the rational model structure by localising the stable model structure at the set of all
suspensions and desuspensions of the map from the sphere spectrum to the rational sphere spectrum

S0
! S0Q:

That this gives the correct weak equivalences is a consequence of Proposition 2.10.
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Proposition 2.10 There is a natural isomorphism

�H
� .X ^S0Q/Š �H

� .X /˝Q:

A G–spectrum X is fibrant in GSpO
Q if and only if X is an �–spectrum and has rational homotopy groups.

The last statement gives the following zigzag of ��–isomorphisms for any G–spectrum X, where OfQX is
the fibrant replacement of X in GSpO

Q:

OfQX ! OfQX ^S0Q X ^S0Q:

This shows that our localisation is a smashing localisation.

Corollary 2.11 If the G–spectrum A is compact in the homotopy category of GSpO , then there is a
natural isomorphism

ŒA;X �Q Š ŒA;X �˝Q:

In particular , for OfQX the fibrant replacement of X in GSpO
Q, there is a natural isomorphism

�H
� .
OfQX /Š �H

� .X /˝Q:

Since the weak equivalences of the stable model structure are defined in terms of ��–isomorphisms, the
triangulated category Ho.GSpO/ has a set of compact generators: the suspension spectra †1G=HC, for
H an open subgroup of G. Similarly, this set is also a set of compact generators for Ho.GSpO

Q/, as the
weak equivalences of GSpO

Q are defined in terms of rational ��–isomorphisms.

Corollary 2.12 For G a profinite group , the homotopy category of GSpO
Q is generated by the set of

compact objects †1G=HC, for H an open subgroup of G.

This completes the construction of the model category we wish to model with algebra. Our next task is to
study maps between objects like †1G=HC. We use the profinite version of tom Dieck splitting to show
these maps are concentrated in degree zero.

Proposition 2.13 [Fausk 2008, Proposition 7.10] For G a profinite group and X a based G–space , there
is an isomorphism of abelian groupsM

.H / 6
open

G

��.†
1EWGHC ^WGH X H /! �G

� .†
1X /:

The sum runs over the conjugacy classes of open subgroups of G.

Theorem 2.14 [Barnes 2011, Theorem 2.9] For G a profinite group , the graded Q–module

Œ†1G=HC; †
1G=KC�

G
� ˝Q

is concentrated in degree zero.
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3 Spans and the stable orbit category

The aim for this section is Theorem 3.11, which provides a combinatorial description of the stable orbit
category for G. That is, the full triangulated subcategory of Ho.GSpO/ (the homotopy category of
G–spectra) defined by the suspension spectra of finite pointed G–sets is shown to be equivalent to the
category of spans of finite G–sets. This result is well-known in the case of finite groups but is seemingly
new in the case of profinite groups. The method of proof is to relate the profinite case to the finite case
by describing maps in Ho.GSpO/ as a colimit of maps in Ho..G=N /SpO/, as N varies over the open
normal subgroups of G, see Lemma 3.9.

3.1 The Burnside category

In the case of a finite group G, the Burnside category is the category of G–sets with (equivalence classes)
of spans as morphisms. In this subsection we generalise this construction to profinite groups and show
how it relates to the finite group case.

Definition 3.1 A set X with an action of G is said to be discrete if the canonical map

colim
H 6

open
G

X H
!X

is an isomorphism. The category of finite discrete G–sets and equivariant maps is denoted Gdf –sets.

Equally, one can define a discrete G–set as a G–set such that the stabiliser of each point is open. We
then see that a G–set X is discrete if and only if the action on G is continuous, when X is equipped with
the discrete topology. If X is a finite discrete G–set, then the stabiliser of each point is open, as is the
intersection of all the stabilisers. Thus a finite G–set A is discrete if and only if there is an open subgroup
H of G such that A is H–fixed.

The class of discrete G–sets is closed under arbitrary coproducts and finite products. The set of finite
coproducts of G–sets of the form G=H , for H an open subgroup of G, is a skeleton for the class of finite
discrete G–sets. We also note that the empty set is a finite discrete G–set.

Definition 3.2 The Burnside ring of G, written as A.G/ is the Grothendieck ring of finite discrete G–sets.
We further define the rational Burnside ring of G as AQ.G/D A.G/˝Q.

Lemma 3.3 For G a profinite group there is a natural isomorphism

"� W colim
N P

open
G

A.G=N /! A.G/:

Proof A finite G=N –set A can be considered as a G–set via inflation, "�A. Since each point of "�A is
fixed by N, this is a finite discrete G–set. Inflation gives an injective ring map

"�N W A.G=N /! A.G/:
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The maps "�
N

are compatible with the maps forming the colimit (as these are also inflation maps), giving
the map "�. As the colimit is filtered, "� is also injective.

Any finite discrete G–set A is fixed by some open subgroup H , which must contain an open normal
subgroup N. Thus A is in the image of "�

N
and so "� is surjective.

We can generalise the construction of the Burnside ring to make a category.

Definition 3.4 Let G be a profinite group. A span of finite discrete G–sets is a pair of equivariant maps
B

ˇ
 A


! C , sometimes shortened to .ˇ;  /. Two spans B

ˇ
 A


! C and B

ˇ0
 A0

 0
! C are equivalent

if there is an equivariant isomorphism A!A0 such that the following diagram commutes.

A
ˇ

vv



((
˛

��

B C

A0
ˇ0

hh

 0

66

We write Œˇ;  � for the equivalence class of .ˇ;  /.

We recall the notion of composition of spans. Take two spans B
ˇ
 A


! C and C

 0
 A0

ı
! D, then

construct A00 as the pullback of  and  0

A00
�

vv

� 0

((
A

ˇ

vv



((

A0
 0

vv

ı

((
B C D

The composite of .ˇ;  / and . 0; ı/ is the span .ˇ ı �; ı ı � 0/. This composition is well-defined under
equivalence of spans.

Further, there is an addition on (equivalence classes of) spans with the same codomains. Consider two
spans B

ˇ
 A


! C and B

ˇ0
 A0

 0
! C . Their sum is the span

B
ˇ;ˇ0

 ���A
a

A0
; 0

���! C:

This addition rule is associative, commutative, compatible with equivalence of spans and the unit is the
span B ∅! C .

Definition 3.5 The Burnside category of G is the category with objects the finite discrete G–sets and
morphisms given by Grothendieck construction on sets of equivalence classes of spans of finite discrete
G–sets, denoted Span.Gdf –sets/.

Thus, a map A! B in the Burnside category is a formal difference of equivalence classes of spans. We
also see that the Burnside ring of G is the ring Span.Gdf –sets/.�; �/.
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Just as for the Burnside ring, we can relate the Burnside category for G to the Burnside categories for the
groups G=N, where N is an open normal subgroup of G.

Lemma 3.6 If A and B are finite discrete G–sets , for G a profinite group , then there is an isomorphism

colim
N P

open
G

Span.G=Ndf –sets/.A;B/Š Span.Gdf –sets/.A;B/:

Proof The maps of the colimit are given by inflation functors and inflation from G=N to G induces the
map to the codomain. For the inverse, take a span

B A! C;

and choose an open normal subgroup N that fixes each of element of A, B and C . Then this span appears
in term N of the colimit.

3.2 The stable orbit category

In this subsection we study maps in the G–equivariant stable homotopy category between spectra of the
form †1AC, where A is a finite discrete G–set. Our aim is to relate this to unstable homotopy classes
of maps of G=N –spaces, where N runs over the open normal subgroups of G. We start by comparing
maps in the G–equivariant stable homotopy category to the G–equivariant unstable homotopy category.

We need two categories, one defined via the G–equivariant stable category and one via the rational
analogue. It is important to note that these categories are not graded, we use �0 in the notation of the
categories as a reminder of this fact. The last sentence of the definition holds due to Corollary 2.11.

Definition 3.7 We define a category �0.OG/, called the G–equivariant stable orbit category. The
objects are the class of G–spectra of the form †1AC, for A a finite discrete G–set. The morphisms are
given by

�0.OG/.†
1AC; †

1BC/D Œ†
1AC; †

1BC�
G ;

the set of maps in the homotopy category of GSpO .

Similarly, we define a category �0.O
Q
G
/, called the rational G–equivariant stable orbit category. The

objects are the same as for �0.OG/, but the morphisms are given by

�0.O
Q
G
/.†1AC; †

1BC/D Œ†
1AC; †

1BC�
G
˝Q;

the set of maps in the homotopy category of GSpO
Q.

Recall that a finite discrete G–set is a disjoint union of homogeneous spaces G=H for H open, hence
every finite discrete G–set A is a finite G–CW–complex and AC is finite pointed G–CW–complex.
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Lemma 3.8 [Fausk 2008, Corollary 7.2] For G a profinite group , there is an isomorphism of abelian
groups

Œ†1A; †1B�G Š colim
W 2U

ŒA^SW ;B ^SW �G ;

where the right-hand terms indicate maps in the homotopy category of pointed G–spaces and A and B are
finite pointed G–CW–complexes.

Now we show how the equivariant stable homotopy category for G relates to the equivariant stable
homotopy category for finite quotients G=N. Whenever we talk about G=N –spectra, we will use the G=N –
universe UN. This universe is a complete G=N –universe as any finite-dimensional G=N –inner product
space V can be written as ."�V /N and "�V is isomorphic to an indexing space of U , as U is complete.

Let A and B be finite pointed G–CW–complexes and let N1 6 N2 be open normal subgroups of G, which
fix all of A and B. Then A can be considered as either a G=N2–CW–complex or a G=N1–CW–complex
and the inflation functor "� from G=N2–spaces to G=N1–spaces sends the G=N2–version of A to the
G=N1–version. Hence, the inflation functor "� induces a natural map

Œ†1A; †1B�G=N2 ! Œ†1A; †1B�G=N1 :

We can find a more direct description of this map using Lemma 3.8. An element of the domain can be
represented as a map of pointed G=N2–spaces

f WA^SV
! B ^SV

for some indexing space V � UN2 . Applying the inflation functor gives a map of pointed G=N1–spaces
"�f and since V is N2–fixed, this defines a element of

colim
W 2UN1

ŒA^SW ;B ^SW �G=N1 :

This assignment is compatible with taking colimits over V N2 � UN2 and taking G=N2–equivariant
homotopy classes. Hence, we may construct the colimit term of the following result.

Lemma 3.9 If A and B are finite pointed G–CW–complexes , for G a profinite group , then there is an
isomorphism of abelian groups

colim
N P

open
G
Œ†1A; †1B�G=N Š Œ†1A; †1B�G :

Proof We have seen that there are isomorphisms

colim
N P

open
G
Œ†1A; †1B�G=N Š colim

N P
open

G

�
colim
W 2UN

ŒA^SW ;B ^SW �G=N
�

The right-hand term maps to

colim
W 2U

ŒA^SW ;B ^SW �G Š Œ†1A; †1B�G

via the inflation functors.
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We construct an inverse. Take a representative f WA^SV !B^SV. The finite pointed G–CW–complexes
A and B are fixed by some open normal subgroup. By Remark 2.3, the G–inner product space V must also
be fixed by some open normal subgroup of G. By taking intersections there is an open normal subgroup
N of G, which also fixes all of A, B and V. It follows that f defines an element of ŒA^SV ;B^SV �G=N.
One can verify that this is an inverse to the map of the statement.

Recall the grading convention Œ†nX; †mY �G D ŒX;Y �Gn�m. Since suspension by S1 preserves finite
(pointed) G–CW–complexes, we have the following extension.

Corollary 3.10 For G a profinite group , there is an isomorphism of graded abelian groups

colim
N P

open
G
Œ†1A; †1B�

G=N
� Š Œ†1A; †1B�G�

for A and B finite G–CW–complexes.

Theorem 3.11 For G a profinite group , there is an equivalence of categories

 G W Span.Gdf –sets/! �0.OG/;

A 7!†1AC on objects;

ŒB
ˇ
 A

˛
! C � 7!†1ˇ ı �.˛/ on morphisms;

where �.˛/ is the transfer map construction associated to ˛; see [Lewis et al. 1986, Construction II.5.1]
or work of the second author [Sugrue 2019b, Construction 3.1.11].

Proof That  G is an equivalence for finite groups G is well-known; see [Lewis et al. 1986, Proposi-
tion V.9.6]. We will use that result to extend from the finite case to the profinite case.

For an inclusion N !N 0 of open normal subgroups, the inflation functor from Span.G=Ndf –sets/ to
Span.G=N 0

df
–sets/ commutes with  G=N and  G=N 0 , hence the following diagram commutes:

Span.Gdf –sets/.A;B/
 G

// Œ†1AC; †
1BC�

G

colim
N P

open
G

Span.G=Ndf –sets/.A;B/
Š

 G=N
//

Š

OO

colim
N P

open
G
Œ†1AC; †

1BC�
G=N

Š

OO

This proves that  G is full and faithful; essential surjectivity is immediate.

4 The classification

We give the main result, the classification (in terms of Quillen equivalences) of rational G–equivariant
spectra, for profinite G, in terms of a simple algebraic model. In fact, by previous work of the authors
[Barnes and Sugrue 2023] we give two equivalent algebraic models. The first is the category of (chain
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complexes of) rational G–Mackey functors, the second is the category of Weyl G–sheaves over the space
of closed subgroups of G. The relative advantages of the two descriptions are explained in that reference,
though we will need the sheaf description in Section 5.

4.1 Mackey functors

There are several equivalent definitions of Mackey functors, we briefly describe the three most common
variations, leaving the axioms of the first two versions for references such as [Lindner 1976] or [Thiel
2011]. These three definitions are shown to be equivalent in [Sugrue 2019b, Section 2.1], which follows
the work of Lindner [1976].

(1) A set of abelian groups M.G=H /, for H open in G, with induction, restriction and conjugation
maps relating these groups that satisfy a list of axioms (unital, transitivity, associativity, equivariance and
the Mackey axiom).

(2) A pair of functors from the category of finite discrete G–sets to abelian groups, one covariant, one
contravariant that agree on objects and satisfy a pullback axiom and a coproduct axiom. These are
sometimes known as categorical Mackey functors.

(3) An additive functor from the Burnside category Span.Gdf –sets/ to abelian groups.

The choice of focussing on the open subgroups (or equally the discrete finite G–sets) matches with the
“finite natural Mackey system” of [Bley and Boltje 2004, Definition 2.1 and Examples 2.2; Thiel 2011,
Definition 2.2.12]. In the case of a finite group, this choice restricts to the usual definitions. For our
purposes we use the last definition.

Definition 4.1 A Mackey functor for a profinite group G is an additive functor from the Burnside category
Span.Gdf –sets/ to abelian groups. We will write Mackey.G/ for the category of Mackey functors and
additive natural transformations between them.

A rational Mackey functor is an additive functor from the Burnside category Span.Gdf –sets/ to Q–
modules. We will write MackeyQ.G/ for the category of rational Mackey functors and additive natural
transformations between them.

General examples of Mackey functors can be found in the references given at the start of the section.
However, there is one class of rational Mackey functors of particular relevance to this paper.

Example 4.2 By Theorem 3.11 and Corollary 2.11, if X is a G–spectrum then we have a rational
G–Mackey functor,

�0.O
Q
G
/!Q–mod; G=HC 7! �H

0 .X /˝QŠ ŒG=HC;X �
G
Q;

called the homotopy group Mackey functor of X.

We write out the definition of Mackey functors in terms of our notation and apply Theorem 3.11. We
use FuncAb.�; �/ to denote the category of enriched functors and natural transformations over abelian
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groups. This is the same category as taking additive functors, as an additive functor between additive
categories is precisely the data of a functor enriched over abelian groups:

Mackey.G/D FuncAb.Span.Gdf –sets/;Ab/Š FuncAb.�0.OG/;Ab/;

MackeyQ.G/D FuncAb.Span.Gdf –sets/;Q–mod/Š FuncAb.�0.OG/;Q–mod/:

It remains to relate these categories of G–Mackey functors to the model category of rational G–spectra.
For this we will need a model structure on chain complexes of G–Mackey functors.

Lemma 4.3 There is a cofibrantly generated model structure on the category of chain complexes of
(rational ) G–Mackey functors where a map is a fibration if and only if it is a surjection and the class of
weak equivalences is the class of homology isomorphisms.

Proof Since Ch.Mackey.G//D FuncAb.Span.Gdf –sets/;Ch.Z//, we use the cofibrant generation of
Ch.Z/ to obtain generating sets for Ch.Mackey.G// in terms of the representable functors.

4.2 Tilting theory

We give our classification theorem for rational G–spectra, where G is a profinite group.

Theorem 4.4 For G a profinite group , there is a zigzag of Quillen equivalences between the model
category of rational G–spectra and the model category of chain complexes of rational G–Mackey functors.

Proof Choose a skeleton G of �0.O
Q
G
/ (such as the set of finite coproducts of the G–sets G=H for H

an open subgroup of G). Define �0.G/ to be the category whose objects are the elements of G and whose
morphisms are given by the abelian groups

Œ†1AC; †
1BC�

G
˝Q:

The objects of G define a set of compact generators for GSpO
Q by Corollary 2.12 and the set of graded maps

between them in Ho.GSpO
Q/ is concentrated in degree zero by Theorem 2.14. Thus, we can use [Schwede

and Shipley 2003, Theorem 5.1.1 and Proposition B.2.1] to obtain a zigzag of Quillen equivalences,

GSpO
Q ' Ch

�
FuncAb.�0.G/;Ab/

�
:

As �0.G/ is a skeleton of �0.O
Q
G
/, we have the first equivalence of categories below. The second is

Lemma 4.5, which applies as Corollary 2.11 shows that �0.O
Q
G
/D �0.OG/˝Q:

Ch
�
FuncAb.�0.G/;Ab/

�
Š Ch

�
FuncAb.�0.O

Q
G
/;Ab/

�
Š Ch

�
FuncAb.�0.OG/;Q–mod/

�
:

Applying Theorem 3.11 gives the final step,

Ch.MackeyQ.G//D Ch
�
FuncAb.Span.Gdf –sets/;Q–mod/

�
Š Ch

�
FuncAb.�0.OG/;Q–mod/

�
:
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Lemma 4.5 Let C be a small additive category. The rationalisation functor i W C! C˝Q (defined in the
proof ) and the forgetful functor U WQ–mod! Ab induce equivalences

FuncAb.C;Q–mod/ FuncAb.C˝Q;Q–mod/
i�

oo
U�

// FuncAb.C˝Q;Ab/:

Proof A small additive category C has a rationalisation C˝Q, this category has the same objects and
morphisms given by

.C˝Q/.c; c0/D C.c; c0/˝Q:

Composition is induced from that of C and C˝Q is an additive category. Moreover, there is an additive
functor from C to its rationalisation i W C! C˝Q.

The functors are equivalences as in each case the functor must take values in Q–modules.

Example 4.6 Let A be a finite discrete G–set. Let MA be the homotopy group Mackey functor of
†1AC from Example 4.2. Then MA is the representable functor given by

Span.Gdf –sets/.�;A/˝Q:

We recall the notion of Weyl-G–sheaves over the space of closed subgroups of G from [Barnes and
Sugrue 2023, Section 2; 2022, Section 10]. For G a profinite group, let SG denote the set of closed
subgroups of G. We topologise this set as the limit of finite discrete spaces

SG WD lim
N P

open
G
S.G=N /

using the maps which send K 2 SG to KN=N 2 S.G=N /.

Definition 4.7 A G–equivariant sheaf of Q–modules over SG is a map p WE! SG such that

(1) p is a G–equivariant map p WE! SG of spaces with continuous G–actions,

(2) .E;p/ is a sheaf space of Q–modules,

(3) each map g W p�1.x/! p�1.gx/ is a map of Q–modules for every x 2 SG, g 2G.

We will write this as either the pair .E;p/ or simply as E. A map f W .E;p/! .E0;p0/ of G–sheaves
of Q–modules over SG is a G–equivariant map f WE!E0 such that p0f D p and fx WEx!E0x is a
map of Q–modules for each x 2 SG.

Definition 4.8 A rational Weyl-G–sheaf E is a G–sheaf of Q–modules over SG such that EK is
K–fixed and hence is a discrete QŒWGK�–module. A map of Weyl-G–sheaves is a map of G–sheaves of
Q modules over SG. We write this category as Weyl-G–sheafQ.SG/

Theorem 4.9 [Barnes and Sugrue 2023, Theorem A] If G is a profinite group then the category
of rational G–Mackey functors is equivalent to the category of rational Weyl-G–sheaves over SG.
Furthermore , this is an exact equivalence.
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Corollary 4.10 For G a profinite group , there is a zigzag of Quillen equivalences between the model
category of rational G–spectra and the model category of chain complexes of rational Weyl-G–sheaves.

5 Homological dimension of equivariant sheaves

Using the Weyl-G–sheaf description of rational G–spectra we can calculate the homological dimension
(also known as the injective dimension) of the algebraic model. This gives an indication of the homological
complexity of the algebraic model. It is already known that the algebraic model in the case of finite
groups has homological dimension zero (we will recover this result). The algebraic model in the case of
an r–torus .S1/�r is r , as shown in [Greenlees 2012, Theorem 8.1].

We prove that the Cantor–Bendixson rank (Definition 5.4) of the space SG will determine the homological
dimension of rational (Weyl) G–sheaves on SG. This is an equivariant generalisation of the results of the
second author [Sugrue 2019a].

5.1 Cantor–Bendixson rank

We start with the basic definitions; see [Gartside and Smith 2010a; 2010b].

Definition 5.1 For a topological space X we define the Cantor–Bendixson process on X. Denote by X 0

the set of all isolated points of X.

(1) Let X .0/ DX and X .1/ DX nX 0 have the subspace topology with respect to X.

(2) For successor ordinals suppose we have X .˛/ for an ordinal ˛, we define

X .˛C1/
DX .˛/

nX .˛/0:

(3) If � is a limit ordinal we define
X .�/

D

\
˛<�

X .˛/:

Every Hausdorff topological space X has a minimal ordinal ˛ such that X .˛/ DX .�/ for all �� ˛; see
[Gartside and Smith 2010a, Lemma 2.7].

Definition 5.2 For X a Hausdorff topological space, the Cantor–Bendixson rank of X, written rankCB.X /,
is the minimal ordinal ˛ such that X .˛/ DX .�/ for all �� ˛.

A topological space X is called perfect if it has no isolated points, whereupon rankCB.X /D 0.

Remark 5.3 The definition given above agrees with that of [Gartside and Smith 2010b]. The convention
of Dickmann, Schwartz and Tressl [Dickmann et al. 2019, Definition 4.3.1] is to take one less than the
rank as defined above.

There are two ways that the Cantor–Bendixson process can stabilise, by reaching the empty set or a
perfect subspace.
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Definition 5.4 If X is a Hausdorff space with Cantor–Bendixson rank �, then we define the perfect hull
of X to be the subspace X .�/, written XH .

We write XS for the complement X nXH and call it the scattered part of X. The space X is said to be
scattered if XH D∅.

Example 5.5 The Cantor–Bendixson rank of the empty set is zero and the Cantor–Bendixson rank of a
nonempty discrete space is 1 as every point is isolated.

The space SZ^p of closed subgroups of the p–adics is the subspace of R consisting of the points

f1=n j n 2Ng[ f0g:

The isolated points are those of the form 1=n, which are removed in the first stage of the Cantor–Bendixson
process, thus .SZ^p/

.1/ D f0g. For k > 1, .SZ^p/
.k/ D∅, so rankCB.SZ^p/D 2.

Definition 5.6 If X is a space and x 2XS , we define the height of x denoted ht.X;x/, to be the ordinal �
such that x 2X .�/ but x 62X .�C1/. We denote this by ht.x/ when the background space X is understood.

We may rephrase the definitions to see that a point x of height k > 0 is a limit of points of height k � 1.
Consequently, an open neighbourhood of x contains infinitely many points of height j for each j < k.

Lemma 5.7 Let X be a topological space with an action of a topological group G. The height of points
of X is invariant under the action of G.

If x 2 X has height k > 0, then every neighbourhood of x contains infinitely many points from orbits
other than Gx.

Proof As G acts through homeomorphisms, the first statement holds. The second statement follows
from our preceding discussion and the first statement.

5.2 Equivariant Godement resolutions

We recap equivariant Godement resolutions from [Barnes and Sugrue 2022, Section 9]. The key change
from the nonequivariant case is the use orbits in place of points.

Definition 5.8 Let p W E ! X be a G–equivariant sheaf of Q–modules over a G–space X, for G a
profinite group. Define a G–sheaf

I0.E/D
Y
A

i�AEjA

with the product taken over the G–orbits of X and i�
A

is the extension by zero functor induced by the
map A!X.

The restriction–extension adjunction induces morphisms E! i�
A

EjA, which combine to a monomorphism

ıE WE! I0.E/:
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Lemma 5.9 Let p WE!X be a G–equivariant sheaf of Q–modules over a G–space X, for G a profinite
group. The G–sheaf I0.E/ is injective.

Proof We prove that I0.E/ is the product of injective sheaves. For each orbit A of X, pick an element
xA 2A. By [Barnes and Sugrue 2022, Lemma 8.3] there is an isomorphism of sheaves over A

G �
stabG.xA/

ExA
ŠEj

A
:

The left-hand sheaf is known as the equivariant skyscraper sheaf of Ex0
at x0. It can be viewed as

part of an adjunction with the left adjoint being taking the stalk at x0. As this left adjoint preserves
monomorphisms, the equivariant skyscraper sheaf construction preserves injective objects.

The result is completed by [Castellano and Weigel 2016, Proposition 3.1], which states that every object
of the category of discrete QŒstabG.x0/�–modules is injective.

Remark 5.10 The result [Castellano and Weigel 2016, Proposition 3.1] also fixes an omission in work
of the first author [Barnes 2011, Lemma 6.2] which implicitly assumes that all discrete QŒZ^p �–modules
are injective.

Iterating this construction I0 gives an injective resolution.

Definition 5.11 Let G be a profinite group. If E is a G–sheaf of R–modules over a profinite G–space
we define the equivariant Godement resolution as follows:

0 // E
ıE

// I0.E/

p

��

// I0.Coker ıE/D I1.E/ // � � �

Coker ıE
ıCokerıE

55

We now connect the Cantor–Bendixson rank of a G–space X to the length of the equivariant Godement
resolution of rational G–sheaves over X.

Theorem 5.12 Let E be a rational G–sheaf over a profinite G–space X, for G a profinite group. For
n 2N and x 2X, the stalk In.E/x is zero unless the height of x is at least n.

Proof The proof is by induction. The base case follows from the fact that .ıE/x is an isomorphism for
any isolated point of X. Similarly, if x has a open neighbourhood where the only nontrivial stalk is at x,
then .ıE/x is an isomorphism. The equivariant Godement resolution with the Cantor–Bendixson process
gives the inductive step using Lemma 5.7. Further details are given in the nonequivariant case of [Sugrue
2019a, Lemma 3.7].

If we restrict ourselves to the case of scattered spaces of finite rank (the Cantor–Bendixson process ends in
the empty set after finitely many steps) this theorem gives an upper bound for the length of the equivariant
Godement resolutions.
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Corollary 5.13 Let G be a profinite group. Let X be a scattered profinite G–space of Cantor–Bendixson
rank n 2N. The category of rational G–sheaves over X has homological dimension at most n� 1.

Proof If the rank is n, then X .n/ D∅ and every point has height at most n� 1. Hence, every stalk of
In.X / is zero, so the sheaf is itself zero.

5.3 The case of the constant sheaf

It remains to prove that the upper bound on homological dimension is in fact an equality. To that end, we
take the equivariant Godement resolution of the constant sheaf at Q, Const Q,

0 // Const Q
ı0
// I0 ı1

// I1 ı2
// � � � // In�1:

Adding a small assumption on X we can prove this resolution has length exactly n� 1.

Proposition 5.14 Let G be a profinite group , let X be a profinite scattered G–space of Cantor–Bendixson
rank n and assume that each x 2 X has a neighbourhood basis Bx of stabG.x/–invariant sets. In the
equivariant Godement resolution of the constant sheaf , the cokernel of ıi.U / has a nonzero stabG.x/–
equivariant section for each U 2 Bx whenever i is smaller than the height of x.

Proof We start with the case of ı0 with x of height at least 1. Take a stabG.x/–invariant open neigh-
bourhood of x. By Lemma 5.7, U contains infinitely many points of other orbits which are of lower
height than x.

Choose a nonzero element of Const Q.U /x DQ represented by a section s 2 Const Q.U /. We define a
section t of I0 D

Q
A i�

A
EjA by the sequence

A 7!

�
0 ht.A/ has the same parity as ht.x/;
sjA otherwise.

Since s is nonzero at infinitely many points near x, tx is nonzero. If t D ı0.s
0/ for some s0 2Const Q.U /

then s0jGx D 0. This implies that there is an open neighbourhood of x where s0 restricts to zero and
hence s0y D 0 for all y in that open neighbourhood, which implies that tx D 0, a contradiction.

The rest follows inductively, as with the nonequivariant case of [Sugrue 2019a, Lemma 4.3], with two
changes. The first is that when we need to construct a new nonzero section we use the alternating process
described previously. The second is that since our sets U are stabG.x/–invariant and we begin with a
stabG.x/–equivariant section, all sections constructed in the proof are stabG.x/–equivariant.

Note that the assumption on i and the height of x is required to ensure that the new section we construct
is nonzero at infinitely many orbits.

We can now give the equivariant analogue of [Sugrue 2019a, Theorem 4.4].

Theorem 5.15 Let X be profinite G–space such that each x 2 X has a neighbourhood basis Bx of
stabG.x/–invariant sets , for G a profinite group.
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If X is a scattered G–space of Cantor–Bendixson rank n and x has height n� 1, then

Extn�1
�
G �

stabG.x/
Q;Const Q

�
¤ 0:

Hence , the homological dimension of the category of rational G–sheaves over X is n� 1.

If X has infinite Cantor–Bendixson rank then the homological dimension of the category of rational
G–sheaves over X is infinite.

Proof We begin with a general calculation of maps out of an equivariant skyscraper sheaf into I0.E/

for E some rational G–sheaf over X,

hom
�
G �

stabG.x/
Q; I0.E/

�
Š

Y
A

hom
�
G �

stabG.x/
Q; i�AEjA

�
Š hom

�
G �

stabG.x/
Q;EjGx

�
Š hom

�
G �

stabG.x/
Q;G �

stabG.x/
Ex

�
ŠEstabG x

x :

The final term has fixed points as Q has the trivial stabG x–action.

Assume that X is a scattered G–space of Cantor–Bendixson rank n and x has height n� 1. Applying
our calculation to our resolution of Const Q we see that our Ext groups are the homology of the chain
complex

Q
˛0
�! .Coker ı0/stabG.x/

x
˛1
�! .Coker ı1/stabG.x/

x
˛2
�! � � �

˛n�1
��! .Coker ın�2/

stabG.x/
x :

By Proposition 5.14 we have a nonzero stabG.x/–equivariant section which implies that

.ıi/
stabG.x/
x ¤ 0

whenever i is smaller than n � 1. By a similar argument to Proposition 5.14 we see that ˛n�1 is
not surjective, hence the nth Ext group is nonzero. This calculation and Corollary 5.13 show that the
homological dimension is n� 1.

In the case of infinite Cantor–Bendixson rank we see that for each n there is a point of height n, hence
our earlier work shows that the homological dimension is infinite.

The space of closed subgroups SG of a profinite group G always satisfies the condition on the invariant
neighbourhood basis; see [Barnes and Sugrue 2023, Section 2].

Corollary 5.16 Let G be a profinite group whose space of subgroups SG is scattered of Cantor–
Bendixson rank n. The homological dimension of the category of rational Weyl-G–sheaves is n� 1.

If SG has infinite Cantor–Bendixson rank , then the homological dimension of the category of rational
Weyl-G–sheaves is infinite.

Proof All the sheaves used in the theorem proof were stalkwise fixed and hence were Weyl-G–sheaves.
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There is a remaining case of spaces which have finite Cantor–Bendixson rank and nonempty perfect hull.
We make an equivariant version of [Sugrue 2019a, Conjecture 4.6].

Conjecture 5.17 Let G be a profinite group. If the G–space X has finite Cantor–Bendixson rank and
nonempty perfect hull , then the homological dimension of rational G–sheaves over X is infinite.

Using the equivalence between Weyl-G–sheaves and rational G–Mackey functors [Barnes and Sugrue
2023, Theorem A] we obtain the following calculation of homological dimensions for categories of
rational G–Mackey functors.

Corollary 5.18 Let G be a profinite group whose space of subgroups SG is scattered of Cantor–
Bendixson rank n. The homological dimension of the category of rational G–Mackey functors is n� 1.

If SG has infinite Cantor–Bendixson rank , then the homological dimension of the category of rational
G–Mackey functors is infinite.

Example 5.19 Using our calculations from Example 5.5 we can give the homological dimension of
some algebraic models.

For G a finite group, the homological dimension of rational Weyl-G–sheaves is zero. In terms of Mackey
functors, this says that every rational G–Mackey functor is injective, as was proven independently by two
sources [Greenlees and May 1995, Appendix A; Thévenaz and Webb 1995, Theorems 8.3 and 9.1]. See
also [Barnes and Kędziorek 2022, Theorem 4.28].

For G D Z^p , the p–adic integers, the homological dimension of rational Weyl-G–sheaves is one, which
agrees with [Barnes 2011, Lemma 6.2].
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Introduction

The language of higher categories provides a way to describe many phenomena in areas of mathematics
as diverse as topology, algebra, geometry, and mathematical physics. In a higher categorical structure,
we not only have functions between objects, but functions between those functions and possibly further
iterations of this idea, encoded by the notion of a k–morphism between .k�1/–morphisms. One might
initially assume that these higher morphisms should satisfy conditions like associativity in the usual
way, but for many natural examples they only hold up to isomorphism or, in topological settings, up to
homotopy. In the latter situation, it is convenient to work in the setting of .1; n/–categories, in which
we have k–morphisms for arbitrarily large k, but they are all weakly invertible for k > n. These higher
invertible morphisms provide a means for conveniently encoding the “up to isomorphism” data in the
lower morphisms.

There have been many different approaches to realizing .1; n/–categories as concrete mathematical
objects; such realizations are often called models for .1; n/–categories. A natural question, then, is
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whether these different models really do encode the same information, namely, whether we can establish
an appropriate equivalence between them. Much work has been done in this direction, but there are still
proposed models for which we do not have such comparisons. In some other cases, we know by general
results that models must be equivalent, but do not have an explicit equivalence.

The motivation for this paper is the desire for an explicit comparison between two of these models, the
complete Segal ‚n–spaces as defined by [Rezk 2010] and the n–complicial sets as defined by [Verity
2008b] (see also [Ozornova and Rovelli 2020; Riehl 2018]); we give such a comparison when nD 2, for
which more tools are available. Let us give a brief description of these two models.

A complete Segal ‚2–space is described by a diagram of spaces indexed by 2–categories freely generated
by pasting diagrams such as

� � � �

which the expert reader may recognize as the generic element of Joyal’s cell category ‚2. In contrast, a
2–complicial set is given by a simplicial set with a suitable marking in which a k–simplex represents a
diagram indexed by a truncated oriental, which is a free 2–category generated by a standard simplex,
such as

� � � �

D

� � � �

A common way to show that two models are equivalent is to show that appropriate model categories for
each are Quillen equivalent to each other. In this paper, we seek to establish such a Quillen equivalence
between the model structure sSet‚

op
2

p;.1;2/
for complete Segal‚2–spaces and the model structure msSet.1;2/

for 2–complicial sets.

Combining several prior results by different groups of authors, we already know that the two model
categories are Quillen equivalent via a rather lengthy zigzag of Quillen equivalences between different
models. Although we do not expect the reader to be familiar with all these models of .1; 2/–categories,
to give an idea of the complexity of the comparison Figure 1 shows a diagram of an essentially optimal
zigzag of Quillen equivalences, extracted from [Gagna et al. 2022].

To simplify the comparison, the goal of this paper is to produce the following direct Quillen equivalence.

Theorem There is a Quillen equivalence between complete Segal ‚2–spaces , presented by the model
category sSet‚

op
2

p;.1;2/
, and 2–complicial sets , presented by the model category msSet.1;2/.
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sSet‚
op
2

i;.1;2/

sSet‚
op
2

p;.1;2/

sSet.���/
op

i;.1;2/

PCat.sSet�
op
/p;.1;2/

CatsSet�
op

.1;1/

CatSet�
op

.1;1/

CatsSetC
.1;1/

sSetsc
.1;2/

msSet.1;2/

'

[Rezk 2001]

'

[Bergner and Rezk 2020]

'

[Bergner and Rezk 2020]

'

[Bergner and Rezk 2013]

'

[Joyal and Tierney 2007]

'

[Lurie 2009a]

'
[Lurie 2009b]

'

[Gagna et al. 2022]

Figure 1

In addition to providing a more transparent comparison between the two models, this direct comparison
facilitates the transport of constructions between these model structures. We now briefly illustrate the
advantages of each model structure via the examples of duals and joins, and we refer the reader to
Section 4 for a more detailed treatment of these cases, as well as other applications.

The structure of the category ‚2 makes the description of duals straightforward in ‚2–spaces, thanks to
the globular shape of the objects. We can think of 1–dimensional duals as given by reversing the direction
of the arrows, and 2–dimensional duals as given by similarly reversing the direction of 2–cells. Describing
such 2–dimensional duals in the simplicial framework is more complicated, due to the triangular shape of
the cells.

On the other hand, the join construction has been described for 2–complicial sets by [Verity 2008b] and
is similar to familiar join constructions for simplicial sets. One can adjoin 1–simplices connecting the
vertices of the two simplicial sets being joined, and higher-dimensional simplices analogously. In this
case, working in a simplicial framework is much more straightforward than that of ‚2.

While the existence of such a direct Quillen equivalence follows formally, for example using methods of
[Dugger 2001], we find it valuable to have an explicit description.

Let us now describe the main ingredients of the proof of our main theorem.

(i) We use the compatibility of the 2–categorical nerve valued in marked simplicial sets, established
by [Ozornova and Rovelli 2022], to construct a left Quillen functor

L W sSet‚
op
2

.1;2/
!msSet.1;2/:

(ii) To show that this left Quillen functor is in fact a Quillen equivalence, we use a result of [Barwick
and Schommer-Pries 2021] to reduce the problem to showing that it preserves cells in dimensions
0, 1, and 2. In Section 3 we use the intermediate comparisons of models from the diagram above
to identify these cells in each model and thereby show that L does indeed preserve cells.

Algebraic & Geometric Topology, Volume 24 (2024)
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The outline of the paper is as follows. In Section 1 we recall some necessary results about model structures
for 2–categories, ‚2–spaces, and simplicial sets with marking, as well as functors between them, such
as suspension and nerve functors. In Section 2 we construct the adjunction between ‚2–spaces and
simplicial sets with marking and we show that it is a Quillen pair. We then describe how it follows from
[Barwick and Schommer-Pries 2021] that this adjunction is indeed a Quillen equivalence, modulo an
explicit identification of the cells in the two models. In Section 3 we then provide the desired identification
of the cells in the two models. In Section 4 we discuss some applications of the main theorem.
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1 Models of .1; 2/–categories

We assume the reader is familiar with the basics of strict 2–category theory (see eg [Borceux 1994]) and
with the language of model categories (see eg [Hirschhorn 2003; Hovey 1999]), and we now recall some
further preliminary material that we need in this paper.

1.1 Strict 2–categories

The category 2Cat of 2–categories is defined as the category whose objects are (small) categories enriched
over the category Cat of 1–categories. In particular, a 2–category D consists of a set of objects and, for
any objects x and x0, a 1–category HomD.x;x

0/ together with a horizontal composition that defines a
functor of hom-categories ıW HomD.x;x

0/�HomD.x
0;x00/! HomD.x;x

00/.

We consider the following model structure on 2Cat that was constructed by [Lack 2002, Theorem 3.3]
(with a correction in [Lack 2004, Theorem 4]).

Theorem 1.1 The category 2Cat of 2–categories supports a model structure in which

� all 2–categories are fibrant , and

� the weak equivalences are precisely the biequivalences of 2–categories.

An important source of examples of 2–categories is given by suspending 1–categories, as follows.

Algebraic & Geometric Topology, Volume 24 (2024)
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Definition 1.2 Let D be a 1–category. The suspension of D is the 2–category †D in which

(a) there are two objects x? and x>;

(b) the hom-1–categories are given by

Hom†D.a; b/ WD

8<:
D if aD x? and b D x>;

Œ0� if aD b;

¿ if aD x> and b D x?I

(c) there is no nontrivial horizontal composition.

This construction extends to a functor † W Cat! 2Cat�;� valued in the category of bipointed categories,
namely categories endowed with a pair of (possibly equal) specified objects, and basepoint-preserving
functors.

The 2–categorical suspension †D appears in [Barwick and Schommer-Pries 2021], where it is denoted
by �.D/. It is also often described in the literature as a special case of a simplicial suspension. For
instance, applying the nerve to hom-categories of the suspension †D gives a simplicial category N�.†D/

that agrees with what was denoted by U.N D/ in [Bergner 2007b], as S.N D/ in [Joyal 2007], as Œ1�N D

in [Lurie 2009a], and as 2ŒN D� in [Riehl and Verity 2020].

Notation 1.3 We record some notation for the following (nondisjoint) families of 2–categories.

� For m� �1, we denote by Œm� the finite ordinal with mC 1 elements.

� For j D 0; 1; 2, we denote by Cj the free j –cell. These 2–categories can be pictured as

C0 D � C1 D � � C2 D � �:

� For m � 0 and k1; : : : ; km � 0, we denote by Œmjk1; : : : ; km� a generic object of Joyal’s cell
category ‚2, namely the full subcategory ‚2 of 2Cat from [Joyal 1997].

� We denote by I the free-living isomorphism category. This category can be pictured as

I D � �:Š

1.2 Complete Segal spaces as a model for .1; 1/–categories

We briefly recall the theory of complete Segal spaces, as first defined by [Rezk 2001], of which the next
model we discuss for .1; 2/–categories is a generalization.

Algebraic & Geometric Topology, Volume 24 (2024)
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First, consider functors X W�op! sSet. For any n� 1, consider the Segal map

Xn!X1 �
X0

� � � �
X0

X1„ ƒ‚ …
n

induced by the inclusion
�Œ1� q

�Œ0�
�Œ1� q

�Œ0�
� � � q

�Œ0�
�Œ1�„ ƒ‚ …

n

!�Œn�

of the spine of the n–simplex into the n–simplex �Œn�.

Definition 1.4 A Segal space is a functor X W�op! sSet such that the Segal maps are weak equivalences
of simplicial sets for all n� 1.

The idea is that a Segal space behaves something like a category, with simplicial sets of objects and
morphisms, but with composition defined only up to homotopy.

However, to have a model for .1; 1/–categories, we do not want a simplicial set of objects, as in an
internal category, but instead a discrete set of objects. The most straightforward way to get such a model
is to ask for the simplicial set X0 to be discrete.

Definition 1.5 A Segal precategory is a functor X W�op! sSet such that X0 is a discrete simplicial set.
We denote by PCat the full subcategory of sSet�

op
spanned by all Segal precategories. A Segal category

is a Segal precategory that is also a Segal space.

There are two model structures for Segal precategories, the first of which has all objects cofibrant and is
originally due to [Pellissier 2002, Theorem 6.4.4]; another proof is given in [Bergner 2007a, Theorem 5.1].
However, in this paper we make use of the following model structure that has cofibrations defined similarly
to those in the projective model structure.

Theorem 1.6 [Bergner 2007a, Theorem 7.1; Bergner 2007c, Theorem 4.2] The category PCat of Segal
precategories admits a model structure in which

� the fibrant objects are the projectively fibrant Segal categories , and

� the cofibrations are projective cofibrations.

We denote this model structure by PCat.1;1/.

However, from the point of view of homotopy theory, asking for discreteness is awkward. The completeness
condition that we now describe can be more convenient from this perspective.

Let N I denote the nerve of the groupoid I, and denote by Xheq the simplicial set Hom.N I;X /, which is
sometimes called the space of homotopy equivalences of X . The unique map N I!�Œ0� induces a map

X0!Xheq:
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Definition 1.7 A Segal space is complete if this map X0!Xheq is a weak equivalence of simplicial sets.

Rezk builds a supporting model structure for the homotopy theory of complete Segal spaces.

Theorem 1.8 [Rezk 2001, Theorem 7.2] The category sSet�
op

of simplicial spaces admits a model
structure in which

� the fibrant objects are the injectively fibrant complete Segal spaces , and

� the cofibrations are the monomorphisms.

We denote this model structure by sSet�
op

.1;1/
.

This model structure can be obtained by taking the left Bousfield localization of the injective model
structure on sSet�

op
with respect to the following set of maps:

(1) the Segal acyclic cofibrations

�Œ1� q
�Œ0�

�Œ1� q
�Œ0�
� � � q

�Œ0�
�Œ1�„ ƒ‚ …

n

!�Œn�

for n� 1, and

(2) the completeness cofibration, given by either inclusion of the form

�Œ0�!N I:

Complete Segal spaces, the fibrant objects in sSet�
op

.1;1/
, are then precisely the injectively fibrant simplicial

spaces that are local with respect to the maps of type (1) and (2).

Remark 1.9 As briefly addressed in [Rezk 2010, Section 10], in presence of the maps of type (1), for the
purpose of the localization one could replace the map of type (2) as completeness acyclic cofibration with

(20) either inclusion of the form

�Œ0�!�Œ0� q
�Œ1�

�Œ3� q
�Œ1�

�Œ0�;

where the right-hand side is the colimit of the diagram

�Œ0� �Œ1� 02
�!�Œ3� 13

 ��Œ1�!�Œ0�:

The following theorem establishes that the homotopy theories of Segal categories and complete Segal
spaces are equivalent.

Theorem 1.10 [Bergner 2007a, Theorems 6.3 and 7.5] The inclusion functor from the category of
Segal precategories to the category of simplicial spaces induces a left Quillen equivalence

I W PCat.1;1/! sSet�
op

.1;1/:

Algebraic & Geometric Topology, Volume 24 (2024)



3834 Julia E Bergner, Viktoriya Ozornova and Martina Rovelli

1.3 Complete Segal ‚2–spaces as a model of .1; 2/–categories

We now recall the notion of complete Segal ‚2–spaces, which give a model for .1; 2/–categories.

Let ‚2 be Joyal’s cell category. For a precise account on how ‚2 is defined, we refer the reader to
the original source [Joyal 1997], or to [Berger 2007, Definition 3.3] or [Rezk 2010, Section 1.1] for an
inductive approach; we give a brief review here.

Recall that‚2 is a full subcategory of 2Cat and that a generic object of‚2 is a 2–category Œmjk1; : : : ; km�

generated by gluing horizontally the suspensions of Œki � for i D 1; : : : ;m. An example is the 2–category
Œ3j2; 0; 1�, which is generated by the following data:

x y z w

f

g

h

l

m

k
˛

ˇ



Definition 1.11 A‚2–set is a presheaf A W‚
op
2 !Set, and we denote the category of‚2–sets and natural

transformations by Set‚
op
2 . Similarly, a ‚2–space is a simplicial presheaf A W‚

op
2 ! sSet, and we denote

the category of ‚2–spaces by sSet‚
op
2 .

Remark 1.12 The reader familiar with [Rezk 2010] might observe that we are using the term “‚2–space”
in a more general sense than he does. His ‚2–spaces satisfy additional Segal and completeness conditions
that we discuss below; we further specify such objects by calling them “complete Segal ‚2–spaces”.

Remark 1.13 The canonical inclusion Set ,! sSet of sets as discrete simplicial sets induces a canonical
inclusion Set‚

op
2 ,! sSet‚

op
2 , which is both a left and right adjoint. In particular, we often regard ‚2–sets

as discrete ‚2–spaces without further specification.

Notation 1.14 For any object � of ‚2, we denote by ‚2Œ� � the ‚2–set represented by � .

Remark 1.15 As a special case of [Ara 2014, Section 3.1], given any ‚2–set A and any space B one
can consider the ‚2–space A�B, which is defined levelwise as the simplicial set

.A�B/� WDA� �B:

The construction extends to a bifunctor

� W Set‚
op
2 � sSet! sSet‚

op
2

that preserves colimits in each variable.
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In preparation for a localization on the category sSet‚
op
2 , we introduce the following class of maps. The

reader may notice the analogy with the maps treated in Section 1.2.

Definition 1.16 An elementary acyclic cofibration is a map of discrete ‚2–spaces of the following kinds.

(1) A vertical Segal acyclic cofibration is given by, for some k � 1, the canonical map

‚2Œ1j1� q
‚2Œ1j0�

� � � q
‚2Œ1j0�

‚2Œ1j1� ,!‚2Œ1jk�:

(2) A horizontal Segal acyclic cofibration is given by, for some m� 1 and ki � 0, where 0� i �m,
the canonical map

‚2Œ1jk1� q
‚2Œ0�
� � � q

‚2Œ0�
‚2Œ1jkm� ,!‚2Œmjk1; : : : ; km�:

(3) The horizontal completeness acyclic cofibration is either of the inclusions of the form

‚2Œ0�!‚2Œ0� q
‚2Œ1j0�

‚2Œ3j0; 0; 0� q
‚2Œ1j0�

‚2Œ0�;

where the right-hand side is the colimit of the diagram

‚2Œ0� ‚2Œ1j0�
02
�!‚2Œ3j0; 0; 0�

13
 �‚2Œ1j0�!‚2Œ0�:

(4) The vertical completeness acyclic cofibration is the canonical map

‚2Œ1j0�!‚2Œ1j0� q
‚2Œ1j1�

‚2Œ1j3� q
‚2Œ1j1�

‚2Œ1j0�;

induced by suspending the previous one.

We now describe two model structures on the category sSet‚
op
2 , both established by [Rezk 2010, Section

2.13, Proposition 11.5]. Our description, in terms of the elementary acyclic cofibrations defined above,
differs slightly from his, but is designed to facilitate some of our proofs in the next section. We explain in
Remark 1.21 why the two approaches give the same model structures.

Theorem 1.17 The category sSet‚
op
2 of ‚2–spaces supports the following two cofibrantly generated

model structures:

� the model structure
sSet‚

op
2

i;.1;2/

obtained by taking the left Bousfield localization of the injective model structure sSet‚
op
2

inj with
respect to the set of elementary acyclic cofibrations from Definition 1.16, and

� the model structure
sSet‚

op
2

p;.1;2/

obtained by taking the left Bousfield localization of the projective model structure sSet‚
op
2

proj with
respect to the set of elementary acyclic cofibrations from Definition 1.16.
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Although the model structure sSet‚
op
2

i;.1;2/
is more common in the literature, for technical reasons that we

discuss in Remark 2.3, in this paper we focus more on sSet‚
op
2

p;.1;2/
. In this model structure

� the projectively fibrant objects, which we call complete Segal ‚2–spaces, are precisely the pro-
jectively fibrant ‚2–spaces that are local with respect to the elementary acyclic cofibrations from
Definition 1.16, and

� the cofibrations are precisely the projective cofibrations.

Remark 1.18 Combining [Hirschhorn 2003, Theorem 11.6.1 and Definitions 11.5.33 and 11.5.25], we
can obtain an explicit description of the generating cofibrations and generating acyclic cofibrations of
sSet‚

op
2

proj . In particular,

(1) a set of generating cofibrations for the projective model structure on sSet‚
op
2 is given by all maps

of the form

‚2Œ� �� @�Œ`�!‚2Œ� ���Œ`� for � 2 Ob.‚2/ and `� 0I

(2) a set of generating acyclic cofibrations for the projective model structure on sSet‚
op
2 is given by all

maps of the form

‚2Œ� ��ƒk Œ`�!‚2Œ� ���Œ`� for � 2 Ob.‚2/ and 0� k � `:

The following equivalence between the two model structures can alternatively also be seen as a direct
application of [Hirschhorn 2003, Theorem 3.3.20].

Theorem 1.19 [Rezk 2010, Sections 2.5–2.13] The identity functor defines a Quillen equivalence

sSet‚
op
2

p;.1;2/
� sSet‚

op
2

i;.1;2/
:

We want to consider the suspension of a simplicial space to a ‚2–space. In [Rezk 2010, Section 4.4],
the notation V Œ1�.X / is used for what we denote here by †X to emphasize the analogy with similar
constructions we have discussed.

Definition 1.20 The suspension †X of a simplicial space X is the ‚2–space obtained by applying the
cocontinuous functor † W sSet�

op
! sSet‚

op
2
�;� defined on representable simplicial spaces as

†.�Œk���Œ`�/ WD‚2Œ1jk���Œ`�:

This construction extends to a functor † W sSet�
op
! sSet‚

op
2
�;� valued in bipointed ‚2–spaces.

Remark 1.21 In the original construction from [Rezk 2010, Section 2.13, Proposition 11.5], two model
structures on sSet‚

op
2 are obtained by localizing the injective and projective model structure with respect

to the set of maps of the following kinds:

(10) a family of maps that can be recognized to be precisely the family of vertical Segal acyclic
cofibrations, using [Rezk 2010, Proposition 11.7];
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(20) a family of maps that can be recognized to be precisely the family of horizontal Segal acyclic
cofibrations, using [Rezk 2010, Proposition 11.7];

(30) the unique map
N‚2I!‚2Œ0�I

(40) the map
†N‚2I!‚2Œ1j0�

obtained by suspending the map from (30).

However, in presence of the maps of type (1) and (2), it is shown in [Rezk 2010, Section 10] and also
in [Barwick and Schommer-Pries 2021, Section 13] that for the purpose of the localization the maps of
type (3) and (4) are equivalent to the maps of type (30) and (40), respectively. It follows that, although
presented differently, these two model structures in fact agree with the model structures sSet‚

op
2

i;.1;2/
and

sSet‚
op
2

p;.1;2/
from Theorem 1.17.

1.4 Complicial sets as a model of .1; 2/–categories

The next model of .1; 2/–categories that we consider is based on the following structure, originally
referred to as a simplicial set with hollowness in [Street 1987] and later as a stratified simplicial set in
[Verity 2008a].

Definition 1.22 A simplicial set with marking is a simplicial set endowed with a subset of simplices of
strictly positive dimensions that contains all degenerate simplices, called thin or marked. We denote by
msSet the category of simplicial sets with marking and marking-preserving simplicial maps.

We want to consider a model structure on the category of simplicial sets with marking, in which the
fibrant objects, called 2–complicial sets, provide a model for .1; 2/–categories. The idea is that, in a
2–complicial set, the marked k–simplices are precisely the k–equivalences. We refer the reader to [Riehl
2018] for further elaboration on this viewpoint.

Remark 1.23 As discussed in [Verity 2008a, Observation 97], the underlying simplicial set functor
msSet! sSet fits into an adjoint triple

msSet sSet:

.�/]

.�/[

a
a

For any simplicial set X , the left adjoint X [ (sometimes also denoted simply by X ) is obtained by
marking only the degenerate simplices of X , and the right adjoint X ] is obtained by marking all simplices
in positive dimensions.
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Remark 1.24 As described in detail in [Verity 2008a, Observation 109], the category msSet of simplicial
sets with marking is complete and cocomplete, with limits and colimits constructed as follows.

� The underlying simplicial set of a limit limi2I Xi of simplicial sets with marking is the limit of the
corresponding underlying simplicial sets of Xi , and a simplex is marked in a limit of simplicial
sets with marking limi2I Xi if and only if it is marked in each component Xi for i 2 I .

� The underlying simplicial set of a colimit colimi2I Xi of simplicial sets with marking is the colimit
of the corresponding underlying simplicial sets of Xi , and a simplex is marked in a colimit of
simplicial sets with marking colimi2I Xi if and only if it admits a marked representative in Xi for
some i 2 I .

The following model structure is one instance of the family of model structures constructed by [Verity
2008b, Theorem 100], and is described in more detail in [Riehl 2018, Section 3.3].

Theorem 1.25 [Ozornova and Rovelli 2020, Theorem 1.25] The category msSet of simplicial sets with
marking supports a cofibrantly generated cartesian closed model structure in which

� the fibrant objects are the 2–complicial sets , as recalled in [Ozornova and Rovelli 2020, Definition
1.21], and

� the cofibrations are precisely the monomorphisms on underlying simplicial sets.

We denote this model structure by msSet.1;2/.

We warn the reader that the fibrant objects in this model structure have been given different names in
the literature, and could perhaps more accurately be called “2–trivial saturated weak complicial sets”.
We have chosen to call them “2–complicial sets” for the sake of brevity; in what follows we do not
make explicit use of their definition. We recall the key results we need, in particular about the weak
equivalences in this model structure, in the remainder of this section.

Remark 1.26 Because of the way the model structure msSet.1;2/ is constructed, if �Œ3�eq denotes the
3–simplex�Œ3� in which the nondegenerate marked 1–simplices are precisely the one between the vertices
0 and 2 and the one between the vertices 1 and 3, and all simplices in dimension 2 or higher are marked,
the canonical map �Œ3�eq!�Œ3�] is a weak equivalence. Indeed, the model structure msSet.1;2/ is a
Cisinski–Olschok model structure (in the sense of [Olschok 2011]) for which the map �Œ3�eq!�Œ3�] is
an anodyne extension.

Lemma 1.27 The functor
.�/] W sSet.1;0/!msSet.1;2/

is a left Quillen functor , where sSet.1;0/ denotes the Kan–Quillen model structure on the category sSet.

Proof The fact that the functor admits a right adjoint, often called the core functor, is discussed in
[Riehl and Verity 2022, Definition D.1.2]. It is straightforward from its description that the functor .�/]
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preserves cofibrations, and it is shown in [Ozornova and Rovelli 2020, Lemma 2.16] that it also sends
acyclic cofibrations of sSet.1;0/ to weak equivalences of msSet.1;2/. It follows that .�/] defines indeed
a left Quillen functor between the desired model categories.

For nD 2, the Street nerve was studied in detail by [Duskin 2001], and can be described explicitly as
follows.

Definition 1.28 The nerve N D of a 2–category D is the 3–coskeletal simplicial set in which

(0) a 0–simplex consists of an object of D:
xI

(1) a 1–simplex consists of a 1–morphism of D:

x yI
a

(2) a 2–simplex consists of a 2–cell of D of the form c) b ı a:

y

x z

ba

c

'

(3) a 3–simplex consists of four 2–cells of D that satisfy the relation

w z w z

D

x y x y

e e

d

a b c a

d

cf

and in which the simplicial structure is as indicated in the pictures.

Definition 1.29 [Verity 2008a, Chapter 10] The Roberts–Street nerve of a 2–category D is the simplicial
set with marking N RSD, defined by the following properties.

(0) The underlying simplicial set is the Duskin nerve N D.

(1) Only degenerate 1–simplices are marked.

(2) A 2–simplex of N D is marked in N RSD if and only if corresponding 2–morphism ' W c) b ı a is
an identity.

(3) Any m–simplex of N D for m� 3 is marked in N RSD.

This construction extends to a functor N RS W 2Cat!msSet.

The Roberts–Street nerve is a right adjoint functor, but, as proved by the second- and third-named authors,
does not preserve fibrant objects on the model structures we want to consider. However, it is a homotopical
functor between model categories, in the sense that it preserves weak equivalences.
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Proposition 1.30 [Ozornova and Rovelli 2022, Proposition 1.18] The Roberts–Street nerve defines a
homotopical functor of model categories

N RS
W 2Cat!msSet.1;2/:

The following two technical results essentially tell us that horizontal and vertical composition of 2–cells
can be encoded via Segal-type maps that are acyclic cofibrations in the model structure for 2–complicial
sets.

Theorem 1.31 [Ozornova and Rovelli 2022, Corollary 2.10] For any m� 0 and ki � 0 for i D 1; : : : ;m

there is a canonical map of simplicial sets with marking

N RSŒ1jk1� q
N RSŒ0�

� � � q
N RSŒ0�

N RSŒ1jkm� ,!N RSŒmjk1; : : : ; km�

that is an acyclic cofibration , and in particular a weak equivalence , in msSet.1;2/.

Theorem 1.32 [Ozornova and Rovelli 2022, Corollary 2.11] For any k � 0 there is a canonical map of
simplicial sets with marking

N RSŒ1j1� q
N RSŒ1�

� � � q
N RSŒ1�

N RSŒ1j1� ,!N RSŒ1jk�

that is an acyclic cofibration , and in particular a weak equivalence , in msSet.1;2/.

Note that, when taking the nerve we simply write N RSŒ1� rather than N RSŒ1j0�, since the 2–category Œ1j0�
is just the category Œ1� thought of as a 2–category.

An important construction in this paper is the suspension of a simplicial set with marking. We conclude
this section with the definition and some key results about it.

Definition 1.33 [Ozornova and Rovelli 2022, Definition 2.6] The suspension †X of a simplicial set
with marking X is the simplicial set with marking defined as follows.

� It has precisely two 0–simplices that we denote by x? and x>.

� The set of m–simplices for m> 0 is given by all k–simplices of X for 0� k �m� 1, as well as
the m–fold degeneracies of the two 0–simplices x? and x>, namely

.†X /m Š fs
m
0 x?gqXm�1q� � �qX0qfs

m
0 x>g:

� The simplicial structure can be read off from [Ozornova and Rovelli 2022, Definition 2.6].

� The set of nondegenerate m–simplices for m> 0 is given by the nondegenerate .m�1/–simplices
of X .

� A nondegenerate m–simplex � is marked in †X if and only if it is marked as an .m�1/–simplex
of X .

This construction extends to a functor † WmsSet!msSet�;� valued in bipointed marked simplicial sets.
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We now recall that this functor can be upgraded to a left Quillen functor of model categories. Recall
from [Hirschhorn 2021] that, given any cofibrantly model category M, there is a model structure on the
category M�;� of bipointed objects in M, in which cofibrations, fibrations, and weak equivalences are
created in M.

Lemma 1.34 [Ozornova and Rovelli 2022, Lemma 2.7] Regarding †X as a simplicial set with marking
bipointed on x? and x>, the marked suspension defines a left Quillen functor

† WmsSet.1;2/! .msSet.1;2//�;�:

In particular , it is homotopical and it respects connected colimits as a functor † WmsSet!msSet.

Finally, we recall that the suspension of a marked simplicial set is homotopically compatible with the
Roberts–Street nerve, as one would expect.

Theorem 1.35 [Ozornova and Rovelli 2022, Theorem 2.9] For any 1–category D there is a canonical
map

†N RSD!N RS†D

that is a weak equivalence in msSet.1;2/.

2 The comparison of models of .1; 2/–categories

In this section, we set up our explicit comparison between the two models for .1; 2/–categories that we
are considering. We first establish the desired Quillen pair of functors between the unlocalized model
structure on the category of ‚2–spaces and the model structure on simplicial sets with marking, then
show that it is still a Quillen pair after localization of the former model category. We then show that it is
a Quillen equivalence, deferring some steps in the proof to later sections.

2.1 The Quillen pair before localizing

Let us begin by defining the functor that we use to make our comparison.

Construction 2.1 The functor ‚2 ��� sSet‚
op
2 !msSet given by

.�; Œ`�/ 7! .‚2 ��/Œ�; `�D‚2Œ� ���Œ`� 7!N RS� ��Œ`�]

induces an adjunction
L W sSet‚

op
2 �msSet WR:

Roughly speaking, for any ‚2–space W , the simplicial set with marking LW is obtained by gluing
together a copy of the Roberts–Street nerve of � , for any � in ‚2 that maps to W . While describing this
gluing explicitly is complicated, it is essentially specified by the definition of left Kan extension.
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We now show that these adjoint functors define Quillen pair on unlocalized model categories.

Proposition 2.2 The adjunction

L W sSet‚
op
2

proj �msSet.1;2/ WR

is a Quillen pair.

Proof We want to show that the functor L preserves cofibrations and acyclic cofibrations. From
Remark 1.18 we know that

(1) a set of generating cofibrations for the projective model structure on sSet‚
op
2 is given by all maps

of the form
‚2Œ� �� @�Œ`�!‚2Œ� ���Œ`� for � 2‚2 and `� 0I

(2) a set of generating acyclic cofibrations for the projective model structure on sSet‚
op
2 is given by all

maps of the form

‚2Œ� ��ƒk Œ`�!‚2Œ� ���Œ`� for � 2‚2 and 0� k � `:

Using the facts that .�/] commutes with colimits, which is a consequence of Lemma 1.27, and that the
box product � preserves colimits in each variable, which was recalled in Remark 1.15, we see that

(1) the image of the generating cofibration via L is the map

N RS� � @�Œ`�]!N RS� ��Œ`�] for � 2‚2 and `� 0I

(2) the image of the generating acyclic cofibration via L is the map

N RS� �ƒk Œ`�]!N RS� ��Œ`�] for � 2‚2 and 0� k � `:

Since the model structure msSet.1;2/ is cartesian closed by Theorem 1.25 and .�/] is a left Quillen
functor by Lemma 1.27, we conclude that

(1) the map N RS� � @�Œ`�]!N RS� ��Œ`�] is a cofibration, and

(2) the map N RS� �ƒk Œ`�]!N RS� ��Œ`�] is an acyclic cofibration.

It follows that L preserves cofibrations and acyclic cofibrations, so it is a left Quillen functor, as desired.

Remark 2.3 One might wonder, in contrast with much of the literature on the subject, why we have
chosen to use the projective, rather than the injective, model structure on sSet‚

op
2 . However, it is not clear

whether the functor
L W sSet‚

op
2

inj !msSet.1;2/

is a left Quillen functor, since we do not know whether it preserves cofibrations. More precisely, it is
unclear whether L sends the injective cofibration

@‚2Œ3j1; 0; 1�!‚2Œ3j1; 0; 1�

to a cofibration of msSet.1;2/.
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2.2 The Quillen pair after localizing

We now show that we still have a Quillen pair after localizing the projective model structure on sSet‚
op
2 .

Theorem 2.4 The adjunction
L W sSet‚

op
2

p;.1;2/
�msSet.1;2/ WR

is a Quillen pair.

Since cofibrations are unchanged by localization, it suffices to prove that L preserves acyclic cofibrations.
We do so by proving that L preserves all elementary acyclic cofibrations, in the following sequence of
propositions.

Proposition 2.5 The functor L sends the vertical Segal acyclic cofibrations

‚2Œ1j1� q
‚2Œ1j0�

� � � q
‚2Œ1j0�

‚2Œ1j1� ,!‚2Œ1jk� for k � 0

from Definition 1.16 to weak equivalences in msSet.1;2/.

Proof The functor L sends the elementary acyclic cofibration

‚2Œ1j1� q
‚2Œ1j0�

� � � q
‚2Œ1j0�

‚2Œ1j1� ,!‚2Œ1jk�

to the canonical inclusion

N RSŒ1j1� q
N RSŒ1�

� � � q
N RSŒ1�

N RSŒ1j1� ,!N RSŒ1jk�;

which is an acyclic cofibration by Theorem 1.32.

Proposition 2.6 The functor L sends the horizontal Segal acyclic cofibrations

‚2Œ1jk1� q
‚2Œ0�
� � � q

‚2Œ0�
‚2Œ1jkm� ,!‚2Œmjk1; : : : ; km� for m� 0 and ki � 0

from Definition 1.16 to weak equivalences in msSet.1;2/.

Proof The functor L sends the elementary acyclic cofibration

‚2Œ1jk1� q
‚2Œ0�
� � � q

‚2Œ0�
‚2Œ1jkm� ,!‚2Œmjk1; : : : ; km�

to the canonical inclusion

N RSŒ1jk1� q
N RSŒ0�

� � � q
N RSŒ0�

N RSŒ1jkm� ,!N RSŒmjk1; : : : ; km�;

which is an acyclic cofibration by Theorem 1.31.

Proposition 2.7 The functor L sends the horizontal completeness acyclic cofibration

‚2Œ0�!‚2Œ0� q
‚2Œ1j0�

‚2Œ3j0; 0; 0� q
‚2Œ1j0�

‚2Œ0�

from Definition 1.16 to a weak equivalence in msSet.1;2/.

Algebraic & Geometric Topology, Volume 24 (2024)



3844 Julia E Bergner, Viktoriya Ozornova and Martina Rovelli

To prove this proposition, we need the following preliminary lemma.

Lemma 2.8 The unique map
�Œ0� q

�Œ1�
N RSŒ3� q

�Œ1�
�Œ0�!�Œ0�

is a weak equivalence in msSet.1;2/.

Proof We observe that this map fits into a commutative diagram of simplicial sets with marking

�Œ0� q
�Œ1�

N RSŒ3� q
�Œ1�

�Œ0� �Œ0�

�Œ1�] q
�Œ1�

N RSŒ3� q
�Œ1�

�Œ1�] Š�Œ3�eq �Œ3�]

where �Œ1�] denotes the standard 1–simplex with the maximal marking. In this diagram, we observe that

� the bottom horizontal map is an acyclic cofibration by Remark 1.26;

� the left vertical map is a map between (homotopy) pushouts induced by the identity of N RSŒ3� and
two copies of the weak equivalence �Œ1�]!�Œ0�; and

� the right vertical map is a weak equivalence since .�/] preserves weak equivalences by Lemma 1.27.

It follows by two-out-of-three that the top horizontal map is a weak equivalence, as desired.

We can now use this lemma to prove Proposition 2.7.

Proof of Proposition 2.7 The functor L sends the map

‚2Œ0�!‚2Œ0� q
‚2Œ1j0�

‚2Œ3j0; 0; 0� q
‚2Œ1j0�

‚2Œ0�

to a map
�Œ0�!�Œ0� q

�Œ1�
N RSŒ3� q

�Œ1�
�Œ0�

that we want to show is a weak equivalence. However, we can conclude this fact by the two-out-of-three
property, since we know from Lemma 2.8 that the unique map

�Œ0� q
�Œ1�

N RSŒ3� q
�Œ1�

�Œ0�!�Œ0�

is a weak equivalence in msSet.1;2/.

To complete the proof of Theorem 2.4, it remains to show that L preserves one more acyclic cofibration.

Proposition 2.9 The functor L sends the vertical completeness acyclic cofibration

‚2Œ1j0�!‚2Œ1j0� q
‚2Œ1j1�

‚2Œ1j3� q
‚2Œ1j1�

‚2Œ1j0�

from Definition 1.16 to a weak equivalence of msSet.1;2/.
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Proof The functor L sends the map

‚2Œ1j0�!‚2Œ1j0� q
‚2Œ1j1�

‚2Œ1j3� q
‚2Œ1j1�

‚2Œ1j0�

to a map
N RSŒ1j0�!N RSŒ1j0� q

N RSŒ1j1�
N RSŒ1j3� q

N RSŒ1j1�
N RSŒ1j0�;

which we want to show is a weak equivalence. By the two-out-of-three property, it suffices to show that
the map

N RSŒ1j0� q
N RSŒ1j1�

N RSŒ1j3� q
N RSŒ1j1�

N RSŒ1j0�!N RSŒ1j0�;

induced by the unique map Œ1j3�! Œ1j0� in ‚2 that is bijective on objects, is a weak equivalence in
msSet.1;2/. This map can be rewritten in terms of suspensions of 1–categories, as in Definition 1.2, as

N RS†Œ0� q
N RS†Œ1�

N RS†Œ3� q
N RS†Œ1�

N RS†Œ0�!N RS†Œ0�:

By Theorem 1.35, this map fits into a commutative diagram of simplicial sets with marking

N RS†Œ0� q
N RS†Œ1�

N RS†Œ3� q
N RS†Œ1�

N RS†Œ0� N RS†Œ0�

†N RSŒ0� q
†N RSŒ1�

†N RSŒ3� q
†N RSŒ1�

†N RSŒ0� †N RSŒ0�

'
Š

in which the two vertical maps are weak equivalences. Note that for the left-hand map we are using the
fact that these pushouts are actually homotopy pushouts. In particular, by the two-out-of-three property,
to prove the theorem it is enough to prove that the bottom map is a weak equivalence. Using the fact that
suspension commutes with pushouts by Lemma 1.34, this map can be rewritten as

†

�
�Œ0� q

�Œ1�
N RSŒ3� q

�Œ1�
�Œ0�

�
!†�Œ0�;

namely the suspension of the map

�Œ0� q
�Œ1�

N RSŒ3� q
�Œ1�

�Œ0�!�Œ0�;

which was shown in Lemma 2.8 to be a weak equivalence. Since suspension is a left Quillen functor by
Lemma 1.34, we are done.

2.3 The Quillen equivalence

It remains to show that this Quillen pair is in fact a Quillen equivalence. Our proof, however, is not done
directly via the definition, but instead uses some machinery due to [Barwick and Schommer-Pries 2021]
that we now briefly recall.

The first thing we need to consider is their criterion for when a model category is a “model of .1; 2/–
categories”. We begin with some notation.
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Notation 2.10 Given a model category M, we denote by M1 the underlying .1; 1/–category of M.
While we do not need one here, for explicit (different but equivalent) constructions of M1 in the model
of quasicategories, we refer the reader to [Hinich 2016] or [Lurie 2009a, Section A.2].

Notation 2.11 Given a Quillen pair F WM�M0 WG between model categories M and M0, we denote by

F1 WM1�M01 WG1

the adjunction that .F;G/ induces at the level of underlying .1; 1/–categories.

On objects, the value of F1 on any object of M can be computed up to equivalence in M01 by applying
F to any cofibrant replacement of the given object. Similarly the value of G1 on any object of M0 can
be computed up to equivalence in M1 by applying G to any fibrant replacement of the given object.
Moreover, if .F;G/ is a Quillen equivalence, the induced adjunction .F1;G1/ is an equivalence of
.1; 1/–categories. For more details on how to obtain this adjunction of .1; 1/–categories in the model
of quasicategories we refer the reader to [Hinich 2016, Proposition 1.5.1].

Definition 2.12 (Barwick–Schommer-Pries) A model category M is a model of .1; 2/–categories if the
underlying .1; 1/–category is equivalent to the colossal model K from [Barwick and Schommer-Pries
2021, Section 8], namely if there exists an equivalence of .1; 1/–categories

M1 ' K:

The colossal model is constructed as an .1; 1/–category in [Barwick and Schommer-Pries 2021, Section 8].
As we discuss in the appendix, with standard techniques one can also present the colossal model as the
underlying .1; 1/–category of a model category. More precisely, we show as Theorem A.3 that it is the
underlying .1; 1/–category

�
sSet‡

op
2

.1;2/

�
1

of a model category sSet‡
op
2

.1;2/
.

In any case, for the main purpose of this paper the arguments are packaged in a way that no explicit
construction for the colossal model is needed.

Theorem 2.13 The model categories sSet‚
op
2

p;.1;2/
and sSet‚

op
2

i;.1;2/
are models of .1; 2/–categories.

Proof The fact that sSet‚
op
2

i;.1;2/
is a model of .1; 2/–categories is shown in [Barwick and Schommer-Pries

2021, Section 13] and there is an equivalence�
sSet‚

op
2

p;.1;2/

�
1
'
�
sSet‚

op
2

i;.1;2/

�
1

induced by the Quillen equivalence from Theorem 1.19.

Theorem 2.14 The model category msSet.1;2/ is a model of .1; 2/–categories.

Proof An equivalence of .1; 1/–categories

.msSet.1;2//1 '
�
sSet‚

op
2

i;.1;2/

�
1
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can be obtained combining several equivalences of .1; 1/–categories induced by Quillen equivalences
due to [Bergner and Rezk 2013; 2020; Gagna et al. 2022; Joyal and Tierney 2007; Lurie 2009b], as we
recalled in Figure 1.

Next, we recall the definition of a j –cell in a model of .1; 2/–categories.

Definition 2.15 Let M be a model category that is a model for .1; 2/–categories. An object of M is a
representative of the j –cell for j D 0; 1; 2 if it corresponds to the j –cell of the colossal model through

any equivalence of .1; 1/–categories M1 '
�
sSet

‡
op
2

.1;2/

�
1

.

For completeness, the definitions of the 0–, 1– and 2–cells in the colossal model are recalled in the
appendix, but will not be needed explicitly.

Remark 2.16 The object in M that represents the j –cell is unique up to equivalence in M1 and also
up to isomorphism in Ho M, the homotopy category of M. The definition makes sense in particular
because any auto-equivalence of

�
sSet

‡
op
2

.1;2/

�
1

preserves j –cells for j D 0; 1; 2, as shown in [Barwick
and Schommer-Pries 2021, Theorem 7.3].

The following statements describe j –cells in sSet‚
op
2

p;.1;2/
and msSet.1;2/.

Proposition 2.17 In sSet‚
op
2

p;.1;2/
the object ‚2ŒCj � is a representative of the j –cell for j D 0; 1; 2.

Proposition 2.18 In msSet.1;2/ the object N RSCj is a representative of the j –cell for j D 0; 1; 2.

Although the two statements are not surprising, the argument to identify cells in msSet.1;2/ requires
significant work and makes use of many external results. We therefore postpone both proofs to Section 3.

Finally, the following theorem is the key ingredient to prove that the functor L is a Quillen equivalence.

Theorem 2.19 [Barwick and Schommer-Pries 2021, Proposition 15.10] Let M and N be model cat-
egories that are models for .1; 2/–categories , and L W M� N WR a Quillen pair between them. Then
the Quillen pair .L;R/ is a Quillen equivalence if and only if the derived functor of L sends j –cells to
j –cells for j D 0; 1; 2.

Once the proofs of Propositions 2.17 and 2.18 are provided in Section 3, we can then apply Theorem 2.19
to the Quillen pair from Theorem 2.4 to conclude the desired Quillen equivalence.

Theorem 2.20 The adjunction

L W sSet‚
op
2

p;.1;2/
�msSet.1;2/ WR

is a Quillen equivalence , and in particular induces an equivalence of .1; 1/–categories

L1 W
�
sSet‚

op
2

p;.1;2/

�
1
� .msSet.1;2//1 WR1:
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3 Recognizing cells in models of .1; 2/–categories

The goal of this section is to identify the j –cells in sSet‚
op
2

p;.1;2/
, and most importantly the j –cells in

msSet.1;2/, as defined in Definition 2.15. The structure of the argument involves the identification of the
j –cells in several established model categories that are models of .1; 2/–categories.

In Figure 2, we display the equivalences used to identify the cells in the marked simplicial sets, and the
propositions displayed show how the cells behave under the corresponding equivalence.

While it is impractical to make this section completely self-contained, we have included precise references
for all relevant constructions and definitions.

Lemma 3.1 Suppose that a functor F WM!M0 is a left (resp. right) Quillen equivalence between models
of .1; 2/–categories , and an object X is cofibrant (resp. fibrant) in M. Then X is a j –cell in M for some
0� j � 2 if and only if F.X / is a j –cell in M0.

Proof Consider the induced functor F1 WM1!M01, which is an equivalence of .1; 1/–categories.
It follows that, for any j D 0; 1; 2 and j –cell Xj of M, the object F1.Xj / is a cell in M01, either by
direct verification, or by appealing to Theorem 2.19. Now, an object X is a j –cell in M if and only if
there is an isomorphism X ŠXj in Ho M. Again using the fact that F1 is an equivalence, this statement
is equivalent to saying that there is an isomorphism F1.X /Š F1.Xj / in Ho.M0/. But the existence
of such an isomorphism is equivalent to having F1.X / being a j –cell of M01 because F1.Xj / is one.
Since F.X / computes F1.X /, the result follows.

3.1 Recognizing cells in ‚2–models of .1; 2/–categories

We now begin the work of identifying j –cells in different models for .1; 2/–categories. We begin with
the j –cells in sSet‚

op
2

i;.1;2/
, which have been identified by Barwick and Schommer-Pries.

sSet‚
op
2

i;.1;2/

sSet‚
op
2

p;.1;2/

sSet.���/
op

i;.1;2/

PCat.sSet�
op
/p;.1;2/

CatsSet�
op

.1;1/

CatSet�
op

.1;1/

CatsSetC
.1;1/

sSetsc
.1;2/

msSet.1;2/

'

Proposition 2.17

'

Proposition 3.5

'

Proposition 3.8

'

Proposition 3.12

'

Proposition 3.16

'

Proposition 3.18

'

Proposition 3.22

'

Proposition 2.18

Figure 2
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Proposition 3.2 [Barwick and Schommer-Pries 2021, Section 13] In sSet‚
op
2

i;.1;2/
the object ‚2ŒCj � is a

representative of the j –cell for j D 0; 1; 2.

We can now prove Proposition 2.17, which identifies the cells in sSet‚
op
2

p;.1;2/
.

Proof of Proposition 2.17 Consider the identity functor on sSet‚
op
2 , which by Theorem 1.19 defines a

left Quillen equivalence
id W sSet‚

op
2

p;.1;2/
! sSet‚

op
2

i;.1;2/
:

By Proposition 3.2 we know that ‚2ŒCj � is a j –cell in sSet‚
op
2

i;.1;2/
for j D 0; 1; 2. Moreover, the object

‚2ŒCj � is projectively cofibrant by [Hirschhorn 2003, Proposition 11.6.2], since it is representable. It
then follows from Lemma 3.1 that ‚2ŒCj � is a j –cell in sSet‚

op
2

p;.1;2/
.

3.2 Recognizing cells in multisimplicial models of .1; 2/–categories

We now turn to identifying j –cells in multisimplicial models of .1; 2/–categories. Because we have not
yet considered these models in this paper, we describe them briefly as we go.

Theorem 3.3 [Barwick 2005, Chapter 2] The category sSet.���/
op

of bisimplicial spaces admits a
model structure in which

� the fibrant objects are the injectively fibrant complete Segal objects in complete Segal spaces; and

� the cofibrations are the monomorphisms , and in particular every object is cofibrant.

We denote this model structure by sSet.���/
op

i;.1;2/
.

The idea behind complete Segal objects in complete Segal spaces is that we apply similar Segal and
completeness conditions to functors �op ! sSet�

op
, where the target category is equipped with the

complete Segal space model structure. Thus, the Segal and completeness maps are now equivalences
in this model structure, rather than equivalences of simplicial sets. For more details on the definition of
complete Segal objects in complete Segal spaces, see [Barwick 2005, Chapter 2; Bergner and Rezk 2020,
Definition 5.3; Lurie 2009b].

There is an explicit equivalence of model categories between this model structure and the one for complete
Segal ‚2–spaces. See also [Barwick and Schommer-Pries 2021] for a different proof of this equivalence.

Theorem 3.4 [Bergner and Rezk 2020, Corollary 7.1] The functor d W���!‚2 given by

Œm; k� 7! Œmjk; : : : ; k�

induces a left Quillen equivalence

d� W sSet‚
op
2

i;.1;2/
! sSet.���/

op

i;.1;2/
:

In particular, sSet.���/
op

i;.1;2/
is a model for .1; 2/–categories. We now characterize the j –cells in this model.

Algebraic & Geometric Topology, Volume 24 (2024)



3850 Julia E Bergner, Viktoriya Ozornova and Martina Rovelli

Proposition 3.5 In sSet.���/
op

i;.1;2/
the object d�‚2ŒCj � is a representative of the j –cell for j D 0; 1; 2.

Proof We consider the functor d�, which defines a left Quillen equivalence

d� W sSet‚
op
2

i;.1;2/
! sSet.���/

op

i;.1;2/
:

By Proposition 3.2, for j D 0; 1; 2, the object ‚2ŒCj � is a j –cell in sSet‚
op
2

i;.1;2/
. Moreover, every object is

cofibrant in sSet‚
op
2

i;.1;2/
. It follows from Lemma 3.1 that d�‚2ŒCj � is a j –cell in sSet.���/

op

i;.1;2/
.

We can now generalize the notion of Segal precategory to this context; in analogy with the notion of
complete Segal objects described above, we can define Segal precategory objects in complete Segal
spaces, given by functors X W �op! sSet�

op
such that X0 is a discrete object and the Segal maps are

weak equivalences in the complete Segal space model structure. See [Bergner and Rezk 2013, Section 6]
for more details.

Let us briefly describe the comparison with complete Segal objects, which is analogous to Theorem 1.10.
We denote by PCat.Set�

op
/ the full subcategory of sSet.���/

op
given by Segal precategory objects in

simplicial spaces, namely those bisimplicial spaces X W�op! sSet�
op

for which X0 is discrete, and we
denote by I W PCat.Set�

op
/! sSet.���/

op
the inclusion functor.

Theorem 3.6 [Bergner and Rezk 2013, 6.12] The category PCat.sSet�
op
/ of precategories in simplicial

spaces admits a model structure in which

� the fibrant objects are the projectively fibrant Segal category objects , and

� the cofibrations are the projective cofibrations.

We denote this model structure by PCat.sSet�
op
/p;.1;2/.

This model was compared to the previous ones by [Bergner and Rezk 2020].

Theorem 3.7 [Bergner and Rezk 2020, Theorem 9.6 and Propositions 7.1 and 9.5] The natural inclusion
functor from [Bergner and Rezk 2020, Section 9] induces a left Quillen equivalence

I W PCat.sSet�
op
/p;.1;2/! sSet.���/

op

i;.1;2/
:

In particular, PCat.sSet�
op
/p;.1;2/ is a model for .1; 2/–categories.

For each j D 0; 1; 2, the bisimplicial space d�‚2ŒCj �, a priori an object of sSet.���/
op

, is actually a
precategory, so it can be regarded as an object of PCat.sSet�

op
/.

Proposition 3.8 In PCat.sSet�
op
/p;.1;2/ the object d�‚2ŒCj � is a representative of the j –cell for

j D 0; 1; 2.

To prove this result, we make use of the following lemma.
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Lemma 3.9 In PCat.sSet�
op
/p;.1;2/ the object d�‚2ŒCj � is a cofibrant for j D 0; 1; 2.

Proof If �Œ¿� denotes the initial bisimplicial space, we show that the canonical map �Œ¿�! d�‚2ŒCj �

is a cofibration in PCat.sSet�
op
/p;.1;2/ for j D 0; 1; 2.

For j D 0 and j D 1, the object d�‚2ŒCj � is representable as an object of sSet.���/
op

, so by [Hirschhorn
2003, Proposition 11.6.2] the map �Œ¿�! d�‚2ŒCj � is a projective cofibration and hence d�‚2ŒCj � is
cofibrant in PCat.sSet�

op
/p;.1;2/.

For j D 2, we recall from [Bergner and Rezk 2013, Section 6.2] that any map of the form AŒp�! BŒp�,
where p � 0 and A! B is a cofibration of sSet�

op

.1;1/
, is a cofibration in PCat.sSet�

op
/p;.1;2/. Recall

that AŒp� is defined as the pushout in PCat.sSet�
op
/

A� .�Œp�/0 A��Œp�

�Œ0�� .�Œp�/0 AŒp�

for any p � 0 and any simplicial space A. We can now write the map �Œ¿�! d�‚2ŒC2� as the following
composite of three cofibrations:

�Œ¿�! d�‚2ŒC0�Š�Œ0�Œ0�! .�Œ0�q�Œ0�/Œ0� Š�Œ¿�Œ1�!�Œ1�Œ1� Š d�‚2ŒC2�;

concluding the proof.

We can now prove the proposition.

Proof of Proposition 3.8 We consider the inclusion functor, which defines a left Quillen equivalence

I W PCat.sSet�
op
/p;.1;2/! sSet.���/

op

i;.1;2/
:

For j D 0; 1; 2, by Proposition 3.5 we know that I.d�‚2ŒCj �/ is a j –cell in sSet.���/
op

i;.1;2/
. Moreover, the

object is cofibrant in PCat.sSet�
op
/p;.1;2/ by Lemma 3.9. It follows from Lemma 3.1 that d�‚2ŒCi � is

a j –cell in PCat.sSet�
op
/p;.1;2/.

3.3 Recognizing cells in enriched models of .1; 2/–categories

We now turn to recognizing cells in models that are given by enriched categories. Many model structures
on enriched categories can be obtained by the following general result of Lurie.

Theorem 3.10 [Lurie 2009a, Theorem A.3.2.24] Let V be an excellent monoidal model category, in
the sense of [Lurie 2009a, Definition A.3.2.16]. The category of small categories enriched over V admits
a model structure in which

� the fibrant objects are the locally fibrant categories , ie the enriched categories C such that for any
pair of objects c; c0 in C , the mapping object HomC .c; c

0/ is fibrant in V;
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� the weak equivalences , which are described in [Lurie 2009a, Definition A.3.2.1] and [Lawson
2017], are enriched functors F W C !D such that
(1) for every pair of objects c; c0 of C , the map induced by F of mapping objects

Fc;d W HomC .c; c
0/! HomD.Fc;Fc0/;

is a weak equivalence in V, and
(2) the functor induced by F on (underlying categories) of Ho V–categories is essentially surjective;

� the cofibrations are those described in [Lurie 2009a, Proposition A.3.2.4].

We denote this model structure by CatV.

To give an idea, the technical condition for a combinatorial monoidal model category to be excellent
requests a closure property for cofibrations and weak equivalences, in addition to compatibility of the
model structure with the monoidal structure. Lurie’s original definition also requires a further condition,
known as “invertibility hypothesis”, which was shown to follow from the other conditions by [Lawson
2017, Theorem 0.1].

We specialize this construction to the following situations.

� Let VD Cat be the canonical model structure on the category Cat of small categories from [Rezk
1996], which is seen to be excellent using the fact that the nerve functor creates weak equivalences
and commutes with filtered colimits. We then obtain precisely the model category CatCat D 2Cat
as discussed in [Berger and Moerdijk 2013, Example 1.8].

� Let VD sSet.1;1/ be the Joyal model structure on the category sSet of simplicial sets from [Joyal
2008, Theorem 6.12], which is excellent by [Lurie 2009a, Example A.3.2.23]. We then obtain the
model category CatsSet.1;1/

.

� Let VD sSet�
op

.1;1/
be Rezk’s model structure from Theorem 1.8 on the category sSet�

op
of simplicial

spaces, which is discussed to be excellent [Bergner and Rezk 2013, Theorem 3.11]. We then obtain
the model category CatsSet�

op
.1;1/

.

� Let VD sSetC
.1;1/

be Lurie’s model structure on the category sSetC of marked simplicial sets from
[Lurie 2009a, Proposition 3.1.3.7], which is excellent by [Lurie 2009a, Example A.3.2.22]. We
then obtain the model category CatsSetC

.1;1/
.

We now turn to an explicit Quillen equivalence between one of these enriched models and one of the
models we have already discussed.

Theorem 3.11 [Bergner and Rezk 2013, 7.1–7.6] The enriched nerve functor from [Bergner and Rezk
2013, Definition 7.3], obtained by regarding a bisimplicial category as a simplicial object in simplicial
spaces , defines a right Quillen equivalence

R W CatsSet�
op

.1;1/

! PCat.sSet�
op
/p;.1;2/:

In particular, CatsSet�
op

.1;1/
is a model for .1; 2/–categories.
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Now, we would like to identify the j –cells in the model structure CatsSet�
op

.1;1/
, for which we make use of

the discrete nerve functor N disc W Cat! sSet�
op

considered in [Rezk 2001]. Since it preserves products,
being a right adjoint functor, it induces a functor N disc

� W CatCat! CatsSet�op , given by applying N disc to
each mapping category.

Proposition 3.12 In CatsSet�
op

.1;1/
the object N disc

� Cj is a representative of the j –cell for j D 0; 1; 2.

Before proving this proposition, we establish two lemmas that tell us more about the structure of these
discrete nerves.

Lemma 3.13 For any j D 0; 1; 2, the sSet�
op

–enriched category N disc
� ‚2ŒCj � is fibrant in CatsSet�

op
.1;1/

.

Proof For j D 0; 1; 2, all hom-categories of Cj are of the form ¿ D Œ�1�, Œ0�, or Œ1�. So all hom-
bisimplicial sets of N disc

� ‚2ŒCj � are of the form N discŒ�1�, N discŒ0� or N discŒ1�, which are all complete
Segal spaces, namely fibrant in sSet�

op

.1;1/
, since the categories Œ�1�, Œ0�, and Œ1� do not have any nontrivial

isomorphisms.

Lemma 3.14 For any � in ‚2, there is an isomorphism of precategories

R.N disc
� �/Š d�‚2Œ� �:

Proof For i; j ; k � 0, we first compute the set .RN disc
� �/Œi�;Œj �;Œk�. If D is a bisimplicial category with

object set D0, and D1 denotes the bisimplicial space

D1 D

a
a;b2D0

HomD.a; b/;

by definition of R (as given in [Bergner and Rezk 2013, Definition 7.3]) for any i � 0 there is an
isomorphism of bisimplicial sets

.RD/Œi� Š D1 �
D0

D1 �
D0

� � � �
D0

D1„ ƒ‚ …
i

that is natural in i . When specializing to the case DDN disc
� � , we obtain a natural isomorphism

.RN disc
� �/Œi� Š .N

disc
� �/1 �

.N disc
� �/0

.N disc
� �/1 �

.N disc
� �/0

� � � �
.N disc
� �/0

.N disc
� �/1„ ƒ‚ …

i

:

In particular, if �0 denotes the set of objects of � and �1 denotes the category

�1 WD

a
a;b2�0

Hom� .a; b/;

for any j ; k � 0 we have a bijection

.RN disc
� �/Œi�;Œj �;Œk� ŠNj�1 �

�0

Nj�1 �
�0

� � � �
�0

Nj�1„ ƒ‚ …
i

;

that is natural in i; j ; k.
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Next, for i; j ; k � 0, we compute the set .d�‚2Œ� �/Œi�;Œj �;Œk�. By definition of d�, and using the fact that
‚2 is a full subcategory of 2Cat, we have bijections

.d�‚2Œ� �/Œi�;Œj �;Œk� Š Hom‚2
.Œi j j ; j ; : : : ; j„ ƒ‚ …

i

�; �/

Š Hom2Cat.Œi j j ; j ; : : : ; j„ ƒ‚ …
i

�; �/

Š Hom2Cat.Œ1jj �q
Œ0�
Œ1jj �q

Œ0�
� � � q

Œ0�
Œ1jj �„ ƒ‚ …

i

; �/

Š Hom2Cat.Œ1jj �; �/ �
Hom2Cat.Œ0�;�/

� � � �
Hom2Cat.Œ0�;�/

Hom2Cat.Œ1jj �; �/„ ƒ‚ …
i

Š Hom2Cat.Œ1jj �; �/ �
�0

� � � �
�0

Hom2Cat.Œ1jj �; �/„ ƒ‚ …
i

that are natural in i; j ; k.

Finally, we show that there is a bijection

Hom2Cat.Œ1jj �; �/ŠNj�1

that is natural in j , from which the lemma follows. To do so, we observe that there are natural bijections

Hom2Cat.Œ1jj �; �/Š
a

a;b2�0

Hom2Cat�;�
.Œ1jj �; .�; a; b//

Š

a
a;b2�0

HomCat.Œj �;Hom� .a; b//

Š HomCat

�
Œj �;

a
a;b2�0

Hom� .a; b/
�

Š HomCat.Œj �; �1/ŠNj�1;

as desired.

Proof of Proposition 3.12 Consider the right Quillen equivalence

R W CatsSet�
op

.1;1/

! PCat.sSet�
op
/p;.1;2/:

By Proposition 3.5 and Lemma 3.14, we know that for any j D 0; 1; 2, the object d�‚2ŒCj �ŠR.N disc
� Cj /

is a j –cell in PCat.sSet�
op
/p;.1;2/. Moreover, by Lemma 3.13 the object N disc

� Cj is fibrant in CatsSet�
op

.1;1/
.

It follows from Lemma 3.1 that N disc
� Cj is a j –cell in CatsSet�

op
.1;1/

, as desired.

We now compare the model structure for categories enriched in complete Segal spaces to the model
structure for categories enriched in quasicategories.
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Theorem 3.15 The functor induced by taking .�/0 on each hom-simplicial space defines a right Quillen
equivalence

CatsSet�
op

.1;1/

! CatSet�
op

.1;1/

:

In particular, CatSet�
op

.1;1/
is a model for .1; 2/–categories.

Proof The functor p W���!�, defined by Œm; n� 7! Œm�, induces an adjoint triple

Set�
op

Set.���/
op
D sSet�

op
;

p�

p�

p!

a
a

where p� is given by precomposition with p, while p! and p� are the left and right Kan extensions
along p, respectively. In particular, the functor p� is (strong) monoidal with respect to cartesian product
because it is a right adjoint. Moreover, it is shown as [Joyal and Tierney 2007, Theorem 4.11] that the
adjunction

p� W Set�
op

.1;1/� sSet�
op

.1;1/ Wp�

is a Quillen equivalence. One can then apply [Lurie 2009a, Remark A.3.2.6] to obtain the desired Quillen
equivalence, observing that p� is the functor .�/0.

We can now use this equivalence to identify the j –cells in CatSet�
op

.1;1/
.

Proposition 3.16 In CatSet�
op

.1;1/
the object N�Cj is a representative of the j –cell for j D 0; 1; 2.

Proof Consider the right Quillen equivalence from Theorem 3.15

CatsSet�
op

.1;1/

! CatSet�
op

.1;1/

:

By Proposition 3.12 and Lemma 3.13 we know that for each j D 0; 1; 2, the object N disc
� Cj is a j –cell in

CatsSet�
op

.1;1/
and is fibrant. It follows from Lemma 3.1 that N�Cj , the image of N disc

� Cj under the above
Quillen equivalence, is a j –cell in CatSet�

op
.1;1/

.

We now make a similar comparison between categories enriched in quasicategories and categories enriched
in marked simplicial sets.

Theorem 3.17 The functor induced by taking the underlying simplicial set U on each mapping object
defines a right Quillen equivalence

U� W CatsSetC
.1;1/

! CatsSet.1;1/
:

In particular, CatsSetC
.1;1/

is a model for .1; 2/–categories.
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Proof The desired right Quillen equivalence is an instance of [Lurie 2009a, Remark A.3.2.6] applied to
the right Quillen equivalence

U W sSetC
.1;1/

! Set�
op

.1;1/

from [Lurie 2009a, Theorem 3.1.5.1].

Once again, our goal is to identify the j –cells in this model structure. To do so, consider the flat nerve
functor N [ WCat! sSetC, obtained by regarding the nerve of a category in which the marked 1–simplices
are precisely those corresponding to identity morphisms in the category. One can check that the functor
N [ preserves finite cartesian products, from which we obtain an induced functor N [

� W CatCat! CatsSetC ,
given by applying N [ to each mapping category.

Proposition 3.18 In CatsSetC
.1;1/

the object N [
�Cj is a representative of the j –cell for j D 0; 1; 2.

We begin with a lemma establishing that these objects are fibrant.

Lemma 3.19 For j D 0; 1; 2, the object N [
�Cj is fibrant in CatsSetC

.1;1/
.

Proof For j D 0; 1; 2, all hom-marked simplicial sets of N [
�Cj are of the form N [Œ�1�, N [Œ0� or N [Œ1�,

which are naturally marked quasicategories, and therefore fibrant in CatsSetC
.1;1/

, since the categories Œ�1�,
Œ0� and Œ1� have no nontrivial isomorphisms.

Proof of Proposition 3.18 We consider the right Quillen equivalence

U� W CatsSetC
.1;1/

! CatsSet.1;1/
:

By Proposition 3.16 we know that for each j D 0; 1; 2, the object U�N
[
�Cj Š N�Cj is a j –cell in

CatsSet.1;1/
, and N [

�Cj is fibrant in CatsSetC
.1;1/

by Lemma 3.19. It follows from Lemma 3.1 that N [
�Cj

is a j –cell in CatsSetC
.1;1/

.

3.4 Recognizing cells in simplicial models of .1; 2/–categories

Finally, we want to identify the j –cells in the model of marked simplicial sets. To aid in doing so, we
look first at the related model of scaled simplicial sets. A scaled simplicial set is a simplicial set with a
collection of marked 2–simplices including degenerate 2–simplices.

Theorem 3.20 [Lurie 2009b, Theorem 4.2.7] The category sSetsc of scaled simplicial sets admits a
model structure in which

� the fibrant objects are the1–bicategories from [Lurie 2009b, Definition 4.2.8], and

� the cofibrations are the monomorphisms (and in particular every object is cofibrant).

We denote this model structure by sSetsc
.1;2/

.
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Lurie enhances the classical homotopy coherent nerve functor N W CatsSet! sSet to the context of scaled
simplicial sets by taking into account the marking, obtaining a scaled homotopy coherent nerve functor
N W CatsSetC ! sSetsc .

Theorem 3.21 [Lurie 2009b, Theorem 0.0.3] The scaled homotopy coherent nerve functor from [Lurie
2009b, Definition 3.1.10] defines a right Quillen equivalence

Nsc
W CatsSetC.1;1/

! sSetsc
.1;2/:

In particular, sSetsc
.1;2/

is a model for .1; 2/–categories. We now describe the j –cells in this model
structure.

The description of the j –cells in this model structure makes use of a similar scaled nerve construction, in
the form of a functor N sc W 2Cat! sSetsc , as described in [Gagna et al. 2022, Definition 8.1]. Given any
2–category D, the scaled nerve N scD is given by the Duskin nerve of D together with the marking of all
2–simplices arising from 2–isomorphisms.

Proposition 3.22 In sSetsc
.1;2/

the object N scCj is a representative of the j –cell for j D 0; 1; 2.

Proof As a preliminary observation, we mention that there is an isomorphism of scaled simplicial sets

N scCj ŠNscN [
�Cj

for j D 0; 1; 2. This fact can be deduced combining [Gagna et al. 2022, Definition 8.1] together with
[Gagna et al. 2022, Proposition 8.2].

Consider now the right Quillen equivalence

Nsc
W CatsSetC.1;1/

! sSetsc
.1;2/:

By Proposition 3.18 we know that for each j D 0; 1; 2, the object N [
�Cj is a j –cell in CatsSetC

.1;1/
. We

have also proved that N [
�Cj is fibrant in CatsSetC

.1;1/
in Lemma 3.19. It follows from Lemma 3.1 that

N scCj ŠNscN [
�Cj is a j –cell in sSetsc

.1;2/
.

Finally, we can compare the models of scaled simplicial sets and marked simplicial sets.

Theorem 3.23 [Gagna et al. 2022, Theorem 7.7] The forgetful functor defines a right Quillen equiva-
lence

U WmsSet.1;2/! sSetsc
.1;2/:

We can now prove Proposition 2.18, which characterizes the cells in msSet.1;2/.

Proof of Proposition 2.18 We consider the right Quillen equivalence

U WmsSet.1;2/! sSetsc
.1;2/:
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By [Gagna et al. 2022, Definition 8.1] we know that UN RSCj ŠN scCj for each j D 0; 1; 2. Moreover,
we know that N scCj is a j –cell in sSetsc

.1;2/ by Proposition 3.18 and that it is fibrant in msSet.1;2/ by
[Ozornova and Rovelli 2020, Theorem 5.1(1)]. It follows from Lemma 3.1 that N RSCj is a j –cell in
msSet.1;2/.

4 Applications

Here we discuss four situations in which one can exploit the explicit Quillen equivalence

(4-1) L W sSet‚
op
2

p;.1;2/
�msSet.1;2/ WR

from Theorem 2.20 to produce new theorems, new proofs or export constructions given some existing
ones. Precisely, we show the following.

(1) The nerve construction for 2–categories is compatible with the suspension construction and the
wedge constructions in an appropriate sense in the globular setting, using the analogous statement
proven in the complicial setting in [Ozornova and Rovelli 2022].

(2) The nerve construction for 2–categories is compatible with the cone construction in an appropriate
sense in the globular setting, using the analogous statement proven in the complicial setting in
[Gagna et al. 2023].

(3) The nerve construction for 2–categories is compatible with the co-dual construction in an appropriate
sense in the complicial setting, using the analogous statement that is formal in the globular setting.

(4) Weak equivalences can be tested on homotopy categories and homs in the complicial setting, using
the analogous statement for the globular setting from [Bergner and Rezk 2020].

We expect that similar techniques can be applied to translate any new results from the setting of complicial
sets to that of ‚2–spaces, and vice versa.

As a preliminary preparation that is common to many of the applications, we define the complicial nerve
to be the homotopical functor

N cmp
W 2Cat! Sett�

op

.1;2/!msSet.1;2/

obtained as a composite of the right Quillen functor N \ W 2Cat! Sett�
op

.1;2/
from [Ozornova and Rovelli

2021, Theorem 4.12] with the left Quillen functor Refl W Sett�
op

.1;2/
!msSet.1;2/. Similarly, we consider

the globular nerve construction to be the right Quillen functor

N gl
W 2Cat! Set‚

op
2

.1;2/
! sSet‚

op
2

i;.1;2/
! sSet‚

op
2

p;.1;2/

obtained by composing the right Quillen nerve N W 2Cat!Set‚
op
2

.1;2/
from [Campbell 2020, Theorem 5.10]

with the right Quillen equivalence Set‚
op
2

.1;2/
! sSet‚

op
2

i;.1;2/
from [Ara 2014, Corollary 8.8] and the identity
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viewed as a right Quillen equivalence id W sSet‚
op
2

i;.1;2/
! sSet‚

op
2

p;.1;2/
. The two nerve constructions N gl

and N cmp induce functors at the level of .1; 1/–categories that have the “correct” universal property,
namely they realize the .1; 1/–category of strict 2–categories as a localization of the .1; 1/–category of
.1; 2/–categories, as in [Moser et al. 2022, Remark 6.37].

The globular and complicial nerves are compatible in the following sense.

Proposition 4.1 For every 2–category D there is a natural weak equivalence

L..N glD/cof/ '�!N cmpD

in msSet.1;2/, where .N glD/cof denotes a functorial cofibrant replacement of N glD in sSet‚
op
2

p;.1;2/
.

Proof As a preliminary fact, we observe that with techniques analogous to the ones employed to construct
the Quillen equivalence (4-1), one could also show that there is a Quillen equivalence

L0 W sSet
‚

op
2

p;.1;2/
� Sett�

op

.1;2/ WR
0

by setting, for all � in ‚2 and k � 0,

L0.‚2Œ� ���Œk�/ WDN \.�/��Œk�]:

Here, Sett�
op

.1;2/
denotes the model structure from [Ozornova and Rovelli 2020, Theorem 1.28], and it is

useful to recall that, by [Ozornova and Rovelli 2020, Proposition 1.35], there is a Quillen equivalence

Refl W Sett�
op

.1;2/�msSet.1;2/:

By construction, one then has L D Refl L0. Now, for all � in ‚2 and k � 0, we have a commutative
diagram in 2Cat

cglN gl.�/ c\N \.�/

�
'

� �

'

Here, cgl W sSet‚
op
2 ! 2Cat and c\ W Sett�

op
! 2Cat denote the left adjoint functors to N gl and N \,

respectively, and the top map is adjoint to N \.�� W c
glN gl.�/! �/ with respect to the adjunction c\ aN \,

and the vertical maps can be seen to be weak equivalences in 2Cat combining [Ara 2014, Corollary 8.8;
Campbell 2020, Section 5.1; Ozornova and Rovelli 2021, Theorem 4.10]. So there is a weak equivalence

cgl‚Œ��Š cglN gl.�/ ' � c\N \.�/D c\L0‚Œ��

in 2Cat. Applying [Dugger 2001, Lemma 9.7] on the left Quillen functors

cgl; c\L0 W sSet
‚

op
2

p ! sSet
‚

op
2

p;.1;2/
! 2Cat;

it follows that, for all W cofibrant in .sSet‚
op
2 /p;.1;2/, there is a natural weak equivalence

cglW '
 � c\L0W
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in 2Cat. By [Hovey 1999, Corollary 1.4.4], it follows that for every (necessarily fibrant) 2–category D

we obtain a natural equivalence
N glD '

�!R0N \D

in sSet‚
op
2

p;.1;2/
. Hence, using that the left Quillen functor L0 preserves weak equivalences between cofibrant

objects in sSet‚
op
2

p;.1;2/
and that the derived counit of L0 aR0 at N glD is a weak equivalence in Sett�

op

.1;2/
,

we obtain that there are weak equivalences

L0..N glD/cof/ '�!L0..R0N \D/cof/ '�!N \D

in Sett�
op

.1;2/
. Finally, using that the functor Refl is homotopical we obtain a weak equivalence

L..N glD/cof/D Refl L0..N glD/cof/ '�! Refl N \DDN cmpD

in msSet.1;2/, as desired.

4.1 Compatibility of the suspension and wedge constructions with the nerve

We consider the following two constructions in the globular setting:

(1) the globular suspension construction from Definition 1.20

†gl
W sSet�

op

p;.1;1/! .sSet‚
op
2

p;.1;2/
/�;�;

which is a left Quillen functor; and

(2) the globular wedge construction

_
gl
W .sSet‚

op
2

p;.1;2/
/� � .sSet‚

op
2

p;.1;2/
/�! .sSet‚

op
2

p;.1;2/
/�;

defined by
W _gl Z WDW q

‚2Œ0�
Z;

which is a left Quillen bifunctor.

These constructions induce functors at the level of underlying .1; 1/–categories that have the following
recognized universal properties.

(1) The suspension construction induces precisely the construction studied in [Gepner and Haugseng
2015, Definition 4.3.21].

(2) The wedge construction induces the .1; 1/–categorical coproduct in the .1; 1/–category of pointed
.1; 2/–categories.

The analogous constructions can also be implemented in the complicial context as well, as

(1) the complicial suspension construction from [Ozornova and Rovelli 2022, Definition 2.6]

†cmp
WmsSet.1;1/! .msSet.1;2//�;�I
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(2) the complicial wedge construction from [Ozornova and Rovelli 2022, Definition 4.7]

_
cmp
W .msSet.1;2//� � .msSet.1;2//�! .msSet.1;2//�:

We record a precise relation between the globular and complicial suspension and wedge.

As a preliminary fact, we observe that with techniques analogous to the ones employed to construct the
Quillen equivalence (4-1), we could also show that there is a Quillen equivalence

L1 W sSet�
op

p;.1;1/� Sett�
op

.1;1/ WR1

by setting, for all m; k � 0,

L1.�Œm���Œk�/ WDN RS.Œm�/��Œk�] D th1.�Œm�/��Œk�
]:

Here, sSet�
op

p;.1;1/
denotes the model structure for complete Segal spaces obtained by localizing the

projective model structure, msSet.1;1/ denotes the model structure for saturated 1–complicial sets, and
th1 WmsSet.1;1/!msSet.1;2/ is the left Quillen functor from [Verity 2008b, Notation 13].

Proposition 4.2 (a) For all W cofibrant in .sSet�
op
/p;.1;1/ there is a weak equivalence

†cmpL1W '
�!L†glW

in .msSet.1;2//�;�.

(b) Given any W and Z in sSet‚
op
2
� , there is an isomorphism in msSet

L.W _gl Z/ŠLW _cmp LZ:

Proof (a) By [Ozornova and Rovelli 2022, Theorem 2.9], there is a natural weak equivalence in
.msSet.1;2//�;� given by the composite

L†gl‚2Œm�ŠL‚2Œ1jm�DN cmpŒ1jm�DN cmp†Œm� ' �†cmpN cmpŒm�D†cmpL1�Œm�:

The first three isomorphisms are given by the definitions of †gl, L, and †, respectively, and the last
is given by the definition L1. The weak equivalence was established in [Ozornova and Rovelli 2022,
Theorem 2.9]. Now, using [Dugger 2001, Lemma 9.7] on the functors

L†gl; †cmpL1 W sSet�
op

p ! sSet�
op

p;.1;1/! .msSet.1;2//�;�

it follows that for all W cofibrant in .sSet�
op
/p;.1;1/ there is a weak equivalence

†cmpL1W '
�!L†glW

in .msSet.1;2//�;�.

(b) Given any W and Z in sSet‚
op
2
� , there is an isomorphism in msSet

L.W _gl Z/ŠL
�
W q
‚2Œ0�

Z
�
ŠLW q

�Œ0�
LZ ŠLW _cmp LZ;

concluding the proof.
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Remark 4.3 By [Hovey 1999, Corollary 1.4.4], for all .Y; c; d/ fibrant in .msSet.1;2//�;� there is a
weak equivalence

(4-2) Homgl
RY
.c; d/ '�!R1 Homcmp

Y
.c; d/

in sSet‚
op
2

p;.1;1/
(and hence also in sSet‚

op
2

i;.1;1/
), where

Homgl
W .sSet‚

op
2

p;.1;2/
/�;�! sSet�

op

p;.1;1/

denotes the right Quillen adjoint functor to †gl, and similarly

Homcmp
W .msSet.1;2//�;�!msSet.1;1/

denotes the right Quillen adjoint to †cmp.

Recall that there are functors implementing the strict suspension construction

† W Cat! 2Cat�;�

and the strict wedge construction

_W 2Cat� � 2Cat�! 2Cat�:

As an application of Theorem 2.20, combined with results from [Ozornova and Rovelli 2022], we can
prove the following corollary, asserting that the suspension and wedge construction along a sieve/cosieve
object are both compatible with the globular nerve of 2–categories. Recall from [Ozornova and Rovelli
2022, Definition 4.3] the definition of sieve and cosieve object in a 2–category, which are used to determine
which 2–categories can be wedged together.

Corollary 4.4 (a) Given any 1–category D, there is a weak equivalence

†glN glD '
�!N gl†D

in .sSet‚
op
2

.1;2/
/�;�.

(b) Given 2–categories A and B endowed with a sieve and a cosieve object , respectively, there is a
weak equivalence in .sSet‚

op
2

.1;2/
/�,

N glA_gl N glB '
�!N gl.A_B/:

Proof We prove (b) and leave (a) to the interested reader.

First, in the commutative square

N RSA_cmp N RSB N cmpA_cmp N cmpB

N RS.A_B/ N cmp.A_B/

'

'

'
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the left vertical map is a weak equivalence in msSet.1;2/ by [Ozornova and Rovelli 2022, Theorem 4.9].
The two horizontal maps are weak equivalences in msSet.1;2/, which can be seen by combining [Ozornova
and Rovelli 2021, Theorem 5.2] and [Ozornova and Rovelli 2020, Proposition 1.31]. By the two-out-of-
three property, the right-hand map is then a weak equivalence in msSet.1;2/.

Next, in the commutative square

L..N glA/cof/_cmp L..N glB/cof/ N cmpA_cmp N cmpB

L..N gl.A_B//cof/ N cmp.A_B/

'

'

'

the two horizontal maps are weak equivalences in msSet.1;2/ by Proposition 4.1. By the two-out-of-three
property, the left vertical map is a weak equivalence.

We have the commutative triangle

L..N glA/cof _gl .N glB/cof/ L..N glA_gl N glB/cof/

L..N gl.A_B//cof/

'

'

By [Hovey 1999, Corollary 1.3.16], the left Quillen equivalence L creates weak equivalences between
cofibrant objects in sSet‚

op
2

p;.1;2/
, so we obtain a commutative square

.N glA_gl N glB/cof .N gl.A_B//cof

N glA_gl N glB N gl.A_B/

'

' '

as desired. By the two-out-of-three property, the bottom map in the square is a weak equivalence in
sSet‚

op
2

p;.1;2/
, as desired.

While (a) can be essentially read off from [Rezk 2010], tackling directly (b) within the globular setting
would require significant combinatorial work.

4.2 The cone construction and compatibility with the nerve

In the globular setting there does not seem to be a straightforward way to define join constructions, or
even cone constructions, which play an important role in the development of the theory of limits and
colimits. By contrast, the complicial setting is well-suited to implementing formal join constructions in
general, and cones in particular. A cone construction

Conecmp
WD�Œ0� ?�WmsSet.1;1/! .msSet.1;2//�

is defined in [Gagna et al. 2023] in the form of a left Quillen functor.
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Given any W in .sSet‚
op
2 /p;.1;1/, taking advantage of the explicit Quillen equivalence (4-1), it is possible

to define the cone construction for W in terms of the one for L1W , by setting

ConeglW WDR..Conecmp.L1.W
cof///fib/:

While the formula is fairly complicated, there is currently no competing way of treating cones in ‚2–
spaces.

Remark 4.5 For every W cofibrant in .sSet‚
op
2 /p;.1;2/ there is a zigzag of weak equivalences

L..ConeglW /cof/DL..R..Conecmp.L1.W
cof///fib//cof/ '�! .Conecmp.L1.W

cof///fib

'
 � Conecmp.L1.W

cof//

'
�! Conecmp.L1W /

in msSet.1;2/.

Recall that there is a functor implementing the strict cone construction Cone W Cat ! 2Cat�. As an
application of Theorem 2.20, combined with results from [Gagna et al. 2023], we can prove the following
corollary, asserting that the cone construction is compatible with the nerve construction in a suitable sense
in the globular setting for 1–categories that are freely generated by a loop-free graph. Such 1–categories
are called strong Steiner in [Ara and Maltsiniotis 2020, Section 2.15].

Corollary 4.6 Given any 1–category D that is freely generated by a loop-free graph , there is a zigzag of
weak equivalences in .sSet‚

op
2 /p;.1;2/,

N glConeD' ConeglN glD:

Proof There is a zigzag of weak equivalences

L..N glConeD/cof/ '�!N cmpConeD

'
 � ConecmpN cmpD

'
 � ConecmpL1..N

glD/cof/'L.Conegl.N glDcof/cof/

in msSet.1;2/ given by Proposition 4.1, [Gagna et al. 2023, Theorem 5.5], Proposition 4.1 for L1, and
Remark 4.5, respectively. Given that the left Quillen equivalence L creates weak equivalences between
cofibrant objects, we obtain a zigzag of weak equivalences in .sSet‚

op
2 /p;.1;2/

N glConeD' .ConeglN glD/cof
' .Conegl..N glD/cof//cof '

�! Conegl..N glD/cof/ '�! ConeglN glD;

as desired.

4.3 Dual constructions and compatibility with the nerve

It is determined in [Barwick and Schommer-Pries 2021, Theorem 7.3] that there are four types of dualities
for .1; 2/–categories: identity; op-dual, which reverses the direction of the 1–morphisms; co-dual, which
reverses the direction of the 2–morphisms; and co-op-dual, which reverses both.
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In the complicial setting, one can implement the op-dual construction .�/op WmsSet.1;2/!msSet.1;2/ in
a straightforward way. However, there is no formal way to define the co-dual construction in msSet.1;2/,
and a co-dual construction .�/co was only proposed recently in [Loubaton 2022, Proposition 4.2.7] in the
form of a (highly nontrivial) left Quillen functor .�/co WmsSet.1;2/!msSet.1;2/.

By contrast, the globular setting is well-suited to implementing all four dualities; see [Haugseng 2021]. In
particular, the co-dual construction can be realized as an isomorphism that is both a left and right Quillen
equivalence for both the projectively-based and injectively-based model structures,

.�/co
W sSet

‚
op
2

p;.1;2/
! sSet

‚
op
2

p;.1;2/
and .�/co

W sSet
‚

op
2

i;.1;2/
! sSet

‚
op
2

i;.1;2/
:

Given the Quillen equivalence (4-1), for all Y fibrant in msSet.1;2/, there is a zigzag of weak equivalences

(4-3) Y co
'L...RY /co/cof/;

in msSet.1;2/, allowing one to express the co-dual construction of Y in terms of the one for RY .

Remark 4.7 For every fibrant object Y in msSet.1;2/, by (4-3) there is zigzag of weak equivalences

L...RY /co/cof/' Y co

in msSet.1;2/. By taking a functorial fibrant replacement in msSet.1;2/, we obtain a zigzag of weak
equivalences between fibrant objects in msSet.1;2/

.L...RY /co/cof//fib
' .Y co/fib:

Applying R then gives a zigzag of weak equivalences

R.L...RY /co/cof//fib/'R..Y co/fib/

in sSet
‚

op
2

p;.1;2/
. By composing with the component of the derived unit of LaR on ..RY /co/cof, we obtain

a zigzag of weak equivalences

.RY /co
' ..RY /co/cof

'R..Y co/fib/

in sSet
‚

op
2

p;.1;2/
.

As an application of Theorem 2.20, we can prove the following corollary, asserting that the co-dual
construction is compatible with the nerve of 2–categories in the complicial setting.

Corollary 4.8 Given any 2–category D, there is a zigzag of weak equivalences in msSet.1;2/

N cmpDco
' .N cmpD/co:

Proof There a zigzag of weak equivalences

RN cmp.Dco/'N gl.Dco/' .N glD/co
' .RN cmpD/co

'R..N cmpD/co/fib/
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in .sSet‚
op
2 /p;.1;2/, where the weak equivalences are given by Proposition 4.1, inspection, Proposition 4.1,

and Remark 4.7, respectively. By [Hovey 1999, Corollary 1.3.16], the right Quillen equivalence R creates
weak equivalences between fibrant objects in .sSet‚

op
2 /p;.1;2/, so we obtain a zigzag of weak equivalences

N cmpDco
' ..N cmpD/co/fib

' .N cmpD/co

in msSet.1;2/, as desired.

4.4 A fundamental theorem for 2–complicial sets

We define the globular hom construction

Homgl
W .sSet

‚
op
2

p;.1;2/
/�;�! sSet

‚
op
1

p;.1;1/

as the right (Quillen) adjoint functor of the suspension †gl. Similarly, we define the globular homotopy
category construction

Hogl
W sSet

‚
op
2

p;.1;2/
! Cat

to be given by
Hogl X D h��‚X;

where h W sSet�
op
! Cat is the homotopy category functor from [Rezk 2010, Section 7.3] and

�‚ W�D‚1!‚2

is the functor defined by �‚Œm�D Œm�.Œ0�; : : : ; Œ0�/ from [Bergner and Rezk 2020, Section 3.2]; it is also
defined in [Rezk 2010, Section 4.1] in more generality.

The following statement, which is essentially in [Bergner and Rezk 2020], can be thought of as a
fundamental theorem for .1; 2/–categories, referring to the terminology from [Rezk 2022], where the
.1; 1/–categorical case is treated in the model of quasicategories.

Proposition 4.9 Let W and Z be fibrant in sSet
‚

op
2

p;.1;2/
. A map f WW ! Z in sSet

‚
op
2

p;.1;2/
is a weak

equivalence if and only if

(1) the map f is essentially surjective , meaning that it induces an essentially surjective functor of
homotopy categories

Hogl f W Hogl W ! Hogl ZI

(2) the map f is homotopically fully faithful , namely that it induces a weak equivalence

fc;d W Homgl
W
.c; d/' Homgl

Z
.fc; fd/

in sSet�
op

p;.1;1/
.

Proof As a consequence of [Bergner and Rezk 2020, Theorem 6.4], the functor

d� W sSet
‚

op
2

p;.1;2/
! sSet.���/

op

p;.1;2/
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creates weak equivalences, so saying that f WW !Z is a weak equivalence in sSet‚
op
2

p;.1;2/
is equivalent

to saying that
d�f W d�W ! d�Z

is a weak equivalence in sSet.���/
op

p;.1;2/
. Let us take a functorial fibrant replacement of d�f in sSet

‚
op
2

p , and
denote it by .d�f /pf W .d�W /pf! .d�Z/pf. Using the fact that d� preserves fibrant objects [Bergner
and Rezk 2020, Proposition 6.3], we can deduce that d�f W d�W ! d�Z is a weak equivalence in
sSet‚

op
2

p;.1;2/
! sSet.���/

op

p;.1;2/
if and only if

.d�f /pf
W .d�W /pf

! .d�Z/pf

is a weak equivalence in sSet.���/
op

p;.1;2/
. Since .d�W /pf and .d�Z/pf are fibrant in sSet.���/

op

p;.1;2/
, we know

that .d�f /pf is a weak equivalence in sSet.���/
op

p;.1;2/
if and only if the same map is a weak equivalence in

sSet.���/
op

p . Using the fact that Dwyer–Kan equivalences between complete Segal objects are precisely
levelwise weak equivalences [Bergner and Rezk 2020, Proposition 8.17 and Definition 8.2], the map
.d�f /pf is a weak equivalence in sSet.���/

op

p;.1;2/
if and only if

(10) the map
Ho..d�f /pf/ W Ho..d�W /pf/! Ho..d�Z/pf/

is an essentially surjective functor on homotopy categories, where Ho denotes the homotopy
category from [Bergner and Rezk 2020, Section 8.1]; and

(20) the map

..d�f /pf/a;b WM
�
.d�W /pf..d

�f /pf.a/; .d�f /pf.b//!M�
.d�Z/pf..d

�f /pf.a/; .d�f /pf.b//

is a weak equivalence in sSet�
op

p;.1;1/
, where M� denotes the mapping object from [Bergner and

Rezk 2020, Section 8.1].

Given the natural equivalence of categories

Ho..d�W /pf/' h��‚W D Hogl W

and the natural weak equivalence

M�
.d�W /pf.a; b/'M�

d�W .a; b/Š Homgl
W
.a; b/

from [Bergner and Rezk 2020, Proposition 3.10] in sSet�
op

p;.1;1/
, we then obtain an equivalence to the

conditions (1) and (2) from the statement, as desired.

Aiming at providing a proof of the fundamental theorem for .1; 2/–categories in the complicial context,
recall the complicial hom construction

Homcmp
W .msSet.1;2//�;�!msSet.1;1/;
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as the right (Quillen) adjoint functor of the suspension †cmp, and the complicial homotopy category
construction

Hocmp
WmsSet.1;2/! Cat

given by
Hocmp X D c

\
1
sp1X;

where sp1 WmsSet!msSet is the right Quillen functor of [Verity 2008b, Notation 13] and c
\
1
WmsSet!Cat

is the left adjoint functor to the 1–dimensional natural nerve functor.

The homotopy category and hom constructions for the globular and complicial setting are compatible as
follows:

Lemma 4.10 Given a fibrant object X in msSet.1;2/, there is an isomorphism of categories

Hogl RX Š Hocmp X:

Proof Given a fibrant object X in msSet.1;2/, there is an isomorphism of categories

Hogl RX D h��‚RX Š hR1sp1X Š c
\
1
sp1X D Hocmp X;

as desired.

Using the Theorem 2.20, combined with Proposition 4.9, we can prove the following fundamental theorem
for .1; 2/–categories in the complicial setting.

Theorem 4.11 Let X and Y be fibrant in msSet.1;2/. A map f W X ! Y in msSet.1;2/ is a weak
equivalence if and only if

(1) the map f is essentially surjective , meaning f induces an essentially surjective functor of
homotopy categories

Hocmp f W Hocmp X ' Hocmp Y I

(2) the map f is homotopically fully faithful , namely f induces a weak equivalence in msSet.1;1/,

fc;d W Homcmp
X
.c; d/' Homcmp

Y
.fc; fd/:

Proof A map f W X ! Y is a weak equivalence in msSet.1;2/ if and only if, by (4-1), the map
Rf WRX !RY is a weak equivalence in sSet‚

op
2

p;.1;2/
. By Proposition 4.9, we can equivalently say that

Rf is a Dwyer–Kan equivalence, in that the map

.Rf /
gl
c;d
W Homgl

RX
.c; d/! Homgl

RY
.fc; fd/

is a weak equivalence in .sSet�
op
/p;.1;1/ for all c; d 2 .RX /0;Œ0� and that

Hogl Rf W Hogl RX ' Hogl RY
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is an essentially surjective functor of homotopy categories. By Remark 4.3, these conditions are equivalent
to having the analogous ones for R1.f

cmp/, namely, that the map

R1.f
cmp

c;d
/ WR1 Homcmp

X
.c; d/!R1 Homcmp

Y
.fc; fd/

is a weak equivalence in msSet.1;1/ for all c; d 2X0 and that the map

Hogl Rf W Hogl RX ! Hogl RY

is essentially surjective. Then applying Lemma 4.10, we can equivalently say that f cmp is a Dwyer–Kan
equivalence, in that the map

f
cmp

c;d
W Homcmp

X
.c; d/! Homcmp

Y
.fc; fd/

is a weak equivalence in msSet.1;1/ for all c; d 2X0 and that

Hocmp f W Hocmp X ! Hocmp Y

is an essentially surjective functor of homotopy categories, as desired.

A proof of this fact internal to the complicial setting was outlined in [Campbell 2019], and provided
recently in [Loubaton 2022, Corollary 3.2.11], but it relies on highly nontrivial combinatorics. Using our
comparison with the ‚2–model gives a much less technical proof.

Appendix The colossal model of .1; 2/–categories

In this section, we give a model categorical variant of the colossal model by Barwick–Schommer-Pries.

In order to recall the original definition of the colossal model, we fix the following notations. We denote
by ‡2 the indexing category for the colossal model, namely the full subcategory of 2Cat as described
by [Barwick and Schommer-Pries 2021, Definition 6.2]. In particular, .‡op

2
/1 is the .1; 1/–category

obtained by regarding the category ‡op
2

as an .1; 1/–category. We denote by S1 the .1; 1/–category
of spaces, namely S1 D .sSet.1;0//1.

Definition A.1 [Barwick and Schommer-Pries 2021] The colossal model is the .1; 1/–category

L1
�
S
.‡

op
2
/1

1

�
;

obtained by localizing the presheaf .1; 1/–category S
.‡

op
2
/1

1 at the set of maps from [Barwick and
Schommer-Pries 2021, Notation 8.3].

From the definition, we see that the colossal model is obtained by considering the .1; 1/–category
of spaces, taking a presheaf .1; 1/–category valued in it, and then localizing. By contrast, one could
instead present the same .1; 1/–category by considering the Quillen model structure, which presents
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the .1; 1/–category of spaces, taking the injective model structure on a presheaf category of functors
valued in the Quillen model structure, and then a left Bousfield localization of it. More precisely, one can
consider the following model structure.

Proposition A.2 The category sSet‡
op
2 of ‡2–spaces supports a cofibrantly generated model structure

obtained by taking the left Bousfield localization of the injective model structure sSet‡
op
2

inj with respect to
the set of elementary acyclic cofibrations from [Barwick and Schommer-Pries 2021, Notation 6.5]. We
denote this model structure by sSet‡

op
2

.1;2/
.

We want to prove that this model structure does present the colossal model, in the sense of the following
theorem.

Theorem A.3 There is an equivalence of .1; 1/–categories

L1
�
.sSet.1;0//

.‡
op
2
/1

1

�
'
�
sSet

‡
op
2

.1;2/

�
1
:

The proof is an application of the following result, which guarantees that one can build localizations of
presheaf categories either as model categories or directly as .1; 1/–categories.

Proposition A.4 Let A be a category , M a left proper combinatorial simplicial model category, and ƒ a
set of maps in MA. There is an equivalence of .1; 1/–categories

L1.M
A1
1 /' .L.MA

inj//1;

where L.MA
inj/ denotes the Bousfield localization of the injective model structure MA

inj atƒ, and L1.M
A1
1 /

denotes the localization of the .1; 1/–category MA1
1 at ƒ.

The proof of the proposition requires the following two ingredients.

Theorem A.5 [Lurie 2009a, Proof of Proposition A.3.7.8] Let N be a left proper combinatorial simplicial
model category, and ƒ be a set of maps in N. There is an equivalence of .1; 1/–categories

L1N1 ' .LN/1;

where LN denotes the Bousfield localization of the model structure N at ƒ, and L1N1 denotes the
localization of the .1; 1/–category N1 at ƒ1.

Theorem A.6 [Lurie 2009a, Proposition 4.2.4.4] Let A be a category and M a combinatorial simplicial
model category. There is an equivalence of .1; 1/–categories

MA1
1 ' .MA

inj/1;

where MA
inj denotes the injective model structure on MA.

We can now prove the proposition.
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Proof of Proposition A.4 Combining Theorems A.5 and A.6, we obtain an equivalence of .1; 1/–
categories

L1.M
A1
1 /' L1.M

A/1 ' .L.M
A//1;

as desired.

We can now prove the theorem.

Proof of Theorem A.3 Applying Proposition A.4 with MDSD sSet.1;0/, AD‡
op
2

and ƒDS , the set
of maps in sSet‡

op
2 from [Barwick and Schommer-Pries 2021, Notation 8.3], we obtain the equivalence of

.1; 1/–categories

L1
�
S
.‡

op
2
/1

1

�
D L1

�
.sSet.1;0//

.‡
op
2
/1

1

�
'
�
L
�
sSet

‡
op
2

.1;0/

��
1
D
�
sSet

‡
op
2

.1;2/

�
1
;

as desired.
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On products of beta and gamma elements
in the homotopy of the first Smith–Toda spectrum

KATSUMI SHIMOMURA

MAO-NO-SUKE SHIMOMURA

We determine the first cohomology of the monochromatic comodule M 1
2 at an odd prime, and apply the

results to show nontrivialities of some products of beta and gamma elements in the homotopy groups
of the Smith–Toda spectrum V .1/. The cohomology for a prime greater than three was previously
determined by the first author. Here we verify them and determine the cohomology at the prime 3 by
elementary calculation. The cohomology will be a stepping stone for computing the cohomology of the
monochromatic comodule M 3

0 , which we hope to determine for a long time.

55Q45; 55Q51, 55T15

1 Introduction

Let p be an odd prime number and S.p/ denote the stable homotopy category of p–local spectra. Let
S 2 S.p/ denote the sphere spectrum. Then the mod p Moore spectrum M and the first Smith–Toda
spectrum V .1/ are given by the cofiber sequences

.1.1/ S
p
�! S i

�!M
j
�!†S and †qM ˛

�!M
i1
�! V .1/

j1
�!†qC1M:

Here p 2 �0.S/Š Z.p/, and ˛ 2 ŒM;M �q denotes the Adams map. Hereafter we put

q D 2p� 2 2 Z:

To study the homotopy groups ��.X / of a spectrum X , we adopt the Adams–Novikov spectral sequence

.1.2/ E
s;t
2
.X /DH s;t BP�.X /) �t�s.X /:

Hereafter we abbreviate as
H s;tM D Exts;tBP�.BP/.BP�;M /

for a BP�.BP/–comodule M over the Hopf algebroid

.1.3/ .BP�;BP�.BP//D .Z.p/Œv1; v2; : : : �;BP�Œt1; t2; : : : �/

based on the Brown–Peterson spectrum BP 2 S.p/. We note that the vi are Hazewinkel’s generators and
the degrees of vi and ti are jvi j D 2pi � 2D jti j; see Miller, Ravenel and Wilson [2, (1.1)].

Let

.1.4/ In D .p; v1; : : : ; vn�1/ and Jj D .p; v1; v
j
2
/

© 2024 MSP (Mathematical Sciences Publishers). Distributed under the Creative Commons Attribution License 4.0 (CC BY).
Open Access made possible by subscribing institutions via Subscribe to Open.
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for v0 D p denote the invariant ideals of BP�. Since BP�.˛/D v1, the cofiber sequences (1.1) induce the
short exact sequences

.1.5/ 0! BP�
p
�! BP�

i��! BP�=I1! 0 and 0! BP�=I1
v1�! BP�=I1

.i1/����! BP�=I2! 0

along with the isomorphisms

BP�.S/D BP�; BP�.M /D BP�=I1 and BP�.V .1//D BP�=I2:

Furthermore, we have a short exact sequence

.1.6/ 0! BP�=I2
v

j

2
�! BP�=I2

Nij
�! BP�=Jj ! 0

for j � 1. We denote by

ı0 WH
sBP�=I1!H sC1BP�; ı1 WH

sBP�=I2!H sC1BP�=I1; Nıj WH
sBP�=Jj !H sC1BP�=I2

the connecting homomorphisms associated to the short exact sequences (1.5) and (1.6). We define the
Greek letter elements by

Ň0
s D ı1.v

s
2/ 2E1

2.M /DH 1 BP�=I1 for vs
2 2H 0 BP�=I2;

Ň
s D ı0ı1.v

s
2/ 2E2

2.S/DH 2 BP� for vs
2 2H 0 BP�=I2;

x 00s=j D
Nıj .v

s
3/ 2E1

2.V .1//DH 1 BP�=I2 for vs
3 2H 0 BP�=Jj ;

and x 00s D x
00
s=1
2E1

2
.V .1//. We notice that 1� j � pn if pn j s, so that vs

3
2H 0 BP�=Jj .

Let Z and N denote the set of all integers and its subset consisting of all nonnegative integers, respectively.
We denote by Z.p/ .DZnpZ/ and N.p/ .DN npN/ the sets of the integers prime to p, and decompose
Z.p/ into the three summands

Z.p/ D Z0

a
Z1

a
Z2;

for

.1.7/
Z0 D fs 2 Z.p/ W p−.sC 1/g; Z1 D fs 2 Z.p/ W p2

j .sC 1/g;

Z2 D fs 2 Z.p/ W p j .sC 1/ and p2 −.sC 1/g:

We consider subsets of N:

2N>0 D fs 2N W s is even� 2g; N1 D fs 2N.p/
W p2 −.sCpC 1/ or p3

j .sCpC 1/g;

2N D fs 2N W s is oddg; N2 D fs 2N.p/
W p−.sC 2/ or p3

j .sC 2/.sC 2Cp/g:

Furthermore, we put ZCi D Zi \N for i D 0; 1; 2. We introduce the subsets U1, U 0
1
, U2 and U 0

2
of

N.p/ �N given by

U1 D .N
.p/
� 2N/[ .ZC

0
�N/;

U 01 D .N
.3/
� f0g/[ .N1 � 2N>0/[ ..Z

C

0
\N2/�N/[ .ZC

0
� f1g/;

U2 D .N1 � 2N/[ ...ZC
0
\N2/[ZC

1
/�N/[ .N.p/

� f1g/;

U 02 D .N1 � f0g/[ .N
.3/
� .f1g[ 2N>0//[ ..Z

C

0
[ZC

1
/�N/:

Algebraic & Geometric Topology, Volume 24 (2024)
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Our main result is the following:

Theorem 1.8 Let p be an odd prime. In the Adams–Novikov E2–term for computing ��.V .1//,
Ň
1 and Ň2 act on the gamma elements x 00

spr =j
(for .s; r/ 2N.p/ �N and 1� j � pr ) by

x 00spr =j
Ň
1 ¤ 0 for .s; r/ 2 U1 if p � 5; and for .s; r/ 2 U 01 if p D 3;

x 00spr =j
Ň
2 ¤ 0 for .s; r/ 2 U2 if p � 5; and for .s; r/ 2 U 02 if p D 3;

in E3
2
.V .1//.

There is a way to define  00
spr =j

for j � ar (ar is defined in (2.7)) so that vj�1
2

 00
spr =j

D  00spr , and the
theorem holds for such extended gamma elements. Also Ňs �

�
s
2

�
vs�2

2
Ň
2C s.2� s/vs�1

2
Ň
1 mod I2 (see

Oka and Shimomura [5, Lemma 4.4]), and so

x 00spr =j
Ň
t D

� t

2

�
x 00spr =j�tC2

Ň
2C t.2� t/x 00spr =j�tC1

Ň
1:

Thus Theorem 1.8 implies nontriviality of the products of x 00
spr =j

and Ňt .

The Adams–Novikov differential dr is 0 if q−.r � 1/ by the sparseness of the spectral sequence (1.2).
This shows that the products in the theorem are not in the image of any differentials dr . It is well known
that the elements Ň1 and Ň2 converge to the homotopy elements ˇ1; ˇ2 2 ��.S/, respectively, in the
spectral sequence (1.2) for X D S .

Corollary 1.9 Let p be an odd prime. If x 00
spr =j

2 E1
2
.V .1// is a permanent cycle detecting  00

spr =j
2

��.V .1//, then  00
spr =j

ˇi¤0 for iD1; 2 in the homotopy groups ��.V .1// for .s; r/ given in Theorem 1.8.

Toda [12, Theorem 1] and Oka [4, Theorem 4.2] showed that  00s and  00
sp=2

are permanent cycles for p� 7.

Corollary 1.10 Let p � 7, and r and s be integers with .s; r/ 2N.p/ �N. Then , in ��.V .1//,

 00spr =jˇ1 ¤ 0 if r is even or p−.sC 1/;

 00
sp2r =j

ˇ2 ¤ 0 if p2 −.sCpC 1/ or p3
j .sCpC 1/;

 00
sp2rC1=j

ˇ2 ¤ 0 for r � 1 if p−.sC 1/.sC 2/; p2
j .sC 1/ or p3

j .sC 2/.sC 2Cp/;

and  00
sp=j

ˇ2 ¤ 0, where j D 1; 2.

Theorem 1.8 follows from Theorem 2.9, which states the structure of the first cohomology of the
monochromatic comodule M 1

2
. The cohomology H 1M 1

2
was determined by the first author [10] based

on the computation in [9] at a prime � 5. Here we determine the cohomology based on elementary
calculation at an odd prime. The generators are explicitly given so that we can use the result easily in further
computation. This result will be a stepping stone for determining the long-desired cohomology H�M 3

0
.

This paper is organized as follows: In Section 2, we state the main result, Theorem 2.9, which gives the
structure of H 1M 1

2
. In Section 3, we prove Theorems 2.9 and 1.8 assuming Lemma 3.4, whose proof

will be given in the Section 6. Section 4 is devoted to introducing some formulas, cochains and relations
for the following sections. We refine the elements x3;i given by Miller, Ravenel and Wilson [2, (5.11)] to
define xi , which induce the cochains ys;i ;y

0
s;i 2�

1E.3/� in Section 5.
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2 The structure of H 1M 1
2

In this section, we state the structure of H 1M 1
2

for an odd prime p. The structure was given in [10] for
primes p � 5.

We begin with defining the monochromatic BP�.BP/–comodules N s
n and M s

n inductively by

N 0
n D BP�=In; M s

n D v
�1
sCnN s

n ;

for the ideal In in (1.4) and the short exact sequence

.2.1/ 0!N s
n
�sn�!M s

n
�s

n�!N sC1
n ! 0

see [2, Section 3.A]. Since BP� is a BP�.BP/–comodule with structure map �R , the right unit map of the
Hopf algebroid BP�.BP/, these monochromatic comodules have the structure maps induced from �R.

Let E.3/ denote the third Johnson–Wilson spectrum, which yields a Hopf algebroid�
E.3/�;E.3/�.E.3//

�
D .Z.p/Œv1; v2; v3; v

�1
3 �;E.3/�˝BP� BP�.BP/˝BP� E.3/�/:

Its structure maps are induced from the Hopf algebroid .BP�;BP�.BP// in (1.3). Since we have the
Miller–Ravenel change of rings theorem

H�M D Ext�BP�.BP/.BP�;M /Š Ext�E.3/�.E.3//.E.3/�;E.3/�˝BP� M /

for a v3–local BP�.BP/–comodule M [1, Theorem 3.10], we denote the cohomology of an E.3/�.E.3//–
comodule M also by

H sM D ExtsE.3/�.E.3//.E.3/�;M /:

By virtue of the change of rings theorem, we denote simply by M s
n the E.3/�.E.3//–comodule

E.3/�˝BP� M s
n . We consider the Ext group as the cohomology group of the cobar complex

.2.2/ �sM DM ˝E.3/� E.3/�.E.3//˝E.3/� � � � ˝E.3/� E.3/�.E.3//

for s factors of E.3/�.E.3//, with well-known differentials dr W�
r M !�rC1M ; see (4.1).

The cohomology H tM s
n of the monochromatic comodules with sCnD 3 are determined in the following

cases (see [8, Theorems 6.3.12 and 6.3.14; 2, Theorem 5.10]):

.2.3/

H 0M 0
3 DK.3/�;

H 1M 0
3 DK.3/�fh0; h1; h2; �3g;

H 2M 0
3 DK.3/�fgi ; ki ; bi ; hi�3 W i 2 Z=3g;

H 0M 1
2 DK.2/�=k.2/�˚

M
i�0;s2Z.p/

k.2/�=.v
ai

2
/fxs

i =v
ai

2
g:
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Indeed, we read off H sM 0
3
D K.3/�˝H sS.3/ from [8, Proposition 6.2.1], where S.3/ is the Hopf

algebra defined in [8, Section 6.2]. The cohomology groups H�M 0
3

and H 0M 2
1

for p � 5 are also
determined by Ravenel [8, Theorem 6.3.34] and Nakai [3], respectively. Here

k.2/� D Z=pŒv2�; K.2/� D Z=pŒv2; v
�1
2 � and K.3/� D Z=pŒv3; v

�1
3 �;

where K.3/� DE.3/�=I3 DM 0
3

. The elements xi .D x3;i/ are introduced in [2, (5.11)] and are such
that xi � v

pi

3
mod I3 (see Lemma 5.1), and the generators hi , �3, gi , ki and bi are defined by cocycles

in the cobar complex ��E.3/�=I3 as follows:

.2.4/ hi D Œt
pi

1
�; �3 D ŒZ�; gi D ŒGi �; ki D ŒKi � and bi D Œb1;i �:

Hereafter Œx� denotes the cohomology class represented by a cocycle x, and the representatives in (2.4)
are defined by

.2.5/

Z D�v�1
3 ct3C v

�p
3

t
p
3
C v
�p2

3
t
p2

3
� v
�p
3

t
p
1

t
p2

2
; Gi D t

pi

1
˝ t

pi

2
C

1
2
t
2pi

1
˝ t

piC1

1
;

Ki D t
pi

2
˝ t

piC1

1
C

1
2
t
pi

1
˝ t

2piC1

1
; b1;i D

p�1X
kD1

1

p

�p

k

�
t
kpi

1
˝ t

.p�k/pi

1
:

Here ct3 is the Hopf conjugation of t3 (see Lemma 4.3). We notice that Gi , Ki and b1;i are also cocycles
of ��E.3/�=I2, and of �� BP�=I2 in [2, (1.9)].

Remark 2.6 The generators gi and ki in (2.3) are given by the Massey products hhi ; hiC1; hii and
hhiC1; hiC1; hii, respectively, in [8, Theorem 6.3.4]. These are represented by cocycles

G00i D t
pi

2
˝ t

piC1

1
C t

pi

1
˝ ct

pi

2

and K0i in (4.20) in the cobar complex ��E.3/�=I2, since these Massey products have no indeterminacy.
By (4.21), K0i is homologous to Ki . Also d1.t

pi

1
t
pi

2
/ D �2Gi �G00i , and G00i is homologous to �2Gi .

Since p is odd, we may replace generators gi and ki by ŒGi � and ŒKi �, and set as in (2.4).

We introduce integers e.n/, an, js;n and j 0s;n for integers n.� 0/ and s by

.2.7/

e.n/D
pn� 1

p� 1
for n� 0;

an D

8<:
1 for nD 0;

pnC .pn�1� 1/=.pC 1/ for odd n� 1;

pnCp.pn�2� 1/=.pC 1/ for even n� 2;

js;n D

8̂̂̂̂
ˆ̂̂<̂
ˆ̂̂̂̂̂:

2 for s 2 Z0 and nD 0;

2p2�pC 1 for s 2 Z0 and nD 2;

2anC
N1 for s 2 Z0; even n� 4;

anC2� anC1 for s 2 Z1 and even n� 0;

pC 1 for s 2 Z.p/ and nD 1;

e.3/pn�2�pC 1 for s 2 Z.p/ and odd n� 3;
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j 0s;0 D

8̂̂̂̂
ˆ̂̂<̂
ˆ̂̂̂̂̂:

2 for p−s.s� 1/;

2p for s D tpC 1 and p− t.t � 1/;

p2C 1 for s D tp2C 1 and p− t;

anCp for s D tpnC 1 with n> 2 and p− t;

anC 1 for s D tpnC e.n/ with even n� 2 and p−.t � 1/;

anC 2 for s D tpnC e.n/ with odd n> 2 and p−.t � 1/;

j 0s;n D

8̂̂̂̂
<̂̂
ˆ̂̂̂:

2p for s 2 Z0 and nD 1;

2pan�1Cp for s 2 Z0 and odd n� 3;

panC1�pan for s 2 Z1 and odd n� 1;

p2Cp for s 2 Z.p/ and nD 2;

e.3/pn�2� 1C N1 for s 2 Z.p/ and even n� 4:

Here N1 D 0 if p � 5 and 1 if p D 3, the Zi are the subsets of the integers Z defined in (1.7), and the
integers an are a3;n in [2, (5.13)]. We note that

.2.8/ anC an�1 D e.3/pn�2
� 1 for n� 2 and pn

C an�2�pn�3
D an for n� 3:

Theorem 2.9 Let p be an odd prime. Then H 1M 1
2

is the direct sum of the k.2/�–module B1 D

K.2/�=k.2/�fh0; h1; Q�2; �3g and the k.2/�–cyclic modules generated by

(�3/spn=an
for .s; n/ 2 Z.p/ �N;

.h0/spn=js;n
for .s; n/ 2 ..Z0[Z1/� 2N/[ .Z.p/ � 2N/;

.h1/spn=j 0s;n
for .s; n/ 2 ..Z0[Z1/� 2N/[ ..Z.p/ � 2N/ n f.1; 0/g/;

.h2/tp�1=p�1 for t 2 Z:

There is a little difference between the cases for p � 5 and p D 3. In the theorem, Q�2 .D .h1/1/ denotes
the homology class of z in (4.18) (see also (3.8)), and the generators .�/s=j for � D ŒX � in H 1M 0

3
denote

.�/s=j D Œv
s
3X=v

j
2
C��

for a cocycle vs
3
X=v

j
2
C� of the cobar complex �1M 1

2
with an element � killed by vj�1

2
. The element

v2 acts on .�/s=j by

.2.10/ v2.�/s=j D .�/s=j�1 and v2.�/s=1 D 0;

and so .�/s=j generates a cyclic k.2/�–module isomorphic to k.2/�=.v
j
2
/:

k.2/�f.�/s=j g Š k.2/�=.v
j
2
/:

3 Proofs of Theorems 2.9 and 1.8

In this section, we assume Lemma 3.4, which will be verified by a routine calculation in Section 6.
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3.1 Proof of Theorem 2.9

For the monochromatic comodules defined in Section 2, we have a short exact sequence

.3.1/ 0!M 0
3
�
�!M 1

2
v2
�!M 1

2 ! 0;

where �.x/D x=v2 (see [2, (3.10)]), which induces the long exact sequence

.3.2/ � � � !H 0M 1
2
ı0
�!H 1M 0

3
��
�!H 1M 1

2
v2
�!H 1M 1

2
ı1
�!H 2M 0

3 ! � � � :

From [2, (5.18)], we read off the following:

Proposition 3.3 The cokernel of ı0 WH 0M 1
2
!H 1M 0

3
is a Z=p–module generated by .h0/0, .h1/0,

(h0/sp2k for s 2 Z0[Z1; (h0/tp2kC1 for t 2 Z.p/; (h1/tp2k for t 2 Z.p/;

(h1/sp2kC1 for s 2 Z0[Z1; (h2/tp�1 for t 2 Z; (�3/t for t 2 Z;

for k � 0. Here Zi is a subset of Z given in (1.7), and .�/s D vs
3
� for � 2 fhi ; �3 W i 2 Z=3g.

Let .x/s 2�1E.3/� denote a cochain satisfying

.x/s � v
s
3x mod I3:

Lemma 3.4 The following cochains exist in �1E.3/�=I2:

(1) .t
1
/sp2k and .tp

1
/sp2kC1 for s 2 Z0 such that

d1..t1/sp2k /�

8̂̂̂̂
<̂
ˆ̂̂:

s.sC 1/v2
2
v

s�1�p
3

G2 k D 0;

s.sC 1/v
2p2�pC1
2

v
sp2�2p
3

G1 k D 1;

�3s.sC 1/v
2a2k

2
v
.sp�2/p2k�1

3
K0 k � 2; p � 5;

�2s.sC 1/v
2a2kC1
2

v
32k�1.3s�2/
3

.b1;0C t
p
1
˝Z0/ k � 2; p D 3;

d1..t
p
1
/sp2kC1/�

(
s.sC 1/v

2p
2
v

sp�2
3

G0 k D 0;

s.sC 1/v
2pa2kCp
2

v
.sp�2/p2k

3
b1;1 k � 1;

(2) .t
1
/sp2k and .tp

1
/sp2kC1 for s D tp2� 1 2 Z1 such that

d1..t1/sp2k /� v
a2kC2�a2kC1

2
v
.tp�1/p2kC1

3
b1;0; d1..t

p
1
/sp2kC1/� v

pa2kC2�pa2kC1

2
v
.tp�1/p2kC2

3
b1;1;

for k � 0,

(3) .t
1
/sp2kC1 and .tp

1
/sp2k for s 2 Z.p/ such that

d1..t
p
1
/tpkC1/�

8̂̂̂̂
<̂
ˆ̂̂:

t.t � 1/v
2p
2
v

tp�1
3

G0 k D 1;

�tv
p2C1
2

v
.tp�1/p
3

G1 k D 2;

�2tv
akCp
2

v
.tp�1/pk�1

3
G0 odd k � 3;

2tv
akCp
2

v
.tp�1/pk�1

3
K0 even k � 4;

d1..t
p
1
/tpkCe.k//�

(
�.t � 1/v

akC1
2

v
tpkCpe.k�2/
3

G1 even k � 2,

�.t � 1/v
akC2
2

v
tpkCpe.k�2/
3

b1;1 odd k � 3,
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d1..t
p
1
/sp2k /�

8̂̂̂<̂
ˆ̂:

s.s� 1/v2
2
vs�2

3
K1 k D 0;

�sv
p2Cp
2

v
sp2�p�1
3

K0 k D 1;

�3sv
e.3/p2k�2�1
2

v
.sp2�p�1/p2k�2

3
K0 p � 5; k � 2;

�sv
32k�2e.3/
2

v
.9s�4/32k�2

3
.b1;0CZ0˝ t

p
1
/ p D 3; k � 2;

d1..t1/sp2kC1/�

(
�sv

pC1
2

v
.s�2/p
3

K2 k D 0;

sv
e.3/p2k�1�pC1
2

v
.sp2�p�1/p2k�1

3
b1;1 k � 1;

(4) .t
p2

1
/tp�1 such that d1..t

p2

1
/tp�1/� v

p�1
2

v
tp�p
3

b1;2.

Here Gi , Ki and b1;i are the cocycles of �2E.3/�=I2 in (2.5), Z0 is an element in Lemma 5.1, and
x � va

2
y denotes the congruence modulo JaC1.

Let d1..x/t /� v
j
2
y mod JjC1 be a congruence in Lemma 3.4. Then ı1..Œx�/t=j /D Œy� for the connecting

homomorphism ı1 in (3.2). Here .Œx�/t=j .D Œ.x/t=v
j
2
�/ 2H 1M 1

2
denotes the cohomology class of the

cocycle .x/t=v
j
2

of �1M 1
2

. Thus the cochains in Lemma 3.4 give rise to elements .h0/spr =js;r
and

.h1/spr =j 0s;r
of H 1M 1

2
as well as their ı1–images. Furthermore, we have elements

.�3/tpn=an
D xt

n�3=v
an

2
2H 1M 1

2

for the elements xn .D x3;n/ introduced in [2, (5.11)] (see Lemma 5.1) with

.3.5/ ı1..�3/tpn=an
/D

8<:
.h2�3/t�1 nD 0;

.h0�3/.tp�1/pn�1 n is odd;

.h1�3/.tp�1/pn�1 n is even � 2;

by [2, (5.18)] (or Lemma 5.1). As a k.2/�–module, K.2/�=k.2/�f�g D Z=pf.�/0=j W j � 1g with
v2.�/0=j D .�/0=j�1 and v2.�/0=1 D 0; see (2.10).

Let B be the k.2/�–module of the theorem. Each direct summand of B is a submodule of H 1M 1
2

, which
defines a k.2/�–module map f WB!H 1M 1

2
. Furthermore, assigning .�/s=1 2B to the generator .�/s of

the cokernel of ı0, we have a homomorphism x�� WH 1M 0
3
!B by Proposition 3.3. These homomorphisms

fit in the commutative diagram

H 0M 1
2

ı0
// H 1M 0

3

x��
// B

v2
//

f

��

B
ı0

1
//

f

��

H 2M 0
3

H 0M 1
2

ı0
// H 1M 0

3

��
// H 1M 1

2

v2
// H 1M 1

2

ı1
// H 2M 0

3

where we define ı0
1

by ı1f . It suffices to show that the upper sequence is exact by [2, Remark 3.11].
By the definition of B, the subsequence H 0M 1

2

ı0
�! H 1M 0

3

x��
�! B

v2
�! B is exact and the composite

B
v2
�! B

ı0
1
�!H 2M 0

3
is zero.
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Suppose that the ı0
1
–images of the generators are linearly independent, and take � 2 Ker ı0

1
to be a

homogeneous element. Then

� D
X

k

ck�k for generators �k of B and scalars ck 2 k.2/� and 0D ı01.�/D
X

k

Nckı
0
1.�k/

for the image Nck of ck under the projection k.2/�!Z=p sending v2 to zero. Since the ı0
1
.�k/ are linearly

independent we see Nck D 0, and so we have c0
k
2 k.2/� such that ck D v2c0

k
. Therefore

� D
X

k

v2c0k�k 2 Im v2;

and we see that the upper sequence of the above diagram is exact if the ı0
1
–images of the generators are

linearly independent.

The ı0
1
–image is a Z=p–submodule of H 2M 0

3
in (2.3) with generators of the form .�/s for � 2

fgi ; ki ; bi ; hi�3 W i 2 Z=3g by Lemma 3.4 and (3.5). Moreover, Lemma 3.4 and (3.5) show that the
ı0

1
–image of each generator �k has only one summand of form .�/s ,

.h0�3/.tp�1/p2n ; .h1�3/.tp�1/p2n�1 ; .h2�3/t�1; .g2/s�1�p;

.k1/s�2; .k2/.s�2/p; .b0/.tp�1/p2nC1 for p � 5; .b2/tp�p;

except for

g0 .g0/sp�2 .g0/.tp�1/p2n

g1 .g1/.sp�2/p .g1/.tp�1/p .g1/tp2nCpe.2n�2/

k0 .k0/.sp�2/p2n�1 .k0/.tp�1/p2n�1 .k0/.sp2�p�1/p2n .p � 5/

k0 .k0/32n�1.3t�1/ .k0/9s�4 .p D 3/

b0 .b0/32n�1.3s�2/ .b0/32nC1.3t�1/ .b0/32n�2.9s�4/ .p D 3/

b1 .b1/.sp�2/p2n .b1/.tp�1/p2nC2 .b1/tp2nC1Cpe.2n�1/ .b1/.sp2�p�1/p2n�1

These show that the ı0
1
–images ı0

1
.�k/ for the generators �k of B are different from each other, and so

they are linearly independent.

3.2 Proof of Theorem 1.8

Let ı0
2
WH�N 1

2
!H�C1N 0

2
be the connecting homomorphism associated to the short exact sequence (2.1),

and consider the diagram

H 2M 0
2

.�0
2
/�
// H 2N 1

2

ı0
2
//

�1
2
��

H 3N 0
2
DE3

2
.V .1//

H 1M 1
2

ı1
// H 2M 0

3

��
// H 2M 1

2

of exact sequences for ı1 in (3.2). The connecting homomorphism Nıj associated to (1.6) is factorized into
the composite Nıj WH sBP�=Jj

O�j
�!H sN 1

2

ı0
2
�!H sC1N 0

2
for the homomorphism O�j given by O�j .x/D x=v

j
2

.
It follows that

.3.6/ x 00spr =j D ı
0
2.v

spr

3
=v

j
2
/ 2H 1N 0

2 DE1
2.V .1// for vspr

3
=v

j
2
2H 0N 1

2 :
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Since ı0
2

is a k.2/�–module map, we have

.3.7/ v
j�1
2
x 00spr =j D v

j�1
2

ı0
2.v

spr

3
=v

j
2
/D ı0

2.v
j�1
2

v
spr

3
=v

j
2
/D ı0

2.v
spr

3
=v2/D x

00
spr :

It is well known that

Ň
1 D�b0 D Œ�b1;0� and Ň

2 D 2k0 D Œ2K0� 2H 2N 0
3

for the cocycles b1;0 and K0 in (2.5); see [5, Lemma 4.4]. This defines elements vspr

3
Ň
i=v2 2H 2N 1

2
for

i D 1; 2, and
ı0

2.v
spr

3
Ň
i=v2/D 

00
spr
Ň
i 2E3

2.V .1// .by (3.6)/:

We also see that for vspr

3
Ň
i 2H 2M 0

3
,

��.v
spr

3
Ň
i/D �

1
2.v

spr

3
Ň
i=v2/ 2H 2M 1

2 :

From Lemma 3.4, the elements vspr

3
Ň
1 D �.b0/spr and vspr

3
Ň
2 D 2.k0/spr 2 H 2M 0

3
may be in the

image of ı1 if
p � 5 and .s; r/ 2 .ZC

1
[ZC

2
/� 2N

or
p D 3 and .s; r/ 2 .N1 � 2N>0/[ ..Z

C

1
[ZC

2
/� 2N/[ .N2 � 2N>1/;

and if
p � 5 and .s; r/ 2 .N1 � 2N/[ .ZC

2
� 2N>1/[ .N2 � 2N>1/

or
p D 3 and .s; r/ 2 .N1 � f0g/[ .Z

C

2
� 2N>1/;

respectively. Here Ni D N.p/ nNi for i D 1; 2. Therefore, if a pair .s; r/ satisfies the condition of
the theorem, then the element vspr

3
Ň
i is not in the image of ı1, and survives to �1

2
.v

spr

3
Ň
i=v2/ under the

homomorphism ��. Thus vspr

3
Ň
i=v2 ¤ 0 2H 2N 1

2
under the conditions.

Ravenel determined in [8, Theorem 6.3.24; 7, Theorem 3.2] that

.3.8/ H 2M 0
2 D

�
K.2/�fh0

Q�2; h1
Q�2; b0; b1; �g p D 3;

K.2/�fh0
Q�2; h1

Q�2;g0;g1g p � 5;

where Q�2 D v
pC1
2

�2 D Œ�z� for �2 in [2, Proposition 3.18)] and z in (4.18). This shows that the elements
v

spr

3
Ň
i=v2 for i D 1; 2 are not in the image of .�0

2
/�, and hence survive to  00spr

Ň
i 2E3

2
.V .1//. Moreover,

 00
spr =j

Ň
i ¤ 0 2E3

2
.V .1// if vj�1

2
 00

spr =j
Ň
i D 

00
spr
Ň
i is not zero, where the equality follows by (3.7).

4 Some cochains in the cobar complex ��E.3/�

In the rest of this paper, we consider E.3/�.E.3//–comodules whose structure maps are induced from
the right unit map �R WE.3/�!E.3/�.E.3//. We consider the cobar complex ��M of a comodule M

in (2.2), whose differentials are given by

.4.1/ d0.v/D �R.v/� v 2�
1E.3/�; and d1.x/D 1˝x��.x/Cx˝ 1 2�2E.3/�
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for v 2�0E.3/� DE.3/� and x 2�1E.3/� DE.3/�.E.3//. For the differentials d0 and d1, we have
relations (see [11, (2.3.2)])

.4.2/

d0.vv
0/D vd0.v

0/C d0.v/�R.v
0/;

d1.vx/D d0.v/˝xC vd1.x/;

d1.xy/D�x˝y �y˝xC d1.x/�yC .x˝ 1C 1˝x/d1.y/;

d1.x�R.v//D d1.x/.1˝ �R.v//�x˝ d0.v/;

for v; v0 2E.3/� and x;y 2E.3/�.E.3//. A formula for the Hopf conjugation c W BP�.BP/! BP�.BP/
is given in [6, (3)], and immediately implies the following:

Lemma 4.3 The Hopf conjugation c WE.3/�.E.3//!E.3/�.E.3// acts as

ct1 D�t1; ct2 D t
pC1
1
� t2 and ct3 � t2t

p2

1
� t1ct

p
2
� t3 mod I2:

For the right unit �R W BP�! BP�.BP/, we have a well-known formula (see [6, (11)])

.4.4/ �R.vn/� vnC vn�1t
pn�1

1
� v

p
n�1

t1 mod In�1:

A routine calculation using (4.1) and (4.4) shows the following:

Lemma 4.5 Put �n D
Pn�1

kD0 v
p2ka2n�2k�1�p2kC1

2
v

p2k

3
2E.3/�. Then

d0.�n/� v
p2n�2

2
t
p2n

1
� v

a2n�1

2
t1 mod I2:

In E.3/�.E.3// we have �R.v4/D 0D �R.v5/, which give rise to relations

.4.6/ v3t
p3

1
� t1�R.v3/

p
�v2t

p2

2
Cv

p2

2
t2 and v3t

p3

2
� t2�R.v3/

p2

�v2t
p2

3
�v2w

p
Cv

p3

2
t3 mod I2

(see [6, (12) and (16); 8, Corollary 4.3.21]), where w 2 E.3/�.E.3// .D w1.v3; v2t
p2

1
;�v

p
2

t1/ in
[8, Corollary 4.3.21]) is an element defined by

.4.7/ pw D v
p
3
C v

p
2

t
p3

1
� v

p2

2
t
p
1
Cyp

� �R.v3/
p

for y 2 .p; v1/ in �R.v3/D v3C v2t
p2

1
� v

p
2

t1Cy; see (4.4).

The diagonal� WE.3/�.E.3//!E.3/�.E.3//˝E.3/�E.3/�.E.3// of the Hopf algebroid E.3/�.E.3//

acts on the elements ti and cti by

.4.8/

�.t1/D t1˝ 1C 1˝ t1;

�.t2/� t2˝ 1C t1˝ t
p
1
C 1˝ t2� v1b1;0 mod .p; v2

1/;

�.t3/� t3˝ 1C t2˝ t
p2

1
C t1˝ t

p
2
C 1˝ t3� v2b1;1 mod I2;

�.t4/� t4˝ 1C t3˝ t
p3

1
C t2˝ t

p2

2
C t1˝ t

p
3
C 1˝ t4� v3b1;2 mod I3;
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(see [6, Theorem 8; 8, Corollary 4.3.15 ]) and so

.4.9/

d1.ct2/��t
p
1
˝ t1;

d1.ct3/� ct
p
2
˝ t1C t

p2

1
˝ ct2� v2b1;1 mod I2;

d1.ct4/� t
p3

1
˝ ct3� ct

p2

2
˝ ct2C ct

p
3
˝ t1� v3b1;2 mod I3;

since �.cx/D .c˝ c/T�.x/ for the switching map T given by T .x˝ y/D y˝ x, where b1;k is the
cocycle in (2.5).

The fact d1.t
pkC1

1
/ � �pb1;k mod .p2/ implies not only that the cochain b1;k 2 �

2E.3/�=.p/ is a
cocycle, but also the following lemma:

Lemma 4.10 The cochain w in (4.7) satisfies

w ��v2v
p�1
3

t
p2

1
mod J2 and d1.w/��v

p
2

b1;2C v
p2

2
b1;0 mod I2:

Corollary 4.11 Put Wn D
Pn�1

iD0 v
p2i a2n�2i�p2iC2

2
wp2i

. Then

d1.Wn/��v
p2n�1

2
b1;2nC v

a2n

2
b1;0 mod I2:

We generalize the relations (4.6) and obtain the following proposition from [8, (4.3.1) and Lemma 4.3.11];
6, Theorem 1] (see [9, Proposition 2.1]):

Proposition 4.12 There exist elements Tn for n� 0 satisfying Tn � t
p
n mod I3 and

v
pkC1

2
tkC1C tk�R.v3/

pk

� v1TkC2C v2T
p

kC1
C v3T

p2

k
mod .p; v2

1/

for k � 0. In particular , T0 D 1, T1 � t
p
1

, T2 � t
p
2

and T3 � t
p
3
Cw mod I2.

Proof We begin by recalling some notation from [8, Section 4.3]. For a sequence J D .j1; j2; : : : ; jm/ of
positive integers we set jJ jDm and kJkD

Pm
iD1 ji , and an element vJ 2E.3/� is defined recursively by

v.j ;J /Dvjv
pj

J
. Letwk.S/ for a set S be symmetric polynomials of degree pn such thatw0.S/D

P
x2S x

and
P

x2S xpn

D
Pn

kD0 pkwk.S/
pn�k

. We then define sets Sn out of a set S D fai;j g recursively by

Sn D fai;j W i C j D ng[
[
jJ j>0

fvJwjJ j.Sn�kJ k/
pkJk�jJj

g:

By [8, (4.3.1) and Lemma 4.3.11],

.4.13/ w0.Cn/�
X

iCjDn

F
ti�R.vj /

pi

�

X
iCjDn

F
vi t

pi

j � w0.Dn/ mod .p/

for the sets
C D fti�R.vj /

pi

g and D D fvi t
pi

j g:

In E.3/�.E.3//, put

w.Sn/D
X

J

v
p
J
wjJ jC1.Sn�kJ k/

pkJk�jJj and Tn D tp
n �w.Cn/Cw.Dn/:
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Then the proposition follows from (4.13) and the congruences

w0.Cn/� v
pn�2

2
tn�2C tn�3�R.v3/

pn�3

C v1w.Cn�1/C v2w.Cn�2/
p
C v3w.Cn�3/

p2

;

w0.Dn/� v1t
p
n�1
C v2t

p2

n�2
C v3t

p3

n�3
C v1w.Dn�1/C v2w.Dn�2/

p
C v3w.Dn�3/

p2

;

seen by the relation

v.k;J /wj.k;J /j.Sn�k.k;J /k/
pk.k;J/k�j.k;J/j

D vkv
pk

J
wjJ jC1.Sn�k�kJ k/

pkJk�jJjCk�1

:

Lemma 4.14 For n� 0,

�R.v
p�1
2

v
e.n/
3

/�

nX
iD0

.�1/n�iv
piC1e.n�i/Cp�1
2

v
e.i/
3

t
pi

n�i � v
p
2
wp

n C v1v
p�2
2

wnC1 mod .p; v2
1/:

Here

.4.15/ wn D

nX
iD1

.�1/iv
e.i�1/
2

Ti�R.v
pi�1e.n�i/
3

/:

Proof In this proof, every congruence is considered modulo .p; v2
1
/. By Proposition 4.12, tk�R.v

pk

3
/�

zTk � v
pkC1

2
tkC1 for zTk D v1TkC2C v2T

p

kC1
C v3T

p2

k
, which implies inductively

t1�R.v
pe.n/
3

/��

nX
iD1

.�1/iv
p2e.i�1/
2

zTi�R.v
piC1e.n�i/
3

/C .�1/nv
p2e.n/
2

tnC1;

and hence

.4.16/ t1�R.v
pe.n/
3

/��v1v
�p�1
2

wnC2C v
1�p
2

w
p
nC1
� v3w

p2

n C .�1/nv
p2e.n/
2

tnC1

� v1v
�p�1
2

.t
p
1
�R.v3/� v2t

p
2
/�R.v

pe.n/
3

/C v
1�p
2

t
p2

1
�R.v

pe.n/
3

/:

Now we prove the lemma by induction. For nD 0, it follows from the facts �R.v2/� v2C v1t
p
1

by (4.4)
and w1 D�t

p
1

.

Assuming the case for n, we obtain the case for nC 1 from (4.16) and

�R.v
p�1
2

v
e.nC1/
3

/� v
�p2C2p�1
2

v3�R.v
p�1
2

v
e.n/
3

/pC v
p�1
2

.v2t
p2

1
C v1t

p
2
/�R.v

pe.n/
3

/

� v
2p�1
2

t1�R.v
pe.n/
3

/� v1v
p�2
2

t
p
1
�R.v

e.nC1/
3

/;

given by �R.v
p�1
2

v3/� v
p�1
2

.v3C v2t
p2

1
� v

p
2

t1C v1t
p
2
/� v1v

p�2
2

t
p
1
�R.v3/. Here �R.v3/ is given in

[2, (5.7)].

Evaluate the congruence in Lemma 4.14 under d1, and compare the v1–multiples. Then we deduce the
following corollary; see [9, Proposition 2.3]. Indeed, if v1v

p�2
2

d1.wnC1/ �AC v1B mod .p; v2
1
/ for

some A and B involving no v1, then A� 0 mod .p; v2
1
/ and vp�2

2
d1.wnC1/� B mod I2.
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Corollary 4.17 For the elements wn in (4.15),

d1.wnC1/��

n�1X
iD0

.�1/n�iv
piC1e.n�i/
2

wiC1˝ t
pi

n�i � .�1/nv
e.nC1/
2

bn mod I2:

Here bn is an element in d1.tn/� anC v1bn mod .p; v2
1
/ for an and bn involving no v1. In particular ,

b2 D b1;0 by (4.8).

We have the cocycle z in �1E.3/�=I2 given by

.4.18/ z D v3t
p
1
C v2ct

p
2
� v

p
2

t2 D t
p
1
�R.v3/� v2t

p
2
C v

p
2

ct2 D�w2C v
p
2

ct2;

which represents the element �vpC1
2

�2 2H 1M 0
2

; see [2, Proposition 3.18(c)] and (3.8). In particular,

.4.19/ t
p
1
�R.v3/� zC v2t

p
2
� v

p
2

ct2 mod I2:

We further have cocycles G0i and K0i 2�
2E.3/�=I2 for i 2 f0; 1; 2g defined by

.4.20/ G0i D ct
pi

2
˝ t

pi

1
C

1
2
t
piC1

1
˝ t

2pi

1
and K0i D t

piC1

1
˝ ct

pi

2
C

1
2
t
2piC1

1
˝ t

pi

1
;

which are homologous to Gi and Ki in (2.5), respectively. Indeed,

.4.21/ d1.gi/�G0i �Gi and d1.ki/�K0i �Ki mod I2;

for i 2 f0; 1; 2g, and for gi ; ki 2�
1E.3/� given by

.4.22/ gi D t
pi

1
t
pi

2
�

1
2
t
piC1C2pi

1
and ki D t

piC1

1
t
pi

2
�

1
2
t
2piC1Cpi

1
:

We also have a similar relation

.4.23/ d1.t
p
1

t2/��.t
p
1
˝ t2C ct2˝ t

p
1
/� 2K0 mod I2:

Lemma 4.24 In �1E.3/�, put

!1 D �R.v3/t2� v2t3C v
p
2

t1t2; !2 D
1
2
�R.v3/t

2p
1
� v

p
2
k0 and z!2 D�w3� v

pe.2/
2

t
p
1

t2:

Then , modulo I2,

d1.!1/��t1˝ z� v2
2b1;1� 2v

p
2

G0; d1.!2/��t
p
1
˝ z� v2G1C v

p
2

K0;

d1.z!2/� v
p2

2
z˝ t

p
1
C 2v

p2Cp
2

K0C v
e.3/
2

b1;0:

Proof In this proof we consider congruences modulo I2. A routine calculation shows the congruence
for d1.!1/:

d1.�R.v3/t2/��t1˝ .zC v2t
p
2

a

C v
p
2

t2
::::

� v
p
2

t
pC1
1
c

/� t2˝ .v2t
p2

1

b

� v
p
2

t1
d

/; .by (4.2) and (4.19)/

d1.�v2t3/� v2.t1˝ t
p
2

a

C t2˝ t
p2

1

b

� v2b1;1/; .by (4.8)/

d1.v
p
2

t1t2/��v
p
2
.t1˝ t2

:::::
C t2˝ t1

d

C t2
1 ˝ t

p
1

::::::

C t1˝ t
pC1
1

c

/: .by (4.8) and (4.2)/

Here the underlined terms with the same label cancel each other and the wavy underlined terms
make �2v

p
2

G0.
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For d1.!2/, we calculate

d1

�
1
2
�R.v3/t

2p
1

�
��t

p
1
˝ .zC v2t

p
2

::::

G

� v
p
2

ct2
:::::

K 0

/� 1
2
v2t

2p
1
˝ t

p2

1
::::::::::::

G

C
1
2
v

p
2

t
2p
1
˝ t1:

:::::::::::

K 0

.by (4.2) and (4.19)/

Add d1.�v
p
2
k0/, and we obtain the desired congruence by (4.21).

We verify d1.z!2/ by

d1.w3/��v
pe.2/
2

w1˝ t2Cv
p2

2
w2˝ t

p
1
�v

e.3/
2

b1;0 .by Corollary 4.17/

��v
pe.2/
2

.�t
p
1
/˝ t2

a

Cv
p2

2
.�zCv

p
2

ct2
b

/˝ t
p
1
�v

e.3/
2

b1;0; .by (4.18) and (4.15)/

d1.v
pe.2/
2

t
p
1

t2/��v
pe.2/
2

..t
p
1
˝ t2
a

Cct2˝ t
p
1

b

/C2K0/: .by (4.23)/

5 The elements xi and deriving elements yi and y 0
i

In [2, (5.11)], Miller, Ravenel and Wilson introduced elements x3;i 2 v
�1
3

BP�. We refine them, and define
the elements xi 2E.3/� by

xi D v
pi

3
for i D 0; 1; 2;

x3 D x
p
2
� v

p3�1
2

v
.p�1/p2C1
3

;

x4 D x
p
3
� v

e.2/p3�p�1
2

v
.p2�e.2//p2CpC1
3

;

x2kC1 D x
p

2k
� v

pa2k�1
2

x
.p�1/p

2k�1
v3� v

e.3/p2k�1�e.3/
2

v
.p2�e.2//p2k�1CpC1
3

;

x2kC2 D x
p

2kC1
� 2v

e.3/p2k�e.3/
2

v
.p2�e.2//p2kCpC1
3

;

for k � 2.

Lemma 5.1 (see [9, Proposition 3.1]) In �1E.3/�, we have

d0.x0/� v2t
p2

1
� v

p
2

t1 mod I2;

d0.x1/� v
p
2
v

p�1
3

t1� v
pC1
2

v�1
3 t

p2

2
mod J2p;

d0.xi/� v
ai

2
.x

p�1
i�1

t
p"i

1
CBi/ mod Je.3/pi�2 for i � 2:

Here "i D
1
2
.1C .�1/i/, and the Bi are given by

i 2 3 2k 2kC 1

Bi �v
p
2
v

c.2/
3

t2 v
p2�p
2

v
c.3/
3

.z� v
p
2

t
pC1
1

/ v
a2k�1�p
2

v
c.2k/
3

.z� v
p
2

t2/ v
a2k�p
2

v
c.2kC1/
3

.2z� v
p
2

ct2/

for c.k/D .p2�p�1/pk�2. For i � 4, add vai�1C1
2

v
c.i/
3

Z0 to Bi if we consider the congruence modulo
Je.3/pi�2C1. Here Z0 is a cocycle homologous to aZ for some a 2 Z=p.

Proof This follows from a routine calculation: For i � 2, it follows from (4.4) and from (4.6).
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We obtain d0.x3/ from (4.19) and

d0.v
.p�1/p2C1
3

/� v
.p�1/p2

3
.v2t

p2

1
� v

p
2

t1/� v
a2

2
v
.p�1/p2�p
3

.t
p
1
�R.v3/� v

p
2

t2/ mod Je.3/

by (4.2), (4.4) and the congruence on d0.x2/. We note that �R.v
pC1
3

/Dv
pC1
3
Cv2zp�v

p2

2
z by [2, (3.20)],

and obtain

d0.v
.p2�e.2//p2CpC1
3

/

�v
.p2�e.2//p2

3
.v2zp

�v
p2

2
z/�v

a2

2
v
.p2�e.2//p2�p
3

t
p
1
.v

pC1
3
Cv2zp/Cv

p2Cp
2

v
.p2�e.2//p2

3
t2 mod Je.3/:

The congruence on d0.x4/ follows from this and the congruence on d0.x3/, together with the definition
of the element x3.

Inductively suppose that

d0.x2k/� v
a2k

2
x

p�1

2k�1
t
p
1
C v

e.3/p2k�2�e.2/
2

v
.p2�e.2//p2k�2

3
.z� v

p
2

t2/ mod Je.3/p2k�2 :

Then we calculate

d0.x
p

2k
/� v

pa2k

2
x
.p�1/p

2k�1
t
p2

1
a

C v
e.3/p2k�1�e.2/p
2

v
.p2�e.2//p2k�1

3
.zp

b

� v
p2

2
t
p
2

c

/

d0.�v
pa2k�1
2

x
.p�1/p

2k�1
v3/

��v
pa2k�1
2

x
.p�1/p

2k�1
.v2t

p2

1
a

� v
p
2

t1/C v
e.3/p2k�1�p�1
2

x
p2�p�1

2k�1
.zC v2t

p
2

c

� v
p
2

ct2/;

where the second congruence follows by (4.2) and (4.19), and

d0.�v
e.3/p2k�1�e.3/
2

v
.p2�e.2//p2k�1CpC1
3

/��v
e.3/p2k�1�e.3/
2

v
.p2�e.2//p2k�1

3
.v2zp

b

� v
p2

2
z/:

Therefore

d0.x2kC1/� v
pa2kCp�1
2

x
.p�1/p

2k�1
t1C v

e.3/p2k�1�e.2/
2

v
.p2�e.2//p2k�1

3
.2z� v

p
2

ct2/:

Also

d0.x
p

2kC1
/�v

pa2kC1

2
x
.p�1/p2

2k�1
t
p
1
Cv

e.3/p2k�e.2/p
2

v
.p2�e.2//p2k

3
.2zp
�v

p2

2
ct

p
2
/

�v
pa2kC1

2
.x

p�1

2kC1
�v

pa2k�1
2

x
.p2�p�1/p

2k�1
v3/t

p
1
Cv

e.3/p2k�e.2/p
2

v
.p2�e.2//p2k

3
.2zp
�v

p2

2
ct

p
2
/

�v
pa2kC1

2
x

p�1

2kC1
t
p
1
Cv

e.3/p2k�e.2/p
2

v
.p2�e.2//p2k

3
.2zp
�v

p2�1
2

z�v
p2Cp�1
2

t2/

and

d0.�2v
e.3/p2k�e.3/
2

v
.p2�e.2//p2kCpC1
3

/��2v
e.3/p2k�e.3/
2

v
.p2�e.2//p2k

3
.v2zp

� v
p2

2
z/:

Therefore
d0.x2kC2/� v

pa2kC1

2
x

p�1

2kC1
t
p
1
C v

e.3/p2k�e.2/
2

v
.p2�e.2//p2k

3
.z� v

p
2

t2/:

These complete the induction.

Put d0.xi/� v
ai

2
.x

p�1
i�1

t
p"i

1
CBi C v

ai�1C1
2

C / mod Je.3/pi�1C1 for a cochain C . It is easy to see

d1.v
ai

2
.x

p�1
i�1

t
p"i

1
CBi//� 0 mod Je.3/pi�1C1:
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It follows that C is a cocycle of �1M 0
3

, and so C represents a cohomology class av
c.i/
3
�3 2H 1M 0

3
for

some a 2 Z=p by (2.3).

Put
d0.xi/� v

ai

2
Ai C v

ai

2
Bi for Ai D x

p�1
i�1

t
p"i

1
;

where "i D
1
2
.1C .�1/i/. We introduce elements ys;i and y0s;i 2�

1E.3/� by

ys;i D xs
i t

p"iC1

1
� sx

s�pC1
i BiC1 and y0s;i D xs

i t
p"i

1
C

1
2
sv

ai

2
xs�1

i Ai t
p"i

1
:

Lemma 5.2 For the elements ys;i and y0s;i ,

d1.ys;0/� s.sC 1/v2
2v

s�p�1
3

G2; d1.ys;1/� s.sC 1/v
2p
2
v

sp�2
3

G0;

d1.ys;2/��s.sC 1/v
2p2�p
2

v
sp2�2p
3

.t
p
1
˝ z� v

p
2

x/;

d1.ys;i/�

(
�s.sC 1/v

2a2kC1�p

2
x

sp�2

2k
.t1˝ z� v

p
2

G0/ i D 2kC 1;

�s.sC 1/v
2a2kC2�p

2
x

sp�2

2kC1
.2t

p
1
˝ z� v

p
2

K0
0
/ i D 2kC 2;

d1.y
0
s;1/��sv

pC1
2

v
sp�2p
3

K2; d1.y
0
s;2/��sv

p2Cp
2

v
sp2�p�1
3

K0;

d1.y
0
s;3/� sv

a3Cp2�p
2

v
sp3�p2�p
3

.z˝ t1� v
p
2

x0/;

d1.y
0
s;i/�

(
sv

e.3/pi�2�p�1
2

v
.sp2�p�1/p2k�2

3
.z˝ t

p
1
� v

p
2

K0/ i D 2k;

sv
e.3/pi�2�p�1
2

v
.sp2�p�1/p2k�1

3
.2z˝ t1� v

p
2

G0
0
/ i D 2kC 1:

Here xD .t2Ct
pC1
1

/˝t
p
1
Ct

p
1
˝t

pC1
1
C

1
2
t
2p
1
˝t1 and x0D t

pC1
1
˝t1C

1
2
t
p
1
˝t2

1
, and these congruences

are considered modulo JaC1, where a is the largest power of v2 in each congruence. Furthermore , replace
K0

0
and K0 in the congruences on d1.ys;2kC2/ and d1.y

0
s;2k

/ by K0
0
C v2t

p
1
˝Z0 and K0C v2Z0˝ t

p
1

,
respectively, if we consider the congruences modulo JaC2.

Proof We note that

d1.BiC1/��d1.AiC1/��d0.x
p�1
i /˝ t

p"iC1

1
mod I2;

d0.x
s
i /C sx

sC1�p
i d0.x

p�1
i /�

�
sC 1

2

�
xs�2

i d0.xi/
2 mod J3ai

:

Indeed, d0.x
s
i /� sxs�1

i d0.xi/C
�

s
2

�
xs�2

i d0.xi/
2 mod J3ai

. Also,

d1.Ai t
p"i

1
/� d0.x

p�1
i�1

/˝ t
2p"i

1
�2x

p�1
i�1

t
p"i

1
˝ t

p"i

1
� d0.x

p�1
i�1

/˝ t
2p"i

1
�2Ai˝ t

p"i

1
mod Jai�1C2:

Then we calculate

d1.ys;i/� d0.x
s
i /˝ t

p"iC1

1
� sd0.x

sC1�p
i /˝BiC1C sx

sC1�p
i d0.x

p�1
i /˝ t

p"iC1

1
.by (4.2)/

�

�sC1

2

�
xs�2

i d0.xi/
2
˝ t

p"iC1

1
� s.sC 1/x

s�p
i d0.xi/˝BiC1 mod J2aiCp;

d1.y
0
s;i/� sxs�1

i d0.xi/˝ t
p"i

1
C

1
2
sv

ai

2
xs�1

i d0.x
p�1
i�1

/˝ t
2p"i

1
� sv

ai

2
xs�1

i Ai ˝ t
p"i

1
.by (4.2)/

� sv
ai

2
xs�1

i .Bi ˝ t
p"i

1
C

1
2
d0.x

p�1
i�1

/˝ t
2p"i

1
/ mod Je.3/pi�2C1:

Now we obtain the lemma from Lemma 5.1.
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6 Proof of Lemma 3.4

In this section, we define the cochains .tpi

1
/s and verify their d1–differential.

6.1 The cochains .t
1
/sp2k and .t

p

1
/sp2kC1 for s 2 Z0

We define the cochains by

.t1/s D ys;0; .t
p
1
/sp D ys;1; .t1/sp2 D ys;2� s.sC 1/v

2p2�p
2

v
sp2�2p
3

!2;

.t
p
1
/sp2kC1 D ys;2kC1� s.sC 1/v

2a2kC1�p

2
x

sp�2

2k
!1;

.t1/sp2kC2 D ys;2kC2� s.sC 1/v
2a2kC2�p2�p

2
x

sp�2

2kC1
.2z!2C v

p2

2
.2zt

p
1
C v

p
2
k0//;

for k � 1. Then the lemma for this case follows immediately from Lemmas 5.2, 5.1 and 4.24 together
with (4.21). Note also 2a2kC1 �pC 2D 2pa2k Cp. For example, for the case p D 3 and k � 2, we
compute modulo J2a2kC2

d1..t1/32ks/� d1.ys;2k/�s.sC1/v
2a2k�12
2

x3s�2
2k�1d1.2z!2Cv

9
2.2zt3

1 Cv
3
2k0//

��s.sC1/v
2a2k�3
2

x3s�2
2k�1.2t3

1 ˝z
a

�v3
2.K

0
0

b

Cv2t3
1 ˝Z0//�s.sC1/v

2a2k�12
2

x3s�2
2k�1

�
�
2.v9

2z˝ t3
1

c

C2v12
2 K0

d

Cv13
2 b1;0/Cv

9
2.�2.z˝ t3

1
c

C t3
1 ˝z

a

/Cv3
2.K

0
0

b

�K0

d

//
�
;

where the second equivalence follows by Lemmas 5.2 and 4.24, and Equation (4.21)

6.2 The cochains .t
1
/sp2k and .t

p

1
/sp2kC1 for s 2 Z1

We put s D tp2� 1, and define the cochains .t
1
/.tp2�1/p2k and .tp

1
/.tp2�1/p2kC1 by

v
a2kC1

2
.t1/.tp2�1/p2k D�v

.t�1/p2kC2

3
wp2kC1

� d0.v
p2kC1�p2k�2

2
v
.tp2�1/p2k

3
�k/

C v
p2kC2�p2k�1

2
v
.tp�1/p2kC1

3
Wk ;

.t
p
1
/.tp2�1/p2kC1 D .t1/

p

.tp2�1/p2k ;

for the elements �k in Lemma 4.5, w in (4.7) and Wk in Corollary 4.11. Then this case follows from
Lemmas 4.5 and 4.10, Corollary 4.11 and (2.8). We also use relationswp2kC1

��v
p2kC1

2
v

p2kC2�p2k

3
t
p2k

1

mod Ja2kC1C1 by Lemma 4.10 and (4.6), and b
p2kC1

1;2
� b1;2kC3 � v

.p�1/p2kC1

3
b1;2k mod I3 by (4.6).

For example,

v
a2kC1

2
.t1/.tp2�1/p2k � v

.t�1/p2kC2

3
.v

p2kC1

2
v

p2kC2�p2k

3
t
p2k

1
/ .by Lemma 4.5/

� v
p2kC1�p2k�2

2
v
.tp2�1/p2k

3
.v

p2k�2

2
t
p2k

1
� v

a2k�1

2
t1/

� v
a2kC1

2
v
.tp2�1/p2k

3
t1 mod Ja2kC1C1;
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since p2kC1�p2k�2C a2k�1 D a2kC1 in (2.8), and

v
a2kC1

2
d1..t1/.tp2�1/p2k /

�v
p2kC2

2
v
.t�1/p2kC2

3
b

p2kC1

1;2

a

Cv
p2kC2�p2k�1

2
v
.tp�1/p2kC1

3
.�v

p2k�1

2
b1;2k

a

Cv
a2k

2
b1;0/ mod Ja2kC2C1

by Lemma 4.10 and Corollary 4.11. Since p2kC2�p2k�1C a2k D a2kC2 in (2.8), we obtain the case
for .t

1
/sp2k .

6.3 The cochains .t
1
/sp2kC1 and .t

p

1
/sp2k for s 2 Z.p/

We begin by defining
.t

p
1
/s D v

s
3t

p
1
C sv2v

s�1
3 ct

p
2
� s.s� 1/v2

2v
s�2
3 k1:

Then we calculate by (4.2), (4.4), (4.8) and (4.22), and obtain

d1..t
p
1
/s/� s.s� 1/v2

2v
s�2
3 K1 mod J3:

Now we consider the cases for p j s.s� 1/.

6.3.1 The cochains .t
p

1
/tpkC1 for k� 1 We define the cochains by

.t
p
1
/tpC1 D v

tp
3

zC tv
p
2
v

tp
3

t2� tv
pC1
2

v
tp�p
3

ct
p
3
;

.t
p
1
/tp2C1 D xt

2zC tv
a2

2
v
.tp�1/p
3

!2;

.t
p
1
/tp2kC1C1 D xt

2kC1zC tv
a2kC1

2
v
.tp�1/p2k

3
!1C tv

a2kCpC1
2

.t
p
1
/.tp2�1/p2k�1 ;

.t
p
1
/tp2kC2C1 D xt

2kC2zC tv
a2kC2�p2

2
v
.tp�1/p2kC1

3
.z!2C v

p2

2
zt

p
1
/;

in �1E.3/� for k � 1, t 2 Z.p/, xn in 5.1, z in (4.18) and !i in Lemma 4.24. We verify this case by a
routine calculation using (4.2), (4.4), (4.18), (4.8) and (4.9). We see that

t
p3

1
˝z��R.v3/t

p3

1
˝t

p
1
Cv2t

p3

1
˝ct

p
2
�v

p
2
v

p�1
3

t1˝t2 and �R.v3/t
p3

1
�v

p
3

t1Cv2ct
p2

2
mod JpC1

by (4.18), (4.4) and (4.6). It follows that t
p3

1
˝ z � �d1.v

p
3

t2/ C v2d1.ct
p
3
/ mod JpC1, and then

d1.v
tp
3

z/ � tv
p
2
v

tp�p
3

.�d1.v
p
3

t2/C v2d1.ct
p
3
//C

�
t
2

�
v

2p
2
v

tp�1
3

t2
1
˝ t

p
1

mod J2pC1. Thus we obtain
d1..t

p
1
/tpC1/.

The congruences on d1..t
p
1
/tpkC1/ for k � 2 follow directly from Lemmas 5.1 and 4.24 and the results

on d1..t
p
1
/.tp2�1/p2k�1/ shown in the previous subsection. For example,

d1..t
p
1
/tp2kC1C1/� d1.x

t
2kC1/˝ zC tv

a2kC1

2
v
.tp�1/p2k

3
d1.!1/C tv

a2kCpC1
2

d1..t
p
1
/.tp2�1/p2k�1/

� tv
a2kC1

2
v
.tp�1/p2k

3
t1˝ z

a

C tv
a2kC1

2
v
.tp�1/p2k

3
.�t1˝ z

a

� v2
2b1;1

b

� 2v
p
2

G0/

C tv
a2kCpC1Cpa2k�pa2k�1

2
v
.tp�1/p2k

3
b1;1

b

mod Ja2kC1CpC1;

where the second equivalence follows by Lemmas 5.1, 4.24 and 3.4(2).
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6.3.2 The cochains .t
p

1
/tpkCe.k/ for k� 2 We put r D 2n� 1C " (" 2 f0; 1g), and

.t
p
1
/0tprCe.r/ D xt

r .wrC1C v
pr�pr�3

2
wr�R.�

p"

n�1
/C v

ar

2
wr t

p"

1
/

for wr in (4.15). Note that wr � v
pe.r�2/
3

w2 � �v
pe.r�2/
3

z mod Jp by (4.15) and (4.18). Then
.t

p
1
/0
tprCe.r/

� xt
rwrC1 ��v

tprCe.r/
3

t
p
1

mod I3. Furthermore, we calculate

d1..t
p
1
/0tprCe.r//� tv

ar

2
v
.tp�1/pr�1

3
t
p"

1
˝wrC1

::::::::::::::::::::::::

.by Lemmas 5.1 and 4.5 and Corollary 4.17/

Cxt
r

�
v

pr

2
wr ˝ t

pr�1

1
a

� v
pr�pr�3

2
wr ˝ .v

p2n�4C"

2
t
p2n�2C"

1
a

� v
a2n�3C"

2
t
p"

1

b

/

� v
ar

2
.wr ˝ t

p"

1

b

C t
p"

1
˝wr

::::::::

/
�

��.t � 1/v
ar

2
v

tprCpe.r�2/
3

t
p"

1
˝ z mod JarCp

together with (4.2) and (2.8). This case now follows from Lemma 4.24 by setting .tp
1
/tprCe.r/ D

�.t
p
1
/0
tprCe.r/

C .t � 1/ v
ar

2
v

tprCpe.r�2/
3

!1C".

6.3.3 The cochains .t
p

1
/sp2k for k� 1 and .t

1
/sp2kC1 for k� 0 We define .t"i

1
/spi by

.t1/sp D y0s;1; .t
p
1
/sp2 D y0s;2; .t1/sp3 D y0s;3C sv

e.3/p�p�1
2

v
.sp2�p�1/p
3

.zt1�!1/;

.t
p
1
/sp4 D y0s;4�

1
2
sv

e.3/p2�p2�p�1
2

v
.sp2�p�1/p2

3
.z!02� v

p2

2
zt

p
1
/;

.t1/sp2kC1 D y0s;2kC1C 2sv
e.3/p2k�1�p�1
2

v
.sp2�p�1/p2k�1

3
.zt1�!1/;

.t
p
1
/sp2kC2 D y0s;2kC2� sv

e.3/p2k�p2�p�1
2

v
.sp2�p�1/p2k

3
z!2;

where z!0
2
D z!2� v

p2Cp
2

t
p
1

t2� v
e.3/
2

v
�p2

3
ct

p
4

. Except for d1..t
p
1
/sp4/, the lemma for this case follows

from Lemmas 5.2 and 4.24 with (4.2).

For d1..t
p
1
/sp4/, we make a calculation:

z!2 ��w3 .by Lemma 4.24/

� t
p
1
�R.v

pC1
3

/� v2t
p
2
�R.v

p
3
/C v

pC1
2

t
p
3

.by (4.15) and Proposition 4.12/

� .zC v2t
p
2

a

� v
p
2

ct2/�R.v
p
3
/� v2t

p
2
�R.v

p
3
/

a

C v
pC1
2

t
p
3

.by (4.19)/

� v
p
3
.zC v

p
2

t2/� v
pC1
2

ct
p
3

mod JpC2: .by (4.4)/

Applying the Hopf conjugation c to the congruences of (4.6) shows the relations

.6.1/ t
p3

1
�R.v3/� v

p
3

t1C v2ct
p2

2
and ct

p3

2
�R.v3/� v

p2

3
ct2� v2ct

p2

3
mod JpC1:
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Then, modulo JpC2,

t
p4

1
˝ v

p
3

z � t
p4

1
�R.v3/

p
˝ z

� .v
p2

3
t
p
1
C v

p
2

ct
p3

2
/˝ z .by (6.1)/

� v
p2

3
t
p
1
˝ zC v

p
2

ct
p3

2
�R.v3/˝ t

p
1
C v

pC1
2

ct
p3

2
˝ ct

p
2

.by (4.18)/

� v
p2

3
t
p
1
˝ zC v

p
2
.v

p2

3
ct2� v2ct

p2

3
/˝ t

p
1
C v

pC1
2

ct
p3

2
˝ ct

p
2
; .by (6.1)/

t
p4

1
˝ v

p
2
v

p
3

t2 � v
p
2

t
p4

1
�R.v3/

p
˝ t2 .by (6.1)/

� v
p
2
v

p2

3
t
p
1
˝ t2:

Therefore

d1.v
p
2
v

p2

3
t
p
1

t2C v
pC1
2

ct
p
4
/��v

p
2
v

p2

3
.t

p
1
˝ t2
a

C t2˝ t
p
1
C t

pC1
1
˝ t

p
1
C t1˝ t

2p
1

:::::::::::::::::::::::::::

/

C v
pC1
2

.t
p4

1
˝ ct

p
3

b

� ct
p3

2
˝ ct

p
2

c

C ct
p2

3
˝ t

p
1

d

� v
p
3

b
p
1;2
/;

t
p4

1
˝ z!2 � v

p2

3
t
p
1
˝ zC v

p
2
.v

p2

3
ct2

::::::

� v2ct
p2

3

d

/˝ t
p
1
C v

pC1
2

ct
p3

2
˝ ct

p
2

c

C v
p
2
v

p2

3
t
p
1
˝ t2

a

� v
pC1
2

t
p4

1
˝ ct

p
3

b

;

where the first equation follows from (4.2), (4.8) and (4.9). The sum of the wavy underlined terms is
�v

p
2
v

p2

3
.2t2˝t

p
1
Ct1˝t

2p
1
/D�v

p
2
v

p2

3
K0, and b

p
1;2
� v

p2�p
3

b1;0 mod I3 by (4.6). Then, modulo JpC2,

.6.2/ t
p4

1
˝ z!2C d1.v

p
2
v

p2

3
t
p
1

t2C v
pC1
2

ct
p
4
/� v

p2

3
t
p
1
˝ z� 2v

p
2
v

p2

3
K0� v

pC1
2

v
p2

3
b1;0:

Now we calculate d1..t
p
1
/sp4/ mod Je.3/p2C1 for odd prime p as

d1.y
0
s;4/� sv

e.3/p2�p�1
2

v
.sp2�p�1/p2

3
.z˝ t

p
1

a

� v
p
2
.K0C v2Z0˝ t

p
1
// .by 5.2/

and

d1

�
�

1
2
sv

e.3/p2�p2�p�1
2

v
.sp2�p�1/p2

3
.z!02�v

p2

2
zt

p
1
/
�

�
1
2
sv

e.3/p2�p�1
2

v
.sp2�p�2/p2

3
t
p4

1
˝z!2

:::::::

�
1
2
sv

e.3/p2�p2�p�1
2

v
.sp2�p�1/p2

3
.by Lemma 4.24/

�.v
p2

2
z˝t

p
1
C2v

p2Cp
2

K0Cv
p2CpC1
2

b1;0�d1.v
p2Cp
2

t
p
1

t2Cv
e.3/
2

v
�p2

3
ct

p
4
/

:::::::::::::::::::::::::::

Cv
p2

2
.z˝t

p
1
Ct

p
1
˝z//

�
1
2
sv

e.3/p2�p�1
2

v
.sp2�p�2/p2

3
.v

p2

3
t
p
1
˝z

b

�2v
p
2
v

p2

3
K0�v

pC1
2

v
p2

3
b1;0/ .by (6.2)/

�
1
2
sv

e.3/p2�p2�p�1
2

v
.sp2�p�1/p2

3
.v

p2

2
z˝t

p
1

a

C2v
p2Cp
2

K0Cv
p2CpC1
2

b1;0Cv
p2

2
.z˝t

p
1

a

Ct
p
1
˝z

b

//:
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6.4 The cochains .t
p2

1
/tp�1 for t 2 Z

Put
.t

p2

1
/tp�1 D�v

�1
2 v

.t�1/p
3

w:

Then the lemma for this case follows from Lemma 4.10.
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Phase transition for the existence of van Kampen 2–complexes
in random groups

TSUNG-HSUAN TSAI

Gromov (1993) showed that every reduced van Kampen diagram D of a random group at density d

satisfies the isoperimetric inequality j@Dj � .1� 2d � "/jDj`. Adapting Gruber and Mackay’s (2021)
method for random triangular groups, we obtain a nonreduced van Kampen 2–complex version of this
inequality.

The main result of this article is a phase transition: given a geometric form Y of 2–complexes, we
find a critical density dc.Y / such that, in a random group at density d , if d < dc , then there is no
reduced van Kampen 2–complex of the form Y ; while if d > dc , then there exists reduced van Kampen
2–complexes of the form Y .

As an application, we exhibit phase transitions for small-cancellation conditions in random groups, giving
explicitly the critical densities for the conditions C 0.�/, C.p/, B.p/ and T .q/.

20F06; 20F05, 20P05

1 Introduction

Random groups The first occurrence of random group presentations is the density model by M Gromov
[1993, 9.B]. Formally, a random group is a random variable with values in a given set of groups, often
constructed by group presentations with a fixed set of generators and a random set of relators. The goal is
to study the asymptotic behaviors of a sequence of random groups .G`/ when the maximal relator lengths
` goes to infinity. We say that G` satisfies some property Q` asymptotically almost surely (a.a.s.) if the
probability that G` satisfies Q` converges to 1 as ` goes to infinity.

Let us consider the permutation invariant density model of random groups introduced by Gromov [1993,
page 272] and developed in [Tsai 2022]. Fix the set of generators Xm D fx1; : : : ;xmg with m � 2 for
group presentations. Let B` be the set of cyclically reduced words of X˙m of length at most `. We shall
construct random groups by densable and permutation invariant random subsets of B`.

Definition 1.1 [Gromov 1993, page 272; Tsai 2022, Definitions 1.5 and 2.5] A sequence of random
subsets .R`/ of the sequence of sets .B`/ is called densable with density d 2 f�1g[ Œ0; 1� if the sequence
of random variables densB`

.R`/ WD logjB`j
.jR`j/ converges in probability to the constant d .

The sequence .R`/ is called permutation invariant if R` is a permutation measure-invariant random
subset of B`.

© 2024 MSP (Mathematical Sciences Publishers). Distributed under the Creative Commons Attribution License 4.0 (CC BY).
Open Access made possible by subscribing institutions via Subscribe to Open.
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Many natural models of random subsets are densable and permutation invariant. For example, the uniform
distribution on all subsets of cardinality bBd

`
c considered in [Ollivier 2004; 2005; 2007], or the Bernoulli

sampling of parameter jB`jd�1 considered in [Antoniuk et al. 2015] for random triangular groups.

Some other natural models are densable but not permutation invariant. For instance, consider the Bernoulli
sampling of parameter .2m/.d�1/` on the set of nonreduced words of length `, and reduce these words to
form a random subset of B`. This is also the case for Gromov’s expander graph model [2003], in which
the random relators are the words read on the simple cycles of a randomly labeled expander graph.

Definition 1.2 [Gromov 1993, page 273; Tsai 2022, Definition 4.1] A sequence of random groups
.G`.m; d// with m generators at density d is defined by

G`.m; d/D hXm jR`i;

where .R`/ is a densable sequence of permutation invariant random subsets of .B`/ with density d .

For detailed surveys on random groups, we refer the reader to work by E Ghys [2004], Y Ollivier [2005],
I Kapovich and P Schupp [2008], and F Bassino, C Nicaud and P Weil [Bassino et al. 2020].

Van Kampen 2–complexes We consider oriented combinatorial 2–complexes and van Kampen diagrams
as in [Lyndon and Schupp 1977, III.2 and III.9], with an additional precision that each face has an
orientation given by its boundary path.

A 2–complex is hence a triplet Y D .V;E;F / where V is the set of vertices, E is the set of oriented
edges and F is the set of oriented faces. Its underlying graph is denote by Y .1/ D .V;E/. Every edge
e 2E has a starting point ˛.e/ 2 V , an ending point !.e/ 2 V and an inverse edge e�1 2E, satisfying
˛.e�1/D !.e/, !.e�1/D ˛.e/ and .e�1/�1 D e. Every face f 2 F has a boundary path @f that is a
cyclically reduced loop on the underlying graph Y .1/, and an inverse face f �1 2 F whose boundary path
is the inverse. That is to say, it satisfies .f �1/�1 D f and @.f �1/D .@f /�1. The starting point of a
face f is the starting point of its boundary path. Note that f �1 has the same starting point as f .

A geometric edge is a pair of inverse edges fe; e�1g, denoted by Ne. Similarly, a geometric face is a pair
of inverse faces ff; f �1g, denoted by Nf . Throughout this article, we will carefully distinguish oriented
edges (faces) and geometric edges (faces). We denote by jY .1/j the number of geometric edges and jY j
the number of geometric faces.

Definition 1.3 A van Kampen 2–complex with respect to a group presentation G D hX j Ri is a 2–
complex Y D .V;E;F / with labels on edges by generators '1 WE!X˙ and labels on faces by relators
'2 W F !R˙ such that '1.e

�1/D '1.e/
�1, '2.f

�1/D '2.f /
�1 and '1.@f /D '2.f /.

We denote briefly Y D .V;E;F; '1; '2/.

The data of the labels '1; '2 on Y is equivalently given by a combinatorial map Y !K.X;R/, where
K.X;R/ is the standard 2–complex with respect to the group presentation G D hX jRi (with one vertex,
an edge for each generator and its inverse, and a face for each relator and its inverse).

Algebraic & Geometric Topology, Volume 24 (2024)
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rr

Figure 1: A reducible pair of faces.

A van Kampen diagram D is a finite, planar (embedded in a Euclidean plane) and simply connected van
Kampen 2–complex. Its boundary length j@Dj is the length of a boundary path, passing once by every
edge adjacent to one face and twice by every edge adjacent to zero faces.

A pair of faces in a van Kampen 2–complex is called reducible if they have the same relator label and
their boundaries share a common edge at the same respective position (see Figure 1). A van Kampen
2–complex is called reduced if there is no reducible pair of faces.

Isoperimetric inequalities In order to prove the hyperbolicity of a random group at density d < 1
2

,
Gromov [1993, 9.B] showed that a.a.s. reduced local van Kampen diagrams of G`.m; d/ satisfy an
isoperimetric inequality depending on the density d .

Theorem 1.4 [Gromov 1993, page 274; Ollivier 2004, Chapter 2] Let .G`.m; d// be a sequence of
random groups with m� 2 generators at density d . For any " > 0 and K > 0, a.a.s. every reduced van
Kampen diagram D of G`.m; d/ with jDj �K satisfies the isoperimetric inequality

j@Dj � .1� 2d � "/jDj`:

Ollivier’s proof [2004] can achieve a slightly stronger1 inequality,

jD.1/
j �

�
1� d � 1

2
"
�
jDj`:

One may expect such an inequality to hold for every reduced van Kampen 2–complex Y with jY j �K.
D Gruber and J Mackay [2021, Section 2] showed that in the triangular model of random groups,2 the
above inequality holds for every nonreduced van Kampen 2–complex Y with jY j �K if the reduction
degree (Definition 2.1) Red.Y / is added in the left-hand side of the inequality.

However, the result fails in the regular Gromov density model: the condition jY j �K is not enough (see
Remark 2.4). In Section 2 of this paper, we introduce the notion of complexity (Definition 2.2) to adapt
Gruber and Mackay’s inequality in the Gromov density model, establishing a nonreduced van Kampen
2–complex version of Theorem 1.4. A similar approach was given in the preprint [Odrzygóźdź 2021].

1Note that every van Kampen diagram composed of relators of lengths at most ` satisfies 2jD.1/j � j@Dj � jDj`, so the given
inequality implies the isoperimetric inequality.
2A model where the relator length `D 3 is fixed, and we are interested in asymptotic behaviors when the number of generators
m goes to infinity.

Algebraic & Geometric Topology, Volume 24 (2024)
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Theorem 1.5 Let .G`.m; d// be a sequence of random groups with m� 2 generators at density d . Let
" > 0, K > 0. For any d < 1

2
, a.a.s. every van Kampen 2–complex Y of complexity K of G`.m; d/

satisfies
jY .1/jCRed.Y /� .1� d � "/jY j`:

Phase transition for the existence of van Kampen 2–complexes We are now interested in the converse
of Theorem 1.5: Given a 2–complex Y satisfying the inequality of Theorem 1.5, is it true that a.a.s. there
exists a reduced van Kampen 2–complex of G`.m; d/ whose underlying 2–complex is Y ?

A 2–complex Y is said to be fillable by a group presentation G D hX jRi (or by the set of relators R) if
there exists a reduced van Kampen 2–complex of G whose underlying 2–complex is Y . An edge of a
2–complex is called isolated if it is not adjacent to any face. Since isolated edges do not affect fillability,
we will only consider finite 2–complexes without isolated edges in the following.

To better formulate the problem, we consider a sequence of 2–complexes .Y`/ and introduce the notion
of geometric form of 2–complexes .Y; �/ (Definition 3.1), together with its density dens Y and its
critical density densc Y (Definition 3.2). The main result of this article is the phase transition at density
1� densc.Y /, for the fillability of the 2–complex Y`.

Theorem 1.6 Let .G`.m; d// be a sequence of random groups with m� 2 generators at density d . Let
.Y`/ be a sequence of 2–complexes with some geometric form .Y; �/.

(i) If d < 1� densc Y , then a.a.s. Y` is not fillable by G`.m; d/.

(ii) If d > 1� densc Y and Y` is fillable by B`, then a.a.s. Y` is fillable by G`.m; d/.

In Section 3, we prove Theorem 1.6 using the multidimensional intersection formula for random subsets
(Theorem 3.6, [Tsai 2022, Theorem 3.7]), which generalizes the proof for the C 0.�/ phase transition
in [Tsai 2022, Theorem 1.4]. We will see in Remark 3.3 that the second assertion of the theorem is
equivalent to the following corollary.

Corollary 1.7 Let .G`.m; d// be a sequence of random groups with m� 2 generators at density d . Let
s > 0 and K > 0. Let .Y`/ be a sequence of 2–complexes of the same geometric form such that Y` is
fillable by B`. If every sub-2–complex Z` of Y` satisfies

jZ
.1/

`
j � .1� d C s/jZ`j`;

then a.a.s. Y` is fillable by G`.m; d/.

Note that we need Y` to have at least one filling by the set of all possible relators B`. It is automatically
satisfied for planar and simply connected 2–complexes. In addition, if every face boundary length of Y`

is exactly `, then the given inequality is equivalent to an isoperimetric inequality similar the inequality of
Theorem 1.4. Hence the following corollary.
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Corollary 1.8 Let .G`.m; d// be a sequence of random groups with m� 2 generators at density d . Let
s > 0 and K > 0. Let .D`/ be a sequence of finite planar 2–complexes of the same geometric form such
that every face boundary length of D` is exactly `. If every sub-2–complex D0

`
of D` satisfies

j@D0`j � .1� 2d C s/jD0`j`;

then a.a.s. D` is fillable by G`.m; d/.

It is mentioned in [Ollivier and Wise 2011, Proposition 1.8] that when d < 1=p, a.a.s., a random group at
density d has the C.p/ small cancellation condition. As an application of Theorem 1.6, we show that
there is a phase transition: if d > 1=p, then a.a.s. a random group at density d does not have C.p/ (see
Proposition 4.2).

Acknowledgements The content of this article was completed during my PhD thesis at the University
of Strasbourg. I would like to thank my thesis advisor, Thomas Delzant, for his guidance and interesting
discussions on the subject.

2 Isoperimetric inequality for van Kampen 2–complexes

We shall prove Theorem 1.5 in this section.

2.1 Reduction degree and complexity

Given a (nonreduced) van Kampen diagram Y D .V;E;F; '1; '2/ with respect to a group presentation
hX j Ri, its reduction degree is the total number of geometric edges causing reducible pair of faces,
counted with multiplicity: for any edge e 2E, any relator r 2R and any integer j , we count the number
of faces f 2 F labeled by r and having e as the j th boundary edge. If this number is k, we add .k�1/C

to the reduction degree where . �/C is the positive part function. Here is the formal definition given by
Gruber and Mackay [2021].

Definition 2.1 (reduction degree [Gruber and Mackay 2021, Definition 2.5]) Let Y D .V;E;F; '1; '2/

be a van Kampen 2–complex of a group presentation GD hX jRi. Let ` be the maximal boundary length
of faces of Y . The reduction degree of Y is

Red.Y /D
X
e2E

X
r2R

X
1�j�`

�ˇ̌
ff 2 F j '2.f /D r; e is the j th edge of @f g

ˇ̌
� 1

�C
:

It is not hard to see that a van Kampen 2–complex Y is reduced if and only if Red.Y /D 0. Since isolated
edges (edges that are not attached by any face) do not affect the reduction degree, we will only consider
2–complexes without isolated edges in the following.

A maximal arc of a 2–complex is a reduced combinatorial path passing only by vertices of degree 2

whose endpoints are not of degree 2. The complexity of a 2–complex encodes the number of maximal
arcs with the number of faces.

Algebraic & Geometric Topology, Volume 24 (2024)
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Definition 2.2 (complexity of a 2–complex) Let Y be a 2–complex. Let K > 0. We say that Y is of
complexity K if jY j �K and if for any face f of Y , the boundary path @f is divided into at most K

maximal arcs.

If D is a planar and simply connected 2–complex with jDj �K, then the complexity of D is 6K. Indeed,
as the rank of its underlying graph is K, the number of its maximal arcs is at most 3K, and every boundary
path is divided into at most 6K maximal arcs (an arc may be used twice).

Lemma 2.3 Let K > 0. There exists a number C.K/, depending only on K, such that the number of
2–complexes of complexity K with face boundary lengths at most ` is bounded by C.K/`K 2

.

Proof Recall that we only consider 2–complexes without isolated edges, so the number of maximal
arcs in a 2–complex of complexity K is at most K2 (each of the K faces has at most K arcs). Since the
face boundary lengths are at most `, these K2 maximal arcs have lengths at most `. So there are at most
`K 2

choices for their lengths. Now let C.K/ be the number of choices to attach these K2 maximal arcs
to form a 2–complex. The number of ways to construct a 2–complex of complexity K with boundary
lengths at most ` is hence bounded by C.K/`K 2

.

Remark 2.4 While the number of 2–complexes with a bounded complexity grows polynomially with the
maximal face boundary length `, it is not the case for 2–complexes with a bounded number of faces, not
even for 2–complexes with a bounded number of maximal arcs.

For example, consider the set of 2–complexes with one single face of boundary length ` whose underlying
graph is 8–shaped with one vertex and two edges. There are only two maximal arcs, while the number of
such 2–complexes equals to the number of words on two letters and their inverses of length `, which
grows exponentially with `. Our polynomial bound will be useful in the proof of Theorem 1.5.

Remark 2.5 Actually, there are van Kampen 2–complexes that contradict the inequality of Theorem 1.5.
For instance, D Calegari and A Walker [2015] proved that at any density d < 1

2
, there exists a number

K depending only on d such that, in G`.m; d/ there is a.a.s. a reduced van Kampen 2–complex Y

homeomorphic to a surface of genus O.`/ (hence with complexity O.`/) with at most K faces.

Since every edge is adjacent to two faces in a surface, we have jY .1/j � 1
2
jY j`, while according to

Theorem 1.5 we expect that
jY .1/j � .1� d � "/jY j` > 1

2
jY j`:

2.2 Abstract van Kampen 2–complexes

Let .G`.m; d// be a sequence of random groups at density d , defined by G`.m; d/D hx1; : : : ;xm jR`i.
Recall that B` is the set of all cyclically reduced words of length at most ` and jB`j D .2m� 1/`CO.1/.
Let 0< " < 1� d . Since logjB`j

jR`j converges in probability to the constant d , the probability event

Q` WD
˚
.2m� 1/.d�."=4/`/ � jR`j � .2m� 1/.dC."=4/`/

	
is a.a.s. true (see [Tsai 2022, Proposition 1.8]).
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If we consider the Bernoulli density model where the events fr 2R`g through r 2B` are independent of
the same probability .2m�1/.d�1/`, it is obvious that we have Pr.r1; : : : ; rk 2R`/D .2m�1/k.d�1/` for
distinct r1; : : : ; rk in B`. In the permutation invariant density model, we have the following corresponding
proposition, which is a variant of [Tsai 2022, Lemma 3.10].

Proposition 2.6 Let r1; : : : ; rk be pairwise different relators in B`. We have

Pr.r1; : : : ; rk 2R` jQ`/� .2m� 1/k.d�1C."=2//`:

Abstract van Kampen 2–complexes, as abstract van Kampen diagrams introduced by Ollivier [2004], is a
structure between 2–complexes and van Kampen 2–complexes that helps us solve 2–complex problems
in random groups. Recall that since isolated edges do not affect fillability, we will only consider finite
2–complexes without isolated edges.

Definition 2.7 (abstract van Kampen 2–complex) An abstract van Kampen 2–complex zY is a 2–complex
.V;E;F / with a labeling function on faces by integer numbers and their inverses

z'2 W F ! f1; 1
�; 2; 2�; : : : ; k; k�g

such that z'2.f
�1/D z'2.f /

�. We denote it simply by zY D .V;E;F; z'2/.

By convention .i�/� D i . The integers f1; : : : ; kg are called abstract relators. Similar to a van Kampen
diagram, a pair of faces f; f 0 2 F is reducible if they are labeled by the same abstract relator, and they
share an edge at the same position of their boundaries. An abstract diagram is called reduced if there is
no reducible pair of faces. Let ` be the maximal boundary length of faces. The reduction degree of the
2–complex zY can be similarly defined as

Red. zY /D
X
e2E

X
1�i�k

X
1�j�`

�ˇ̌
ff 2 F j z'2.f /D i; e is the j th edge of @f g

ˇ̌
� 1

�C
:

We say that an abstract van Kampen 2–complex with k abstract relators zY D .V;E;F; z'2/ is fillable by a
group presentation GDhX jRi (or by a set of relators R) if there exists k different relators r1; : : : ; rk 2R

such that the construction '2.f / WD rz'2.f / gives a van Kampen 2–complex Y D .V;E;F; '1; '2/
3 of G.

The k–tuple of relators .r1; : : : ; rk/, or the van Kampen 2–complex Y , is called a filling of zY ; see
Figure 2, left. As we picked different relators for different abstract relators, if Y is a filling of zY , then
Red.Y /D Red. zY /, and zY is reduced if and only if Y is reduced.

Denote `i the length of the abstract relator i for 1 � i � k. Let ` D maxf`1; : : : ; `kg be the maximal
boundary length of faces. The pairs of integers .i; 1/; : : : ; .i; `i/ are called abstract letters of i . The set
of abstract letters of zY is then a subset of the product set f1; : : : ; kg� f1; : : : ; `g. The geometric edges of
zY are decorated by abstract letters and directions: Let f 2 F be labeled by i and let e 2E be at the j th

3Note that the edge labeling '1 is determined by the face labeling '2 as there are no isolated edges.
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21 filling
���!

zY

r2r1

Y

21
.2
;
3
/.1

;
4
/

Figure 2: Left: filling an abstract van Kampen 2–complex. Right: a geometric edge decorated by
two abstract letters.

position of @f . The geometric edge Ne is decorated, on the side of Nf , by an arrow indicating the direction
of e and the abstract letter .i; j /. The number of decorations on a geometric edge is the number of its
adjacent faces with multiplicity (an edge may be attached twice by the same face); see Figure 2, right.

Definition 2.8 (free-to-fill) An abstract letter .i; j / of zD is free-to-fill if, for any edge Ne decorated by
.i; j /, it is the minimal decoration on Ne.

Denote ˛i the number of faces labeled by the abstract relator i and �i the number of free-to-fill edges
of i . We have the following estimation.

Lemma 2.9 Let zY D .V;E;F; z'2/ be an abstract van Kampen 2–complex with k abstract relators. Then
kX

iD1

˛i�i � j
zY .1/jCRed. zY /:

Proof Denote by E the set of geometric edges and F the set of geometric faces. For any geometric
edge Ne, an adjacent face Nf from which the decoration is minimal is called a preferred face of Ne. For any
face Nf , let E Nf be the set of geometric edges Ne on its boundary such that Nf is a preferred face of Ne. Note
that an edge will never be counted twice as the decorations given by one face are all different. According
to Definition 2.8, for any face f with z'2.f /D i , we have �i � jE Nf j. Hence,

kX
iD1

˛i�i �

X
Nf 2F

jE Nf j:

Denote by Red. Ne/ the reduction degree caused by the edge Ne. That is,

Red. Ne/ WD
X

1�i�k

X
1�j�`

�ˇ̌
ff 2 F j z'2.f /D i; e or e�1 is the j th edge of @f g

ˇ̌
� 1

�C
;

so that the number of preferred faces of Ne is bounded by 1CRed. Ne/. Hence,X
Nf 2F

jE Nf j �
X
Ne2E

.1CRed. Ne//D j zY .1/jCRed. zY /:

Probability of filling We shall estimate the probability that an abstract van Kampen 2–complex zY is
fillable by a random group G`.m; d/. This step is the key to prove Theorem 1.5. Recall that

Q` WD
˚
.2m� 1/.d�."=4/`/ � jR`j � .2m� 1/.dC."=4/`/

	
is an a.a.s. true probability event.
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Lemma 2.10 Let zY be an abstract van Kampen 2–complex with k abstract relators. We have

Pr. zY is fillable by G`.m; d/ jQ`/�
�

2m

2m�1

�k
.2m� 1/

Pk
iD1.�iC.d�1C"=2/`/:

Proof Let us estimate the number of fillings of zY . For every free-to-fill abstract letter .i; j /, there
are at most 2m ways to fill a generator if j D 1, at most .2m� 1/ ways to fill if j ¤ 1 for avoiding
reducible word. As there are �i free-to-fill abstract letters on the i th abstract relator, there are at most
2m.2m� 1/�i�1 ways to fill it. So there are at most

Qk
iD1.2m.2m� 1/�i�1/ ways to fill zY .

Let Y be a van Kampen 2–complex, which is a filling of zY . The 2–complex Y is labeled by k different
relators in B`, denoted r1; : : : ; rk . By Proposition 2.6,

Pr.Y is a 2–complex of G`.m; d/ jQ`/D Pr.r1; : : : ; rk 2R` jQ`/� .2m� 1/k.d�1C"=2/`:

Hence

Pr. zY is fillable by G`.m; d/ jQ`/�
X

Y fills zY

Pr.Y is a 2–complex of G`.m; d/ jQ`/

�

kY
iD1

.2m.2m� 1/�i�1/.2m� 1/k.d�1C"=2/`

�

�
2m

2m�1

�k
.2m� 1/

Pk
iD1.�iC.d�1C"=2/`/:

Lemma 2.11 Let zY be an abstract van Kampen 2–complex with k abstract relators. Suppose that zY does
not satisfy the inequality given in Theorem 1.5, ie

j zY .1/jCRed. zY / < .1� d � "/j zY j`;

then
Pr. zY is fillable by G`.m; d/ jQ`/�

�
2m

2m�1

�
.2m� 1/�."=2/`:

Proof Let zYi be the sub-2–complex of zY consisting of faces labeled by the i first abstract relators. Let
Pi D Pr. zYi is fillable by G`.m; d/ jQ`/. Apply Lemma 2.10 on zYi ; we have

Pi �

�
2m

2m�1

�i
.2m� 1/

Pi
j D1.�jC.d�1C"=2/`/:

Note that if zY is fillable by G`.m; d/ then its sub-2–complex zYi is fillable by the same group. So for any
1� i � k,

log2m�1.Pk/� log2m�1.Pi/�

iX
jD1

�
�j C

�
d � 1C 1

2
"
�
`C log2m�1

�
2m

2m�1

��
:

Without loss of generality, suppose that ˛1 � ˛2 � � � � � ˛k . Note that log2m�1.Pk/ is negative and
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˛1 � j
zY j, so j zY j log2m�1.Pk/ � ˛1 log2m�1.Pk/. By Abel’s summation formula, with convention

˛kC1 D 0,

j zY j log2m�1.Pk/� ˛1 log2m�1.Pk/D

kX
iD1

.˛i �˛iC1/ log2m�1.Pk/

�

kX
iD1

.˛i �˛iC1/

iX
jD1

h
�i C

�
d � 1C 1

2
"
�
`C log2m�1

�
2m

2m�1

�i

D

kX
iD1

˛i

h
�i C

�
d � 1C 1

2
"
�
`C log2m�1

�
2m

2m�1

�i

D

kX
iD1

˛i�i C

� kX
iD1

˛i

�h�
d � 1C 1

2
"
�
`C log2m�1

�
2m

2m�1

�i
:

Note that
Pk

iD1 ˛i D j
zY j. By Lemma 2.9 and the hypothesis of the current lemma,

kX
iD1

˛i�i � j
zY .1/jCRed. zY / < .1� d � "/j zY j`:

Hence,

j zY j log2m�1.Pk/� .1� d � "/j zY j`Cj zY j
h�

d � 1C 1
2
"
�
`C log2m�1

�
2m

2m�1

�i
� j zY j

h
�

1
2
"`C log2m�1

�
2m

2m�1

�i
:

2.3 Proof of Theorem 1.5

Under the condition Q` WD f.2m� 1/.d�."=4/`/ � jR`j � .2m� 1/.dC."=4/`/g, the probability that there
exists a van Kampen 2–complex of complexity K of G`.m; d/ satisfying the inverse inequality

(�) jY .1/jCRed.Y / < .1� d � "/jY j`

is bounded by X
zY of complexity K , satisfying (�)

Pr. zY is fillable by G`.m; d/ jQ`/:

By Lemma 2.3 and the face that there at most K2K ways to label a 2–complex with K faces by abstract
relators f1˙; : : : ;K˙g, there are at most `3K �K2K terms in the sum. By Lemma 2.11, every term is
bounded by �

2m

2m�1

�
.2m� 1/�."=2/`:

So the sum is smaller than
`3K K2K

�
2m

2m�1

�
.2m� 1/�."=2/`;

which converges to 0 as `!1.

Algebraic & Geometric Topology, Volume 24 (2024)



Phase transition for the existence of van Kampen 2–complexes in random groups 3907

By definition Pr.Q`/
`!1
����! 1, so the probability that there exists a van Kampen 2–complex of G`.m; d/

of complexity K satisfying (�) converges to 0 as ` goes to infinity. That is to say, a.a.s. every van Kampen
diagram of G`.m; d/ of complexity K satisfies the inequality

jY .1/jCRed.Y /� .1� d � "/jY j`:

Collapsible 2–complexes and closed surfaces Recall that an elementary collapse of a 2–complex, in the
sense of Whitehead [1939], is the removal of a face together with one of its edges that is not adjacent to
other faces. A 2–complex is called collapsible4 to a graph if it can be collapsed to a graph by a sequence
of elementary collapses.

Let Y be a 2–complex of complexity K. If Y is not collapsible, then after all possible elementary
collapses, we obtain a sub-2–complex Y 0 having only edges that are adjacent to at least 2 faces, which
gives jY 0.1/j � 1

2
jY 0j`, where ` is the maximal boundary length of faces. Since it contradicts the inequality

of Theorem 1.5 for any density d < 1
2

, the 2–complex Y cannot be fillable by any random group. Hence
the following proposition.

Proposition 2.12 Let .G`.m; d// be a sequence of random groups with m� 2 generators at density d .
For any d < 1

2
and K > 0, a.a.s. every reduced van Kampen 2–complex of complexity K of G`.m; d/ is

collapsible to a graph.

Consequently, a 2–complex with K faces that is homeomorphic to a closed surface of a fixed genus5 g is
not fillable by any random group, since a surface is not collapsible and the complexity is bounded by a
number depending only on K and g.

3 Phase transition for the existence of van Kampen 2–complexes

In this section, we work on the proof of Theorem 1.6.

Motivation and a counterexample Let .G`.m; d// be a sequence of random groups at density d . We
are interested in the converse of Theorem 1.5 without the reduction part: if a 2–complex Y` with bounded
complexity satisfies the inequality

jY
.1/

`
j � .1� d C s/jY`j`

with some s > 0, does there exist a face labeling by relators and an edge labeling by generators, so that
Y` becomes a reduced van Kampen 2–complex of G`.m; d/?

The motivation for this question comes from the well-known phase transition at density dD 1
2
�, mentioned

in [Gromov 1993, page 274]: if d < 1
2
� then a.a.s. G`.m; d/ has the C 0.�/ small cancellation condition;

4In the original context [Whitehead 1939], the removal of an isolated edge is also an elementary collapse, and a 2–complex is
collapsible if it can be collapsed to a point.
5Note that the genus g need to be fixed, otherwise by Calegari and Walker’s result [2015] there exists a closed surface (see
Remark 2.5).
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�`
0:9`

0:1`

0:1`

0:8`D`
0:9`

0:1`

0:1`

D0
`

Figure 3: Left: a van Kampen diagram denying the C 0.�/ condition. Middle and right: A 2–
complex that satisfies the isoperimetric inequality with a sub-2–complex that does not.

while if d > 1
2
� then a.a.s. G`.m; d/ does not have C 0.�/. The first assertion is a simple application of

Theorem 1.4. For the second assertion, we need to show that a.a.s. there exists a van Kampen 2–complex
D of G`.m; d/ with exactly 2 faces of boundary length `, sharing a common path of length at least �`
(Figure 3, left).

The first detailed proof of such an existence is given in [Bassino et al. 2020, Theorem 2.1], using an
analog of the probabilistic pigeonhole principle. Another proof is given in [Tsai 2022, Theorem 1.4]. An
intuitive explanation using the “dimension reasoning” is given in [Ollivier 2005, page 30]: The dimension
of the set of couples R` �R` is 2d`. Sharing a common subword of length L imposes L equations, so
the “dimension” of the set of couples of relators sharing a common subword of length �` is 2d`��`.
If d > �=2, then there will exist such a couple because the dimension will be positive. However, this
argument is not true for any 2–complex in general. Here is a counterexample:

At density d D 0:4, let .D`/ be a sequence of 2–complexes where D` is given in Figure 3, middle. The
given inequality is satisfied because jD.1/

`
j D 1:9` > 1:8` D .1� d/jD`j`. However, the subdiagram

D0
`

(Figure 3, right) gives jD0.1/
`
j D 1:1` < 1:2`D .1� d/jD0

`
j`), which contradicts the isoperimetric

inequality of Theorem 1.5 and cannot be a van Kampen diagram of G`.m; d/.

3.1 Geometric form and critical density

Let us define the geometric form of 2–complexes and the critical density of a geometric form. To simplify
the notation, for a 2–complex Y D .V;E;F /, we denote by Edge.Y / the set of geometric edges of Y

and e instead of Ne for geometric edges.

Definition 3.1 A geometric form of 2–complexes is a couple .Y; �/ where Y D .V;E;F / is a finite
connected 2–complex without isolated edges, and � is a length labeled on edges defined by

� W Edge.Y /! �0; 1�; e 7! �e;

such that for every face f of Y , the boundary length j@f j is bounded by 1.
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A sequence of 2–complexes .Y`/ is said to be of the geometric form .Y; �/ if Y` is obtained from Y by
dividing every edge e of Y into b�e`c edges6 of length 1.

A sequence of 2–complexes .Y`/ is briefly said to be of the same geometric form if the geometric form
.Y; �/ is not specified. Note that the boundary length of every face f of Y` is at most `. If Z is a
sub-2–complex of Y , we denote Z � Y . By convention, if .Z`/ is a sequence of 2–complexes of the
geometric form .Z; �jZ /, we have Z` � Y` for any integer `.

Definition 3.2 Let .Y; �/ be a geometric form of 2–complexes. The density of Y is

dens.Y / WD

P
e2Edge.Y / �e

jY j
:

The critical density of Y is
densc.Y / WD min

Z�Y
fdens.Z/g:

The intuition of this definition can be found in Lemma 3.8: the density of Y is actually the density of all
possible van Kampen 2–complexes that fill Y`.

Remark 3.3 Taking Definitions 3.2 and 3.1 together, we have

dens.Y /D

P
e2Edge.Y / �e

jY j
D lim
`!1

P
e2Edge.Y /b�e`c

jY`j`
D lim
`!1

jY
.1/

`
j

jY`j`
:

Hence, the condition “densc.Y /C d > 1” is equivalent to the following statement: Given s > 0, for `
large enough, every sub-2–complex Z` of Y` satisfies

jZ
.1/

`
j � .1� d C s/jZ`j`:

This argument shows that the second assertion of Theorem 1.6 is equivalent to Corollary 1.7.

Proof of Theorem 1.6(i) We will use Theorem 1.5 without the reduction part. Let .G`.m; d// be a
sequence of random groups with m generators at density d . Recall that a 2–complex Y` is said to be
fillable by G`.m; d/ if there exists a reduced van Kampen 2–complex of G`.m; d/ whose underlying
2–complex is Y`.

Let .Y; �/ be a geometric form of 2–complexes with densc Y C d < 1. Let .Y`/ be a sequence of
2–complexes of the geometric form .Y; �/. We shall prove that a.a.s. the 2–complex Y` is not fillable by
the random group G`.m; d/. By the definition of critical density, there exists a sub-2–complex Z � Y

satisfying dens ZC d < 1. Let .Z`/ be the sequence of 2–complexes of the geometric form .Z; �jZ /.
We shall prove that a.a.s. Z` is not fillable by G`.m; d/.

6We can replace b�e`c by any function with �`C o.`/ and slightly smaller than �`. Note that the sum of edge lengths on every
face boundary of Y` is at most `
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Let " > 0 such that dens Z D 1� d � 3". By definition,

lim
`!1

jZ
.1/

`
j

jZ`j`
D 1� d � 3";

so for ` large enough,

jZ
.1/

`
j � .1� d � 2"/jZ`j` < .1� d � "/jZ`j`:

The complexity of Z` is

K Dmax
n
jZj; jZ.1/

j;max
n

1

�e

ˇ̌
e 2 Edge.Z/

oo
;

independent of `. By Theorem 1.5 with " and K given above, a.a.s. every van Kampen 2–complex Z` of
G`.m; d/ of complexity K should satisfy

jZ
.1/

`
j � .1� d � "/jZ`j`:

Hence, a.a.s. the given 2–complex Z` is not fillable by G`.m; d/, which implies that a.a.s. Y` is not
fillable by G`.m; d/.

3.2 The multidimensional intersection formula for random subsets

To prove the second assertion of Theorem 1.6, we need the multidimensional intersection formula for
random subsets with density, introduced in [Tsai 2022, Section 3].

Recall that B` is the set of cyclically reduced words of X˙m D fx
˙
1
; : : : ;x˙mg of length at most `, and that

jB`j D .2m� 1/`Co.`/. Let k � 1 be an integer. Denote by B
.k/

`
the set of k–tuples of pairwise distinct

relators .r1; : : : ; rk/ in B`. Such notation can be used for any set or any random set.

Note that jB.k/
`
jD .2m�1/k`Co.`/. Recall that a sequence of fixed subsets .Y`/ of the sequence .B.k/

`
/ is

called densable with density ˛ 2 f�1g[ Œ0; 1� if the sequence of real numbers .log
jB

.k/

`
j
jY`j/ converges

to ˛ (see [Gromov 1993, page 272; Tsai 2022, Definition 1.5]). That is to say, jY`j D .2m� 1/˛k`Co.`/.

Definition 3.4 (self-intersection partition [Tsai 2022, Definition 3.4]) Let .Y`/ be a sequence of fixed
subsets of the sequence .B.k/

`
/. Let 0� i � k be an integer. The i th self-intersection of Y` is

Si;` WD f.x;y/ 2 Y2
` j jx\yj D ig;

where jx\yj is the number of common elements between the sets xD .r1; : : : ; rk/ and y D .r 0
1
; : : : ; r 0

k
/.

The family of subsets fSi;` j 0� i � kg is a partition of Y2
`
, called the self-intersection partition of Y`.

Note that .Si;`/`2N is a sequence of subsets of the sequence ..B.k/
`
/2/`2N , with density smaller than

dens
..B

.k/

`
/2/
.Y2
`
/D dens

.B
.k/

`
/
.Y`/.
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Definition 3.5 (d–small self-intersection condition [Tsai 2022, Definition 3.5]) Let .Y`/ be a sequence
of fixed subsets of .B.k/

`
/ with density ˛. Let Si;` with 0� i � k be its self-intersection partition. Let

d > 1�˛. We say that .Y`/ satisfies the d–small self-intersection condition if, for every 1� i � k � 1,

dens
..B

.k/

`
/2/
.Si;`/ < ˛� .1� d/�

i

2k
:

Theorem 3.6 (multidimensional intersection formula [Tsai 2022, Theorem 3.6]) Let .R`/ be a sequence
of permutation invariant random subsets of .B`/ of density d . Let .Y`/ be a sequence of fixed subsets of
.B

.k/

`
/ of density ˛ > 1� d . If .Y`/ satisfies the d–small self-intersection condition , then the sequence

of random subsets .Y` \R
.k/

`
/ is densable with density ˛C d � 1.

In particular , a.a.s. the random subset Y` \R
.k/

`
of B

.k/

`
is not empty.

3.3 Proof of Theorem 1.6(ii)

Let .Y`/ be a sequence of 2–complexes of the same geometric form .Y; �/ with k faces. In the following,
we denote by Y` the set of pairwise distinct relators in B` that fill Y`, which is a subset of B

.k/

`
.

Let .G`.m; d// be a sequence of random groups at density d , defined by G`.m; d/D hXm jR`i, where
.R`/ is a sequence of random subsets with density d . The intersection Y` \R

.k/

`
is hence the set of

k–tuples of pairwise distinct relators in R` that fill Y`. We want to prove that this intersection is not empty,
so that Y` is fillable by G`.m; d/. According to Theorem 3.6, it remains to prove that if densc Y > 1�d ,
then the sequence .Y`/ is densable and satisfies the d–small self-intersection condition.

We will prove in Lemma 3.8 that .Y`/ is densable with density exactly dens.Y /, and in Lemma 3.9 that
it satisfies the d–small self-intersection condition.

Lemma 3.7 Let Y` be the set of k–tuples of relators in B` that fill Y`, not necessarily pairwise distinct.
If Y` is fillable by B`, then

dens.Bk
`
/.Y`/D dens Y:

Proof We shall estimate the number jY`j by counting the number of labelings on edges of Y` that
produce van Kampen 2–complexes with respect to all possible relators B`.

We start by filling edges in the neighborhoods of vertices that are originally vertices of the geometric form
Y (before dividing). Consider the set of oriented edges of Y` starting at some vertex that is originally a
vertex of Y before dividing. A vertex labeling is a labeling on these edges by X˙m that does not produce
any reducible pair of edges on face boundaries: for every pair of different edges e1; e2 starting at the
same vertex, if they are labeled by the same generator x 2X˙m , then the path e�1

1
e2 is not cyclically part

of any face boundary loop. Since the 2–complex Y` is fillable, the set of vertex labelings is not empty.
Denote by C � 1 the number of vertex labelings of Y`.

As m� 2 and b�e`c� 3 for ` large enough, if there exists a vertex labeling, then the other edges of Y` can
be completed as a van Kampen 2–complex of B`, and the number C depends only on the geometric form Y .
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To label the remaining b�`c� 2 edges on the arc divided from the edge e 2 Edge.Y /, there are 2m� 1

choices for the first b�`c� 3 edges, and 2m� 2 or 2m� 1 choices for the last edge. So

C
Y

e2Edge.Y /

.2m� 1/b�e`c�3.2m� 2/� jY`j � C
Y

e2Edge.Y /

.2m� 1/b�e`c�2:

Recall that k D jY j D jY`j and that jBk
`
j D .2m� 1/k`Co.`/. We have

dens.Bk
`
/.Y`/D

P
e2Edge.Y / �e

jY j
D dens Y:

Lemma 3.8 If densc Y > 1
2

and Y` is fillable by B`, then .Y`/ is densable in .B.k/
`
/ and

dens
.B

.k/

`
/
.Y`/D dens Y:

Proof Suppose that jY j � 2. The case jY j D 1 is trivial. Let Z be a sub-2–complex of Y with exactly
two faces f1; f2. As dens Z � densc Y > 1

2
, by Definition 3.2, we haveX

e2Edge.Z/

�e >
1
2
jZj D 1� j@f1j:

Let YZ
`

be the set of fillings of Y` by B` such that the two faces of Z are filled by the same relator. By
the same arguments of the previous lemma,

jYZ
`
j � C.2m� 1/j@f1j

Y
e2Edge.Y /nEdge.Z/

.2m� 1/b�e`c�2;

so
dens.Bk

`
/.Y

Z
`
/�

1

jY j

� X
e2Edge.Y /

�eC

�
j@f1j �

X
e2Edge.Z/

�e

��

<

P
e2Edge.Y / �e

jY j
D dens Y D dens.Bk

`
/.Y`/:

Knowing that
Y` D Y`

/ [
Z<Y; jZ jD2

YZ
`
;

we have
jY`j �

X
Z<Y; jZ jD2

jYZ
`
j � jY`j � jY`j:

There are
�
jY j
2

�
terms in the sum, in every term we have dens.Bk

`
/.Y

Z
`
/ < dens.Bk

`
/.Y`/, so (see [Tsai

2022, Propositions 2.7 and 2.8])

dens.Bk
`
/.Y`/D dens.Bk

`
/.Y`/:

Together with Lemma 3.7, we have dens.Bk
`
/.Y`/D dens Y . As dens.Bk

`
/.B

.k/

`
/D 1, we get

dens
.B

.k/

`
/
.Y`/D dens Y:
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Lemma 3.9 Suppose that densc Y > 1� d . Let Si;` be the i th self-intersection of the set Y`. We have

dens
..B

.k/

`
/2/
.Si;`/ < dens Y � .1� d/�

i

2k
:

Proof Let Z, W be two sub-2–complexes of Y with jZj D jW j D i < k D jY j. Let .Z`/; .W`/ be
the corresponding sequences of 2–complexes of the geometric forms Z and W , respectively. Denote by
S`.Z;W / the set of pairs of pairwise distinct fillings ..r1; : : : ; rk/; .r

0
1
; : : : ; r 0

k
// of Y` by all possible

relators B` such that, the i relators in the first filling .r1; : : : ; rk/ corresponding to Z` are identical to the
i relators in the second filling .r 0

1
; : : : ; r 0

k
/ corresponding to W`, and that the remaining 2k � 2i relators

are pairwise different, not repeating the relators in Z` and W`.

Let us estimate the cardinality jS`.Z;W /j. First, fill the k–tuple .r1; : : : ; rk/ so the i relators in the next
k–tuple .r 0

1
; : : : ; r 0

k
/ corresponding to the sub-2–complex W` is determined. There are at most i ! choices

for ordering these i relators. To fill the remaining k� i relators in .r 0
1
; : : : ; r 0

k
/, by the same arguments of

Lemma 3.7, we get

jS`.Z;W /j � jY`j � i !�C
Y

e2Edge.Y /nEdge.W /

.2m� 1/b�e`c�2:

Recall that the density of Y is defined by .1=jY j/
�P

e2Edge.Y / �e

�
, and that dens W � densc Y > 1� d

by Definition 3.2. Together with the hypothesis densc Y > 1� d , we have

dens
..B

.k/

`
/2/
.S`.Z;W //�

1

2k

� X
e2Edge.Y /

�eC

X
e2Edge.Y /nEdge.W /

�e

�

D
1

2k

�
2

X
e2Edge.Y /

�e �

X
e2Edge.W /

�e

�
D dens Y �

i

2k
dens W

< dens Y �
i

2k
.1� d/:

Note that

Si;` D

[
Z<Y; W <Y
jZ jDjW jDi

S`.Z;W /:

It is a union of
�
k
i

�2
subsets of densities strictly smaller than dens Y � i

2k
.1� d/. According to [Tsai

2022, Proposition 2.7], we have

dens
..B

.k/

`
/2/
.Si;`/ < dens Y �

i

2k
.1� d/:

This completes the proof of Theorem 1.6.
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4 Phase transitions for small cancellation conditions

Let us recall small cancellation notions in [Lyndon and Schupp 1977, page 240]. A piece with respect to
a set of relators is a cyclic subword that appears at least twice. A group presentation satisfies the C 0.�/

small cancellation condition for some 0< � < 1 if the length of a piece is at most � times the length of
any relator in which it appears. It satisfies the C.p/ small cancellation condition for some integer p � 2

if no relator is a product of fewer than p pieces.

The C 0.�/ condition Let .G`.m; d// be a sequence of random groups at density d . It is known that
there is a phase transition at density d D �=2 for the C 0.�/ condition (see [Gromov 1993, page 274;
Bassino et al. 2020, Theorem 2.1; Tsai 2022, Theorem 1.4]). We give here a much simpler proof using
Theorem 1.6.

Proposition 4.1 Let 0< � < 1. Let .G`.m; d// be a sequence of random groups at density d . There is a
phase transition at density d D �=2:

(i) If d < �=2, then a.a.s. G`.m; d/ satisfies C 0.�/.

(ii) If d > �=2, then a.a.s. G`.m; d/ does not satisfy C 0.�/.

Proof (i) Let us prove by contradiction. Suppose that a.a.s. G`.m; d/ does not satisfy C 0.�/. That is to
say, a.a.s. there exists a piece w that appears in relators r1; r2 with jwj> �jr1j. It is possible that r1 D r2,
but the piece should be at different positions.

Construct a van Kampen diagram D by gluing two combinatorial disks with one face, labeled respectively
by r1 and r2, along with the paths where the piece w appears (Figure 4, left). As r1 ¤ r2 or r1 D r2 but
the piece appears at different positions, we obtain a reduced van Kampen diagram. The diagram satisfies
jD.1/j D jr1jC jr2jC jwj< `C `C�` < .1��=2/jDj`, which contradicts Theorem 1.5.

(ii) Consider a geometric form Y with two faces sharing a common edge of length �, the other two edges
are of length 1�� (Figure 4, right). We have dens Y D 1

2
.2.1��/C�/> 1�d , and every sub-2–complex

with one face is with density 1> 1� d . So densc Y > 1� d .

Let .Y`/ be a sequence of 2–complexes of the geometric form Y . By Theorem 1.6, a.a.s. Y` is fillable by
G`.m; d/, hence a.a.s. G`.m; d/ does not satisfy C 0.�/.

w r2r1 � 1��1��

Figure 4: Left: a van Kampen 2–complex constructed from a C 0.�/ group. Right: the geometric
form for the C 0.�/ condition.
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Figure 5: Left: a van Kampen 2–complex constructed from a non-C.p/ group. Middle: the
geometric form for the C.p/ condition. Right: the geometric form for the B.2p/ condition.

The C.p/ condition We shall prove by Theorem 1.6 that for random groups with density, there is a
phase transition at density 1=p for the C.p/ condition.

Proposition 4.2 Let p � 2 be an integer. Let .G`.m; d// be a sequence of random groups at density d .
There is a phase transition at density 1=p:

(i) If d < 1=p, then a.a.s. G`.m; d/ satisfies C.p/.

(ii) If d > 1=p, then a.a.s. G`.m; d/ does not satisfy C.p/.

Proof (i) Let us prove by contradiction. Suppose that a.a.s. G`.m; d/ does not satisfy C.p/. That is to
say, a.a.s. there is a relator that is a product of q pieces with q � p� 1. By this relator we construct a
reduced van Kampen diagram D with qC 1 faces, one face is placed in the center, attached by the other
q faces on the whole boundary, and there is no other attachments (Figure 5, left).

Observer that jDj D q C 1 and jD.1/j � q` (sum of the boundary lengths of the outer q faces). Let
"D .1=.qC 1/� d/=2, which is positive since d < 1=p � 1=.qC 1/. We have

1� d � "D
q

qC 1
C " >

q

qC 1
:

Hence jD.1/j< .1� d � "/jDj`, which contradicts Theorem 1.5.

(ii) Consider a geometric form Y with p faces, one of the faces is placed in the center, having p� 1

edges of length 1=.p� 1/, such that every edge is attached by another face with two edges of lengths
1=.p� 1/ and 1� 1=.p� 1/. There are no other attachments (Figure 5, middle).

The density of Y is .p � 1/=p > 1� d . If Z is a sub-2–complex of Y not containing the center face,
then dens Z D 1> 1� d . If Z contains the center face and i � p other faces, then

dens Z D
1C i.1� 1=.p� 1//

i C 1
> 1� d:

So densc Y > 1� d .
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Figure 6: Left: the geometric form for the T .q/ condition. Right: a random relator r denying the
T .q/ condition.

Let .Y`/ be a sequence of 2–complexes of the geometric form Y . By Theorem 1.6, a.a.s. Y` is fillable by
G`.m; d/, hence a.a.s. G`.m; d/ does not satisfy C.p/.

The B.2p/ condition The same argument holds for the B.2p/ condition, introduced in [Ollivier and
Wise 2011, Definition 1.7]: half of a relator cannot be the product of fewer than p pieces. One can
construct a geometric form with pC 1 faces, one of the faces is in the center, with half of its boundary
attached by the other p faces, each with length 1=p (Figure 5, right). Its critical density is

�
pC 1

2

�
=.pC1/,

so a phase transition occurs at density d D 1=.2pC 2/.

Proposition 4.3 Let p � 1 be an integer. Let .G`.m; d// be a sequence of random groups at density d .
There is a phase transition at density d D 1=.2pC 2/:

(i) If d < 1=.2pC 2/, then a.a.s. G`.m; d/ satisfies B.2p/.

(ii) If d > 1=.2pC 2/, then a.a.s. G`.m; d/ does not satisfy B.2p/.

The T.q/ condition Recall that [Lyndon and Schupp 1977, page 241] a group presentation satisfies the
T .q/ small cancellation condition for some q � 4 if, in every of its reduced van Kampen diagram, every
vertex of valency at least 3 is actually of valency at least q.

Proposition 4.4 For any density 0< d � 1, a.a.s. G`.m; d/ does not satisfy T .4/.

Proof We shall construct a reduced van Kampen diagram with a vertex of valency exactly 3. Consider
the geometric form Y with 3 faces sharing one common vertex, attaching to each other with common
segments of length d=2 (Figure 6, left). The critical density of Y is 1� d=2> 1� d , so by Theorem 1.6,
a.a.s. the random group G`.m; d/ has a van Kampen diagram of the form Y .

Remark 4.5 Proposition 4.4 holds for the few relator model. For example, for a one relator random
group hx1; : : : ;xm j ri with m � 2, a.a.s. (when jr j ! 1) the three subwords x1x2, x�2

2
and x2x�1

1

appear in the random relator r at different places. By these subwords, we can construct a reduced van
Kampen diagram with 3 faces that has a vertex of valency exactly 3 (Figure 6, right), denying the T .4/

small cancellation condition.
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A qualitative description of the horoboundary of the Teichmüller metric

AITOR AZEMAR

Two commonly studied compactifications of Teichmüller spaces of finite type surfaces with respect
to the Teichmüller metric are the horofunction and visual compactifications. We show that these two
compactifications are related, by proving that the horofunction compactification is finer than the visual
compactification. This allows us to use the straightforwardness of the visual compactification to obtain
topological properties of the horofunction compactification. Among other things, we show that Busemann
points of the Teichmüller metric are not dense within the horoboundary, answering a question of Liu
and Su. We also show that the horoboundary of Teichmüller space is path connected, determine for which
surfaces the horofunction compactification is isomorphic to the visual one and show that some horocycles
diverge in the visual compactification based at some point. As an ingredient in one of the proofs we
show that extremal length is not C 2 along some paths that are smooth with respect to the piecewise linear
structure on measured foliations.
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1 Introduction

The horofunction compactification of a metric space is defined in terms of the metric, so its properties are
well aligned for studying the metric properties of the space. For example, all geodesic rays converge to
points and isometries of the space can be extended to homeomorphisms of the compactification. This
compactification was first introduced by Gromov [16] as a natural, general compactification, based on
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previous ideas of Busemann. The horofunction compactification has since found many applications; it
was used to obtain asymptotic properties of random walks on weakly hyperbolic spaces by Maher and
Tiozzo [29], to determine the isometry group of some Hilbert geometries by Lemmens and Walsh [25]
and to obtain properties of quantum metric spaces by Rieffel [39]. The compactification is obtained
by embedding the metric space X into the space C.X / of continuous functions on X via the map
h WX ,! C.X / defined by

(1) h.p/. �/D d.p; �/� d.p; b/;

where b 2 X is an arbitrarily chosen basepoint. As explained, for example, by Walsh [42, Section 2],
if the space X is proper then h is an embedding, the closure of h.X / is compact and the horofunction
compactification of X is defined as the pair .h; h.X //. By considering two functions equivalent if they
differ by a constant one can show that the compactification does not depend on the basepoint b. While
this compactification has been rather useful, it is sometimes hard to visualize, and there are not that many
examples where the horofunction boundary is explicitly known. Some cases where the horofunction
compactification is understood include Hadamard manifolds and some of their quotients, by Dal’bo,
Peigné, and Sambusetti [8], as well as the Heisenberg group with the Carnot–Carathéodory metric, by
Klein and Nicas [24], and Hilbert geometries, by Walsh [43].

On the other hand, for a proper, uniquely geodesic, straight metric space X (see Section 2 for definitions)
the visual compactification based at some point b 2 X is defined by pasting the set of geodesic rays
exiting b, denoted Db , to the space X in such a way that a sequence .xn/� X converges to some ray
 2 Db if the distance d.b;xn/ goes to infinity as n!1, and the geodesic ray between b and xn

converges uniformly on compacts to  . This compactification was introduced by Eberlein and O’Neil
[10] as a generalization of the Poincaré disk model, and we give a brief introduction in Section 2. This
compactification may depend on the basepoint b, which restricts its usefulness. It can even happen that
isometries of X that move the basepoint cannot be extended continuously to the compactification, as
Kerckhoff showed for Teichmüller spaces [23]. However, the visual compactification usually has a simple
geometric interpretation. For example, for a Hadamard manifold, as well as for a Teichmüller space with
the Teichmüller metric, this compactification is homeomorphic to a closed ball of the same dimension
as the space, where the boundary of that ball is the space of geodesic rays based at b. In the context of
Teichmüller spaces with the Teichmüller metric, the visual compactification is often called the Teichmüller
compactification.

1.1 Horoboundary of proper, uniquely geodesic, straight metric spaces

To make this work as general as possible, we begin our analysis by using the aforementioned metric
properties of the Teichmüller metric. The relationship between the horofunction compactification and the
visual compactification is established by observing that, for such a metric space, a sequence converging to
a point in the horofunction compactification also converges in the visual compactification. This allows us
to build a continuous map …b from the horofunction compactification h.X / to the visual compactification
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X [Db , showing that the former is finer than the latter. In the context of Teichmüller spaces without
boundary, the map …b coincides with the one defined by Liu and Shi [27, Definition 3.3]. We may denote
this map as simply … when the basepoint is not relevant to the discussion.

Given a geodesic  , the path  .t/ converges, as t !1, to the Busemann point associated to  in the
horofunction compactification, which we denote by B . As the map … is defined in terms of sequences it
follows that ….B /D  . The existence of the map … shows a strong relation between the horofunction
and the visual compactification, which we state in the following result.

Theorem 1.1 Let .X; d/ be a proper , uniquely geodesic , straight metric space. For any basepoint b 2X ,
there is a continuous surjection … from the horofunction compactification to the visual compactification
based at b such that ….B /D  for every ray  starting at b and ….h.p//D p for every p 2X .

In particular , the horofunction compactification of X is finer than the visual compactification of X based
at any point.

Most of the subsequent results in the paper follow as applications of this theorem.

It is not the first time that a map such as … appears in the literature. Similar maps have been found
for ı–hyperbolic spaces by Webster and Winchester [45]. Walsh [43] defined such a map for Hilbert
geometries, which satisfy the hypothesis of the theorem whenever there are no coplanar noncollinear
segments in the boundary of the convex set, as shown by de la Harpe [17, Proposition 2].

The map … does not induce a fiber bundle, as its fibers …�1. / vary from points to higher dimensional
sets (see Theorem 6.10). Still, Theorem 1.1 characterizes the horoboundary as the disjoint union of all
the fibers …�1. /. Furthermore, our analysis of the topology of these fibers shows that they are path
connected (see Proposition 3.11), which gives the following characterization of the connectivity of the
horoboundary.

Proposition 1.2 The horoboundary of a proper , uniquely geodesic straight metric space is connected if
and only if its visual boundary based at some point (and hence , any) is connected.

The Busemann map B from the visual compactification X [Db to the horofunction compactification is
defined by setting B. /DB for each geodesic ray  2Db and B.p/D h.p/ for each p 2X . With this
definition, the map satisfies … ıB D id. As the next result shows, the continuity of this map is related
with the topology of the horofunction compactification.

Proposition 1.3 The visual compactification of a proper , uniquely geodesic , straight metric space based
at some point is isomorphic to its horofunction compactification if and only if the Busemann map is
continuous.

The Busemann map is essentially the identity inside X , so the only possible points of discontinuity are at
the boundary. It is therefore of interest to find a criterion for the continuity of B at the boundary, which
turns out to give a criterion for when the fibers …�1. / are singletons.
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Proposition 1.4 Let X be a proper, uniquely geodesic, straight metric space, b 2X a basepoint and B

the corresponding Busemann map. Furthermore, let  be a geodesic ray based at b. Then the following
three statements are equivalent :

(1) The Busemann map B restricted to the boundary is continuous at  .

(2) The fiber …�1. / is a singleton.

(3) The Busemann map B is continuous at  .

In other words, we have reduced the continuity of B to the continuity restricted to the boundary. This
result can then be applied to different settings to obtain a more precise characterization. In the case
of Teichmüller spaces, Proposition 1.4 can be used to get an explicit criterion for the continuity of
the Busemann map in terms of the quadratic differentials associated to the geodesic rays, giving us a
characterization of the fibers that are singletons.

1.2 Horoboundary of the Teichmüller metric

Many compactifications have been defined for Teichmüller space, such as Thurston’s compactification,
the visual compactification (also known as the Teichmüller compactification) and the Gardiner–Masur
compactification. These compactifications play an important role in the study of mapping class groups
and asymptotic aspects of Teichmüller space. See for example the articles by Thurston [41], Kerckhoff
[23] or Ohshika [36]. The main reason multiple compactifications have been introduced is that each one
has been designed with a certain application in mind.

Thurston’s compactification takes the rather simple shape of a ball, upon which the mapping class groups
acts as homeomorphisms. This facts make this compactification well suited for studying properties of the
mapping class group. Indeed, Thurston’s classification of the elements of the mapping class group relied on
this compactification [41]. However, the Teichmüller metric is not directly related to the compactification,
which results in some quirks when trying to use it to study the asymptotic geometry. For example,
Lenzhen, Modami, and Rafi [26] prove that there exist geodesic rays with high-dimensional limit sets.

The visual compactification is defined directly using the metric, and takes the shape of a sphere where each
point in the boundary has a clear geometric interpretation. This makes the compactification a good tool to
interpret asymptotic geometric results. For example, Walsh [44, Theorem 7] has proven that all geodesic
rays converge to points in the visual boundary. However, as proved by Kerckhoff [23], the action of the
mapping class group does not extend continuously to this compactification, which implies that the compac-
tification depends on the choice of basepoint. This fact limits the usability of the visual compactification.

The Gardiner–Masur compactification was initially defined to study the asymptotic properties of extremal
lengths, following an analogous construction to that of the Thurston’s compactification. It was later
proved by Liu and Su [28] that this compactification is isomorphic to the horofunction compactification
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with respect to the Teichmüller metric, giving it a geometric meaning. Furthermore, the mapping class
group extends continuously to the compactification. These two properties make the Gardiner–Masur
compactification a good candidate to study asymptotic properties of the Teichmüller metric. However,
as noted by Miyachi [32] and Liu and Su [28], there is a lack of information on the shape of this
compactification. In this paper, we start working towards an understanding of the shape of this boundary.

Let S be a compact surface with (possibly empty) boundary and finitely many marked points, where
we allow marked points to be on the boundary. Denote by T .S/ its Teichmüller space equipped with
the Teichmüller metric. Furthermore, for any quadratic differential q based at some basepoint b 2 T .S/,
denote by R.qI �/ the geodesic ray in T .S/ starting at b in the direction q, and V .q/ the vertical foliation
associated to q, see Section 4 for a quick introduction or the book by Farb and Margalit [11] for a
more in-depth explanation of these concepts. Recall that a measured foliation is indecomposable if it
is either a thickened curve, or a component with a transverse measure that cannot be expressed as the
sum of two projectively distinct nonzero transverse measures. Furthermore, each measured foliation can
be decomposed uniquely into finitely many indecomposable components (see Section 4.1 for detailed
definitions). Walsh has shown the following characterization of the convergence of Busemann points in
terms of the convergence of the associated quadratic differentials.

Theorem 1.5 (Walsh [44, Theorem 10]) Let .qn/ be a sequence of unit area quadratic differentials
based at b 2 T .S/. Then , BR.qnI�/ converges to BR.qI�/ if and only if both of the following hold :

(1) .qn/ converges to q with respect to the L1 norm on T �
b
T .S/.

(2) For every subsequence .Gn/n of indecomposable measured foliations such that , for each n 2N,
Gn is a component of V .qn/, we have that every limit point of Gn is indecomposable.

While Walsh’s proof is done in the context of surfaces without boundary, it can be easily extended to our
setting. In view of this theorem, we say that a sequence of quadratic differentials .qn/ converges strongly to
q if it satisfies the two conditions of Theorem 1.5. Furthermore, we say that q is infusible if every sequence
of quadratic differentials converging to q converges strongly. By Proposition 1.4, a quadratic differential q

is infusible if and only if the Busemann map is continuous at R.qI �/. In Theorem 5.4, we derive a topologi-
cal characterization of the vertical foliations of infusible quadratic differentials. This allows us to determine
precisely which surfaces only admit infusible quadratic differentials, yielding the following result.

Theorem 1.6 Let S be a compact surface of genus g with bm and bu boundary components with and
without marked points respectively and p interior marked points. Then the horofunction compactification
of T .S/ is isomorphic to the visual compactification if and only if 3gC 2bmC buCp � 4.

This result had been previously proven by Miyachi [32] for surfaces without boundary, that is, when
bm D bu D 0. For the cases where we do not have an isomorphism Miyachi found non-Busemann points
in the boundary. These points are in the closure of Busemann points, which prompted Liu and Su to ask
the following question:
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Question 1.7 (Liu and Su [28, Question 1.4.2]) Is the set of Busemann points dense in the horofunction
boundary?

We give a negative answer to this question, summed up in the following result.

Theorem 1.8 Let S be a closed surface of genus g with p marked points. Then the Busemann points are
not dense in the horofunction boundary of T .S/ whenever 3gCp � 5.

To achieve this result we use Liu and Su’s [28] and Walsh’s [44] characterization of the horofunction
compactification as the Gardiner–Masur compactification. We use an equivalent but slightly different
definition than usual for the Gardiner–Masur compactification, as the definition we use is more well
suited for our computations, and more easily extendable to surfaces with boundary (see Section 4.4 for the
precise definition). For each point in the horofunction compactification there is an associated real-valued
function on the set of measured foliations. We show that the functions associated to elements in the closure
of Busemann points are polynomials of degree 2 with respect to some variables (see Proposition 6.2
for the precise statement). We then show that the elements of the Gardiner–Masur boundary found by
Fortier Bourque [13] do not satisfy that condition. The main ingredient for this last part of the reasoning
is the following result, which shows that extremal length is not C 2 along certain smooth paths in MF .

Theorem 1.9 Let S be a closed surface of genus g with p marked points and empty boundary satisfying
3gCp � 5. Then there is a point X 2 T .S/ and a path Gt , t 2 Œ0; t0�, in the space of measured foliations
on X , smooth with respect to the canonical piecewise linear structure of the space of measured foliations ,
such that Ext.Gt / is not C 2.

The canonical piecewise linear structure of the space of measured foliations was developed by Bonahon [3;
4; 5]. The first derivative of the extremal length along such a path was determined by Miyachi [33], so our
proof is based on finding cases where Miyachi’s expression is not C 1. This follows from an explicit com-
putation, whose complication is greatly reduced by using previous estimates established by Markovic [30].

The relation between the Thurston compactification and the horofunction compactification was studied by
Miyachi [34]. He proves that, while neither Thurston’s nor the horofunction compactification is finer
than the other, there is a bicontinuous map from the union of T .S/ and uniquely ergodic foliations in
Thurston’s boundary to a subset of the horofunction compactification. Masur showed [31] that this result
can be interpreted to say that these two compactifications are the same almost everywhere according to the
Lebesgue measure on Thurston’s boundary. The image of uniquely ergodic foliations by the bicontinuous
map is the set of Busemann points associated to uniquely ergodic foliations. As we show in Theorem 7.5,
this set is nowhere dense within the horoboundary. Hence the map defined by Miyachi does not show that
these two are the same almost everywhere according to any strictly positive measure on the horoboundary.
In fact, any attempt to extend the identity map from the interior of the Thurston compactification to the
interior of the horoboundary compactification to a set of full measure within the Thurston compactification
results in the same problem.
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Corollary 1.10 Let � be any finite strictly positive measure on the horoboundary and let � be the
Lebesgue measure on the Thurston boundary. Furthermore, let � be a map from the Thurston compactifi-
cation to the horofunction compactification satisfying �jT .S/ D h, where h is as in (1). Then there is no
subset U of the Thurston boundary with full �–measure such that � is continuous at every point in U and
�.U / has full �–measure.

Under some smoothness assumptions satisfied by Teichmüller metric, we are able to use the maps …b

to give an alternative definition of the horofunction compactification based on geometric notions. This
definition characterizes the horofunction compactification as the reachable subset of the product of all
visual compactifications obtained by choosing different basepoints (see Section 3.3 for details). Hence, the
horofunction compactification can be interpreted as a collection of the asymptotic information provided by
all visual compactifications. As a straightforward result of this alternative definition we get the following
characterization of converging sequences in the horofunction compactification.

Corollary 1.11 A sequence .xn/� T .S/ converges in the horofunction compactification if and only if
the sequence converges in all the visual compactifications.

Considering the horocycles diverging in the horofunction compactification found by Fortier Bourque [13]
we get that there is some visual compactification in which these horocycles do not converge.

Corollary 1.12 Let S be a closed surface of genus g with p marked points , such that 3gCp � 5. There
is a basepoint such that a horocycle diverges in the visual compactification based at that point.

This contrasts with the behavior of Teichmüller rays, which converge in all visual compactifications (see
[44, Theorem 7] by Walsh).

The structure of the horoboundary provided by Theorem 1.1, as well as the path-connectivity of the fibers,
allows us to prove the following connectivity result.

Theorem 1.13 The horoboundary of any Teichmüller space of real dimension at least 2 is path connected.

Furthermore, we also prove that whenever the surface has empty boundary the map … restricted to the
horoboundary admits a section, while it only admits a section for surfaces of low complexity if the
boundary is nonempty (see Theorem 8.1 for details).

Figure 1 shows a sketch of what we think the horoboundary looks like based on the results of this paper.
The outer circle represents the section given by Theorem 8.1. Each line perpendicular to the sphere
represents one of the fibers induced by the map …, so it is associated with a unique Teichmüller ray
starting at b. Note that while by Proposition 3.11 the fibers are path connected, by Theorem 6.10 they are
bigger than segments in some cases. Furthermore, a priori they might not be contractible.
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b

Figure 1: The shape of the horoboundary of the Teichmüller metric for surfaces without boundary.

The nearest point to the basepoint b of each fiber represents the Busemann point associated to the geodesic
joining b to the fiber. This point could indeed be considered the nearest point to b from the fiber, as one can
access it in a straight way, through a geodesic exiting b. On the other hand, the points in the outer circle
represents the points associated to the section alluded to earlier. These can be accessed through a sequence
of Busemann points whose associated fiber is a point, which can be considered as the most tangentially
possible way to reach points in the boundary. Following a result by Masur [31], with respect to the measure
on the fibers induced by the Lebesgue measure on the set of Teichmüller rays exiting b, almost all the
fibers are actually points. As we shall see in Theorem 7.5 these points are nowhere dense in the boundary.

Note that there exist paths within the horoboundary connecting the fibers without passing through
the section, and a priori there may be paths not represented in the sketch along which the fibers vary
continuously. For surfaces for which the map … does not admit a global section, a similar sketch could
be drawn, although there would be no continuous global section in some cases. Hence, the outer circle
would be broken at some places.

Finally, Liu and Su’s and Walsh’s characterization of the horofunction compactification as the Gardiner–
Masur compactification can be used to translate some of these findings to results regarding the asymptotic
value of extremal length functions. For example, we get the following estimate.

Theorem 1.14 Let .qn/ be a sequence of unit quadratic differentials converging strongly to a unit
quadratic differential q. Denote by Gj the components of the vertical foliation associated to q, and H.q/

the horizontal foliation. Then , for any F 2MF and sequence .tn/ of real values converging to positive
infinity we have

lim
n!1

e�2tn ExtR.qnItn/.F /D
X

j

i.Gj ;F /
2

i.Gj ;H.q//
:

This generalizes a previous result by Walsh [44, Theorem 1], where the same is shown for qn constant.
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1.3 Outline of the paper and a note for the reader interested in surfaces without boundary

The paper is structured as follows. In Section 2 we introduce the necessary metric notions used in the
paper. We follow in Section 3 by proving the results related to the more general metric setting, such as
showing that the horofunction compactification is finer than the visual one. In Section 4 we give a short
review of the necessary background on Teichmüller spaces. In Section 5 we determine which quadratic
differentials are infusible, and find which surfaces admit infusible quadratic differentials, getting a proof
of Theorem 1.6. In Section 6 we characterize the points in the closure of Busemann points, and get some
bounds on the dimension of the fibers of the map …. In Section 7 we show that Busemann points are not
dense. In Section 8 we determine which surfaces result in the map … having a section, and prove that the
horoboundary is path connected. Finally, in Section 9 we use the previous results to obtain estimates
regarding asymptotic values of extremal lengths.

Some of the most dense parts of this paper are due to the added complexity of considering surfaces
with boundary. As such, the reader focused on surfaces with empty boundary might want to omit the
corresponding sections on a first reading. One of the largest related parts starts after the remark following
Theorem 5.4 and ends before the start of Section 5.2. The other sizable part starts with Proposition 8.3
and ends at the start of the proof of Theorem 1.13, where we note that the proof is significantly simpler in
the case of surfaces without boundary.
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2 Metric definitions
2.1 Compactifications
A compactification of a space serves, among other things, as a way of characterizing convergence to
infinity. Formally, a compactification of a topological space X is a pair .f;X /, where X is a compact
topological space and f W X ! X is an embedding such that f .X / is dense in X . The boundary of a
compactification @X D X �X describes the different ways of converging to infinity provided by that
compactification. We shall usually identify the points in X with the ones in X via the map f , and say
that a sequence .xn/�X converges in X if f .xn/ converges.

A compactification .f1;X1/ is finer than another one .f2;X2/ if there exists a continuous map Nf2 WX1!X2

such that Nf2ıf1Df2. Since f2.X / is dense in X2, the continuous extension Nf2 is surjective. Furthermore,
we can restrict the map Nf2 to the boundary to get a surjective map Nf2j@X1

W @X1! @X2, which can be
seen as a projection. Having a compactification finer than another ones means, from an intuitive point
of view, that the finer compactification catalogs more ways of converging to infinity than the other one.
Namely, any sequence in X converging in the finer compactification converges also in the coarser one,
while the opposite may not be true.
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We say that two compactifications are isomorphic if each one is finer than the other one. The following
lemma found in [44, Lemma 17] coincides with the intuitive notion of finer compactifications.

Lemma 2.1 Let .f1;X1/ and .f2;X2/ be two compactifications of a Hausdorff topological space X

such that f2 extends continuously to an injective map Nf2 WX1!X2. Then the two compactifications are
isomorphic.

We will usually refer to the space X as the compactification when the embedding is clear from the
context. Since the images of X by the embedding are dense, the extensions we get to compare the
compactifications are unique. That is, we have the following result:

Lemma 2.2 Let .f1;X1/ and .f2;X2/ be two compactifications of a Hausdorff topological space X

such that X1 is finer than X2. Then the extension Nf2 WX1!X2 is unique.

Proof For any x 2 X we have Nf2.f1.x//D f2.x/. Hence, the image of Nf2 is determined on a dense
subset of X1, so by continuity it is determined on X1.

2.2 Visual compactification of proper, uniquely geodesic, straight spaces

Let .X; d/ be a metric space. We shall say that a map  from an interval I �R to X is a geodesic if it is
an isometric embedding, that is, if d. .t/;  .s//D jt � sj. We shall consider two geodesics to be equal if
their image is equal and have the same orientation. A space is uniquely geodesic if for any two distinct
points a; b 2X there is a unique geodesic starting at a and ending at b.

Furthermore, we say that the space is proper if the closed balls D.x; r/ D fp 2 X j d.p;x/ � rg are
compact.

If geodesic segments can be extended uniquely, that is, if for any geodesic segment 1 there is a unique
biinfinite geodesic 2 such that 1\ 2 D 1, we say that the space is straight.

Let then X be a proper, uniquely geodesic, straight space and let Db be the set of infinite geodesic rays
starting at b, with the topology given by uniform convergence on compact sets. Furthermore, denote by
S1

b
D fx 2X j d.x; b/D 1g the sphere of radius 1 around b.

Lemma 2.3 The map from Db to S1
b

defined by sending  2Db to  .1/ is a homeomorphism.

Proof Since the topology on Db is given by uniform convergence on compact sets, the point  .1/ varies
continuously with respect to  .

On the other hand, since the space is straight and has unique geodesics, given any point a 2 S1
b

there
is a unique geodesic ray starting at b and passing through a. This is the inverse to the map obtained
by evaluating the geodesics. To see that the relation is continuous we consider a sequence .an/ � S1

b

converging to some a, and denote by .n/ and  the associated geodesics. Assume n does not converge
to  . Then we have a subsequence without  as an accumulation point. For any t > 0, the geodesic
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segments  jŒ0;t � are contained in the ball of radius t , which is compact, as X is proper. As these are
geodesics we have equicontinuity, so by Arzelà–Ascoli we can take a subsequence converging uniformly
to some path  0. Since the distance function is continuous,  0 is a geodesic. Furthermore,  0.1/ D
limn!1 n.1/D limn!1 anDa. By uniqueness of geodesics,  0 and  are equal when restricted to Œ0; 1�,
which by straightness implies they are equal. Hence, n converges to  uniformly on the compact Œ0; t �.

Following a similar reasoning it is possible to show the following, still under the same hypotheses on X .

Lemma 2.4 The space X is homeomorphic to Db � Œ0;1/=Db � f0g.

Proof We define the map C WDb � Œ0;1/=Db �f0g!X given by C.�; r/D �.r/. This is well defined,
as C.�; 0/Db for any � 2Db . Furthermore, this is a bijection, since for every x 2X�fbg there is a unique
geodesic ray from b to x. The map is continuous, as the topology on Db is given by uniform convergence
on compact sets. To see that the inverse is continuous consider a sequence an 2X converging to some
a2X . If aD b, then d.an; b/! 0, so we have continuity. Otherwise we let rnDd.an; b/ and r Dd.a; b/.
We have rn! r , so denoting .n/ and  the unique geodesic in Db such that n.rn/Dan and  .r/Da and
applying Arzelà–Ascoli’s theorem in the same way as in Lemma 2.3, we have that n converges to  .

The space Db � Œ0;1/=Db � f0g can be included into the compact space Db � Œ0;1�=Db � f0g, which
can be written as .Db � Œ0;1/=Db �f0g/[Db �f1g. Using the homeomorphism from Lemma 2.4, we
can use this inclusion to give a compact topology on the space X [Db . The visual compactification is
defined as the pair .i;X [Db/, where i is the inclusion i WX !X [Db and the topology on the space
X [Db is the one we just defined. We shall denote X [Db as X v

b
, or X v when the basepoint is not

relevant to the discussion.

2.3 Horofunction compactification

The second compactification that will play a part in this paper is slightly more involved and difficult to
visualize.

Let X be a proper, uniquely geodesic, straight metric space. Given a basepoint b 2X , one can embed X

into the space of continuous functions from X to R via the map h WX ! C.X / defined by

h.x/. �/ WD d.x; �/� d.x; b/:

The topology given to C.X / is that of uniform convergence on compact sets. The map h is indeed
continuous, as the distance function is continuous. Furthermore, h is injective, as h.x/ has a strict
global minimum at x. It can also be proven that since X is proper, h is an embedding. For more
details about this construction see [42, Section 2]. Furthermore, the properness of X implies it is second
countable, so the closure of h.X / is compact, Hausdorff and second countable. We shall denote the
closure of h.X / on C.X / as X h. The horofunction compactification is defined as the pair .h;X h/.
We call the set @X h D X h�X the horofunction boundary or horoboundary, and we call its members
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horofunctions. If we want to specify the chosen basepoint we write X h
b

. However, it is possible to see that
quotienting the compactification by letting f �g whenever the difference is constant we get an isomorphic
compactification, showing that the horofunction compactification does not depend on the basepoint.

Usually the easier points to identify in the horoboundary are the Busemann points. These are the ones that
can be reached as a limit along almost geodesics, which is a slight weakening of the notion of geodesic
by allowing an additive constant approaching 0. That is, a path  W Œ0;1/!X is an almost geodesic if
for each " > 0, ˇ̌

d. .0/;  .s//C d. .s/;  .t//� t
ˇ̌
< "

for all s and t large enough, with s � t . Rieffel [39] proved that every almost geodesic converges to a
limit in @X h. A horofunction is called a Busemann point if there exists an almost geodesic converging to
it. We shall denote the Busemann point associated in this way to the almost geodesic  by B .

3 Horofunction compactification of proper, uniquely geodesic, straight
metric spaces

3.1 The relation between the horofunction compactification and the visual compactification

Fix a uniquely geodesic, proper and straight metric space .X; d/ and a basepoint b 2X . We will assume
X satisfies these hypotheses through this section. For each geodesic ray  2 @X v starting at b there is
an associated Busemann point B 2 @X

h. We can extend this map to all the visual compactification by
setting it as the identification with the map h on X given by the horofunction compactification. That is,
we define the Busemann map B W X v ! X h by setting B. /D B for  2 @X v and B.x/D h.x/ for
x 2X . The relevance of this map can be seen with the following result.

Lemma 3.1 The visual compactification .i;X v/ is finer than the horofunction compactification .h;X h/

if and only if the map B is continuous.

Proof We have that B.i.x//D h.x/, so B is an extension of h to X v. Hence, if B is continuous, then
the visual compactification is finer than the horofunction compactification.

On the other hand, if the visual compactification is finer than the horofunction compactification, then we
have a continuous map f WX v!X h. For every x 2X , we have f .i.x//Dh.x/DB.i.x//. Furthermore,
for any ray  starting at the basepoint we have f . /D limt!1 f .i. .t//D lim h. .t//DB. /. Hence,
B D f , and B is continuous.

In general, the Busemann map may not be surjective nor continuous. However, we have the following.

Proposition 3.2 For a proper , uniquely geodesic , straight metric space .X; d/ the Busemann map is
injective.
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b

 0.t/
 .tn/

 .�s/

t tn

< tn� t C "n

s

< t C s� ı

Figure 2: The triangles involved in the proof of Proposition 3.2.

Proof For each x 2X , the associated function h.x/ has a global minimum at x, while B is unbounded
below for every  2 @X v. Hence, in the interior of X v the map is injective and B.X /\B.@X v/D∅.
Assume we have ;  0 2 @X v such that  ¤  0 and B. / D B. 0/ D �. Then, for a given sequence
tn!1 we have limn!1 h. .tn//D limn!1 h. 0.tn//D �. For any t 2R and any n such that tn > t

we have
h. .tn//. .t//D d. .tn/;  .t//� d. .tn/;  .0//D tn� t � tn D�t;

and similarly for  0. Hence �. .t//D �. 0.t//D�t for all t .

Fix now a t > 0. We have

�t D �. 0.t//D lim
n!1

�
d. 0.t/;  .tn//� d.b;  .tn//

�
D lim

n!1

�
d. 0.t/;  .tn//� tn

�
:

That is, there is a sequence "n with "n! 0 such that

tn� t C "n � d. 0.t/;  .tn//� tn� t � "n:

for every n.

By straightness we can extend  in the negative direction towards  .�s/ for some s > 0. We shall
now show that the geodesic  does not minimize the distance between  .�s/ and  .tn/ for n big
enough. Since the space is straight, the geodesic segment between  .�s/ and b can be extended uniquely,
so concatenating it with the segment between b and  0.t/ does not result in a geodesic. Hence, the
distance between  0.t/ and  .�s/ is strictly smaller than sC t . That is, there is some ı > 0 such that
d. .�s/;  0.t// < t C s � ı. As shown in Figure 2 we get a path going from  .�s/, to  .tn/, passing
through  0.t/ that has length less than t C s � ıC tn � t C "n D tnC s � ıC "n. Hence, taking n big
enough so that "n < ı we get that the geodesic segment between  .�s/ and  .tn/ is not minimizing. This
is a contradiction, from which we conclude that  D  0. Therefore, B is injective.

Hence, given a Busemann point � in B.@X v/ we have a unique associated geodesic ray  2 @X v such
that �. .t//D�t for all t . Our next aim is to build a similar relation for all other horofunctions. Our
approach is similar to the one used by Walsh in [44, Section 7].
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b

n.tn/

 .tn/

 .t/

n.t/

"n

Figure 3: In the proof of Lemma 3.3, n converges to  , so n.t/ converges to  .t/, and hence
the distance between n.tn/ and n.t/ gets arbitrarily close to the distance between n.tn/ and  .t/.

We say that a geodesic  is an optimal geodesic for a certain horofunction � 2X h if �. .t//��. .0//D�t

for all t 2R. We shall now see that each function in the horoboundary has at least one optimal geodesic.

Lemma 3.3 Let X be a proper , uniquely geodesic , straight metric space and let � 2@X h be a horofunction.
Suppose that .xn/�X converges to �, with xn D n.tn/, n 2 @X

v and .n/ converging to  as n!1.
Then �. .t//D�t for every t 2R. That is ,  .t/ is an optimal geodesic for � .

Proof Fix t . We have that

�. .t//D lim
n!1

�
d. .t/; n.tn//� d.b; n.tn//

�
D lim

n!1

�
d. .t/; n.tn//� tn

�
:

As n goes to infinity, n converges to  . Hence by the given topology on the visual boundary, the maps
n. �/ converge uniformly on compact sets to the geodesic  . �/. In particular, denoting d. .t/; n.t//D "n

we have "n! 0. We get then Figure 3, so by the triangle inequality,

jd. .t/; n.tn//� .tn� t/j D
ˇ̌
d. .t/; n.tn//� d.n.t/; n.tn//

ˇ̌
� "n;

and so �. .t//D�t .

Since @X v is compact, for any horofunction � 2 @X h and sequence .xn/� X converging to � we can
take a subsequence such that the hypotheses of Lemma 3.3 are satisfied, so each � 2 @X v does have at
least one optimal geodesic.

If � has another optimal geodesic  0 with  0.0/ D  .0/ we have at least two geodesics along which
�. .t//D �. 0.t//D�t for all t . Following a reasoning similar to the one in the proof of Proposition 3.2,
we get a contradiction. This time, however, we have to be a bit more careful about the distances, as
instead of two fixed rays we have a fixed ray and a sequence converging to a distinct fixed ray.
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Proposition 3.4 Let � 2 @X h and b 2X . Then there is a unique optimal geodesic for � passing through b.

Proof Let .xn/D .n.tn// be a sequence converging to �, with .n/ � @X
v, and take a subsequence

such that n converges to some geodesic  . By Lemma 3.3,  is an optimal geodesic. Assume that we
have a different optimal geodesic  0 passing through b.

Using that h.n.tn// converges pointwise to � , we have

�t D �. 0.t//D lim
n!1

�
d. 0.t/; n.tn//� d.b; n.tn//

�
D lim

n!1

�
d. 0.t/; n.tn//� tn

�
:

Hence, there is a sequence "n with "n! 0 such that

tn� t C "n � d. 0.t/; n.tn//� tn� t � "n:

We proceed by showing that for n big enough there is some s > 0 such that the geodesic n does not
minimize the distance between n.�s/ and n.tn/. As in the proof of Proposition 3.2, by applying the
triangle inequality between  0.t/;  .�s/ and b we have d. 0.t/;  .�s// < s C t . Fix s > 0 and pick
ı > 0 such that d. 0.t/;  .�s// < t C s� ı. Since n converges to  uniformly on compact sets, n.�s/

converges to  .�s/. Hence, d. 0.t/; n.�s// converges to d. 0.t/;  .�s//. Then for n big enough we
have d. 0.t/; n.�s// < t C s � ı. Consider then n big enough so that "n � ı=2 as well. The triangle
between  0.t/; n.�s/ and n.tn/ gives

d.n.�s/; n.tn//� d.n.�s/;  0.t//C d. 0.t/; n.tn// < .t C s� ı/C .tn� t C "n/ < tnC s:

This is a contradiction, which proves the uniqueness of  .

Given a basepoint b 2X we can now define a map …b WX
h!X v

b
by sending any � 2 @X h to the unique

optimal geodesic  of � with  .0/D b, and by sending h.x/ to x for any x 2 X . This map is indeed
an extension of the relation we had established for Busemann points in B.@X v/, since if � D B. / for
 2Db then  is an optimal geodesic of � , giving us …b.B. //D  .

We will often write … instead of …b whenever the basepoint is not relevant to the discussion. To prove
that … is continuous, we first have to see the following result.

Proposition 3.5 Let .xn/�X be a sequence converging to � 2 @X h. Then , .xn/ has a unique accumula-
tion point in the visual compactification. Further , this accumulation point depends only on � .

Proof Since @X v is compact, .xn/ has accumulation points in the visual compactification. If .xn/ has
two accumulation points we can take two subsequences converging to two different geodesics, which by
Lemma 3.3 are optimal geodesics, contradicting Proposition 3.4.

If there is another sequence .yn/ converging to � with a different accumulation point the result follows by
merging both sequences and repeating the reasoning.

Hence, … can be alternatively defined by sending any � 2 @X h to the unique accumulation point in X v

of the sequences converging to � in X h, and by sending h.x/ to x for any x 2 X . By Proposition 3.5,
this definition is equivalent to the previous one.
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By this second definition of the map …, we see how it is mostly related to the convergence of sequences,
so using a diagonal sequence argument we can prove its continuity.

Proposition 3.6 The map … is continuous.

Proof Take a sequence .�n/�X h converging to � . If � 2 h.X / we have that, as h.X / is open, �n 2 h.X /

for n big enough. Hence, ….�n/D h�1.�n/, which converges to h�1.�/, as h is a homeomorphism with
its image.

If � 2 @X h we split the sequence into two subsequences, one contained in h.X / and one contained in @X h.
The one contained in h.X / converges to � , so by definition of … and we have ….�/D limn!1 h�1.�n/.

Assume then that .�n/� @X h converges to �. We want to see that n D….�n/ converges to  D….�/.
For each �n we can take a sequence

�
h.m

n .t
m
n //

�
m

converging, as m!1 to �n. By Proposition 3.5 the
sequence m

n .t
m
n / converges to n. Let  0 be an accumulation point of n. Take a convergent subsequence

of n converging to  0, and relabel it as n. Let .Vn/ be a nested sequence of open neighborhoods of � in X h

such that �n 2 Vn and
T

n VnD f�g and let .Wn/ be a nested sequence of open neighborhoods of  0 in X v

such that n 2Wn and
T

n Wn D f
0g. We can take such sequences of sets, as both spaces are metrizable.

For each n, there exists m.n/ big enough so that m.n/
n 2 Wn and h.

m.n/
n .t

m.n/
n // 2 Vn. By the first

condition on m.n/, we have that m.n/
n converges to  0. By the second condition, h.

m.n/
n .t

m.n/
n //

converges to � , so by the definition of … and Proposition 3.5 the sequence m.n/
n converges to ….�/D  .

Hence,  D  0, so the only accumulation point of .n/ is  and by compactness of @X v the sequence
.n/ converges to  .

By combining Propositions 3.5 and 3.6 we get that … is the map announced at the introduction, giving
us a proof of Theorem 1.1. As mentioned in the introduction, this map shows that the horofunction
compactification is finer than the visual compactification. By using the Busemann map to insert the visual
boundary inside the horoboundary, we can consider the map … as a projection.

One straightforward consequence of the continuity of …b is as follows.

Corollary 3.7 Let  be a geodesic ray, not necessarily starting at the basepoint b 2X . Then ,  converges
in the visual compactification of X based at b.

Proof The ray  converges in the horofunction compactification to B . Since …b is continuous, the ray
also converges in the visual compactification based at b to …b.B /.

For Teichmüller spaces with the Teichmüller metric this result was first proved by Walsh [44, Theorem 7].

By Lemma 3.1, the visual compactification is finer than the horofunction compactification if and only if
the Busemann map is continuous. Hence, since the horofunction compactification is always finer than the
visual compactification, we obtain an isomorphism whenever this is the case, resulting in Proposition 1.3.
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3.2 The fiber structure

To get a better picture of the shape of the horoboundary we shall study the shape of the preimages of
the projection … restricted to the boundary. That is, for a given point  in the visual boundary we are
interested in finding out information about the fiber …�1. /. We first prove the following lemma, which
we will use to get bounds on the values of …�1. /.

Lemma 3.8 Fix a geodesic ray  2 @X v and p 2X not in the biinfinite extension of the geodesic ray  .
Then , the function h. . �//.p/, with domain Œ0;1/, is strictly decreasing.

Proof Take t; s � 0 with s < t . By the triangle inequality we have

d. .t/;p/� d. .s/;p/C d. .t/;  .s//D d. .s/;p/C t � s:

Further, we have strict inequality, as equality would give us two different paths with the same length
between  .t/ and p, with one of them being geodesic. Hence,

h. .t//.p/D d. .t/;p/� d. .t/; b/ < d. .s/;p/C t � s� t D h. .s//.p/:

The set C.X / can be partially ordered by saying that f �g whenever f .x/�g.x/ for all x 2X . If f �g

and f ¤g then we write f >g. If pD  .r/ for some r and s< t we have h. .s//.p/Dh. .t//.p/D�r

for r � s and �sD h. .s//.p/ > h. .t//.p/D�min.r; t/ otherwise. Hence, adding the previous lemma
we have h. .s// > h. .t// whenever s < t . By attempting to extend this relation to the horofunction
boundary we get that Busemann points are maximal in their fibers.

Proposition 3.9 Let  2 @X v and � 2…�1. /. Then , � � B. /.

Proof Choose any sequence .xn/�X such that h.xn/ converges to � . Since � 2…�1. / the sequence
.xn/ converges to  in X v , so we can write xn D n.tn/ with tn converging to infinity and n converging
to  .

Fix p 2X and let " > 0. Denote sn D supft W d. .t/; n.t// < " and t < tng. The geodesics n converge
to  uniformly on compact sets, so sn!1 as n!1. Hence, by definition of the Busemann point and
since d.n.sn/;  .sn// < ",

B .p/D lim
n!1

h. .sn//.p/� lim sup
n!1

h.n.sn//.p/� 2":

Furthermore, sn � tn, so by Lemma 3.8,

�.p/D lim
n!1

h.n.tn//.p/� lim sup
n!1

h.n.sn//.p/� B .p/C 2":

Since " can be arbitrarily small we get the proposition.

While it might not be possible to get a similar unique minimum in each fiber, we can get the following
result.
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Proposition 3.10 Let  2 @X v and � 2…�1. /. Furthermore , let .xn/�X be a sequence converging
to � with xn D n.tn/. For any p, define �.p/D lim infn!1B.n/.p/. Then � � �.

Proof The proof follows a similar reasoning as the last one.

Fix p 2X , choose a subsequence so B.n/.p/ converges to �.p/ and let ."m/ be a sequence of positive
numbers converging to 0. For each "m, take n.m/ big enough so that B.n.m//.p/� �.p/� "m. Further,
take sm bigger than tn.m/, and big enough so that

h.n.m/.sm//.p/� B.n.m//.p/� "m:

Such an sm always exists by the definition of B.n.m//. In particular, we have that

lim inf
m!1

h.n.m/.sm//.p/� �.p/:

By Lemma 3.8 we have

�.p/D lim
m!1

h.n.m/.tn.m///.p/� lim inf
m!1

h.n.m/.sm//.p/� �.p/:

The intuition one might get from these propositions is that approaching  “through the boundary”, that is,
through the furthest way possible from the interior of X , gives a lower bound on the possible values of
approaching through other angles, and approaching  in a straight way, that is, through the geodesic, gives
an upper bound. Hence, when these two ways of approaching  are the same, every other possible angle
of approach should also yield the same limit. Following this reasoning we get our next result, announced
in the introduction.

Proposition 1.4 Let X be a proper, uniquely geodesic, straight metric space, b 2X a basepoint and B

the corresponding Busemann map. Furthermore, let  be a geodesic ray based at b. Then the following
three statements are equivalent :

(1) The Busemann map B restricted to the boundary is continuous at  .

(2) The fiber …�1. / is a singleton.

(3) The Busemann map B is continuous at  .

Proof .1/D) .2/ Take � 2…�1. /. By Proposition 3.9 we have � � B. /. Since B is continuous
at  when restricted to the boundary we have that for any n!  the horofunctions B.n/ converge
to B. /. Hence, by Proposition 3.10, � � B. /, so � D B. / and we have (2).

.2/D) .3/ Take then any .xn/�X v converging to  , consider the sequence .B.xn//�X h and let �
be an accumulation point. By the definition of … we have � 2…�1. /, so �D B. / since we assumed
that …�1. / is a singleton. This shows that B is continuous at  .

Finally, it is clear that .3/D) .1/.

The relation obtained in Lemma 3.8 can be exploited further. Indeed, trying to carry it to the boundary in
a more delicate manner we can see that the fibers are path connected.
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Proposition 3.11 Let  2 @X v. For any � 2 …�1. / there exists a continuous path from B. / to �
contained in …�1. /.

Proof Take a sequence .xn/ � X converging to � in the horofunction compactification, and write
xn D n.un/. As we have seen in the proof of Proposition 3.10, we can take a sequence .ln/�R with
n.ln/ converging to B such that ln < un for all n. For each n we have a path Q̨n.t/ connecting n.ln/

and n.un/ by setting Q̨n.t/D n.tunC .1� t/ln/ for t 2 Œ0; 1�. We would like to carry this path to the
limit, getting a path between � and B.q/. However, directly taking such a limit might result in some
discontinuities, so we have to choose a parametrization carefully.

To find a good parametrization we shall use a certain functional as a control. We want the functional to
carry discontinuities and strict increases in the path of functions to discontinuities and strict increases in
the value of the functional. Since X is proper, it is separable, so let .pi/i2N be a countable dense set
in X . We define the functional I WX h!R given by

I.f /D
X
i2N

f .pi/

2id.b;pi/
:

Since jf .x/j � d.b;x/ for all f 2X h, the summation in the definition of I.f / is absolutely convergent,
so I.f / is defined, finite, continuous with respect to f , and for any two f;g 2X h we have I.f Cg/D

I.f /C I.g/. Furthermore, since .pn/ is dense and we are taking continuous functions, we have that the
functional translates strict inequalities. That is, f > g implies I.f / > I.g/. Hence, if I.f / D 0 and
f � 0 we have f D 0.

We define then the function Fn.t/D I.h.n.t//. By continuity of I this function is continuous, and by
Lemma 3.8 it is strictly decreasing with respect to t . That is, we have continuous strictly decreasing
functions Fn W Œln;un�! ŒFn.un/;Fn.ln/�. Hence, we can define implicitly the continuous parametrizations
sn W Œ0; 1�! Œln;un� by taking the unique value sn.t/ such that

Fn.sn.t//D .1� t/Fn.ln/C tFn.un/:

Denote the Fn.sn.t// as En.t/. By the continuity of I we have that En.t/ converges to .1�t/I.B /CtI.�/

as n!1, which we denote by E.t/.

Take now a countable dense set .tk/k2N � Œ0; 1� containing 0 and 1. We are now ready to start defining
the path ˛ W Œ0; 1� ! …�1. /, and we begin defining it for the dense set .tk/. For k D 1 we define
˛.t1/ as an accumulation point of h

�
n.sn.t

1//
�
. Denote .m1.n// the subsequence of n such that

h
�
m1.n/.sm1.n/.t

1//
�

converges to ˛.t1/. Define inductively ˛.tk/ and .mk.n// by taking an accumula-
tion point and a corresponding converging subsequence of h

�
mk�1.n/.smk�1.n/.t

k//
�
. By the continuity

of I we have

I.˛.tk//D lim
n!1

�
Fmk.n/.smk.n/.t

k//
�
DE.tk/:
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For each pair i > j we have that mi.n/ is a subsequence of mj .n/, so h
�
mi .n/.smi .n/.t

j //
�

converges
to ˛.tj /. Assume t i > tj . By Lemma 3.8 we have that h

�
mi .n/.smi .n/.t

i//
�
< h

�
mi .n/.smi .n/.t

j //
�
,

so ˛.t i/� ˛.tj /.

We now have to prove that the definition we have given for ˛ on .tk/ can be extended continuously
to Œ0; 1�. Fix any t 62 .tk/ and take a subsequence of tk , labeled tkn , such that tkn ! t . We shall
now see that ˛.tkn/ converges to a function which does not depend on the chosen subsequence, and
define ˛.t/ as that limit. We can split and reorder the sequence .tkn/ into .tCn / and .t�n / satisfying
tCn > tC

nC1
> t > t�

nC1
> t�n . The associated ˛.t˙n / are ordered, so for any p 2X the sequence ˛.t˙n /.p/ is

an increasing (or decreasing) sequence of values in R, bounded above (or below) by ˛.0/.p/ (or ˛.1/.p/).
Hence, both sequences converge pointwise, which implies uniform convergence on compact sets, as these
functions are 1–Lipschitz. Furthermore, these limits do not depend on the chosen sequence, since if we
had any other we could intercalate them and the sequences would still converge. Denote then ˛C the limit
associated to tCn , and ˛� the limit associated to t�n . Since ˛.tCn / < ˛.t

�
m/ for all n;m we have ˛C � ˛�.

For each ˛.tk/ we have I.˛.tk//DE.tk/. Hence by the continuity of I we have that

I.˛C/DE.t/D I.˛�/:

That is, we have
I.˛��˛C/D 0:

Since ˛� and ˛C are continuous and ˛��˛C � 0 we have ˛� D ˛C. We thus define ˛.t/ to be either
one. The same reasoning shows that ˛ is continuous.

We would like to remark that several choices where made in the proof of the previous lemma, and the
obtained path may not be unique.

We can use the previous result to observe that the horoboundary is connected if and only if the visual
boundary is connected.

Proof of Proposition 1.2 Assume that the visual boundary is not connected. Then we have U;V � @X v

nonempty and open such that U \V D∅ and U [V D @X v . As … is continuous, the sets …�1.U / and
…�1.V / are open, so the horoboundary is not connected.

For the other implication, assume that the visual boundary is connected while the horoboundary is not
connected. Then we have U;V � @X h nonempty and open such that U \V D∅ and U [V D @X h. Since
fibers are path connected, each of them is contained in only one of U or V , so….U / and….V / are disjoint.
Since U [V D @X h we have ….U /[….V /D @X v , and since both U and V are nonempty, so are the
images. Hence, both images cannot be open at the same time, as @X v is connected. Therefore, these sets
cannot be both closed. Assume ….U / is not closed. We then have a sequence .n/�….U / converging
to a point in ….V /. Again, since U [ V D @X h, we have that U D …�1….U / and V D …�1….V /.
Hence, any lift of the sequence .n/ to …�1….U / is contained in U and, since @X h is compact, has
accumulation points which, by the continuity of the projection map, are be contained in …�1….V /D V .
Hence, U is not closed and we get a contradiction.
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3.3 An alternative definition of the horofunction compactification

Under what a priori seem to be more restrictive hypotheses on the space X it is possible to characterize
the horofunction compactification as a subset of the product of all of its visual compactifications. We
detail the construction in this section.

The new extra hypotheses are both related to the differentiability of the distance function. We say a
that a uniquely geodesic metric space X is C 1 along geodesics if given a point p 2 X and a geodesic
segment  that does not intersect p, the distance function d. .t/;p/ is first differentiable and the value
of the derivative depends continuously on both t and p. Furthermore, the space X has constant distance
variation if for any two distinct geodesics ; � with  .0/D �.0/ we have either

(2) d

dt
d. .t/; �.s//

ˇ̌̌
tD0
D

d

dt
d. .t/; �.1//

ˇ̌̌
tD0

for all s > 0, or d
dt

d. .t/; �.s//
ˇ̌
tD0

does not exist for any s > 0.

Many commonly studied metric spaces have constant distance variation. For example, spaces with bounded
curvature, either above of below, have constant distance variation, as explained in the book by Burago,
Burago, and Ivanov [6, Section 4]. Importantly to our case, Teichmüller spaces with the Teichmüller
distance satisfy both hypotheses. Earle [9] proved that the distance function is C 1 by providing a formula
for its derivative. Applying the formula to (2) we get that the derivative depends only on the tangential
vector to  at 0 and the unit area quadratic differential associated to � at 0, so we also have constant
distance variation. Furthermore, Teichmüller spaces with the Teichmüller distance are also straight and
proper, so the results from this section can be applied to them.

Consider the product of all the possible visual compactifications obtained by changing the basepoint,

E D
Y

b2X

X v
b;

with the usual product topology. See the book by Munkres [35, Chapters 2.19 and 5.37] for some
background on infinite products of topological spaces. Denote by �b the projection from E to X v

b
. By

definition of the product topology, the diagonal inclusion i W X ,! E such that by �b.i.x// D x for
every x; b 2X is continuous, and has continuous inverse restricted to i.X / given by �b . Hence, i.X / is
homeomorphic to X . That is, i is an embedding. Furthermore, by Tychonoff’s theorem the product is
compact, as each factor of the product is compact. Hence the closure i.X /, which we shall denote by X V ,
is compact. The pair .i;X V / is then a compactification of X , which tracks the information given by the
visual boundary at each point. That is, a sequence in X converges in the topology of X V if and only if
it converges for every possible visual compactification X v

b
. The main interest of this compactification

comes from the following result.

Theorem 3.12 Let X be a proper , uniquely geodesic , straight metric space which is C 1 along geodesics
and has constant distance variation. Then .i;X V / is isomorphic to .h;X h/.
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Denote by …b the continuous map from X h to X v
b

given by Theorem 1.1. The isomorphism between X h

and X V is defined by recording the value of each possible…b within X V . That is, we define z… WX h!X V

in such a way that �b ı
z… WD …b for each b 2 X . The only property required to prove that z… is an

isomorphism not following directly from previous results is the injectivity. By Proposition 3.4 we know that
if f 2…�1

b
. / then  is an optimal geodesic of f . That is, f . .t//�f . .s//D�.t�s/. Hence, if f;g2

…�1
b
. /, then they differ by a constant along the geodesic  . If f and g are horofunctions in the preimage

of a point by z…, then they differ by a constant along infinitely many geodesics, which cover X . However,
the constant might depend on the geodesic, so we need a way to connect these constants. We proceed by
strengthening Proposition 3.4 to show that any two functions in …�1

b
. / also have the same directional

derivatives at points in  , which allows us to connect the geodesics. Precisely, we prove the following.

Proposition 3.13 Let X be a proper , uniquely geodesic , straight metric space which is C 1 along
geodesics and has constant distance variation. Furthermore , let  be a geodesic ray starting at b, and let ˛
be a geodesic starting at some point on  . Then , d

dt
f ı˛.t/

ˇ̌
tD0

exists and its value is the same for all
f 2…�1

b
. /.

Proof For any b0 2  we have that  is an optimal geodesic of f passing through b0. Denoting b0

the geodesic ray starting at b0 with the same biinfinite extension as  we have that f 2…�1
b0
.b0/, by

Proposition 3.4. Hence, we can assume that ˛.0/D b by changing the basepoint if necessary. Let xn be a
sequence converging to f . Furthermore, let �n

t be the geodesic from ˛.t/ to xn and gn.t/ be the value of
d
ds

h.xn/ ı˛.s/
ˇ̌
sDt

. By the definition of the map h we have gn.t/D
d
ds

d.˛.s/;xn/
ˇ̌
sDt

. By the constant
distant variation we have gn.t/D

d
ds

d.˛.s/; �n
t .1//

ˇ̌
sDt

, which since X is C 1 along geodesics depends
continuously on �n

t .1/ and t .

By Proposition 3.5 the geodesics �n
t converge as n! 1 to some geodesics �t , so �n

t .1/ converges
to �t .1/. Since the space is C 1 along geodesics, the value of d

ds
d.˛.s/; �n

t .1//
ˇ̌
sDt

depends continuously
on �n

t .1/, and so gn converges pointwise to g.t/D d
ds

d.˛.s/; �t .1//
ˇ̌
sDt

.

Take some ı > 0 and assume the convergence is not uniform on Œ�ı; ı�. Then there is some " > 0 such
that for each n there is at least one tn 2 Œ�ı; ı� such that jgn.tn/�g.tn/j> ". Since Œ�ı; ı� is compact we
can take a converging subsequence such that tn converges to some T 2 Œ�ı; ı�. Hence, the point �n

tn
.1/

does not converge to �T .1/, so by properness of X we can take a subsequence such that �n
tn
.1/ converges

to some p 2 X different from �T .1/. Let ˇ be the geodesic starting at ˛.T / passing through p. The
geodesics �n

tn
converge uniformly to ˇ, and ˇ ¤ �T . For any fixed t > 0 we have, following the same

reasoning than in the proof of Proposition 3.5,

f .ˇ.t//�f .ˇ.0//D lim
n!1

d.xn; ˇ.t//� d.xn; ˇ.0//D�t:

Hence, ˇ is an optimal geodesic of f passing through ˛.T /. However, f 2…�1
˛.T /

.�T /, so �T is also an
optimal geodesic passing through ˛.T /, contradicting Proposition 3.4.
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Hence, the convergence of .h.xn/ ı ˛/
0 D gn to g is uniform on Œ�ı; ı�. Therefore, f is differentiable

and f 0.0/D g.0/D d
ds

d.˛.s/;  .1//
ˇ̌
sD0

, which is the same for all f 2…�1. /.

Proof of Theorem 3.12 Each…b is continuous, so by the definition of the product topology the map z… is
continuous. Hence, by Lemma 2.1 to see that z… is an isomorphism it is enough to show that z… is injective.

Let f;g 2 X h be such that z….f / D z….g/. If there is some b 2 X such that �b ı
z….f / 2 X then

f D h.�b ı
z….f //D g. Assume then �b ı

z….f / 2 @X v
b

for all b 2X . By Proposition 3.13 they have
the same directional derivatives at every point. Let ˛ be a geodesic from a fixed basepoint b to any other
point. We have .f ı˛/0 D .g ı˛/0, so f �g is constant along ˛, and hence everywhere, since any point
can be connected to b by a geodesic. Hence, f and g are the same horofunctions.

By the definition of the convergence in the product topology, this characterization gives us the following
equivalence for the convergence to points in the horoboundary.

Corollary 3.14 Let X be a proper , uniquely geodesic , straight metric space , C 1 along geodesics and
with constant distance variation. A sequence .xn/�X converges in the horofunction compactification if
and only if the sequence converges in all the visual compactifications.

Restricting the result to the Teichmüller metric we get Corollary 1.11 announced in the introduction.

4 Background on Teichmüller spaces

A surface with marked points S is a pair .†;P /, where † is a compact, orientable surface with possibly
empty boundary, and P �† is a finite, possibly empty, set of points, where we allow points to be on the
boundary. The Teichmüller space T .S/ is the set of equivalence classes of pairs .X; f /, where X is a
Riemann surface and f W†! X is an orientation-preserving homeomorphism. Two pairs .X; f / and
.Y;g/ are equivalent if there is a conformal diffeomorphism h WX ! Y such that g�1 ı h ıf is isotopic
to identity rel P .

The Teichmüller distance between two points Œ.X; f /�; Œ.Y;g/� 2 T .S/ is defined as the value 1
2

log inf K,
where the infimum is taken over all K � 1 such that there exists a K–quasiconformal homeomorphism
h WX ! Y with g�1 ı h ıf isotopic to identity rel P . Together with the smooth structure provided by
the Fenchel–Nielsen coordinates T .S/ satisfies all the metric properties discussed in the previous section.
That is, T .S/ with the Teichmüller distance is a proper, uniquely geodesic and straight metric space
which is C 1 along geodesics and has constant distance variation. See [11, Part 2] for some background
on the Teichmüller metric and the Fenchel–Nielsen coordinates.

A quadratic differential on a Riemann surface X is a map q WTX!C such that q.�v/D�2q.v/ for every
� 2C and v 2 TX . Considering only holomorphic quadratic differentials with finite area

R
X jqj we get a
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characterization of the cotangent space to the Teichmüller space based at Œ.X; f /�. Given a point p 2 T .S/
and a quadratic differential q 2T �p T .S/ there is a unique geodesic  such that  .0/Dp and  0.0/Djqj=q.
We shall denote such a geodesic as R.qI �/ and denote the associated Busemann points as B.q/ or Bq .

4.1 Measured foliations

A multicurve on S is an embedded 1–dimensional submanifold of †nP with boundary in @†nP such
that

� no circle component bounds a disk with at most 1 marked point;

� no arc component bounds a disk with no interior marked points and at most 1 marked point on @†; and

� no two components are isotopic to each other in † rel P .

Each of the components is called curve. A weighted multicurve is a multicurve together with a positive
weight associated to each curve. We shall consider (weighted) multicurves up to isotopy rel P . If a simple
curve is a circle we shall call it a closed curve, and a proper arc otherwise.

A measured foliation on S is a foliation with isolated prong singularities, where we allow 1–prong
singularities at marked points, equipped with an invariant transverse measure �F [12, exposé 5]. Denoting
˛i and wi the components and the weights of ˛ respectively, the intersection number i.˛;F / is defined as
inf
P

i wi

R
˛i
j�F j d˛i , where the infimum is taken over all representatives of ˛. Two measured foliations

F and G are equivalent if i.˛;F /D i.˛;G/ for every multicurve ˛. We shall always consider measured
foliations up to this equivalence relation. The set of measured foliations is usually denoted as MF , and
its topology is defined in such a way that a sequence .Fn/�MF converges to F if and only if i.˛;Fn/

converges to i.˛;F / for every multicurve ˛.

Given a quadratic differential one can define the vertical foliation as the union of vertical trajectories, that
is, maximal smooth paths  such that q. 0.t// < 0 for every t in the interior of the domain. This foliation
can be equipped with the transverse measure given by jRe

p
qj. This measured foliation is called the

vertical measured foliation of q, and shall be denoted as V .q/. This map is actually a homeomorphism.
As such, given a measured foliation F and a complex structure X , there is a unique quadratic differential
qF;X on X such that V .qF;X /D F . We call this quadratic differential the Hubbard–Masur differential
associated to F on X [19]. Furthermore, for each �> 0 we have q�F;X D�qF;X . Similarly, the horizontal
foliation H.q/ can be defined as the union of maximal smooth paths  such that q. 0.t// > 0, with the
transverse measure j Im

p
qj.

It is possible to associate a measured foliation to each weighted multicurve by thickening each proper
arc and closed curve to a rectangle or cylinder respectively with width equal to the weight of the curve,
and then collapsing the rest of the surface. The intersection numbers are maintained by this construction.
This association is injective, and hence we shall consider the set of weighted multicurves as a subset of
the measured foliations, and use both expressions of weighted multicurve indistinctly.
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By removing the critical graph, a measured foliation is decomposed into a finite number of connected
components, each of which is either a thickened curve, or a minimal component which does not intersect
the boundary, in which every leaf is dense [40, Chapter 24.3]. Each transverse measure within the minimal
components can be further decomposed into a sum of finitely many projectively distinct ergodic measures.
A foliation F 0 is an indecomposable component of F if it is either a thickened curve or a minimal
component with a transverse measure that cannot be decomposed as a sum of more than one projectively
distinct ergodic measure. Every foliation can be decomposed uniquely into a union of indecomposable
foliations. For a surface of genus g with no boundaries nor marked points Papadopoulos shows [37] that
the maximum number of indecomposable components for any foliation is 3g� 3. It is possible to get an
upper bound for foliations on surfaces with boundary and marked points by swapping the marked points
for boundaries and using the doubling trick we will explain in Section 4.3.

It was shown by Thurston that for surfaces without boundary it is possible to achieve a dense subset by
restricting to simple closed curves, see Fathi, Laudenbach, and Poénaru [12] for a reference. When there
are boundaries the picture gets slightly more complicated, but it has been shown by Kahn, Pilgrim and
Thurston [21, Proposition 2.12] that multicurves can be seen as a dense subset. More precisely, they show
the following.

Proposition 4.1 (Kahn–Pilgrim–Thurston) Let F be a measured foliation in S not containing proper
arcs. Then there exists a sequence of multicurves composed solely of closed curves approaching F .

The result can be extended to any foliation by cutting along the proper arcs and approaching the foliation
in the resulting surfaces by multicurves. Then, joining the multicurves from the proposition with the
proper arcs and the adequate weights we get a sequence of multicurves converging to our original foliation.

4.2 Extremal length

Given a marked conformal structure on S , that is, a point X 2 T , the extremal length of F on X is defined
as

ExtX .F / WD
Z

X

jqF;X j:

The map Ext WMF.S/� T .S/!R is continuous and homogeneous of degree 2 in the first variable.

Given two points x;y 2 T .S/ we can define the function

Kx;y WD sup
F2Pb

Extx.F /
Exty.F /

;

where Pb is the set of measured foliations F satisfying Extb.F / D 1. As revealed by Kerckhoff’s
formula [23], the value 1

2
log Kx;y coincides with the usual definition of the Teichmüller distance d.x;y/.
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Figure 4: Visual representation of the doubling trick.

4.3 The doubling trick

Let X be a Riemann surface with nonempty boundary. Denote by X the mirror surface, obtained by
composing each atlas of X with the complex conjugation. Gluing X to X along the corresponding
boundary components we obtain the conformal double X d DX [X=� of X . Note that X d has empty
boundary. See Figure 4. Given a foliation F or a quadratic differential q on X , we can repeat the same
process, obtaining the corresponding conformal doubles Fd and qd on X d . For a more detailed treatment
of this argument see [1, Section II.1.5].

The main interest of the conformal doubles is that these are surfaces without boundary, so most of the
results relating to Teichmüller theory of surfaces without boundary can be translated to surfaces with
boundary. We have the following.

Proposition 4.2 Let X be a Riemann surface with boundary, and F be a foliation on X . Then ,

ExtX d .Fd /D 2 ExtX .F /:

Proof We have qF d ;X d D qd
F;X

, so the result follows, as
R
X d jq

d
F;X
j D 2

R
X jqF d ;X d j.

4.4 The Gardiner–Masur compactification

For a surface S with marked points and empty boundary we can embed T .S/ into the space of continuous
functions from the set S of simple closed curves on S to R via the map � W T .S/! P .RS/ defined by

�.X /D ŒExtX .˛/1=2�˛2S ;

where the square brackets indicate a projective vector. Gardiner and Masur show [14] that this map
is indeed an embedding, and that �.T .S// is precompact. The Gardiner–Masur compactification of a
surface without boundary is then defined as the pair

�
�; �.T .S//

�
.
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Alternatively, after choosing a basepoint b 2 T .S/, it is also possible to consider the map

E W T .S/! C.MF/ defined by E.X /. �/ WD
�

ExtX . �/
Kb;X

�1=2

;

This map is quite similar to the original map �, the differences being that E considers all measured
foliations instead of just the closed curves, and normalizes instead of projectivizing. Walsh proves [44]
that, for surfaces without boundary, the map E defines a compactification in the same way that � does,
and in fact this compactification is isomorphic to the one defined by �.

The compactification defined by E fits better our goal, so we shall define the Gardiner–Masur compacti-
fication of Teichmüller spaces of surfaces with boundary as the one obtained by using E . With this in
mind, we first need the following result.

Proposition 4.3 Let S be a compact surface with possibly boundary and marked points. Then the map
E W T .S/! C.MF/ is injective.

Proof Assume we have x;y 2 T .S/ with E.x/.F /D E.y/.F / for all F 2MF . Then,

Kx;y D sup
F2Pb

Extx.F /
Exty.F /

D
Kb;x

Kb;y

and Ky;x D sup
F2Pb

Exty.F /
Extx.F /

D
Kb;y

Kb;x

DK�1
x;y :

However, Ky;xDKx;y , since the Teichmüller distance is symmetric. Hence, Kx;yD1 and, by Kerckhoff’s
formula, d.x;y/D 1

2
log Kx;y D 0.

Miyachi shows [32] that the set E.S/ WD fE.X / jX 2 T .S/g is precompact when S is a surface without
boundary. Given a surface with boundary S , denote by MFd .S/ the set of measured foliations on Sd

obtained by doubling the foliations MF.S/. The set E.Sd /jMFd .S/ D fE.X /jMFd .S/ jX 2 T .S
d /g,

obtained by restricting the functions in E.Sd / to MFd , is precompact. Furthermore, we can embed
E.S/ into E.Sd /jMFd .S/ by sending f 2E.S/ to f d 2E.Sd /jMFd .S/ defined by f d .Fd /D f .F /.
Hence, E.S/ is precompact.

We define the Gardiner–Masur compactification for a surface with boundary as the closure E of E.S/,
together with the map E . We shall be using the same characterization for surfaces without boundary.

One of the relevant features of the Gardiner–Masur compactification is that it coincides with the horofunc-
tion compactification. Indeed, Liu and Su [28] and Walsh [44] prove that for surfaces without boundary
these two compactifications are isomorphic. In the following, we shall extend the relevant results to
surfaces with boundary. We begin with the driving theorem from Walsh’s paper.

Theorem 4.4 (extension of [44, Theorem 1] to surfaces with boundary) Let R.qI �/ WRC! T .S/ be
the Teichmüller ray with initial unit-area quadratic differential q, and let F be a measured foliation. Then ,

lim
t!1

e�2t ExtR.qIt/.F /D
X

j

i.Gj ;F /
2

i.Gj ;H.q//
;

where the fGj g are the indecomposable components of the vertical foliation V .q/, and H.q/ is the
horizontal foliation.
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Proof If S does not have boundary the result follows from Walsh’s paper. Assume then that S has
boundary. Let p be the number of proper arcs of V .q/, and reorder the components so Gj is a proper arc
for j � p. The conformal double Gd

j is indecomposable whenever Gj is a proper arc, and decomposes
into two components otherwise, as it is not incident to the boundary of S . Denote G1

j and G2
j the two

components of Gj for j > p. We have

2 lim
t!1

e�2t ExtR.qIt/.F /D lim
t!1

e�2t ExtR.qd It/.F
d /D

X
j�p

i.Gd
j ;F

d /2

i.Gd
j ;H.q/

d /
C

X
i2f1;2g

X
j>p

i.Gi
j ;F

d /2

i.Gi
j ;H.q/

d /
:

For foliations G;F 2MF.S/ we have i.Gd ;Fd /D 2i.G;F /. Hence, i.Gd
j ;F

d /D 2i.Gj ;F /. Using
the symmetry, i.G1

j ;F
d / D i.G2

j ;F
d /, so for j > p we have i.G1

j ;F
d / D i.Gj ;F /. Using these

identities we get the result.

Following the same reasoning we can extend as well the next result.

Lemma 4.5 (extension of [44, Lemma 3] to surfaces with boundary) Let q be a unit area quadratic
differential. Then ,

e�2t ExtR.qIt/.F /�
X

j

i.Gj ;F /
2

i.Gj ;H.q//
;

where t 2RC and fGj g are the indecomposable components of the vertical foliation V .q/.

Most of the results in Walsh’s paper use the previous theorem. In particular, we have the following.

Corollary 4.6 (extension of [44, Corollary 1] to surfaces with boundary) Let q be a quadratic differential
and denote by Gj the indecomposable components of its vertical foliation. Then , the Teichmüller ray
R.qI �/ converges in the Gardiner–Masur compactification to�X

j

i.Gj ; �/
2

i.Gj ;H.q//

�1=2

:

The relation between the Gardiner–Masur compactification and the horoboundary compactification is
given by the map „ WE! T .S/h defined by

„.f /.x/ WD 1
2

log sup
F2P

f .F /2

Extx.F /
:

The following result can be extended to surfaces with boundary by repeating the proof found in Walsh’s
paper in this context.

Theorem 4.7 (extension of [44, Lemma 21] to surfaces with boundary) The map „ is an isomorphism
between the compactifications .E ;E/ and .h; T .S/h/.

Directly from the definition of „ we have the following.

Corollary 4.8 Let f;g 2E. If f � g, then „.f /�„.g/.
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We shall denote the representation of the Busemann point B.q/ in the Gardiner–Masur compactification
as E.q/. By Corollary 4.6 we have an explicit representation of E.q/. As we have seen in Propositions 1.3
and 1.4, the continuity of the Busemann map has some interesting implications, and it is enough to look
for continuity of the map restricted to the boundary. Related to this question we have the following result,
which can also be derived by the same proof found in Walsh’s paper, applied to this context.

Theorem 4.9 (extension of [44, Theorem 10] to surfaces with boundary) Let .qn/ be a sequence of
quadratic differentials based at b 2 T .S/. Then B.qn/ converges to B.q/ if and only if both of the
following hold :

(1) .qn/ converges to q.

(2) For every subsequence .Gn/n of indecomposable elements of MF such that , for each n 2N, Gn

is a component of V .qn/, we have that every limit point of Gn is indecomposable.

In view of this theorem, we say that a sequence of quadratic differentials .qn/ converges strongly to q if
it does so in the sense described by the theorem.

Finally, while the following result may be extendable to surfaces with boundary, we only use it in the
context of surfaces without boundary, so we shall not be working on finding an extension.

Theorem 4.10 [44, Theorem 3] For the Teichmüller space of a surface without boundary with the
Teichmüller metric , for any basepoint X 2 T .S/, all Busemann points can be expressed as B.q/ for some
quadratic differential q based at X .

5 Horoboundary convergence for Teichmüller spaces

5.1 Continuity of the Busemann map

We begin by using Proposition 1.4 to determine when the Busemann map is continuous. Recall that a
sequence .qn/ converges to q strongly if and only if the sequence satisfies the conditions of Theorem 4.9.
That is, a sequence .qn/ converges to q strongly if and only if the associated Busemann points B.qn/

converge to B.q/. With this in mind we introduce the following notion.

Definition 5.1 Let q be a quadratic differential. We say that q is infusible if any sequence of quadratic
differentials converging to q converges strongly. We say that q is fusible if it is not infusible.

In other words, we say that q is fusible when it can be approached by a sequence of quadratic differentials
.qn/ such that there is some sequence .Gn/ of measured foliations with each Gn being an indecomposable
component of V .qn/, with .Gn/ having at least one decomposable accumulation point. The following
statement follows directly from this definition, Proposition 1.4 and Walsh’s result.

Proposition 5.2 Let q be a unit area quadratic differential. The Busemann map B is continuous at q if
and only if q is infusible.
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Proof If q is fusible then we have a sequence converging to q but not strongly. Hence, by Theorem 4.9
the sequence .B.qn// does not converge to B.q/, and so the Busemann map is not continuous at q.

If q is infusible we have that any sequence .qn/ converging to q does so strongly, and so we have that
B.qn/ converges to B.q/, so B is continuous at q when restricted to the boundary. By Proposition 1.4
this implies that B is continuous at q.

We shall now find a criterion on the vertical foliation to determine when a unit area quadratic differential
is infusible.

Definition 5.3 Let F be a measured foliation on a surface S and let G be one of its indecomposable
components. We say that G is a boundary annulus if it is an annulus parallel to a boundary with no
marked points, and a boundary component if it is a boundary annulus or a proper arc. If G is not a
boundary component, we shall call it an interior component. Each of the connected components of the
surface obtained after removing the proper arcs shall be called interior part. If each of these interior
parts has at most one interior component, then we say that F is internally indecomposable. If F is not
internally indecomposable we say that it is internally decomposable.

For surfaces without boundary, a foliation F is internally indecomposable if and only if it is indecompos-
able, as we do not have boundary components. Given these definitions we can state our main result of
this section.

Theorem 5.4 Let q be a quadratic differential. Then q is infusible if and only if its vertical foliation
V .q/ is internally indecomposable.

This result is somewhat straightforward whenever S does not have boundary, as in order to have a sequence
.qn/ that converges to q but not strongly we need a sequence of components of V .qn/ converging to
a decomposable component of V .q/, but if S is closed and V .q/ is internally indecomposable, then
V .q/ only has one indecomposable component. Conversely, if V .q/ has more than one indecomposable
component, as S does not have boundary V .q/ can be approached by a sequence of simple closed curves,
so the associated sequence of quadratic differentials converges to q but not strongly.

For surfaces with boundary the proof is more involved, as simple closed curves are no longer dense.
However, the density of multicurves from Proposition 4.1 allows us to follow a slightly similar reasoning.
We begin by proving some results regarding the shape that foliations have to take when approaching a
foliation with boundary components, namely, boundary components have to be eventually included in the
approaching foliations.

Proposition 5.5 Let .Fn/ be a sequence of measured foliations converging to a measured foliation F , let
G be the union of the boundary components of F and let H be such that F DH CG. Then , for n big
enough , Fn DHnC anG, with an converging to 1 and Hn converging to H .

Algebraic & Geometric Topology, Volume 24 (2024)



A qualitative description of the horoboundary of the Teichmüller metric 3949

In particular, the proper arcs of the limiting foliation have to be included in the approaching foliations.
Hence, we will be able to separate the surface along these proper arcs into the interior parts of the limiting
foliation, and study the convergence in each of these parts.

We say that a subset of a boundary component is a boundary arc if it is homeomorphic to an open interval
or a circle, does not contain marked points and, if it is homeomorphic to an open interval, it is delimited
by marked points.

Repeating the argument by Chen, Chernov, Flores, Fortier Bourque, Lee, and Yang [7] to a more general
setting we get the following characterization of foliations on simple surfaces, which we shall use to solve
the simpler cases.

Lemma 5.6 Let S be a sphere with one boundary component possibly containing boundary marked
points and one interior marked point. Then every indecomposable foliation on S is a proper arc and there
are finitely many distinct proper arcs.

Proof Assuming that there is some foliation F with a recurrent leaf to some part of S we get a
contradiction, as explained in the proof of [7, Lemma 4.1]. Hence, each indecomposable foliation is a
curve. Any closed curve in S is contractible to the marked point. Hence, a each indecomposable foliation
is a proper arc.

A proper arc in S must have two endpoints, which must be contained in the boundary arcs in the boundary
component of S . Denote b1 and b2 these two boundary arcs, which might be the same. We aim to
show that there are at most two classes of arcs with endpoints in b1 and b2. Fix three proper arcs with
endpoints on b1 and b2. Any intersection between these arcs can be removed by doing isotopies moving
the endpoints along the arcs b1 or b2. Hence, these arcs can be isotoped to not intersect each other. Since
there is only one interior marked point, two of these arcs delimit a rectangle with no marked interior
marked points, so are isotopic. Hence, there are at most two different proper arcs between b1 and b2.
There are finitely marked points in the boundary component, so there are finitely many boundary arcs.
Therefore, there are finitely many pairs of boundary arcs, and since we have at most two proper arcs per
pair, there are also finitely many different proper arcs.

We shall first see the proposition for the case where G contains a proper arc and we are approaching with
a sequence of indecomposable foliations.

Lemma 5.7 Let S be a surface and let .Fn/ be a sequence of indecomposable foliations on S converging
to a measured foliation G. Then G is either a multiple of a proper arc  , in which case Fn is also a
multiple of  for n big enough , or G does not contain a proper arc.

Proof Assume G contains a proper arc  with weight w > 0 and denote by b one of the boundary arcs
where  is incident.
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bˇ



b

ˇ



Figure 5: Sample curves used in the proof of Lemma 5.7.

Our first step is seeing that, for n big enough, Fn intersects b. We shall do this by finding different
test curves ˇ depending on the shape of b. If the boundary component containing b has at most one
marked point, we consider ˇ to be a curve parallel to that boundary component as in Figure 5, left.
Otherwise we consider ˇ to be the curve defined by taking a small arc starting at the boundary arc next
to b, concatenating with a curve parallel to b, and concatenating another segment with endpoint in the
boundary arc after b, as shown in Figure 5, right.

If the curve ˇ is contractible then S is a sphere with one boundary component and at most one interior
marked point, so by Lemma 5.6 the result follows. Assume then that ˇ is not contractible. We have
i.; ˇ/ > 0, so i.G; ˇ/ > 0 and hence i.Fn; ˇ/ > 0 for n big enough, which implies that Fn intersects b.
Hence, since Fn is indecomposable, it is a weighted proper arc, which we denote by wnn, where wn > 0

is the weight at n is a proper arc.

Denote b1 and b2 the boundary arcs where  has its endpoints, and denote by ˇ1 and ˇ2 the associated
test curves shown in Figure 5. If both endpoints are in the same boundary arc we set b2 and ˇ2 as null
curves. We shall now find a multicurve A surrounding  , b1 and b2 such that any leaf of G intersecting
A but not  has an endpoint in either b1 or b2. The multicurve A is chosen so that, together with the
boundaries where  has its endpoints, delimits the smallest surface containing  . The precise shape of A

depends on whether the endpoints of  are in the same boundary component or not, and the distribution
of marked points in these boundaries.

If both endpoints of  are in different boundary components we proceed differently according to the
distribution of marked points at these boundaries. If each of the boundaries contains at most one marked
point then we define A as the curve shown in Figure 6, left. If one of the boundary components has two
or more marked points, but the other has at most one marked point we define A as the arc shown in
Figure 6, middle. Finally, if each of the boundaries contains at least two marked points we define A as
the multicurve formed by the curves A1 and A2 as shown in Figure 6, right.

If both endpoints  are in the same boundary we also proceed differently according to the distribution of
marked points. In all cases A is defined as a multicurve formed by two curves. If each possible segment
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Figure 6: Construction of the curves A1 and A2 whenever  has endpoints in different boundary
components in the proof of Lemma 5.7.

b
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Figure 7: Construction of the curves A1 and A2 whenever  has endpoints in the same boundary
component in the proof of Lemma 5.7.

within the boundary component joining the two endpoints has at most one marked points we proceed as
in Figure 7, left. If one of these segments has two or more marked points, while the other has at most one
we proceed as in Figure 7, middle. Finally, if both of these segments have two or more marked points we
proceed as in Figure 7, right.

In any of the cases above if a component of A is nonessential we remove it from A. The following
argument also applies whenever A is a null curve. Put A and G in minimal position and denote by
P the surface containing  , delimited by A and the boundary components where  has its endpoints.
Let ˛ be a connected component of a noncritical leaf of G restricted to P intersecting A. Since G

contains  the proper arc ˛ cannot intersect  . Furthermore, by observing the possible configurations,
if ˛ has one endpoint in A1, the other one cannot be in A2, as whenever we have both A1 and A2,
these are separated within P by the proper arc  . Furthermore, if both endpoints are in A1 then ˛
can be isotoped to not intersect A. Therefore, the other endpoint of ˛ is in either b1 or b2. Hence,
i.G; ˇ1/C i.G; ˇ2/ � i.G;A/Cw i.; ˇ1/Cw i.; ˇ2/ > i.G;A/. Since wnn converges to G, this
last inequality implies that for n big enough,

i.n; ˇ1/C i.n; ˇ2/ > i.n;A/:

Fix n such that n satisfies the previous inequality. Assume n has just one endpoint inside P . Then,
i.n; ˇ1/C i.n; ˇ2/D 1, so i.n;A/D 0 and n cannot leave P . If n has both endpoints in P then
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i.n; ˇ1/C i.n; ˇ2/D 2. Furthermore, if n leaves P , then it has to reenter at some point, resulting in
i.n;A1CA2/D 2. Hence, n stays inside P .

The weights wn do not converge to 0, as wni.n; ˇ/ converges to i.G; ˇ/, but i.n; ˇ/� 2. Since  is
contained in G we have i.G;  /D 0. Therefore, for any " > 0 and n big enough we have wni.n;  / < ",
so for n big enough i.n;  /D 0. Since n does not intersect  and stays inside P , n can be isotoped
to stay inside one of the components obtained after removing  from P . Denote such a component by
C . The component C has either one or two boundary components and no interior marked points or one
boundary component and one interior marked point. By Lemma 5.6 the only case where we do not have
finitely many different proper arcs is when C has two boundary components. However, in that case one
of the boundary components is associated to a curve in A, so n does not intersect it and that boundary
can be treated as a marked point. Hence, in all cases there are finitely many possible proper arcs, and so
n is a multiple of  for n big enough.

When the boundary component is an annulus we have to be a bit more careful, so we start by proving it
for approaching curves.

Lemma 5.8 Let S be a surface and let .wnn/ be a sequence of weighted curves on S converging to a
foliation G, where .wn/ are the weights and .n/ are the curves. Then G is either a multiple of a boundary
annulus  , in which case n is  for n big enough , or G does not contain a boundary annulus.

Proof If S is a polygon with at most one interior marked point, then G cannot contain a boundary
annulus. If S is a cylinder then, since we have a boundary annulus, at least one of the boundaries must
not contain marked points. Hence, the number of curves is finite, as there is only one possible closed
curve, and for counting the proper arcs we can consider the boundary without marked points as a marked
point and apply Lemma 5.6. In that case, the conclusion follows.

Assume then that S is neither a disk with at most one interior marked point nor a cylinder with no interior
marked points. Then there is a pair of pants P in S containing  where each boundary component of P is
either noncontractible or contractible to a marked point. Denote by B1 the boundary component parallel
to  and B2 and B3 the other two boundary components of P . Furthermore, assume that G contains 
with weight w.

Begin by assuming that B2 and B3 are not contractible to marked points. Let C be the proper arc contained
in P with both endpoints in B1. Put B2, B3 and C in a minimal position with respect to G, and consider a
connected component of a noncritical leaf of G intersecting C restricted to P . This noncritical leaf either is
isotopic to  , or to the curves F , E and D shown in Figure 8. Since the leaves of G do not intersect, there
cannot be leaves isotopic to E and leaves isotopic to D at the same time. Breaking symmetry, assume there
are no leaves isotopic to D. Then, i.C;G/D i.C;  /Ci.B3;G/ > i.B3;G/� i.B2;G/. Doing the same
reasoning assuming that there are no leaves isotopic to E we get i.C;G/ > max.i.B2;G/; i.B3;G//.
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B3B2
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E D

Figure 8: Curve labeling for the proof of Lemma 5.8.

Hence, since wnn converges to G, n has to satisfy

i.C; n/ >max.i.B2; n/; i.B3; n//

for n big enough.

For each n put B3, B2 and C in a minimal position with respect to n, and consider the restriction of n

to P . Assume n is not  . Then, the curves on the restriction of n to P intersecting C are isotopic to
either E;F and D, but not  . As before, this restriction cannot contain curves isotopic to E and curves
isotopic to D for the same n, so assuming there are no curves isotopic to D we have i.C; n/D i.B3; n/

which is a contradiction. Doing the same reasoning assuming that there are no curves isotopic to E also
gives a contradiction. Hence, n is  for n big enough.

If B2 or B3 are contractible to marked points we have i.G;B2/ or i.G;B3/ is 0, and a similar reasoning
yields the same result.

Proof of Proposition 5.5 Let .Fn/ be a sequence of measured foliations converging to F . As pointed out
before, Proposition 4.1 can be extended to get sequences of weighted multicurves .m

n /m converging to
each Fn. Denote by m

n;1
; m

n;2
; : : : ; m

n;k.n;m/
the weighted curves of m

n . For each n we take a subsequence
such that k.n;m/ is constant with respect to m, and m

n;i converges for each i as m!1. Denoting Fn;i

the limit of m
n;i as m!1, we can write Fn D

P
Fn;i .

Denote by ǰ the boundary components of F . That is,
P

ǰ DG. Furthermore, denote by bn;j and bm
n;j

the weights of ǰ on Fn and m
n , where we set the weight to be 0 if ǰ is not contained in the foliation. It

is clear that if bn;j D 0 then bm
n;j ! 0, as we must have bn;j � lim infm!1 bm

n;j . If bn;j > 0 for some n,
then Fn;i contains ǰ for some i . Hence, by Lemmas 5.7 and 5.8 we have Fn;i and m

n;i are both multiples
of ǰ for m big enough. Then, since each of the multicurves in m

n has to be different, ǰ is not contained
in any other foliation Fn;i for that given n, so Fni

D bn;j ǰ and m
n;i can be written as bm

n;i ǰ for m big
enough, with bm

n;i converging to bn;j as m!1.
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Assume for some j we have bn;j not converging to 1. We can then take a subsequence such that bn;j

converges to some �¤ 1. Denote ı D j1��j=2. For each n, there exists some m0.n/ big enough so that
j1�bm

n;j j>ı for all m�m0.n/. We can then take a diagonal sequence m.n/
n converging to F with m.n/�

m0.n/. However, following the previous reasoning we get that m.n/
n should contain ǰ for n big enough,

and the weight should converge to the weight in G, that is, to 1. However, j1�b
m.n/
n;j j> ı, giving us a con-

tradiction. Hence, bn;j converges to 1 for all j . Let then anDminj .bn;j /. Since bn;j � an we can define
HnDFn�anG and we have FnDHnCanG. Finally, an! 1 as n!1, so the proposition is proved.

Proposition 5.9 Let q be a unit area quadratic differential such that V .q/ is internally indecomposable.
Then q is infusible.

Proof Assume q is fusible, that is, we have a sequence of quadratic differentials .qn/ converging to q but
not strongly. Let Fn

i be the indecomposable components of V .qn/. To have nonstrong convergence we
must have at least one sequence of indecomposable components converging to a decomposable component
G, which we assume is .Fn

1
/n. Let ˇ be a boundary component of V .q/. By Proposition 5.5 for n big

enough a multiple of ˇ must be contained in V .qn/. Furthermore, ˇ cannot be contained in G. Since G

cannot contain boundary components, it must contain at least two interior components. On the other hand,
since V .q/ is internally indecomposable, each interior part obtained by removing the proper arcs contains
at most one interior component. Hence, for n big enough Fn

1
must intersect at least two interior parts,

that is, Fn
1

must cross at least one proper arc. However, for each proper arc  there is some n big enough
such that  is contained in the foliation V .qn/, so Fn

1
, a component of V .qn/, intersects the foliation

V .qn/, giving us a contradiction.

To prove the other direction we shall first see the following lemma.

Lemma 5.10 Let S be a compact surface with possibly nonempty boundary and finitely many marked
points , let k � 2 and let ˛ D f˛1; ˛2; : : : ; ˛kg be a collection of nonintersecting closed curves on S .
Furthermore , let p be the number of curves in ˛ parallel to a boundary. Then there exists a collection of
max.d.p=2/e/; 1/ nonintersecting curves intersecting each ˛i .

Our main interest in the lemma is that the amount of curves needed is strictly smaller than the amount of
closed curves in ˛. This will allow us, by doing Dehn twists along the closed curves in ˛, to create a
sequence of foliations converging to a foliation with strictly more components, which can be translated to
a sequence of quadratic differentials that converge but not strongly. The proof of this lemma is based on a
reasoning found in [11, Proposition 3.5].

Proof We start by replacing all boundaries of S without parallel curves in ˛ by marked points. Let
then ˛0 be a completion of ˛ to a pair of pants decomposition. Glue the remaining boundaries pairwise
until we have at most one left. After cutting the surface along the closed curves that were not parallel
to boundaries we get a collection of dp=2e tori with one boundary component and some spheres with b
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Figure 9: Laying out of curve segments for the proof of Lemma 5.10.

boundary components and n marked points, with bC nD 3 and b � 1. If p is odd, one of these spheres
has a boundary of S as a boundary. We join the boundaries of each of these surfaces with nonintersecting
arcs, as shown in Figure 9, that is, in such a way that each boundary component has two arcs incident to it.
We can then paste these surfaces back together in order to obtain a collection ˇ1; ˇ2; : : : ; ˇl of pairwise
disjoint curves in S . If p is odd this collection contains precisely one proper arc, as we only have two
endpoints coming from the boundary we did not paste. If p is even the collection does not contain any
proper arc. By the bigon criterion each ǰ is in minimal position with respect to each ˛i , and each ˛i

intersects either one or two of the ǰ . Furthermore, since we did not cut along the original boundaries we
pasted from S , each ˛i parallel to a boundary of S intersects precisely one of the ǰ . Suppose we have ǰ

and ǰ 0 intersecting a curve � 2 ˛0 and that ǰ and ǰ 0 are distinct. Since we have at most one proper arc,
at least one of ǰ and ǰ 0 is a closed curve. Hence, doing a half twist about �, ǰ and ǰ 0 become a single
curve. Since this process does not create any bigons, the resulting collection is still in minimal position
with ˛. Continuing this way we obtain a single curve  intersecting each curve in �. Furthermore, 
intersects each pasted boundary once. Cutting along the pasted boundaries, we get the curves from the
lemma. If p is odd, ˇ is a proper arc, so each cut along a pasted boundary increases the curve count by
one, totaling .pC1/=2 curves. If p is even, ˇ is a closed curve, so the first cut transforms it into a proper
arc, and the following ones increase the curve count by one, giving a total of max.p=2; 1/ curves.

Proposition 5.11 Let F be an internally decomposable measured foliation. Then , F can be approached
by a sequence of weighted multicurves with fewer components than F .

Proof By the extension to Proposition 4.1, we have a sequence of weighted multicurves  n converging
to F , with the only proper arcs being the ones contained in F . Cutting the surface along the proper arcs
of  n and quotienting these proper arcs to points we get k many surfaces Z1;Z2; : : : ;Zk with boundary.
Let  n

i be the restriction of  n to Zi , and let Fi be the limit of  n
i . The foliation F is the union of the

foliations Fi and the proper arcs.

Fix some i such that Fi is nonempty, and let ˛1; : : : ; ˛b be the closed curves parallel to the boundaries
of Zi . Let an

1
; : : : ; an

b
be the weights of ˛1; : : : ; ˛b in  n

i . We can take a subsequence such that an
j

converges for each j to some aj . If aj > 0, the closed curve j̨ is contained in Fi . If aj D 0, then the
weights an

j can be set to 0 on the multicurves  n
i while leaving the limit intact. Hence, we can assume
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that an
j D 0 for all j such that aj D 0. Let p and u be the number of closed curves with aj > 0 parallel to

boundaries with or without marked points respectively. Since we have removed all the closed curves with
aj D 0, the multicurve  n

i contains precisely p and u closed curves parallel to boundaries with or without
marked points for n big enough. Denote by B the set of closed curves parallel to boundary components
without marked points. Applying Lemma 5.10 to the multicurve  n

i minus B we get max.d.p=2/e/; 1/
curves ˇn

i intersecting all closed curves in  n
i except the ones parallel to boundaries without marked

points. Doing the appropriate Dehn twists along the closed curves of  n
i and rescaling to the curves ˇn

i ,
and adding with the corresponding weights the curves in B, we get a sequence converging to  n

i with
max.d.p=2/e/; 1/Cu many components. As such, taking a diagonal sequence we can get a sequence of
multicurves converging to Fi with each multicurve containing max.d.p=2/e/; 1/Cu components.

Finally, since F is internally decomposable, there is at least one Fi with at least 2 interior components, so
one of these multicurves has strictly less components than the limiting foliations, and we have nonstrong
convergence.

Theorem 5.4 follows by combining Propositions 5.9 and 5.11.

We do not need S to have a lot of topology to find internally decomposable foliations. In fact, determining
which surfaces do not support internally decomposable foliations we get the following result.

Proposition 5.12 Let Sg;bm;bu;p be a surface of genus g with bm and bu boundaries with and without
marked points respectively and p interior marked points. Then the Busemann map is continuous if and
only if 3gC 2bmC buCp � 4.

We shall split the proof in the following two lemmas

Lemma 5.13 Let Sg;bm;bu;p be a surface with 3gC 2bmC buCp > 4. Then it admits an internally
decomposable foliation.

Proof A multicurve consisting of two interior closed curves generates an internally decomposable
foliation, so we just have to find such a pair for each possible surface satisfying the hypothesis. If S has
genus at least 2 we can take a multicurve consisting of 2 nonseparating closed curves. If S is a torus with
at least 2 boundaries or marked points, or a boundary with marked points, we can take a nonseparating
closed curve and a separating closed curve around 2 boundaries or marked points, or around a boundary
with marked points. If S is a sphere with at least 5 marked points or boundaries, we can take a closed
curve around two interior points or boundaries, and a closed curve around two different interior points or
boundaries. If S is a sphere with 1 boundary with marked points and at least 3 other boundaries or interior
points we can take a closed curve around the boundary with marked points, and a closed curve around two
other interior points or boundaries. Lastly, if S is a sphere with 2 boundaries with marked points and another
interior marked point or boundary we take a closed curve around each boundary with marked points.

Lemma 5.14 Let Sg;bm;bu;p be a surface with 3gC 2bmC buCp � 4. Then every foliation on S is
internally indecomposable.
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Proof Assume we have an internally decomposable foliation on Sg;bm;bu;p. Then we can get an
internally decomposable foliation on Sg;0;0;buCpC2bm

by removing the boundary components, replacing
the boundaries without marked points with marked points and each boundary with marked points for 2
marked points. Furthermore, if we have at least one marked point, we can get an internally decomposable
foliation in Sg;0;0;buCpC2bmCk , k 2N, by replacing a marked point with a kC 1 marked points.

Hence, we only need to prove that a torus with one marked point and a sphere with 4 marked points do
not admit internally decomposable foliations. However, since these do not have boundaries, a foliation
being internally decomposable translates to a foliation having at least two indecomposable components.

Assume the torus with one marked point admits a foliation with two indecomposable components. We
can replace the marked point with a boundary, and add to the foliation a boundary component parallel to
that boundary. Considering the doubled surface explained in Section 4.3 we get a closed surface of genus
2 without boundaries nor marked points, with at least 5 indecomposable components. Recall that the
maximum number of indecomposable components for a foliation on a surface of genus g is 3g�3, so for
genus 2 the maximum is 3, giving us a contradiction. A similar process applies for the sphere with 4
marked points.

Proof of Proposition 5.12 The Busemann map is continuous at every point in the interior of Teichmüller
space, as it is the identity when restricted in there and @X v is closed. Hence, we only need to prove
continuity or discontinuity at the points on the boundary. By Lemma 5.13 if 3gC 2bmC buCp > 4

then S admits an internally decomposable foliation F , so by Theorem 5.4 the Hubbard–Masur quadratic
differential associated to F at the basepoint X is fusible and hence the Busemann map is not continuous
at that point. On the other hand, if 3g C 2bm C bu C p � 4 then by Lemma 5.14 for any quadratic
differential q, the vertical foliation V .q/ is internally indecomposable, so again by Theorem 5.4 every
quadratic differential is infusible an B is continuous at every boundary point.

By combining Proposition 5.12 with Proposition 1.3, we get the precise classification of surfaces with
horofunction compactification isomorphic to visual compactification announced in Theorem 1.6 from the
introduction.

Proof of Theorem 1.6 As shown in Proposition 1.3, the visual compactification and the horofunction
compactification are isomorphic if and only if the Busemann map is continuous, so the theorem follows
by applying Proposition 5.12.

5.2 Criteria for convergence

One straightforward consequence of the horofunction compactification being finer than the visual com-
pactification is the following criterion regarding the convergence of sequences in the horofunction
compactification.
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Corollary 5.15 Let .xn/ � T .S/ be a sequence. If .xn/ converges to a quadratic differential q in the
visual compactification , then all accumulation points of .xn/ in the horofunction compactification are
contained in …�1.q/. In particular , if V .q/ is internally indecomposable , then .xn/ converges in the
horofunction compactification.

Furthermore , if .xn/ does not converge in the visual compactification , then it does not converge in the
horofunction compactification.

Proof If xn converges in the visual compactification to a quadratic differential q then by the continuity of
… all its accumulation points are in …�1.q/. If V .q/ is internally indecomposable, then by Theorem 5.4
the quadratic differential q is infusible, so the Busemann map is continuous at q and by Proposition 1.4
the fiber …�1.q/ is a singleton. Therefore xn converges to …�1.q/, as that is the only accumulation
point of xn and the horofunction compactification is compact.

On the other hand, if xn converges to � in the horofunction compactification, by continuity of …, xn

converges to ….�/ in the visual compactification.

A frequent topic in the study of compactifications of Teichmüller spaces is the convergence of certain
measure-preserving paths. We shall see now how the previous results can be applied in that study.

Let X 2 T .S/ be a point in Teichmüller space and q be a unit quadratic differential based at X . It is a well
known fact that there exists a unique orientation-preserving isometric embedding � WH! T .S/ from the
hyperbolic plane H to the Teichmüller space such that �.i/DX and ��.q/D i , see the work of Herrlich
and Schmithüsen [18] for a detailed explanation. The path �.i C t/ for t 2 RC is called the horocycle
generated by q. Since � is an isometric embedding, h.X /.p/ D d.��1X; ��1p/ � d.��1X; ��1b/ for
X; b;p 2 �.H/. That is, if we restrict the evaluations of horofunctions to the image of the Teichmüller disc,
the value coincides with the values in the hyperbolic plane. Hence, since the path iCt is a horocycle of the
Busemann point obtained by moving along the geodesic et i along the hyperbolic plane, the path �.iC t/ is
also a horocycle of the corresponding Busemann point B.q/, obtained by moving along the geodesic �.et i/.

Since � is an isometric embedding, the geodesic between X and �.iC t/ is contained in �.H/. Furthermore,
the pushforward and pullback maps are continuous, so denoting qt the unit quadratic differential spawning
the geodesic between X and �.i C t/, we have limt!1 �

�.qt / D i , and ��.i/ D q, so limt!1 qt D q.
The distance between �.i C t/ and X grows to infinity, so any horocycle path generated by some q based
at X converges to q in the visual compactification based at X . Hence, horocycles generated by infusible
quadratic differentials converge in the horofunction compactification, which had been previously shown
by Jiang and Su [20] and Alberge [2] in the context of surfaces without boundary.

Corollary 5.16 Let S be a compact surface with possibly nonempty boundary and finitely many marked
points and let q be an infusible quadratic differential based at any X 2 T .S/. Then the horocycle generated
by q converges in the horofunction compactification.
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Proof The horocycle path converges to q in the visual compactification based at X , so by Corollary 5.15
all accumulation points in the horofunction compactification are contained in …�1

X
.q/. Furthermore,

since q is infusible, …�1
X
.q/ is a singleton, so the horocycle path has a unique accumulation point in the

horofunction compactification, and hence it converges.

On the other hand, Fortier Bourque found some diverging horocycles in the horofunction compactification.

Theorem 5.17 (Fortier Bourque [13, Theorem 1.1]) Let S be a closed surface of genus g with p marked
points , such that 3gCp � 5. Then there is some fusible quadratic differential q based at some basepoint
X 2 T .S/ such that the associated horocycle path does not converge in the horofunction compactification.

Corollary 5.15 gives an upper limit on the set of accumulation points, as it has to be contained in …�1
X
.q/.

Furthermore, by Corollary 3.14 we have that a path converges in the horofunction compactification if
and only if it converges in each visual compactification. Hence, such a divergent horocycle also diverges
in some visual compactification. That is, we get Corollary 1.12. This contrasts with the behavior of
Teichmüller rays, which by Corollary 3.7 or [44, Theorem 7] converge in all visual compactifications.

6 Dimension of the fibers

Our first approach in determining the shape of the fibers is looking at the limits of Busemann points,
which by Proposition 3.10 give us bounds on the elements of …�1.q/. For a given quadratic differential
q and a foliation G we define Wq.G/ as the map from measured foliations to R given by

Wq.G/D
i.G; �/2

i.G;H.q//

if i.G;H.q// > 0, and Wq.G/ D 0 otherwise. By the extension of Walsh’s Corollary 4.6 describing
Busemann points in the Gardiner–Masur compactification, we see that the element Eq D„

�1Bq has the
form

pP
i Wq.Vi/, where Vi are the indecomposable components of V .q/. Hence, a reasonable path to

follow for understanding the limits of Busemann points is understanding the limits of Wq as q varies.

Lemma 6.1 Let qn be a sequence of quadratic differentials on X converging to q, and let V n
j , 1�j �c.n/

be the indecomposable components of V .qn/. Let Gn be a sequence of nonzero measured foliations of
the form

P
˛n

j V n
j , converging to a measured foliation G. Then

lim
n!1

Wqn.Gn/DWq.G/

if G is nonzero and limn!1Wqn.Gn/ D 0 if G is zero , where the convergence is pointwise in both
cases.

Proof For any measured foliation F we have

Wqn.Gn/.F /D
i.Gn;F /2

i.Gn;H.qn//
;
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so if G is nonzero the lemma follows by continuity of the intersection number.

If G is zero the result follows from applying the same proof than in [44, Lemma 27].

Denote B the set of Busemann points, B its closure and B.q/ the intersection B\…�1.q/. We can use
the previous lemma to show that the elements of B.q/ satisfy certain properties.

Proposition 6.2 Let S be a closed surface with possibly marked points , � 2 B.q/ and Vi , i 2 f1; : : : ; kg

be the indecomposable components of V .q/. Let xi D i.Vi ; �/=i.Vi ;H.q//. Then , the square of the
representation of � in the Gardiner–Masur compactification , .„�1�/2, is a homogeneous polynomial of
degree 2 in the variables xi , whose coefficients sum to 1.

Recall that we are using a normalized version of the Gardiner–Masur compactification. Under the
projectivized version the sum of the coefficients cannot have any fixed value.

Proof Since the surface does not have boundary, all Busemann points are of the form B.q0/ for some
quadratic differential of unit area q0. Consider a sequence .qn/ such that B.qn/ converges to � and qn

converges to q. Let c.n/ be the number of indecomposable vertical components of V .qn/, and let V n
j ,

0< j � c.n/ be those components. We know that c.n/ is bounded by some number depending on the
topology of the surface. Take a subsequence such that c.n/ is equal to some constant c and V n

j converges
for each j . The sum

Pc
jD1 V n

j converges as n!1 to
Pk

iD1 Vi , so the limit of each V n
j has to be of

the form
Pk

iD1 ˛
i
j Vi . Furthermore,

Pc
jD1 ˛

i
j D 1, since

kX
iD1

Vi D V .q/D lim
n!1

V .qn/D lim
n!1

cX
jD1

V n
j D

cX
jD1

kX
iD1

˛i
j Vi D

kX
iD1

� cX
jD1

˛i
j

�
Vi :

The element associated to the Busemann point B.qn/ in the Gardiner–Masur compactification satisfies

E2
qn
D

cX
jD1

Wqn.V n
j /:

Hence, applying Lemma 6.1 we get the following expressions for the square of the limit of Busemann
points:

.„�1�/2 D

cX
jD1

Wq

� kX
iD1

˛i
j Vi

�
D

cX
jD1

�Pk
iD1 ˛

i
j i.Vi ;H.q//xi

�2Pk
iD1 ˛

i
j i.Vi ;H.q//

:

That is, we get a homogeneous polynomial of degree 2 in the variables xi . Since q has unit area, the sum
of the coefficients is

cX
jD1

kX
iD1

˛i
j i.Vi ;H.q//D

kX
iD1

i.Vi ;H.q//D 1;

which completes our claim.
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By Proposition 3.9, the Busemann point B.q/ gives an upper bound on all functions in …�1.q/. While
Proposition 3.10 does not give us a lower bound directly, we can use Lemma 2.1 to get one. For a unit
area quadratic differential q, let Zj be the interior parts of V .q/, and denote by Gj the union of interior
indecomposable components within Zj . Further, let Pi be the boundary components of V .q/. We define
the minimal point at q as

M.q/D„

�X
i

Wq.Pi/C
X

j

Wq.Gj /

�1=2

:

Proposition 6.3 Let q be a quadratic differential. Then , for any � 2…�1.q/, we have

„�1� �„�1M.q/

in the Gardiner–Masur compactification. Furthermore , M.q/ 2…�1.q/ whenever each Gj has at most
two annuli parallel to the boundaries of Zj with marked points.

In the context of surfaces without boundary the previous result has been also proven by Liu and Shi
[27, Lemma 3.10]. In such context we have M.q/D„i.V .q/; �/2, which by the proposition is always
contained in …�1.q/.

The minimality is essentially derived from the following well-known inequality.

Lemma 6.4 (Titu’s lemma) For any positive reals a1; : : : ; an and b1; : : : ; bn we have

X
j

a2
j

bj
�

�P
j aj

�2P
j bj

:

Proof The inequality can be written asX
i

bi

X
j

a2
j

bj
�

�X
j

aj

�2

;

so the result follows after applying the Cauchy–Schwartz inequality.

The implication this lemma has for our discussion is that Wq. �/ is convex, in the sense that for any
G D

P
i Gi and any measured foliation F we haveX

i

Wq.Gi/.F /�Wq.G/.F /:

Proof of Proposition 6.3 If q is infusible then each Gj is indecomposable, so M.q/D B.q/, the fiber
…�1.q/ has one point and the proposition is satisfied.

Consider then q fusible and � 2…�1.q/. Let .xn/D .R.qnI tn//� T converging to �. By Lemma 4.5
we have „�1.h.xn//�„

�1B.qn/. Hence, „�1� � lim infn!1„
�1B.qn/.
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Given a measured foliation F , take a subsequence so that

lim inf
n!1

„�1B.qn/.F /D lim
n!1

„�1B.qn/.F /:

The foliations V .qn/ converge to V .q/, so by Proposition 5.5 for n big enough all boundary components
Pi are contained within V .qn/. Hence, for n big enough the foliations V .qn/ can be split to the interior
parts Zj by cutting along the proper arcs. Denote by Gn

j the interior components of the foliation V .qn/

restricted to Zj . Let Gn
j ;k

be the indecomposable components of Gn
j . The sequence Gn

j converges to Gj ,
so we can take a subsequence such that each Gn

j ;k
converges to some foliation Gj ;k with

P
k Gj ;k DGj .

Applying Lemma 6.1 we have

lim
n!1

„�1B.qn/.F /D lim
n!1

nX
i

Wqn.Pi/C
X

j

X
k

Wqn.Gn
j ;k/D

X
i

Wq.Pi/C
X

j

X
k

Wq.Gj ;k/:

Hence, applying Lemma 6.4 to the second sum we get the first part of the proposition.

To observe that the limit is actually reached we can repeat the proof of Proposition 5.11 and observe that
a proper arc for each interior part is enough to approach the foliation whenever each interior part of the
foliation has at most two annuli parallel to boundaries with marked points.

By Corollary 4.8 this lower bound is carried to the horofunction representation and by Proposition 3.9 we
have an upper bound. Hence, we have the chain of inequalities

M.q/� � � B.q/;

for any � 2 …�1.q/. As we see in the next proposition, this chain can be translated as well to the
Gardiner–Masur compactification.

Proposition 6.5 Let � 2…�1.q/. Then ,

„�1� �„�1B.q/:

Proof We have a sequence of points R.qnI tn/ converging to � , with qn converging to q. By Lemma 3.3
we have �.R.qI t//D�t . Further, R.qnI tn/ converges in the Gardiner–Masur compactification to the
function f .G/2 D limn!1 e�2tn ExtR.qnItn/.G/, and we have „f .x/D �.x/. Hence,

1
2

log
f .F /

ExtR.qIt/.F /
�

1
2

log sup
G2P

f .G/

ExtR.qIt/.G/
D�t:

Upon exponentiating and reordering the terms, we get

lim
n!1

e�2tn ExtR.qnItn/.F /D f
2.F /� e�2t ExtR.qIt/.F /

for all t . Letting t !1, the right hand side converges to .„�1B.q/.F //2, so we get the proposition.

Using these bounds we can further refine the characterization of points in „�1…�1.q/.
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Proposition 6.6 Let q be a quadratic differential , let Vi , i 2 f1; : : : ; kg be the indecomposable compo-
nents of V .q/ and let xi.F /D i.Vi ;F /=i.Vi ;H.q//. Given f 2„�1…�1.q/ and c > 0 we have , for all
F 2MF ,

f 2.F /D c2
C 2c

X
i

i.Vi ;H.q//.xi.F /� c/C
X
i;j

O
�
.xi.F /� c/.xj .F /� c/

�
:

In particular , as a function of the values xi.F / at the point xi D c for all i , f 2.x1; : : : ;xk/ takes value c2,
is differentiable and satisfies

@

@xi
f 2.x1; : : : ;xk/D 2c i.Vi ;H.q//:

Proof We have that .„�1M.q//2 � f 2 � .„�1B.q//2. Letting ai D i.Vi ;H.q// and xi D xi. �/, we
have by Lemmas 6.4 and 6.3 that

�P
aixi

�2
� .„�1M.q//2. Writing the bounds on f 2 in terms of the

variables xi , we obtain �X
aixi

�2
� f 2

�

X
aix

2
i :

Adding that
P

ai D 1, we have that f 2 is bounded below by the arithmetic mean, and above by the
quadratic mean. Rewriting both sides as a polynomial in xi � c, we get

c2
C 2c

X
ai.xi � c/C

�X
ai.xi � c/

�2
� f 2

� c2
C 2c

X
ai.xi � c/C

X
ai.xi � c/2;

so the first part of the proposition is satisfied. Subbing in the value xi.F /D c we get the second part.

By Propositions 3.4 and 3.13 all members of …�1.q/ share their values along R.qI �/, as well as the
directional derivatives at the points of the geodesic. For a given q we have xi.�H.q//D � for all i and
all � > 0. Hence, Proposition 6.6 shows a similar relation for the representations of the elements of
…�1.q/ in the Gardiner–Masur compactification, as they share their value, as well as some derivatives, at
all foliations of the form �H.q/.

As shown by Fortier Bourque [13], the Gardiner–Masur boundary contains extremal length functions, so
we can use Proposition 6.6 to get some information on the differentials of these functions. Namely, we
recover in a more restricted setting the following result, proven in [33, Theorem 1.1].

Theorem 6.7 (Miyachi) Let Gt , t 2 Œ0; t0� be a path in the space of measured foliations on X which
admits a tangent vector PG0 at t D 0 with respect to the canonical piecewise linear structure. Then , the
extremal length Ext.G;X / is right-differentiable at t D 0 and satisfies

d

dtC
Ext.Gt ;X /

ˇ̌̌̌
tD0

D 2i. PG0;FG0;X /;

where FG0;X is the horizontal foliation of the Hubbard–Masur differential associated to G0 on X .
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The concrete extremal length functions in the Gardiner–Masur boundary we are going to use are given by
the following theorem.

Theorem 6.8 (Fortier Bourque) Let fw1; : : : ; wkg be weights withwi > 0, let �nD �
bnw1c

1
ı� � �ı�

bnwkc

k

be a sequence of Dehn multitwist around a multicurve f˛1; : : : ; ˛kg in a surface S and let X 2 T .S/.
Then the sequence �n.X / converges to�

Ext1=2
� kX

iD1

wii.F; ˛i/˛i ;X

��
F2MF.S/

in the projective Gardiner–Masur compactification as n!1.

The precise statement of this result is slightly weaker [13, Corollary 3.4], but the same proof yields this
extension.

Fix a multicurve f˛1; : : : ; ˛kg, weights fw1; : : : ; wkg and let ˛ D
P
wi˛i . Furthermore, normalize the

weights fw1; : : : ; wkg so that there is a unit area quadratic differential q such that V .q/ D ˛. Denote
by Vi the vertical components of V .q/. That is, Vi D wi˛i . We are able to recover Miyachi’s formula
when i.Vi ;H.q//D wi for all i . The sequence �n.X / converges in the visual compactification based
at X to q 2 TX T .S/. By Theorem 6.8 the function f .F /D �1=2 Ext1=2

�Pk
iD1wii.F; ˛i/˛i ;X

�
is in

„�1…�1.q/ for some �> 0. We have i.F; ˛i/D xi.F /i.Vi ;H.q//=wi . So, assuming i.Vi ;H.q//Dwi

we can write

f 2.F /D �Ext
� kX

iD1

xi.F /Vi ;X

�
:

We have xi.H.q//D 1 for all i , so by Proposition 6.6 the value of � satisfies

f 2.H.q//D �Ext.V .q/;X /D 1:

Since q has unit area, Ext.V .q/;X /D 1, so �D 1. Let I be any foliation such that H.q/C I is well
defined, and let Ft DH.q/C tI . We have

f 2.Ft /D Ext
�X

i

Vi C t
X

i

xi.I/Vi ;X

�
:

Hence, letting J D
P

xi.I/Vi and Gt D V .q/C tJ , we can apply Proposition 6.6 to get

d

dtC
Ext.Gt ;X /

ˇ̌̌̌
tD0

D

X
i

dxi

dt

ˇ̌̌̌
tD0

@f 2

@xi

ˇ̌̌̌
xiD1

D

X
i

i.Vi ; I/

i.Vi ;H.q//
� 2i.Vi ;H.q//D 2i.V .q/; I/:

On the other hand, applying Miyachi’s Theorem 6.7 directly, we get

d

dtC
Ext.Gt ;X /

ˇ̌̌̌
tD0

D 2i.H.q/;J /D 2
X

i

i.H.q/;Vi/xi.I/

D 2
X

i

i.H.q/;Vi/
i.Vi ; I/

i.H.q/;Vi/
D 2i.V .q/; I/;

so both expressions coincide, and we have recovered Theorem 6.7 in this rather restricted setting. We
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would like to note that Proposition 6.6 also gives some information for finding the second derivatives
around the point H.q/. Namely, the second derivatives cannot diverge to infinity as we approach H.q/.

Combining Proposition 6.6 with Proposition 6.2 we get fairly restrictive necessary conditions for the
points in B.q/ for surfaces without boundary. We shall be using these conditions in Section 7 to prove that
Busemann points are not dense in the horoboundary. Now we prove a more straightforward consequence.
For a topological space U , denote by dim.U / its Lebesgue dimension. See the book by Munkres [35,
Chapter 5.80] for some background on basic dimension theory. Given an embedding U ,! V we have
dim.U /� dim.V /, so the conditions for the points on B.q/ gives us the following result.

Corollary 6.9 Let S be a surface without boundary. Let q be a quadratic differential such that V .q/ has
n indecomposable components. Then ,

dim.B.q//� 1
2
.n.n� 1//:

Proof By Proposition 6.2 we have an embedding of B.q/ into the space of homogeneous polynomials
of degree 2. For a given � 2 B.q/, let b

�
i;j be the coefficient of xixj . Adding the restriction bi;j D bj ;i

we have a coefficient for each possible pair, so the dimension of homogeneous polynomials of degree 2 is
equal to the number of possible pairs, that is, n.nC 1/=2. Furthermore, by Proposition 6.6 we know the
value of the first derivatives at xi D c for all i . For each i this gives us the linear equationX

j¤i

b
�
i;j C 2b

�
i;i D 2i.Vi ;H.q//:

These n equations are linearly independent, as b
�
i;i is only contained on the equation related to xi . As

such, the dimension of the coefficients is at most n.nC 1/=2� nD n.n� 1/=2.

We note that the sum of the coefficients being 1 is the equation we get when summing the n equations
given by the derivatives, so we cannot use that to restrict further the dimension.

Recall that the number of indecomposable components n is bounded in terms of the topology of the
surface. Hence, the previous corollary gives us a uniform upper bound on the dimension of B.q/. More
interestingly, we can also get a lower bound for the dimension of B.q/. This allows us to get a lower bound
on the dimension of …�1.q/. Furthermore, as this is a lower bound, we do not need to restrict ourselves
to surfaces without boundary, as the set of Busemann points always contains the set of Busemann points
of the form B.q/. The bound is obtained by finding a dimensionally big set of different ways to approach
a certain q along the boundary and showing that each of these different approaches results in different
limits for the associated Busemann points.

Theorem 6.10 Let S be a surface of genus g with bm and bu boundaries with and without marked points
respectively and p interior marked points. Then there is some unit quadratic differential q such that

dim.B.q//� 2
�

1
2
.gC bm/C

1
4
.buCp/� �.g; buCp/

˘
;
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: : :G3

G1 G2

G3C

G3C�2 G3C�1

V2 V1

V3

V3C�1 V3C�2

V3C

Figure 10: Labeling of the curves when the surface has no boundaries nor marked points. If g is
odd then there is an unused handle.

where

� D

8̂̂̂̂
ˆ̂<̂
ˆ̂̂̂̂:

0 if g � 2;

1
4

if g D 1 and buCp � 1;

1
2

if g D 1 and buCp D 0 or g D 0 and buCp � 2;

3
4

if g D 0 and buCp D 1;

1 if g D 0 and buCp D 0:

Proof For simplicity we shall first do the proof in the case where bm D bu D p D 0, and g � 2. Let
q be the quadratic differential such that V .q/ is the union of the closed curves V1; : : : ;V3C shown in
Figure 10, where C D bg=2c. Let U � R3C be the space of vectors .˛1; ˛2; : : : ; ˛3C / with positive
coefficients and such that

(3) ˛3kC1C˛3kC2C˛3kC3 D
1

C
:

Each independent linear restriction reduces the dimension of the set U by 1, so dim U D 2C . Hence, to
prove the simplest case of the theorem it suffices to build an injective continuous map from U to B.q/.

Choose ˛ 2 U and consider the multicurve  ˛ D
P
˛iGi , where Gi are as in Figure 10. We will shortly

show that by applying Dehn twists about the closed curves Vi to  ˛ we can get a sequence of multicurves
approaching V .q/. We can then take the sequences of associated Busemann points, which as we will see
converge to distinct points in …�1.q/. We will define the injective continuous map from U to …�1.q/

by setting it as the limit of the associated sequence of Busemann points, giving us the theorem.

Let �i be the Dehn twist around Vi , and let w˛i be such that

(4) w˛3kC1.˛3kC2C˛3kC3/D w
˛
3kC2.˛3kC3C˛3kC1/D w3kC3.˛3kC1C˛3kC2/D

1

3C
:

Define
�˛n D �

bw˛
1

nc

1
ı �
bw˛

2
nc

2
ı � � � ı �

bw˛
3C

nc

3C
:

For 1� k � C and j 2 f1; 2; 3g, let

F˛k;j D
X

i2f1;2;3g�j

w˛3kCiV3kCi :

By counting the intersections between the curves Vi and Gi we have that there is some sequence �n such
that �n�

˛
n G3kCj converges to F˛

k;j
for all k; j as n!1. By the conditions on the weights, �n�

˛
n 

˛
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converges to V .q/. Let q˛n be the quadratic differential associated to �n�
˛
n 

˛ . Since �n�
˛
n 

˛ converges
to V .q/, we have that qn converges to q, so all accumulation points of .B.qn// are in …�1.q/. We know
that .„�1B.q˛n //

2 D
P

i Wq.˛i�n�
˛
n Gi/, so by Lemma 6.1 we have

.�˛/2 D lim
n!1

.„�1B.q˛n //
2
D

C�1X
kD0

X
j2f1;2;3g

˛3kCjWq.F˛k;j /:

Define then the map from U to …�1.q/ sending ˛ 2 U to „�˛ 2 …�1.q/. As before, we shall let
xi WD i.Vi ; �/=i.Vi ;H.q//D 3C i.Vi ; �/. With this notation we have

Wq.F˛k;j /D
i.F˛

k;j
; �/2

i.F˛
k;j
;H.q//

D

�P
i 62f1;2;3g�j w

˛
3kCi

x3kCi

�2
3C

P
i 62f1;2;3g�j w

˛
3kCi

:

That is, given ˛ we know precisely the shape of the polynomial �˛. Since ˛ has positive coefficients,
each of the w˛i depends continuously on ˛, so �˛ depends continuously on ˛.

It remains to show injectivity. Let ˇ 2 U be such that �˛ D �ˇ . While we have equated two polynomials,
we cannot conclude directly that the coefficients are equal, as these cannot be evaluated for arbitrary values.
However, we can evaluate at elements of the form b1G3kC1C b2G3kC2C b3G3kC3 for b1; b2; b3 � 0,
which is enough to prove that �˛ and �ˇ have the same coefficients.

Equating then the coefficients for x3kC1x3kC2, x3kC2x3kC3 and x3kC1x3kC3 we get

˛3kC1w
˛
3kC2

w˛
3kC3

w˛
3kC2

Cw˛
3kC3

D
ˇ3kC1w

ˇ

3kC2
w
ˇ

3kC3

w
ˇ

3kC2
Cw

ˇ

3kC3

;

˛3kC2w
˛
3kC1

w˛
3kC3

w˛
3kC1

Cw˛
3kC3

D
ˇ3kC2w

ˇ

3kC1
w
ˇ

3kC3

w
ˇ

3kC1
Cw

ˇ

3kC3

and

˛3kC3w
˛
3kC1

w˛
3kC2

w˛
3kC1

Cw˛
3kC2

D
ˇ3kC3w

ˇ

3kC1
w
ˇ

3kC2

w
ˇ

3kC1
Cw

ˇ

3kC2

:

Dividing these equalities and using equations (3) and (4) we get

˛3kC1

˛3kC2

.1=C C˛3kC2/

.1=C C˛3kC1/
D
ˇ3kC1

ˇ3kC2

.1=C Cˇ3kC2/

.1=C Cˇ3kC1/
;

˛3kC2

˛3kC3

.1=C C˛3kC3/

.1=C C˛3kC2/
D
ˇ3kC2

ˇ3kC3

.1=C Cˇ3kC3/

.1=C Cˇ3kC2/
and

˛3kC3

˛3kC1

.1=C C˛3kC1/

.1=C C˛3kC3/
D
ˇ3kC3

ˇ3kC1

.1=C Cˇ3kC1/

.1=C Cˇ3kC3/
:

Rearranging the first equality we have

(5)
˛3kC1

ˇ3kC1

ˇ3kC2

˛3kC2

D
.1=C C˛3kC1/

.1=C Cˇ3kC1/

.1=C Cˇ3kC2/

.1=C C˛3kC1/
:
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G3kC3

G3kC2G3kC1 G3kC1

G3kC3

G3kC2

Figure 11: Each pair of marked points and boundary components without marked points can
replace a genus, as well as each boundary with marked points.

If
˛3kC1

ˇ3kC1

< 1 then
.1=C C˛3kC1/

.1=C Cˇ3kC1/
>
˛3kC1

ˇ3kC1

;

and if
˛3kC2

ˇ3kC2

> 1 then
.1=C C˛3kC1/

.1=C Cˇ3kC1/
<
˛3kC1

ˇ3kC1

:

Assume then that ˛3kC1 < ˇ3kC1. One of the factors of the left hand side of the product in (5) is
replaced in the right hand side by a larger value. Hence, the other factor has to be replaced by a smaller
value. That is, the inequality ˛3kC2 < ˇ3kC2 has to be satisfied. Similarly, if ˛3kC2 < ˇ3kC2 we have
˛3kC3 < ˇ3kC3. Equation (3) leads to

1

C
D ˛3kC1C˛3kC2C˛3kC3 < ˇ3kC1Cˇ3kC2Cˇ3kC3 D

1

C
;

which is a contradiction. Similarly, ˛3kC1 > ˇ3kC1 leads to another contradiction, so ˛3kC1 D ˇ3kC1,
which leads to ˛ D ˇ. Therefore, dim.B.q//� dim.U /D 2bg=2c.

Assume now that g � 2 and there are some marked points or boundaries. For each pair of marked points
or unmarked boundaries, or for each marked boundary we can repeat the proof with an extra genus, by
replacing the curves Gi by the curves shown in Figure 11, and halving the associated weights for wi , as
the curves intersect now twice the vertical components instead of once.

If g D 1 we need to place at least one feature at one of the ends to prevent the curve G1 from being
contractible or parallel to a unmarked boundary, so if we have marked points or boundaries without
marked points we place these, as boundaries with marked points are more effective at increasing the
dimension. In this way we get that if buCp � 1 then

dim.B.q//� 2
�

1
2
.gC bm/C

1
4
.buCp� 1/

˘
and if buCp D 0 then

dim.B.q//� 2
�

1
2
.gC bm� 1/

˘
:
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Lastly, if g D 0 we need to place two elements, one at each end. Using the same choice as we took for
g D 1 we get

dim.B.q//� 2
�

1
2
.bm/C

1
4
.buCp� 2/

˘
for buCp � 2;

dim.B.q//� 2
�

1
2
.bm� 1/

˘
for buCp D 1;

dim.B.q//� 2
�

1
2
.bm� 2/

˘
for buCp D 0:

We would like to note that this lower bound is does not look optimal to us. Furthermore, the method used
is restricted to getting to the dimension of the closure of Busemann points, so the dimension of the whole
fiber may be significantly larger than what could be achieved by refining the strategy from the proof.

7 Nondensity of the Busemann points

7.1 Busemann points are not dense in the horoboundary

By Proposition 6.2 we know that points in the closure of Busemann points are smooth in the Gardiner–
Masur representation with respect to certain variables. By showing that at least one point in the horo-
boundary is not smooth with respect to the corresponding variables we will prove that Busemann points
are not dense. The points we use for this analysis are once again the ones found by Fortier Bourque in
Theorem 6.8.

Following Fortier Bourque’s reasoning, we shall first prove the nondensity for the sphere with five marked
points, and then lift to general closed surfaces by using the branched coverings given by the following
lemma, found in [15, Lemma 7.1].

Lemma 7.1 (Gekhtman–Markovic) Let S be a closed surface of genus g with p marked points , such
that 3gCp � 5. Then there is a branched cover Sg;p! S0;5 that branches at all preimages of marked
points that are not marked and induces an isometric embedding T .S0;5/ ,! T .Sg;p/.

The particular conformal structure given to S0;5 is obtained as follows. Let S1 D R=Z and let C D

S1 � Œ�1; 1�. We obtain a sphere † by sealing the top and bottom of C via the relation .x;y/� .�x;y/

for all .x;y/ 2 S1 � f�1; 1g. Let P be set consisting of the five points .0;˙1/,
�

1
2
;˙1

�
and .0; 0/. The

pair S D .†;P /, where we view † as a topological space, is the sphere with five marked points. We get
a point X in T .S/ by considering the complex structure on † obtained by the construction, using the
identity map as our marking.

Let ˛.t/ D
�
t; 1

2

�
and ˇ.t/ D

�
t;�1

2

�
for t 2 S1. Denote by �˛ and �ˇ the Dehn twists along ˛ and

ˇ. By Fortier Bourque’s theorem, the sequence .Xn/ D ..�˛ ı �ˇ/
nX / converges to a multiple of

Ext1=2.i.˛; �/˛Ci.ˇ; �/ˇ;X // in the Gardiner–Masur compactification. Furthermore, the sequence .Xn/

converges in the visual compactification based at X to the geodesic spawned by the quadratic differential
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˛

ˇ
a

l

b

1 ˛

ˇ

Figure 12: (Lemma 7.2) Left: sphere with five marked points, with curves ˛ and ˇ. We show that
the extremal length is not C 2 along the path ˛C tˇ, t 2 Œ0; t0�. Right: doubling of the L–shaped
polygon together with the curves ˛ and ˇ.

q˛Cˇ;X . Indeed, as detailed in [13, Section 4], the elements .Xn/ diverge to infinity along the horocycle
defined by the quadratic differential q˛Cˇ;X . Hence, inside embedded hyperbolic plane associated to
q˛Cˇ;X , the sequence .Xn/ converges in the visual boundary to the geodesic spawned by q˛Cˇ;X , and so
the same occurs in the ambient space. That is, „Ext1=2.i.˛; �/˛C i.ˇ; �/ˇ;X / 2…�1.q˛Cˇ;X /, so by
Proposition 6.2 if we show that Ext.i.˛; �/˛C i.ˇ; �/ˇ;X / is not smooth with respect to the values of
i.˛; �/ and i.ˇ; �/, then „Ext1=2.i.˛; �/˛C i.ˇ; �/ˇ;X / 62 B.q˛Cˇ;X /, and hence it is also not in B.

Lemma 7.2 Let X 2 T .S0;5/ and Gt , t 2 Œ0; t0� be the foliation ˛ C tˇ on S0;5. The map f .t/ WD
Ext.Gt ;X / is not C 2.

Proof By Miyachi’s Theorem 6.7 we have

d

dt
Ext.Gt ;X /D 2i.ˇ;FGt ;X /;

where we remind that FGt ;X is the horizontal foliation of the unique Hubbard–Masur differential associated
to Gt on X . Hence, the Lemma is equivalent to proving that g.t/D i.ˇ;FGt ;X / is not C 1.

For a general surface finding a precise expression of FG;X is a complicated problem, as the relation
established by Hubbard and Masur is not explicit. However, in our case the surface is topologically simple,
and one can use Schwartz–Christoffel maps to get a map from G to FG;X . In particular, it is possible to
show that the sphere with 5 marked points is conformally equivalent to the Riemannian surface obtained
by doubling an L–shaped polygon, marking the inner angles as shown in Figure 12, right, and setting
certain values for a; b and l . Furthermore, the quadratic differential obtained by dz2 has ˛ and ˇ as
vertical foliations, with weights a and b. Hence qGt ;X is dz2 on the L–shaped pillowcase where aD 1

and b D t , so i.ˇ;FGt ;X /D 2l . Markovic estimated in [30, Section 9] the values of a; b and l around
b D 0 depending on a common parameter r . Up to rescaling, these values are given by

a.r/D a.0/CD1r CO.r2/; b.r/DD2r CO.r2/ and l.r/D l.0/CD3r log 1

r
C o

�
r log 1

r

�
;
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where A.r/ D B.r/C O.f .r// means jA.r/ � B.r/j=f .r/ is bounded around r D 0, and A.r/ D

B.r/C o.f .r// means jA.r/�B.r/j=f .r/ converges to 0 as r converges to 0.

Rescaling the pillowcase by 1=a.r/ we see that the parameter t can be expressed as t.r/D b.r/=a.r/,
and g.t.r//D i.ˇ;FGt ;X /D 2l.r/=a.r/. Observing that t.0/D 0, we can evaluate the first derivative of
g.t/ at 0 by evaluating the limit

lim
h!0

g.h/�g.0/

h
D lim

r!0

g.t.r//�g.0/

t.r/
D lim

r!0

2l.r/=a.r/� 2l.0/=a.0/

b.r/=a.r/

D 2 lim
r!0

l.r/� l.0/a.r/=a.0/

b.r/

D 2 lim
r!0

D3r log.1=r/C o.r log.1=r//� .l.0/D1=a.0//r

D2r CO.r2/

D1:

And so, g.t/ is not differentiable at t D 0, and hence f .t/ is not C 2.

Repeating Fortier Bourque’s reasoning we can lift this example to any surface of genus g with p marked
points as long as 3gC p � 5. Besides the Gekhtman–Markovic lemma (Lemma 7.1), the other key
ingredient for the lifting is the following result.

Lemma 7.3 (Fortier Bourque) Let � W Sg;p! S0;5 be a branched cover of degree d and let

� W T .S0;5/ ,! T .Sg;p/

be the induced isometric embedding. For any measured foliation F on S0;5 and any X 2 T .S0;5/, we
have the identity

Ext.��1.F /; �.X //D d Ext.F;X /:

Proof Recall that qF;X is the Hubbard–Masur differential associated to  . We have that ��qF;X D

q��1.F /;�.X /, so

Ext.��1.F /; �.X //D

Z
�.X /

jq��1.F /;�.X /j D d

Z
X

jqF;X j D d Ext.F;X /:

Lifting the foliation Gt from Lemma 7.2 we get an upper bound for the smoothness of the extremal
length.

Theorem 7.4 Let S be a closed surface of genus g with p marked points , such that 3gCp�5. Then there
exist two nonintersecting multicurves Ǫ , Ǒ and some X 2 T .S/ such that the map f .t/ WDExt. Ǫ C t Ǒ;X /,
t 2 Œ0; t0� is not C 2.
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Proof Since 3g C p � 5 we have a map � W Sg;p ! S0;5, with an induced isometric embedding
� W T .S0;5/ ,! T .Sg;p/. By Lemma 7.2 we have two curves ˛; ˇ 2 S0;5 such that, for any X 2 T .S0;5/

the map t!Ext.˛Ctˇ;X / is not C 2. Let Ǫ D��1.˛/ and Ǒ D��1.ˇ/. We have Ǫ Ct Ǒ D��1.˛Ctˇ/,
so applying Lemma 7.3 we get Ext. Ǫ C t Ǒ; i.X // D d Ext.˛ C tˇ;X /. By Lemma 7.2 the function
Ext.˛C tˇ;X / is not C 2, so we get the theorem.

Theorem 1.9 is essentially a rephrasing of the previous theorem. Finally, we are able to prove that
Busemann points are not dense.

Proof of Theorem 1.8 Let ˛ and ˇ be as in Lemma 7.2. Furthermore, let � W Sg;p ! S0;5 and
� W T .S0;5/ ,! T .Sg;p/ be as in Lemma 7.1. For the X 2 T .S0;5/ described before Lemma 7.2 the
sequence .Xn/ D .�ˇ ı �˛/

nX is contained in the horocycle generated by q˛Cˇ;X and the distance
d.Xn;X / goes to infinity. Therefore .Xn/ converges in T .S0;5/

v

X to the geodesic spawned by q˛Cˇ;X .
Following Fortier Bourque’s reasoning in the proof of [13, Theorem 1.1], using half translation structures,
applying the Dehn twist �˛ ı �ˇ to X is equivalent to applying the shearing transformation

hm D

�
1 m

0 1

�
to the half translation structure defined by q˛Cˇ;X . This action commutes with the pull-back coming
from the branched cover, so the elements .Xn/ are associated with the half translation structure defined
by hn�

�.q˛Cˇ;X /. These points diverge to infinity along the horocycle defined by ��.q˛Cˇ;X /, and so
converge in T .Sg;p/

v

�.X / to the geodesic spawned by q��1.˛/C��1.ˇ/;�.X /.

Let ci , 1� i � k, be the components of the half translation structure associated to ��1.˛Cˇ;X /. Each
ci covers either ˛ or ˇ with some degree di 2N. Hence, each component ci corresponds to a curve and is
a cylindrical with height 1 and circumference di . Therefore, if m is the common multiple between all di ,
and i is the curve associated to the component ci , shifting the flat metric via the matrix hm is equivalent
to performing m=di Dehn twists around each curve i . Letting � be the composition of such Dehn
twists, we have �.Xmn/D �

n�.X /. Hence, by Fortier Bourque’s Theorem 6.8, in the Gardiner–Masur
compactification the sequence .�.Xmn//n converges, as n!1, to

� D

�
Ext1=2

� kX
iD1

1

di
i.F; i/i ; �.X /

��
F2MF.Sg;n/

:

Therefore, „� 2 …�1.q��1.˛/C��1.ˇ/;�.X //. To see that „� is not in B it remains to see that it is
not in B.q��1.˛/C��1.ˇ/;�.X //. We have, i.ci ;H.q��1.˛/C��1.ˇ/;�.X // D di , so by Proposition 6.2 it
remains to prove that there is some path of foliations Gt such that the functions xi D i.i ;Gt /=di vary
smoothly, while the function f .x1; : : : ;xk/D Ext

�Pk
iD1.1=di/xii ; �.X /

�
does not. Reorder the curves

so there is some p � 1 such that ��1˛ D 1C � � �C p and ��1ˇ D pC1C � � �C k . It follows from
Dehn–Thurston coordinates that for any natural numbers nj , 1� j � k there is a multicurve G.nj / such
that i.G.nj /; i/D ni . See, for example, the book by Penner and Harer [38, Theorem 1.2.1]. Allowing
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renormalizations of the multicurves we get that nj can be any nonnegative rationals. Finally, doing a
limit argument in the space of projective measured foliations we can take nj to be any nonnegative real
numbers. That is, for any t � 0 there exists a measured foliation Gt such that i.Gt ; i/D di for i �p, and
i.Gt ; i/D tdi otherwise. Hence, along such foliations we have xi D 1 for i � p and xi D t otherwise.
Therefore, along this path,

f .1; : : : ; 1; t; : : : ; t/D Ext
�
��1.˛/C t��1.ˇ/; �.X /

�
;

which by Theorem 7.4 is not smooth, as ��1.˛/ and ��1.ˇ/ are the curves used in the proof of the
theorem.

7.2 Busemann points with one indecomposable component are nowhere dense

The Thurston compactification can be build in a similar way as the Gardiner–Masur compactification, by
using the hyperbolic length of the curves instead of the extremal length. Let � be the map between T .S/
and PRS

C defined by sending X 2 T .S/ to the projective vector Œ`.˛;X /�˛2S . The pair
�
�; �.T .S//

�
defines a compactification, and the boundary is given by the space of projective measured foliations,
denoted PMF .

As explained by Miyachi [34], neither the Thurston nor the horofunction compactification is finer than
the other one. However, it is possible to get some relation. Let PMFUE � PMF be the set of uniquely
ergodic foliations. Following the work of Masur [31], PMFUE has full Lebesgue measure within PMF .
Miyachi [34, Corollary 1] shows that the mapping � on T .S/ can be extended to an homeomorphism f

between �.T .S//[PMFUE and h.T .S//[BUE such that for x 2 T .S/ we have f .�.x//D h, where
BUE are the Busemann points associated to quadratic differentials whose vertical foliation is uniquely
ergodic. One might understand this result as stating that the two compactifications are the same almost
everywhere with respect to the Lebesgue measure on PMF . As we shall see, the same does not follow
with respect to any strictly positive measure on the horoboundary.

The homeomorphism f described by Miyachi is obtained by first defining a map between the boundaries.
For a given x 2 T .S/, the map on the boundary is denoted Gx , and by its definition we have Gx.F /D

B.qF;x/, where we recall that qF;x is the quadratic differential on x with V .qF;x/ D F . Denote by
B1 the set of Busemann points associated to foliations with one indecomposable component. We have
Gx.PMFUE/D BUE � B1. However, the following is also satisfied.

Theorem 7.5 Let S be a closed surface of genus g with p marked points , such that 3gCp � 5. Then
the set B1 is nowhere dense in the horoboundary.

Proof The action of MCG.S/ on T .S/ is extended to the projectivized version of the Gardiner–Masur
compactification by  Œf .˛/�˛2SD Œf . ˛/�˛2S . For any q such that V .q/ is an indecomposable measured
foliation, Eq D „�1B.q/ D Œi.V .q/; ˛/�˛2S , so  Eq D Œi.V .q/;  .˛//�˛2S D Œi. �1.V .q//; ˛/�˛2S .
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Hence,  Eq is equal to the representation of the Busemann point in the Gardiner–Masur compactification
associated to the quadratic differential with vertical foliation  �1V .q/, which also is an indecomposable
measured foliation. Therefore, B1 is invariant under the action of MCG.S/, and since MCG.S/ acts by
homeomorphisms, the complement of the closure is also invariant.

Let q0 be a quadratic differential such that there is some f 2„�1…�1.q0/ not in„�1B. Such a quadratic
differential exists, by Theorem 1.8. By the proof of the theorem, we can assume that V .q0/ is a multicurve.
Furthermore, let q be a quadratic differential such that V .q/ and H.q/ are the stable and unstable
foliations respectively of some pseudo-Anosov element � 2MCG.S/. It is well known [12, exposé 12]
that for any closed curve ˛ we have that ��n�n.˛/ converges to

�
i.˛;V .q//= i.H.q/;V .q//

�
H.q/,

where � is the stretch factor of �. For any foliation F we have that „�1M.q0/.F /D 0 if and only if
i.V .q0/;F / D 0, where M.q0/ is the minimal point defined in Section 6. Hence, since H.q/ is the
unstable foliation of a pseudo-Anosov element and V .q0/ is a multicurve, we have i.V .q0/;H.q//¤ 0,
and so f .H.q//�„�1M.q0/.H.q// > 0. We have �nŒf .˛/�˛2S D Œf .�

n.˛//�˛2S . Taking limits and
using that the functions in the Gardiner–Masur compactification are homogeneous of degree 1, we get that

lim
n!1

Œ�nf .˛/�˛2S D

�
i.˛;V .q//f

�
H.q/

i.V .q/;H.q//

��
˛2S
D Œi.˛;V .q//�˛2S ;

Hence, in the normalized version, �nf converges to i. �;V .q//D„�1B.q/, as V .q/ is uniquely ergodic
and therefore indecomposable. That is, B.q/ can be approached through a sequence of elements contained
in the complement of the closure of B1.

Let B.q0/ be any element in B1, where q0 is any quadratic differential such that V .q0/ has one indecom-
posable component. The set of pseudo-Anosov foliations is dense in MF.S/, so we have a sequence
of quadratic differentials .qn/ converging to q0 with V .qn/ being a pseudo-Anosov foliation. Since q0

has one indecomposable component, the convergence is strong, and so B.qn/ converges to B.q0/. Each
B.qn/ can be approached through a sequence of elements contained in the complement of the closure of
B1, so taking a diagonal sequence the same can be said for B.q0/.

Corollary 7.6 Let S be a closed surface of genus g with p marked points , such that 3gCp � 5. Then ,
for any finite strictly positive measure � on the horoboundary, the set B1 does not have full �–measure.

Proof By Theorem 7.5, the complement of B1 is open and nonempty, so it must have positive �–measure.

This last result tells us that the image of Miyachi’s homeomorphism does not have full �–measure within
the horoboundary for any strictly positive measure �. However, as announced in the introduction, any
attempt to extend the identity from the Thurston compactification to the horoboundary compactification
to a set of full measure within the Thurston compactification results in the same problem. We restate here
the result as we shall use the notation for the proof.
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Corollary 1.10 Let � be any finite strictly positive measure on the horoboundary and let � be the
Lebesgue measure on the Thurston boundary. Furthermore, let � be a map from the Thurston compactifi-
cation to the horofunction compactification satisfying �jT .S/ D h, where h is as in (1). Then there is no
subset U of the Thurston boundary with full �–measure such that � is continuous at every point in U and
�.U / has full �–measure.

Proof Assume such a U exists. Choose then a basepoint x 2 T .S/ and let U 0DU \PMFUE. For each
element of F 2 U 0 the associated Hubbard–Masur quadratic differential qF;x satisfies R.qF;xI t/! F

as t !1. Hence, since � is continuous at F we have �.F /D B.qF;x/. That is, �.U 0/� B1.

Let G 2 U . The set PMFUE has full � measure, so U 0 D PMFUE\U also has full measure. Hence,
since the Lebesgue measure is strictly positive, U 0 is dense within PMF . Therefore G can be accessed
through a sequence .Fn/ � U 0. Hence, since � is continuous in G we have �.G/ D lim�.Fn/, so
�.U /� B1 and �.U / cannot have full �–measure.

Another natural family of measures on the boundary is obtained by considering harmonic measures. Given
a nonelementary measure � on MCG.S/ it is possible to define a random walk .wn/ as the sequence of
random variables defined by

wn D g0g1g2 : : :gn;

where gi are independent, identically distributed random variables on MCG.S/ sampled according to
the distribution �. As proven by Kaimanovich and Masur [22, Theorem 2.2.4], random walks generated
by a nonelementary probability measure converges almost surely in Thurston’s compactification, so we
can define the hitting measure � in PMF . Furthermore, the walk converges almost surely to uniquely
ergodic projective foliations, so we can translate this result to the horofunction compactification in the
following way.

Corollary 7.7 Let � be a nonelementary measure on MCG.S/. Then the associated harmonic measure
on the horoboundary is supported in a nowhere dense set.

Proof For any x 2 T .S/ the sequence .wnx/ converges almost surely in Thurston compactification to
some F 2 PMFUE. Hence, by [34, Corollary 1], the sequence .wnx/ converges almost surely to the
Busemann point generated by a quadratic differential q with V .q/ being a multiple of F . Hence, the
support of the harmonic measure is contained in B1, which is nowhere dense by Theorem 7.5.

8 Topology of the horoboundary

In this section we make some progress towards determining the global topology of the horoboundary. We
begin by showing that the minimal point M.q/ introduced in Proposition 6.3 serves as a section for the
map … whenever S does not have a boundary. Our main goal for this section is proving the following
theorem.

Algebraic & Geometric Topology, Volume 24 (2024)



3976 Aitor Azemar

Theorem 8.1 Let S be a surface of genus g with bm and bu boundaries with and without marked points
respectively and p interior marked points. Then , the map … restricted to the boundary has a global
continuous section @T v! @T h if and only if at least one of the two following conditions is satisfied :

� bm D bu D 0, or

� 2gC 2bmC buCp�max.1� bu; 0/� 4.

The section is given by sending the ray in the direction of q to the point M.q/ defined before Proposition 6.3.

Furthermore , if the map does not admit a global section , then it does not admit any local section around
some points.

We begin by proving the theorem for surfaces without boundary, as it is significantly easier to prove.

Proposition 8.2 Let S be a surface without boundary. Then the projection map … restricted to the
boundary admits a global section , given by the map M W @T v! @T h.

Proof By Proposition 6.3 every preimage …�1.q/ contains M.q/. We have M.q/ D „
�
i.V .q/; �/

�
,

which is continuous, as the map „ is continuous.

The rest of the cases of Theorem 8.1 require a more careful analysis.

Proposition 8.3 Let S be either

� a torus with up at most two unmarked boundaries or interior marked points ,

� a torus with one marked boundary and one interior marked point ,

� a sphere with one marked boundary and up to three interior marked points , or

� a sphere with two marked boundaries and interior marked point.

Then the projection map … restricted to the boundary admits a global section , given by the map
M W @T v! @T h.

Proof We shall build the section in the same way we built it in Proposition 8.2, that is, sending q

to M.q/.

Our first step in the proof is seeing that if V .q/ contains a separating proper arc then only one of the two
parts separated by the proper arc admit interior components. We shall do this by inspecting each possible
case. Assume then that V .q/ has a separating proper arc.

If S is a torus with up to two unmarked boundaries or marked points or a torus with one marked boundary
and one marked point, then the separating proper arc splits the surface into a torus with a marked boundary
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and a sphere with a marked boundary and a marked point or unmarked boundary. The latter does not
admit an interior component.

If S is a sphere with one marked boundary and up to three boundaries then the separating proper arc
splits the surface into two spheres, both with one marked boundary, one of them with two marked points
and the other one with one marked point. Again, the latter does not admit an interior component.

Finally, if S is a sphere with two marked boundaries and one marked point or unmarked boundary, the
proper arc splits the surface into one sphere with two marked boundaries and a sphere with one marked
boundary and one marked point, which again does not admit an interior component.

Take then a sequence of unit quadratic differentials .qn/ converging to q. Let Pi , i 2 f1; : : : ; cg be the
boundary components of V .q/. Furthermore, denote by G the union of the interior components. By the
first part of the proof, all the interior components are contained in the same interior part. We thus have

„�1M.q/D

�X
i

Wq.Pi/CWq.G/

�1=2

:

By Proposition 5.5 all boundary components of V .q/ are contained in V .qn/ for n big enough, and all
other boundary components of V .qn/, denoted Pn, vanish in the limit. Denote by Gn the union of the
interior components of V .qn/. As before, each indecomposable component of Gn is contained in the
same interior part, so we have

„�1M.qn/D

�X
i

Wqn.˛n
i Pi/CWqn.Pn/CWqn.Gn/

�1=2

;

which converges to „�1M.q/.

Proposition 8.4 Let S be either

� a surface of genus at least two and at least one boundary,

� a torus with at least one boundary and two more boundaries or interior marked points ,

� a torus with at least two boundaries , one being marked , and possibly interior marked points ,

� a sphere with at least one boundary, and four more boundaries or interior marked points ,

� a sphere with at least two boundaries , one being marked , and two interior marked points , or

� a sphere with at least three boundaries , two being marked , and possibly interior marked points.

Then the projection map … restricted to the boundary does not admit a local section around some points.

Proof We shall prove this by finding a quadratic differential q and sequences .q1
n/ and .q2

n/ converging
to q such that their preimages by … are singletons, but such that …�1.q1

n/ and …�1.q2
n/ converge to
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different points in …�1.q/. If we had a section around q, then its value at q1
n and q2

n would be …�1.q1
n/

and …�1.q2
n/ respectively, giving us a contradiction.

In all cases the construction will be similar. For q1
n we build a foliation with a separating proper arc

P such that each of the parts has precisely one interior component consisting of a closed curve, which
we denote by G1 and G2. Letting the weight of the proper arc diminish to 0 we can get a sequence
of quadratic differentials .q1

n/ converging to a quadratic differential q such that V .q/D G1CG2. Let
F1

n D P C nG1C nG2, A1
n and A the area of the Hubbard–Masur differentials qF 1

n ;X
and qG1CG2;X ,

respectively. Denote .1=
p

A1
n/qF 1

n ;X
as q1

n . These quadratic differentials have unit area, and converge
to .1=

p
A/qG1CG2;X , which we denote by q. By construction, V .q1

n/ is internally indecomposable, so
…�1.q1

n/ is a singleton, and

„�1…�1.q1
n/D

��
Wq1

n.P /C nWq1
n.G1/C nWq1

n.G2/p
A1

n

�1=2�
:

The sequences P=
p

A1
n, nG1=

p
A1

n and nG2=
p

A1
n converge, respectively, to 0, G1=

p
A and G2=

p
A.

Hence, by Lemma 6.1

the sequence …�1.q1
n/ converges to

��
Wq.G1/CWq.G2/

p
A

�1=2�
:

For building q2
n we take a curve  intersecting G1 and G2 at b1 and b2 times, where b1; b2 2 f1; 2g.

Denote by �1 and �2 the Dehn twists around G1 and G2. Let F2
n D �

2n=b1

1
�

2n=b2

2
 and A2

n the area of
the Hubbard–Masur differential qF 2

n ;X
. As before, denote by .1=

p
A2

n/q
2
n the quadratic differentials

.1=
p

A2
n/qF 2

n ;X
. These quadratic differentials have unit area, and converge to q. Furthermore, each

V .q2
n/ is a singleton and

„�1…�1.q2
n/D

��
Wq2

n..�1�2/
n /p

A2
n

�1=2�
:

The sequence .�1�2/
n=

p
A2

n converges to .G1CG2/=A, so by Lemma 6.1

the sequence „�1…�1.q2
n/ converges to

��
Wq.G1CG2/

p
A

�1=2�
;

which is different than the limit of „�1…�1.q1
n/.

It remains then to find such a multicurve. For genus at least two we take P to be a separating proper
arc such that each of the parts is of genus at least one, and G1 and G2 to be noncontractible curves, not
parallel to unmarked boundaries on each part, as shown in Figure 13, left.

For the torus we take P to be a separating proper arc with both endpoints in the unmarked boundary, or a
marked boundary if there are no unmarked boundaries. Further, we choose the proper arc such that, after
cutting along the arc, one part is a torus with one boundary. That is, every other feature of the surface lies
in the other part. Then we let G1 and G2 be noncontractible curves on each part, as shown in Figure 13,
middle.
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Figure 13: Curves chosen in the proof of Proposition 8.4.

Finally, for the sphere we let P be a separating proper arc with both endpoints on an unmarked boundary,
or a marked boundary if there are no boundaries without marked points. Further, we choose the arc such
that each interior part has at least either a combination of two marked points or boundaries without marked
points, or a boundary with marked points. Hence, each interior part supports an interior component
formed by a curve, as shown in Figure 13, right.

Proof of Theorem 8.1 This is a combination of the results from Propositions 8.2, 8.3 and 8.4.

By Proposition 1.2 we know that the horoboundary is connected whenever the real dimension of Teich-
müller space is at least 2. In the following result we go a bit further, by showing that it is actually path
connected.

Proof of Theorem 1.13 Let x;y 2 @T .S/h. If S does not have boundary then … has a global section,
so we can lift any path between ….x/ and ….y/ to a path between M.….x// and M.….y//. Then, since
…�1.x/ and …�1.y/ are path connected, we can connect x to M.….x// and y to M.….y// via paths.

If S has boundary we might have to be a bit more careful, as we might not have a global section.
However, as we shall see, we can take a path qt between ….x/ and ….y/ such that B.qt / has finitely
many discontinuities. Then, since each of the preimages is path connected these discontinuities can be
fixed by using paths in the fibers, so we will have a path between x and y.

Choose a boundary component of S , denote by b a curve parallel to that boundary and let Fx D V .….x//.
If Fx contains b then all the expressions of the form .1� t/FxC tb with t 2 Œ0; 1� correspond to foliations
on S , which we denote by Ft . Denote by qt the unit area quadratic differential such that V .qt / is a
multiple of Ft . This defines a continuous path joining ….x/ and the unit area quadratic differential
associated to a multiple of b. Let Vi be the vertical components of Fx that are not b, and let w0 be the
weight of b in Fx . Then,

B.qt /
2
D

1p
Area.qFt ;X /

�
.1� t/

X
Wqt .Vi/C .t C .1� t/w0/Wqt .b/

�
;

which gives a continuous path from B.q0/ 2…
�1….x/ to B.q1/ 2…

�1.q1/. If Fx does not contain
b, but b can be added to the foliation then we proceed just as before. Hence, if both x and y result in
foliations where b can be added, we create a path by concatenating the paths between x, the Busemann
point in …�1….x/, the Busemann point associated to b, the Busemann point in …�1….y/ and y.
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If b cannot be added to the foliation Fx then there must be some set P of proper arcs in Fx incident
to the boundary component associated to b. Let F 0x be the foliation Fx without the proper arcs P and
assume F 0x is nonempty. Denote by Ft the foliations .1� t/P C .1C t/F 0x , t 2 Œ0; 1�, and qt the unit
area quadratic differentials such that V .qt / is a multiple of Ft . Denoting Vi the vertical components of
F 0x , and Pj the proper arcs incident to the boundary component associated to b, we have

B.qt /
2
D

1p
Area.qFt ;X /

�
.1� t/

X
j

Wqt .Pj /C .1C t/
X

Wqt .Vi/

�
for t < 1, which is continuous. Furthermore, limt!1 B.qt / 2…

�1.q1/. Hence, we can concatenate a
paths between x, the Busemann point in …�1….x/, the limit limt!1 B.qt /, the Busemann point B.q1/

and Busemann point associated to b.

If F 0x is empty we want to add some other components to Fx . If it admits some other component k then
we repeat the previous reasoning with Ft D

�
1� t

2

�
FxC

t
2
k, which does not result in any discontinuity. If

Fx does not admit any other component then there must be at least 2 proper arcs incident to the boundary
component associated to b, so we choose one of them, denoted p, and repeat the previous reasoning with
Ft D .1� t/FxC tp, which does not result in any discontinuity. Finally, we concatenate this last path
with the previous paths.

9 Formulas for limits of extremal lengths

We finish by reframing the bounds we got for the elements of „�1…�1.q/ as results regarding limits of
extremal lengths, getting in this way some extensions of [44, Theorem 1].

Proposition 9.1 Let F be a measured foliation , .qn/ be a sequence of unit area quadratic differentials
converging to a quadratic differential q and .tn/ be a sequence of real numbers converging to infinity.
Then ,

.„�1M.q//2 � lim inf
n!1

e�2tn ExtR.qnItn/.F /� lim sup
n!1

e�2tn ExtR.qnItn/.F /� .„
�1B.q//2:

Proof Take a subsequence such that e�2tn ExtR.qnItn/.F / converges to the liminf. Furthermore, take
a subsequence such that R.qnI tn/ converge to a point � 2 …�1.q/. By Proposition 6.3 we have
.„�1M.q//2 � �2. Since e�2tn ExtR.qnItn/.F / converges to �2.F / we have the lower bound. For
the upper bound we repeat the process taking the limsup and using Proposition 6.5.

By noting that „�1M.q/.F / and „�1B.q/.F / evaluate to 0 if and only if i.V .q/;F / D 0, we get
the following corollary, which has also been proven for surfaces without boundary by Liu and Shi [27,
Corollary 3.11].
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Corollary 9.2 Let .qn/ be a sequence of unit area quadratic differentials converging to a quadratic
differential q, and .tn/ be a sequence of real numbers converging to infinity. Then ,

lim inf
n!1

e�2tn ExtR.qnItn/.F /D 0 () i.V .q/;F /D 0:

Proposition 9.1 can be strengthened slightly in the following manner.

Proposition 9.3 Let .qn/ be a sequence of unit area quadratic differentials converging to a quadratic dif-
ferential q. Furthermore , denote by V n

i the indecomposable components of qn. If the vertical components
can be reordered so that for each i we have that V n

i converges to a foliation Vi , then

lim inf
n!1

e�2tn ExtR.qnItn/.F /�
X

i

Wq.Vi/:

Proof Take a sequence such that the limit is equal to the liminf, and such that we have convergence
in the Gardiner–Masur compactification. Let � be the limit in the horofunction compactification. By
Lemma 4.5 we have e�2tn ExtR.qnItn/.F /� .„

�1B.qn//
2, and by Corollary 4.6 we have .„�1B.qn//

2DP
i Wqn.V n

i /. Hence, by Lemma 6.1, taking limits on both sides we get the proposition.

If we have strong convergence the upper bound from Proposition 9.1 and the lower bound from
Proposition 9.3 coincide, so adding Walsh’s formula for the Busemann points [44, Theorem 1] we
have a proof of Theorem 1.14.

Finally, the path connectedness of the fibers can be translated to the following result.

Proposition 9.4 Let .qn/ be a sequence of unit quadratic differentials converging to q, and .tn/ be a se-
quence of times converging to infinity. Further , for any F 2MF let L.F / WD lim infn!1 ExtR.qnItn/.F /.
Then , for any s 2 ŒL.F /; E2

q .F /� there is a subsequence of qns
k

and a sequence .t s
k
/ of times such that , for

any G 2MF the limit
lim

k!1
e�2ts

k ExtR.qns
k
Its

k
/.G/

is defined , and if G D F it has value s.

Proof We can take a subsequence such that limn!1 ExtR.qnItn/.F / converges to the liminf, and a
further subsequence such that we have convergence in the Gardiner–Masur compactification to a point
„�1� 2 „�1…�1.q/. By Proposition 3.11 we have a path between � and B.q/ contained in …�1.q/,
and hence a path  between „�1� and „�1B.q/ contained in „�1…�1.q/. By continuity there is a
point in that path such that t .F / D

p
s, and by the way we constructed t , it is reached by taking a

subsequence of .qns
k
/ and a sequence .t s

k
/ of times converging to infinity. Finally, since t is a point in

the Gardiner–Masur compactification approached by R.qs
ns

k

I t s
k
/, the value of t .G/

2 is equal to the limit
from the proposition.
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Vector fields on noncompact manifolds

TSUYOSHI KATO

DAISUKE KISHIMOTO

MITSUNOBU TSUTAYA

Let M be a noncompact connected manifold with a cocompact and properly discontinuous action of a
discrete group G. We establish a Poincaré–Hopf theorem for a bounded vector field on M satisfying a
mild condition on zeros. As an application, we show that such a vector field must have infinitely many
zeros whenever G is amenable and the Euler characteristic of M=G is nonzero.

57R25, 58K45

1 Introduction

Let M be a noncompact connected manifold. Then M admits a nonvanishing vector field as M admits
a vector field with isolated zeros which can be swept out to infinity. However, the resulting nonvanishing
vector field is not satisfactory because it may not be bounded in the following sense. A vector field v on a
Riemannian manifold is bounded if both jvj and jdvj are bounded, where dv denotes the derivative of v.
Note that our boundedness condition is different from the one in [Cima and Llibre 1990] and its related
works. Bounded vector fields appear in the study of manifolds of bounded geometry. Now we ask whether
or not a nonvanishing bounded vector field exists on M . Weinberger [2009, Theorem 1] proved that a
manifold M of bounded geometry has a nonvanishing vector field v with jvj constant and jdvj bounded if
and only if the Euler class of M in the bounded de Rham cohomology yH�.M / is trivial. As one may think
of the Poincaré–Hopf theorem as a refinement of the Euler class criterion for the existence of a nonvanishing
vector field on a compact orientable manifold, it is natural to ask whether or not one can establish the
Poincaré–Hopf theorem for bounded vector fields on noncompact manifolds of bounded geometry.

A typical manifold of bounded geometry is a covering space of a compact manifold, which we equip
with a lift of a metric on the base compact manifold. We say that an action of a group G on a space X

is properly discontinuous if every point x 2 X has a neighborhood U such that gU \U ¤ ∅ implies
gD 1. Equivalently, the quotient map X !X=G is a covering. So we consider a connected noncompact
manifold M on which a cocompact and properly discontinuous action of a group G is given, and will
establish the Poincaré–Hopf theorem for a bounded vector field on M . To state it, we set notation. Let
`1.G/ denote the vector space of bounded functions G!R, and let G act on `1.G/ from the left by

.g�/.h/D �.hg/

© 2024 MSP (Mathematical Sciences Publishers). Distributed under the Creative Commons Attribution License 4.0 (CC BY).
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for g; h 2G and � 2 `1.G/. We define the module of coinvariants of `1.G/ by

`1.G/G D `
1.G/=h� �g� j � 2 `1.G/; g 2Gi;

where hSi denotes the vector subspace of `1.G/ generated by a subset S � `1.G/. Let 1 2 `1.G/

denote the constant function with value 1. Let D �M be a fundamental domain (its definition is given in
Section 3). We will define the index ind.v/ of a bounded vector field v on M as an element of `1.G/G ,
and will prove

ind.v/.g/D
X

x2Zero.v/\gD

indx.v/

whenever v is strongly tame, which is a mild condition on the zeros of v defined in Definition 5.5, where
indx.v/ denotes the local index of a vector field v at the zero x 2 Zero.v/. Here, the above equality
means that there is a representative � 2 `1.G/ of ind.v/ 2 `1.G/G such that �.g/ is the right-hand side
of the equality. Now we are ready to state the Poincaré–Hopf theorem for a bounded vector field on M .

Theorem 1.1 Let M be a noncompact connected manifold equipped with a cocompact and properly
discontinuous action of a group G such that M=G is orientable. If a vector field v on M is strongly tame
and bounded , then

ind.v/D �.M=G/1 in `1.G/G :

As an application of Theorem 1.1, we will prove:

Theorem 1.2 Let M and G be as in Theorem 1.1. If G is amenable and �.M=G/¤ 0, then every tame
bounded vector field on M must have infinitely many zeros.

Let M and G be as in Theorem 1.1. Then by the abovementioned result of Weinberger [2009, Theorem 1]
together with [Attie et al. 1992], one can deduce that a vector bundle v on M with jvj constant and jdvj
bounded must have a zero. But one cannot deduce further information on zeros, such as their numbers,
from these results. As an application of Theorem 1.2 we will get the following result, where tameness of
a diffeomorphism is defined in Definition 5.6 in an analogous way to tameness of a vector field:

Corollary 1.3 (cf. [Weinberger 2009, Corollary to Theorem 1]) Let M and G be as in Theorem 1.1.
If G is amenable and �.M=G/ ¤ 0, then every tame diffeomorphism of M which is C 1 close to the
identity map must have infinitely many fixed points.

Example 1.4 Let L be the noncompact surface called Jacob’s ladder, a surface with infinite genus and
two ends, which admits an infinite cyclic covering map onto the closed oriented surface of genus 2. Then
we can apply Corollary 1.3 to L, and conclude that any tame diffeomorphism of L which is C 1 close to
the identity map must have infinitely many zeros. This can be easily generalized to the infinite connected
sum M D #1N of a closed connected oriented even-dimensional manifold N with �.N /¤ 2.

We briefly describe the strategy of our proof, as well as some of the tools we exploit. Let M and G be as
in Theorem 1.1. Recall that the Poincaré–Hopf theorem for a compact manifold can be proved by using
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a suitable integral in top-dimensional de Rham cohomology. Motivated by the compact case, we will
define the integral

(1)
Z

M

W yH n.M /! `1.G/G ;

where dim M D n, and will prove Theorem 1.1 by using it similarly to the compact case. So our approach
is an extension of the classical case by means of `1.G/G . However, unlike in the compact case, the
target module `1.G/G of the integral has some interesting algebraic properties we will use to deduce
Theorem 1.2.

Let us observe possible connections of our results to other contexts. Our results could be connected to the
index theory on open manifolds by Roe [1988]. More specifically, our index could be related to the index
of the Dirac operator

d C d� W y�even.M /! y�odd.M /

on the bounded de Rham complex y��.M /, which lives in the operator K–theory K�.C
�
u .jGj// of the

uniform Roe algebra C �u .jGj/. There is another possible connection. In [Kato et al. 2024], the pushforward
of a vector bundle on M to M=G is defined, and its structure group is the group of unitary operators
with finite propagation on the Hilbert space of square integrable functions G!C. On the other hand, as
in [Kato et al. 2023a; 2023b], the module of coinvariants of bounded functions Z! Z appears in the
homotopy groups of such a group of unitary operators of finite propagation for G D Z. Then our results
could be connected to the obstruction theory for the pushforward of TM onto M=G.

As mentioned in [Block and Weinberger 1992], there is an isomorphism yH n.M /ŠH uf
0
.M / (see [Attie

and Block 1998] for the proof), where dim M D n and H uf
� .M / denotes the uniformly finite homology

of M as in [Block and Weinberger 1992]. Since uniformly finite homology is a quasi-isometry invariant,
there is an isomorphism H uf

0
.M /ŠH uf

0
.G/. On the other hand, as in [Brodzki et al. 2012], there is an

isomorphism H uf
0
.G/Š `1.G/G . Then we get an isomorphism

yH n.M /Š `1.G/G :

However, this isomorphism is not explicit as it is given by a zigzag of several isomorphisms. We believe
that the integral (1) gives a direct and explicit description of this isomorphism. Our intuition relies on the
case M DR and G D Z, which we treat in Proposition 4.5, and we propose the following:

Conjecture 1.5 The integral (1) is an isomorphism.

Throughout this paper manifolds will be smooth and without boundary, unless otherwise specified, and
group actions on manifolds will be smooth too.

Acknowledgments The authors were partially supported by JSPS KAKENHI grants JP22H01123 (Kato),
JP22K03284 and JP19K03473 (Kishimoto), and JP22K03317 (Tsutaya). The authors deeply appreciate
the referees’ useful advice and comments, which especially improved Section 2.
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2 Module of coinvariants

In this section, we collect properties of the module of coinvariants `1.G/G that we are going to use.
Block and Weinberger [1992] introduced the uniformly finite homology H uf

� .X / of a metric space X , and
showed its basic properties. Later, Brodzki, Niblo, and Wright [Brodzki et al. 2012] studied amenability of
discrete groups by using the uniformly finite homology, where every discrete group will be equipped with a
word metric. They observed that if G is finitely generated, then the uniformly finite chain complex C uf

� .G/

is naturally isomorphic to the chain complex C�.GI `
1.G//. Then since H0.G; `

1.G// D `1.G/G ,
there is a natural isomorphism

(2) H uf
0 .G/Š `

1.G/G

whenever G is finitely generated.

Proposition 2.1 Let G and H be finitely generated groups. Then a quasi-isometric homomorphism
G!H induces an isomorphism

`1.H /H
Š
�! `1.G/G :

Proof By [Block and Weinberger 1992, Corollary 2.2], a quasi-isometric homomorphism G ! H

induces an isomorphism H uf
� .G/

Š
�!H uf

� .H /. Then the statement follows from (2).

Corollary 2.2 If G is a finite group , then

`1.G/G ŠR:

Proof Let 1 denote the trivial group. Since G is finite, the inclusion 1!G is a quasi-isometry. Then
since `1.1/1 ŠR, the statement is proved by Proposition 2.1.

Proposition 2.3 Let G be a finitely generated infinite group , and let � 2 `1.G/. If �.g/D 0 for all but
finitely many g 2G, then � is zero in `1.G/G .

Proof Whyte [1999, Theorem 7.6] gave a necessary and sufficient condition for an element of C uf
0
.G/

to be trivial in H uf
0
.G/. Through the natural isomorphism C uf

0
.G/ Š C0.GI `

1.G// D `1.G/, this
condition is stated as follows: an element � 2 `1.G/ is zero in `1.G/G if and only if there are C > 0

and r > 0 such that for any finite subset S �G,ˇ̌̌̌X
g2S

�.g/

ˇ̌̌̌
� C � #fg 2G j 0< d.g;S/� rg;

where d denotes a word metric of G. If G is infinite, then for any nonempty finite subset S �G, we have
#fg 2G j 0< d.g;S/� 1g � 1. Suppose � 2 `1.G/ satisfies �.g/D 0 for all but finitely many g 2G.
Then if we set C D

P
g2G j�.g/j and r D 1, the above inequality holds for any finite subset S �G, and

so � is zero in `1.G/G .
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Recall that a mean on a group G is a linear map

� W `1.G/!R

such that �.1/D 1 and �.�/� 0 whenever �.g/� 0 for all g 2G, where 12 `1.G/ denotes the constant
function with value 1 as in Section 1. A group G is amenable if it admits a G–invariant mean. The proof
of [Block and Weinberger 1992, Theorem 3.1] together with (2) implies the following:

Proposition 2.4 For a finitely generated group G, the following statements are equivalent :

(i) G is amenable.

(ii) `1.G/G ¤ 0.

(iii) 1 2 `1.G/ is nonzero in `1.G/G .

3 Basic properties of fundamental domains

In this section, we define a fundamental domain of a manifold with a free group action, and show its
basic properties. Throughout this section, let M be a connected manifold of dimension n, possibly with
boundary, on which a cocompact and properly discontinuous action of a group G is given. Since G is a
quotient of the fundamental group of a compact manifold M=G, which is finitely generated, G is finitely
generated.

We define a fundamental domain D of M as the closure of an open set of M such that

M D
[
g2G

gD and Int.D/\ Int.gD/D∅

for all 1¤ g 2G. Remark that D need not be connected. A manifold M admits a fundamental domain.
Indeed, given a triangulation of M=G, we can lift it to get a triangulation of M such that the G–action is
free and simplicial. We choose one lift of the interior of each maximal simplex of M=G to M , so the
closure of the union of these open simplices of M is a fundamental domain of M . We choose such a
fundamental domain, so that D is a simplicial complex such that each D\gD is a subcomplex of D and

(3) @D D

� [
1¤g2G

D\gD

�
[ .D\ @M /:

If gD \ hD is .n�1/–dimensional, then we call it a facet of gD (and hD). We also call gD \ @M a
facet of gD when @M ¤∅. Then the boundary of D is the union of its facets. Clearly the G–action on
M restricts to @M , and D\ @M is a fundamental domain of @M .

We construct a generating set of G by using a fundamental domain D. Let S be a subset of G consisting
of elements g 2G such that D\gD is a facet of D.

Proposition 3.1 The set S is a symmetric generating set of G.
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Proof Let g 2G and x 2 Int.D/. Then gx belongs to Int.gD/, and so since M is connected there is a
path ` from x to gx which passes g0D;g1D; : : : ;gkD in order for 1D g0;g1; : : : ;gk�1;gk D g 2G

such that giD\giC1D is a facet and `\giD\giC1D is a single point sitting in the interior of a facet
giD\giC1D of giD for i D 0; 1; : : : ; k�1. Since giD\giC1DDgi.D\g�1

i giC1D/ is a facet of giD,
D\g�1

i giC1D is a facet of D, implying g�1
i giC1 2 S . Thus since

g D gk D .g
�1
0 g1/.g

�1
1 g2/ � � � .g

�1
k�1gk/;

we obtain that S is a generating set of G. If g 2 S , then g.D\g�1D/D gD\D is a facet of D, and so
D\g�1D is a facet of D too. Hence g�1 2 S , that is, S is symmetric, completing the proof.

Corollary 3.2 There is a partition S D SC tS� tS0 such that .SC/�1 D S� and .S0/2 D f1g.

Proof Let S0 be the subset of S consisting of elements of order 2. Then the statement follows because
S is symmetric.

Let SCD fs1; : : : ; skg and S0D ft1; : : : ; tlg, where SC and S0 are finite because G is finitely generated
as mentioned above. We put

E DD\ @M; FCi DD\ siD; F�i DD\ s�1
i D; and F0

j DD\ tj D

for i D 1; 2; : : : ; k and j D 1; 2; : : : ; l .

Lemma 3.3 The facets of D are E;FC
1
; : : : ;FC

k
;F�

1
; : : : ;F�

k
;F0

1
; : : : ;F0

l
.

Proof The statement follows from Corollary 3.2.

We consider an orientation of a facet of gD:

Lemma 3.4 Suppose that M is oriented. If F D gD\ hD is a facet for g; h 2G, then the orientations
of F induced from gD and hD are opposite.

Proof An outward vector of gD rooted at F is an inward vector of hD. Then the statement follows.

4 The integral in bounded cohomology

In this section, we define the integral in bounded cohomology. Let M be a connected Riemannian
manifold of dimension n, possibly with boundary. As in [Roe 1988], we say that a differential form !

on M is bounded if both j!j and jd!j are bounded. Let y�p.M / denote the set of bounded p–forms
on M . Then by definition, y��.M / is closed under differential, and so it is a differential graded algebra.
We define the bounded de Rham cohomology of M as the cohomology of y��.M /, which we denote by
yH�.M /. We record the following obvious fact:

Lemma 4.1 If a map f WM ! N between manifolds has bounded derivative , then it induces a map
f � W y��.N /! y��.M /.
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Now we consider a cocompact and properly discontinuous action of a discrete group G on a manifold M ,
and choose a fundamental domain D �M . A Riemannian metric of M will be chosen to be the lift of
a Riemannian metric of M=G. We assume that M=G is oriented. Then in particular, the fundamental
domain D is oriented. We define the integral of a bounded differential form on M by

(4)
Z

M

W y�n.M /! `1.G/;

�Z
M

!

�
.g/D

Z
gD

!:

We may think of the above integral as the external transfer of the covering M !M=G. Note that we
can similarly define the integral for @M by using a fundamental domain D \ @M of @M . We prove
Stokes’ theorem:

Proposition 4.2 For ! 2 y�n�1.M /, we haveZ
M

d! D

Z
@M

! in `1.G/G :

Proof We consider the facets of D described in Lemma 3.3. Define �˙i ; �
0
j 2 `

1.G/ by

�˙i .g/D

Z
gF ˙

i

! and �0
j .g/D

Z
gF 0

i

!

for i D 1; 2; : : : ; k and j D 1; 2; : : : ; l , where the orientations of gF˙i and gF0
i are induced from gD.

Then by Lemma 3.3 and the usual Stokes’ theorem, we haveZ
gD

d! D

Z
gE

!C

kX
iD1

.�Ci .g/C�
�
i .g//C

lX
jD1

�0
j .g/;

where the orientation of gE is induced from gD. Since gF�i D gs�1
i FCi , it follows from Lemma 3.4

that ��i .g/D��
C
i .gs�1

i /. Then
�Ci C�

�
i D �

C
i � s�1

i �Ci :

Quite similarly,
�0

j D
1
2
.�0

j � t�1
j �0

j /:

Thus since E DD\ @M is a fundamental domain of @M , we obtainZ
M

d! D

Z
@M

!C

kX
iD1

.�Ci � s�1
i �Ci /C

lX
jD1

1
2
.�0

j � t�1
j �0

j /:

The following is immediate from Proposition 4.2:

Corollary 4.3 If M is without boundary, then the integral (4) induces a mapZ
M

W yH n.M /! `1.G/G :

By considering n–forms with support in gD, we can easily see that the integral in bounded cohomology
is always surjective. We give two supporting examples for Conjecture 1.5:
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Proposition 4.4 Conjecture 1.5 is true for G finite.

Proof If G is finite, then M is compact, and so yH n.M / coincides with the usual nth de Rham cohomology
of M , which is isomorphic with R. On the other hand, by Corollary 2.2, `1.G/GŠR. So since the integral
in bounded cohomology is surjective, as mentioned above, it is actually an isomorphism, as stated.

Proposition 4.5 Conjecture 1.5 is true for M DR and G D Z, where Z acts on R by translation.

Proof We choose the interval Œ0; 1��R as a fundamental domain. Let g D 1 2 Z. Suppose that

(5)
Z

R
f .x/ dx D � �g�

for a bounded function f .x/ on R and � 2 `1.Z/, where the integral is taken in the sense of (4).
Equation (5) is equivalent to the fact that the 1–form f .x/ dx belongs to the kernel of the integral in
bounded cohomology because

� �gn� D .�Cg�C � � �Cgn�1�/�g.�Cg�C � � �Cgn�1�/:

Note that .� �g�/.i/D �.i/��.i C 1/. Now we define

h.x/D

Z x

0

f .t/ dt:

To see that the integral in bounded cohomology is injective, it is sufficient to show that h.x/ 2 y�0.R/.
Since dh.x/D f .x/ dx, dh.x/ is bounded. For 0� n� x < nC 1, we have

h.x/D

n�1X
iD0

Z iC1

i

f .t/ dt C

Z x

n

f .t/ dt D �.0/��.n/C

Z x

n

f .t/ dt:

Since f .x/ is bounded,
R x

n f .t/ dt is bounded too as x and n vary. Then h.x/ is bounded for x � 0.
Quite similarly, we can show that h.x/ is bounded for x < 0 too, and so h.x/ 2 y�0.R/. Thus we obtain
the injectivity. Since the integral in bounded cohomology is surjective as mentioned above, it is an
isomorphism.

5 Poincaré–Hopf theorem

In this section, we prove Theorems 1.1 and 1.2. Throughout this section, let M be a connected manifold
of dimension n equipped with a cocompact and properly discontinuous action of a discrete group G such
that M=G is oriented. The metric of M will be the lift of a metric of M=G.

Let ˆ denote a representative of the Thom class of M=G. Then as in [Bott and Tu 1982], the support
of ˆ is compactly supported, and so ˆ is a bounded n–form on T .M=G/. Let � WM !M=G denote
the projection. Then the derivative of � is bounded, and so by Lemma 4.1 we get the induced map
�� W y��.T .M=G//! y��.TM/. In particular, ��.ˆ/ is a bounded n–form on TM. Note that ��.ˆ/
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represents the Thom class of M in bounded cohomology. Let v be a vector field on M with jdvj bounded.
Then by Lemma 4.1, v�.��.ˆ// is a bounded n–form on M , and so we can define the index of v by

ind.v/D
Z

M

v�.��.ˆ// 2 `1.G/G :

We remark that the index ind.v/ is independent of the choice of a representative ˆ of the Thom class
of M=G. Indeed, if ‰ is another representative of the Thom class of M=G, then ˆ � ‰ D d˛ for
some compactly supported .n�1/–form ˛ on T .M=G/, where ‰ is compactly supported. Hence we get
��.ˆ/���.‰/D d��.˛/, where all differential forms are bounded, and so by Corollary 4.3 the indices
of v defined by ˆ and ‰ are equal. We also remark that by Proposition 2.4, the index of a bounded vector
field on M is always zero whenever G is not amenable; see [Weinberger 2009, Theorem 2]

We now show some properties of the index. Let v0 denote the zero vector field, that is, the zero section
M ! TM. Then v�

0
.��.ˆ// is a representative of the Euler class e.M / in bounded cohomology, which

was considered by Weinberger [2009].

Proposition 5.1 There is an equality Z
M

e.M /D �.M=G/1:

Proof Let Nv0 denote the zero vector field on M=G, so v0 is the lift of Nv0. Since the projection
� W Int.gD/!M=G��.@.gD// is a diffeomorphism and both @.gD/ and �.@.gD// have measure zero,Z

gD

v�0 .�
�.ˆ//D

Z
M=G

Nv�0 .ˆ/D

Z
M=G

e.M=G/D �.M=G/:

Lemma 5.2 If vector fields v and w on M with jdvj and jdwj bounded are homotopic by a homotopy
with bounded derivative , then

ind.v/D ind.w/:

Proof Let vt WM � Œ0; 1�! TM be a homotopy with bounded derivative such that v0 D v and v1 D w.
Since the induced maps v�t W y�

�.TM/! y��.M � Œ0; 1�/ and �� W y��.T .M=G//! y��.TM/ commute
with the differential, Z

M�Œ0;1�

dv�t .�
�.ˆ//D

Z
M�Œ0;1�

v�t .�
�.dˆ//D 0;

whereˆ is a closed n–form representing the Thom class of T .M=G/. On the other hand, by Proposition 4.2Z
M�Œ0;1�

dv�t .�
�.ˆ//D

Z
M�1

w�.��.ˆ//�

Z
M�0

v�.��.ˆ//:

Proposition 5.3 Let v be a bounded vector field on M . Then we have

ind.v/D ind.v0/:

Proof Clearly tv is a homotopy from v0 to v with bounded derivative. So by Lemma 5.2, we are done.
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We consider a mild condition on zeros of a vector field. Let Bı.x/ denote the open ı–neighborhood of
x 2M , and let B�.M / denote the open �–neighborhood of M in TM.

Definition 5.4 A vector field v on a manifold M is tame if there are ı > 0 and � > 0 such that

(i) Bı.x/\Bı.y/D∅ for x ¤ y 2 Zero.v/, and

(ii) v�1.B�.M //�
S

x2Zero.v/Bı.x/.

Definition 5.5 A vector field v on M is strongly tame if it is tame and there is ı > 0 such that for each
x 2 Zero.v/, we have Bı.x/� gD for some g 2G.

We also define a tame diffeomorphism, in analogy with tame vector fields:

Definition 5.6 A diffeomorphism f WM !M is tame if there are ı > 0 and � > 0 such that

(i) Bı.x/\Bı.y/D∅ for x ¤ y 2 Fix.f /, and

(ii) d.x; f .x// > � for x 2M �
S

y2Fix.y/Bı.y/,

where d stands for the metric of M .

We prove a technical lemma:

Lemma 5.7 Let f WRn! T Rn be a section of the tangent bundle T Rn DRn �Rn!Rn such that for
some ı; � > 0, we have f �1.B�.0//� Bı.0/. Let ! be a representative of the Thom class of T Rn such
that supp.!/�Rn �B�=2.0/. Then

ind0.f /D

Z
Bı.0/

f �.!/:

Proof Let B denote the closure of Bı.0/. Then by definition, ind0.f / is the mapping degree of the
composite

@B
f
�!Rn

� .Rn
n f0g/

p
�!Rn

n f0g
q
�! Sn�1;

where p W T Rn D Rn �Rn! Rn denotes the second projection and q W Rn n f0g ! Sn�1 denotes the
natural projection onto the unit sphere. There is a function � W Œ0;1/! R such that �.x/ D 0 for x

sufficiently close to 0 and �.x/D 1 for x � 1
2
�. Let ˛ be an .n�1/–form on the unit sphere Sn�1 of Rn

such that
R

Sn�1 ˛ D 1. Now we define

�D p�.d�^ q�.˛//:

By definition supp.�/ � Rn �B�=2.0/, and since
R

Rn d�^ q�.˛/D 1, � represents the Thom class of
T Rn. Then by the uniqueness of the Thom class, there is an .n�1/–form � on T Rn with vertically
compact support such that

! � �D d�:
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We have supp.�/�Rn �B�=2.0/, implying f �.�/j@B D 0. So by Stokes’ theorem, we getZ
B

f �.!/�

Z
B

f �.�/D

Z
B

f �.d�/D

Z
B

df �.�/D

Z
@B

f �.�/D 0:

Note that �D dp�.� � q�.˛// and �.f .@B//D 1. Then by Stokes’ theorem, we haveZ
B

f �.�/D

Z
B

df � ıp�.� � q�.˛//D

Z
@B

f � ıp�.� � q�.˛//D

Z
@B

f � ıp� ı q�.˛/D ind0.f /:

Thus since
R

B�.0/
f �.!/D

R
B f
�.!/, the proof is finished.

We compute the index of a strongly tame bounded vector field:

Proposition 5.8 Let v be a strongly tame bounded vector field on M . Then

ind.v/.g/D
X

x2Zero.v/\gD

indx.v/:

Proof Let ı and � be as in the definition of a tame vector field. As in [Bott and Tu 1982], we may
assume that the support of ��.ˆ/ is contained in B�=2.M /. Then

ind.v/.g/D
X

x2Zero.v/\gD

Z
Bı.x/

v�.��.ˆ//

for each g 2G. On the other hand, by tameness of v, ��.ˆ/jBı.x/ is compactly supported for x 2Zero.v/,
and so by Lemma 5.7, we get Z

Bı.x/

v�.��.ˆ//D indx.v/

for each x 2 Zero.v/.

Proof of Theorem 1.1 Combine Propositions 5.1, 5.3, and 5.8.

Proof of Theorem 1.2 As mentioned at the beginning of Section 3, G is finitely generated. Then we
can apply the results in Section 2. Let v be a tame bounded vector field on M , and suppose that v has
finitely many zeros. We can easily see that v is homotopic to a strongly tame vector field by a homotopy
with bounded derivative. Then by Lemma 5.2, we may assume that v itself is strongly tame, and so by
Theorem 1.1, we have

ind.v/D �.M=G/1:

Since �.M=G/ ¤ 0, it follows from Proposition 2.4 that �.M=G/1 is nonzero in `1.G/G . Then by
Proposition 2.3, we obtain that v must have infinitely many zeros, a contradiction. Thus v must have
infinitely many zeros.

Proof of Corollary 1.3 Observe that a tame diffeomorphism is the composite of a tame vector field and
the exponential map if it is C 1 close to the identity map. Then the statement follows from Theorem 1.2.
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Smallest nonabelian quotients of surface braid groups

CINDY TAN

We give a sharp lower bound on the size of nonabelian quotients of the surface braid group Bn.†g/ and
classify all quotients that attain the lower bound: depending on n and g, a quotient of minimum order is
either a symmetric group or a 2–step nilpotent p–group.

20F65; 57K20

1 Introduction

The Artin braid group Bn arises as the fundamental group of UConfn.D/, the configuration space of
n distinct unordered points on the open disk D. One can generalize this construction to define, for an
oriented closed genus-g surface †g, the surface braid groups

Bn.†g/D �1.UConfn.†g//:

It was shown by Kolay [4] that for n D 3 or n � 5, the smallest noncyclic finite quotient of Bn is the
symmetric group Sn, in the sense that Sn has minimum order amongst noncyclic quotients of Bn and Sn

is the unique noncyclic quotient of Bn of minimum order.

We consider the analogous question for surface braid groups. With our main result we show that whilst
Sn is a quotient of Bn.†g/, it is not in general the smallest nonabelian quotient.

For g � 1 the inclusion of a disk into †g induces an embedding Bn ,! Bn.†g/ (see Birman [2]); any
two such embeddings are conjugate in Bn.†g/. By a braid-free quotient of Bn.†g/ we mean a finite
quotient with (any such embedding of) Bn having cyclic image. Our main result is the following theorem:

Theorem 1 (Smallest nonabelian quotients of Bn.†g/) Let n� 5 and g � 1. Suppose that G is a finite
nonabelian quotient of Bn.†g/.

(a) If G is not braid-free then jGj � n! with equality if and only if G Š Sn.

(b) If G is braid-free then G is 2–step nilpotent and jGj � p2gCj , where p is the smallest prime
dividing gCn�1 and j D 1 or 2 according to whether p is odd or 2, respectively. Equality occurs
if and only if either G Š I.pj ;g/ or G Š II.pj ;g/ (these two groups are nonisomorphic 2–step
nilpotent p–groups defined in Construction 10).

In particular , the smallest nonnilpotent quotient of Bn.†g/ is Sn.

© 2024 The Author, under license to MSP (Mathematical Sciences Publishers). Distributed under the Creative Commons
Attribution License 4.0 (CC BY). Open Access made possible by subscribing institutions via Subscribe to Open.
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Note that Theorem 1 implies the following qualitative result:

Corollary 2 (a) Fix g � 1. For all sufficiently large n, the smallest nonabelian quotients of Bn.†g/

are 2–step nilpotent p–groups (in particular , the smallest nonabelian quotient is not Sn).

(b) Fix n � 5. For all sufficiently large g, the smallest nonabelian quotient of Bn.†g/ is Sn. Also ,
there exists a (small ) g for which this not true.

Remarks 3 (Smaller cases) (a) If nD 1; 2; 3; 4 and g � 1 (with the exception of .n;g/D .1; 1/ where
Bn.†g/D �1.T

2/D Z2 is abelian) then the symmetric group S3 is the smallest nonabelian quotient
of Bn.†g/.

(b) If g D 0 then Bn.†g/ is the spherical braid group Bn.S
2/, which is an intermediate quotient of the

map Bn! Sn; see Fadell and Van Buskirk [3]. It follows from the result of Kolay [4] that the smallest
quotient of Bn.S

2/ is Sn for n� 5 and S3 for nD 3; 4. For nD 1; 2 we note that Bn.S
2/ is abelian.

From Theorem 1 we obtain partial confirmation of a conjecture of Chen [2, Conjecture 1.3]:

Corollary 4 Let n� 5 and m� 3, and let g; h� 0. If n>m then there are no surjective homomorphisms

Bn.†g/! Bm.†h/:

Proof method Theorem 1(a) follows from Kolay: By mapping a braid to its permutation on points, Sn

is a finite quotient of Bn.†g/. If Bn!Bn.†g/!G has noncyclic image then jGj � n! with the bound
attained only by G Š Sn.

Our primary contribution here is Theorem 1(b), which considers the braid-free quotients. We utilize
a presentation of Bn.†g/ (Theorem 13) due to Bellingeri [1] and assume that Bn has cyclic image to
reduce the relations, and conclude that a braid-free quotient G must be nilpotent. If we further assume
that G is a nonabelian braid-free quotient of minimum order, then G belongs to a class of nilpotent groups
called JN2 groups (Definition 5) which were classified by Newman in 1960 [5]. It then suffices to find
the smallest JN2 groups which can be realized as a quotient of Bn.†g/, a straightforward task given the
concrete nature of Newman’s classification.

Section 2 provides a self-contained exposition of the classification of JN2 groups. In Section 3 we prove
Theorem 1(b), as well as Corollary 4.

Acknowledgements I am grateful to my advisor Benson Farb for continued support throughout this
project and for detailed comments on many revisions of this paper, as well as for suggesting this problem
in the first place. I thank Peter Huxford for useful discussions about braid groups and small p–groups,
and for many helpful suggestions during the editing process. I also thank Dan Margalit for taking the
time to read and comment on an earlier draft.
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2 Just 2–step nilpotent groups

In this section we introduce and classify JN2 groups, a class of nilpotent groups which includes all
minimal nonabelian braid-free quotients of Bn.†g/.

Definition 5 A group G is just 2–step nilpotent (JN2) if G is 2–step nilpotent (in particular, nonabelian)
and every proper quotient of G is abelian.

Finite JN2 groups admit a complete and explicit classification due to Newman [5]: any finite JN2 group
can be assigned a unique class .pj ;m/ where p is a prime and j and m are positive integers; up to
isomorphism, there are precisely two JN2 groups of a given class .pj ;m/. We will state and prove this
classification theorem in Theorem 11, following the general ideas of [5].

All JN2 groups will hereafter be assumed to be finite. The following proposition will allow us to define
the class .pj ;m/ of a JN2 group:

Proposition 6 (Characterization of JN2 groups [5, Theorem 1]) A finite group G is JN2 if and only if
there exists a prime p such that

(a) G0 WD ŒG;G� is cyclic of order p,

(b) the center ZG is cyclic of order a power of p, and

(c) G=ZG is elementary abelian of exponent p.

In particular , a JN2 group is a p–group.

Proof ()) Let G be a finite JN2 group. For every nontrivial normal subgroup N E G, we have that
G0 �N since any proper quotient of G is abelian. Since G is 2–step nilpotent, G0 �ZG. Consequently:

(a) G0 is abelian and admits no proper nontrivial subgroups so G0 Š Z=pZ for some prime p.

(b) ZG cannot be properly decomposed as a direct sum: any nontrivial subgroup of ZG contains G0

so no two nontrivial subgroups intersect trivially. Since ZG is finite abelian, it must be cyclic of prime
power order. The prime must be p because G0 �ZG.

(c) G=ZG is abelian because G0�ZG. For x;y 2G, we have that Œxp;y�D Œx;y�p by using the identity

Œxz;y�D zŒx;y�z�1Œz;y�

and noting that Œx;y� is central because G0 � ZG. But G0 has order p, so in fact Œxp;y� D 1. Thus
xp 2ZG for all x 2G, which is to say that G=ZG has exponent p.

(() Suppose G is a finite group satisfying (a), (b), and (c). Then G0 ¤ f1g by (a) and G0 �ZG by (c),
so G is 2–step nilpotent.

If N E G is a normal subgroup with G0 —N then N \G0 D f1g by (a). Since N is normal, ŒN;G� �
N \G0 D f1g so N � ZG. But G0 � ZG, and (a) and (b) imply that any nontrivial subgroup of ZG

intersects G0 nontrivially. Thus N D f1g. We conclude that every proper quotient of G is abelian.

Algebraic & Geometric Topology, Volume 24 (2024)
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An immediate corollary of (c) is that V WD G=ZG has the structure of an Fp–vector space. Note that
vector addition in V is written multiplicatively and scalar multiplication of an element x mod ZG 2 V

by a scalar r 2 Fp is written as
r.x mod ZG/D xr mod ZG:

Fix a generator z of ZG. This fixes a generator zpj�1

of G0, and hence an identification of G0 with Fp.
Define a pairing

V �V !G0 D Fp given by .x mod ZG;y mod ZG/ 7! Œx;y�:

This pairing is a well-defined bilinear nondegenerate alternating form, which makes V into a symplectic
vector space. In particular, dim V is even.

Thus associated to each JN2 group G is a class .pj ;m/ where jZGj D pj and dim V D 2m, so G fits
into the short exact sequence

1! Z=pj Z!G! .Z=pZ/2m
! 0:

The symplectic structure on central factor groups V DG=ZG is key to the classification theorem because
symplectic automorphisms on central factor groups can be used to construct isomorphisms between
certain JN2 groups of the same class. The following lemma extracts from a JN2 group a normalized
symplectic basis on its associated vector space V :

Lemma 7 Let G be JN2 of class .pj ;m/ where pj ¤ 2, with a fixed generator z of ZG. Then there
exists a symplectic basis B D fai mod ZG; bi mod ZGgm

iD1
of V DG=ZG such that the representatives

ai ; bi 2G satisfy either

(I) a
p
i D b

p
i D 1 for all i , or

(II) a
p
1
D b

p
1
D z and a

p
i D b

p
i D 1 for 2� i �m.

We will say that B is type I or II accordingly.

Remark 8 (Nomenclature) For the reader familiar with existing terminology from [5], a “type I
(respectively II) basis” as named in our Lemma 7 corresponds to a “canonic normal basis with zero
(respectively one) pairs of type II” in the vocabulary of Newman.

Proof Note that xp 2ZG for all x 2G because G=ZG has exponent p. Let .ZG/p D fup W u 2ZGg

and identify ZG=.ZG/p with Fp by the mapping z mod .ZG/p 7! 1. Define a map

� W V !ZG=.ZG/p D Fp given by x mod ZG 7! xp mod .ZG/p:

Viewing V DG=ZG as a vector space written multiplicatively, � commutes with scalar multiplication and

�..x mod ZG/.y mod ZG//D .xy/p mod .ZG/p D Œy;x�p.p�1/=2xpyp mod .ZG/p

for x;y 2G, so � is a linear functional as long as Œy;x�p.p�1/=2 D 1 mod .ZG/p . This holds if pj ¤ 2:
If p is odd then p j 1

2
p.p� 1/, so Œy;x�p.p�1/=2 D 1 because G0 has order p. If j � 2 then G0 ˆ ZG

so G0 � .ZG/p.
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If � is the trivial linear functional on V , take B to be any symplectic basis of V . Otherwise there exists a
symplectic basis B of V such that � written with respect to B is the row vector

� D
�
1 1 0 � � � 0

�
;

because symplectic automorphisms act transitively on nontrivial vectors.

For each basis vector xj mod ZG 2B,

x
p
j mod .ZG/p D �.xj mod ZG/D z�j mod .ZG/p;

so there exists uj 2ZG such that x
p
j D z�j u

p
j . Then xj u�1

j � xj mod ZG and .xj u�1
j /p D z�j . Thus

xj u�1
j 2G are representatives of the basis B satisfying (I) if � is trivial and (II) otherwise.

We will now construct two standard nonisomorphic JN2 groups for each given class .pj ;m/. The proof
of the classification theorem will exhibit an isomorphism from any arbitrary JN2 group to a standard one.
The primary method of constructing larger JN2 groups from smaller ones is taking a central product.

Definition 9 (Central product) Let G and H be groups for which ZG Š ZH . Define the central
product of G and H (with respect to an isomorphism ' WZG!ZH ) to be

GˇH D .G �H /=N where N D h.g; '.g/�1/ W g 2ZGi;

i.e. identifying ZG � 1 with 1�ZH by the isomorphism '. By Gˇn we mean the central product of n

copies of G with the identity isomorphism on ZG.

Note that if G and H are JN2 of class .pj ;m1/ and .pj ;m2/, then GˇH is JN2 of class .pj ;m1Cm2/

by Proposition 6 since

(a) .GˇH /0 DG0 �H 0=N ŠG0 ŠH 0 Š Z=pZ,

(b) Z.GˇH /ŠZG ŠZH , and

(c) .GˇH /=Z.GˇH /Š .G=ZG/� .H=ZG/.

Construction 10 (Standard JN2 groups) Define the groups

M.pj /D hz; a; b W Œz; a�D Œz; b�D 1I Œa; b�D zpj�1

I zpj

D ap
D bp

D 1i;

N.pj /D hz; a; b W Œz; a�D Œz; b�D 1I Œa; b�D zpj�1

I zpj

D 1I ap
D bp

D zi;

I.pj ;m/DM.pj /ˇm;

II.pj ;m/DN.pj /ˇM.pj /ˇ.m�1/:

Observe the following:

(1) M.pj / and N.pj / are JN2 (by Proposition 6) of class .pj ; 1/, with each center generated by z and
fa; bg as a symplectic basis of V .

(2) I.pj ;m/ and II.pj ;m/ are JN2 of class .pj ;m/ by the remarks following Definition 9.
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(3) I.pj ;m/ and II.pj ;m/ are not isomorphic when pj ¤ 2: the group N.pj / has an element of
order pjC1 (for example, a or b) and therefore so does II.pj ;m/. On the contrary, the group M.pj /,
and consequently also I.pj ;m/ D M.pj /ˇm, has exponent at most pj : the linear functional � (as
in the proof of Lemma 7) is trivial on the symplectic basis fa; bg so M.pj /p � .ZG/p, and hence
M.pj /p

j

� .ZG/p
j

D 1.

Note If pj D 2, then I.pj ;m/ and II.pj ;m/ are still nonisomorphic: M.2/ is the dihedral group D8

and N.2/ is the quaternion group Q8, which contain two and six elements of order 4, respectively, and
both have centers of order 2. In particular no elements of order 4 are central. The larger groups I.pj ;m/

and II.pj ;m/ can then be distinguished by counting the number of elements of order 4 because only
central elements are identified in the central product. We will not require this case.

Theorem 11 (Classification of finite JN2 groups [5, Theorems 5 and 7(c) and Lemma 8(i)]) Let G be
JN2 of class .pj ;m/. Suppose that pj ¤ 2. Then G is isomorphic to either I.pj ;m/ or II.pj ;m/.

Proof Let z be a generator of ZG and let B be the symplectic basis given by Lemma 7. In the notation of
Lemma 7, let Hi Dhz; ai ; bii. If B is type I then Hi DM.pj / for all i . If B is type II then H1DN.pj /

and Hi DM.pj / for i � 2.

The subgroups Hi commute pairwise, together generate G, and intersect precisely in their centers hzi, so
G Š

Jm
iD1 Hi . Hence G is isomorphic to I.pj ;m/ or II.pj ;m/, according to the type of the basis B.

Remarks 12 (a) Generalizations For brevity, we have excluded the case of pj D 2 and specialized to
finite groups. With additional work, the pj D 2 case and some infinite JN2 groups (those with a countable
symplectic basis) also admit a classification as central products of elementary JN2 groups, see [5].

(b) Special cases Note that M.p/ and N.p/ are the only two groups of order p3. The group M.p/D

I.p; 1/ is isomorphic to the Heisenberg group over Fp . A generalization of the finite Heisenberg groups
are the extraspecial groups, which are defined to be p–groups G with ZG order p and G=ZG nontrivial
elementary abelian. In particular, extraspecial groups are JN2, and it follows from Theorem 11 that there
are precisely two distinct extraspecial groups of order p1C2m for each choice of a prime p and positive
integer m and that this exhausts all extraspecial groups.

3 Minimal nonabelian quotients of Bn.†g/

In this section we provide the proof of Theorem 1(b). The strategy of the proof will be to utilize an
explicit presentation of the surface braid groups (Theorem 13) to characterize braid-free quotients by the
relations that they must satisfy (Lemma 15). We will then show that many JN2 groups are realized as
nonabelian braid-free quotients of Bn.†g/ (Lemma 16) and finally prove that all nonabelian braid-free
quotients of minimum order belong to the list of JN2 groups in Lemma 16.
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Theorem 13 (Presentation of Bn.†g/, Bellingeri [1, Theorem 1.2]) For g � 1 and n� 2, the surface
braid group Bn.†g/ admits the presentation given by

� generators �1; : : : ; �n�1; a1; : : : ; ag; b1; : : : ; bg,

� braid relations

Œ�i ; �j �D 1 for 1� i; j � n� 1 and ji � j j � 2;

�i�iC1�i D �iC1�i�iC1 for 1� i � n� 2;

and mixed relations

Œar ; �i �D Œbr ; �i �D 1 for 1� r � g and i ¤ 1;(R1)

Œar ; �
�1
1 ar�

�1
1 �D Œbr ; �

�1
1 br�

�1
1 �D 1 for 1� r � g;(R2)

Œas; �1ar�
�1
1 �D Œbs; �1br�

�1
1 �D 1 for 1� s < r � g;(R3)

Œbs; �1ar�
�1
1 �D Œas; �1br�

�1
1 �D 1 for 1� s < r � g;

Œar ; �
�1
1 br�

�1
1 �D �2

1 for 1� r � g;(R4)

Œa1; b
�1
1 � � � � Œag; b

�1
g �D �1�2 � � � �

2
n�1 � � � �2�1:(TR)

Remark 14 (Geometric interpretation of the presentation) The Bellingeri generators �i can be identified
as the images of the Artin braid generators under a choice of embedding Bn ,! Bn.†g/. The remaining
generators ar and br can be understood loosely to be the standard generators of �1.†g/.

More precisely, let fp1; : : : ;png 2 UConfn.†g/ denote the basepoint of Bn.†g/ and let D �†g be an
open disk with p1 2 @D, with p2; : : : ;pn in the interior of D. There is an inclusion

�1.†g �D;p1/ ,! Bn.†g/

which takes a loop  in †g �D to the braid on †g with first strand  and all other strands trivial. The
group �1.†g �D;p1/ is free on 2g generators and surjects onto �1.†g;p1/, which has a standard
presentation. The surface braid group generators ar ; br 2Bn.†g/ can then be understood as a choice of a
free generating set of �1.†g�D;p1/ which lifts the standard generating set of �1.†g;p1/. It should be
emphasized that the lifts are not canonical and that the presentation depends on the choices; the curious
reader may refer to [1] for illustrations of the loops which produce this particular presentation.

Lemma 15 (Characterization of braid-free quotients) Let n � 3 and g � 1. A finite group G is a
braid-free quotient of Bn.†g/ if and only if G admits a generating set f�; a1; b1; : : : ; ag; bgg satisfying
the relations

Œar ; � �D Œbr ; � �D 1 for 1� r � g;(R10)

Œas; ar �D Œbs; br �D Œbs; ar �D Œas; br �D 1 for 1� s < r � g;(R30)

Œar ; br �D �
2 for 1� r � g;(R40)

�2.gCn�1/
D 1:(TR0)
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Proof A finite quotient of Bn.†g/ is presented by Theorem 13 with additional relations. The condition
that Bn has cyclic image in a quotient is equivalent to adding the relations

�i D �1; 1� i � n:

If we add these relations and write � D �1, the relation (R2) is made redundant and (R1), (R3), and (R4)
respectively reduce to the relations (R10), (R30), and (R40), as in the statement of the lemma. The final
relation (TR) reduces to

Œa1; b
�1
1 � � � � Œag; b

�1
g �D �2.n�1/;

which is equivalent to (TR0) because from (R40) we can write ar D b�1
r ��2ar br so that

Œar ; b
�1
r �D ar b�1

r a�1
r br

(R40)
D .b�1

r ��2ar br /b
�1
r a�1

r br D b�1
r ��2br

(R10)
D ��2:

The following lemma proves that many JN2 groups are braid-free quotients:

Lemma 16 Let n� 3 and g � 1. Let p be a prime dividing gC n� 1.

(a) If p D 2 then I.22;g/ and II.2j ;g/ for all j � 2 are nonabelian braid-free quotients of Bn.†g/.

(b) If p is odd then I.p;g/ and II.pj ;g/ for all j � 1 are nonabelian braid-free quotients of Bn.†g/.

Proof Let p be a prime dividing gCn�1. By Lemma 15 we need to exhibit a generating set f�; ar ; br g

of each group satisfying relations (R10), (R30), (R40), and (TR0).

In any of the JN2 groups in the statement of the theorem, fix a generator z of the center and choose
a1; b1; : : : ; ag; bg to be the representatives of a symplectic basis of V given by Lemma 7. By Theorem 11
this basis will be type I for I.22;g/ and I.p;g/, and type II for II.2j ;g/ and II.pj ;g/. Note that with the
given symplectic form, the condition that a basis is symplectic is simply that all basis elements commute
except symplectic pairs Œar ; br �D zpj�1

. In particular, (R30) is satisfied.

We will now choose � for each group and verify that f�; ar ; br g generate the group and satisfy (R40).

(1) I.22;g/ is generated by � D z and far ; br g. These satisfy (R40) because Œar ; br �D z2 D �2.

(2) II.2j ;g/, for a given j � 2, is generated by far ; br g alone because a
p
1
D z. If we choose � D z2j�2

then (R40) is satisfied because Œar ; br �D z2j�1

D �2.

(3) I.p;g/ for odd prime p is generated by � D z.p
jC1/=2 and the ar and br . Then (R40) is satisfied

because Œar ; br �D z D �2.

(4) II.pj ;g/, for given odd prime p and j � 1, is generated by ar and br alone because a
p
1
D z. Then

set � D z.p
jCpj�1/=2 so that (R40) is satisfied because Œar ; br �D zpj�1

D �2.

In all cases � was chosen to be central, and hence (R10) is satisfied.

It remains to check that (TR0) holds, namely that j� j divides 2.gC n� 1/. Recall that we are assuming
that p j .gC n� 1/. In cases (1) and (2), we have p D 2 and j� j D 4D 2p j 2.gC n� 1/. In cases (3)
and (4), we have j� j D p j .gC n� 1/.
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Proof of Theorem 1(b) Let G be a nonabelian braid-free quotient and let f�; a1; b1; : : : ; ag; bgg denote
the generating set of G as given by Lemma 15. By (R10) and (R30), all pairs of these generators commute
except for pairs ar and br , so G0 D h�2i by (R40). Then G0 is central and nontrivial, which is to say
that G is 2–step nilpotent.

Assume now that G is of minimum order amongst nonabelian braid-free quotients of Bn.†g/. Then G

has no proper nonabelian quotients and thus is JN2 of some class .pj ;m/.

We make three claims:

(1) pj ¤ 2,

(2) mD g, and

(3) p j .gC n� 1/.

These claims will complete the proof: Since jGj D p2mCj , it follows from claims (1) and (2) that
jGj � p2gC1 if p is odd and jGj � 22gC2 if p D 2. Claims (1) and (3) along with the minimality of G

together imply that G is one of (in particular, the smallest of) the quotients constructed in Lemma 16.
Explicitly, if gC n� 1 is even then pj D 22. Otherwise pj D p, where p is the smallest prime dividing
gC n� 1. Finally, G must be isomorphic to either I.pj ;g/ or II.pj ;g/ by Theorem 11.

Proof of claims Let d D j� j. By (R10), � is central so d jpj . But p D jG0j D j�2j so d j 2p. Thus
either p is odd and p D d , or p D 2 and d D 4.

(1) If p is odd then pj ¤ 2. If p D 2 then pj � d D 4 so pj ¤ 2.

(2) We will show that dim V D 2g by proving that

B D far mod ZG; br mod ZGg
g
rD1

is a basis of V . Every element x 2G can be written uniquely in the form

x D �ka
i1

1
� � � a

ig

g b
j1

1
� � � b

jg

g

using commuting relations (R10), (R30), and (R40) so B is a generating set. To prove that B is linearly
independent, let

y D a
i1

1
� � � a

ig

g b
j1

1
� � � b

jg

g 2G

and suppose that y D 0 mod ZG, which is to suppose that an arbitrary linear combination of elements of
B is trivial in V . Then y is central, so

Œy; b1�D Œa
i1

1
; b1�D �

�2i1 D 1;

which implies that d j 2i1 and thus i1 D 0 mod p: If p is odd then d D p, so p j i1. If p D 2 then
d D 4 j 2i1 so, p D 2 j i1.

Similarly ir D jr D 0 mod p for all r , which is to say that all coefficients of the linear combination are
trivial over the base field Fp. This proves the linear independence of B.
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(3) The relation (TR0) imposes the relation d j 2.gCn�1/. Either d D p is odd or d D 4 and pD 2; in
both cases (TR0) implies that p j .gC n� 1/.

Proof of Corollary 4 Let n� 5 and m� 3, and let g; h� 0. If there is a surjection Bn.†g/!Bm.†h/

then the composition Bn.†g/!Bm.†h/!Sm is also surjective. Since Sm is not nilpotent when m� 3,
we must have m� n.

Remark 17 (Punctured surfaces, surfaces with boundary) Bellingeri [1] also gives a presentation of
the braid group of a genus-g surface with m punctures (equivalently for the purposes of braid groups,
m boundary components). The above methods can be used nearly verbatim to prove that the smallest
nonabelian quotient of Bn.†g;m/ is the smaller of Sn or I.22;g/ and II.22;g/.
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Lattices, injective metrics and the K.�; 1/ conjecture

THOMAS HAETTEL

Starting with a lattice with an action of Z or R, we build a Helly graph or an injective metric space. We
deduce that the `1 orthoscheme complex of any bounded graded lattice is injective. We also prove a
Cartan–Hadamard result for locally injective metric spaces. We apply this to show that any Garside group
or any FC-type Artin group acts on an injective metric space and on a Helly graph. We also deduce that
the natural piecewise `1 metric on any Euclidean building of type QAn extended, zBn, zCn or zDn is injective,
and its thickening is a Helly graph.

Concerning Artin groups of Euclidean types QAn and zCn, we show that the natural piecewise `1 metric on
the Deligne complex is injective, the thickening is a Helly graph, and it admits a convex bicombing. This
gives a metric proof of the K.�; 1/ conjecture, as well as several other consequences usually known when
the Deligne complex has a CAT(0) metric.
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Introduction

Injective metric spaces are geodesic metric spaces where every family of pairwise intersecting balls
has a nonempty global intersection. The discrete counterpart of the injective metric space is the Helly
graph. Its use in geometric group theory is recent and growing; see notably [Dress 1984; Lang 2013;
Huang and Osajda 2021; Chalopin et al. 2020a; Haettel et al. 2023; Osajda and Valiunas 2024; Haettel
2022a]. Roughly speaking, CAT(0) spaces are typically locally Euclidean spaces, whereas injective metric
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4008 Thomas Haettel

spaces are typically locally `1 metric spaces. Injective metric spaces display many nonpositive curvature
features observed in CAT(0) spaces. We believe that Helly graphs and injective metric spaces may also
prove to be more powerful than CAT(0) spaces for some purposes.

Firstly, it appears that many nonpositively curved groups (notably most CAT(0) groups) have a nice action
on an injective metric space, so that the theory encompasses a vast class of groups: CAT(0) cubical groups,
hyperbolic groups, relatively hyperbolic groups, uniform lattices in semisimple Lie groups over local fields,
braid groups and more generally Garside groups, Artin groups of type FC, mapping class groups and more
generally hierarchically hyperbolic groups. For instance, Helly graphs admit a simple combinatorial local
characterization (see Theorem 1.12), which makes them potentially as powerful as CAT(0) cube complexes,
whereas piecewise Euclidean CAT(0) complexes desperately lack a combinatorial characterization.

Secondly, we can still deduce many of the results that hold true for CAT(0) spaces and CAT(0) groups in
the setting of injective spaces and injective groups (groups acting geometrically on injective spaces). For
instance, injective metric spaces have a conical geodesic bicombing and are thus contractible, and every
isometric bounded group action has a fixed point. Moreover, every injective group is semihyperbolic
(see [Alonso and Bridson 1995]) and satisfies the Farrell–Jones conjecture (see [Kasprowski and Rüping
2017]). Sometimes we can even deduce stronger results than in the CAT(0) setting: as a sample result,
note that any group acting properly and cocompactly on a Helly graph is biautomatic (see [Chalopin et al.
2020a]), whereas not all CAT(0) groups are biautomatic (see [Leary and Minasyan 2021]). Also note that
infinite, finitely generated torsion groups do not act properly on uniformly locally finite Helly graphs (see
[Haettel and Osajda 2021]), whereas the analogous statement is open for CAT(0) complexes.

In this article, we will pursue this philosophy. On one hand, we develop results useful to prove that some
metric spaces are injective. On the other hand, we apply these results to Euclidean buildings and Deligne
complexes of Euclidean Artin groups. We believe, however, that the scope of our results will not be
limited to Artin groups of Euclidean type, and could concern much larger classes of groups.

We now present a very simple criterion (already appearing in a restricted form in [Haettel 2022a]) showing
how to build a Helly graph or an injective metric space, starting with a lattice and an action of Z or R.

Theorem A (Theorem 2.1) Assume that L is a lattice such that each upper bounded subset of L has a
join. Assume that there is an order-preserving increasing continuous action .ft /t2H of H DZ or R on L

such that ,
for all x;y 2L; there exists t 2HC such that f�t .x/6 y 6 ft .x/:

Let us define the following metric d on L:

for all x;y 2L; d.x;y/D infft 2HC j f�t .x/6 y 6 ft .x/g:

� If H D Z, the metric space .L; d/ is the vertex set of a Helly graph.

� If H DR, the metric space .L; d/ is injective.

Algebraic & Geometric Topology, Volume 24 (2024)



Lattices, injective metrics and the K.�; 1/ conjecture 4009

With Jingyin Huang, we used the same situation of a lattice with an appropriate action of Z to define
another natural graph which is weakly modular, and this applies to numerous examples (see [Haettel and
Huang 2024]).

We applied this criterion in [Haettel 2022a] to prove that the thickening of a Bruhat–Tits Euclidean
building of extended type QAn is a Helly graph. It turns out that the Bruhat–Tits restriction is unnecessary.

Theorem B (Theorems 4.4 and 7.4) The natural `1 metric on any Euclidean building of type QAn

extended , zBn, zCn or zDn is injective. Furthermore , the thickening of its vertex set is a Helly graph.

Since Euclidean buildings are also endowed with CAT(0) metrics, we may wonder about the importance
of this result. For one, it gives a lot of new examples to the theory of injective metric spaces and Helly
graphs. Another consequence is another approach to Świa̧tkowski’s result [2006] that cocompact lattices
in Euclidean buildings are biautomatic, in types QAn, zBn, zCn or zDn. The proof for types zBn, zCn and zDn

relies on a generalization for graded semilattices; see Section 6.

Another immediate consequence of Theorem A is the following.

Theorem C (Corollary 2.2) The thickening of the Cayley graph of any Garside group with respect to
its simple elements is a Helly graph.

Note that, in the case of a finite-type Garside group, this is due to Huang and Osajda [2021]. However, our
proof is different, and does not rely on the deep local-to-global result for Helly graphs (see Theorem 1.12).
Additionally, it also works in the case of a Garside group with infinite set of simple elements.

One application is the study of the orthoscheme complex of a bounded, graded lattice L. Note that
simplices of the geometric realization jLj of L correspond to chains in L, so that one can endow each
simplex with metric of the standard `1 orthosimplex associated to this order on vertices (see Section 1
for details). We endow the geometric realization jLj of L with a lattice structure, and use Theorem A to
deduce the following.

Theorem D (Theorem 3.10) Let L denote a bounded , graded lattice. Then the orthoscheme complex jLj
of L, with the piecewise `1 metric , is injective.

When L is a bounded, graded lattice, one may endow its orthoscheme complex with the piecewise
Euclidean metric. Deciding whether it is a CAT(0) metric space is a very difficult question. It turns
out that for orthoscheme complexes of posets, the CAT(0) property is more restrictive than the injective
property; see Theorem 3.11.

One famous conjecturally CAT(0) example is the dual braid complex, defined by Brady and McCammond
[2010]. The n–strand braid group Bn has a standard Garside structure, associated to the “half-turn” as a
Garside element. The braid group also enjoys a dual presentation introduced by Birman, Ko and Lee
[Birman et al. 1998], which corresponds to a dual Garside structure (see [Dehornoy and Paris 1999]). It is
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associated to the rotation of an nth of a turn as a Garside element. Associated to this dual Garside structure,
one may consider the geometric realization and endow it with the piecewise Euclidean orthoscheme
metric (see Section 1). Brady and McCammond conjecture that this so-called dual braid complex is
CAT(0) for all braid groups, but it has only been proved for n 6 7 (see [Brady and McCammond 2010;
Haettel et al. 2016; Jeong 2023]). However, an immediate consequence of Theorem D is the following.

Theorem E (Corollary 3.12) The Garside complex of any Garside group , endowed with the piecewise
`1 orthoscheme metric , is injective.

We also obtain another proof of a result by Huang and Osajda stating that FC-type Artin groups are
Helly [Huang and Osajda 2021, Theorem 5.8]. We also provide explicit Helly and injective models (see
Theorem 7.6 for the precise statement).

Theorem F (Huang–Osajda, Theorem 7.6) Let A denote an Artin group of type FC. Then a natural
simplicial complex X with vertex set A, with the `1 metric , is injective. Moreover , a thickening of X is
a Helly graph.

As a particular case of Theorem E, the dual braid complex, endowed with the piecewise `1 orthoscheme
metric, is injective for all braid groups. This also holds, more generally, for every spherical-type Artin
group with some Garside structure. Note that Theorem D proves local injectivity, and one also needs
a Cartan–Hadamard result for injective metric spaces in order to conclude. We therefore rely on the
local-to-global result for Helly graphs to prove the following generalization of [Miesch 2017] in the
nonproper setting (see Section 1 for the definition of semiuniformly locally injective). This result is
clearly of independent interest.

Theorem G (Cartan–Hadamard for injective metric spaces, Theorem 1.14) Let X denote a complete ,
simply connected , semiuniformly locally injective metric space. Then X is injective.

Another very promising family of examples is Deligne complexes of Artin groups (see Section 1 for
definitions). Note that buildings and Deligne complexes of Artin groups are closely related: in fact
in his original article Deligne [1972] called “buildings for generalized braid groups” the complexes
later called Deligne complexes. However, to the best of our knowledge, the close relationship between
Euclidean buildings and Deligne complexes of Euclidean-type Artin groups has not yet been exploited
in the literature. Notably, the automorphism groups of Euclidean buildings do not possess a Garside
structure, and the Deligne complexes do not have an apartment system as rich as in the building case.
However, one common feature is that they locally look like a lattice, which is the key combinatorial
property we are using in this article.

Associated to every Coxeter graph � with vertex set S, we may define the Coxeter group W .�/, the
Artin group A.�/ and the hyperplane complement M.�/ (see Section 1). The Coxeter group W .�/ acts
naturally on M.�/, and A.�/ is the fundamental group of the quotient W .�/nM.�/. One very natural
question is to decide whether it is a classifying space. This is the statement of the following conjecture.

Algebraic & Geometric Topology, Volume 24 (2024)
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Conjecture H (the K.�; 1/ conjecture) The hyperplane complement M.�/ is aspherical.

The K.�; 1/ conjecture has been proved for spherical-type Artin groups by Deligne [1972], and for
Euclidean-type Artin groups by Paolini and Salvetti [2021] very recently, even for the type zDn. Another
approach, more closely related to the metric approach of this article, was used by Charney and Davis
[1995b] to prove the K.�; 1/ conjecture for Artin groups of type FC or of 2–dimensional type. Their
proof relies on the use of a simplicial complex, called the Deligne complex �.�/, which is the geometric
realization of the poset of cosets of spherical-type parabolic subgroups (see Section 1). This complex
(in this form) was defined in [Charney and Davis 1995b], where they proved that �.�/ is homotopy
equivalent to the universal cover of W .�/nM.�/. In other words, the K.�; 1/ conjecture is equivalent to
the contractibility of the Deligne complex �.�/.

Charney and Davis’s method for proving that the Deligne complex is contractible is to endow it with
a CAT(0) metric. This works for Artin groups of type FC or of 2–dimensional type. However, in the
general case, the key question is to decide whether the Deligne complex for the braid group is CAT(0)
with Moussong’s metric. It is only known for the braid group up to four strands only (see [Charney
2004]). However, we will see that the natural piecewise `1 metric is injective for all braid groups, up to
taking the product with R.

Theorem I (Theorem 4.4) Let � denote the Deligne complex of the Artin group of Euclidean type QAn.
Then the natural piecewise `1 length metric on ��R is injective. Moreover , the thickening of ��R is
a Helly graph.

The proof consists in applying Theorem D to prove that the Deligne complex is locally injective. One key
combinatorial property is that the Deligne complex in type An is essentially a lattice; see Section 5. The
proof of the lattice property, through the cut-curve lattice, is due to Crisp and McCammond, copied here
with their permission.

Note that one may wonder whether it is necessary to consider the direct product with R. In fact, Hoda
[2023] proved that the Euclidean Coxeter group of type QAn is not Helly for n > 2, even though its direct
product with Z is. We made a similar distinction for automorphism groups of Euclidean buildings of
type QAn in [Haettel 2022a]. We therefore strongly believe that there is no injective metric on the Deligne
complex of type QAn itself which is invariant under the Artin group. However, we will see in Theorem M
below that there is a convex bicombing on the Deligne complex itself.

In order to deal with the Euclidean type zCn, we first prove a generalization of Theorem D for graded
semilattices; see Section 6.

Theorem J (Theorem 7.4) Let � denote the Deligne complex of the Artin group of Euclidean type zCn.
Then the natural piecewise `1 length metric on � is injective. Moreover , the thickening of � is a Helly
graph.
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An immediate consequence is another proof of the K.�; 1/ conjecture in Euclidean types QAn and zCn,
originally due to Okonek [1979]. The novelty is that it is the first metric proof. Moreover, in Charney
and Davis’s approach to the K.�; 1/ conjecture by showing that Moussong’s metric is CAT(0), the main
difficulty is to prove that it is locally CAT(0) for the braid groups. It is precisely this statement that we
are able to prove in the injective setting.

Corollary K (Okonek) The Deligne complex� of Euclidean type QAn or zCn is contractible. In particular ,
the K.�; 1/ conjecture holds in these cases.

Moreover, several results have been proved, relying on the assumption that one may endow the Deligne
complex with a piecewise Euclidean CAT(0) metric. Crisp [2000] studied the fixed-point subgroup under
a symmetry group of the Artin system. Godelle [2007] studied the centralizer and normalizer of standard
parabolic subgroups. Morris-Wright [2021] studied the intersections of parabolic subgroups. It turns out
almost all the arguments merely used the existence of an equivariant geodesic bicombing on the Deligne
complex (see the end of Section 3 for a definition of a bicombing). Moreover, Descombes and Lang
[2015; 2016] justified the importance of convex geodesic bicombings for themselves. We therefore state
the following conjecture, which may be seen as a metric strategy for the proof of the K.�; 1/ conjecture.

Conjecture L The Deligne complex of any Artin group A has an A–invariant metric that admits a
convex, consistent , reversible geodesic bicombing.

We are able to prove this conjecture in spherical types An, Bn and Euclidean types QAn, zCn, and we
believe that our result represents a major step towards the general case.

Theorem M (Theorem 8.1) Let � denote the Deligne complex of the Artin group of spherical type An

or Bn or Euclidean type QAn or zCn. There exists a metric on �, invariant under the Artin group , which
admits a convex, consistent , reversible geodesic bicombing.

If an Artin group satisfies Conjecture L, then the K.�; 1/ conjecture follows. Moreover, we may also list
consequences of [Crisp 2000; Godelle 2007; Morris-Wright 2021; Cumplido et al. 2019] that rely on the
assumption that the Deligne complex has a CAT(0) metric. However, most of the arguments only use the
geodesic bicombing. The following results were only essentially known for Artin groups of type FC or of
2–dimensional type. Note that concerning Artin groups of type FC, only intersections of spherical-type
parabolic subgroups are known to be parabolic (see [Morris-Wright 2021]). See also [Möller et al. 2024].

Corollary N (Corollaries 8.3, 8.4 and 8.5) Let A denote the Artin group of Euclidean type QAn or zCn.

� The intersection of any parabolic subgroups of A is a parabolic subgroup.

� A satisfies Properties .?/, .??/ and .???/ from [Godelle 2007], notably: for any subset X � S,
we have

ComA.AX /DNA.AX /DAX �QZA.X /;

where the quasicentralizer of X is QZA.X /D fg 2A j g �X DX g.
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Lattices, injective metrics and the K.�; 1/ conjecture 4013

� For any group G of symmetries of the Artin system , the fixed-point subgroup AG is isomorphic to
an Artin group.

In view of Conjecture L, looking for other consequences of the existence of a convex bicombing on the
Deligne complex may prove to be fruitful.

Structure of the article

In Section 1, we review basic definitions of posets, lattices, Artin groups, Deligne complexes, injective met-
ric spaces and Helly graphs. We also prove the Cartan–Hadamard theorem for injective metric spaces. In
Section 2, we prove the central simple criterion showing how to produce an injective metric space or a Helly
graph starting from a lattice with an action of Z or R. In Section 3, we apply this criterion to prove that
the orthoscheme complex of a bounded, graded lattice is injective. In Section 4, we use this to prove that,
for Euclidean buildings and the Deligne complex in Euclidean type QAn, the natural piecewise `1 metric is
injective. In Section 6, we show how to adapt the criterion to a mere semilattice with some extra property.
We then apply it in Section 7 to prove that, for Euclidean buildings and the Deligne complex in Euclidean
type zCn, the natural piecewise `1 metric is injective. Finally, in Section 8, we use the convex bicombing
on the Deligne complexes to deduce many corollaries about parabolic subgroups of Artin groups.
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1 Review of posets, Artin groups and injective metric spaces

1.1 Posets and lattices

We recall briefly basic definitions related to posets and lattices.

Definition 1.1 (poset) Let L denote a poset. A chain of L is a totally ordered nonempty subset of L.
A maximal chain is a chain that is maximal with respect to inclusion. A finite chain of nC 1 elements
x0<x1< � � �<xn is called of length n. The poset L is called bounded below (resp. above) if it has a global
minimum denoted by 0 (resp. global maximum denoted by 1). The poset L is called bounded if it is both
bounded above and below. The poset L has rank n if it is bounded and all maximal chains have length n.
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Definition 1.2 (interval) Given two elements x 6 y in a poset L, we define the interval

I.x;y/D fz 2L j x 6 z 6 yg:

In the case of possible confusion, we may also denote the interval by IL.x;y/ to emphasize that we are
considering the interval in the poset L. The poset L is called graded if every interval of L has a rank. Let x

denote an element in a graded poset L that is bounded below; the rank of x is the rank of the interval I.0;x/.

Definition 1.3 (lattice) Given elements x;y in a poset L, if there exists a unique maximal lower bound
to fx;yg, it is called the meet of x and y and denoted by x^y. Similarly, if there exists a unique minimal
upper bound to fx;yg, it is called the join of x and y and denoted by x _y. If any two elements of L

have a meet (resp. a join), the poset L is called a meet-semilattice (resp. join-semilattice). If any two
elements of L have a meet and a join, the poset L is called a lattice.

Examples � The Boolean lattice L of rank n is the poset of subsets of EDf1; : : : ; ng, partially ordered
by inclusion. The join of A;B 2L is A[B and their meet is A\B.

� Consider a CAT(0) cube complex X, with a base vertex v0. Order the set V of vertices of X by
declaring that v 6 w if some combinatorial geodesic from v0 to w passes through v. Then V is a graded
meet-semilattice, with minimum v0. The meet of two vertices v;w 2 V is the median of v0; v; w.

� The partition lattice L of E D f1; : : : ; ng is the poset of partitions of E, partially ordered by declaring
that A 6 B if every element of A is contained in an element of B. This lattice has rank n�1, its minimum
is the partition ff1g; f2g; : : : ; fngg into singletons and its maximum is the partition fEg into one element.

We will now describe a very simple criterion due to [Brady and McCammond 2010] to decide when a
bounded graded poset is a lattice.

Definition 1.4 (bowtie) In a poset L, a bowtie consists of four distinct elements a; b; c; d such that a; c

are minimal upper bounds of b; d , and b; d are maximal lower bounds of a; c.

Proposition 1.5 [Brady and McCammond 2010, Proposition 1.5] Let L denote a bounded graded poset.
Then L is a lattice if and only if L does not contain a bowtie.

1.2 Coxeter groups, Artin groups and Deligne complexes

We recall the definitions of Coxeter groups, Artin groups, and their associated Deligne complexes.

For every finite simple graph � with vertex set S and with edges labeled by some integer in f2; 3; : : : g,
one associates the Coxeter group W .�/ with the following presentation:

W .�/D hS j for all fs; tg 2 �.1/; for all s 2 S; s2
D 1; Œs; t �m D Œt; s�m if the edge fs; tg is labeled mi;

where Œs; t �m denotes the word ststs : : : of length m.
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spherical type Euclidean type

An, n > 2 : : : QAn
: : :

Bn, n > 2 : : : 4 zBn
: : : 4

CnDBn, n > 2 : : : 4 zCn
: : :4 4

Dn, n > 4 : : : zDn
: : :

Table 1: Spherical and Euclidean irreducible diagrams of type A, B, C and D.

The associated Artin group A.�/ is defined by a similar presentation:

A.�/D hS j for all fs; tg 2 �.1/; Œs; t �m D Œt; s�m if the edge fs; tg is labeled mi:

The groups A.�/ are also called Artin–Tits groups, since they were defined by Tits [1966].

Note that only the relations s2 D 1 have been removed, so that there is a natural surjective morphism
from A.�/ to W .�/. Also note that if mD 2, then s and t commute, and if mD 3, then s and t satisfy
the classical braid relation sts D tst .

The knowledge of general Artin groups is extremely limited (see notably [McCammond 2017; Charney
2008; Godelle and Paris 2012]). In particular, we do not know whether the word problem is solvable in
general Artin groups, nor whether they are torsion-free.

Most results about Artin–Tits groups concern particular classes. The Artin group A.�/ is called:

� of spherical type if its associated Coxeter group W .�/ is finite, ie may be realized as a reflection
group of a sphere.

� of Euclidean type if its associated Coxeter group W .�/ may be realized as a reflection group of a
Euclidean space.

� of FC type if for any complete subset T � S the parabolic subgroup AT D hT i is spherical.

We recall in Table 1 the classification of the four infinite families of spherical and Euclidean irreducible
diagrams; see [Bourbaki 2002] for the full classification. We only present those because we will only
consider these types in this article. Note that we use in this table the convention of Dynkin diagrams:
vertices that are not joined by an edge commute, and we drop the label 3 from edges.

Artin groups are closely related to hyperplane complements, which can be presented in a simple way in
spherical and Euclidean types. Fix a Coxeter group W DW .�/ of spherical type or Euclidean type acting
by reflections on a sphere Sn�1 or a Euclidean space Rn. In the case W is of spherical type, consider the
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associated linear action on Rn. A conjugate of an element of the standard generating set S is called a
reflection. Let R denote the set of reflections in W. Consider the family of affine hyperplanes of Rn

HD fHr j r 2Rg;

where Hr �Rn denotes the fixed-point set of the reflection r .

The complement of the complexified hyperplane arrangement is

M.�/DCn
n

[
r2R

.C˝Hr /:

Note that W acts naturally on M, and we have the following (see [van der Lek 1983]):

�1.W .�/nM.�//'A.�/:

So the Artin group A.�/ appears as the fundamental group of (a quotient of) the complement of a
complexified hyperplane arrangement. One very natural question is to decide whether it is a classifying
space. This is the statement of the following conjecture.

Conjecture (the K.�; 1/ conjecture) The space M.�/ is aspherical.

This conjecture was proved for spherical-type Artin groups by Deligne [1972], and for Euclidean-type
Artin groups by Paolini and Salvetti [2021] very recently, even for the type zDn. Another approach,
more closely related to the content of this article, was used by Charney and Davis [1995a] to prove the
K.�; 1/ conjecture for Artin groups of type FC or of 2–dimensional type. Their proof relies on the use of
a simplicial complex, called the Deligne complex, and they endow it with a particular metric to show that
it is contractible.

We will now recall the definition of the Deligne complex of an Artin group A D A.�/. A standard
parabolic subgroup of A is the subgroup AT D hT i generated by a subset T of S, the standard generating
set of A. A parabolic subgroup denotes any conjugate of a standard parabolic subgroup. Let us define

Sf D fT � S jWT is finiteg:

The Deligne complex �D�.�/ is the order complex of the set of cosets of parabolic subgroups

fgAT j g 2A; T 2 Sf g;

where the partial order is given by the inclusion gAT � g0AT 0 of cosets.

One key property of the Deligne complex is that it has the same homotopy type as the universal cover of
the hyperplane complement:

Theorem 1.6 [Charney and Davis 1995b, Theorem 1.5.1] The Deligne complex �.�/ is homotopy
equivalent to the universal cover of the quotient of the hyperplane complement W .�/nM.�/.

In particular, the K.�; 1/ conjecture amounts to proving that the Deligne complex is contractible.
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1.3 Injective metrics and Helly graphs

We briefly recall basic definitions of injective metric spaces and Helly graphs. We will also state the
local-to-global result for Helly graphs and deduce the analogous Cartan–Hadamard result for injective
metric spaces.

A geodesic metric space is called injective (one may also say hyperconvex, or absolute 1–Lipschitz retract)
if any family of pairwise intersecting closed balls has a nonempty global intersection, the so-called Helly
property. We refer the reader to [Lang 2013] for a presentation of injective metric spaces.

Examples � The normed vector space .Rn; `1/ is injective for all n > 1. In fact, it is up to isometry
the only injective norm on Rn (see [Nachbin 1950]).

� Any tree is injective.

� Any finite-dimensional CAT(0) cube complex, endowed with the standard piecewise `1 metric, is
injective (see [Miesch 2014] and [Bowditch 2020]).

A connected graph X is called Helly if any family of pairwise intersecting combinatorial balls of X has a
nonempty global intersection, in other words the combinatorial balls satisfy the Helly property. We refer
the reader to [Chalopin et al. 2020a] for a presentation of Helly graphs and Helly groups. Many examples
of Helly graphs come from thickening of complexes, which we define now (see [Chalopin et al. 2020a;
Huang and Osajda 2021]).

Definition 1.7 (thickening) Let X denote a cell complex. The thickening of X (with respect to the cell
structure) is the graph with vertex set X .0/, with an edge between two vertices if and only if they are
contained in a common cell of X.

Examples � For each n > 1, the graph with vertex set Zn, with an edge between v;w if d1.v; w/D 1,
is a Helly graph.

� Any simplicial tree is a Helly graph.

� The thickening of the vertex set of a CAT(0) cube complex is a Helly graph.

In order to endow a simplicial complex with a potentially injective (or CAT(0)) metric, it is natural to ask
for metric simplices which may tile the Euclidean space Rn. One choice is to consider the barycentric
subdivision of the standard cubical tiling of Rn, whose simplices are orthosimplices, which we now
formally define.

Definition 1.8 (orthosimplex) The standard orthosimplex of dimension n is the simplex of Rn with
vertices .0; : : : ; 0/; .1; 0; : : : ; 0/; : : : ; .1; 1; : : : ; 1/ (see Figure 1). One may endow the simplex with the
standard `p metric on Rn for any p 2 Œ1;1�. Throughout this article (except in Theorem 3.11), we will
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v0 D .0; 0; 0/ v1 D .1; 0; 0/

v2 D .1; 1; 0/

v3 D .1; 1; 1/

Figure 1: The standard 3–dimensional orthosimplex.

only consider the `1 metric, called the `1 orthosimplex. Note that any n–simplex with a total order
on its vertices v0 < v1 < � � �< vn may be identified uniquely with the `1 orthosimplex of dimension n,
where each vi is identified with the vertex .1; : : : ; 1; 0; : : : ; 0/ with i ones and n� i zeros. Also note that
reversing the total order on the vertices gives rise to an isometry of the orthosimplex.

Definition 1.9 (simplicial complex with ordered simplices and maximal edges) We say X is a simplicial
complex X with ordered simplices if each simplex of X has a total order on its vertex set, which is
consistent with respect to inclusions of simplices of X. Moreover, we say that X has maximal edges if,
given any simplex � of X, there exist adjacent vertices a; b in X such that � [fa; bg is a simplex of X,
and such that any vertex c of X adjacent to both a and b satisfies a 6 c 6 b. Such an edge fa; bg is then
called a maximal edge of X.

Definition 1.10 (orthoscheme complex) Let X denote a finite-dimensional simplicial complex with
ordered simplices. Then one may endow each simplex of X with the associated `1 orthoscheme metric.
Then the geometric realization of jX j, endowed with the length metric associated with the `1 orthoscheme
metric on each simplex, is called the `1 orthoscheme complex of X.

As a particular case, if L is a poset with a bound on the length of its chains, then the geometric realization
of jLj satisfies the assumptions, so we may talk about the `1 orthoscheme complex of L. The following
is an immediate adaptation of [Bridson and Haefliger 1999, Theorem 7.13].

Theorem 1.11 Let X denote a finite-dimensional simplicial complex with ordered simplices. Then its
`1 orthoscheme complex is a complete length space.

Proof Note that since X has dimension n, the `1 orthoscheme complex of X has finitely many isometry
types of cells: the standard orthoscheme k–simplices, where k 6 n. The proof of [Bridson and Haefliger
1999, Theorem 7.13] adapts without change to this situation.

One key property in the study of Helly graphs is the following local-to-global statement (see [Chalopin
et al. 2020b]). Recall that a clique of a graph is a complete subgraph. A graph is called clique-Helly if its
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family of maximal cliques satisfies the Helly property (ie any family of pairwise intersecting maximal
cliques has nonempty intersection). The triangle complex of a simplicial graph X is the simplicial
2–complex whose 1–skeleton is X, and whose 2–simplices correspond to triangles in X.

Theorem 1.12 [Chalopin et al. 2020b, Theorem 3.5] Let X denote a graph. Then X is Helly if and
only if X is clique-Helly and its triangle complex is simply connected.

In order to transfer this local-to-global property to injective metric spaces, we will need the following
technical lemma. Say that a metric space is "–coarsely injective (for some ">0) if, for any families .xi/i2I

in X and .ri/i2I in RC such that, for all i; j 2 I, d.xi ;xj /6 riC rj , we have
T

i2I BX .xi ; riC"/¤∅.
Note that when "D 0, we recover the definition of an injective metric space.

Lemma 1.13 Let X denote a complete metric space that is "–coarsely injective for every " > 0. Then X

is injective.

Proof We will prove that X is injective: consider a family .BX .xi ; ri//i2I of pairwise intersecting
balls in X. We know that, for all i; j 2 I, d.xi ;xj / 6 ri C rj . For any " > 0, let us define A" DT

i2I BX .xi ; ri C "/, which is nonempty by the assumption of "–coarse injectivity.

Fix 0 < " 6 "0. We will prove that the Hausdorff distance between A" and A"0 is at most "C "0. Note
that A" � A"0 . Fix x0 2 A"0 . We will prove that d.x0;A"/ 6 " C "0. Let I0 D I t f0g, and let
r0 D "0. Consider the families .xi/i2I0

in X and .ri/i2I0
in RC. For each i; j 2 I0, we know that

d.xi ;xj / 6 ri C rj : indeed, for any i 2 I, we have x0 2 BX .xi ; ri C "
0/. By "–coarse injectivity, we

deduce that the intersection
T

i2I0
BX .xi ; ri C "/ is not empty. In particular, the ball BX .x0; "C "

0/

intersects A" D
T

i2I BX .xi ; ri C "/. This implies that d.x0;A"/6 "C "0. So we have proved that the
Hausdorff distance between A" and A"0 is at most "C "0.

For each n 2N, consider by induction xn 2A2�n such that, for all n > 0,

dX .xnC1;xn/6 2�n
C 2�.nC1/ 6 2�nC1:

For each 0 6 n 6 m, we have dX .xn;xm/6 2�nC2; hence the sequence .xn/n2N is a Cauchy sequence
in X. Since X is complete, it has a limit y 2X. For each n 2N, we have y 2A2�n , so for each i 2 I we
have dX .y;xi/ 6 ri C 2�n. We deduce that, for each i 2 I, we have dX .y;xi/ 6 ri . In other words, y

belongs to the intersection
T

i2I B.xi ; ri/: we have proved that X is injective.

Say that a metric space is uniformly locally injective if there exists " > 0 such that each ball of radius " is
injective. Say that a metric space is semiuniformly locally injective if there exists " > 0 such that each
ball of radius " is uniformly locally injective. For instance, any locally compact, locally injective metric
space is semiuniformly locally injective.

As a concrete example, if X denotes the injective hull of the hyperbolic plane H2
R and � is a nonuniform

lattice in PGL.2;R/ D Isom.H2
R/, then the quotient �nX is semiuniformly locally injective, but not

uniformly locally injective. There are similar examples in higher rank; see [Haettel 2022a].
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There are also nonlocally compact examples: let X denote a metric simplicial graph such that the systole
at each vertex of X is bounded below. Then X is locally uniformly locally injective. However, if the
systole of X is 0, then X is not uniformly locally injective.

We now prove a Cartan–Hadamard theorem for such injective metric spaces, relying on the local-to-global
property for Helly graphs, Theorem 1.12. Note that this statement generalizes [Miesch 2017, Theorem 1.2]
without the local compactness assumption.

Theorem 1.14 (Cartan–Hadamard for injective metric spaces) Let X denote a complete , simply
connected , semiuniformly locally injective metric space. Then X is injective.

Proof We will first prove the statement when X is uniformly locally injective. Fix " > 0 small enough
such that balls in X of radius at most 2" are injective. Consider the graph �" with vertex set X and with
an edge between x;y 2X if d.x;y/6 ". Since X is geodesic, �" is a connected graph. Also note that,
for any x 2X and n 2N, we have

B�".x; n/D BX .x; n"/:

We will prove that, for each " > 0, the graph �" is a Helly graph by applying Theorem 1.12.

We first prove that the family of combinatorial 1–balls in �" satisfies the Helly property. Fix a family
of vertices .xi/i2I of �" such that, for all i; j 2 I, d�".xi ;xj / 6 2. We want to prove that these balls
intersect in �".

The family of metric balls .BX .xi ; "//i2I in X pairwise intersects: since such balls have the Helly
property by the assumption on X, we deduce that there exists y 2X such that, for all i 2 I, dX .xi ;y/6 ".
In other words, the vertex y 2 �" lies in the intersection of all combinatorial 1–balls .B�".xi ; 1//i2I .

We now deduce that �" is clique-Helly: fix a family of pairwise intersecting maximal cliques .�i/i2I of �".
Then the family of combinatorial 1–balls centered at each vertex of each clique �i , for i 2 I, pairwise
intersects: according to the previous paragraph, we deduce that there exists a vertex y 2 �" adjacent to
each vertex of each clique �i for i 2 I. Since each clique �i is maximal, we deduce that y belongs to the
intersection of all �i for i 2 I. The graph �" is clique-Helly.

We now prove that the triangle complex of �" is simply connected. Fix a combinatorial loop ` in �". Since
X is simply connected, there exists a disk D in X bounding `. Consider a triangulation T of D such that
triangles have diameter for dX at most ". Then the vertex set of each triangle of T is a clique in �"; therefore
` is null-homotopic in the triangle complex of �". So the triangle complex of �" is simply connected.

The graph �" is clique-Helly and has a simply connected triangle complex, so according to Theorem 1.12,
we deduce that �" is a Helly graph.

Note that, for any " > 0, we have dX 6 "d�" 6 dX C ", and balls for the metric d�" with integral radius
satisfy the Helly property.
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We will show that the metric space X is "–coarsely injective: consider families .xi/i2I in X and
.ri/i2I in RC such that, for all i; j 2 I, dX .xi ;xj / 6 ri C rj . For each i 2 I, let ni 2 N such that
ni" 6 ri < .ni C 1/". For each i; j 2 I, since the balls BX .xi ; ri/ and BX .xj ; rj / intersect, we deduce
that d�".xi ;xj /6 niCnjC2. So, in the Helly graph �", the balls .B�".xi ; niC1//i2I pairwise intersect:
we deduce that there exists y 2 �" such that, for all i 2 I, d�".y;xi/6 niC1. In particular, for any i 2 I,
we have dX .y;xi/ 6 .ni C 1/" 6 ri C ". Hence y belongs to each ball BX .xi ; ri C "/, for i 2 I : this
proves that X is "–coarsely injective.

Since this holds for any small enough " > 0, according to Lemma 1.13, we conclude that X is injective.

We now turn to the general case, when X is only semiuniformly locally injective: there exists " > 0 such
that each ball of radius " in X is uniformly locally injective. According to the uniformly locally injective
case, we deduce that each ball of radius " is injective: this means that X is uniformly locally injective.
According to the uniformly locally injective case again, we deduce that X is injective.

We now see that, under a mild assumption on a simplicial complex with ordered simplices, saying that
the `1 orthoscheme realization is injective is equivalent to saying that the thickening of the 1–skeleton is
Helly. Note that, if we refer to the definition of thickening as in Definition 1.7, the corresponding cell
structure is not the simplicial one, but a coarser cell structure whose cells correspond to intervals.

Theorem 1.15 Let X denote a finite-dimensional simplicial complex with ordered simplices , and with
maximal edges. Let � denote the graph with vertex set X .0/, and with an edge between x;y 2 X .0/ if
there exist a; b 2 X .0/ and ordered triangles a 6 x 6 b and a 6 y 6 b in X. If the `1 orthoscheme
complex of X is injective , then the thickening � of X is a Helly graph.

Proof We see that maximal cliques in � correspond to intervals

Iab D fx 2X .0/
j a 6 x 6 b is an ordered triangle in X g

for any maximal edge a 6 b in X. Let mab 2 jX j denote the midpoint of the maximal edge a 6 b.
By assumption, any simplex of X containing a and b has for its vertex set a chain from a to b. Then
BjX j

�
mab;

1
2

�
is a subcomplex of jX j with vertex set BjX j

�
mab;

1
2

�
\X .0/ D Iab .

We will prove that � is clique-Helly: let .Iai bi
/i2I denote a family of pairwise intersecting maximal

cliques in �. Since jX j is injective, there exists z 2
T

i2I BjX j
�
mai bi

; 1
2

�
. Since each such ball is a

subcomplex of jX j, we may assume that z is a vertex of X. We deduce that z belongs to each clique
Iai bi

for i 2 I. So � is clique-Helly.

We will now prove that the triangle complex of � is simply connected. Let ` denote a combinatorial loop
in the 1–skeleton of �. Up to homotopy in the triangle complex of �, we may assume that ` lies in the
1–skeleton of X. Since jX j is injective, it is contractible, so the 2–skeleton of X is simply connected. As
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the 2–skeleton of X is contained in the triangle complex of �, we conclude that ` is null-homotopic in
the triangle complex of �.

According to Theorem 1.12, we deduce that � is Helly.

2 The thickening of a lattice

We will explain a very simple construction of Helly graphs and injective metric spaces, starting with a
lattice endowed with an action of the group Z or R.

Assume that L is a lattice such that each upper bounded subset of L has a join. Assume that there is
an order-preserving, increasing, continuous (with respect to the order topology on L) action .ft /t2H of
H D Z or R on L, such that,

for all x;y 2L; there exists t 2HC such that f�t .x/6 y 6 ft .x/:

Let us define the following metric d on L:

for all x;y 2L; d.x;y/D infft 2HC j f�t .x/6 y 6 ft .x/g:

Theorem 2.1 � If H D Z, then .L; d/ is a Helly graph with the combinatorial distance.

� If H DR, then .L; d/ is injective.

Proof We start by proving that d is indeed a metric on L. If x;y 2 L and t 2 HC are such that
f�t .x/6 y 6 ft .x/, then by applying ft and f�t we deduce that f�t .y/6 x 6 ft .y/: the metric d is
symmetric.

We will now prove the triangle inequality: let x;y; z 2 L, and for " > 0 consider t; s 2 HC such that
d.x;y/6 t < d.x;y/C " and d.y; z/6 s < d.y; z/C ". We have

f�t .x/6 y 6 ft .x/ and f�s.y/6 z 6 fs.y/:

Hence
f�t�s.x/6 f�s.y/6 z 6 fs.y/6 fsCt .x/;

so d.x; z/6 tC s 6 d.x;y/Cd.y; z/C2". This holds for any " > 0; hence d.x; z/6 d.x;y/Cd.y; z/.

We will now prove that the metric is positive: assume that x;y 2 L are distinct, we will prove that
d.x;y/ > 0.

� Assume first that x;y are comparable, for instance x < y. Since fz 2L j z < yg is open and contains x,
by continuity of the action there exists " > 0 such that, for any jt j6 ", we have ft .x/ < y. In particular
d.x;y/> ".

� Assume now that x;y are not comparable. Since U D fz 2 L j x ^ y < z < x _ yg is open and
contains x, by continuity of the action there exists " > 0 such that, for any jt j6 ", we have ft .x/ 2 U.
For any 0 6 t < ", since x 6 ft .x/ < x _y, we have ft .x/ 6> y. In particular, d.x;y/> ".
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So we have proved that d is a metric on L. We will now prove that balls in L satisfy the Helly property.

We will first consider the case H D Z. Let us define a graph yL with vertex set L, and with an edge
between x;y 2L if f�1.x/6 y 6 f1.x/: we will prove that the graph yL is Helly. We will first prove,
by induction on k > 0, that for any x 2L the ball B yL.x; k/ in the graph yL coincides with the interval
I.f�k.x/; fk.x//D fy 2L j f�k.x/6 y 6 fk.x/g.

For k 6 1 it is the definition of the edges of yL, so fix k > 2 and assume that the statement holds for
k � 1. Fix y 2 I.f�k.x/; fk.x//, we will prove that y 2 B yL.x; r/. Since y > f�k.x/, we deduce that
f1.y/> f�kC1.x/, and also since y 6 fk.x/ we deduce that f�1.y/6 fk�1.x/. So we have that both
f1.y/ and fk�1.x/ are superior to both f�1.y/ and f�kC1.x/: since L is a lattice, there exists some
element z 2L in the intersection I.f�1.y/; f1.y//\ I.f�kC1.x/; fk�1.x//. In particular, y and z are
adjacent in yL, and by induction we know that d yL.z;x/6 k�1, so d yL.x;y/6 k. Conversely, it is clear that
the ball B yL.x; k/ is included in the interval I.f�k.x/; fk.x//. So we have B yL.x; k/DI.f�k.x/; fk.x//.

By assumption on the lattice L, we deduce that the graph yL is connected, and furthermore that d yL D d .

Note now that intervals in the lattice L satisfy the Helly property. Fix any collection .I.xi ;yi//i2I of
pairwise intersecting intervals of L. Fix j0 2 I. For any i 2 I, we have xi 6 yj0

, so the set fxi j i 2 Ig is
upper bounded. By assumption, the set fxi j i 2 Ig has a join z 2L such that z 6 yj0

. This holds for any
j0 2 I, so z belongs to the intersection of all intervals .I.xi ;yi//i2I .

Hence the graph yL is connected, and its balls satisfy the Helly property: it is a Helly graph.

We now turn to the case H DR, and we will prove that .L; d/ is an injective metric space. First note
that balls in .L; d/ are intervals in L, so according to the previous argument, we know that balls in
.L; d/ satisfy the Helly property. In order to prove that .L; d/ is injective, according to the definition of
hyperconvex metric spaces (see for instance [Lang 2013]), it is sufficient to prove that if x;y 2L and
r; s > 0 are such that d.x;y/6 r C s, then the balls B.x; r/ and B.y; s/ intersect. In other words, it is
enough to prove that .L; d/ is weakly geodesic, ie for any x;y 2L and any 0 6 r 6 d.x;y/, there exists
z 2 B.x; r/\B.y; d.x;y/� r/.

For each k 2Nnf0g, let us consider the action of 1
k

Z�R on L, and the associated Helly graph distance,

for all x;y 2L; dk.x;y/D inf
n
t 2

1

k
N
ˇ̌
f�t .x/6 y 6 ft .x/

o
:

Fix x;y 2L, and 0 6 r 6 d.x;y/. For each k 2Nnf0g, there exists zk 2L such that dk.x; zk/6 rC 1
k

and
dk.zk ;y/6dk.x;y/�rC 1

k
6d.x;y/�rC 2

k
. So the intervals IkDI.f�r�1=k.x/; frC1=k.x// and JkD

I.f�d.x;y/Cr�2=k.y/; fd.x;y/�rC2=k.y// in L intersect. If k 6 k 0, we know that Ik0 � Ik and Jk0 � Jk .
We deduce that the family of intervals fIkgk2Nnf0g[fJkgk2Nnf0g pairwise intersects. By the Helly prop-
erty for intervals, the global intersection is nonempty: let us denote by z some element in the intersection.

We know that limk!C1 dk.x; z/D d.x; z/6 r and limk!C1 dk.y; z/D d.y; z/6 d.x;y/� r , so we
have proved that .L; d/ is a weakly geodesic metric space. Since balls in .L; d/ satisfy the Helly property,
we conclude that .L; d/ is injective.
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An immediate consequence concerns Garside groups (see [Dehornoy et al. 2015; McCammond 2006;
Haettel and Huang 2024]). Recall that a group G is called Garside if there exists a subset S �G and an
element ı 2G such that the following hold:

� S spans the group G.

� For each element in the semigroup hSiC, there is a bound on the length of factorizations over S.

� The element ı belongs to the semigroup hSiC, and ı is balanced: the set of prefixes of ı coincides
with the set of suffixes of ı.

� The poset of prefixes of ı in hSiC is a lattice.

Note that G is endowed with two natural orders, the left order 6L and the right order 6R:

� g 6L h if and only if g�1h 2 hSiC.

� g 6R h if and only if hg�1 2 hSiC.

Authors sometimes add the requirement that S is finite, in which case G may also be called a Garside
group of finite type. Also note that, given a Garside group .G;S; ı/, for any g 2G, there exists n 2N

such that ı�n 6L g 6L ı
n.

Fix a Garside group .G;S; ı/. Let X denote the graph with vertex set G, with an edge between g; h2G if
gı�1 6L h 6L gı. The graph X is called the thickening of G. In relation to Definition 1.7, it corresponds
to the cell complex with vertex set G, whose maximal cells are translates .gŒ��1; ��6L

/g2G of the
interval Œ��1; ��.

Corollary 2.2 The thickening of any Garside group is a Helly graph.

Proof The left order on G is a lattice order (see [Dehornoy et al. 2015]). Furthermore, consider the
action of Z on G by right multiplication by ı. For any g 2G, there exists n2N such that ı�n 6L g 6L ı

n.
So this action satisfies the assumptions of Theorem 2.1: we deduce that the graph X is Helly.

Note that this applies, in particular, to Garside groups of infinite type, such as crystallographic Garside
groups (see [McCammond and Sulway 2017]). However, we do not have yet an application of this simply
transitive action of a Garside group on a locally infinite Helly graph.

In the case of Garside groups of finite type, we recover a particularly simple proof of the following result
by Huang and Osajda [2021]. In particular, our proof does not rely on the deep local-to-global result for
Helly graphs (Theorem 1.12, see [Chalopin et al. 2020b]).

Corollary 2.3 (Huang–Osajda) Any Garside group of finite type is a Helly group.

In particular, this leads to a particularly simple proof that braid groups are Helly, relying only on some
Garside structure.
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3 The affine version of a lattice

In this section, we will prove Theorem 3.10 stating that the orthoscheme complex of a bounded graded
lattice, endowed with the orthoscheme `1 metric, is injective. In order to do so, we will apply results from
the previous section, and endow the geometric realization of a lattice with a partial order, which is a lattice.

Assume that L is a bounded, graded lattice of rank n. Let 6L denote the order on L. Let H denote
either a cyclic subgroup of .R;C/ or H DR. We will define a new poset MH , which will be called the
affine version of L over H. If there is no ambiguity about H, we will simply write M DMH . Let C.L/

denote the set of maximal chains c0;1 D 0<L c1;2 <L � � �<L cn�1;n <L cn;nC1 D 1 in L. We will use
the convention that the element denoted by ci;iC1 has rank i .

Let us consider the subspace
� D fu 2H n

j u1 6 u2 6 : : :6 ung

of H n.

For each maximal chain c 2 C.L/, let �c denote a copy of � .

Let us consider the space
M D

[
c2C.L/

�c=�;

where for each c; c0 2 C.L/, if we let I D f1 6 i 6 n� 1 j ci;iC1 ¤ c0
i;iC1
g, we identify �c and �c0 along

the subspaces
fu 2 �c j for all i 2 I; ui D uiC1g ' fu 2 �c0 j for all i 2 I; ui D uiC1g:

We can describe the set of elements of M as a quotient of the space M0 D C.L/� � .

Example One illustrating example is the following: consider the Boolean lattice L of rank n, ie the
lattice of subsets of the finite set f1; : : : ; ng, with the inclusion order. Maximal chains in L correspond to
permutations of f1; : : : ; ng. The space MH may be identified with H n, where, for each permutation w of
f1; : : : ; ng, the subspace �w is

�w D fx 2H n
j xw.1/ 6 xw.2/ 6 : : :6 xw.n/g:

If c 2 C.L/ and u 2 � , let us denote by Œc;u� the equivalence class of .c;u/ 2M0 in M.

For each c 2 C.L/, let us endow �c with the partial order from H n � Rn: u 6 v if, for all 1 6 i 6 n,
ui 6 vi . Let us endow M with the induced partial order: we have ˛ 6 ˇ in M if there exists a sequence
˛0 D ˛; ˛1; : : : ; ˛m D ˇ in M such that, for each 0 6 i 6 m� 1, there exists c 2 C.L/ and x 6 y in �c

such that ˛i D Œc;x� and ˛iC1 D Œc;y�.

Let 6M denote the order on M. We will prove the following.

Theorem 3.1 If H is a discrete subgroup of R, the poset MH is a lattice.
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Before proving Theorem 3.1, we will gather some preliminary results. Without loss of generality, assume
that H D Z. To simplify notation, we will let M DMH .

First notice that if .a;u/ � .b; v/, then u D v. Therefore the second projection M0 ! � defines a
projection � WM ! � . Fix ˇ D Œb; v� ,  D Œc; w� 2M, and fix ˛ 6M ˇ;  in M. We will prove that ˇ; 
have a join, and ˛ will play an auxiliary role.

We say that ˇ is elementarily superior to ˛ if there are representatives ˛ D Œa;u� and ˇ D Œb; v� such that
aD b and there exist 1 6 i 6 j 6 n such that

� ui D uiC1 D � � � D uj ,

� vi D viC1 D � � � D vj D uj C 1, and

� for all k 62 Œi; j �, uk D vk .

Lemma 3.2 Fix ˛ D Œa;u� 2M. Any element ˇ D Œb; v� of M elementarily superior to ˛ is uniquely
determined by:

� integers 1 6 i 6 j 6 n, such that ui D uiC1 D � � � D uj , and uj < ujC1 if j < n,

� some element bi�1;i of rank i � 1 in the interval I.ai0�1;i0
; aj ;jC1/, where i0 2 Œ1; i � is minimal

such that ui0
D ui .

Let us set ˇ D ˛Œi; j ; bi�1;i �.

Proof Let us define the element ˇ D Œb; v� in M by

for all k 62 Œi; j �; vk D uk ; for all k 6 i0� 1; bk;kC1 D ak;kC1;

for all k 2 Œi; j �; vk D uj C 1; for all k > j ; bk;kC1 D ak;kC1:

Note that v is nondecreasing; hence v 2 � . Furthermore, since vi0
D vi0C1D � � � D vi�1 and vi D viC1D

� � � D uj C 1 6 vjC1, it is enough to define bk;kC1 for k 6 i0 � 1, k D i � 1 and k > j . Hence ˇ is
well-defined, and it is elementarily superior to ˛. It is clear that ˇ is the only such element in M.

Lemma 3.3 Given ˛ 6M ˇ in M, there exist m > 0 and a sequence ˇ0 D ˛; ˇ1; : : : ; ˇm D ˇ for which ,
for each 0 6 i 6 m� 1, ˇiC1 is elementarily superior to ˇi .

Proof According to the definition of the order on M, it is sufficient to prove the statement for ˛D Œa;u� and
ˇD Œb; v� such that aDb. We have u6v in Zn�Rn. Then consider a sequence u0Du6u1 6 : : :6umDv

such that, for each 0 6 k 6 m� 1, there exist 1 6 ik 6 jk 6 n such that

� uk
ik
D uk

ikC1
D � � � D uk

jk
,

� ukC1
ik
D ukC1

ikC1
D � � � D ukC1

jk
D uk

jk
C 1, and

� for all ` 62 Œik ; jk �, uk
`
D ukC1

`
.

For each 0 6 k 6 m� 1, the element ˇkC1 D Œa;u
kC1� is elementarily superior to ˇk D Œa;u

k �.
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Lemma 3.4 We have ˛ D Œa;u�6 ˇ D Œb; v� in M if and only if u 6 v and for every 0 6 j 6 n� 1 such
that uj < ujC1. If we denote by i 2 f0; : : : ; j g the minimal element such that viC1 > ujC1, we have
bi;iC1 6L aj ;jC1.

Proof Let us denote by � this relation. We first show that � is transitive and antisymmetric.

Assume that ˛ D Œa;u�4 ˇ D Œb; v� and uD v; we will prove that ˛ D ˇ. Fix 0 6 j 6 n� 1, and assume
that aj ;jC1 ¤ bj ;jC1. Since these two elements of L have the same rank j , we deduce that they are not
comparable: bj ;jC1 66L aj ;jC1 and aj ;jC1 66L bj ;jC1. We will prove that uj D ujC1: by contradiction,
if uj < ujC1, then the minimal i 2 f0; : : : ; j g such that viC1 > ujC1 is equal to j , so bj ;jC1 6L aj ;jC1.
So uj D ujC1. This proves that ˛ D ˇ.

This implies in particular that � is antisymmetric: indeed assume that ˛ 4 ˇ and ˇ 4 ˛. Then u 6 v and
v 6 u, so uD v; hence ˛ D ˇ.

We now prove that � is transitive: assume that ˛ D Œa;u�4 ˇ D Œb; v�4  D Œc; w�. Then u 6 v 6 w, so
u 6w. Let 0 6 k 6 n�1 such that uk < ukC1, and let i 2 f0; : : : ; kg be minimal such that wiC1 > ukC1:
we want to prove that ci;iC1 6L ak;kC1. Let j 2 f0; : : : ; kg be minimal such that vjC1 > ukC1: we know
that bj ;jC1 6L ak;kC1. Since j is minimal, we know that either j D 0 or vj < ukC1.

If j D 0, then since i 6 j we know that i D 0 and so ci;iC1 D 0D bj ;jC1 6L ak;kC1.

If vj < ukC1 then vj <vjC1, and let i 0 2 f0; : : : ;j g be minimal such that wi0C1 > vjC1. We know that
ci0;i0C16Lbj ;jC1. But sincewi<ukC16vjC1, we have i 6i 0, so ci;iC16Lci0;i0C16Lbj ;jC16Lak;kC1.

Hence ˛ 4  .

We will now prove that if ˇ D Œb; v� is elementarily superior to ˛ D Œa;u�, we have ˛ 4 ˇ. Let us set
ˇ D ˛Œi; j ; bi�1;i �. First note that u 6 v. If 0 6 k 6 n� 1 is such that uk < ukC1, then either k 6 i � 1

or k > j . Let ` 2 f0; : : : ; kg denote the minimal element such that v`C1 > ukC1; we will prove that
b`;`C1 6L ak;kC1.

� If k 6 i � 1, then `D k and b`;`C1 D ak;kC1.

� If k > j and vkC1 D vj , then `D i � 1 and b`;`C1 D bi�1;i 6L aj ;jC1 6L ak;kC1.

� If k > j and vkC1 > vj , then `> j and b`;`C1 D a`;`C1 6L ak;kC1.

According to Lemma 3.3, we deduce that if ˛ 6M ˇ, then ˛ 4 ˇ.

We will now prove that if ˛ D Œa;u�4 ˇ D Œb; v� with ˛ ¤ ˇ, there exists  elementarily superior to ˛
such that  4 ˇ. If uD v, we have seen that ˛D ˇ, so let us assume that u< v. Let 1 6 i 6 n be minimal
such that ui < vi . Let j 2 fi; : : : ; ng be maximal such that ui D uj .

Let i0 2 f1; : : : ; ig be minimal such that ui0
D ui . Since for all k 6 i � 1 we have uk D vk , there exist

representatives ˛ D Œa;u� and ˇ D Œb; v� such that, for any 1 6 k 6 i � 1, we have ak�1;k D bk�1;k .

We will also prove that we may assume that ai�1;i D bi�1;i .
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Assume first that ui�1<ui . Let p2f0; : : : ; i�1g be minimal such that vpC1 >ui . Since vi�1Dui�1<ui ,
we deduce that p D i � 1. Since ˛ 4 ˇ, we have bi�1;i 6L ai�1;i . As both elements have the same
rank i � 1 in L, we have ai�1;i D bi�1;i .

Assume now that ui�1 D ui . In the case j < n, we have uj < ujC1: let p 2 f0; : : : ; j g be minimal
such that vpC1 > ujC1. Since vi�1 D ui�1 < ujC1, we deduce that p > i � 1. Since ˛ 4 ˇ, we have
bi�1;i 6L bp;pC1 6L aj ;jC1. Since ui�1D ui D � � � D uj , we may choose a representative of ˛ such that
ai�1;i D bi�1;i . In the case j D n, we have ui�1 D ui D � � � D un; we may also choose a representative
of ˛ such that ai�1;i D bi�1;i .

We have proved that we may assume that ai�1;i D bi�1;i .

In the case j D n, since ui D � � � D un, we may choose a representative of ˛ such that aD b. In this case,
the element  D ˛Œi; n; bi�1;i � is elementarily superior to ˛, and  4 ˇ.

For the rest of the proof, assume that j < n.

We know that bi�1;i >L bi0�1;i0
D ai0�1;i0

. Since uj < ujC1 and ˛ 4 ˇ, if we denote by i 0 2 f0; : : : ; j g

the minimal element such that vi0C1 > ujC1, we have bi0;i0C1 6L aj ;jC1. Since vi�1 D ui�1 < ujC1,
we have i 0 > i � 2, so bi�1;i 6L bi0;i0C1 6L aj ;jC1.

So we know that bi�1;i 2 I.ai0�1;i0
; aj ;jC1/: we can define  D ˛Œi; j ; bi�1;i �D Œw; c�. We will now

prove that  4 ˇ. Fix 0 6 k 6 n� 1 such that wk < wkC1, and denote by ` 2 f0; : : : ; kg the minimal
element such that v`C1 >wkC1; we will prove that b`;`C1 6L ck;kC1. Recall that either k 6 i�1 or k > j .

� If k 6 i � 2, then wkC1 D ukC1. Since ˛ 4 ˇ, we know that b`;`C1 6L ak;kC1 D ck;kC1.

� If k D i � 1, then wkC1 D wi D ui C 1> ui . Then vi�1 D ui�1 6 ui <wkC1, so `D i � 1D k.
Hence b`;`C1 D bi�1;i D ai�1;i D ci�1;i D ck;kC1.

� If k > j , then wkC1 D ukC1. Since ˛ 4 ˇ, we know that b`;`C1 6L ak;kC1. We also have
ak;kC1 D ck;kC1, so b`;`C1 6L ck;kC1.

So we conclude that  4 ˇ.

Now fix any ˛D Œa;u�4 ˇD Œb; v�. By induction on kv�uk1, we see that there is a bound on sequences
of elementarily superior elements starting from ˛ which all are 4 ˇ. Therefore we conclude that ˛ 6M ˇ.

In conclusion, the two orders 6M and � coincide.

Given ˛ 6M ˇ in M, let us denote by D.˛; ˇ/ the minimal number m > 0 such that there exists a
sequence ˇ0D ˛; ˇ1; : : : ; ˇmD ˇ for which, for each 0 6 i 6 m�1, ˇiC1 is elementarily superior to ˇi .

We will prove, by induction on D.˛; ˇ/CD.˛;  /, that ˇ and  have a join.

Lemma 3.5 Assume that ˛; ˇ;  2M are such that ˛ 6M ˇ, ˛ 6M  and D.˛; ˇ/ D D.˛;  / D 1.
Then ˇ;  have a join ı such that D.ˇ; ı/6 1 and D.; ı/6 1.
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Proof Consider representatives ˛ D Œa;u�, ˇ D Œb; v� and  D Œc; w� of ˛, ˇ and  respectively.
According to Lemma 3.2, there exist 1 6 i 6 j 6 n and bi;iC1 such that ˇ D ˛Œi; j ; bi;iC1�, and there
exist 1 6 i 0 6 j 0 6 n and ci0;i0C1 such that  D ˛Œi 0; j 0; ci0;i0C1�.

First case Assume that the intervals Œi; j � and Œi 0; j 0� are disjoint, for instance j < i 0. Let us define
ı D ˇŒi 0; j 0; ci0;i0C1�: we will see that ı is well-defined and that ı D  Œi; j ; bi;iC1�.

First note that vj 0 D uj 0 < uj 0C1 D vj 0C1. Furthermore, let i 0
0
2 Œ1; i 0� be minimal such that ui0

0
D ui0 .

Since uj < ujC1, we know that j C 1 6 i 0
0
. So we have vi0

0
D ui0

0
D ui0 D vi0 . So, if we denote by

i 00
0
2 Œ1; i 0� the minimal integer such that vi00

0
D vi0 , we have i 00

0
6 i 0

0
.

By definition we have ci0;i0C1 2 I.ai0
0
�1;i0

0
; aj 0;j 0C1/. Since j < j 0, we have bj 0;j 0C1 D aj 0;j 0C1, so

ci0;i0C1 6L bj 0;j 0C1. And as bi00
0
�1;i00

0
6L bi0

0
�1;i0

0
D ai0

0
�1;i0

0
, we deduce that ci0;i0C1 >L ai0

0
�1;i0

0
>L

bi00
0
�1;i00

0
. So we have ci0;i0C1 2 I.bi00

0
�1;i00

0
; bj 0;j 0C1/. Hence ı D ˇŒi 0; j 0; ci0;i0C1� is well-defined, and it

is elementarily superior to ˇ.

Following the same argument, the element ı0 D  Œi; j ; bi;iC1� is well-defined. We will prove that ı D ı0.
Let i0 2 Œ1; i � be minimal such that ui0

D ui . According to the proof of Lemma 3.2, we can see that
ı D ı0 D Œd;x� are explicitly equal to the following:

for all k 62 Œi; j �[ Œi 0; j 0�; xk D uk ;

for all k 2 Œi; j �; xk D uj C 1;

for all k 2 Œi 0; j 0�; xk D uj 0 C 1;

for all k 6 i0� 1; dk;kC1 D ak;kC1;

di;iC1 D bi;iC1;

for all k 2 Œj ; i 00� 1�; dk;kC1 D ak;kC1;

di0;i0C1 D ci0;i0C1;

for all k > j 0; dk;kC1 D ak;kC1:

So the element ı D ı0 is elementarily superior to both ˇ and  .

We will now prove that ı is the minimal element of M superior to both ˇ and  . Fix � D Œe;y� 2M as
any element superior to both ˇ and  ; we will prove that ı 6 � . Since y > v and y > w, we deduce that
y > x. Fix any 0 6 k 6 n� 1 such that xk < xkC1, and let ` 2 f0; : : : ; kg denote the minimal element
such that y`C1 > xkC1. We will prove that e`;`C1 6L dk;kC1.

� Assume that k 6 j � 1. Then xkC1 D vkC1, and since ˇ 6 � , we deduce by Lemma 3.4 that
e`;`C1 6L bk;kC1 D dk;kC1.

� Assume that k > j . Then xkC1 D wkC1, and since  6 � , we deduce by Lemma 3.4 that
e`;`C1 6L ck;kC1 D dk;kC1.
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According to Lemma 3.4, we deduce that ı 6M � : ı is the minimal element of M superior to both ˇ
and  . Hence ı D ˇ_M  . Furthermore, we have noticed that ı is elementarily superior to both ˇ and  ,
so D.ˇ; ı/DD.; ı/D 1.

Second case Assume now that the intervals Œi; j � and Œi 0; j 0� intersect. Without loss of generality, assume
that i 6 i 0. Since uj < ujC1, we deduce that j D j 0. Let 1 6 i0 6 n be minimal such that ui0

D ui . The
elements bi�1;i and ci0�1;i0 both belong to the interval I.ai0�1;i0

; aj ;jC1/.

If bi�1;i D ci0�1;i0 , then ˇ D  and they have a trivial join ı D ˇ D  . So we may assume that
bi�1;i ¤ ci0�1;i0 .

If bi�1;i <L ci0�1;i0 , we have ˇ 6  , so ˇ and  have a join ı D  which satisfies D.ˇ; ı/ D 1 and
D.; ı/D 0. Let us assume now that bi�1;i 66L ci0�1;i0 .

Consider the meet g D bi�1;i ^L ci0�1;i0 2 L: its rank r � 1 is such that i0 6 r < i; i 0. Let us define
ıD ˛Œr; j ;g� 2M. We see that ıD ˇŒr; i �1;g�D  Œr; i 0�1;g�, so ı is elementarily superior to ˇ and  .

We will now prove that ıD Œd;x� is the minimal element of M superior to both ˇ and  . Fix �D Œe;y�2M

as any element superior to both ˇ and  ; we will prove that ı 6 � .

We will first prove that x 6 y. Since ˇ;  6M � , we deduce that v;w 6 y. In particular, for any m< r

or m > i , we have ym > bm D xm. And for r 6 m 6 i � 1, we have ym > am D xm � 1. Assume by
contradiction that there exists m 2 fr; : : : ; i � 1g such that ym D xm � 1, and choose such m maximal.
Since xr D xrC1 D � � � D xj , we have ymC1 > xmC1 D xi D vi D xi0 Dwi0 . Since ˇ 6L � and  6L � ,
according to Lemma 3.4, we know that em;mC1 6L bi�1;i and em;mC1 6L ci0�1;i0 . In particular, we
deduce that em;mC1 6L bi�1;i ^L ci0�1;i0 D g. Note that the rank of em;mC1 is m, whereas the rank of g

is r � 1. Since m> r � 1, this is a contradiction. Hence x 6 y.

Fix any 0 6 k 6 n� 1 such that xk < xkC1, and let ` 2 f0; : : : ; kg denote the minimal element such that
y`C1 > xkC1. We will prove that e`;`C1 6L dk;kC1.

� Assume that k 6 r � 2. Then xkC1 D vkC1, and since ˇ 6 � we deduce by Lemma 3.4 that
e`;`C1 6L bk;kC1 D dk;kC1.

� Assume that r � 1 6 k 6 j � 1. Then xkC1 D vi D wi0 . Since ˇ 6 � , we deduce by Lemma 3.4
that e`;`C1 6L bi�1;i . And since  6 � , we also deduce that e`;`C1 6L ci0�1;i0 . Hence e`;`C1 6L

bi�1;i ^L ci0�1;i0 D g D dr�1;r 6L dk;kC1.

� Assume that k > j . Then xkC1 D vkC1, and since ˇ 6 � we deduce by Lemma 3.4 that
e`;`C1 6L bk;kC1 D dk;kC1.

According to Lemma 3.4, we deduce that ı 6M � : ı is the minimal element of M superior to both ˇ
and  . Hence ı D ˇ_M  . Furthermore, we have noticed that ı is elementarily superior to both ˇ and  ,
so D.ˇ; ı/DD.; ı/D 1.
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Lemma 3.6 Assume that ˛; ˇ;  2M are such that ˛ 6M ˇ, ˛ 6M  , D.˛; ˇ/Dm and D.˛;  /Dm0

for some m;m0 2N. Then ˇ;  have a meet ı such that D.ˇ; ı/6 m0 and D.; ı/6 m.

Proof We proceed by induction on mCm0: when mCm06 2, the statement holds by Lemma 3.5. Now fix
k > 3, and assume that the statement holds when mCm0<k. Fix m;m0 such that mCm0Dk, and without
loss of generality assume that m> 2. Choose ˇ0D˛; ˇ1; : : : ; ˇmDˇ an elementary sequence from ˛ to ˇ,
with mDD.˛; ˇ/. We have D.˛; ˇ1/CD.˛;  /D 1Cm0< k, so by induction there exists ı0Dˇ1_M 

with D.ˇ1; ı
0/6 m0 and D.; ı0/6 1. Since D.ˇ1; ˇ/CD.ˇ1; ı

0/6 m�1Cm0 < k, by induction there
exists ı D ˇ_M ı0 such that D.ˇ; ı/6 m0 and D.ı0; ı/6 m� 1. So we deduce that D.; ı/6 m.

We will now prove that ı is the meet of ˇ and  . We have ı >M ˇ and ı >M ı0 >M  . Furthermore,
consider any � 2M such that � >M ˇ and � >M  . As ˇ >M ˇ1, we deduce that � >M ˇ1_M  D ı0.
And we deduce that � >M ˇ_M ı0 D ı. So we have proved that ı D ˇ_M  .

Proof of Theorem 3.1 Fix any ˇ D Œb; v� ,  D Œc; w� 2M. Let k > 0 such that vn � k < w1. Let
u D .v1 � k; v2 � k; : : : ; vn � k/. Then ˛ D Œb;u� 2M is inferior to ˇ, and we will see that it is also
inferior to  . Indeed let  0 D Œc; w0� , where w0 D .w1; w1; : : : ; w1/. Since w0 6 w, we have  0 6M  .
On the other hand, since  0 D Œb; w0� and u 6 w0, we have ˛ 6M  0, so ˛ 6M  .

We can now apply Lemma 3.6 to deduce that ˇ and  have a meet in M. By symmetry of the construction,
ˇ and  also have a join in M. So M is a lattice.

If H DR, the affine version MR of L over R is a gluing of subspaces � �Rn. We may therefore endow
MR with the piecewise length metric dR induced by the standard `1 metric on each � �Rn.

Let us define an action of R on MR as

R�MR!MR; .t; Œa;u�/ 7! t � Œa;u�D Œa; .u1C t;u2C t; : : : ;unC t/�:

This action is well-defined, preserves the order 6M , is increasing and continuous. Moreover, we have the
following property.

Lemma 3.7 For any ˛; ˇ 2MR, there exists t > 0 such that .�t/ �˛ 6M ˇ 6M t �˛.

Proof Consider representatives ˛ D Œa;u� and ˇ D Œb; v� of ˛ and ˇ respectively. Let t > 0 such
that vn 6 u1 C t and un 6 v1 C t . Then, if we let  D Œa; .vn; : : : ; vn/� D Œb; .vn; : : : ; vn/�, we have
ˇ 6M  6M t �˛; hence ˇ 6M t �˛. Similarly, we have .�t/ �˛ 6M ˇ.

Theorem 3.8 If H DR, the poset MR is a lattice , and the metric space .MR; dR/ is injective.

Proof Note that, for each � > 0, the space M�Z may be realized naturally as a closed subspace of MR.
Furthermore, the sequence of closed subsets M�Z of MR converges to MR as � ! 0. We will use this
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convergence to prove that MR is a lattice. We will then prove that the assumptions of Theorem 2.1 are
satisfied.

We will now prove that any pair of elements in MR have a join. Fix ˛; ˇ 2MR; we will define a common
upper bound  for ˛ and ˇ.

Consider maximal chains a; b in L such that ˛ 2 �a and ˇ 2 �b . For any � > 0, note that, for any
x 2 R, there exists x� 2 �Z such that x� � � 6 x 6 x� C � . So we may consider ˛� 2M�Z \ �a and
ˇ� 2M�Z\ �b such that .��/ �˛� 6M ˛ 6M � �˛� , and similarly .��/ �ˇ� 6M ˇ 6M � �ˇ� .

According to Theorem 3.1, the poset M�Z is a lattice: consider � D ˛� _M�Z
ˇ� . Let Ca;b �L denote

the smallest subset of L containing a, b, and which is stable under meets. Since L is bounded and graded,
Ca;b is finite. According to the proof of Theorem 3.1, we see that, for every � > 0, there exists a maximal
chain c� � Ca;b such that � 2 �c� . Since Ca;b is finite, � is locally compact and .� /�>0 is bounded,
there exists a sequence �k

k!C1
����! 0 such that the sequence .�k

/k2N converges to some  2MR. Note
that, for any � > 0, we have � >M ˛� >M .��/ � ˛. Since the sequence .�k

/k2N converges to  ,
and the sequence ..��k/ � ˛/k2N converges to ˛ by continuity of the action, we deduce that  >M ˛.
Similarly  >M ˇ.

So  is a common upper bound for ˛ and ˇ. We will now prove that  is a minimal upper bound,
which will prove that  is the join of ˛ and ˇ. Let us consider an upper bound ı 2MR of ˛ and ˇ;
we will prove that  6M ı. For any � > 0, fix ı� 2 M�Z such that .��/ � ı� 6M ı 6M � � ı� .
In particular .2�/ � ı� >M � � ı >M � � ˛ >M ˛� , and similarly .2�/ � ı� >M ˇ� . We deduce that
.2�/�ı� >M ˛�_M�Z

ˇ� D� . Considering the limit along .�k/k2N as k!C1, we deduce that ı>M  .

So we have proved that ˛ and ˇ have a join  in MR. By symmetry of the construction, they also have
a meet, so MR is a lattice.

We now turn to the assumptions of Theorem 2.1: we will first prove that every upper bounded subset
of MR has a join. Since MR is a lattice, it is enough to prove that every bounded, increasing sequence
is convergent. Fix an increasing sequence .˛k/k>0 in MR, bounded above by some ˛ 2MR.

We will prove an intermediate result concerning `1 metrics. Let us endow MR with the length metric d1

associated to the standard `1 metric on each sector �c �Rn. Let us also denote by d1 the standard metric
on Rn. We claim that if ˇ D Œb; v�6M  D Œc; w�, then d1.ˇ;  /D d1.v; w/. First notice that the second
projection MR!R is 1–Lipschitz with respect to the metrics d1; hence we have d1.ˇ;  /> d1.v; w/. By
the definition of the order relation 6M , there exists a sequence ˇ0 D ˇ 6M ˇ1 6M � � �6M p̌ D  such
that, for each 0 6 i 6 p� 1, the points ˇi ; ˇiC1 lie in a common sector �ci

. Let us write representatives
ˇi D Œbi ; vi �, with bi 2 L and vi 2 � , for 0 6 i 6 p. We deduce that, for each 0 6 i 6 p � 1 we have
d1.ˇi ; ˇiC1/D d1.vi ; viC1/; hence

d1.ˇ;  /6
p�1P
iD0

d1.ˇi ; ˇiC1/6
p�1P
iD0

d1.vi ; viC1/D d1.v; w/:

So we have proved that if ˇ D Œb; v�6M  D Œc; w�, then d1.ˇ;  /D d1.v; w/.

Algebraic & Geometric Topology, Volume 24 (2024)



Lattices, injective metrics and the K.�; 1/ conjecture 4033

We now return to the increasing sequence .˛k/k>0 in MR, bounded above by some ˛ 2MR. For each
k 2N, let us consider a representative ˛k D Œak ;uk � of ˛k , and a representative ˛ D Œa;u� of ˛. Since
the sequence .˛k/k>0 is increasing in MR, we deduce that the sequence .uk/k>0 is increasing in Rn,
and bounded above by u. Since increasing sequences in Rn are geodesics for the metric d1, we deduce
that, for each 0 6 j 6 k, we have d1.uj ;uk/C d1.uk ;u/D d1.uj ;u/.

Then, for each 0 6 j 6 k, according to the claim about the metric d1, we have d1. j̨ ; ˛k/Cd1.˛k ; ˛/D

d1. j̨ ; ˛/. In particular, the sequence .˛k/k>0 is a Cauchy sequence in .MR; d1/. Since MR has finitely
many shapes, the proof of [Bridson and Haefliger 1999, Theorem 7.13] applies to show that the metric
space .MR; d1/ is complete; hence the sequence .˛k/k>0 converges in MR. Equivalently, we can apply
[Bridson and Haefliger 1999, Theorem 7.13] to the metric space MR endowed with the length metric d2

associated to the standard `2 metric on each sector �c �Rn. Since d1 and d2 are bi-Lipschitz, this also
implies that the metric space .MR; d1/ is complete.

So every upper bounded subset of MR has a join.

We have proved that MR is a lattice such that each upper bounded subset has a join. There is an increasing
action of R on MR satisfying the assumptions of Theorem 2.1 according to Lemma 3.7. As a consequence,
we deduce that the metric space .MR; d/ is injective, with respect to the metric,

for all x;y 2MR; d.x;y/D infft > 0 j .�t/ �x 6 y 6 t �xg:

Note that the metric d is geodesic, and it restricts on each �c �MR, for c 2 C.L/, to the natural `1

metric on �c �Rn. Therefore d coincides with the length metric dR.

So we conclude that .MR; dR/ is injective.

We saw in the Introduction that the existence of a bicombing may be extremely useful, notably in the case
of Deligne complexes of Artin groups. Let us recall that a geodesic bicombing on a metric space X is a
map � WX �X � Œ0; 1�!X such that, for all x;y 2X, the map t 2 Œ0; 1� 7! �.x;y; t/ is a constant-speed
geodesic from x to y.

The bicombing � is called

� reversible if for all x;y 2X, for all t 2 Œ0; 1�, �.x;y; t/D �.y;x; 1� t/,

� consistent if for all x;y 2X, for all r; s; t 2 Œ0; 1�, �.�.x;y; r/; �.x;y; s/; t/D �.x;y; .1� t/rC ts/,

� conical if for all x;x0;y;y02X, for all t 2 Œ0; 1�, d.�.x;y; t/; �.x0;y0; t//6 .1�t/d.x;x0/Ctd.y;y0/,

� convex if for all x;x0;y;y0 2X, the map t 2 Œ0; 1� 7! d.�.x;y; t/; �.x0;y0; t// is convex.

Note that any consistent, conical bicombing is convex.

Theorem 3.9 The metric space .MR; dR/ has a unique convex , consistent , reversible geodesic bicombing.
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Proof Let us write X DMR for simplicity. Given any x;y 2X, let us define

D.x;y/D infft 2R j x 6 t �yg 2R:

Since the action of R on MR is continuous, this infimum is attained; hence x 6 D.x;y/ �y. Note that
this quantity is not symmetric with respect to x and y, and we have,

for all x;y 2X; d.x;y/Dmax.jD.x;y/j; jD.y;x/j/:

We will start by defining a conical bicombing � on X with a nice property which we call lower consistency.
We then show that this is sufficient to bypass the use of properness of X in [Basso 2024, Theorem 1.4]
applied to � .

Fix x;y 2 X, t 2 Œ0; 1�, and let D D d.x;y/. For any a 2 X, since �D � x 6 y 6 D � x, we have
jD.x; a/�D.y; a/j6 D, and so

�tD �x 6 .�tD.x; a/C tD.y; a// �x

6 .�tD.x; a/C tD.y; a// � .D.x; a/ � a/

6 ..1� t/D.x; a/C tD.y; a// � a:

Since every nonempty subset of X with a lower bound has a meet, we may thus define

�.x;y; t/D
^

a2X

..1� t/D.x; a/C tD.y; a// � a:

We will first prove that it defines a geodesic bicombing, ie that d.x; �.x;y; t//D tD. We have proved
that, for every a 2 X, we have �tD � x 6 ..1� t/D.x; a/C tD.y; a// � a; hence �tD � x 6 �.x;y; t/.
Conversely, when x D a, we know that

�.x;y; t/6 ..1� t/D.x;x/C tD.y;x// �x 6 tD.y;x/ �x 6 tD �x:

We conclude that d.x; �.x;y; t//6 tD. By symmetry, we also have d.�.x;y; t/;y/6 .1� t/D. Since
d.x;y/DD, we conclude that d.x; �.x;y; t//D tD. So � is a geodesic bicombing. It is clear that � is
reversible.

We will now prove that � is conical. Fix x;y; z 2 X, and t 2 Œ0; 1�. For any a 2 X, we have
jD.y; a/�D.z; a/j6 d.y; z/; hence D.y; a/6 D.z; a/C d.y; z/. We deduce that

�.x;y; t/D
^

a2X

..1� t/D.x; a/C tD.y; a// � a

6
^

a2X

..1� t/D.x; a/C tD.z; a/C td.y; z// � a 6 td.y; z/ � �.x; z; t/:

By symmetry, we also have �.x; z; t/ 6 td.y; z/ � �.x;y; t/; hence d.�.x;y; t/; �.x; z; t// 6 td.y; z/.
So the bicombing � is conical.

We will now prove that � is what we will call lower consistent, which is one part of the inequality of the
consistency equality. For each x;y 2X and s; t 2 Œ0; 1�, we will prove that

�.x; �.x;y; t/; s/6 �.x;y; st/:
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Let us set z D �.x;y; t/ and w D �.x; �.x;y; t/; s/: we want to prove that w 6 �.x;y; st/. For each
a 2X, we have

D.w; a/6 .1� s/D.x; a/C sD.z; a/

6 .1� s/D.x; a/C s..1� t/D.x; a/C tD.y; a//

6 .1� st/D.x; a/C stD.y; a/:

Hence we deduce that w 6 D.w; a/ � a 6 .1� st/D.x; a/ � aC stD.y; a/ � a. Since this holds for any
a 2X, we conclude that w 6 �.x;y; st/. Hence � is lower consistent.

According to [Basso 2024, Lemma 5.2], given any x;y 2 X and n > 1, there exist unique elements
�xy.n; i/, for 0 6 i 6 n, such that �xy.n; 0/D x, �xy.n; n/D y, and,

for all 1 6 i 6 n� 1; �xy.n; i/D �
�
�xy.n; i � 1/; �xy.n; i C 1/; 1

2

�
:

Note that even though [Basso 2024, Lemma 5.2] is stated for a proper metric space, the uniqueness part
only requires that � is a conical bicombing. And also the remark after the proof tells us that the only
property needed for the existence is that the space is complete. We will actually give a proof below for
the existence part.

Fix n > 1, we will prove that the elements �xy.n; i/ exist. For each 0 6 i 6 n, let us define x0
i D�

�
x;y; i

n

�
.

For each k 2 N, let us define xk
0
D x and xk

n D y. For each k 2 N and 1 6 i 6 n� 1, let us define
inductively xkC1

i D �
�
xk

i�1
;xk

iC1
; 1

2

�
. Since � is lower consistent, we see by induction that, for each

0 6 i 6 n, the sequence .xk
i /k2N is nonincreasing in X. Moreover, since each xk

i lies on a geodesic from
x to y, we have xk

i > .�d.x;y// �x for every k 2N and 0 6 i 6 n.

Hence for each 0 6 i 6 n, since the sequence .xk
i /k2N has a lower bound, we may define its meet

�xy.n; i/D
V

k>0 xk
i . In fact, the sequence .xk

i /k>0 actually converges to �xy.n; i/. By the continuity
of � , we deduce that the elements .�xy.n; i//06i6n satisfy the required property.

Note that [Basso 2024, Theorem 1.4] is stated for a proper metric space, but the properness assumption is
used in precisely two arguments: first in [Basso 2024, Lemma 5.2] to prove the existence of the elements
�xy.n; i/, which we obtained using specific properties of X.

Properness of X is used again, although not explicitly stated, in the proof of [Basso 2024, Theorem 1.4]
to ensure the pointwise convergence of a sequence of bicombings with respect to some ultrafilter. Instead
of using ultrafilters to ensure convergence, we will rather use the lower consistency of the bicombing.

For each n > 1, [Basso 2024, Lemma 5.2] states that the function � .n/ WX �X � Œ0; 1�!X , defined by

� .n/
�

x;y; .1��/
i

n
C�

i C 1

n

�
D �.�xy.n; i/; �xy.n; i C 1/; �/

for all x;y 2X, � 2 Œ0; 1� and 0 6 i 6 n� 1, is a conical bicombing.
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First note that, since � is lower consistent, and by the uniqueness of the points �xy.n; i/, we have for all
x;y 2X, n > 1, 0 6 i 6 n�1 and p > 1 that �xy.np; ip/6 �xy.n; i/. For each x;y 2X and t 2 Œ0; 1�,
let us define

 .x;y; t/D
^
n>1

�xy.n; dtne/:

According to the previous property, we deduce that

 .x;y; t/D lim
n!C1

�xy.n! ; dtn!e/:

Since each � .n/ is a conical bicombing, one also deduces that  is conical.

We will prove that  is lower consistent: Let x;y 2X and s; t 2 Œ0; 1�. We have

 .x;  .x;y; t/; s/6 lim
n!C1

 .x; �xy.n! ; dtn!e/; s/

6 lim
n;m!C1

�xy.n! m! ; dsdtn!em!e/

6 lim
n;m!C1

�xy.n! m! ; dstn! m!e/6  .x;y; st/

as
d.�xy.n! m! ; dsdtn!em!e/; �xy.n! m! ; dstn! m!e//6 dsm!e

n! m!
d.x;y/! 0

as n!C1. So we deduce that  is a reversible, conical, lower consistent geodesic bicombing such
that  6 � .

As a consequence, if we start with a reversible, conical, lower consistent geodesic bicombing � 0 which is
minimal, we have  0 D � 0; hence � 0 satisfies the following consistency property: for all x;y 2 X, for
all s; t 2 Œ0; 1�, � 0.x; � 0.x;y; t/; s/D � 0.x;y; st/. Since � 0 is reversible, we deduce that � 0 is actually
consistent. Since � 0 is conical, it is also convex.

According to [Descombes and Lang 2015, Theorem 1.2], since X has finite combinatorial dimension, we
conclude that � 0 is the unique convex consistent reversible geodesic bicombing of X.

Theorem 3.10 Let L denote a bounded , graded lattice. The orthoscheme realization jLj of L, endowed
with the piecewise `1 metric , is injective. Moreover , jLj has a unique convex reversible consistent
geodesic bicombing.

Proof Consider the affine version M DMR of L over R. For some maximal chain c 2 C.L/, consider
the elements 0M D Œ.0; : : : ; 0/; c� 2M, �M D

��
1
2
; : : : ; 1

2

�
; c
�
2M and 1M D Œ.1; : : : ; 1/; c� 2M : note

that 0M , �M and 1M do not depend on c.

Note that the interval I.0M ; 1M / coincides with the ball B
�
�M ; 1

2

�
in M for the metric dR. According

to Theorem 3.8, .M; dR/ is injective. So the ball B
�
�M ; 1

2

�
D I.0M ; 1M / is injective.

We remark that the interval I.0M ; 1M / of M, endowed with the metric dR, is isometric to the orthoscheme
realization of L, endowed with the piecewise `1 metric. Indeed, for each maximal chain c 2 C.L/,
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notice that �C \ I.0M ; 1M / identifies with the standard orthoscheme fx 2Rn j 0 6 x1 6 : : :6 xn 6 1g,
where n denotes the rank of L. We conclude that the orthoscheme realization of L is injective.

According to Theorem 3.9, we know that MR has a unique convex reversible consistent geodesic
bicombing � . Since the ball jLj D B

�
�M ; 1

2

�
is stable under � , we deduce that jLj has a convex

reversible consistent geodesic bicombing. Since jLj has combinatorial dimension at most n, according to
[Descombes and Lang 2015, Theorem 1.2], we deduce that � is the only convex bicombing on jLj.

Note that knowing when the orthoscheme complex of a lattice, endowed with the piecewise Euclidean
metric, is CAT(0) is a very subtle question (see the Introduction). We can prove the following.

Theorem 3.11 Let L denote a bounded , graded poset , let jLj denote the geometric realization of L, and
let dp denote the `p orthoscheme metric on jLj for p 2 f2;1g. If .jLj; d2/ is CAT (0), then .jLj; d1/ is
injective. The converse is false.

Proof Assume that L is a bounded, graded poset such that .jLj; d1/ is not injective. According to
Theorem 3.10, we deduce that L is not a lattice. According to Proposition 1.5, there exists a bowtie in L:
consider x1;x2;x3;x4 2 L such that x1 and x3 are maximal elements inferior to both x2 and x4, and
such that x2 and x4 are minimal elements superior to both x1 and x3. In the link LŒ0;1� of the diagonal
edge Œ0; 1� in .jLj; d2/, consider the piecewise geodesic loop ` going through x1;x2;x3;x4;x1.

According to [Brady and McCammond 2010, Proposition 4.8], each geodesic segment Œxi ;xiC1� has
length smaller than �

2
; hence ` has length smaller than 2� . On the other hand, according to Lemma 7.2 of

that work the loop ` is locally geodesic in LŒ0;1�. Hence LŒ0;1� is not CAT(1), and .jLj; d2/ is not CAT(0).

We will now prove that the converse does not hold. Consider the Coxeter symmetric group W DS4,
with standard generators S D fs1; s2; s3g and standard Garside longest element �D s1s2s3s1s2s1. Let
L denote the poset W, with order relation “being a left prefix for a shortest representative in S”. Then
L is a lattice, and so .jLj; d1/ is injective according to Theorem 3.10.

On the other hand, consider the piecewise geodesic loop ` in the link LŒ0;1� of the diagonal edge Œ0; 1�
in .jLj; d2/ going through the vertices s1, s1s2s1, s2, s2s3s2, s3, s3s1, s1. According to [Brady and
McCammond 2010, Proposition 4.8], its length is

2 arccos
�p

1
2

4
5

�
C 4 arccos

�p
1
3

3
5

�
' 0:987.2�/ < 2�:

Since LŒ0;1� has the homotopy type of a circle, ` is not nullhomotopic in LŒ0;1�. So LŒ0;1� is not CAT(1),
and .jLj; d2/ is not CAT(0).

We also deduce an immediate consequence concerning the Garside complex of a Garside group. Fix a
Garside group .G;S; ı/. Let X denote the Garside complex of G, ie the simplicial complex with vertex
set G, and with simplices corresponding to chains g1 <L g2 <L � � �<L gn such that gn 6L g1ı. Since
simplices of X have a total order on their vertices, X is a simplicial complex with ordered simplices, so
we may endow X with the piecewise `1 orthoscheme metric.
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Corollary 3.12 The Garside complex of any Garside group , endowed with the piecewise `1 orthoscheme
metric , is injective.

This applies, in particular, to the dual braid complex studied by Brady and McCammond [2010]. This
complex, endowed with the piecewise orthoscheme Euclidean metric, is conjectured to be CAT(0), but it
is only known for a very small number of strands (see [Brady and McCammond 2010; Haettel et al. 2016;
Jeong 2023]). On the other hand, if we endow the dual braid complex with the piecewise orthoscheme
`1 metric, we see that it is injective.

4 Application to Euclidean buildings and the Deligne complex of type QAn

Let us consider the Euclidean Coxeter group W 'Sn Ë Zn�1 of type QAn�1. Its Coxeter complex may
be identified with

†D fx 2Rn
j x1C � � �Cxn D 0g:

Up to homothety, we may choose the following affine hyperplanes to define †:

fxi �xj D k j 1 6 i ¤ j 6 n; k 2 Zg;

so that maximal simplices of † identify with the W –orbit of

K D fx 2† j x1 6 x2 6 : : :6 xn 6 x1C 1g:

The vertex set of † identifies with
�

1
n
Z
�n
\†. Since the simplex K is a strict fundamental domain for

the action of W on †, one may define a W –invariant type function � on the vertex set of †:

� W†.0/! Z=nZ; x 2W � vi 7! i;

where vi D
�

n�i
n
; : : : ; n�i

n
;� i

n
; : : : ;� i

n

�
is the vertex of K whose first i coordinates equal n�i

n
and the

n� i last coordinates equal � i
n

.

This type of function is such that adjacent vertices have distinct types.

Let us define the extended Coxeter complex

y†D†�RDRn;

where the action of the standard generators w1; : : : ; wn of W on y† is given by

for all 1 6 i 6 n� 1; wi � .x1; : : : ;xi ;xiC1; : : : ;xn/D .x1; : : : ;xiC1;xi ; : : : ;xn/

and wn � .x1; : : : ;xn/D .xn� 1;x2; : : : ;xn�1;x1C 1/:

Also note that y† has a natural simplicial complex structure, with vertex set Zn, with maximal simplices
corresponding to the W –orbits of the simplices

fk 6 xi 6 xiC1 6 xiC2 6 : : :6 xiCn�1 6 kC 1 j k 2 Z; i 2 Z=nZg;

where indices in Rn are considered modulo n. Note that the action of the Coxeter group W preserves � .
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A fundamental domain for the action of W on † is the simplex

K D fx 2† j x1 6 x2 6 : : :6 xn 6 x1C 1g;

and a fundamental domain for the action of W on y† is the column

yK D fx 2 y† j x1 6 x2 6 � � �6 xn 6 x1C 1g:

Note that such columns have been studied by Brady and McCammond [2010], and by Dougherty,
McCammond and Witzel [Dougherty et al. 2020].

We will endow y† with the standard `1 metric from Rn.

Let us consider a simplicial complex X such that

� either X is a Euclidean building of type QAn�1,

� or X is the Deligne complex of the Euclidean Artin group A of type QAn�1, with a coarser simplicial
structure.

We will define the extended version of X, denoted by yX. It is a simplicial complex whose geometric
realization is homeomorphic to X �R.

Before giving the precise definition of yX, let us first recall briefly the definition of the Deligne complex �
of the Euclidean Artin group A of type QAn�1 (see also Section 1.2). Let S ' Z=nZ denote the standard
generating set of A. Consider the set

fgAT j g 2A; T ¨ Sg;

endowed with the following partial order: gAT 6 g0AT 0 if gAT � g0AT 0 . Then the Deligne complex �
of A is the geometric realization of this poset. We will define a coarser simplicial structure X on �. Note
that, for any minimal vertex gA∅ 2� (where g 2A), the 1–neighborhood of gA∅ in � is

fgAT j T ¨ Sg;

which is precisely the barycentric subdivision of the simplex with vertex set

fgAT j T ¨ S; jSnT j D 1g

consisting of (the g–translates of) all maximal proper standard parabolic subgroups of A.

Therefore we may define the simplicial complex X with vertex set fgAT j g 2A; T ¨ S; jSnT j D 1g,
and such that g1AT1

; : : : ;gkATk
span a simplex in X if and only if

Tk
iD1 giATi

¤∅. Then � identifies
with the barycentric subdivision of X, and also the geometric realizations of � and X are homeomorphic.

Note that, in both cases (Euclidean building or Deligne complex), there is a well-defined type function
� WX .0/! Z=nZ such that adjacent vertices have different types.

� In the case X is a Euclidean building of type QAn�1, each apartment is identified with the Coxeter
complex †; we may define the type of a vertex v of X to be its type in any apartment containing v. Since
the Coxeter group W preserves the type, this definition does not depend on the choice of apartment.
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� In the case X is the Deligne complex of type QAn�1, one may either use the projection onto the Coxeter
complex, or use a direct definition: if gAT is a vertex of X, with g 2A and T D Snfig, its type is i .

The complex X may also be defined as a particular gluing of copies of the Coxeter complex †. Roughly
speaking, yX will be the same gluing of copies of y†.

More precisely, let yX DX �R, and we will define a simplicial complex structure on yX. The vertex set
of yX is f.x; i/ 2 X .0/ �Z j �.x/ D i C nZg, where X .0/ denotes the vertex set of X. Using the type
function � , remark that vertices of maximal simplices of X have a well-defined cyclic ordering in Z=nZ.
The maximal simplices of yX are

f.xi ; knCi/; .xiC1; knCiC1/; : : : ; .xn; knCn/; .x1; knCnC1/; .x2; knCnC2/; : : : ; .xi ; knCnCi/g

for any k 2 Z, any 1 6 i 6 n and any maximal simplex .x1;x2; : : : ;xn/ of X with for all 1 6 i 6 n,
�.xi/D i . We endow each such simplex with the `1 orthoscheme metric for the given ordering. Endow
yX with the associated length metric.

Note that the translation action on the R factor of yX DX�R defines an isometric action denoted by � . Also
note that � does not preserve the simplicial structure of yX, but only its restriction to the subgroup nZ of R.

If X is a Euclidean building of type QAn�1, then yX is called a Euclidean building of extended type QAn�1

(see [Bruhat and Tits 1972], and also [Haettel 2022a]).

If X is the Deligne complex of the Euclidean Artin group A of type QAn�1, we will give another description
of yX. Recall that the classical Deligne complex X may be defined as

X D .A�K/=�;

where .g;x/ � .g0;x0/ if x D x0 and, if the stabilizer of x in † equals WT for some T ¨ S, then
g�1g0 2AT . Then the extended Deligne complex may also be defined similarly as

yX D .A� yK/=�;

where .g;x/ � .g0;x0/ if x D x0 and, if the stabilizer of x in y† equals WT for some T ¨ S, then
g�1g0 2AT .

Fix any vertex x 2X, and let Lx;0 denote the set of vertices of X adjacent to x. Without loss of generality,
we may assume that x has type �.x/ D 0. Note that vertices in Lx;0 have a type in Z=nZnf�.x/g D

f1; : : : ; ng, which is an interval. Since maximal simplices of X have a natural cyclic ordering in Z=nZ,
there is a natural induced order on Lx;0 that is consistent with the type function � WLx;0! f1; : : : ; ng.
Consider the poset Lx DLx;0[f0; 1g, where 0 and 1 are defined to be the minimum and the maximum
of Lx respectively.

Proposition 4.1 Consider any p 2 yX whose projection pX onto X is contained in the open star of the
vertex x. Then yX is locally isometric at p to a neighborhood of a point in the `1 orthoscheme realization
of the poset Lx .
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Proof Remember that there is a diagonal, isometric action � of R on yX, whose quotient is X. So, up to
isometry, we may assume that p lies in the open star of the diagonal edge joining the vertices .x; 0/ and
.x; n/ of yX. Note that each simplex of yX containing p corresponds to a chain in Lx containing .x; 0/
(identified with 0 2 Lx) and .x; n/ (identified with 1 2 Lx). As a consequence, a neighborhood of p

in yX is isometric to a neighborhood of a point in the orthoscheme realization of Lx .

We now prove that, in the case of a Euclidean building, the poset Lx is a lattice.

Proposition 4.2 Let L0 denote the vertex set of a (possibly nonthick ) spherical building of type An�1

for some n > 1, and let LDL0[f0; 1g. In other words , L is the poset of linear subspaces of a projective
space of dimension n� 1. Then L is a bounded , graded lattice of rank n� 1.

Proof The lattice property is obvious: if S;S 0 are linear subspaces of a projective space X, then
S ^S 0 D S \S 0 and S _S 0 is the linear subspace spanned by S [S 0.

As a consequence, if X is a Euclidean building of type QAn�1, for any vertex x 2 X, the poset Lx is a
bounded graded lattice.

We now turn to the case of the Deligne complex of type QAn�1. We defer the proof of the following result
to Section 5.

Theorem 4.3 (Crisp–McCammond) Let X denote the Deligne complex of type QAn�1. For any vertex
x 2X, the poset Lx is a bounded , graded lattice.

We may now deduce the main result.

Theorem 4.4 Any Euclidean building of extended type QAn�1, or the extended Deligne complex of
type QAn�1, endowed with the piecewise `1 metric , is injective.

Proof According to Proposition 4.1 and Theorem 4.3, we know that yX is locally isometric to the
`1 orthoscheme complex of a bounded graded lattice. According to Theorem 3.10, we deduce that yX is
uniformly locally injective.

If X is a Euclidean building, X and yX are contractible, and in particular simply connected. If X is a
Deligne complex, according to Theorem 1.6, yX is simply connected.

According to Theorem 1.11, yX is complete. We deduce with Theorem 1.14 that yX is injective.

We can also deduce that the thickening is a Helly graph. Note that this thickening, described more
precisely in Theorem 1.15, corresponds to a coarser cell structure on the building or the Deligne complex.

Corollary 4.5 The thickening of the vertex set of any Euclidean building of extended type QAn�1, or the
extended Deligne complex of type QAn�1, is a Helly graph.
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Proof Let X denote either a Euclidean building of extended type QAn�1 or the extended Deligne complex
of type QAn�1. We will see that X satisfies the assumptions of Theorem 1.15.

Since simplices of X have a well-defined order, we see that X is a simplicial complex with ordered
simplices. For each maximal simplex � of X, the minimal and maximal vertices of � form a maximal
edge in X. Therefore, X has maximal edges as in Definition 1.9. According to Theorem 1.15, we deduce
that the thickening of X is a Helly graph.

We will now deduce a bicombing on X, considered as the quotient of . yX ; d yX / by the diagonal action �
of R on yX. Let us define the quotient metric dX on X :

for all x;y 2X; dX .x;y/D inf
t2R

d yX .x; �.t/ �y/:

Theorem 4.6 Any Euclidean building X of type QAn�1, or the Deligne complex X of type QAn�1, has a
metric dX that admits a convex , consistent , reversible geodesic bicombing � . Moreover , dX and � are
invariant under the group of type-preserving automorphisms of X.

Proof We will prove it locally, ie for the star Y of a vertex v of X. According to Theorem 3.10, there
exists a unique convex, consistent, reversible bicombing O� on yY . For each x;y 2 Y , choose lifts Ox; Oy 2 yY
such that d yX . Ox; Oy/D dX .x;y/. For each t 2 Œ0; 1�, let us define �.x;y; t/D �.R/ � O�. Ox; Oy; t/ 2 Y .

We will first see that � is well-defined: indeed fix x;y 2 Y , and consider two pairs of lifts Ox; Ox0; Oy; Oy0 2 yY
such that d yX . Ox; Oy/D d yX . Ox

0; Oy0/D dX .x;y/. Note that, up to the action of � , we may assume that OxD Ox0.
If Oy ¤ Oy0, let a 2 Rnf0g such that Oy0 D �.a/ � Oy. We then have d yX

�
Ox; �

�
a
2

�
� Oy
�
< d.x;y/, which is a

contradiction. So Oy D Oy0, and � is well-defined.

Moreover, it is easy to see that � is a reversible, consistent, geodesic bicombing.

We will now see that � is convex. Consider x;x0;y;y0 2 Y , and choose lifts Ox; Ox0; Oy; Oy0 2 yY such that
d yX . Ox; Ox

0/D dX .x;x
0/ and d yX . Oy; Oy

0/D dX .y;y
0/. Fix any t 2 Œ0; 1� and s 2R. We have

dX .�.x;y; t/; �.x
0;y0; t//D inf

s2R
d yX . O�. Ox; Oy; t/; �.s/ � O�. Ox; Oy; t//

6 d yX . O�. Ox; Oy; t/; O�. Ox; Oy; t//

6 .1� t/d yX . Ox; Ox
0/C td yX . Oy; Oy

0/

6 .1� t/dX .x;x
0/C tdX .y;y

0/;

so � is a conical bicombing. Since � is also consistent, it is a convex bicombing.

We have seen that .X; dX / is locally convexly reversibly consistently bicombable. According to [Miesch
2017, Theorem 1.1], we deduce that .X; dX / has a unique global convex reversible geodesic consistent
bicombing � that is consistent with local bicombing. Since the local bicombing only depends on the local
combinatorics of X and the type, we deduce that � is invariant under type-preserving automorphisms
of X.
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Note that we strengthened this result in [Haettel 2022b], by proving that this convex geodesic bicombing
is actually unique. Our result also extends to simplicial complexes which are much more general than
buildings.

5 The lattice of maximal parabolic subgroups of braid groups

This whole section is unpublished work of John Crisp and Jon McCammond, copied here with their permis-
sion. The results concerning the lattice of cut-curves are contained in [Bessis 2006] about Garside structures
on free groups. For consistency, we choose to follow Crisp and McCammond’s presentation instead.

5.1 The lattice of cut-curves

Let D2 denote the unit disk in R2, and let fp1; : : : ;png denote a set of n distinct points in D2, as shown
in Figure 2. We write D� DD2nfp1; : : : ;png. Let aD .0; 1/ and b D .0;�1/ denote the top and bottom
points of the boundary @D2.

Definition 5.1 By a cut-curve or curve on D� we shall mean a smoothly embedded curve c in D� which
meets @D D @D2 precisely at its endpoints, and which separates the boundary points a and b.

We shall say that two cut-curves are isotopic if they are isotopic in D� relative to fa; bg. We denote by Œc�
the isotopy class of a curve c, and write C for the set of all isotopy classes of cut-curves in D�.

Observe that any cut-curve c separates D� into two regions, an upper region containing a and a lower
region containing b, and induces, in particular, a partition of the points fp1; : : : ;png into two sets. In
general we shall say that the contents of the region containing a lie above c and the contents of the region
containing b lie below c. For each curve c, we write deg.c/ for the number of points pi which lie below c.
Clearly this number is invariant under isotopy, and so defines a degree function on C by deg.Œc�/D deg.c/.

a

b

p� pC
p1 p2

: : :
pn�1 pn

c

Figure 2: An example of cut-curve c in the punctured disk D�.
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Let c1; c2 be two curves. We say that c1 and c2 are in minimal position with respect to one another if they
do not cobound any disk regions (“bigons”) in D�. This includes triangular regions against the boundary.
Any such disk regions can always be removed by modifying just one of the two curves in its isotopy class
without changing the other. That is to say that, for any two curves c1; c2, we can always find c0

1
such that

Œc0
1
�D Œc1� and c0

1
is in minimal position with respect to c2.

Here is another argument about minimal position using hyperbolic geometry. Such an argument has been
used in [Bessis 2006]. If n > 2, one may also endow D� with a fixed complete hyperbolic metric. Fix
pC D .1; 0/;p� D .�1; 0/ 2 @D as points on each connected component of @Dnfa; bg. Then, for each
isotopy class Œc�, we may consider the unique geodesic line in D� in the isotopy class Œc� with endpoints
pC;p� 2 @D. Then, for any Œc1�; Œc2� 2 C, the geodesic representatives are in minimal position.

Definition 5.2 Let c1; c2 be two curves. We say that Œc1� 6 Œc2� if c1 is isotopic to a curve which lies
below c2. It is easily checked that this defines a partial order on the set C of cut-curves classes.

Note that if c1 and c2 are in minimal position with respect to one another then Œc1�6 Œc2� if and only if c1

lies below c2 (in particular they are disjoint). Note also that the function deg W C! f1; : : : ; ng is a strict
order-preserving map, a grading on the poset .C;6/.

Theorem 5.3 [Bessis 2006, Theorem 2.6] The graded poset .C;6/ is a lattice.

Proof Let xD Œc1�, yD Œc2� be arbitrary elements of C. Suppose that the curves c1 and c2 are in minimal
position with respect to one another. Now consider how the union of c1 and c2 cut D� up into connected
regions. There is a unique lowermost such region R which lies below both c1 and c2 (and contains the
point b), and another uppermost such region R0 which lies above both c1 and c2 (and contains the point a).
Let c, resp. c0, denote the curves which skirt along the part of the boundary of R, resp. R0, lying in the
interior of D� (ie not along @D). Then we claim that x ^y D Œc� and x _y D Œc0�.

We check just the first of these two claims. Suppose that c0 represents a common lower bound for x

and y. Then, by a sequence of bigon-removing isotopies (or by considering the geodesic representative),
we may choose the representative c0 to be in minimal position with respect to both c1 and c2. Since c0

represents a common lower bound, c0 lies below both c1 and c2, and hence lies below the curve c.

Recall that the n–strand braid group Bn is isomorphic to the mapping class group MCG.D�; @D/. As a
consequence, Bn acts naturally on the set C of isotopy classes of cut-curves.

Lemma 5.4 The action of Bn on C preserves the order and the degree.

Proof Let Œc� 2 C be a curve of degree 1 6 k 6 n� 1 and g 2 Bn. Then k points among fp1; : : : ;png

lie below c. Since the action of Bn fixes the boundary of D� pointwise, we know that k points among
fp1; : : : ;png lie below g.c/. Hence deg g.Œc�/D degŒc�.
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a

b

p� pC
p1 p2

: : :
pn�1 pn

c1

c2

cn�1

Figure 3: The base maximal chain ˛ D .c1; c2; : : : ; cn�1/ of C.

Similarly, consider two curves Œc1�; Œc2� 2 C such that Œc1�6 Œc2�. Consider c1; c2 in minimal position, so
that c1 is below c2. For any g 2 Bn, we have that g.c1/ is below g.c2/; hence g.Œc1�/ 6 g.Œc2�/. We
conclude that the action of Bn preserves the order on C.

Note that Bn acts transitively on the set of cut-curves with fixed degree.

5.2 Cosets in braid groups

We will show how the cut-curve lattice .C;6/ can be reinterpreted in purely algebraic terms.

Definition 5.5 Recall that the braid group Bn is generated by the set of standard generators S D

f�1; �2; : : : ; �n�1g. For each 1 6 k 6 n � 1, let Pk denote the maximal parabolic subgroup of Bn

generated by Snf�kg. Thus Pk is isomorphic to a product Bk �Bn�k . Note also that these subgroups
are distinct for distinct values of k. We define the following augmented collection of cosets in Bn:

B D fgPk j g 2 Bn; 1 6 k 6 n� 1g[ f0; 1g:

For b 2 B, we write deg.b/D k if b D gPk for 1 6 k 6 n� 1, and deg.0/D 0, deg.1/D n. We define
an order relation 6B on B as follows. First, define 0 6 b 6 1 for all b 2 B. Otherwise, for g1;g2 2 Bn

and 1 6 k1; k2 6 n� 1, we write g1Pk1
6B g2Pk2

if k1 6 k2 and g1Pk1
\g2Pk2

¤∅.

For simplicity, we shall henceforth identify Bn with the mapping class group of D� (relative to @D). Let
us consider the base maximal chain ˛ D .c1; c2; : : : ; cn�1/ of C depicted in Figure 3.

Definition 5.6 Define a map ˆ W C! B by setting ˆ.c/D 0 if deg.c/D 0, ˆ.c/D 1 if deg.c/D n, and
otherwise

ˆ.c/D fg 2 Bn j g.˛/ contains cg:

Lemma 5.7 If c 2 ˛ and 1 6 deg.c/D k 6 n� 1, then ˆ.c/D Pk .
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Proof The curve c is a base curve such that p1; : : : ;pk lie below c and pkC1; : : : ;pn lie above c. Let
R� denote the connected component of D�nc below c, and RC denote the connected component of
D�nc above c. The stabilizer of c in the mapping class group Bn DMCG.D�; @D/ is the direct product
of MCG.R�; @R�/ D h�1; : : : ; �k�1i and MCG.RC; @RC/ D h�kC1; : : : ; �n�1i. Hence the stabilizer
of c in Bn equals Pk .

Lemma 5.8 The map ˆ W C! B is well-defined , surjective , and respects degrees.

Proof Fix c 2 C with 1 6 deg.c/D k 6 n� 1. Fix some g 2 Bn such that the curve c lies in g.˛/. Let
c0 D g�1.c/, the degree-k curve in ˛. For any h 2 Bn, we have

h 2ˆ.c/ () c 2 h.˛/ () g.c0/D h.c0/:

According to Lemma 5.7, this is equivalent to gPk D hPk . Hence ˆ.c/D gPk is well-defined. Moreover
it is clear that ˆ is surjective, and that for all c 2 C we have deg.ˆ.c//D deg.c/.

Lemma 5.9 The map ˆ is injective , so it is a bijection between C and B.

Proof Let c1; c2 2 C such that ˆ.c1/Dˆ.c2/. We may suppose that c1 lies in g1.˛/ and c2 in g2.˛/ for
some g1;g2 2 Bn. According to Lemma 5.8, we deduce that c1 and c2 have the same degree 0 6 k 6 n.
Since C and B have unique elements of degree 0 and n, we may restrict to the case 1 6 k 6 n.

Since ˆ.c1/Dˆ.c2/, we deduce that g1Pk D g2Pk , so g1
�1g2 2 Pk . Let h 2 Pk such that g2 D g1h.

Let c0 denote the degree-k curve of ˛. Then c1 D g1.c0/ and c2 D g2.c0/. Since h 2 Pk , h fixes c0 so
c1 D c2.

Theorem 5.10 (Crisp–McCammond) The bijection ˆ W C! B is an order isomorphism between .C;6/
and .B;6B/. As a consequence , .B;6B/ is a lattice.

Proof To prove the theorem, we need to show that, for c1; c2 2 C, we have c1 6 c2 if and only ifˆ.c1/6B

ˆ.c2/. Write ki D deg.ci/ for i D 1; 2, and suppose, without loss of generality, that 0 6 k1 6 k2 6 n.
Then ˆ.c1/6B ˆ.c2/ if and only if ˆ.c1/\ˆ.c2/¤∅ if and only if there exists a maximal chain ˛0� C
which contains both c1 and c2, if and only if c1 6 c2 (since we already know that deg.c1/6 deg.c2/).

We deduce the proof of Theorem 4.3 that each local poset Lx in the Deligne complex of type QAn�1 is a
lattice.

Proof of Theorem 4.3 Let x denote a vertex of the Deligne complex X of type QAn�1. Without loss of
generality, we may assume that x corresponds to the maximal proper parabolic subgroup A.An�1/D

h�1; : : : ; �n�1i, which is isomorphic to the Artin group of type An�1, ie the n–strand braid group. Since
A.An�1/ is a maximal parabolic subgroup of spherical type of the Euclidean Artin group A. QAn�1/, the
star of x in X identifies with the Deligne complex of the Artin group A.An�1/. In particular, vertices
in X adjacent to x may be identified with cosets of proper maximal parabolic subgroups of the braid
group A.An�1/. Furthermore, given two such cosets gPi and hPj for g; h2A.An�1/ and 1 6 i; j 6 n�1,
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the corresponding vertices of X are adjacent if and only if gPi \ hPj ¤ ∅. As a consequence, the
poset Lx;0 is isomorphic to the poset Bnf0; 1g, and Lx is isomorphic to the poset B. According to
Theorem 5.10, we deduce that Lx is a lattice.

6 The thickening of a semilattice

We will now consider a generalization of Theorem 3.10 to the case of a semilattice. This will be useful to
consider Euclidean buildings, Deligne complexes in type zCn and Artin groups of type FC. We start by
recalling the definition of a flag poset.

Definition 6.1 A poset L is called flag if any three elements which are pairwise upper bounded have an
upper bound.

Lemma 6.2 Let L denote a graded flag meet-semilattice with bounded rank. Then any family of elements
of L which are pairwise upper bounded have a join.

Proof We first prove that every finite family of k elements faig16i6k of L which are pairwise upper
bounded have a join, by induction on the number of elements. By assumption, the property is true for
kD 3. Fix k > 4, assume that the property is true for k�1, and consider k elements faig16i6k of L which
are pairwise upper bounded. Let b denote the join of ak�1 and ak . The family fa1; a2; : : : ; ak�2; bg is
pairwise upper bounded, so by assumption it has a join c 2 L. Then c is the join of faig16i6k , which
proves the induction.

Now consider an arbitrary family A of elements of L which are pairwise upper bounded. Since L has
bounded rank, we may consider a finite subset F �A such that the rank of the join b of F is maximal
among all joins of finite subfamilies of A. For any a 2A, the join ba of F [fag satisfies b 6 ba, and the
rank of ba is at most the rank of b; hence ba D b. We deduce that b is the join of A.

Theorem 6.3 Let L denote a graded poset with minimum 0 and with bounded rank such that :

� L is a meet-semilattice.

� L is flag.

Then the `1 orthoscheme realization of jLj is injective.

Proof Let us consider N1DL[f1g: it is a bounded graded lattice. Let us denote by N1D jN1j the geometric
realization of N1, and by M D jLj � N1 the geometric realization of L. Note that we consider N1 as a subset
of N1, its vertex set. The orthoscheme realization of M is endowed with the induced length metric as a
subspace of the `1 orthoscheme realization of N1.

If we consider the affine version N1R of N1 over R, then the elements 0M D Œ.0; : : : ; 0/; c� 2 N1R and
1M D Œ.1; : : : ; 1/; c� 2 N1R are such that N1 naturally identifies with the interval I N1R

.0M ; 1M / in N1R, as in
the proof of Theorem 3.10. In particular, M and N1 are also posets.
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According to Theorem 3.8, the space N1R, with its standard `1 metric Nd , is injective. According to
Theorem 3.10, its interval N1D I N1R

.0M ; 1M / is injective. Let us denote by d the length metric of M.

Fix "> 0, and consider the graph �" with vertex set M, and with an edge between x;y 2M if Nd.x;y/6 ".
We will prove that �" is Helly, by proving that it is clique-Helly and that its triangle complex is simply
connected.

Let � � �" denote a maximal clique: we claim that there exist a; b 2 N1 such that � is the intersection
of an interval I N1.a; b/ in N1 with M. Since � is a subset of N1R of diameter at most ", there exist
a0; b0 2

N1R such that � � I N1R
.a0; b0/ and Nd.a0; b0/ 6 ". Since N1 is an interval, we deduce that there

exist a; b 2 N1\ I N1R
.a0; b0/ such that � � I N1R

.a; b/D I N1.a; b/. In particular, we also have Nd.a; b/6 ".
Since � is a maximal clique, we deduce that � D I N1.a; b/\M.

We will prove that �" is clique-Helly. Consider a family of pairwise intersecting maximal cliques
.�i/i2I in �". For each i 2 I, according to the previous paragraph, there exists ai 6 bi in N1 such that
�i D I N1.ai ; bi/\M. For each i 2 I, let mi 2L minimal such that ai 6 mi . For each i ¤ j in I, since �i

and �j intersect, the intersection I N1.ai ; bi/\ I N1.aj ; bj /\M is nonempty. In particular, the elements mi

and mj have a common upper bound in L.

The family .mi/i2I is pairwise upper bounded. Since L is a graded flag semilattice with bounded
rank, according to Lemma 6.2, this family has a join m D

W
i2I mi in L. In particular, the family

.�i \ I N1.0;m//i2I of intervals in the lattice I N1.0;m/D IM .0;m/ has a nonempty intersection. So the
graph �" is clique-Helly.

We will now prove that the triangle complex of �" is simply connected. For each t 2 Œ0; 1�, consider the
map �t WM !M sending each x 2 I N1.0;m/ to the point on the affine segment joining 0 to x at distance
td.0;x/ from 0. Note that �t is 1–Lipschitz with respect to the distance d . Furthermore, if t; t 0 2 Œ0; 1�

are such that jt � t 0j 6 ", then for each x 2M we have d.�t .x/; �t 0.x// 6 ". As a consequence, any
combinatorial loop  in �" may be homotoped in the triangle complex of �" to the loop �0. /, which is
the constant loop at 0. So we have proved that the triangle complex of �" is simply connected.

According to Theorem 1.12, we deduce that the graph �" is Helly. In particular, for each " > 0, the
metric space M is "–coarsely injective. Since M is complete according to Theorem 1.11, we deduce by
Lemma 1.13 that M is injective.

We will now give natural examples of such semilattices, which will be used in the sequel for Euclidean
buildings and Deligne complexes of Euclidean type different from QAn.

Proposition 6.4 Let L0 denote the vertex set of a (possibly nonthick ) spherical building of type Bn

for some n > 1, and let LD L0 [ f0g. In other words , L is the poset of subspaces of a polar space of
projective dimension n� 1. Then L is a graded semilattice of rank n with minimum 0 such that any
pairwise upper bounded subset of L has a join.
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s1 s2 s3 sn�2 sn�1 sn

: : : 4

Figure 4: The Dynkin diagram of type Bn.

Proof The semilattice property is obvious: if S;S 0 are subspaces of a polar space X, then S^S 0DS\S 0.
If A � L are pairwise upper bounded in L, let AX D

S
S2A S � X. For any x;y 2 AX , there exists

a subspace of X containing x and y. According to [Tits 1974, 7.2.1], the subset AX is contained in a
subspace S0 of X. Hence, for any S 2 A, we have S � S0. So the intersection of all subspaces of X

containing
S

S2A S is the join of A.

Another application concerns the Artin group A.Bn/ of spherical type Bn, with the following Dynkin
diagram (see Figure 4).

Let s1; : : : ; sn denote the standard generators of A.Bn/, with sn�1snsn�1sn D snsn�1snsn�1. For each
1 6 i 6 n, let Pi denote the maximal proper standard parabolic subgroup of A.Bn/

Pi D hs1; : : : ; si�1i � hsiC1; : : : ; sni:

Let L0 D fgPi j g 2A.Bn/; 1 6 i 6 ng and LDL0[f0g. We define an order relation on L as follows.
First, define 0 6 gPi for each gPi 2 L. Otherwise, for g1;g2 2 A.Bn/ and 1 6 k1; k2 6 n, define
g1Pk1

6 g2Pk2
if k1 6 k2 and g1Pk1

\g2Pk2
¤∅.

Lemma 6.5 The relation 6 is a partial order on L.

Proof First note that 6 is antisymmetric: if g1Pk1
;g2Pk2

2 L0 are such that g1Pk1
6 g2Pk2

and
g2Pk2

6 g1Pk1
, then k1 D k2, and g1Pk1

\g2Pk1
¤∅ implies that g1Pk1

D g2Pk1
.

Now we show that 6 is transitive: assume that g1Pk1
;g2Pk2

;g3Pk3
2L0 are such that g1Pk1

6 g2Pk2

and g2Pk2
6 g3Pk3

. We deduce that k1 6 k2 6 k3, g1 2 g2Pk2
Pk1

and g2 2 g3Pk3
Pk2

, so g1 2

g3Pk3
Pk2

Pk1
. Note that hs1; : : : ; sk2�1i � Pk3

and hsk2C1; : : : ; sni � Pk1
, so Pk3

Pk2
Pk1
D Pk3

Pk1
.

In particular g1 2 g3Pk3
Pk1

and k1 6 k3, so g1Pk1
6 g3Pk3

.

Note that we are grateful to Luis Paris for his help in the following proof, notably the use of normal
forms.

Proposition 6.6 L is a graded semilattice of rank n with minimum 0 such that any pairwise upper
bounded subset of L has a join.

Proof Let t1; : : : ; t2n�1 be the standard generators of the braid group A.A2n�1/. Consider the morphism

� WA.Bn/!A.A2n�1/;

for all 1 6 i 6 n� 1; si 7! ti t2n�i ; sn 7! tn:
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This morphism � is injective; see for instance [Dehornoy and Paris 1999; Michel 1999; Crisp 2000]. Let
� denote the involution of A.A2n�1/ defined for all 1 6 i 6 2n�1 by �.ti/D t2n�i . According to [Crisp
2000, Theorem 4], we know furthermore that the image of � coincides with the fixed-point set of � .

For each 1 6 i 6 2n� 1, consider the standard proper maximal parabolic subgroup

Qi D ht1; : : : ; ti�1; tiC1; : : : ; t2n�1i

of A.A2n�1/. Let M0 denote the poset of cosets of maximal proper parabolic subgroups of A.A2n�1/,
and M DM0[f0; 1g. We will define a poset map  WL0!M0.

For each g 2 A.Bn/ and each 1 6 i 6 n, let us define  .gPi/ D �.g/Qi . Since �.Pi/ � Qi , the
map  W L0 ! M0 is well-defined. Assume that gPi 6 hPj , ie i 6 j and h�1g 2 Pj Pi . Then
�.h/�1�.g/ 2 �.Pj /�.Pi/�Qj Qi , so �.g/Qi 6 �.h/Qj . As a consequence,  is a rank-preserving
injective poset map.

Note that the involution � extends naturally to an order-reversing involution on M by letting �.gQi/D

�.g/Q2n�i . And for each g 2A.Bn/ and each 1 6 i 6 n, we have �. .gPi//D �.g/Q2n�i .

We will now prove that L is a meet-semilattice. Fix a; b 2A.Bn/ and 1 6 i; j 6 n; we will prove that
aPi and bPj have a meet in L. Consider the elements �.a/Qi and �.b/Qj in M : they have a meet Qk

for some  2 A.A2n�1/ and 0 6 k 6 i; j . Then as �.a/Qi 6 �.a/Q2n�i and �.b/Qj 6 �.b/Q2n�j ,
we deduce that Qk 6 �. /Q2n�k .

So, up to the choice of  2 Qk , we may assume that �. / 2 Q2n�k : let q 2 Q2n�k such that
�. /D q. Since � is an involution, we have  D q�.q/, so q D �.q/�1 2Qk \Q2n�k .

We claim that if g2A.A2n�1/ is such that �.g/Dg�1, there exists h2A.A2n�1/
C such that gDh�.h/�1.

According to [Charney 1995], there exist unique h; h0 2A.A2n�1/
C such that g D hh0�1 and the right

greatest common divisor of h and h0 in the Garside monoid A.A2n�1/
C is 1. Note that � preserves the

monoid A.A2n�1/
C; hence we have g�1 D h0h�1 on one side, and g�1 D �.g/D �.h/�.h0/�1 on the

other side. By the uniqueness of h; h0, we deduce that h0 D �.h/. Hence g D h�.h/�1.

Assume furthermore that g2Qk\Q2n�kDht1; : : : ; tk�1i�htkC1; : : : ; t2n�k�1i�ht2n�kC1; : : : ; t2n�1i.
Then we can decompose g as a fraction g D hh0�1 inside the parabolic subgroup Qk \Q2n�k : by the
uniqueness of h; h0, we deduce that h; h0 2Qk \Q2n�k .

According to the claim, there exists q0 2Qk \Q2n�k such that q D q0�.q0/�1. So, up to replacing 
with  0 D q0 2 Qk , we have

�. 0/D �. /�.q0/D q�.q0/D q0 D  0:

So we may assume that  0 is fixed by � : according to [Crisp 2000, Theorem 4], we may consider
c 2A.Bn/ such that �.c/D  0. So we deduce that cPk 6 aPi ; bPj . Conversely, for any c0 2A.Bn/ and
k 0 6 i; j such that c0Pk0 6 aPi ; bPj , we have �.c0/Qk0 6 �.a/Qi^�.b/Qj D �.c/Qk , so c0Pk0 6 cPk .
We conclude that cPk is the meet of aPi and bPj in L.
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We will now prove that any three pairwise upper bounded elements of L have an upper bound. Fix
g1;g2;g3 2A.Bn/ and 1 6 k1; k2; k3 6 n such that, for each i ¤ j , the elements giPki

and gj Pkj have
a join gij Pkij

in L. Consider the elements �.gij /Qkij
of M : they have a join Qk in M. Since, for

each 1 6 i; j 6 3, we have �.gi/Qi 6 �.gij /Qkij
6 �.gij /Q2n�kij

6 �.gj /Q2n�kj , we deduce that
Qk is inferior to the meet �. /Q2n�k of the elements �.gij /Q2n�kij

. We deduce that k 6 n. Also, as
in the previous paragraph, we deduce that we can choose  2 A.A2n�1/ such that  D �.c/ for some
c 2A.Bn/. Hence cPk is a common upper bound for the elements .giPki

/16i63.

Since L is graded with finite rank, we deduce that any family of pairwise upper bounded elements of L

have a join.

We believe that a similar statement holds for the Artin group of spherical type Dn, but we have no
embedding into an Artin group of type A in order to use a similar proof.

7 Application to Euclidean buildings and the Deligne complex of other
Euclidean types

In this section, we will prove that we can deduce from Theorem 4.4 an injective metric on Euclidean
buildings and Deligne complexes of Euclidean types other than QAn.

More precisely, let us consider a simplicial complex X that is

� either a Euclidean building of type zBn, zCn or zDn,

� or the Deligne complex of Euclidean type zCn.

Note that the Coxeter groups of types zBn and zDn may be considered as subgroups of the Coxeter group
of Euclidean type zCn, spanned by reflections with respect to subarrangements of hyperplanes; see below
for more details. As a consequence, if X is a Euclidean building of type zBn or zDn, we will consider it as
a (possibly nonthick) Euclidean building of type zCn.

Let W . zCn/ denote the Euclidean Coxeter group of type zCn. Its Coxeter complex†. zCn/ identifies with Rn,
and reflections of W . zCn/ correspond to reflections with respect to hyperplanes

fxi D k j 1 6 i 6 n; k 2 Zg and fxi ˙xj D 2k j 1 6 i ¤ j 6 n; k 2 Zg:

Note that we can see the following subarrangement has type zBn:

fxi D 2k j 1 6 i 6 n; k 2 Zg and fxi ˙xj D 2k j 1 6 i ¤ j 6 n; k 2 Zg:

Also the following subarrangement has type zDn:

fxi ˙xj D 2k j 1 6 i ¤ j 6 n; k 2 Zg:

This justifies that, in the case of Euclidean buildings, we may assume that X is a (possibly nonthick)
Euclidean building of type zCn.
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The vertex set of †. zCn/ identifies with Zn, and a strict fundamental domain of the action of W . zCn/ on
†. zCn/ is given by the standard orthoscheme simplex � with vertices

v0 D .0; : : : ; 0/; v1 D .1; 0; : : : ; 0/; : : : ; vn D .1; 1; : : : ; 1/:

Hence v0; v1; : : : ; vn are representatives of the nC1 orbits of vertices of†. zCn/ under the action of W . zCn/.
This enables us to define a type function � on vertices of †. zCn/:

� W†. zCn/
.0/
! f0; 1; : : : ; ng; g � vi 7! i:

More generally, we can define a partial order on vertices of †. zCn/: say that v < v0 if v; v0 are adjacent
vertices and �.v/ < �.v0/. We can therefore also view †. zCn/ as the geometric realization of the poset of
its vertices.

We will now see how to extend the type function and the partial order on vertices of X.

Proposition 7.1 Assume that X is a Euclidean building of type zCn or the Deligne complex of Euclidean
type zCn. There exists a type function � W X .0/ ! f0; 1; : : : ; ng such that adjacent vertices of X have
different types. Moreover , let us define a partial order on vertices of X by setting v < v0 if v and v0 are
adjacent in X and �.v/ < �.v0/. Then X is the geometric realization of the poset of its vertices.

Proof Let us first consider the case where X is a Euclidean building of type zCn. Given any vertex v
of X, consider any apartment A�X containing v, and let us define �.v/ as defined with respect to the
apartment A'†. zCn/. Since two apartments containing v differ by an element of the Weyl group W . zCn/,
which preserves the type, we deduce that � is well-defined on X .0/. Similarly, given any two adjacent
vertices v; v0 in X, say that v < v0 if �.v/ < �.v0/.

We will see that this relation is actually transitive on vertices of X : assume that three vertices v1; v2; v3

of X satisfy v1 < v2 and v2 < v3. Then the link of v2 is isomorphic to the join of two spherical buildings
of types B�.v2/ and Bn��.v2/. Hence we see that v1 is adjacent to v3 in X, so v1 < v3.

Let us now consider the case where X is the Deligne complex of Euclidean type zCn. Let s0; s1; : : : ; sn�1; sn

denote the standard generators of the Artin group A. zCn/. For each 0 6 i 6 n, consider the maximal
spherical-type standard parabolic subgroup

Pi D hs0; s1; : : : ; si�1; siC1; : : : ; sni 'A.Bi/�A.Bn�i/:

For each vertex gPi in X, where g 2 A. zCn/ and 0 6 i 6 n, let us define �.gPi/ D i . Given any two
vertices gPi ; hPj of X, say that gPi < hPj if they are adjacent in X (ie gPi \ hPj ¤∅) and i < j . As
in Lemma 6.5, one checks that it is a partial order.

We will endow X with the piecewise `1 orthoscheme metric d given by the geometric realization of its
poset of vertices. We will now describe the local structure of X at any vertex, starting with a general
statement about orthoscheme complexes of posets.
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Lemma 7.2 Let L denote a graded poset , with an element v 2L comparable to every element of L. Let
LC D fw 2L jw > vg and L� D fw 2L jw 6 vg. Then the `1 orthoscheme realization of L is locally
isometric at v to the `1 product of the `1 orthoscheme realizations of LC and L�.

Proof Since the `1 orthoscheme realization of L is obtained as a union of orthoschemes, it is sufficient
to prove the result when L is a chain.

In other words, consider the standard `1 n–orthoscheme Cn D fx 2Rn j 1 6 x1 6 x2 > � � �> xn > 0g,
with vertices vi D .1; : : : ; 1; 0; : : : ; 0/ with i ones and n� i zeros for 0 6 i 6 n. We fix a particular vertex
v D vj for some 0 6 j 6 n, and we want to describe locally C around v. The orthoscheme Cn is locally
isometric at v to the space

T D fx 2Rn
j 1 > x1 > x2 > � � �> xj and xjC1 > xjC2 > � � �> xn > 0g;

which is isometric to the `1 product of T � D f.x1; : : : ;xj / 2 Rj j 1 > x1 > x2 > � � � > xj g and
TC D f.xjC1; : : : ;xn/ 2Rn�j j xjC1 > xjC2 > � � �> xn > 0g.

The space TC is locally isometric at v to the vertex .1; 1; : : : ; 1/ in the j –orthoscheme Cj , and T � is
locally isometric at v to the vertex .0; 0; : : : ; 0/ in the .n�j /–orthoscheme Cn�j .

In conclusion, if L is a chain v0 < v1 < � � �< vD vj < vn, then the geometric realization of jLj is locally
isometric at v to the product of the geometric realizations of the chains L� D .v0 < v1 < � � �< vj D v/

and LC D .v D vj < vjC1 < � � �< vn/.

Proposition 7.3 Assume that X is a Euclidean building of type zCn or the Deligne complex of Euclidean
type zCn. Fix a vertex v 2X of type �.v/D i 2 f0; 1; : : : ; ng.

There exist posets L1;i (resp. L0
0;n�i

), which are either the poset of vertices of a spherical building of
type Bi (resp. Bn�i) or the poset of maximal proper parabolic subgroups of the Artin group of spherical
type Bi (resp. Bn�i). Let us define the posets Li D f1g [L1;i and L0n�i D L0

0;n�i
[ f0g, and let us

consider the geometric realizations jLi j and jL0n�i j, endowed with the piecewise `1 orthoscheme metrics.

Then X is locally isometric at v to the `1 direct product jLi j � jL
0
n�i j.

Proof The space X is locally isometric at v to the `1 orthoscheme realization of the poset Lv of vertices
of X comparable to v. The poset Lv is the disjoint union of L1;i D fw 2Lv j w < vg t fvg tL0

0;n�i
D

fw 2Lv j w > vg, such that L1;i < fvg<L0
0;n�i

. We may identify the poset Li DL1;i [f1g with the
interval L1;i [ fvg in Lv. Similarly, we may identify the poset L0n�i D L0

0;n�i
[ f0g with the interval

L0
0;n�i

[fvg in Lv . According to Lemma 7.2, the orthoscheme realization jLvj of Lv is locally isometric
at v to the direct `1 product jLi j � jL

0
n�i j of the orthoscheme realizations of Li and L0n�i .

In case X is a Euclidean building to type zCn, note that L1;i is the vertex set of a spherical building of
type Bi (with reversed order), and that L0

0;n�i
is the vertex set of a spherical building of type Bn�i .
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In the case X is the Deligne complex of type zCn, note that L1;i is the poset of proper parabolic subgroups
of the Artin group of type Bi (with reversed order), and that L0

0;n�i
is the poset of proper parabolic

subgroups of the Artin group of type Bn�i .

We can now prove the following.

Theorem 7.4 Any Euclidean building of type zBn, zCn or zDn, or the Deligne complex of type zCn, endowed
with the piecewise `1 metric d , is injective.

Proof According to Proposition 7.3, the space X is locally isometric to a product of orthoscheme
complexes of the type jLj, where L D L0 [ f0g is a poset, and L0 is either the poset of vertices of a
spherical building of type Bi or the poset of maximal proper parabolic subgroups of the Artin group of
spherical type Bi for some 0 6 i 6 n.

According to Propositions 6.4 and 6.6, we know that in each case L is a graded meet-semilattice with
minimum 0 of rank i such that any upper bounded subset has a join. According to Theorem 6.3, we
deduce that jLj is injective.

We know X is uniformly locally injective. According to Theorem 1.14, we deduce that X is injective.

We can also deduce that the thickening is a Helly graph.

Corollary 7.5 The thickening of the vertex set of any Euclidean building of type zBn, zCn or zDn, or the
extended Deligne complex of type zCn, is a Helly graph.

Proof Let X denote either a Euclidean building of type zBn, zCn or zDn, or the extended Deligne complex
of type zCn. We will see that X satisfies the assumptions of Theorem 1.15.

Since simplices of X have a well-defined order, we see that X is a simplicial complex with ordered
simplices. For each maximal simplex � of X, the minimal and maximal vertices of � form a maximal
edge in X. Therefore, X has maximal edges as in Definition 1.9. According to Theorem 1.15, we deduce
that the thickening of X is a Helly graph.

One can also deduce another proof of the result of Huang and Osajda that FC-type Artin groups are Helly
(see [Huang and Osajda 2021, Theorem 5.8]), with moreover explicit Helly and injective models.

Theorem 7.6 Let ADA.�/ denote an FC-type Artin group , with standard generating set S, and let 6L

denote the standard prefix order on A with respect to S.

� Consider the graph Y , with vertex set A, with an edge between g; h 2 A if there exists a 2 A and a
spherical subset T � S such that a 6L g; h 6L a�T , where �T denotes the standard Garside element
of A.T /. Then Y is a Helly graph.

� Consider the simplicial complex X, with vertex set A, with a k–simplex for each chain g0 <L g1 <L

� � � <L gk 6L g0�T for some spherical subset T � S. Endow X with the standard `1 orthoscheme
metric. Then X is an injective metric space.
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Proof Let us start by proving that X is injective. Note that X can be described as the union of (possibly
not connected) complexes XT , for T � S spherical, by restricting the spherical subsets to be contained
in T. So X is locally isometric to the geometric realization of the poset L D

S
T�S sphericalŒ1; �T �.

This poset is graded, with minimum, with bounded rank, and is a meet-semilattice.

Moreover, the flag condition from the FC-type Artin group A translates into the flag condition for the
poset L. Indeed, consider x1;x2;x3 which are pairwise upper bounded. Let T1;T2;T3 � S denote the
supports of x1;x2;x3 respectively. By assumption, for each i ¤ j , the subset Ti [Tj is spherical. As a
consequence, the subset T D T1[T2[T3 is a complete subset of S. According to the FC-type condition,
we deduce that T is spherical. Hence x1;x2;x3 6L �T . So L is a flag poset.

According to Theorem 6.3, we deduce that jLj is injective. So X is uniformly locally injective and
according to Theorem 1.14, we deduce that X is injective.

We now turn to the proof that Y is a Helly graph, as in the proof of Corollary 7.5. Since simplices of X

have a well-defined order, we see that X is a simplicial complex with ordered simplices. For each maximal
simplex � of X, the minimal and maximal vertices of � form a maximal edge in X. Therefore X has
maximal edges. According to Theorem 1.15, we deduce that the thickening Y of X is a Helly graph.

8 Bicombings on Deligne complexes in types QAn and zCn

We now see that, in the Deligne complex of spherical types An, Bn and Euclidean types QAn, zCn, we may
find a convex bicombing.

Theorem 8.1 Let X denote the Deligne complex of the Artin group A of spherical type An, Bn or
Euclidean type QAn, zCn. There is a metric dX on X that admits a convex, consistent , reversible geodesic
bicombing � . Moreover , dX and � are invariant under A.

Proof The statement for types An and QAn is Theorem 4.6.

Assume that X is the Deligne complex of type Bn. We have seen in the proof of Proposition 6.6 that X

may be realized as the fixed-point subspace of the Deligne complex Y of type A2n�1 for an involution s.
Note that, since s is order-reversing, s induces an isometry of Y . According to Theorem 4.6, there exists a
unique reversible, convex, consistent, geodesic bicombing �Y on Y for a metric dY . Since �Y is unique,
we deduce that s preserves �Y , and that the fixed-point subspace X is �–stable. Let dX denote the
restriction of dY to X, and let �X denote the restriction of �Y to X. We deduce that �X is a convex,
consistent, reversible geodesic bicombing on .X; dX /. Moreover, dX and �X are invariant under A.

Assume that X is the Deligne complex of type zCn. According to [Digne 2012, Theorem 5.2] (it is also a
consequence of Corollary 8.5), we see that X may be realized as the fixed-point subspace of the Deligne
complex Y of type QA2n�1 for an involution s. Following the same arguments as in the type Bn case, we
conclude that there exists a metric dX on X and a convex, consistent, reversible geodesic bicombing �X

on .X; dX / that are both invariant under A.
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We will describe several consequences we can derive from the fact that the Deligne complex has a
consistent convex bicombing, which were usually known when the Deligne complex had a CAT(0) metric.

Corollary 8.2 (Okonek) The Deligne complex X of Euclidean type QAn or zCn is contractible. In
particular , the K.�; 1/ conjecture holds in these cases.

Proof Metric spaces with a convex bicombing are contractible.

The proof of Morris-Wright [2021] for the intersection of parabolic subgroups in FC-type Artin groups
adapts directly to our situation. It relies mainly on the result by Cumplido et al. [2019] that in a
spherical-type Artin group, the intersection of parabolic subgroups is a parabolic subgroup.

Corollary 8.3 Let A denote the Artin group of Euclidean type QAn or zCn. The intersection of any family
of parabolic subgroups of A is a parabolic subgroup.

Proof Note that any proper parabolic subgroup of an Artin group of Euclidean type has spherical type.
Since the proof of [Morris-Wright 2021, Theorem 3.1] uses only the existence of an A–equivariant
consistent geodesic bicombing on X, it adapts to these cases.

The results by Godelle [2007] describing centralizers and normalizers of parabolic subgroups also adapt
to our case.

Corollary 8.4 Let A denote the Artin group of Euclidean type QAn or zCn. Then A satisfies properties .?/,
.??/ and .???/ from [Godelle 2007]; notably, for any subset X � S, we have

ComA.AX /DNA.AX /DAX �QZA.X /;

where the quasicentralizer of X is QZA.X /D fg 2A j g �X DX g.

Note that Godelle’s property .??/ stating that a parabolic subgroup P is contained in a parabolic
subgroup Q, then P is a parabolic subgroup of Q has been proved by Blufstein and Paris [2023].

Proof The proof of [Godelle 2007, Theorem 3.1] uses only the following properties of the Deligne
complex, which hold for the Deligne complex X :

� There exists an A–equivariant consistent geodesic bicombing �X on X.

� Closed cells of X are �X –stable.

These assumptions are satisfied.

Note that Cumplido uses these properties of parabolic subgroups to solve the conjugacy stability problem
for parabolic subgroups; see [Cumplido 2022, Theorem 14].
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The results by Crisp [2000] about symmetrical subgroups of Artin groups also extend to our case.

Corollary 8.5 Let A denote the Artin group of Euclidean type QAn or zCn. For any group G of symmetries
of the Artin system , the fixed-point subgroup AG is isomorphic to an Artin group.

For the explicit description of the Artin group AG, we refer the reader to [Crisp 2000].

Proof The proof of [Crisp 2000, Theorem 23] uses only the following properties of the Deligne
complex X :

� There exists an A–equivariant consistent geodesic bicombing �X on X.

� Subsets of X which are �X –stable are contractible.

Let us check the last condition: if C �X is a �X –stable subset, then �X restricts to a convex bicombing
on C , which implies that C is contractible.

One particular case of interest is when A is of Euclidean type QA2n�1 for some n > 1, and the group G of
symmetries of the Artin system (the 2n–cycle) is generated by a symmetry of the cycle defining A. We
recover the result from [Digne 2012] that the fixed-point subgroup is isomorphic to the Artin group of
type zCn.

For any divisor 1< k < n of n, one may also consider the group G of symmetries of the Artin system of
type QAn�1 (the n–cycle) generated by a rotation of k. The fixed-point subgroup is then isomorphic to the
Artin group of Euclidean type QAk�1. When we see A. QAn�1/ as the group of braids with n strands on the
annulus, we may think of the fixed-point subgroup as the subgroup of braids which are invariant by a
rotation of the annulus of angle 2�k

n
.
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[Świa̧tkowski 2006] J Świa̧tkowski, Regular path systems and (bi)automatic groups, Geom. Dedicata 118 (2006)
23–48 MR Zbl

[Tits 1966] J Tits, Normalisateurs de tores, I: Groupes de Coxeter étendus, J. Algebra 4 (1966) 96–116 MR Zbl

[Tits 1974] J Tits, Buildings of spherical type and finite BN-pairs, Lecture Notes in Math. 386, Springer (1974)
MR Zbl

Institut Montpelliérain Alexander Grothendieck, Université de Montpellier, CNRS
Montpellier, France

IRL 3457, CRM-CNRS, Université de Montréal
Montréal, Canada

thomas.haettel@umontpellier.fr

Received: 15 February 2023 Revised: 12 September 2023

Geometry & Topology Publications, an imprint of mathematical sciences publishers msp

https://doi.org/10.4171/LEM/63-1/2-8
http://msp.org/idx/mr/3777137
http://msp.org/idx/zbl/1391.53088
https://doi.org/10.1007/s11856-023-2597-2
http://msp.org/idx/mr/4775739
http://msp.org/idx/zbl/07903069
https://doi.org/10.1016/j.jpaa.2020.106468
http://msp.org/idx/mr/4114975
http://msp.org/idx/zbl/1535.20183
https://doi.org/10.2307/1990536
http://msp.org/idx/mr/32932
http://msp.org/idx/zbl/0035.35402
https://doi.org/10.1007/BF01214192
http://msp.org/idx/mr/544701
https://doi.org/10.1090/tran/8727
http://msp.org/idx/mr/4744735
http://msp.org/idx/zbl/07875997
https://doi.org/10.1007/s00222-020-01016-y
http://msp.org/idx/mr/4243019
http://msp.org/idx/zbl/07355938
https://doi.org/10.1007/s10711-005-9003-6
http://msp.org/idx/mr/2239447
http://msp.org/idx/zbl/1165.20036
https://doi.org/10.1016/0021-8693(66)90053-6
http://msp.org/idx/mr/206117
http://msp.org/idx/zbl/0145.24703
https://doi.org/10.1007/978-3-540-38349-9
http://msp.org/idx/mr/470099
http://msp.org/idx/zbl/0295.20047
mailto:thomas.haettel@umontpellier.fr
http://msp.org
http://msp.org


msp

Algebraic & Geometric Topology 24:7 (2024) 4061–4084
DOI: 10.2140/agt.2024.24.4061

Published: 9 December 2024

The real-oriented cohomology of infinite stunted projective spaces

WILLIAM BALDERRAMA

Let ER be an even-periodic real Landweber exact C2–spectrum, and ER be its spectrum of fixed points.
We compute the ER–cohomology of the infinite stunted real projective spectra Pj . These cohomology
groups combine to form the RO.C2/–graded coefficient ring of the C2–spectrum

b.ER/D F.EC2C; i�ER/;

which we show is related to ER by a cofiber sequence †�b.ER/! b.ER/! ER. We illustrate our
description of �?b.ER/ with the computation of some ER–based Mahowald invariants.

55N20, 55N22, 55N91, 55Q51

1 Introduction

The spectrum MU of complex cobordism plays a central role in both our conceptual and computational
understanding of stable homotopy theory. Landweber [1968] introduced what is now known as the C2–
equivariant spectrum M R of real bordism, with underlying spectrum MU and fixed points MRDMU hC2

the homotopy fixed points for the action of C2 on MU by complex conjugation. Work of Araki [1979],
Hu and Kriz [2001], and others, has shown that essentially all of the theory of complex-oriented homotopy
theory may be carried out in the C2–equivariant setting with M R in place of MU , leading to the rich
subject of real-oriented homotopy theory. This subject has seen extensive study over the past two decades,
with a notable increase in interest following the use of M R by Hill, Hopkins and Ravenel [Hill et al.
2016] to resolve the Kervaire invariant one problem.

There are real analogues of most familiar complex-oriented cohomology theories. An important family
of examples is given by the real Johnson–Wilson theories ER.n/, refining the usual Johnson–Wilson
theories E.n/. These theories are Landweber flat over M R, in the sense that they are M R–modules and
satisfy

ER.n/?X ŠER.n/?˝MR? M R?X

for any C2–spectrum X . The fixed points ER.n/DER.n/C2 DE.n/hC2 are nonequivariant cohomology
theories that are interesting in their own right; for example, ER.1/'KO.2/, and ER.2/ is a variant of
TMF0.3/.2/. One may regard the descent from E.n/ to ER.n/ as encoding a portion of the E.n/–based
Adams–Novikov spectral sequence, and accordingly each ER.n/ detects infinite families in ��S .

© 2024 The Author, under license to MSP (Mathematical Sciences Publishers). Distributed under the Creative Commons
Attribution License 4.0 (CC BY). Open Access made possible by subscribing institutions via Subscribe to Open.
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There is in general a tradeoff between the richness of a homology theory and the ease with which it may
be computed. Kitchloo, Lorman, and Wilson have carried out extensive computations with ER.n/–theory
[Kitchloo and Wilson 2007b; 2015; Lorman 2016; Kitchloo et al. 2017; 2018a], and their program has
shown that these theories strike a very pleasant balance between richness and computability. Computations
of ER.2/�RPn in particular have been applied to the nonimmersion problem for real projective spaces,
with computations for nD 2k in [Kitchloo and Wilson 2008a], nD 16kC 1 in [Kitchloo and Wilson
2008b], and nD 16kC 9 by Banerjee [2010].

This paper contributes to the above story. Let ER be a real Landweber exact C2–spectrum in the sense
of Hill and Meier [2017, Section 3.2]; we take this to include the assumption that ER is strongly even.
Write E for the underlying spectrum of ER and ER D ERC2 D EhC2 for its fixed points. Suppose
moreover that ER is even-periodic, in the sense that �1C�ER contains a unit. This is equivalent to
asking that the M R–orientation of ER extends to an MPR–orientation, where

MPR'
M
n2Z

†n.1C�/M R

is the real analogue of 2–periodic complex cobordism.

The primary goal of this paper is to compute the ER–cohomology of the infinite stunted projective
spectra Pj . When j > 0, these are the spaces

Pj DRP1=RP j�1
I

in general, Pj is the Thom spectrum of j� , where � is the sign representation of C2 regarded as a vector
bundle over BC2 DRP1. The cohomology ER�P� is of interest for at least a few reasons: first, it is
one long exact sequence away from the groups ER�RP j , which have so far only been studied at heights
� 2; second, there are C2–equivariant Hurewicz maps �cCw�SC2

! ER�cPw, which are at least as
nontrivial as the nonequivariant Hurewicz maps for ER; third, there is an interesting interplay between
the C2 appearing in ER'EhC2 and the C2 appearing in ER�.Pw/'ER�.Sw�hC2

/ which sheds some
light on the nature of the C2–spectrum ER.

We record the basic properties of ER in Section 3. In particular, �0ERŠ �0E, the torsion in ��ER

is supported on a single class x 2 �1ER, there is a cofiber sequence †ER x
�! ER! E, and the x–

Bockstein spectral sequence for ER–cohomology agrees with the homotopy fixed point spectral sequence
(HFPSS) from the E2–page on.

Write b.ER/DF.EC2C; i�ER/ for the Borel C2–spectrum on ER with trivial C2–action. This satisfies
�cCw�b.ER/DER�cPw, and we shall compute ER�P� using the x–Bockstein spectral sequence

�?b.E/Œx�) �?b.ER/:

This concludes an investigation we began in [Balderrama 2021]. There, we computed the HFPSS
H�.C2I�?b.KU^

2
//)�?b.KO^

2
/ as a step in our description of the C2–equivariant K.1/–local sphere.

At the time, we were able to put the E2–page into a more general context by computing H�.C2I�?b.E//

Algebraic & Geometric Topology, Volume 24 (2024)
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for more general even-periodic Landweber exact spectra E, but had no information about possible higher
differentials. In this paper, we carry out the rest of the computation for real-oriented E. The results are
summarized in Section 2 below.

1.1 Remark The reader may observe that by restricting to even-periodic spectra, we have ruled out the
real Johnson–Wilson theories ER.n/ for n� 2. However, any real Landweber exact C2–spectrum ER

is a summand of the even-periodic theory
L

n2Z†
n.1C�/ER, so no real information has been lost. A

more subtle point is that implicit in the definition of real Landweber exactness is the assumption that
ER is a ring up to homotopy, and it is not known whether ER.n/ always satisfies this. However, the
partial multiplicative structure given in [Kitchloo et al. 2018b] is sufficient for our computation to apply
to 2–periodic ER.n/–theory.

Acknowledgements We thank Hood Chatham for an enlightening conversation highlighting the role of
Borel completeness in Theorem 2.1. This work was supported by NSF RTG grant DMS-1839968.

2 Summary

We now describe our results. We start with the following, which serves as the linchpin for our computation
of �?b.ER/. Write � 2 ���SC2

for the Euler class of the sign representation and ��2 2 �2��2b.E/ for
the Thom class of 2� DC˝� . These classes are sometimes denoted by a� and u�2

� , but we will reserve
those symbols for ER and C2C˝ i�ER. Write u 2 �2E for the chosen unit, and set

� D ���2u 2 ��b.E/:

2.1 Theorem (Section 4) The class � is a permanent cycle in the x–Bockstein spectral sequence ,
detecting a lift of x. Moreover , there is a cofiber sequence

(1) †�b.ER/
�
�! b.ER/!ER

of C2–spectra.

This cofiber sequence is a twisted form of the standard cofiber sequence

(2) †��b.ER/
�
�! b.ER/! C2C˝ i�ER:

2.2 Example When E D KU , one can identify b.ER/ D F.EC2C;KOC2
/ and ER D KR, and

� D˙�C2
is the C2–equivariant Hopf map. In this case, Theorem 2.1 recovers the real Wood cofibering

KOC2
=.�C2

/'KR (cf [Guillou et al. 2020, Proposition 10.13]).

To show that � is a permanent cycle detecting a lift of x, we first reduce to the universal case E DMP ,
then show that this is the only possibility compatible with norms on b.MPR/. Given this, the cofiber
sequence of (1) is a mostly formal consequence of (2) and the fact that � differs from � by a unit in
�?b.E/.

Algebraic & Geometric Topology, Volume 24 (2024)
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We now describe �?b.ER/. We start by fixing some notation for �?b.E/. Write Œ2�.z/ 2 E0ŒŒz�� for
the 2–series of the formal group law of E, and write un 2 E0 for the elements corresponding to the
usual vn 2 �2.2n�1/E by un D u�.2

n�1/vn. We may find series hn.z/ 2 E0ŒŒz�� for n � 0, of the form
hn.z/D unCO.z/ and satisfying

Œ2�.z/D zh0.z/; hn.z/� unC z2n

hnC1.z/ .mod u0; : : : ;un�1/:

Note in particular
Œ2�.z/� z2n

hn.z/ .mod u0; : : : ;un�1/:

We now specialize to �?b.E/. Set

z D �� D �2��2u; hn D hn.z/; wn D �
2nC1

hnC1 � �
2nC1

u�2n

.hn�un/;

the last congruence being modulo .u0; : : : ;un�1/. We abbreviate hD h0. This is the transfer element in
�0b.E/DE0BC2, and we have

�0b.E/D
E0ŒŒz��

.Œ2�.z//
; �?b.E/D

E0Œ�; �
˙2;u˙1�^�

.� � h/
I

see for instance [Balderrama 2021, Section 2.1].

2.3 Theorem (Section 5) Define the subring Z � �?b.E/ by

Z DE0.�; �; �
2nC2lu2nC1kun; �

2nC1.2lC1/u2nC1khn W n� 0I k; l 2 Z/^.�;�/ � �?b.E/;

and let B �ZŒx� be the ideal generated by the elements

�2nC2lu2nC1kun �x
2nC1�1; �2nC1.2lC1/u2nC1khn �x

2nC1�1; �2nC2lu2nC1kwn �x
2nC1�1

for n� 0 and k; l 2 Z. Then ZŒx�=B is the x–adic associated graded of �?b.ER/.

2.4 Remark In integer degrees, ��b.ER/ is very simply described:

��b.ER/ŠER�ŒŒz��=.Œ2�.z//I

see Corollary 4.3. This does not require the full computation of �?b.ER/, and follows as soon as one
knows that � is a permanent cycle. In particular, �0b.ER/ Š E0BC2. To get a feeling for �?b.ER/

outside integer degrees, the reader may wish to peruse Tables 1 and 2, described in Remark 5.5, which
list �0b.ER/–module generators for the groups �cCw�b.ER/ in a range.

2.5 Remark Implicit in Theorem 2.3 is the fact that �2nC2lu2nC1kwn 2Z for n� 0 and k; l 2 Z. In
particular,

�2nC2.2lC1/u2nC2kwn D �
2nC1

� �2nC2.2lC1/u2nC2khnC1;

�2nC3lu2nC1.2kC1/wn D �
2nC1

� �2nC2.2lC1/u2nC2khnC1;

�2nC3lu2nC2kwn � �
2nC1

� �2nC3lu2nC2kunC1C �
2nC1

� �2nC3lu2nC2kwnC1;

�2nC2.2l�1/u2nC1.2kC1/wn � �
2nC1

� �2nC3lu2nC2kunC1C �
2nC1

� �2nC3.l�1/u2nC2.kC1/wnC1;

where the last two formulas hold mod u0; : : : ;un.
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The ring ZŒx�=B is the E1–page of the x–Bockstein spectral sequence for �?b.ER/, obtained after
running differentials which are generated by

d2nC1�1.u
2n

/D unx2nC1�1; d2nC1�1.�
2nC1

/D�wnx2nC1�1:

The differentials on u2n

appear in the x–Bockstein spectral sequence for ��ER, and are consequences
of the computation of �?M R by Hu and Kriz [2001], as we review in Section 3. The differentials on
�2nC1

are the core of our computation. These differentials turn out to be forced by the permanent cycle
� D ���2u, by a Leibniz rule argument based on d2nC1�1.�

2n

/D 0. This argument would not be possible
if one tried to compute each ER�Pj individually, and illustrates the strength of using the C2–spectrum
b.ER/ as a tool for packaging information about the cohomology of all stunted projective spectra into
one object.

One might also try to understand �?b.ER/ through the �–Bockstein or the �–Bockstein spectral sequences.
Using the cofiber sequences (2) and (1), these are of signature

�?.C2C˝ i�ER/Œ��) �?b.ER/; �?ERŒ��) �?b.ER/:

Here, �?.C2C ˝ i�ER/ Š ��ERŒu˙1
� � with ju� j D 1 � � , and in degrees � C w� the �–Bockstein

spectral sequence is exactly the Atiyah–Hirzebruch spectral sequence for ER�Pw based on the standard
cell structure of Pw. By construction, the differentials in these spectral sequences are controlled by the
boundary maps

tr.u�1
� � �/ W �?C1�� .C2C˝ i�ER/! �?b.ER/; @ W �?C1C�ER! �?b.ER/

for the cofiber sequences (2) and (1). This first boundary map is exactly the transfer for the C2–spectrum
b.ER/. Although we do not know whether it is feasible to compute either the �–Bockstein or �–Bockstein
spectral sequence directly, we can use our computation of �?b.ER/ to deduce the following.

Write Nu 2 �1C�ER for the invertible element guaranteed by the MPR–orientation of ER.

2.6 Theorem (Section 6) The above transfer and boundary maps satisfy

tr.u�1
� �u

2n.2kC1/
� /D �2n�1�2nC1khnx2n�1

CO.x2n

/;

@. Nu2n.2kC1//D �2n�1��2nC1ku2nC1khnx2n�1
CO.x2n

/

for n� 0 and k 2 Z.

The error terms here are necessary as the classes �2nC1khn and ��2nC1ku2nC1khn have only been defined
mod x. It is amusing to observe that Theorem 2.6 produces elements of arbitrarily high x–adic filtration
in the C2–equivariant Hurewicz image of b.MPR/; as far as we know, such families have not yet been
constructed in the nonequivariant Hurewicz image of MPR.

Theorem 2.3 does not quite describe the ring �?b.ER/, but only its x–adic associated graded ZŒx�=B.
The latter is a good approximation to the former, particularly when compared to the �–adic and �–adic
associated graded rings, where the classes � and � appear as simple 2–torsion classes. Still, taking the

Algebraic & Geometric Topology, Volume 24 (2024)
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x–adic associated graded does kill some information, and it seems to be a subtle problem to completely
reconstruct the ring �?b.ER/. Although we shall not completely resolve this, we do discuss where to
find hidden � and �–extensions. The importance of �–extensions is clear: as

�cCw� .b.ER/=.�m//DER�c.Pw�1
w�m/;

one must understand the action of � if one wishes to extract information about the ER–cohomology of
finite projective spaces. The importance of �–extensions is clear from the perspective of C2–equivariant
homotopy theory: just as important classes in the Hurewicz image of ER are supported on x, important
classes in the C2–equivariant Hurewicz image of b.ER/ are supported on � , such as the equivariant Hopf
fibrations �C2

, �C2
, and �C2

detected in �?b.ER/ by h1�, h2�
2x, and h3�

4x3 respectively, and so the
action of � gives information about the behavior of these elements. The cofiber sequences (1) and (2)
give information about � and �–extensions, leading to the following.

2.7 Theorem (Section 7) There are extensions

� � �2.2nC1k�r/u2nC1.2lC1/hD
�
�2nC2ku2nC2lhnC1�

2r�1
CO.�/

�
x2nC2�2r

CO.x2nC2�2rC1/;

� � �2.2nC1kCr/u2.2n.2lC1/�r/hD
�
�2nC2ku2nC2lhnC1�

2r�1
CO.�/

�
x2nC2�2r

CO.x2nC2�2rC1/

for k; l 2 Z, n� 0, and 1� r � 2nC1� 1.

As with Theorem 2.3, implicit in this theorem is the fact that the terms on the left and right do in fact live
in �?b.ER/, for example �4hD 2�4C �� � �4h1. The error terms are present to remind the reader that
these are extensions and not products: to resolve them would require describing how to lift classes from
Z to �?b.ER/, and we shall not pursue this. In particular, if k is even then the hnC1 terms on the right
may be replaced with unC1 without affecting the theorem statement.

This concludes our description of �?b.ER/. Although �?b.ER/ is complicated, it is not impossible to
work with. We illustrate this in Section 8 by computing some MPR–based Mahowald invariants. Li, Shi,
Wang and Xu [Li et al. 2019] have shown that real bordism detects the Hopf elements, Kervaire classes,
and N� family. These are the elements in ��S detected in the classical Adams spectral sequence by the
Sq0–families generated by h0, h2

0
, and g1. We compute the iterated MPR–based Mahowald invariants

of 2, 4, and N�, showing that they line up with these Sq0–families exactly.

3 Even-periodic real Landweber exact spectra

We begin by recording some properties of ER and ER. The material of this section is essentially a
translation to the even-periodic setting of familiar facts about the real Johnson–Wilson theories. We would
like to avoid confusion between elements of �?b.ER/ and �?ER, so in this section we write a� instead
of � for the Euler class of the sign representation, and use the symbol u� for what would previously have
been written � . In particular, these symbols have degrees

ja� j D ��; ju� j D 1� �:
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Before considering ER, we consider the C2–HFPSS in general. There is a cofiber sequence

(3) S��
a�
�! S0

! C2C:

Let X be a C2–spectrum. Then we may identify

�?.C2C˝X /Š �e
�X Œu

˙1
� �;

and so the a�–Bockstein spectral sequence for X is of signature

E1 D �
e
�X Œu

˙1
� ; a� �) �?X;

where �e
�X are the homotopy groups of the underlying spectrum of X . This spectral sequence converges

conditionally to the homotopy groups of the a�–completion of X , which may be identified as its Borel
completion F.EC2C;X /. Moreover we have the following fact; see for instance [Hill and Meier 2017,
Lemma 4.8].

3.1 Lemma For any C2–spectrum X , the a�–Bockstein spectral sequence for X agrees with the HFPSS
for X from the E2–page on.

The proof amounts to identifying the a�–Bockstein spectral sequence with the Borel cohomology spectral
sequence induced by the standard cellular filtration of EC2C. This identification leads to the following.

3.2 Lemma Let X be a C2–spectrum , and write  �1 for the involution on �e
�X . Then the d1–

differential in the a�–Bockstein spectral sequence for X is given by

d1.˛un
�am
� /D .˛� .�1/n �1.˛//un�1

� amC1
�

for ˛ 2 �e
�X . In particular , if X carries a product , then the differentials satisfy the Leibniz rule

dr .˛ˇ/D dr .˛/ˇC 
�1.˛/dr .ˇ/

for r � 1, where the  �1 may be omitted for r � 2.

Now let ER be as in the introduction: a strongly even and even-periodic and real Landweber exact
C2–spectrum in the sense of [Hill and Meier 2017, Section 3.2], with underlying spectrum E. This set of
assumptions means three things. First, ER is a homotopy commutative C2–ring spectrum equipped with a
multiplicative orientation MPR!ER. In particular, there is an invertible element Nu2�1C�ER coming
from the generator of the nD 1 summand of MPR'

L
n2Z†

n.1C�/M R. Second, �0ERŠ �0E, and
in general

ER?X ŠE0˝MP0
MPR?X

for any C2–spectrum X . Third, ��1ERD 0. Implicit in these is the fact that MPR itself satisfies these
conditions. This is nontrivial, and follows from work of Hu and Kriz [2001] on real cobordism. We recall
the key calculation.

Algebraic & Geometric Topology, Volume 24 (2024)
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3.3 Lemma The C2–spectrum ER is Borel complete , with a�–Bockstein spectral sequence

E1 DE0Œ Nu
˙1;u˙1

� ; a� �) �?ER;

where
j Nuj D 1C �; ju� j D 1� �; ja� j D ��:

The differentials are E0Œ Nu
˙1; a� �–linear , and are generated by

d2nC1�1.u
2n

� /D un Nu
2n�1a2nC1�1

� ;

where un D u�.2
n�1/vn 2E0. In particular , �0ERD �0E.

Proof We first verify the given description of the a�–Bockstein spectral sequence. The E1–page of the
a�–Bockstein spectral sequence is given by E�Œu

˙1
� ; a� �. To put this in the desired form, we set NuDu�1

� u

with u2�2E the unit; when EDMP , this generates the nD1 summand of MPR'
L

n2Z†
n.1C�/M R.

As ER is Landweber exact over MPR, the a�–Bockstein spectral sequence for ER is tensored down
from the a�–Bockstein spectral sequence for MPR, and here the computation is known by work of Hu
and Kriz [2001].

The C2–spectrum M R is shown to be Borel complete in [Hu and Kriz 2001, Theorem 4.1], and Landweber
exactness extends the proof to ER. By the Tate fracture square, ER is Borel complete if and only if
the map ˆC2ER!ERtC2 is an equivalence, where ˆC2 denotes the functor of geometric fixed points.
Landweber exactness implies

��ˆ
C2ERŠE0˝MP0

��ˆ
C2MPRŠE0=.u0;u1; : : :/Œx

˙1�;

where x D a� Nu 2 �1ER, the last identification coming from the equivalence ˆC2M R 'MO . This
is exactly what one obtains computing ��ERtC2 by the Tate spectral sequence, which may itself be
obtained from the above description of the a�–Bockstein spectral sequence by inverting a� . Thus ER is
Borel complete as claimed.

We now pass to the nonequivariant spectrum ERDERC2 'EhC2 . Note that ��ER is the portion of
�?ER located in integer degrees, and write x D a� Nu 2 �1ER. We then have the following analogue of
[Kitchloo and Wilson 2007a] and [Kitchloo and Wilson 2008a, Theorem 4.2].

3.4 Proposition There is a cofiber sequence

†ER x
�!ER!E;

and thus for any spectrum X an x–Bockstein spectral sequence

E1 D .E
�X /Œx�)ER�X;

and this agrees with the HFPSS

E2 DH�.C2IE
�X /)ER�X

Algebraic & Geometric Topology, Volume 24 (2024)
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from the E2–page on. Write  �1 for the involution on E�X . Then the d1–differential in the x–Bockstein
spectral sequence is given by

d1.˛/D .˛� 
�1.˛//u�1x

for ˛ 2E�X , and the differentials satisfy the Leibniz rule

dr .˛ˇ/D dr .˛/ˇC 
�1.˛/dr .ˇ/

for r � 1, where the  �1 may be omitted for r � 2. All x–Bockstein differentials are E0–linear , and
when X D S0 they are generated by

d2nC1�1.u
2n

/D unx2nC1�1:

Proof As x D a� Nu and Nu is invertible in ER, (3) implies that there is a cofiber sequence

†ER x
�!ER! C2C˝ER

of C2–spectra. Passing to fixed points yields the corresponding cofiber sequence for ER. The remaining
facts follow from the previous lemmas.

3.5 Remark Figure 1 depicts the E1 page of the x–Bockstein spectral sequence for ER.

The lines of slope 1 depict x–towers. Everything in filtration�2n�1 is a module over E0=.u0; : : : ;un�1/,
and these regions are separated by dashed lines. The terms on the bottom describe the 0–line .��ER/=.x/.
For example, .�16ER/=.x/� �16E ŠE0fu

8g is the E0–submodule generated by .2u8;u1u8;u2u8/;
as 2u8 � x D 0 and u1u8 � x3 D 0, the x–tower out of this is supported on u1u8 and u2u8, and on just

1

�D u1x

� D u2x3

� D u3x7

�4 D u4x30

E0

E0=.2/

E0

.2;u1/

E0

.2;u1;u2/

E0

.2;u1;u2;u3/

2u2 .2;u1/u
4 .2;u1;u2/u

8 .2;u1;u2;u3/u
16

N� D u4
2
u8x4

Figure 1
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u2u8 starting in filtration 3. The solid circles in positive filtration indicate degrees where ��ER has
nontrivial Hurewicz image, with some notable elements labeled (see Section 8).

Similar charts appear in [Hahn and Shi 2020, Section 6].

4 Comparing b.ER/ and ER

We are now in a position to consider Theorem 2.1. The first order of business is to identify � D ���2u in
��b.E/ as a permanent cycle in the x–Bockstein spectral sequence for �?b.ER/. As

� W ��b.ER/! �0b.ER/DER0RP1

is the inclusion of a summand, the fact that � is a permanent cycle in the x–Bockstein spectral sequence for
�?b.ER/ is predicted by the computation of ER.n/�RP1 by Kitchloo and Wilson [2008a, Theorem 1.2];
see also [Kitchloo et al. 2017]. However, we take a different approach that sheds light on additional
aspects of � .

Because the x–Bockstein spectral sequence for �?b.ER/ agrees with the HFPSS

E2 DH�.C2I�?b.E//) �?b.ER/

from the E2–page on, we can just as well work with the HFPSS in this section.

4.1 Lemma We have

�?b.E/D
E0Œ�; �

˙2;u˙1�^�

.� � h/
;

and C2 acts on �?b.E/ by the E0–linear multiplicative involution  �1 satisfying

 �1.�/D �;  �1.u/D�u;  �1.�2/D �2.h� 1/:

In particular , � is fixed under the action of  �1.

Proof The structure of �?b.E/ is as described in [Balderrama 2021, Section 2.1]. That  �1 fixes �
follows immediately.

4.2 Proposition The class � is a permanent cycle in the HFPSS for �?b.ER/, detecting a lift of x.

Proof By assumption, ER is MPR–oriented. As � D ���2u lifts to ��b.MP / and x lifts to �1MPR,
it suffices to prove the proposition with ER replaced by MPR.

As MP is an E1 ring, and complex conjugation acts on MP by E1 automorphisms, there is a C2–
equivariant external squaring operation

Sq W �nMP ! �n.1C�/b.MP /:

As Sq is additive modulo transfers and � annihilates the transfer ideal, the composite � � Sq is additive
and so induces a map

Q WH 1.C2I�nC1MP /!H 1.C2I�n.1C�/C1b.MP //
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in group cohomology. By [Balderrama 2024, Theorem 1.0.1], if a 2H 1.C2I�nC1MP / is a permanent
cycle detecting ˛ 2�nMPR, then Q.a/ is a permanent cycle weakly detecting Sq.˛/2�n.1C�/b.MPR/.
Now recall that x represents the generator of H 1.C2IZfug/ Š Z=.2/ � H 1.C2I�2MP /. The E1
structure on periodic cobordism is such that Sq.u/D ��2u2; see for instance the paragraph after [Ando
et al. 2004, Lemma 4.3], noting that u and ��2u2 are the periodic Thom classes for C and CŒC2�

respectively. Thus Q.x/ D �x, and it follows that �x detects Sq.x/. As Sq.x/ lifts x2, this is only
possible if � is a permanent cycle detecting a lift of x as claimed.

The following corollary is not needed for Theorem 2.1, but will be useful later on in understanding the
structure of �?b.ER/. It is a direct analogue of [Kitchloo and Wilson 2008a, Theorem 1.2].

4.3 Corollary In integer degrees , we have

��b.ER/ŠER�ŒŒz��=.Œ2�.z//;

where z D �� . In particular , �?b.ER/ is a module over �0b.ER/ŠE0BC2 ŠE0ŒŒz��=.Œ2�.z//.

Proof The x–Bockstein spectral sequence for ��b.ER/ takes the form

E1 D ��b.E/Œx�) ��b.ER/:

Recall that
��b.E/ŠE�ŒŒz��=.Œ2�.z//; z D ��:

As � and � are permanent cycles, so is z. Thus the differentials in the x–Bockstein spectral sequence for
��b.ER/ are induced by those for ��ER, leading to the given description of ��b.ER/.

We now relate b.ER/ and ER. These live in the full subcategory SpBC2 � SpC2 of Borel complete
C2–spectra, equivalent to the category of spectra with C2–action. The functor

b W Sp! SpBC2 ; b.X /D F.EC2C; i�X /

is the diagonal, endowing a spectrum with the trivial C2–action. In particular, it is left adjoint to the
functor of homotopy fixed points, and if X 2 SpBC2 then the counit of this adjunction gives a canonical
map

b.X hC2/!X:

Specializing to X DER, we have the following.

4.4 Theorem The canonical map b.ER/!ER fits into a cofiber sequence

(4) †�b.ER/
�
�! b.ER/!ER

of C2–spectra.

Proof As ER is strongly even, we have ��ER D 0. As the maps in (4) are b.ER/–linear, their
composite must be null. As b.ER/ and ER are x–complete, it then suffices to show that (4) is a cofiber
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sequence after coning off x. As b.ER/=.x/' b.E/ and ER=.x/' C2C˝ i�E, (4) with x coned off
takes the form

†�b.E/
�
�! b.E/! C2C˝ i�E;

which is a cofiber sequence as now � D � � ��2u differs from � by a unit.

Theorem 2.1 follows by combining Proposition 4.2 and Theorem 4.4.

5 The Bockstein spectral sequence

We now compute the x–Bockstein spectral sequence

�?b.E/Œx�) �?b.ER/:

We maintain notation from the introduction. In particular, recall that hn and wn are defined in terms of
the 2–series of E by specializing

Œ2�.z/D zh0.z/; hn.z/� unC z2n

hnC1.z/ .mod u0; : : : ;un�1/;

wn D �
2nC1

hnC1 � �
2nC1

u�2n

.hn�un/ .mod u0; : : : ;un�1/

to z D �� D �2��2u. As with un, these classes are well defined modulo .u0; : : : ;un�1/. We begin by
describing what will be the cycles and boundaries of the x–Bockstein spectral sequence for �?b.ER/.
Let Z2nC1�1 � �?b.E/ be the subring

E0

�
�; �;u˙2nC1

; �2˙nC2

; �2iC2lu2iC1kui ; �
2iC1.2lC1/u2iC1khi W 0� i � nI k; l 2 Z

�^
.�;�/

;

and let B2nC1�1 �Z2nC1�1Œx� be the ideal generated by

�2iC2lu2iC1kui �x
2iC1�1; �2iC1.2lC1/u2iC1khi �x

2iC1�1; �2iC2lu2iC1kwi �x
2iC1�1

for 0� i � n and k; l 2Z. We also declare Z0D�?b.E/ and B0D .0/, and for 2nC1�1� r < 2nC2�1

we write Zr DZ2nC1�1 and Br DZ2nC1�1. Thus there are inclusions

0D B0 � B1 � B2 � � � � �Z2Œx��Z1Œx��Z0Œx�D �?b.E/Œx�:

5.1 Theorem The x–Bockstein spectral sequence for �?b.ER/ supports differentials

d2nC1�1.u
2n

/D unx2nC1�1; d2nC1�1.�
2nC1

/D�wnx2nC1�1;

and we may identify Zr Œx� and Br as its r–cycles and r–boundaries.

Proof We proceed by induction, treating the inductive step first.

Let n� 1, and suppose we have verified E2n ŠZ2n�1Œx�=B2n�1. In particular, E2n is generated by the
permanent cycles � and � , the classes �2iC2lu2iC1kui and �2iC1.2lC1/u2iC1khi for i < n, and the classes
u˙2n

and �˙2nC1

. As the classes �2iC2lu2iC1kui and �2iC1.2lC1/u2iC1khi are x2n�1–torsion for i < n,
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having survived to the E2n–page they must be permanent cycles. It follows that the next differentials are
determined by their effect on u2n

and �2nC1

.

The differential d2nC1�1.u
2n

/D unx2nC1�1 follows from Proposition 3.4. Now write

d2nC1�1.�
2nC1

/D ˛ �x2nC1�1:

As � is a permanent cycle, the Leibniz rule implies

0D d2nC1�1.�
2n

/D d2nC1�1.�
2n

��2nC1

u2n

/D �2n

.��2nC2

˛u2n

C ��2nC1

un/x
2nC1�1:

This is on the E2nC1�1 DE2n–page, and so combines with our inductive hypothesis to imply

z2n�1

.unC �
�2nC1

u2n

˛/� 0 .mod u0; : : : ;un�1; z
2n�1

hn/:

As ˛ � 0 .mod �/, this is only possible if

unC �
�2nC1

u2n

˛ � hn .mod u0; : : : ;un�1/;

and thus

d2nC1�1.�
2nC1

/D ˛x2nC1�1
D �2nC1

u�2n

.hn�un/x
2nC1�1

D wnx2nC1�1

as claimed.

To identify boundaries and cycles, observe that as a general property of the x–Bockstein spectral sequence,
if we write Z0r Œx� for its r–cycles then

Z0r D Ker.dr WZr�1!Er /D Ker.dr WZr�1!Er Œx
�1�/;

ie to compute cycles it suffices to work in the x–inverted x–Bockstein spectral sequence, or equivalently
the x–Bockstein spectral sequence with x set to 1. Our inductive hypothesis implies

E2n

.x� 1/
Š

.E0=.u0; : : : ;un�1//Œ�; �;u
˙2n

; �˙2nC1

�^
.�;�/

.�2n
� �2n

��2nC1
u2n

; �2n
.un�2nC1

C �2nC1
hnC1u2n

//
;

and we have just produced the differentials

d.u2n

/D un; d.�2nC1

/D �2nC1

hnC1:

Thus Ker.d/ is generated over E0.�; �;u
˙2nC1

; �˙2nC2

/^
.�;�/

by un�
2nC1

C �2nC1

hnC1u2n

D �2nC1

hn,
and this leads to Z0

2nC1�1
DZ2nC1�1 as claimed. The identification of boundaries follows immediately.

The base case, concerning the d1–differential and identification of the E2–page, can be handled by
considering 0D d1.�/ just like the above, only taking into account the twist in the Leibniz rule for d1

given in Proposition 3.4. Alternately, one may just use the formula d1.a/D .a� 
�1.a//x given there,

where the action of  �1 is given in Lemma 4.1.

The ring Z and ideal B �ZŒx� of the introduction may be identified as Z D
T

r Zr and B D
S

r Br .
Thus Theorem 2.3 follows from Theorem 5.1 by letting r !1.
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5.2 Remark Although we have relied on the known computation of ��MPR in computing �?b.MPR/,
this was not actually necessary: the proof of Theorem 5.1 gives an independent computation, as we now
explain.

Note that no computation was needed to produce x 2 �1MPR or prove MPR=.x/ ' C2C˝ i�MP ,
as x D a� Nu where Nu generates the n D 1 summand of MPR '

L
n2Z†

n.1C�/M R. Thus it suffices
to describe the x–Bockstein spectral sequence MP0Œu

˙1;x�)MPR�. This is MP0–linear by [Hu
and Kriz 2001, Proposition 2.27], which uses the theory of real orientations but not the computation
of �?M R. Thus it suffices to produce the differentials d2nC1�1.u

2n

/ D unx2nC1�1. The differential
d1.u/D 2x follows from the involution  �1.u/D�u, so suppose inductively that we have computed
d2nC1�1.u

2n

/D unx2nC1�1.

Next note that no computation was needed in Proposition 4.2 to prove � is a permanent cycle. The
argument in Theorem 5.1 now applies to show d2nC1�1.�

2nC1

/D��2nC1

hnC1x2nC1�1.

As in Section 4, there is a canonical map q W b.MP hC2/! F.EC2C;MPR/. Here, we write MP hC2

and F.EC2C;MPR/ instead of MPR and MPR as the proof that MPR is Borel complete relies on
knowledge of its x–Bockstein spectral sequence. The map q fits into a diagram of cofiber sequences:

†b.MP hC2/ b.MP hC2/ b.MP / †2b.MP hC2/

†F.EC2C;MPR/ F.EC2C;MPR/ C2C˝ i�MP †2F.EC2C;MPR/

q

x

q p

@

q

x @0

The x–Bockstein differential d2nC1�1.�
2nC1

/D��2nC1

hnC1x2nC1�1 implies

@.�2nC1

/D��2nC1

hnC1x2nC1�2

mod higher filtration, and as p.�2/D u2
� and q.�/D a� it follows that

@0.u2nC1

/D @0. Nu2nC1

u2nC1

� /D Nu2nC1

q.@.�2nC1

//

D Nu2nC1

q.��2nC1

hnC1x2nC1�2/

D Nu2nC1

a2nC1

� unC1x2nC1�2
D unC1x2nC2�2

mod higher filtration. This gives the next x–Bockstein differential

d2nC2�1.u
2nC1

/D unC1x2nC2�1;

completing the induction.

We end this subsection with some observations about the structure of �?b.ER/.

5.3 Proposition The C2–spectrum b.ER/ has the gap

����1b.ER/D 0:
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u0;u1 �u1; �h2 �2u1; �
2h2 �3u1; �

3h2 u0; �
4h2 �3u1; �

5h2 �2u1; �
6h2 �u1; �

7h2 u0;u1

�8x8; h2 �7x8 �6x8 �5x8 �4x8 �3x8 �2x8 �x8 x8

�7x7 �6x7 �5x7 �4x7 �3x7 �2x7 �x7 x7 �x7

h h1x2 �h1x2 h h

�6x6 �5x6 �4x6 �3x6 �2x6 �x6 x6 �x6 �2x6

h1x �h1x �h1x

�5x5 �4x5 �3x5 �2x5 �x5 x5 �x5 �2x5 �3x5

u0; h1 �h1 �2h1 �3h1 u0 �3h1 �2h1 �h1 u0; h1

�4x4 �3x4 �2x4 �x4 x4 �x4 �2x4 �3x4 �4x4

�3x3 �2x3 �x3 x3 �x3 �2x3 �3x3 �4x3 �5x3

h h h

�2x2 �x2 x2 �x2 �2x2 �3x2 �4x2 �5x2 �6x2

�u1x

�x x �x �2x �3x �4x �5x �6x �7x

u0 �3u1 �2u1 �u1 u0;u1

1 � �2 �3 �4 �5 �6 �7 �8

Table 1

Proof Declare the coweight of a degree cCw� to be the quantity c, so that we are claiming �?b.ER/

vanishes in coweight�1. By Theorem 5.1, �?b.ER/ is generated over the coweight 0 classes E0.�; �/
^
.�;�/

by the class x in coweight 1 and the classes

�2nC2lu2nC1kun; �2nC1.2lC1/u2nC1khn

in coweights of the form 2nC1t . These classes are killed by x2nC1�1, and therefore cannot support long
enough x–towers to reach coweight �1.

5.4 Proposition If E is Ld –local , then b.ER/ is u˙2dC1

and �˙2dC1

–periodic. Moreover ,

x2dC1�1
D 0; �2d

x2d�1
D 0; �2d

x2d�1
D 0

in ZŒx�=B.

Proof Recall that E is Ld –local provided ud is invertible in E0=.u0; : : : ;ud�1/, or equivalently if the
ideal .u0; : : : ;ud /�E0 generates the entire ring. Thus as uiu

˙2dC1

is a permanent cycle for i � d , it
follows that u˙2dC1

is also a permanent cycle. Likewise, as uix
2dC1�1 D 0 for i � d , it follows that

x2dC1�1 D 0.
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�u1; �
7h2 �2u1; �

6h2 �3u1; �
5h2 u0; �

4h2 �3u1; �
3h2 �2u1; �

2h2 �u1; �h2 u0;u1

�x8 �2x7 �3x7 �4x8 �5x7 �6x8 �7x8 �8x8; h2

�2x7 �3x7 �4x7 �5x7 �6x7 �7x7 �8x7 �9x7

�h1x2 x2h1 x2�h1 h h

�3x6 �4x6 �5x6 �6x6 �7x6 �8x6 �9x6 �10x6

h1x x�h1 x�h1

�4x5 �5x5 �6x5 �7x5 �8x5 �9x5 �10x5 �11x5

�h1 �2h1 �3h1 u0 �3h1 �2h1 �h1 u0; h1

�5x4 �6x4 �7x4 �8x4 �9x4 �10x4 �11x4 �12x4

x3�3u2

�6x3 �7x3 �8x3 �9x3 �10x3 �11x3 �12x3 �13x3k

�u1x2 x2u1 x2�u1 x2�2u1/x2�6u2 x2�5u2 x2�4u2 x2�3u2 h;x2�2u2

�7x2 �8x2 �9x2 h; �10x2 �11x2 �12x2 �13x2 �14x2

u1x x�u1 x�2u1/x�6u2 x�5u2 x�4u2 x�3u2 x�2u2 x�u1;x�u2

�8x �9x �10x �11x �12x �13x �14x �15x

�u1; �
7u2 �2u1; �

6u2 �3u1; �
5u2 u0; �

4u2 �3u1; �
3u2 �2u1; �

2u2 �u1; �u2 u0;u1

�9 �10 �11 �12 �13 �14 �15 �16;u2

Table 2

Next, as hd .z/D ud CO.z/, it follows by Weierstrass preparation that

.u0; : : : ;ud�1; hd /� �0b.ER/ŠE0BC2

(see Corollary 4.3) generates the entire ring. As ui�
˙2dC1

for i < d and hd�
˙2dC1

are permanent cycles,
it follows that �˙2dC1

is a permanent cycle. Next, note that

wd�1 D �
2d

hd ; �2dC1

u2d

wd�1 D �
2d

hd :

As uix
2d�1 D 0 for i < d , the identities wd�1x2d�1 D 0 and �2dC1

u2d

wd�1x2d�1 D 0 then imply
�2d

x2d�1 D 0 and �2d

x2d�1 D 0.

5.5 Remark Tables 1 and 2 may be helpful in getting acquainted with the general shape of �?b.ER/,
and especially for visualizing the arguments in Sections 6 and 7.

These describe generators of �cCw�b.ER/ as a module over �0b.ER/ŠE0BC2 in coweight 0� c � 8

and stem 0 � cCw � 16, the first table containing stems 0 � cCw � 8 and second 9 � cCw � 16.
It is arranged by stem and coweight: the box at coordinate .s; c/ contains a list of generators for
�cC.s�c/�b.ER/. For space reasons, we have omitted any �2iuj terms. These may recovered by
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comparing degrees: for example, the box in coordinate .8; 5/ has entries �h1x and �3x5, and this means
that �5C3�b.ER/ is generated over �0b.ER/ by � � ��4u4h1 �x and �3x5.

The entry x�2u1=x�
6u2 indicates that either x�2u1 or x�6u2 may be chosen as a generator, and likewise

for x2�2u1=x
2�6u2. This sort of choice also appears on the 0–line: for example, in box .5; 0/ one could

replace �3u1 with �u0.

These tables assume that E has sufficiently large height, say E DMP .

6 Transfers

Recall that there are cofiber sequences

(5) †��b.ER/
�
�! b.ER/! C2C˝ i�ER; †�b.ER/

�
�! b.ER/!ER

of C2–spectra. The first is a general cofiber sequence that exists for any C2–spectrum, given that
C2C˝ b.ER/' C2C˝ i�ER, and the second was shown in Theorem 4.4. Here,

�?.C2C˝ i�ER/Š ��ERŒu˙1
� �; ju� j D 1� �;

and �?ER was described in Section 3.

Associated to the cofiber sequences of (5) are boundary maps

tr.u�1
� � �/ W �?C1�� .C2C˝ i�ER/! �?b.ER/; @ W �?C1C�ER! �?b.ER/:

The first of these is the transfer for the C2–spectrum b.ER/. Both are �?b.ER/–linear.

6.1 Proposition The above transfer and boundary maps satisfy

tr.u�1
� �u

2n.2kC1/
� /D �2n�1�2nC1khnx2n�1

CO.x2n

/;

@. Nu2n.2kC1//D �2n�1��2nC1ku2nC1khnx2n�1
CO.x2n

/

for n� 0 and k 2 Z.

Proof The error terms are present just because �2nC1khn and ��2nC1ku2nC1khn have only been defined
mod x, so we omit them in the proof.

First consider the case nD 0. These claimed values are not hidden in the x–Bockstein spectral sequence,
so it suffices to show that they hold after coning off x. After coning off x, the cofiber sequences (5) take
the form

(6) †��b.E/
�
�! b.E/! C2C˝ i�E; †�b.E/

���2u
���! b.E/! C2C˝ i�E:

In particular, @. Nu˛/D tr.˛/. By [Hopkins et al. 2000, Remark 6.15], the transfer

tr W �0E!E0BC2 Š �0b.E/
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satisfies tr.1/D h. The proof is to observe that h is the unique class which satisfies

� � hD 0; h� 2 .mod �/:

As tr and @ are �?b.E/–linear, we deduce

tr.u�1
� �u

2nC1
� /D �2n tr.1/D �2nh; @. Nu2nC1/D ��2nu2n@. Nu/D ��2nu2nh

as claimed. The argument is essentially the same for n� 1. Observe that

�2n

�2nC1khn D �
2nC1kwn�1; �2n

��2nC1khn D �
�2nC1.kC1/u2n

wn�1:

In particular �2n�1�2nC1khnx2n�1 and �2n�1��2nC1ku2nC1khnx2n�1 generate the kernels of � and �
in their respective degrees. As the kernels of � and � are generated by the images of tr and @, this gives
the claimed values of tr and @ up to multiplication by a unit, which may then be ruled out by working in
the universal case E DMP .

7 Hidden extensions

We now turn our attention to hidden extensions. We begin with a general discussion. Write ZŒx�=B for
the x–adic associated graded of �?b.ER/, as computed in Section 5. In general, hidden extensions in
the x–Bockstein spectral sequence arise from the failure of �?b.ER/ to be isomorphic to ZŒx�=B, and
especially for relations to fail to lift through the map

(7) �?b.ER/! .�?b.ER//=.x/ŠZ � �?b.E/:

Recall that

�?b.E/D
E0Œ�; �

˙2;u˙1�^�

.� � h/
:

This indicates that the simple indecomposable hidden extensions will be those � and �–extensions lifting
relations of the form

(8) � � �2iuj hD 0; � � �2iuj hD 0;

where i and j are such that �2iuj h 2Z.

If a relation of this sort lifts to �?b.ER/, then necessarily the corresponding �2iuj h is in the image of
the transfer or boundary studied in the previous section. These classes are generally not in the image
of the transfer or boundary, and so one knows from the start that the relations in (8) generally lift to
nontrivial hidden extensions in �?b.ER/.

One can use Proposition 6.1 to compute some of these directly:

� � �2nC1.2kC1/hD � � tr.u2nC1.2kC1/
� /D tr.xu�1

� �u
2nC1.2kC1/
� /D �2nC1�1�2nC1khnC1x2nC1

by Frobenius reciprocity, and likewise

� � ��2nC1.2kC1/u2nC1.2kC1/hD � � @. Nu2nC1.2kC1/C1/D �2nC1�1�2nC2ku2nC2khnC1x2nC1

:
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In general however, a more indirect approach is necessary. Consider the cofiber sequences

(9) †��b.ER/
�
�! b.ER/

p
�! C2C˝ i�ER; †�b.ER/

�
�! b.ER/

q
�!ER:

The long exact sequences associated to these imply that the image of � is equal to the kernel of the
forgetful map p W �?b.ER/! �j?jER, and that the image of � is equal to the kernel of the canonical
map q W �?b.ER/! �?ER. To find elements of these kernels, one looks for elements in �?b.ER/ that
lift the relations unx2nC1�1 D 0. This relation already holds in �?b.ER/, so we need only consider lifts
involving the filtration-shifting identities p.�/D x and q.�/D a� . In this way we focus our attention on
those classes of the form

(10) �2nC2ku2nC2lhnC1�
r xs; �2nC2ku2nC2lhnC1�

r xs;

where r C s � 2nC1� 1 and r � 1 and s < 2nC2� 1. By the preceding discussion, the former must be in
the image of � and the latter in the image of � , and when this is not the case in ZŒx�=B there must be a
hidden extension making it so. If r C s > 2nC2� 1, then the witness to the classes in (10) being in the
image of � or � may be obtained by multiplying a smaller witness with some suitable power of � or �
and x. Thus we are led to focus on the case where r C s D 2nC2� 1. We will show that when s is even,
the necessary hidden extensions are exactly those lifting the relations in (8). First, a couple observations.

7.1 Lemma Fix positive integers r C s D 2nC2� 1 with s even. Then the classes

�2nC2ku2nC2lhnC1�
r xs; �2nC2ku2nC2lhnC1�

r xs

are not in the image of � or � respectively in ZŒx�=B, at least when E DMP .

Proof Consider the first case. Suppose towards contradiction that

�2nC2ku2nC2lhnC1�
r xs
D �˛xs

for some ˛ 2Z. As the x–Bockstein spectral sequence has only odd differentials and s is even, necessarily
we can divide out by x to obtain

(11) .�2nC2ku2nC2lhnC1�
r
� �˛/xs�1

D 0:

This means that �2nC2ku2nC2lhnC1�
r � �˛ detects some class � 2 �?b.MPR/ satisfying � �xs�1 D 0.

Write p W �?b.MPR/! �j?jMPR for the restriction. As p.�/ D x, necessarily p.�/ is detected by
u2nC2lunC1xr . Thus

0D p.� �xs�1/� u2nC2lunC1xrCs�1 .mod xrCs/

in ��MPR. As r C s � 1 < 2nC2 � 1, this is incompatible with the structure of the x–Bockstein
spectral sequence for ��MPR, a contradiction. The second case is identical, only instead using the map
b.MPR/!MPR in place of the restriction.

7.2 Lemma Suppose that i and j are such that �2iuj h 2Z. Then �2iuj h generates the kernels of �
and � in its degree of ZŒx�=B as a module over �0b.ER/.
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Proof The class �2iuj h generates the kernels of � and � in Z, as this is the case in �?b.E/. Thus the
lemma follows from the following observation: ZŒx�=B contains no x–divisible elements in the kernel
of � or � in even degrees, that is in degrees of the form cCw� with both c and w even. Indeed, any
x–divisible element in even degree and in a given filtration must be of the form ˛x2r D 0 with ˛ 2Z

in even degree. As ˛ is in even degree and B is generated by classes of the form w �x? with w in even
degree, relations �˛x2r D 0 or �˛x2r D 0 are only possible if ˛x2r D 0 already, proving the lemma.

We may now give the main theorem of this subsection.

7.3 Theorem There are extensions

� � �2.2nC1k�r/u2nC1.2lC1/hD
�
�2nC2ku2nC2lhnC1�

2r�1
CO.�/

�
x2nC2�2r

CO.x2nC2�2rC1/;

� � �2.2nC1kCr/u2.2n.2lC1/�r/hD
�
�2nC2ku2nC2lhnC1�

2r�1
CO.�/

�
x2nC2�2r

CO.x2nC2�2rC1/

for k; l 2 Z, n� 0, and 1� r � 2nC1� 1.

Proof It suffices to produce these extensions in the universal case E DMP . This ensures that the terms
on the right are nonzero, so that these are nontrivial extensions. As discussed above, the cofiber sequences
of (9) show that the terms

�2nC2ku2nC2lhnC1�
2r�1x2nC2�2r ; �2nC2ku2nC2lhnC1�

2r�1x2nC2�2r

must be in the image of � and � respectively. By Lemma 7.1, this is not the case in ZŒx�=B, so there
must be hidden extensions making it so. In other words, there must be hidden extensions of the form

� �˛ D
�
�2nC2ku2nC2lhnC1�

2r�1
CO.�/

�
x2nC2�2r

CO.x2nC2�2rC1/;

� �ˇ D
�
�2nC2ku2nC2lhnC1�

2r�1
CO.�/

�
x2nC2�2r

CO.x2nC2�2rC1/;

where ˛ and ˇ are detected by classes in ZŒx�=B killed by � and � respectively. The error terms ensure
that we do not need to pin down ˛ and ˇ precisely, but only the �0b.MPR/–submodule of ZŒx�=B that
they generate. By Lemma 7.2, the extensions given in the theorem statement are the only possibilities in
these degrees.

7.4 Remark This leaves open the problem of finding witnesses to the classes of (10) being in the image
of � or � in the case where rCsD 2nC2�1 and r is even. In some cases no hidden extension is necessary,
for example

�2nC1

hnC1x2nC1�1
D wnx2nC1�1

D 0;

�2nC1

hnC1x2nC1�1
D ��2nC2

u2nC1

wnx2nC1�1
D 0:

However, the general situation seems to be rather subtle. For example, for h2�
2x5 to be in the image

of �, the only possibility is that ���4u4h1x detects a class satisfying

� � ���4u4h1x D h2�
2x5
CO.�/:
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On the other hand,
�2��4u4h1 D �

�4u4w0; ��4u4w0 �x D 0

in ZŒx�=B. This indicates the existence of a mixed extension along the lines of

�2��4u4h1 D �
�4u4w0C h1�

2x4
CO.�/:

Note that if � 2 �?b.ER/ is detected by ��4u4w0, then so is �Ch1�
2x4. Thus for such an extension to

even be defined, one must specify some information about how one lifts elements from Z to �?b.ER/,
and these considerations are outside the scope of our investigation.

8 Some Mahowald invariants

We end by giving some examples of computations within the ring �?b.ER/. Our examples will center
around the following definition.

8.1 Definition Given a spectrum A, the A–based Mahowald invariant is a multivalued function

RA W ��A*��A;

ie a relation on ��A, defined as follows: given y 2 �nA and z 2 �nCkA, we say z 2RA.y/ if z lifts to a
class � 2 �?b.A/ such that �N y D �NCk� for N � 0, and moreover k is as large as possible.

8.2 Remark There are natural maps �nA! �nAtC2 and �cCw�b.A/! �cAtC2 , and the condition
�N y D �NCk� for N � 0 amounts to asking that y D � in ��AtC2. When A D S , this construction
recovers the classical Mahowald invariant, commonly called the root invariant. See [Mahowald and
Ravenel 1993] for additional background, [Bruner and Greenlees 1995] for the relation to C2–equivariant
homotopy theory, which connects Definition 8.1 to other definitions, [Behrens 2007] for the state of the
art in S–based Mahowald invariants at the prime 2, [Quigley 2022] for further discussion of A–based
Mahowald invariants with A¤S , and [Li et al. 2022] for more information about spectra related to ERtC2.

Li, Shi, Wang and Xu [Li et al. 2019] prove that the Hurewicz image of real bordism detects the Hopf
elements, Kervaire classes, and N� family. These are the elements in ��S detected on the E2–page of the
Adams spectral sequence by the classes hi , h2

j , and gkC1 respectively; note there is no claimed relation
between hi here and the elements hi in �?b.E/. These classes arrange into Sq0 families, ie

(12) Sq0.hi/D hiC1; Sq0.h2
j /D h2

jC1; Sq0.gkC1/D gkC2:

Informally, this means that they arise as iterated Mahowald invariants at the level of Ext. Of course this
cannot lift to the level of homotopy, as not all of these classes are permanent cycles; still, it is known
that � 2RS .2/, � 2RS .�/, and � 2RS .�/, and it is conjectured that �jC1 2RS .�j / for j � 3 provided
�jC1 exists, see [Mahowald and Ravenel 1993, Proposition 2.4].
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We can compute the iterated MPR–based Mahowald invariants of the classes 2, �0 D 4, and N�, yielding
an analogue of (12). Our computation works just as well for ER in a range depending on the height of E.
First we need to know how N� sits inside �?MPR.

8.3 Lemma The class N� is detected by MPR, with Hurewicz image u4
2
u8x4.

Proof If N� is detected by MPR, then it is detected by MR. As �20MRDZ=.2/fu4
2
u8x4g � �20MPR,

it suffices just to show that N� is detected by MR, which was shown in [Li et al. 2019]. Alternately, as
there is a ring map MR! TMF0.3/ [Hill and Meier 2017], it suffices to show that N� is detected in the
latter, and here one may appeal to [Mahowald and Rezk 2009].

We now abbreviate RDRMPR .

8.4 Theorem Define elements

an D unx2n�1
2 �2n�1MPR; bm D u4

mC1u2mC2

x2mC2�4
2 �4.3�2m�1/MPR

for n � 0 and m � 1, so that for example a0 D 2 and b1 D N�. Then there are MPR–based Mahowald
invariants

anC1 2R.an/; a2
nC1 2R.a2

n/; bmC1 2R.bm/:

Proof First consider an. As

hn � unC �
2n

�2n

hnC1 .mod u0; : : : ;un�1/;

the relation �2n

hn �x
2n�1 D 0 implies

(13) �2n

�unx2n�1
D��2nC1

� hnC1�
2n

x2n�1:

There are no further relations and hnC1�
2n

x2n�1 lifts unC1x2nC1�1 D anC1, yielding anC1 2 R.an/.
The case of a2

n is identical, only we must apply (13) twice:

�2n

�u2
nx2.2n�1/

D��2nC1

� hnC1�
2n

unx2.2n�1/
D �3�2n

� h2
nC1�

2nC1

x2.2n�1/:

Now consider bm. As 2mC2� 4� 2mC1� 1 for m� 1, we may apply (13) thrice to obtain

(14) �2mC1

�u4
mC1u2mC2

x2mC2�4
D �2mC3

�umC1u2mC2

� �3�2mC1

h3
mC2x2mC2�4:

At this point additional care is needed: we cannot apply (13) again, as despite appearances umC1u2mC2

is indecomposable. Instead, the relation � � hD 0 gives

0� umC1�
2mC2�1��2mC2C2u2mC1�1

C hmC2�
2mC3�1��2mC3C2u2mC2�1 .mod u0; : : : ;um/

in �?b.MP /, and thus

umC1u2mC2

� �2mC2�1
D umC1u2mC2

� �2mC2�1��2mC3�2u2mC2�1

� ��2mC3

u2mC3

hmC3 � �
3�2mC1

�2mC1�1 .mod u0; : : : ;um/:
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Substituting this into (14) yields

�2mC1

�u4
mC1u2mC2

x2mC2�4
D �7�2mC1

� ��2mC3

u2mC3

h4
mC2 � �

2mC2

x2mC2�4:

We cannot pull this class back any further. Thus, as ��2mC3

u2mC3

h4
mC2
� �2mC2

x2mC2�4 lifts

u4
mC2u2mC3

x2mC3�4
D bmC1;

we obtain bmC1 2R.bm/.
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Fourier transforms and integer homology cobordism

MIKE MILLER EISMEIER

We explore the Fourier transform of the d–invariants, which is particularly well behaved with respect to
connected sum. As corollaries, we show that lens spaces are cancellable in the monoid of 3–manifolds up
to integer homology cobordism, and we recover a theorem of González-Acuña and Short on Alexander
polynomials of knots with reducible surgeries.
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1 Introduction

The relation of homology cobordism between 3–manifolds has a long and interesting history. Fix a ring R.
Let Y and Y 0 be closed oriented 3–manifolds, and suppose W is a compact oriented 4–manifold whose
boundary @W is oriented diffeomorphic to Y 0�Y . If both maps

i� WH�.Y IR/!H�.W IR/; i 0� WH�.Y
0
IR/!H�.W IR/

are isomorphisms, we say that W is an R–homology cobordism and that Y and Y 0 are R–homology
cobordant.

This relation is most well studied when H�.Y IR/ŠH�.S
3IR/, in which case Y is called an R–homology

sphere. The set of R–homology spheres modulo R–homology cobordism form a group ‚3
R

called the
“R–homology cobordism group”. The group operation is connected sum, the neutral element is ŒS3�, and
the inverse of ŒY � is Œ�Y �.
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If one instead considers the set of all 3–manifolds modulo R–homology cobordism, the resulting object
is a monoid, which we denote by y‚3

R
; the R–homology cobordism group is the submonoid of invertible

elements.1 Some things are known about this monoid; for instance, every equivalence class contains
an irreducible 3–manifold [Livingston 1981] or better yet a hyperbolic 3–manifold [Myers 1983]. In
another direction, there are obstructions to finding a Seifert-fibered manifold in a given equivalence class
[Cochran and Tanner 2014] or more generally to finding a graph manifold whose graph is a tree in a
given equivalence class [Doig and Horn 2017].2

In this note, we will investigate integer homology cobordism between a class of 3–manifolds which are
not integer homology spheres. In what follows, we suppress the ring RD Z from notation, and write
integer homology and cohomology groups as H�.Y / and H�.Y /.

Theorem 1 Suppose L and L0 are connected sums of lens spaces. If L and L0 are integer homol-
ogy cobordant by a cobordism W , then L is oriented diffeomorphic to L0, and the induced map
W� WH1.L/!H1.L

0/ respects the natural direct sum decompositions.3

Further , if Y is any closed , oriented 3–manifold and L # Y is integer homology cobordant to L0 # Y , then
L is oriented diffeomorphic to L0.

The first part of the result, that the oriented diffeomorphism type of L and L0 is determined by their
integer homology cobordism type, is not new. It follows from the more general results of [Greene 2013]
on alternating links, and indeed Greene’s results imply that double-branched covers of alternating links
are determined by their homology cobordism type. Independent proofs of the more restrictive claim that
the oriented diffeomorphism type of a lens space is determined by its d–invariants have also appeared
[Doig and Wehrli 2015; Némethi 2005]. Even before then, the integer homology cobordism classification
of lens spaces of odd order goes back to [Fintushel and Stern 1987].

Our argument is independent of [Greene 2013], depending only on the computation of Reidemeister
torsion for lens spaces and its relationship to their d–invariants established in [Némethi 2005]. Theorem 1
is also stronger in two ways: first, it constraints the structure of the span H1.L/ H1.W /!H1.L

0/ of
any homology cobordism relating L and L0; second, it establishes that connected sums of lens spaces are
cancellable in y‚3

Z.

The proof of this theorem is presented in Section 4. The key point is that — provided a certain nonvanishing
property holds — one can recover (a reduced version of) the d–invariants of a connected summand from
those of a connected sum.
1If H1.Y IR/ is nonzero, then Y is not invertible in y‚3

R
; the purported inverse Y 0 should support an R–homology cobordism

between Y # Y 0 and S3, but jH1.Y # Y 0IR/j � jH1.Y IR/j> 1D jH1.S
3IR/j.

2Though see the MR review of [Doig and Horn 2017] for some errata and [Suciu 2022, Proposition 9.2] for a simplified argument.
3This is meant in an unordered sense. Precisely, suppose H1.L/ Š

L
i H1.Li/ and similarly for L0. Then W� sends each

H1.Li/ isomorphically onto some H1.L
0
j /.
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To recover the d–invariants of the summands, we find it useful to pass to the Fourier transform. Given
a function f W A! C on a finite abelian group, its Fourier transform is instead a function on the dual
group A_ D Hom.A;S1/, defined by Of .�/D 1

jAj

P
a2A f .a/�.a/. Here A will be H 2.Y /ŠH1.Y /,

and we will pick a base spinc structure to consider the d–invariants as a function on H1.Y /.

The use of Fourier transforms is well established in the theory of Reidemeister torsion: analytic inter-
pretations of the Reidemeister torsion (eg [Fried 1987; Ray and Singer 1971]) interpret the torsion as a
function of oriented flat bundles, and hence take as input a representation � WH1.Y IZ/! S1. It is also
profitable to rephrase the surgery relation in terms of Fourier transforms; Nicolaescu [2004] used this to
compare Reidemeister torsion to a Seiberg–Witten invariant. See also the discussion peppered throughout
[Nicolaescu 2003].

Here we use a simple property of Fourier transforms. Given two groups A and A0 and functions f WA!C

and f 0 W A0 ! C, the direct sum .f ˚ f 0/.a; a0/ D f .a/C f .a0/ on A�A0 has an especially simple
Fourier transform; one can effectively read off the values of Of .�/ and Of 0. / from the knowledge of
2f ˚f 0 whenever � or  are nontrivial homomorphisms. See Proposition 12 for a precise statement.

Applying this purely algebraic observation to d–invariants, one can recover (a reduced version of) the
d–invariants of summands from those of a connected sum. Provided they satisfy a certain nonvanishing
property, this recovery process is well defined up to automorphism of H 2.Y /�H 2.Y 0/, and thus preserved
by integer homology cobordisms. Because the d–invariants of lens spaces satisfy this nonvanishing
property, and these reduced d–invariants — equivalent to Reidemeister torsion for L–spaces — classify
lens spaces up to oriented diffeomorphism, the main theorem follows.

In fact, the proof of Theorem 1 yields a stronger claim: there exist monoid homomorphisms cp;q W
y‚3

Z!N

with cp;q.L.p; q//D 1 and cp;q.L.r; s//D 0 unless L.r; s/ is oriented diffeomorphic to L.p; q/. The
purely algebraic part of this claim is the content of Corollary 19 in Section 2, while the relevant computation
for lens spaces is given in Proposition 26 in Section 4.

If one considers the Grothendieck group Gr.y‚3
Z/, the group whose elements are pairs .ŒY �; ŒZ�/ with

.ŒY �; ŒZ�/D .ŒY 0�; ŒZ0�/ if there is an integer homology cobordism Y #Z0 � Y 0 #Z, the existence of these
homomorphisms cp;q shows that lens spaces (up to oriented diffeomorphism) span a Z1 summand of
the Grothendieck group.

As an aside, the perspective of Fourier transforms appears useful whenever one has an invariant which is
additive in the sense above, including both d–invariants and Reidemeister torsion. To demonstrate this,
in Section 3 we reprove [González-Acuña and Short 1986, Theorem 2.2]: if K is a knot with reducible
surgery Sn.K/ Š Y # Y 0 with H1.Y / D Z=p and H1.Y

0/ D Z=q, the Alexander polynomial of K is
divisible by that of the .p; q/ torus knot; �.Tp;q/ j �.K/. We hope that Fourier transforms can be a
useful organizing tool in other contexts as well.
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4088 Mike Miller Eismeier

Acknowledgements The author would like to thank Danny Ruberman for a useful discussion during the
preparation of this note, as well as Tye Lidman for comments on an early draft and suggesting that one
might reprove [González-Acuña and Short 1986, Theorem 2.2] using the Fourier transform technique.
The basic algebraic observation used here came about during conversations with Aiden Sagerman on a
related question about products of punctured lens spaces.

2 Weighted torsors and Fourier transforms

In this section we cover the purely algebraic aspects of the main result: the context of weighted torsors,
the definition of the Fourier transform, and the process of recovering summands of the direct sum of
weighted torsors using Fourier transforms.

2.1 Weighted torsors

Here we rapidly define the relevant algebraic objects. Though the initial discussion about torsors is valid
for any group, the relevant groups for us will be abelian, so we use additive notation.

Definition 2 A torsor is a pair .A;S/, where A is a group and S carries a free and transitive (right)
action by A.

A choice of element s 2S gives rise to a bijection ms WAŠS , given by sending a 7! sCa; for a different
choice of element s0 2 S with s0 D sC a0, the bijections differ by .m�1

s ms0/.a/D a0C a.

This observation shows that one may think of a torsor as a group where one has forgotten which element
is the identity, or as A “modulo translation”.

Definition 3 An isomorphism of torsors is a pair .f;g/ W .A;S/! .A0;S 0/, where f WA!A0 is a group
isomorphism and g W S ! S 0 is a function satisfying

g.sC a/D g.s/Cf .a/:

By transitivity of the group actions, g is necessarily a bijection. If one chooses basepoints s 2 S and
s0 2 S 0, and we have g.s/D s0C a0, then the map m�1

s0 gms WA!A is given by

.m�1
s0 gms/.a/Dm�1

s0 g.sC a/Dm�1
s0 .g.s/Cf .a//Dm�1

s0 .s
0
C a0Cf .a//D a0Cf .a/:

Thinking of S as a group where we’ve forgotten the identity element (or as a sort of affine space), one
should imagine g to be an affine function whose “linear part” is the homomorphism f ; indeed, one can
recover f from g.

Remark 4 The group of automorphisms of .A;S/ is a group sometimes called the holomorph of A, and
can be understood as the group of affine automorphisms of A.

Definition 5 A weighted torsor is a torsor .A;S/ equipped with a function d W S !C. If S DA, we
call .A; d/ a weighted group.

Algebraic & Geometric Topology, Volume 24 (2024)
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If one chooses a basepoint s 2 S , we write ds W A! C for the function ds.a/D .dms/.a/D d.sC a/.
For a different choice of basepoint s0 D sC a0, we have ds0.a/D ds.aC a0/.

Definition 6 An isomorphism of weighted torsors .A;S; d/! .A0;S 0; d 0/ is a torsor isomorphism
.f;g/ W .A;S/! .A0;S 0/ which has d 0.g.s//D d.s/.

If one prefers to think entirely in terms of the group A (having chosen an arbitrary basepoint), a weighted
torsor is a function d WA!C, with d considered equivalent to db.a/D d.aC b/ for any b 2A. In this
perspective, an isomorphism of weighted torsors .A; d/ Š .A0; d 0/ amounts to an affine isomorphism
f C a0 WA!A0 which has

d 0.f .a/C a0/D d.a/:

2.2 Fourier transforms and weighted duals

Given an abelian group A, its Pontryagin dual is the group A_ D Hom.A;S1/.

Convention For the rest of this note, abelian groups A and torsors .A;S/ are assumed to be finite. This
is true in all cases of interest to us, and simplifies discussions of Fourier transforms.

Given a function d WA!C, we can take its Fourier transform Od WA_!C, defined as

Od.�/D
1

jAj

X
a2A

d.a/�.a/:

Remark 7 This differs from Nicolaescu’s definition [2003, Section 1.6] by a scalar factor of 1=jAj. Our
definition makes some important formulas later slightly simpler.

If d 0 WA!C is defined by d 0.a/D d.aC a0/, then

Od 0.�/D
1

jAj

X
a2A

d 0.a/�.a/D
1

jAj

X
a2A

d 0.a� a0/�.a� a0/D
1

jAj

X
a2A

d.a/�.a/�.a0/D Od.�/�.a0/:

This computation inspires the following definition, which we phrase intrinsically on the dual B DA_;
the statement below implicitly uses the isomorphism .A_/_ ŠA for finite A. The terminology follows
[Nicolaescu 2003, Definition 3.22] (though notice that Nicolaescu allows for a sign ambiguity, and we do
not).

Definition 8 If B is an abelian group equipped with weights Od and Od 0, and there exists some  2 B_

such that Od 0.b/D Od.b/ .b/ for all b 2 B, we say that d and d 0 are t–equivalent. We say that weighted
groups .B; Od/ and .B0; Od 0/ are t–isomorphic if there exists an isomorphism f W B ! B0 and element
� 2 B_ such that

Od 0.f .b//D Od.b/�.b/

for all b 2 B.
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The discussion above shows that given a weighted torsor .A;S; d/, choosing a basepoint s 2 S and
taking the Fourier transform of ds gives us a weighted group .A_; Ods/, well defined up to t–equivalence.
Furthermore, it is clear that isomorphic weighted torsors give rise to t–isomorphic weighted groups.

Notice that Od.1/D
P

a2A d.a/, and if Od is t–isomorphic to Od 0, then Od.1/D Od 0.1/. Later, this term will
cause us some minor irritation, so we do what we can to remove it.

Definition 9 A weighted torsor .A;S; d/ is reduced if
P

s2S d.s/D 0; equivalently, Od.1/D 0. Given
any weighted torsor .A;S; d/, its reduced part is given by .A;S; dr /, where

dr .s/D d.s/�
1

jAj

X
s02S

d.s0/I

that is, we subtract off the average value.

It is clear that dr is reduced, and that reduction doesn’t change the value of the Fourier transform at any
� ¤ 1. To see this, we need a small useful lemma.

Lemma 10 If A is a finite abelian group and � WA! S1 is a homomorphism , thenX
a2A

�.a/D

�
0 if � ¤ 1;

jAj if � D 1:

Proof This is a special case of the orthogonality relations for irreducible characters [Serre 1977, Theorem
2.3.3]. The proof is included for completeness.

If � is trivial this is obvious. For � nontrivial, write � for a generator of �.A/ so that � is a primitive mth

root of unity for some m> 1. We have X
a2A

�.a/D
jAj

m

m�1X
kD0

�k :

But
Pm�1

kD0 �
k D .1� �m/=.1� �/D 0 for � ¤ 1 a nontrivial mth root of unity.

It follows that if two weighted torsors have d 0.a/D d.a/C c for all a 2A and some constant c, then

Od 0.�/D
1

jAj

X
a2A

d.a/�.a/C
1

jAj

X
a2A

c�.a/D

�
Od.1/C c if � D 1;
Od.�/ if � ¤ 1:

Corollary 11 If .A;S; d/ is a weighted torsor , its reduced part .A;S; dr / satisfies

Odr .�/D

�
0 if � D 1;
Od.�/ if � ¤ 1:

2.3 Direct sums of weighted torsors

Given two weighted torsors .A;S; d/ and .A0;S 0; d 0/ we say their direct sum is the weighted torsor
.A�A0;S �S 0; d ˚ d 0/, where

.d ˚ d 0/.s; s0/D d.s/C d.s0/:

Algebraic & Geometric Topology, Volume 24 (2024)



Fourier transforms and integer homology cobordism 4091

Notice that the .A�A0/_ is naturally isomorphic to A_ � .A0/_; if � W A! S1 and  W A0! S1 are
homomorphisms, these give rise to the homomorphism � WA�A0! S1 by pointwise multiplication,
.� /.a; a0/D �.a/ .a0/.

The observation which motivated the present note is the following calculation of the Fourier transform of
a direct sum of weighted torsors.

Proposition 12 If d ˚ d 0 WA�A0!Q is the direct sum of two weighted groups , the Fourier transform
satisfies

3.d ˚ d 0/.� /D

8̂̂̂<̂
ˆ̂:
Od.�/ if � ¤ 1 and  D 1;
Od 0. / if � D 1 and  ¤ 1;
Od.1/C Od 0.1/ if � D  D 1;

0 otherwise:

Proof We have

3.d ˚ d 0/.� /D
1

jAjjA0j

X
a;a0

.d ˚ d 0/.a; a0/� .a; a0/

D
1

jAjjA0j

X
a;a0

.d.a/C d 0.a0//�.a/ .a0/

D
1

jAjjA0j

�X
a;a0

d.a/�.a/ .a0/

�
C

1

jAjjA0j

�X
a;a0

d 0.a0/ .a0/�.a/

�

D

�
1

jAj

X
a

d.a/�.a/

��
1

jA0j

X
a0

x .a0/

�
C

�
1

jA0j

X
a0

d 0.a0/ .a0/

��
1

jAj

X
a

x�.a/

�
:

By Lemma 10, the first term vanishes when  ¤ 1 and is jA0j Od.�/ when  D 1, while the second term
vanishes when � ¤ 1 and is Od 0. / when � D 1. This gives the stated claim in all cases except �; D 1;
in that case, it gives Od.1/C Od 0.1/.

In particular, for nontrivial � and  , one can read off the values of Od.�/ and Od 0. / from the Fourier
transform of the direct sum 1d ˚ d 0. In the nonreduced case, the fact that Od.1/ and Od 0.1/ are combined in
3.d ˚ d 0/.1/ means that we cannot recover this information from the Fourier transform of the direct sum.
This is why we restrict attention to reduced weighted torsors.

2.4 Nonvanishing properties and recovering invariants of summands

We will now be more precise about the process of recovering the summands of a direct sum of weighted
torsors in a way which is well defined up to isomorphism. To do so, we must make some further
assumptions.

Definition 13 A weighted group .B; Od/ has the nonvanishing property if Od.b/ ¤ 0 for all nontrivial
elements b 2 B.
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Notice that this property is well defined up to t–isomorphism, because if .B; Od/ and .B0; Od 0/ are t–iso-
morphic, we have an isomorphism f WB!B0, an element � 2B_, and an equality Od 0.f .b//D Od.b/�.b/.
Because b is nontrivial if and only if f .b/ is, and �.b/ 2 S1 is nonzero, Od 0 has the nonvanishing property
if and only if Od does.

Definition 14 If .B; Od/ is a weighted group, a special subgroup is a nontrivial subgroup C �B such that
Od.c/¤ 0 for all nontrivial c 2 C . A maximal special subgroup is a special subgroup which is maximal
among special subgroups.

Notice that special subgroups are well defined up to t–equivalence of weights, and that t–isomorphism
preserves maximal special subgroups: if f W .B; Od/! .B0; Od 0/ is a t–isomorphism and C �B is a special
subgroup, then f .C / is too, and vice versa. Further, a t–isomorphism maps .C; Od jC / t–isomorphically
onto .f .C /; Od 0jf .C //. In particular, the maximal special subgroups (considered as weighted groups up to
t–isomorphism) are t–isomorphism invariants of .B; Od/.

It immediately follows from this that isomorphisms between direct sums of weighted torsors with the
nonvanishing property are rather constrained.

Corollary 15 Suppose f.Ai ; di/g
n
iD1

is a collection of weighted groups whose Fourier transforms satisfy
the nonvanishing property, and similarly with f.A0j ; d

0
j /g

m
jD1

. Write .A; d/D
Ln

iD1.Ai ; di/ and similarly
for .A0; d 0/. If there is an affine isomorphism of weighted groups 'C a0 W .A; d/Š .A0; d 0/, then nDm

and the map ' preserves the direct sum decompositions , in the sense that for all i we have '.Ai/DA0j
for some j .

Proof By Proposition 12, the maximal special subgroups of A_ D A_
1
˚ � � � ˚A_n are precisely the

coordinate axes A_i (where all coordinates but the i th are nonzero). Comparing the number of maximal
special subgroups, we see that m D n. Because '_ maps maximal special subgroups bijectively to
maximal special subgroups, for some permutation � we have '_..A0

�.i/
/_/D A_i for all i . That is, if

 0 WA0! S1 is any homomorphism, then  0 factors through � 0
�.i/
WA0!A0

�.i/
if and only if there exists

some  WAi! S1 with
 �i D  

0� 0�.i/':

It will follow that '.Ai/�A0
�.i/

, and then equality follows because these have the same cardinality (their
duals do) and ' is injective. To see this first claim, pick xi 2 Ai , and consider yj D �j'.xi/. If yj is
nonzero, there is some homomorphism  0j WA

0
j ! S1 with  0j .yj /¤ 0. By the discussion above,

 0j .yj /D  
0
j�
0
j'.xi/D  ���1.j/.xi/:

This can only be nonzero if ��1.j /D i by assumption, so '.xi/ indeed lies in A0
�.i/

.

We will prove the main theorem similarly, by counting maximal special subgroups (considered as weighted
groups up to t–isomorphism); we introduce notation for this special concept.
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Definition 16 Given a weighted group .B; Od/, we associate the multiset

MS.B; Od/D fŒC; Od jC � j C � B is a maximal special subgroupg

of special subgroups of B equipped with the restriction of Od , considered up to t–isomorphism.

Recall here that a multiset M is a set (by an abuse of notation written with the same name M ) where each
element x 2M is equipped with a weight wM .x/� 1 labeling how many times it occurs in the multiset.

Notice that if .B; Od/ is t–isomorphic to .B0; Od 0/, then the multisets MS.B; Od/ and MS.B0; Od 0/ are
isomorphic (there is a weight-preserving bijection between them). If .A;S; d/ is a weighted torsor, the
multiset MS.A_; Ods/ is an invariant of .A;S; d/; isomorphic weighted torsors give rise to isomorphic
multisets. We write MS.A;S; d/ for MS.A_; Ods/ for some choice of s 2 S .

If M and N are multisets, we write M [N for the multiset whose underlying set is the union of the
underlying sets of M and N , and whose weight is wM[N .x/ D wM .x/CwN .x/. (Here we write
wN .x/D 0 if x does not lie in N , and similarly with M .)

The crucial observation, almost immediate from Proposition 12, is that this multiset is additive.

Proposition 17 If .A;S; d/ and .A0;S 0; d 0/ are reduced weighted torsors , then

MS.A�A0;S �S 0; d ˚ d 0/DMS.A;S; d/[MS.A0;S 0; d 0/:

Proof For convenience, we write d˚ D .d ˚ d 0/, and Od˚ for its Fourier transform.

As mentioned above, Proposition 12 implies that the maximal special subgroups of .A�A0/_ŠA_�.A0/_

are precisely the maximal special subgroups of A_ � f1g and f1g � .A0/_.

Given a maximal special subgroup C �A_ (or similarly C 0 � .A0/_), what remains is to compare the
restriction of Od to C with the restriction of Od˚ to C � f1g, but

Od˚jC�f1g D Od jC

by the formula from Proposition 12 and the assumption that d and d 0 are reduced weighted torsors.

We can now define monoid homomorphisms from the appropriate monoid to N.

Definition 18 We write y‚WT for the monoid whose elements are weighted torsors up to isomorphism,
and whose product operation is direct sum.

There is a corresponding monoid y‚RWT of reduced weighted torsors, and the map d 7! .dr ; avg d/ defines
a monoid isomorphism y‚WT Š y‚RWT �C.

Write RWTN for the set of reduced weighted torsors whose Fourier transforms satisfy the nonvanishing
property, considered up to isomorphism; because these are considered up to isomorphism, we may think
of these as weighted groups up to affine isomorphism and drop the torsor S from notation.
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For each ŒA; d � 2 RWTN, we define a map cA;d W
y‚WT!N by

cŒA;d �.B;T; f /D # of occurrences of ŒA_; Od � in MS.B;T; f r /:

That is, cŒA;d �.B;T; f / is the weight wMS.B;T;f r /.ŒA
_; Od �/.

Corollary 19 The functions cŒA;d � are monoid homomorphisms. If .A0; d 0/ is another reduced weighted
torsor whose Fourier transform has the nonvanishing property, then

cŒA;d �.A
0; d 0/D

�
1 if .A; d/ is isomorphic to .A0; d 0/;
0 otherwise:

Proof A maximal special subgroup is defined to be nontrivial, so for the trivial weighted torsor with
underlying group 1 and zero weighting, MS.1; 0/ D ¿; so cŒA;d �.1; 0/ D 0 and thus c sends neutral
element to neutral element. Additivity follows immediately from Proposition 17 and the fact that taking
the reduced part d 7! dr commutes with direct sums. So cŒA;d � is a monoid homomorphism.

Because the Fourier transform of .A0; d 0/ has the nonvanishing property, MS.A; d/ D fŒ.A0/_; Od 0�g.
If ŒA_; Od � appears in this singleton set, then in fact ..A0/_; Od 0/ is t–isomorphic to .A_; Od/, and hence
.A; d/Š .A0; d 0/.

It follows that the functions c assemble into a surjective monoid homomorphism c W y‚WT!NRWTN, which
behaves particularly well on reduced weighted torsors whose Fourier transforms have the nonvanishing
property: there is a map NRWTN! y‚WTN whose composition with c is the identity.

3 A theorem of González-Acuña and Short

Before moving on to the main theorem, we use this opportunity to give an alternative proof of [González-
Acuña and Short 1986, Theorem 2.2], suggested to the author by Tye Lidman.

For context, if † is a homology sphere and K D Cp;q.K
0/ is the cable of another knot K0 �†, then the

pq–surgery satisfies †pq.K/Š†p=q.K
0/ # L.q;p/. When †D S3, the cabling conjecture [González-

Acuña and Short 1986, Conjecture A] predicts that this construction gives the only examples of knots
with reducible surgery. Among their evidence was the following theorem.

Theorem 20 Let K �† be a knot in an integer homology sphere with reducible surgery

†n=m.K/Š Y1 # Y2;

where jH1.Y1/j D p > 1 and jH1.Y2/j D q > 1. Then the polynomial

�p;q D
.tpq � 1/.t � 1/

.tp � 1/.tq � 1/

divides the Alexander polynomial �K .

Note that the Alexander polynomial of a cable knot K D Cp;q.K
0/ satisfies �K D�p;q�K 0 .
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Proof The proof makes use of the Reidemeister torsion of a 3–manifold, and we quickly recall some
properties from [Nicolaescu 2003, Section 3.7]. When Y is a rational homology sphere, its Reidemeister
torsion TY W H1.Y /! Q makes H1.Y / into a weighted torsor, well defined up to isomorphism and
multiplication by ˙1. When H1.Y /Š Z, by contrast, TY .t/ should be understood as a rational function
TY 2Q.t/, well defined up to multiplication by˙tk . The Fourier transform yTY WC!C is a meromorphic
function defined by evaluating TY on a given complex number, and is well defined up to a variation on
t–equivalence, yT 0.z/�˙zk yT .z/.

In the case of knot complements, the Reidemeister torsion is related to the Alexander polynomial by the
formula

T†nK .t/D˙
tk�K .t/

1� t
I

this first appeared as [Milnor 1962, Theorem 4].

We will use the surgery formula for the Fourier-transformed Reidemeister torsion as stated in [Nicolaescu
2003, Theorem 3.23]: if � is a primitive nth root of unity, then

yT†n=m.K /.�/D
yT†nK .�/

.1� �/�1
D˙

�k�K .�/

.1� ��1/.1� �/
:

In particular, the zeroes of yT†n=m.K / are identified with the nth roots of unity � for which �K .�/D 0.

Here we use the canonical isomorphism H1.†n=m.K//Š Z=n, sending a meridian of the knot in † nK

to 1 to identify H_
1

with the group of nth roots of unity.

Suppose K is a knot as in the statement of the theorem. The isomorphism Z=nŠ Z=p�Z=q induced
by the connected sum decomposition sends the elements .i; j / with i and j nontrivial to nth roots of
unity which are neither pth nor qth roots of unity. For rational homology spheres Y1 and Y2 we have
TY1#Y2

.i; j /D TY1
.i/CTY2

.j / [Turaev 2002, Theorem XII.1.2]. It follows from Proposition 12 that
yTY1#Y2

.�/D 0 for any nth root of unity � which is neither a pth nor qth root of unity. Thus �K .�/D 0

for all such roots of unity, so �K is divisible byY
�De2�ik=n

0�k<n
p−k and q−k

.t � �/D
.tpq � 1/.t � 1/

.tp � 1/.tq � 1/
D�p;q

as claimed.

4 d–invariants of 3–manifolds

If Y is a 3–manifold, there is a naturally associated torsor .H 2.Y /torsISpinc.Y /tors/, where the latter is
the set of spinc structures with torsion first Chern class. When Y is a rational homology sphere, every
spinc structure is torsion.
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When we refer to a homology cobordism, we mean a pair .W; '/ of a compact oriented connected 4–
manifold and a chosen orientation-preserving diffeomorphism ' W@W ŠY �Y 0 such that the corresponding
maps Y !W and Y 0!W induce isomorphisms on all integer cohomology groups.

Given a homology cobordism W W Y ! Y 0 there is an induced isomorphism of torsors

.W�;W
c
� / W .H

2.Y /tors;Spinc
tors.Y //! .H 2.Y 0/torsISpinc

tors.Y
0//:

We will make use of three weighted torsors; the first and third are associated to rational homology spheres,
while the second is associated to an arbitrary 3–manifold:

� the d–invariant dY W Spinc.Y /!Q [Ozsváth and Szabó 2003, Definition 4.1];

� the twisted d–invariant dY W Spinc
tors.Y /!Q [Behrens and Golla 2018, Definition 3.1];

� the Turaev–Reidemeister torsion TY W Spinc.Y /!Q [Turaev 2002, Chapter X].

Remark 21 The Turaev–Reidemeister torsion is often written as an H 2.Y /–equivariant map

Spinc.Y /!QŒH 2.Y /�;

eg [Turaev 2002, Chapter I.4.1]. This gives rise to the function TY above by extracting the coefficient
of 0 2H 2.Y /. This can be extended to an arbitrary 3–manifold, but the discussion is somewhat more
intricate when H 2.Y / is infinite: instead, the torsion defines an H 2.Y /–equivariant map to the fraction
field Q.H 2.Y //.

The twisted d–invariant is only used for a technical reason, to allow connected sums with arbitrary
3–manifolds instead of merely rational homology spheres. When Y is a rational homology sphere, we
have the tautological equality dY .s/D dY .s/. The Turaev–Reidemeister torsion — and the relation to
d–invariants — will be used exclusively for calculation.

First, we establish the relationship to the work from Section 2.

Lemma 22 The assignment Y 7! .H 2.Y /tors;Spinc.Y /tors; dY / defines a monoid homomorphism
y‚Z!

y‚WT.

Proof This amounts to three claims: that dY .S
3/D 0 (tautological), that the assignment Y 7! dY sends

integer homology cobordisms to isomorphisms of weighted torsors (an immediate corollary of [Behrens
and Golla 2018, Corollary 4.2]), and that dY is additive, in the sense that

dY #Y 0.s # s0/D dY .s/C dY .s
0/;

which is [Behrens and Golla 2018, Proposition 3.7].

From this, we can immediately show that provided the Od–invariants of the summands satisfy the nonvan-
ishing property, integer homology cobordisms between connected sums preserve the natural direct sum
decomposition of their homology groups.
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Corollary 23 Suppose Y D #n
iD1 Yi and Y 0D #m

jD1 Y 0j are connected sums of 3–manifolds such that the
Od–invariants of each Yi and Y 0j satisfy the nonvanishing property. If W WY !Y 0 is a homology cobordism ,
then nDm and the induced map W� WH1.Y /tors!H1.Y

0/tors preserves the natural (unordered ) direct
sum decompositions.

Proof As mentioned above, if W W Y ! Y 0 is a homology cobordism, it induces an isomorphism
of weighted torsors .Spinc

tors.Y /; d/ Š .Spinc
tors.Y

0/; d 0/. The statement follows immediately from
Corollary 15.

The following corollary is simply an application of Corollary 19, applied to these particular weighted
torsors.

Corollary 24 Suppose Yi is a collection of 3–manifolds indexed by some set S such that

� the groups H 2.Yi/ are nontrivial ;

� the Fourier transforms OdYi
satisfy the nonvanishing property;

� the weighted torsors .H 2.Yi/;Spinc.Yi/tors; d
r / are pairwise nonisomorphic.

Then there is a homomorphism c W y‚Z!NS with ci.Yi/D 1 and ci.Yj /D 0 for i ¤ j . In particular ,
the Yi are linearly independent in y‚Z and span a ZS –summand of the Grothendieck group Gr.y‚Z/.

Here dr is the reduced part of d as in Definition 9.

To prove Theorem 1, we need to show that the lens spaces L.p; q/— considered up to oriented diffeo-
morphism — satisfy the assumptions of the corollary. This is classical; the crucial observation is that the
reduced d–invariant recovers the Turaev–Reidemeister torsion.

Lemma 25 If Y is an L–space , then

T .s/D 1
2
.dr .s//:

This follows immediately from [Rustamov 2005, Theorems 5.3.3–4]. For lens spaces (and thus their
connected sums, as both sides of this equality are additive) this was proven earlier in [Némethi 2005,
Section 10.7], and indeed Némethi’s result is used in Rustamov’s argument.

The Turaev–Reidemeister torsion of lens spaces is classical, and the sign-refined version only slightly less
so. For an appropriate choice of base spinc structure and an appropriate isomorphism H 2.L.p; q//ŠZ=p,
we have [Némethi and Nicolaescu 2002, Section 7.1] for any nontrivial pth root of unity �

yT .�/D
1

p.1� ��1/.1� ��q/
:

Notice that this formula has an extra factor of 1=p compared to Nicolaescu’s, owing to the change of
convention discussed in Remark 7.

We write dr
p;q W Spinc.L.p; q//!Q for the reduced d–invariants of the lens space L.p; q/.
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The lemma above establishes that (after choosing an appropriate base spinc structure and isomorphism
L.p; q/Š Z=p) we have for all nontrivial pth roots of unity

. Odr
p;q/.�/D

1

2p.1� ��1/.1� ��q/
:

Proposition 26 The Fourier transforms of the weighted torsors dr
p;q have the nonvanishing property.

Furthermore , if dr
p;q Š dr

r;s , then p D r and s � q˙1 mod p, so L.p; q/ and L.r; s/ are oriented
diffeomorphic.

Proof That these have the nonvanishing property is obvious.

What remains is the essentially classical claim that signed Turaev–Reidemeister torsion classifies lens
spaces up to oriented diffeomorphism; we include a short proof for completeness. We may as well assume
p > 2.

If dr
p;q Š dr

r;s then Z=p Š Z=r , so p D r . If Odr
p;q is t–isomorphic to Odr

p;s , such an isomorphism induces
a t–isomorphism Ofp;q Š

Ofp;s between the simpler functions

Ofp;q.�/D .1� �/.1� �
q/D 1� � � �q

C �qC1:

If q D 1 this is the Fourier transform of the function fp;1 D .1;�2; 1; 0; : : : ; 0/, where we list off the
values fp;q.i/ in order starting at 0. If q D p� 1 we have instead fp;p�1 D .2;�1; 0; : : : ; 0;�1/. For
1< q < p� 1, we have fp;q.0/D fp;q.qC 1/D 1, while fp;q.1/D fp;q.q/D�1, and all other values
are zero.

It is transparent that there is no affine isomorphism of Z=p taking fp;1 or fp;p�1 to any of the other
functions above, as the values are different; this reduces us to the case 1< q < p� 1.

Now suppose there exists some integer k prime to p and some integer ` such that

(1) fp;s.ki C `/D fp;q.i/

for all i . Since fp;q.0/D 1, we have fp;s.`/D 0 and thus either `� 0 or `� sC1. Because i 7! kiC `

is a bijection, in the former case we must have k.qC1/� sC1 and in the latter case k.qC1/CsC1� 0.
We handle these two cases separately.

(i) If `� 0, then applying (1) to i � 1, we have either k � 1 (which gives qC 1� sC 1 and hence
q � s) or k � s (which gives qsC s � sC 1 so qs � 1).

(ii) If `� sC 1, then applying (1) to i � 1, we have either kC sC 1� 1 (in which case k ��s so
�sq�sCsC1� 0 and thus qs� 1) or kCsC1� s (in which case k��1 so �q�1CsC1� 0

and q � s).

In any of the four possibilities for the values of k and ` modulo p, we see that the desired claim holds.

The main theorem follows immediately from this proposition, as well as Corollaries 23 and 24.
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5 Questions

We close with a handful of questions inspired by the results above.

Question 1 Which collections of 3–manifolds satisfy the hypotheses of Corollary 24? Does this class
include spherical 3–manifolds, or double-branched covers of alternating links?

It would follow that manifolds in this class are integer homology cobordant if and only if they are
diffeomorphic. For spherical 3–manifolds, an argument might proceed by an explicit computation of their
d–invariants (or of their Reidemeister torsions); for alternating links an argument might follow through
the lattice-theoretic techniques of [Greene 2013].

In another direction, recall that [Lisca 2007] provides a complete classification of connected sums of lens
spaces up to rational homology cobordism. It would be interesting to determine the intermediate case of
R–homology cobordism for, say, RD Z=p.

Question 2 Determine the R–homology cobordism classification of connected sums of lens spaces for
various rings R.

The author has made no attempt to investigate this. It would similarly be interesting to follow up on the
classification of rational homology ribbon cobordisms between connected sum of lens spaces given in
[Huber 2021, Theorem 1.3] and classify the R–homology ribbon cobordisms for various rings R.

It would be interesting to understand better the interaction between the integer homology group and the
larger integer homology monoid. In the integer homology group, because all elements are invertible,
all elements are also cancellative: if ŒY �C ŒZ�D ŒZ� we have ŒY �D 0. This is not true in an arbitrary
monoid, so one might ask if integer homology spheres remain cancellative when we pass to the integer
homology monoid.

This question can be phrased in terms of the Grothendieck group Gr.y‚Z/ as follows.

Question 3 Does the map ‚Z ! Gr.y‚Z/ have nontrivial kernel? That is, can one find an integer
homology 3–sphere Y and a closed oriented 3–manifold Z so that Y is not integer homology cobordant
to S3, but Y # Z is integer homology cobordant to Z?

One might imagine that the behavior of integer homology spheres under integer homology cobordism is
somehow orthogonal to the behavior of rational homology spheres; very optimistically, one might believe
that j W‚Z!

y‚Z splits, meaning that there is a homomorphism � W y‚Z!‚Z with �j D 1, and one
might then try to understand the structure of the Grothendieck group in terms of ker.�/ and ‚Z. If such
a splitting exists at the level of monoids, we also have such a splitting at the level of groups when we
pass to the Grothendieck group.
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One way to guarantee this is impossible, while also giving an element in the kernel discussed above, is
to find indivisible elements in ‚Z which become divisible in Gr.y‚Z/. We pose the existence of such
homology spheres as a question.

Question 4 Is there an integer homology sphere Y with the following properties?

(i) Y is indivisible in the integer homology cobordism group: if n > 1 and Y 0 is another integer
homology sphere, there is no integer homology cobordism between Y and #nY 0.

(ii) There does exist an n> 1, an integer homology sphere Y 0, and a 3–manifold Z such that Y # Z is
integer homology cobordant to .#nY 0/ # Z.

Note that if this held, then �Y #nY 0 would give an infinite-order element in the kernel of ‚Z!Gr.y‚Z/,
answering Question 3 in the positive.
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Profinite isomorphisms and fixed-point properties

MARTIN R BRIDSON

We describe a flexible construction that produces triples of finitely generated, residually finite groups
M ,! P ,! � , where the maps induce isomorphisms of profinite completions yM Š yP Š y� , but M and
� have Serre’s property FA while P does not. In this construction, P is finitely presented and � is of
type F1. More generally, given any positive integer d , one can demand that M and � have a fixed point
whenever they act by semisimple isometries on a complete CAT.0/ space of dimension at most d , while
P acts without a fixed point on a tree.

20E18, 20F67, 20J05; 20E08

1 Introduction

In the quest for profinite invariants of discrete groups, fixed-point properties have been a source of
disappointment. For example, Aka [1] proved that the profinite completion of a finitely generated,
residually finite group does not determine whether the group has property (T), ie whether the group
can act without a global fixed point as a group of affine isometries of a Hilbert space. Cheetham-West,
Lubotzky, Reid and Spitler [13] proved a similar theorem for actions on trees: they construct pairs of
finitely presented, residually finite groups G1 and G2 such that yG1 Š

yG2 but G1 has Serre’s property FA
whereas G2 does not. (Here, yGi denotes the profinite completion of Gi .)

In the present paper, we will improve upon this last result in two ways. First, we construct groups with
these properties for which .G2;G1/ is a Grothendieck pair, ie the isomorphism yG1 Š

yG2 is induced by a
monomorphism of discrete groups G1 ,!G2 (cf. [13, Question 4.1]). Secondly, we extend this result from
actions on trees (the 1–dimensional case) to actions on d–dimensional CAT.0/ spaces, with d � 1 arbitrary.

We say that a group G has property Fixd if G fixes a point whenever it acts by semisimple isometries
on a complete CAT(0) space of covering dimension at most d . Every isometry of a simplicial tree is
semisimple, so Fix1 implies Serre’s property FA (and extends it to cover actions on complete R–trees).

Theorem A For every integer d � 1, there exist triples of residually finite groups M
i
,! P

j
,! � such

that

(1) i and j induce isomorphisms yM Š yP Š y�;

(2) M is finitely generated , P is finitely presented , and � is of type F1;

© 2024 MSP (Mathematical Sciences Publishers). Distributed under the Creative Commons Attribution License 4.0 (CC BY).
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(3) M and � have property Fixd , but

(4) P is a nontrivial amalgamated free-product and therefore acts on a simplicial tree without a global
fixed point.

An artefact of our proof is that although M and � have Fixd , they each contain a subgroup of finite index
that can act on a tree without fixing a point (Remark 6.1).

The fixed-point properties required in the above theorem will be established using the following criterion,
which is drawn from the circle of ideas developed in [6; 4].

Theorem B (Corollary 5.5) If A is a finitely generated group with finite abelianisation and B is a finite
group , then A oB has Fixd for d D jBj � 1.

The first steps in our construction of the triples M ,! P ,! � in Theorem A follow the template for
constructing finitely presented Grothendieck pairs that originates in [10] and is explicit in Section 8 of [7].
We craft finitely presented groups Q that enjoy an array of properties relevant to our aims (Section 3.1);
we use a suitably adapted form of the Rips construction (Proposition 3.1) to produce short exact sequences
1!N !G!Q! 1 with G finitely presented and residually finite, N finitely generated, and both N

and G perfect; and we take a fibre product of several copies of G!Q to produce N d ,! Pd ,! Gd

with Pd finitely presented. (A novel feature here is that we take the fibre product of several copies of
G!Q, not just two.) The triples M

i
,!P

j
,! � we seek are obtained by taking finite extensions of N d ,

Pd and Gd in a way that allows us to apply Theorem B.

There is a great deal of flexibility in this construction — see Section 7.

2 Preliminaries

In this section we gather the basic definitions and facts we need concerning profinite completions of
groups and isometries of CAT(0) spaces.

2.1 Profinite completions

If M1<M2 are normal subgroups of finite index in a group G, then there is a natural map G=M1!G=M2.
Thus the finite quotients of G form a directed system. The profinite completion of G is the inverse limit
of this system:

yG WD lim
 

G=M:

The natural map i W G ! yG is injective if and only if G is residually finite. If G is finitely generated
then, for every finite group Q, composition with i defines a bijection Hom. yG;Q/! Hom.G;Q/ that
restricts to a bijection on the set of epimorphisms. In particular, G and yG have the same set of finite
images, which we denote by F.G/. Thus yG1 Š

yG2 implies F.G1/D F.G2/. Less obviously, for finitely
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generated groups, F.G1/D F.G2/ implies yG1 Š
yG2 — see [17, pages 88–89]. (Note that yG1 Š

yG2 does
not imply that there are any nontrivial homomorphisms G1!G2.)

A property P of finitely generated, residually finite groups is said to be a profinite invariant if yG1 Š
yG2

implies that G2 has P whenever G1 has P. Theorem A shows that Fixd is not a profinite invariant.

A pair of finitely generated, residually finite groups G1
�
,!G2 is called a Grothendieck pair [15] if the

induced map O� W yG1!
yG2 is an isomorphism. For fixed G2, there can be infinitely many nonisomorphic

subgroups G1 such that G1 ,! G2 is a Grothendieck pair, even if one requires both G1 and G2 to be
finitely presented [8].

2.2 Isometries of CAT.0/ spaces

We refer the reader to [11] for basic facts about CAT.0/ spaces. We write Isom.X / for the group of
isometries of a CAT.0/ space X and Fix.H / for the set of points in X fixed by each element of a subset
H � Isom.X /. Note that Fix.H / is closed and convex.

If X is complete, each closed, nonempty bounded subset is contained in a unique smallest ball; see [11,
page 178]. If the bounded subset is an orbit of a subgroup H < Isom.X /, then the centre of the ball will
be fixed by H . This proves the following standard proposition.

Proposition 2.1 If X is a complete CAT.0/ space , then every finite subgroup of Isom.X / fixes a point
in X .

By combining the preceding bounded-orbit observation with the fact that Fix.H / is itself a CAT.0/ space,
one can prove the following standard fact — see [6, Corollary 2.5], for example.

Proposition 2.2 Let X be a complete CAT.0/ space. If the subgroups H1; : : : ;Hn < Isom.X / commute
and Fix.Hi/ is nonempty for i D 1; : : : ; n, then

T
i Fix.Hi/ is nonempty.

For an isometry  2 Isom.X /,

Min. / WD fp 2X j d.p; :p/D j jg;

where j j WD inffd.x; :x/ j x 2 X g. By definition,  is semisimple if Min. / is nonempty. Every
isometry of a complete R–tree is semisimple. Semisimple isometries are divided into hyperbolics (also
called loxodromics), for which j j > 0, and elliptics, which are the isometries with Fix. /¤ ∅. If 
is hyperbolic then there exist –invariant isometrically embedded lines R ,! X on which  acts as a
translation by j j; each such line is called an axis for  . The union of these axes is Min. /. The following
extract from pages 229–231 of [11] summarises the properties of Min. / that we require.

Proposition 2.3 Let X be a complete CAT.0/ space and let  2 Isom.X / be a hyperbolic isometry.
Then:

(1) Min. / splits isometrically Min. /D Y �R, where Y � f0g is a closed , convex subspace of X .

(2)  acts trivially on Y and acts as translation by j j on each of the lines fyg �R.
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(3) The centraliser C. / < Isom.X / leaves Min. / and its splitting invariant , acting by translations of
the second factor.

(4) If ı 2 C. / is hyperbolic , then Min. / contains an axis for ı.

3 A Rips construction and input groups

The purpose of this section is to produce the short exact sequences 1!N !G!Q! 1 described in
the introduction.

3.1 The input groups Q

Our constructions require as input a group Q with the following properties:

� Q is of type F3 (ie has a classifying space K.Q; 1/ with finite 3–skeleton).

� H2.Q;Z/D 0.

� yQD 1.

� Q is a nontrivial amalgamated free product (and therefore does not have FA).

There are many ways to concoct groups Q with these properties. Indeed, every finitely presented group can
be embedded (explicitly, with controlled geometry) into a finitely presented group that has no nontrivial
finite quotients [3]; by replacing this enveloping group with its universal central extension one can force
it to have trivial second homology; and by taking a free product of two copies of the resulting group one
obtains a group Q satisfying all but the first of the above properties. If the group that one starts with is
of type F3, then so is Q. Likewise for type F (having a finite classifying space) and type F1 (having a
classifying space with finite skeleta).

One can also find explicit groups of the desired form in the literature. For example, from [10] one could
take

QD
˝
a; b; ˛; ˇ j ba�2b�1a3; ˇ˛�2ˇ�1˛3; Œbab�1; a�ˇ�1; Œˇ˛ˇ�1; ˛�b�1

˛
:

3.2 A convenient version of the Rips construction

There are many refinements of the Rips construction in the literature, with various properties imposed on
the groups constructed. The following version suits our needs.

Proposition 3.1 There exists an algorithm that , given a finite presentation hX jRi of a group Q, will
construct a finite aspherical presentation hX [fa1; a2g j

zR[V i for a group G so that

(1) G is hyperbolic , residually finite , of type F, and virtually special ;

(2) N WD ha1; a2i is normal in G;

(3) G=N is isomorphic to Q;
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(4) G is perfect if Q is perfect ;

(5) if yQD 1 and H2.Q;Z/D 0, then N and G are both perfect.

Proof With the exception of item (5), the proof is covered by Proposition 2.10 of [9]. The crucial
property of residual finiteness is due to Wise [18; 19].

For item (5), we consider the 5–term exact sequence extracted from the corner of the LHS spectral
sequence for 1!N !G!Q! 1:

H2.Q;Z/!H0.Q; H1.N;Z//!H1.G;Z/!H1.Q;Z/! 0:

As all the other terms are zero, H0.Q; H1.N;Z//D 0. By definition, H0.Q; H1.N;Z// is the group of
coinvariants for the action of Q on H1.N;Z/ that is induced by conjugation in G. As the abelian group
H1.N;Z/ is finitely generated, its automorphism group is residually finite. As Q has no nontrivial finite
quotients, its action on H1.N;Z/ must be trivial. Therefore H1.N;Z/DH0.Q; H1.N;Z//D 0.

4 Fibre products

Our proof of Theorem A relies on the various properties of fibre products that we establish in this section.
These properties cover three topics: the finiteness properties of fibre products, their behaviour with respect
to profinite completions, and their interaction with wreath products.

4.1 Fibre products and finiteness properties

For i D 1; : : : ; d , let pi WGi!Q be an epimorphism of groups. The fibre product of this family of maps
is

Pd D
˚
.g1; : : : ;gd / j pi.gi/D pj .gj /; i; j D 1; : : : ; d

	
<G1 � � � � �Gd :

The case p1 D � � � D pd will be of particular interest in this article.

Pd is the preimage of the diagonal subgroup

Q�
d WD f.q; : : : ; q/ j q 2Qg<Q� � � � �Q

and there is a short exact sequence

(4-1) 1!N .d/
! Pd !Q�

d ! 1;

where Ni D ker pi and N .d/ DN1 � � � � �Nd .

We need a criterion to ensure that Pd is finitely presented; we will deduce this from the following
Asymmetric 1-2-3 Theorem [12].

Theorem 4.1 [12] For i D 1; 2, let 1! Ni ! Gi
pi
�! Q! 1 be a short exact sequence of groups.

If G1 and G2 are finitely presented , Q is of type F3, and at least one of the groups N1;N2 is finitely
generated , then the fibre product P <G1 �G2 is finitely presented.
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Corollary 4.2 Suppose d � 2 and let 1!Ni!Gi
pi
�!Q! 1 be a short exact sequence of groups , for

i D 1; : : : ; d . If the groups Gi are all finitely presented , the groups Ni are finitely generated , and Q is of
type F3, then the associated fibre product Pd <G1 � � � � �Gd is finitely presented.

Proof We proceed by induction on d ; the case d D 2 is covered by the theorem. Let Pd <G1�� � ��Gd

be the fibre product of p1; : : : ;pd . For the inductive step, first note that

Pd < Pd�1 �Gd < G1 � � � � �Gd

is the fibre product of the map pd W Gd ! Q and the composition Pd�1 ! Q�
d�1
! Q, where

Pd�1!Q�
d�1

is the map from (4-1) and Q�
d�1
!Q is the isomorphism .q; : : : ; q/ 7! q. To complete

the proof, we apply the theorem, noting that Pd�1 is finitely presented, by induction.

We shall also need the following more elementary result.

Lemma 4.3 For i D 1; : : : ; d , let pi WGi�Q be an epimorphism of groups. If the groups Gi are finitely
generated and Q is finitely presented , then the fibre product Pd <G1 � � � � �Gd is finitely generated.

Proof As in the preceding proof, induction reduces us to the case d D 2. We fix a finite presentation
QD ha1; : : : ; an j r1; : : : ; rmi and for i D 1; 2 choose aij 2 Gi such that pi.aij /D aj . We then add a
finite set of elements Bi � ker pi to obtain a finite generating set for Gi , and denote by �ik the word
obtained from rk by replacing each aj with aij . It is easy to check that the fibre product P <G1 �G2 is
generated by˚

.b1s; 1/; .1; b2s/; .a1j ; a2j /; .�1k ; 1/ j j D 1; : : : ; nI k D 1; : : : ;mI bis 2 Bi

	
:

4.2 Fibre products and Grothendieck pairs

The idea of constructing Grothendieck pairs using fibre products originates in the work of Platonov and
Tavgen [16] and was extended in [2; 8; 10].

Lemma 4.4 [10, Lemma 2.2] Let 1!N !G!Q! 1 be an exact sequence of finitely generated
groups. If yQD 1 and H2.Q;Z/D 0, then N ,!G induces an isomorphism of profinite completions.

The following variant of the Platonov–Tavgen argument will be useful.

Proposition 4.5 [8, Theorem 2.2] Let p1 WG1!Q and p2 WG2!Q be epimorphisms with G1 and
G2 finitely generated and Q finitely presented. Let P <G1�G2 be the associated fibre product. If yQD 1

and H2.Q;Z/D 0, then P ,!G1 �G2 induces an isomorphism of profinite completions.

We need an extension to the case of d � 2 factors.

Theorem 4.6 For i D 1; : : : ; d , let pi W Gi !Q be an epimorphism of finitely generated groups , and
let Pd < � WD G1 � � � � �Gd be the associated fibre product. If Q is finitely presented , yQ D 1 and
H2.Q;Z/D 0, then Pd ,! � induces an isomorphism of profinite completions.
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Proof We argue by induction on d , as in the proof of Corollary 4.2. In the inductive step, we appeal to
Lemma 4.3 to ensure that Pd�1 is finitely generated. We can then apply Proposition 4.5 to pd WGd !Q

and Pd�1!Q�
d�1
ŠQ, noting that Pd is the fibre product of these maps.

4.3 Fibre products and wreath products

Given groups A and B, with B finite, the wreath product A oB is the semidirect product ABÌB, or more
precisely

�L
b2B Ab

�
ÌB, with fixed isomorphisms �b WA!Ab so that b 2B acts on Ab0 as �bb0 ı��1

b0 .
We identify A� <A� � � � �A with its image under .�b/b2B . The following trivial observation will play
an important role in what follows.

Lemma 4.7 hA�;Bi<A oB is the direct product A� �B ŠA�B.

Given B and a short exact sequence of groups 1!N !G!Q! 1, we take the direct product of jBj
copies of the sequence, indexed by the elements of B, and let B permute these copies by its left action on
the indices. The resulting semidirect products give us a (nonexact) sequence of groups

N oB ,!G oB�Q oB:

The action of B preserves the fibre product PB < GB D
L

b2B Gb of the maps Gb ! Qb , giving a
semidirect product

PB ÌB D hPB;Bi<G oB

and a (nonexact) sequence of groups

N oB ,! PB ÌB� hQ�;Bi<Q oB:

From Lemma 4.7 we deduce:

Lemma 4.8 With the notation established above , there is surjection

PB ÌB�Q�
ŠQ:

5 Fixed point criteria

In this section we present criteria that guarantee fixed points for group actions on complete CAT.0/ spaces
of finite dimension. These criteria are extracted from the more general criteria explained in [4; 6].

The following result is a special case of [6, Corollary 3.6].

Proposition 5.1 Let d be a positive integer and let X be a complete CAT(0) space of dimension less
than d . Let S1; : : : ;Sd � Isom.X / be conjugates of a subset S � Isom.X / with Œsi ; sj �D 1 for all si 2Si

and sj 2 Sj with i ¤ j . If every element of S (hence Si) has a fixed point in X , then so does every finite
subset of S (hence Si).
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Corollary 5.2 Let d be a positive integer , let X be a complete CAT(0) space of dimension less than d ,
and let H1; : : : ;Hd < Isom.X / be conjugate subgroups that pairwise commute. If each Hi is generated
by a finite set of elliptic elements , then D D hH1; : : : ;Hd i has a fixed point in X .

Proof Let S D S1 be a finite set of elliptics generating H1. We conjugate S to obtain a generating set
Si for each Hi . The proposition says that Fix.Si/D Fix.Hi/ is nonempty, whence Fix.D/ is nonempty,
by Proposition 2.2.

For n 2N, an n–flat in a metric space X is an isometrically embedded copy of Euclidean space En ,!X .

Lemma 5.3 If K0; : : : ;Kd are groups with Hom.Ki ;R/D 0 and X is a complete CAT.0/ space that
does not contain any .dC1/–flats , then there does not exist an action � WK0 � � � � �Kd ! Isom.X / such
that each �.Ki/ contains a hyperbolic isometry.

Proof We shall prove the lemma by induction, the case d D 0 being trivial. Assume that the lemma is
true for d 0 � d � 1. The induction will be complete if we can derive a contradiction from the assumption
that there are hyperbolic isometries i 2 �.Ki/ for i D 0; : : : ; d . If this were the case, then, according to
Proposition 2.3, the subspace Min.0/ would split isometrically as Y �R and the centraliser C.0/ of
0 in Isom.X / would preserve Min.0/ and its splitting, acting by translations on the second factor of
Y �R. The group of translations is R and Hom.Ki ;R/D 0, so K1 � � � � �Kd must act trivially on the
second factor. Thus we obtain an action of K1 � � � � �Kd on Y0 D Y � f0g. Part (1) of Proposition 2.3
assures us that Y0 � X is closed and convex, hence a CAT.0/ space, and part (4) tells us that i 2Ki

acts as a hyperbolic isometry of Y0, for i D 1; : : : ; d . But Y �RDMin.0/ embeds isometrically in X ,
so Y0 does not contain a d–flat. This contradicts our inductive hypothesis.

Theorem 5.4 Let G be a group and suppose that there is a subgroup D DH0 � � � � �Hd <G with Hi

conjugate to H0 in G for iD1; : : : ; d . If H0 is finitely generated and has finite abelianisation , then D has a
fixed point whenever G acts by semisimple isometries on a complete CAT.0/ space of dimension at most d .

Proof The hypothesis dim.X / � d is stronger than requiring that X contains no .dC1/–flat, so the
preceding lemma tells us that there are no hyperbolic elements in the subgroups Hi . Because H0 is
finitely generated, Corollary 5.2 completes the proof.

The following result was stated as Theorem B in the introduction.

Corollary 5.5 If A is a finitely generated group with finite abelianisation and B is a finite group , then
A oB has Fixd , where d D jBj � 1.

Proof Let G DA oB D
�L

b2B Ab

�
ÌB and D D

L
b2B Ab . Theorem 5.4 tells us that D has a fixed

point whenever AoB acts by semisimple isometries on a complete CAT.0/ space X with dim.X /�jBj�1.
Because B <A oB normalises D, it leaves its set of fixed points Fix.D/�X invariant. Fix.D/ is closed
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and convex, hence a complete CAT.0/ space. Proposition 2.1 provides a point in Fix.D/ that is fixed by
B and hence by A oB D hD;Bi.

6 Proof of Theorem A

Let Q be a group satisfying the conditions listed in Section 3.1. By Proposition 3.1, there is a short exact
sequence

1!N !G!Q! 1

with N finitely generated and perfect, and G hyperbolic (hence type F1), residually finite and perfect.
Given d � 2, we fix a finite group B with jBj D d C 1. Proceeding as in Section 4.3, we take the direct
product of jBj copies of this sequence, indexed by the elements of B, and take the fibre product of the
maps Gb!Q to obtain

N B ,! PB ,!GB:

The action of B permuting the direct factors of GB leaves N B and PB invariant, so the above inclusions
extend to

N oB
i
,! PB ÌB

j
,!G oB:

We claim that this triple of groups has the properties required in Theorem A.

Towards showing that i induces an isomorphism of profinite completions, note first that Lemma 4.4
applies to N B ,! PB , because N B is normal in PB with quotient Q. Likewise, Theorem 4.6 assures us
that PB ,!GB , the restriction of j , induces an isomorphism of profinite completions. Thus the maps
N B ,! PB ,! GB induce isomorphisms

^

N B Š
^

PB Š

^

GB . The action of B permuting the factors
of GB extends to

^

GB , where it preserves the dense subgroups PB and N B . Since the operations of
profinite completion and semidirect product with a finite group commute, we conclude that yi and yj give
isomorphisms

^

N B ÌB Š
^

PB ÌB Š
^

GB ÌB. This establishes Theorem A(1).

N oB is finitely generated, since N is. Corollary 4.2 assures us that PB is finitely presented, whence the
finite extension PB ÌB is too. And since G is of type F1, so is G oB. (Indeed, Proposition 3.1 produces
a group G that is of type F, ie has a finite classifying space, so GB is of type F and G oB is virtually of
type F.) This establishes Theorem A(2).

N and G are finitely generated and perfect, so Corollary 5.5 tells us that N oB and G oB have Fixd ,
since jBj D d C 1. In contrast, PB ÌB maps onto Q, as in Lemma 4.8, and therefore it is a nontrivial
amalgamated free product — in particular it does not have property FA or Fixd .

Remark 6.1 We remarked in the introduction that although M DN oB and � DG oB have Fixd , where
d D jBj � 1, they each have a subgroup of finite index that can act without a fixed point on a tree. For �
this is obvious, since GB < � maps onto Q via projection to G. More indirectly, from Proposition 3.1
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we know that G is virtually special and hence large, ie there is a finite-index subgroup G0 <G that maps
onto a nonabelian free group, say � WG0�L. Thus we can map GB

0
, which has finite index in � , onto

L to produce fixed-point-free actions on trees.

For M , we consider N0 DN \G0, noting that as �.N0/ <L is finitely generated and normal, �.N0/ is
either trivial or of finite index, since L is free. In fact, �.N0/ must be the whole of L: as Q has no finite
quotients, the restriction of G�Q to G0 is onto and G0=N0 ŠQ, which means that G0=N0 cannot
map onto L=�.N0/ if the latter is a nontrivial free or finite group. It follows that N B

0
, which has finite

index in M , maps onto L.

7 Flexibility and a decision problem

It is clear from the discussion in Section 3.1 that there is a great deal of flexibility in how one chooses the
input groups Q. Consequently, one is free to impose various extra conditions on the Grothendieck pairs
P ÌB ,!G oB that we have constructed. In particular, the range of pairs that one obtains is sufficient
to accommodate many of the undecidability phenomena described in [5] and elsewhere. For example,
by following the proof of [5, Theorem B] we obtain the following theorem. Similar results hold with
condition Fixd in place of FA.

Theorem 7.1 There does not exist an algorithm that , given a finitely presented , residually finite group �
that has property FA and a finitely presentable subgroup u W P ,! � with Ou W OP ! O� an isomorphism , can
determine whether or not P has property FA.

Proof As in [5], one can enhance the groups constructed in [14] to obtain a recursive sequence of
finite presentations Q.m/ � hS j R.m/i for groups Q.m/, with S and jR.m/j fixed, so that (i) there
is no algorithm to determine which of the groups are trivial, but (ii) if Q.m/ ¤ 1 then it satisfies the
properties listed in Section 3.1. We apply the algorithm of Proposition 3.1 to the presentations Q.m/

to obtain G.m/� Q.m/, with an explicit presentation for G.m/ and hence G.m/ � G.m/. The fibre
product P .m/ ,! G.m/ �G.m/ is given by the finite generating set described in Lemma 4.3, with Bi

the given relators of G.m/. Theorem 4.1 assures us that P .m/ is finitely presentable. We pass from
P .m/ ,!G.m/�G.m/ to um WP

.m/Ì.Z=2/ ,!G.m/ o.Z=2/ and then argue as in the proof of Theorem A
to see that um induces an isomorphism of profinite completions, that G.m/ o .Z=2/ has property FA (in
fact Fix1), and that P .m/ Ì .Z=2/ maps onto Q.m/.

Note that the groups G.m/ o .Z=2/ are given by a recursive sequence of presentations and the maps um

are given by a recursive sequence of generating sets for the subgroups P .m/ Ì .Z=2/.

If Q.m/ ¤ 1 then P .m/ Ì .Z=2/ does not have FA, since it maps onto Q.m/. But if Q.m/ D 1 then um is
an isomorphism, so P .m/ does have FA. And by construction, there is no algorithm to decide which of
these alternatives holds.
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Slice genus bound in DTS 2 from s–invariant

QIUYU REN

We prove a recent conjecture of Manolescu and Willis which states that the s–invariant of a knot in RP 3

(as defined by them) gives a lower bound on its null-homologous slice genus in the unit disk bundle of
TS2. We also conjecture a lower bound in the more general case where the slice surface is not necessarily
null-homologous, and give its proof in some special cases.

57K18; 57K10, 57K40

1 Introduction

Rasmussen [7] famously defined the s–invariant for knots in S3 using Khovanov homology theory [3],
and proved that for a knot K in S3,

(1) 2g4.K/� js.K/j;

where g4.K/ is the slice genus of K, which can be defined as the minimal genus of an orientable
cobordism (in S3 � Œ0; 1�) from K to the unknot.

Analogously, Manolescu, Marengon, Sarkar and Willis [5] and Manolescu and Willis [6] defined s–
invariants (Z–valued, like the usual s–invariant) for null-homologous knots in S1 �S2 and for all knots
in RP3, respectively, and proved the same inequality (1) in these settings. Here the slice genus g4.K/

for K is still defined as the minimal genus of an orientable cobordism from K to an unknot depending on
the homology class of K (there are two unknots in RP3, one null-homologous and one not).

For an integer d , let D.d/ denote the D2–bundle over S2 with Euler number d . Thus D.0/DD2 �S2

with boundary S1 �S2; D.1/DCP2
nB4 with boundary S3; D.2/DDTS2, the unit disk bundle of

the tangent bundle of S2, with boundary RP3. For a null-homologous properly embedded orientable
connected surface †�D.d/ with boundary a knot K � @D.d/, for d D 0; 1; 2, the genus bound

(2) 2g.†/� �s.K/

was proved for d D 0; 1 [5, Theorem 1.15, Corollary 1.9] and conjectured for d D 2 [6, Conjecture 6.9].
We prove this conjecture.

© 2024 MSP (Mathematical Sciences Publishers). Distributed under the Creative Commons Attribution License 4.0 (CC BY).
Open Access made possible by subscribing institutions via Subscribe to Open.
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Theorem If .†;K/� .DTS2;RP3/ is a null-homologous properly embedded orientable connected
surface that bounds a knot K �RP3, then

2g.†/� �s.K/:

Remark 1 By reversing the orientation of D.d/, (2) for d D 0; 1; 2 implies

2g.†/� s.K/

for d D 0;�1;�2. Since a cobordism in @D.d/� Œ0; 1� from a null-homologous K � @D.d/ to an unknot
can be capped off to become a slice surface in D.˙d/, (2) for d D 0; 1; 2 can be considered as refinements
of (1) for null-homologous knots K in S1 �S2;S3;RP3, respectively. In the only other case, namely
when K �RP3 is not null-homologous, (1) is refined by (4) below with Œ†�D˙1.

When d D 0, †�D2�S2 being null-homologous is equivalent to @†�S1�S2 being null-homologous.
Since the s–invariant is only defined for null-homologous knots in S1�S2, the null-homologous condition
on † puts no restriction. When d D 1; 2, however, we could ask whether s.K/ gives genus bounds for
slice surfaces of K in D.d/ that are not necessarily null-homologous. For d D 1 this is conjectured in [5]
and proved by Ren [8, Corollary 1.5]. Explicitly, for any .†;K/� .CP2

nB4;S3/ we have

(3) 2g.†/� �s.K/� Œ†�2CjŒ†�j;

where j � j is the L1–norm (equivalently, absolute value) on H2.CP2
nB4;S3/ŠZ. We pose the following

conjecture for the case d D 2.

Conjecture If .†;K/� .DTS2;RP3/ is a properly embedded orientable connected surface that bounds
a knot K �RP3, then

(4) 2g.†/� �s.K/� 1
2
Œ†�2:

The main theorem shows the conjecture when Œ†�D 0. In fact, the same proof applies to show it in a
couple more cases.

Proposition 2 Inequality (4) holds if Œ†�D˙1;˙2;˙3 in H2.DTS2;RP3/Š Z.

In fact, in the various settings above, the s–invariants are defined for links as well as knots [1; 5; 6]. As
remarked in [5; 6], (2) for d D 0; 1; 2 and (3) reduce to computing the s–invariants of some special family
of links; similarly, (4) also reduces to computing the s–invariant of a family of links. We will explain
these reductions in Section 2. In Section 3, we calculate the s–invariants that enable us to conclude the
main theorem and Proposition 2. We also pose a technical question whose positive answer implies the
conjecture above.
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2 Reduce to s–invariant calculations

In this section, we define links T .d Ip; q/� @D.d/ for p; q � 0, such that (2) reduces to the calculation
of the s–invariants of T .d Ip;p/ for d D 0; 1; 2, and (3) and (4) reduce to that of T .d Ip; q/ for d D 1; 2.
The strategy is essentially due to [5; 6], but we carry it out explicitly for completeness.

Let S �D.d/ denote the core 2–sphere of the D2–bundle D.d/!S2. Any properly embedded oriented
surface †�D.d/ can be perturbed so that it intersects S transversely at some p points positively and
some q points negatively. Removing a tubular neighborhood of S , we obtain a properly embedded surface
†0 � @D.d/� Œ0; 1�, whose boundary on @D.d/�f1g is the original boundary of † and whose boundary
on @D.d/� f0g is an oriented link in @D.d/ consisting of pC q fibers of the S1–bundle @D.d/! S2,
p of which are oriented positively and q of which negatively. We denote the mirror of this link by
T .d Ip; q/; thus, †0 is a cobordism from T .d Ip; q/ to @†.

Example 3 T .0Ip; q/ is the disjoint union of pC q knots of the form ��S2 � S1 �S2, p of which
are oriented upwards and q of which downwards. It is denoted by Fp;q in [5].

Example 4 @D.1/! S2 is the Hopf fibration, hence its fibers have pairwise linking number 1. Thus
T .1Ip; q/ is the torus link T .pC q;pC q/ in which p of the strands are oriented against the other q

strands. It is denoted by Fp;q.1/ in [5] and T .pC q;pC q/p;q in [8].

Example 5 Think of RP3 as the 3–ball B3 with antipodal points on the boundary identified. Then
T .2Ip; q/ can be obtained by standardly embedding a half-twist on pCq strands, p of which are oriented
against the other q, into B3 such that the endpoints land on the boundary. This can be seen by realizing
T .2Ip; q/�RP3 as the quotient of T .1Ip; q/� S3 by the standard involution on S3 which gives the
quotient RP3. T .2Ip;p/ is denoted by Hp in [6].

By [1; 5; 6], if † is an oriented cobordism in Y � Œ0; 1� between two (null-homologous if Y D S1 �S2)
oriented links L0 and L1 in Y for Y DS3;S1�S2;RP3, such that every component of† has a boundary
in L0, then

(5) s.L1/� s.L0/� �.†/:

By construction, if .†;L/� .D.d/; @D.d// is a properly embedded oriented connected surface without
closed components, by deleting a tubular neighborhood of the core S �D.d/, we obtain a cobordism
†0 from some T .d Ip; q/ to L, each of whose components has a boundary in L. Turning the cobordism
upside down and applying (5) gives

(6) s.T .d Ip; q//� s.L/� �.†0/D �.†/�p� q;

where the last inequality holds because topologically †0 is † with pC q disks removed from its interior.

Algebraic & Geometric Topology, Volume 24 (2024)
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The number p� q equals to the homology class Œ†� 2H2.D.d/; @D.d// upon an identification

H2.D.d/; @D.d//ŠH 2.D.d//Š Z:

Thus, for Œ†�D p� q a fixed number, if s.T .d Ip; q//CpC q is independent of specific p; q, then (6)
can be rewritten in terms of s.L/, �.†/, and Œ†�. This is the case for d D 0 and Œ†�D 0, as well as for
d D 1 with any Œ†�. Explicitly, by [5, Theorem 1.6; 8, Theorem 1.1] we have

(7) s.T .0Ip;p//D�2pC 1; s.T .1Ip; q//D .p� q/2� 2 max.p; q/C 1:

We conjecture this is also true for d D 2 and any Œ†�, with

(8) s.T .2Ip; q//D
�

1
2
.p� q/2

˘
�p� qC 1;

and give a proof of it for Œ†�D 0;˙1;˙2;˙3.

In the special case when LDK is a knot, we have s.L/D s.K/D�s.K/ by [5, Proposition 8.8(1); 6,
Proposition 4.10; 7, Proposition 3.10]. In this case, plugging (7) into (6) gives (2) for d D 0; 1, and (3).
Plugging (8) into (6) would give the conjectural inequality (4), although we are only able to prove it for
jp� qj � 3.

Remark 6 (1) It is easy to prove (8) for pq D 0, since in this case T .2Ip; q/ is a positive link and
one can apply [6, Remark 6.3]. However this does not help in establishing (4).

(2) If (8) were true in general, one can proceed as in [8, Section 4] to determine the entire quantum
filtration structure of the Lee homology (as defined in [6]) of s.T .2Ip; q//.

3 s–invariants of T.2I p; q/

As explained in Section 2, the main theorem and Proposition 2 reduce to the following proposition.

Proposition 7 For p; q�0 with jp�qj�3, the s–invariant (as defined in [6]) of the link T .2Ip; q/�RP3

defined in Section 2 is given by

s.T .2Ip; q//D
�

1
2
.p� q/2

˘
�p� qC 1:

Stošić [9, Theorem 3] calculated the Khovanov homology groups of the positive torus links T .2n; 2n/

in their highest nontrivial homological grading h D 2n2. For dimension reasons, the Lee spectral
sequence from Kh.T .2n; 2n//˝Q to the Lee homology KhLee.T .2n; 2n// collapses immediately in this
homological degree. This can be used to give an alternative proof of s.T .1Ip;p//D 1� 2p, a fact that
is reproved in [5, Theorem 1.7]. We prove Proposition 7 by adapting the argument of Stošić. It is worth
remarking that the calculation of the more general s.T .1Ip; q// was done in [8] by pushing Stošić’s
argument slightly further. However, we were not able to achieve the same here to prove (8) in its full
generality (see Remark 9).
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3.1 Review of Khovanov homology in RP 3

We first briefly review some properties of the Khovanov/Lee homology and the s–invariant of links
in RP3, following [6]. We only give definitions that will be relevant to us. We assume the reader is
familiar with the usual theory in S3, in particular [3; 4; 7].

Think of RP3
n� as the twisted I–bundle over RP2; we see that links in RP3 can be represented by link

diagrams in RP2, and two different diagrams of the same link are related by the usual three Reidemeister
moves. Although the over/under strands are not well defined at a crossing, it is unambiguous to distinguish
positive/negative crossings (if the link is oriented or has only one component) or to define 0=1–resolutions
at a crossing in such a link diagram.

Let L � RP3 be an oriented link with an oriented link diagram D. Let 2n D .0 ! 1/n denote the
hypercube of complete resolutions seen as a directed graph, where n is the number of crossings in D.
Every vertex v corresponds to a complete resolution Dv, which is assigned an abelian group C.Dv/,
bigraded by two parameters q and k. Every edge e from a vertex v to a vertex w corresponds to a saddle
from Dv to Dw, which is assigned four maps @e

0
; @e
�; ˆ

e
0
; ˆe
C W C.Dv/ ! C.Dw/ of bidegree .0; 0/,

.0;�2/, .4; 0/, and .4; 2/, respectively. The Khovanov complex of D is

C.D/ WD
M

v

C.Dv/Œ�n�Cjvj�fnC� 2n�g

equipped with the differential @ WD
P

e @
e
0
. Here Œ � � denotes the homological grading shift, f � g denotes the

shift in the first grading (called quantum grading) of C.Dv/, n˙ denotes the number of positive/negative
crossings in D and jvj denotes the number of 1’s in v. The Lee complex is CLee.D/ WDC.D/˝Q equipped
with the differential @Lee WD

P
e.@

e
0
C@e
�Cˆ

e
CCˆ

e
0
/˝Q. For our purpose, we also consider a deformed

Khovanov complex, defined as C 0.D/ WD C.D/ equipped with the differential @0 WD
P

e.@
e
0
C @e
�/. The

cohomologies of these three complexes are denoted by Kh.L/, KhLee.L/, and Kh0.L/, respectively, which
do not depend on the choice of the link diagram D.

The group Kh.L/ is trigraded by h (homological grading), q (quantum grading), and k;1 Kh0.L/ is
bigraded by h and q; KhLee.L/ is graded by h and filtered by q. As a vector space, KhLee.L/ŠQ2jLj is
spanned by some generators Œso�, where o runs over the all possible orientations of L as an unoriented
link.2 When o is the given orientation on L, Œso� sits in homological degree 0, and its quantum filtration
degree plus 1 is defined as the s–invariant of L. As a filtered complex, the associated graded complex
of CLee.L/ is exactly C 0.L/˝Q. Thus, there is a spectral sequence with E1–page Kh0.L/˝Q that
converges to KhLee.L/, whose r th differential has bidegree .1; 4r/.

The orientation on L plays only a minor role on the group Kh�.L/, where � denotes one of the three
favors we are considering. Explicitly, negating the orientation on a sublink L0 �L shifts its grading by

1The grading k takes values in f0;˙1g, and is related to the homology class of L. For our purpose we will not need to consider
this grading in what follows.
2In fact, the definition of Œso� depends on some auxiliary choices, which we may ignore here.
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Œ2`�f6`g, where ` is the linking number between L0 and LnL0 with the new orientations. Here the linking
number of two disjoint oriented links in RP3 takes half integer values, and can be defined to be a half of
the linking number between their lifts in S3.

Every cobordism † W L0! L1 between two oriented links with diagrams D0 and D1 induces a chain
map C �.†/ W C �.D0/! C �.D1/ with some grading shifts. By design, if D0=1 are the 0=1–resolutions at
a crossing of a link diagram D of some link L, and † is the obvious saddle cobordism, then C �.D/ is
isomorphic to the mapping cone of C �.†/ up to grading shifts. More explicitly, for our convenience we
record that if D0=1 are the 0=1–resolutions of D at a positive crossing, and L0 is assigned the induced
orientation from L while L1 is assigned any orientation, then

C 0.D/Š Cone.C 0.D0/! C 0.D1/Œc�f3cC 1g/Œ1�f1g;

where cD n�.D1/�n�.D/. Thus we have the following exact triangle of deformed Khovanov homology
groups:

(9)
Kh0.L1/ŒcC 1�f3cC 2g Kh0.L/

Kh0.L0/f1g

Œ1�

If† WL0!L1 is an oriented cobordism, the induced map C �.†/ preserves the homological grading h and
changes the quantum grading q by �.†/ (or is of q–filtered degree �.†/ in the case of CLee). Moreover,
the induced map KhLee.†/ sends a generator Œso� 2 KhLee.L0/ to some

P
o0 �o0 Œso0 � 2 KhLee.L1/, where

o0 runs over orientations of L1 such that there is an orientation on † making it an oriented cobordism
.L0; o/! .L1; o

0/, and �o0 ¤ 0 provided † has no closed components. In particular, this implies (5)
because in that case there is exactly one choice of o0.

Finally, we remark that there are by definition two unknots in RP3. The class-0 unknot U0 is an unknot in
a small ball contained in RP3; the class-1 unknot U1 is a copy of the standardly embedded RP1

�RP3.
Both these unknots have rank-2 deformed Khovanov homology given by Kh00;˙1.Ui/DZ. The deformed
Khovanov homology behaves as expected under the disjoint union of two links, one in RP3 and one
in S3. In particular, regarding U0 as a knot in S3, we have Kh0.LtU0/DKh0.L/f1g˚Kh0.L/f�1g for
any link L�RP3.

3.2 Calculation of s

Now we are ready to prove Proposition 7. We first define two auxiliary families of links, T i
n and S i

n for
0� i � n� 1. These should be compared with Di

n;n�1
and Di

n;n in [8, Section 5].

Think of RP2 as D2 with antipodal points on the boundary identified. A braid diagram can be placed
into D2 with its endpoints on @D2, identified pairwise to give a link diagram in RP2; this is called by
[6] the projective closure of the given braid. Let T i

n be the link represented by the projective closure
of �n�1.�n�2�n�1/ � � � .�2 � � � �n�1/.�1 � � � �i/, and S i

n be the link presented by the projective closure
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Figure 1: Check T 0
5

and S2
3

are isotopic via Reidemeister moves.

of �n�1.�n�2�n�1/ � � � .�1 � � � �n�1/.�n�1 � � � �n�i/. We equip T i
n and S i

n with the orientation where all
strands are oriented upwards. By the description in Example 5, T .2I n; 0/ is exactly the link T n�1

n , and
all T .2Ip; n�p/ are T n�1

n with a possibly different orientation. Also, by definition S0
n D T n�1

n , and it
is easy to check by Reidemeister moves3 that T 0

n D Sn�3
n�2

(see Figure 1 for the case nD 5).

For n� 2 and i > 0, resolving the crossing in the standard diagram of T i
n that corresponds to the last word

�i gives T i�1
n as the 0–resolution and some other link .T i

n/1 as the 1–resolution. Similarly, resolving
the crossing of S i

n that corresponds to the last �n�i gives 0–resolution S i�1
n and 1–resolution .S i

n/1. By
Reidemeister moves, one may check that in fact (as unoriented links)

(10) .T i
n/1 D

�
T n�3

n�2
tU0 if i D n� 1;

T i�1
n�2

if i < n� 1;
.S i

n/1 D

�
S i�2

n�2
if i > 1;

S0
n�2
tU0 if i D 1:

Here U0 is the class-0 unknot, and as a convention we define T �1
0
D S0

0
D∅ to be the empty link.

Give .T i
n/1 and .S i

n/1 the orientations of the right hand sides in the identification (10); the skein exact
triangle (9) gives exact triangles

Kh0..T i
n/1/Œn� 1�f3n� 4g ! Kh0.T i

n/! Kh0.T i�1
n /f1g

Œ1�
�!;(11)

Kh0..S i
n/1/Œn�f3n� 1g ! Kh0.S i

n/! Kh0.S i�1
n /f1g

Œ1�
�! :(12)

We prove a lemma that gives a “graphical lower bound” of the deformed Khovanov homology groups of
T i

n and S i
n, in the spirit of [8, Theorem 2.1]. In fact, most parts of the statement won’t be relevant for our

purpose. But since the general statement is not much more complicated to state and to prove, we include
it fully here.

Lemma 8 (1) Kh0h;q.T i
n/D 0 for h< 0 or h> bn2=4c or q� h< bn2=2c� 2nC 1C i .

(2) Kh0h;q.S i
n/D0 for h<0 or h> bn2=4cCdi=2e or q�h< bn2=2c�nCi or q�2h< bn2=4c�nCi .

Remark 9 The s–invariant of all T .1Ip; q/� S3 was deduced in [8, Theorem 2.1]. The difficulty that
prevents us to similarly deduce (8) from Lemma 8 is that we were not able to establish an injectivity
result like the addendum in [8, Theorem 2.1(1)] (there we actually have an isomorphism; however, only
injectivity is needed for the proof, and only injectivity is expected in our case). See also Section 3.3.

3If one wishes to think the link diagrams as sitting in D2, there will be two additional Reidemeister moves when one crosses the
boundary, as illustrated in [2, Figure 1]. Note however the picture (e) there was incorrectly drawn.
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Proof We induct on n and i . For nD 1 this is immediate, since S0
1
D T 0

1
D U1 is the class-1 unknot.

For nD 2, T 0
2
D U0 satisfies (1). By (10) and (11), nonzero homology groups of T 1

2
are exactly

Kh0h;q.T 1
2 /D Z; .h; q/D .0; 0/; .0; 2/; .1; 1/; .1; 3/I

thus T 1
2

satisfies (1) and S0
2
D T 1

2
satisfies (2). By (10)(12), S1

2
has

Kh0h;q.S1
2 /D Z; .h; q/D .0; 1/; .0; 3/; .1; 2/; .2; 6/;

and zero elsewhere possibly except when .h; q/D .1; 4/; .2; 4/; thus it satisfies (2). Now, by the induction
hypothesis and (10), (11), and (12), (1) and (2) are inductively proved for n> 2 by checking the elementary
statements that

� the vanishing region (in the hq–coordinate plane) of Kh0.T 0
n / described in (1) is contained in that

of Kh0.Sn�3
n�2

/ described in (2);

� for i > 0, the vanishing region of Kh0.T i
n/ is contained in that of both Kh0..T i

n/1/Œn� 1�f3n� 4g

and Kh0.T i�1
n /f1g;

� the vanishing region of Kh0.S0
n / is identical to that of Kh0.T n�1

n /;

� for i > 0, the vanishing region of Kh0.S i
n/ is contained in that of both Kh0..S i

n/1/Œn�f3n� 1g and
Kh0.S i�1

n /f1g.

Proof of Proposition 7 We divide into four cases according to the value of jp� qj. We give the proof
carefully for the case jp� qj D 0, and more casually for the rest cases, as they will be similar.

Case 1 jp� qj D 0.

Write nD pC q D 2m. By Lemma 8, Kh0.T i
n/ vanishes in homological degrees h>m2. We induct on

m to show that

rank Kh0m
2;�.T i

n/D 2
� i

m

�
;(13)

inffq j Kh0m
2;q.T n�1

n /¤ 0g D 3m2
� 2m:(14)

When m D 1, we have T 0
2
D U0 satisfies (13), and T 1

2
satisfies (13) and (14) by the description of

Kh0.T 1
2
/ in the proof of Lemma 8.

Assume now m > 1. We have Kh0m
2;�.T 0

n / D 0 by Lemma 8(2) applied to Sn�3
n�2
D T 0

n ; thus T 0
n

satisfies (13). For i > 0, (11) and (10) give

rank Kh0m
2;�.T i

n/� rank Kh0m
2;�.T i�1

n /C rank Kh0.m�1/2;�.T i�1
n�2/; i < n� 1;(15)

rank Kh0m
2;�.T n�1

n /� rank Kh0m
2;�.T n�2

n /C 2 rank Kh0.m�1/2;�.T n�3
n�2 /:(16)

Using (15) iteratively and (16), as well as the induction hypothesis, we obtain

rank Kh0m
2;�.T i

n/� 2
� i

m

�
:
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On the other hand, due to the existence of the Lee spectral sequence from Kh0˝Q to KhLee, we
have that rank Kh0m

2;�.T n�1
n / is bounded below by dim Khm2

Lee.T
n�1
n /, which equals

�
2m
m

�
D 2

�
n�1
m

�
as Khm2

Lee.T
n�1
n / is generated by those generators Œso� for which o is an orientation of T n�1

n realizing
T .2Im;m/ (note components in T n�1

n have pairwise linking number 1=2). We conclude that T n�1
n

satisfies (13), and so do all T i
n , because the sharpness of the estimate above shows (15) and (16) are in

fact equalities.

The sharpness of estimate also implies that the map Kh0.T n�3
n�2
tU0/!Kh0.T n�1

n / in the exact triangle (11)
is injective upon tensoring Q. It follows that

inffq j Kh0m
2;q.T n�1

n /¤ 0g � inffq j Kh0.m�1/2;q.T n�3
n�2 /¤ 0g� 1C 3n� 4D 3m2

� 2m:

Lemma 8(1) gives the reverse inequality, so (14) is also proved.

We return to the calculation of the s–invariant. The sharpness of the estimate of rank Kh0.T n�1
n / also

implies that the Lee spectral sequence from Kh0.T n�1
n /˝Q to KhLee.T

n�1
n / collapses immediately at

homological degree h D m2. It follows that the lowest quantum filtration level of Khm2

Lee.T
n�1
n / is at

q D 3m2� 2m.

Taking into account the bidegree shift Œm2�f3m2g, the s–invariant of T .2Im;m/ is equal to the quantum
filtration degree of Œso� 2 Khm2

Lee.T
n�1
n / minus 3m2� 1, where o is any orientation of T n�1

n that realizes
T .2Im;m/ (by symmetry all these Œso�’s have the same filtration degree). Since Khm2

Lee.T
n�1
n / is spanned

by all such Œso�, any element in Khm2

Lee.T
n�1
n / has filtration degree no less than those of Œso�; in other words,

every Œso� sits in the lowest filtration level. It follows that

s.T .2Im;m//D .3m2
� 2m/� .3m2

� 1/D�2mC 1;

proving Proposition 7 for jp� qj D 0.

Case 2 jp� qj D 2.

Write nD pC q D 2m. By an induction on m one can show that

rank Kh0m
2�1;�.T i

n/D 2
� i

mC1

�
C 2

� i

m�1

�
;

inffq j Kh0m
2�1;q.T n�1

n /¤ 0g D 3m2
� 2m� 1:

Moreover, rank Kh0m
2�1;�.T n�1

n /D dim KhLee.T
n�1
n /, which implies the collapsing of the Lee spectral

sequence at hDm2� 1. After a bidegree shift Œm2� 1�f3m2� 3g, we calculate that

s.T .2ImC 1;m� 1//D .3m2
� 2m� 1/� .3m2

� 3� 1/D�2mC 3;

proving the case jp� qj D 2.

Case 3 jp� qj D 1.
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Write nD pC q D 2mC 1. By an induction on m (with base case mD 0) one can show that

rank Kh0m
2Cm;�.T i

n/D 2
� iC1

mC1

�
;

inffq j Kh0m
2Cm;q.T n�1

n /¤ 0g D 3m2
Cm� 1:

Moreover, we also conclude the immediate collapsing of the Lee spectral sequence by a dimension count,
and calculate that s.T .2ImC 1;m//D .3m2Cm� 1/� .3m2C 3m� 1/D�2m.

Case 4 jp� qj D 3.

Write nD pC q D 2mC 1. From

rank Kh0m
2Cm�2;�.T i

n/D 2
� i

mC2

�
C 2

� i

m�1

�
;

inffq j Kh0m
2Cm�2;q.T n�1

n /¤ 0g D 3m2
Cm� 3 .m> 0/;

and a dimension count, we conclude as above that s.T .2ImC 2;m� 1//D�2mC 4. We remark that in
this case one need to take both mD 0; 1 as base cases for induction, where T 0

3
D S0

1
D T 0

1
D U0 and all

Kh0.T i
3
/ can be completely determined from (11).

3.3 A question

As an analogue to [8, Question 6.1], we pose the following question, whose truth is verified in small
examples (n� 5).

Question 10 Is it true that the saddle cobordism T i
n ! T i�1

n always induces a surjection on Kh0˝Q?

A positive answer to Question 10 in the case i D n� 1 implies the saddle cobordism

T .2I n� 2; 0/tU0! T .2I n; 0/

is injective in Kh0˝Q. By the same argument as the proof of Theorem 1.1 (mD n) in [8], this implies (8);
thus the conjectural genus bound (4). Of course, (8) is a much weaker statement than Question 10 and
would follow from the surjectivity of

Kh0pq;pqCbn2=2c�n.T n�1
n /˝Q! Kh0pq;pqCbn2=2c�n�1.T n�2

n /˝Q

for all pC q D n (see Remark 9).
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[9] M Stošić, Khovanov homology of torus links, Topology Appl. 156 (2009) 533–541 MR Zbl

Department of Mathematics, University of California, Berkeley
Berkeley, CA, United States

qiuyu_ren@berkeley.edu

Received: 3 July 2023 Revised: 9 October 2023

Geometry & Topology Publications, an imprint of mathematical sciences publishers msp

https://doi.org/10.1215/S0012-7094-00-10131-7
http://msp.org/idx/mr/1740682
http://msp.org/idx/zbl/0960.57005
https://doi.org/10.1016/j.aim.2004.10.015
http://msp.org/idx/mr/2173845
http://msp.org/idx/zbl/1080.57015
https://doi.org/10.1215/00127094-2022-0039
https://doi.org/10.1215/00127094-2022-0039
http://msp.org/idx/mr/4541332
http://msp.org/idx/zbl/1535.57014
http://msp.org/idx/arx/2301.09764
https://doi.org/10.1007/s00222-010-0275-6
http://msp.org/idx/mr/2729272
http://msp.org/idx/zbl/1211.57009
http://msp.org/idx/arx/2305.16089
https://doi.org/10.1016/j.topol.2008.08.004
http://msp.org/idx/mr/2492301
http://msp.org/idx/zbl/1169.57014
mailto:qiuyu_ren@berkeley.edu
http://msp.org
http://msp.org




msp

Algebraic & Geometric Topology 24:7 (2024) 4127–4137
DOI: 10.2140/agt.2024.24.4127

Published: 9 December 2024

Relatively geometric actions of Kähler groups on CAT.0/ cube complexes

COREY BREGMAN

DANIEL GROVES

KEJIA ZHU

We prove that for n� 2, a nonuniform lattice in PU.n; 1/ does not admit a relatively geometric action on
a CAT.0/ cube complex. As a consequence, if � is a nonuniform lattice in a noncompact semisimple Lie
group G without compact factors that admits a relatively geometric action on a CAT.0/ cube complex,
then G is commensurable with SO.n; 1/. We also prove that if a Kähler group is hyperbolic relative to
residually finite parabolic subgroups, and acts relatively geometrically on a CAT.0/ cube complex, then it
is virtually a surface group.

20F65, 22E40; 32J05, 32J27, 57N65

1 Introduction

A finitely generated group is called cubulated if it acts properly cocompactly on a CAT.0/ cube complex.
Agol [1], building on the work of Wise [29] and many others, proved that cubulated hyperbolic groups
enjoy many important properties, and used this to solve several open conjectures in 3–manifold topology,
in particular the virtual Haken and virtual fibering conjectures. Wise [29, Section 17] proved the virtual
fibering conjecture in the noncompact finite-volume setting, using the relatively hyperbolic structure of
the fundamental group.

Einstein and Groves define the notion of a relatively geometric action of a group pair .�;P/ on a CAT.0/
cube complex [10]. For such an action, elements of P act elliptically. This allows the possibility that
even though the elements of P might not act properly on any CAT.0/ cube complex, there still may be a
relatively geometric action. Relatively geometric actions are a natural generalization of proper actions
and share many of the same features as in the proper case, especially when � is hyperbolic relative to P .

Uniform lattices in SO.3; 1/ always act geometrically, and thus relatively geometrically, on CAT.0/ cube
complexes; see Bergeron and Wise [5]. Bergeron, Haglund and Wise [4] prove that in higher dimensions,
lattices in SO.n; 1/ which are arithmetic of simplest type are cubulated. It also follows from this and
Wise’s quasiconvex hierarchy theorem [29] that many “hybrid” hyperbolic n–manifolds have cubulated
fundamental groups. In the relatively geometric setting, using the work of Cooper and Futer [7], Einstein
and Groves prove that nonuniform lattices in SO.3; 1/ also admit relatively geometric actions, relative to
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their cusp subgroups [10]. In fact, they prove that if .G;P/ is hyperbolic relative to free abelian subgroups
and the Bowditch boundary @.G;P/ is homeomorphic to S2, then G is isomorphic to a nonuniform lattice
in SO.3; 1/ if and only if .G;P/ admits a relatively geometric action on a CAT.0/ cube complex. This
is a relative version of the work of Markovic [24] and Haïssinsky [21] in the convex–cocompact setting,
giving an equivalent formulation of the Cannon conjecture in terms of actions on hyperbolic CAT.0/
cube complexes. It is not known whether the above results extend to all lattices in SO.n; 1/ for n� 4.

On the other hand, the work of Delzant and Gromov implies that uniform lattices in PU.n; 1/ are not
cubulated [8, Corollary, page 52]. Recall that a group � is Kähler if � Š�1.X / for some compact Kähler
manifold X . If � � PU.n; 1/ is a torsion-free uniform lattice, then � acts freely properly discontinuously
cocompactly on complex hyperbolic n–space Hn

C . The quotient M D�nHn
C is a closed negatively curved

Kähler manifold, and in particular � is a hyperbolic Kähler group. In this context, Delzant and Gromov
showed that any infinite Kähler group that is hyperbolic and cubulated is commensurable to a surface group
of genus g � 2 [8, Corollary, page 52]. Thus � is not cubulated for n� 2. Since every uniform lattice
in PU.n; 1/ is virtually torsion free, it follows that uniform lattices in PU.n; 1/ are not cubulated if n� 2.

On the other hand, uniform lattices in PU.1; 1/D SO.2; 1/, are finite extensions of hyperbolic surface
groups, and hence are hyperbolic and cubulated. Similarly, nonuniform lattices in PU.1; 1/ are the orbifold
fundamental groups of surfaces with finitely many cusps, and hence virtually free. Such lattices admit
both proper cocompact and relatively geometric actions on CAT.0/ cube complexes. Since the cusp
subgroups of a nonuniform lattice in PU.n; 1/ for n� 2 are virtually nilpotent but not virtually abelian, it
follows from a result of Haglund [20] that such a lattice does not admit a proper action on a CAT.0/ cube
complex (see Proposition 4.2).

However, the parabolic subgroups do not yield such an obstruction to the existence of a relatively geometric
action. Thus this leaves open the question of whether nonuniform lattices in PU.n; 1/ admit relatively
geometric actions on CAT.0/ cube complexes for n� 2. Our first result answers this in the negative:

Theorem 1.1 Let � � PU.n; 1/ be a nonuniform lattice with n� 2, and let P be the collection of cusp
subgroups of � . Then .�;P/ does not admit a relatively geometric action on a CAT.0/ cube complex.

Corollary 1.2 Let � be a lattice in a noncompact semisimple Lie group G without compact factors.
If either

(i) � is uniform and cubulated hyperbolic , or

(ii) � is nonuniform , hyperbolic relative to its cusp subgroups P , and .�;P/ admits a relatively
geometric action on a CAT.0/ cube complex,

then G is commensurable to SO.n; 1/ for some n� 1.

We say that a relatively hyperbolic group pair .�;P/ is properly relatively hyperbolic if P ¤ f�g. The
following result considers general relatively geometric actions of Kähler relatively hyperbolic groups on
CAT.0/ cube complexes (when the peripheral subgroups are residually finite):

Algebraic & Geometric Topology, Volume 24 (2024)
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Theorem 1.3 Let .�;P/ be a properly relatively hyperbolic pair such that each element of P is residually
finite. If � is Kähler and acts relatively geometrically on a CAT.0/ cube complex, then � is virtually a
hyperbolic surface group.

We will deduce Theorem 1.1 from Theorem 1.3 in Section 4. In fact, nonuniform lattices in PU.n; 1/ are
Kähler for n� 3; see Toledo [28, Theorem 2]. Hence Theorem 1.1 follows immediately from Theorem 1.3
in this range. However, our proof of Theorem 1.1 will work for all n � 2, and will not use this fact.
In [9], Delzant and Py considered actions of Kähler groups on locally finite finite-dimensional CAT.0/
cube complexes that are more general than geometric ones (see Theorem A for precise hypotheses),
and showed that every such action virtually factors through a surface group. We remark that the cube
complexes appearing in relatively geometric actions will in general not be locally finite.

We conclude the introduction with a sample application of Theorem 1.3:

Corollary 1.4 Suppose that A and B are infinite residually finite groups which are not virtually free. No
C 0
�

1
6

�
–small cancellation quotient of A�B is Kähler.

Proof Let � be such a small cancellation quotient of A�B. By Einstein and Ng [13, Theorem 1.1], � is
residually finite and admits a relatively geometric action on a CAT.0/ cube complex. If � were Kähler, it
would be a virtual surface group by Theorem 1.3. However, A embeds in � as an infinite-index subgroup,
and the only infinite-index subgroups of virtual surface groups are virtually free.

Outline In Section 2 we review the definition of a relatively geometric action of a group pair on a
CAT.0/ cube complex and the notion of group-theoretic Dehn fillings, and then collect some known
results about these. In Section 3 we prove Theorem 1.3. In Section 4, after reviewing the Borel–Serre and
toroidal compactifications of nonuniform quotients of complex hyperbolic space, we prove Theorem 1.1.

Acknowledgments Bregman was supported by NSF grant DMS-2052801. Groves was supported by
NSF grants DMS-1904913 and DMS-2203343. Zhu would like to thank his advisor, Daniel Groves, for
introducing him to the subject and answering his questions. He would like to thank his coadvisor, Anatoly
Libgober, for his constant support and warm encouragement. We are also grateful to the referee for many
helpful comments that improved the paper.

2 Actions on CAT.0/ cube complexes

In this section we review the notion of a relatively geometric action of a group pair .�;P/ on a CAT.0/
cube complex, defined by Einstein and Groves in [10]. We then introduce Dehn fillings of group pairs
and recall some useful results from [11].
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Definition 2.1 Let � be a group and P a collection of subgroups of � . A (cellular) action of � on a cell
complex X is relatively geometric with respect to P if

(i) � nX is compact,

(ii) each element of P acts elliptically on X , and

(iii) each cell stabilizer in X is either finite or else conjugate to a finite-index subgroup of an element of P .

Recall that if .�;P/ is a relatively hyperbolic group pair and �0 � � has finite index then .�0;P0/ is also
a relatively hyperbolic group pair, where P0 is the set of representatives of the �0–conjugacy classes of

(1) fPg
\�0 j g 2 �; P 2 Pg

Since Œ� W �0� is finite, P0 is still a finite collection of subgroups. It follows that if � admits a relatively
geometric action on a cell complex X , then .�0;P0/ also admits a relatively geometric action on X by
restriction. Thus we have the following result:

Lemma 2.2 Let �0 � � be a finite-index subgroup. If .�;P/ has a relatively geometric action on a cell
complex X , then the restriction of this action to .�0;P0/ is also relatively geometric , where P0 is defined
as in (1).

2.1 Dehn fillings

Dehn fillings first appeared in the context of 3–manifold topology and were subsequently generalized to
the group-theoretic setting by Osin [26] and Groves and Manning [17]. We now recall the notion of a
Dehn filling of a group pair .G;P/:

Definition 2.3 (Dehn filling) Given a group pair .G;P/, where P D fP1; : : : ;Pmg, and a choice of
normal subgroups of peripheral groups N D fNi E Pig, the Dehn filling of .G;P/ with respect to N is
the pair .G; xP/, where G DG=K and K D

˝̋S
Ni

˛̨
is the normal closure in G of the group generated by˚S

i Ni

	
and xP is the set of images of P under this quotient. The Ni are called the filling kernels. When

we want to specify the filling kernels we write G.N1; : : : ;Nm/ for the quotient G.

Definition 2.4 (peripherally finite) If each normal subgroup Ni has finite index in Pi , the filling is said
to be peripherally finite.

Definition 2.5 (sufficiently long) We say that a property X holds for all sufficiently long Dehn fillings
of .G;P/ if there is a finite subset B�Gnf1g such that whenever Ni\BD∅ for all i , the corresponding
Dehn filling G.N1; : : : ;Nn/ has property X .

The proof of the next theorem relies on the notion of a Q–filling of a collection of subgroups Q of G.
Recall from [19] that given a subgroup Q < G, the quotient G.N1; : : : ;Nm/ is a Q–filling if, for all
g 2G and Pi 2 P , jQ\P

g
i j D1 implies N

g
i �Q. If QD fQ1; : : : ;Qlg is a family of subgroups, then

G.N1; : : : ;Nm/ is a Q–filling if it is a Q–filling for every Q 2Q.
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Let Q be a collection of finite-index subgroups of elements of P such that any infinite cell stabilizer
contains a conjugate of an element of Q. The following is proved in [11]:

Theorem 2.6 [11, Proposition 4.1 and Corollary 4.2] Let .�;P/ be a relatively hyperbolic pair such
that the elements of P are residually finite. If .�;P/ admits a relatively geometric action on a CAT.0/
cube complex X , then

(i) for sufficiently long Q–fillings �!� D�=K, the quotient X DKnX is a CAT.0/ cube complex,
and

(ii) any sufficiently long peripherally finite Q–filling of � is hyperbolic and virtually special.

The following result is implicit in [11]. For completeness, we provide a proof.

Lemma 2.7 In the context of Theorem 2.6(i), the action of � on X is relatively geometric.

Proof Since � nX D � nX the action is cocompact. Let xP be the induced peripheral structure on � (the
image of P). The fact that elements of xP act elliptically on X follows from the fact that elements of P
act elliptically on X . Because each cell stabilizer of � Õ X is either finite or conjugate to a finite index
of subgroup of some Pi 2 P , this implies that the cell stabilizers of � Õ X are conjugate to finite-index
subgroups of Pi=.K\Pi/ (the elements of xP). Thus the action of � on X is relatively geometric.

3 Relatively geometric actions: the Kähler case

In this section we apply Theorem 2.6 to prove Theorem 1.3. The main idea is to use Dehn filling to
produce a minimal action of a finite-index subgroup of � on a tree with finite kernel. A deep result of
Gromov and Schoen implies that any Kähler group admitting a minimal action on a tree with finite kernel
must be virtually a hyperbolic surface group [16] (see also [27, Theorem 6.1] for a detailed discussion
and explanation).

Proof of Theorem 1.3 Suppose that .�;P/ acts relatively geometrically on a CAT.0/ cube complex.
Since the elements of P are residually finite, there exists a finite index �0 � � such that �0 is torsion
free and �0 nX is special, by [11, Theorem 1.4].

Cutting along an embedded two-sided hyperplane H in �0 nX yields a splitting of �0 according to
the complex of groups version of van Kampen’s theorem [6, III.C.3.11(5), III.C.3.12, page 552].1 The
edge group of such a splitting is a hyperplane stabilizer for the �0–action on X , which is relatively
quasiconvex by [12, Corollary 4.11]. We may choose a hyperplane whose stabilizer is infinite-index
in �0 (if the first such hyperplane does not satisfy this requirement, then replace X by the hyperplane,
and continue until we find such a hyperplane, possibly replacing �0 by a further finite-index subgroup

1One can also see this tree directly by considering the dual tree to the collection of hyperplanes of X which project to H . See
[19, Remark 1.1] for more details.
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along the way). The action of �0 on the Bass–Serre tree T associated to this splitting has finite kernel,
since any normal subgroup contained in an infinite-index relatively quasiconvex subgroup is finite (since
an infinite normal subgroup has full limit set in the Bowditch boundary, but an infinite-index relatively
quasiconvex subgroup does not). Let F denote the kernel of the action of �0 on T .

By a result of Gromov and Schoen in [16] (see [27, Theorem 6.1] for details), the induced action of �0

on T factors through a surjective homomorphism ' W �0!�0, where �0 � PSL2.R/ is a cocompact
lattice. The kernel of ' is contained in F , and hence finite, so �0 is commensurable up to finite kernels
with �0, which is itself virtually a hyperbolic surface group. Since any group commensurable up to finite
kernels with a hyperbolic surface group is virtually a hyperbolic surface group, this means that �0, and
hence � , is virtually a hyperbolic surface group, as desired.

4 Relatively geometric actions: lattices in PU.n; 1/

Let � be a nonuniform lattice in PU.n; 1/. Then � acts properly discontinuously on complex hyperbolic
space Hn

C and the quotient, which we henceforth denote by M D � nHn
C , is a noncompact orbifold

of finite volume with finitely many cusps. Each cusp corresponds to a conjugacy class of subgroups
stabilizing a parabolic fixed point in @1Hn

C . Farb [14] proved that � is hyperbolic relative to the collection
of these cusp subgroups, which we denote by P . In this section, we prove Theorem 1.1, namely that
.�;P/ does not admit a relatively geometric action on a CAT.0/ cube complex.

Throughout the course of the proof, we pass freely to finite-index subgroups by invoking Lemma 2.2.
In order to streamline the exposition, we do not refer to Lemma 2.2 each time. It is well known that �
has a torsion-free subgroup of finite index, so (passing to this finite-index subgroup if necessary) for the
remainder of this section we assume that � � PU.n; 1/ is torsion free.

4.1 The structure of cusps

We now briefly review the geometric structure of cusps in M . For more details see [15]. Recall that up
to scaling, each horosphere in Hn

C is isometric to H2n�1.R/, the .2n�1/–dimensional real Heisenberg
group, equipped with a left-invariant metric. The Heisenberg group is a central extension

(2) 1!R!H2n�1.R/!R2n�2
! 1

with extension 2–cocycle equal to the standard symplectic form

! D 2

n�1X
iD1

dxi ^ dyi ;

where .x1;y1; : : : ;xn�1;yn�1/ are coordinates on R2n�2. The Lie algebra h2n�1 is 2–step nilpotent
with basis fX1; Y1; : : : ;Xn; Yn; Zg, where

ŒXi ;Yi �DZ;
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and all other brackets vanish. Thus Z generates the center of h2n�1 representing the kernel R in (2),
while the remaining coordinates project to the generators of R2n�2. Choosing the identity matrix
I2n�1 as the inner product on h2n�1, we see that the isometry group of H2n�1.R/ is isomorphic to
H2n�1.R/Ì U.n� 1/, where the H2n�1.R/ factor is the action of H2n�1.R/ on itself by left translation
and the unitary group U.n � 1/ is the stabilizer of the identity. Indeed, any isometry which fixes
1 2H2n�1.R/ must also be a Lie algebra isomorphism; it therefore preserves the center hZi and induces
an isometry of R2n�2Š hX1;Y1; � � � ;Xn�1;Yn�1i preserving !. We conclude that such an isometry lies
in U.n� 1/DO2n�2.R/\Sp2n�2.R/.

Definition 4.1 Let � WH2n�1.R/ÌU.n�1/!U.n�1/ be the projection. For g 2H2n�1.R/ÌU.n�1/,
we call �.g/ the rotational part of g.

The center of H2n�1.R/ is normal in H2n�1.R/ and invariant under any isometry in U.n�1/. Therefore
we have a short exact sequence

(3) 1!RDZ.H2n�1.R//!H2n�1.R/Ì U.n� 1/!R2n�2 Ì U.n� 1/! 1:

Since � is torsion free, each cusp subgroup P � � is isomorphic to a discrete torsion-free cocompact
subgroup of Isom.H2n�1.R//. In particular, P0 D P \H2n�1.R/ is a discrete cocompact subgroup and
P \Z.H2n�1.R//Š Z. By (3), P fits into a short exact sequence

(4) 1! ZD P \Z.H2n�1.R//! P !ƒ! 1;

where ƒ is a discrete cocompact subgroup of R2n�2 Ì U.n� 1/. It follows that ƒ has a finite-index
subgroup ƒ0 isomorphic to Z2n�2, which is the image of P0.

On the level of quotient spaces, the sequence in (4) has the following translation: the quotient space
ODƒnR2n�2 is a Euclidean orbifold finitely covered by the .2n�2/–dimensional torus T Dƒ0nC

n�1,
and †D P nH2n�1.R/ is the total space of an S1–bundle over O, ie there is a fiber sequence

(5) S1 ,!†!O:

Since O need not be smooth, this is not generally a locally trivial fibration. However, as P is torsion free,
† is smooth. Passing to the torus cover, we obtain an actual fiber bundle

S1 ,! y†! T:

Choosing y† to be a regular cover with fundamental group P0, we see that the finite group F D P=P0

acts on y† preserving the fibration, and hence defines a finite group of isometries of T . Thus the stabilizer
of a point in T acts freely on the S1 fiber. Since the action of F on y† is free, it follows that point
stabilizers in T must be cyclic of finite order, and act by rotations on the fiber. Since F � U.n� 1/,
any abelian subgroup is diagonalizable. Thus, locally each point in T has a neighborhood of the form
.S1 �Dn�1/=.Z=mZ/ where D �C is the open unit disk, and Z=mZ acts on S1 by rotation by 2�=m

and on the polydisk Dn�1 by a diagonal unitary matrix � D diag.e2�k1=m; : : : ; e2�kn�1=m/ where at
least one ki is coprime to m. See Figure 1 for a schematic. Since F acts by rotation on each fiber, † is
the boundary of a disk bundle over O, which we denote by EO.
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Dn�1

Figure 1: The local picture of the fibration in (5) near a singular point of O. A nonsingular fiber
(not dashed) winds mD 2 times around the singular fiber (dashed).

Recall that the center of H2n�1.R/ is quadratically distorted. It follows that the center of P is quadratically
distorted as well. By [20, Theorem 1.5], there is no proper action of P on a CAT.0/ cube complex.
Therefore we have:

Proposition 4.2 Let � � PU.n; 1/ be a nonuniform lattice , and suppose � acts on a CAT.0/ cube
complex X . The action of each cusp subgroup of � is not proper. In particular , � is not cubulated.

4.2 The toroidal compactification of M

The toroidal compactification is a natural compactification of M which fills in the cusps with the Euclidean
orbifolds described in Section 4.1. Let Oi be the Euclidean orbifold quotient of †i , with corresponding
disk bundle Ei . Thus we can identify Ei nOi with the cusp Ci , then compactify M by adding

F
i Oi at

infinity. The result is a Kähler orbifold T .M / with boundary divisor D D
F

i Oi . The pair .T .M /;D/

is called the toroidal compactification of M . See [23; 2] for more details.

If the parabolic elements in � have trivial rotational part, then each Oi is a .2n�2/–dimensional torus,
T .M / is a smooth Kähler manifold and D is a smooth divisor in T .M /. Moreover, Hummel and
Schroeder show that T .M / admits a nonpositively curved Riemannian metric [23]. In particular, T .M / is
aspherical; if �D �1.T .M // then T .M / is a K.�; 1/. It is clear from the construction that �1.T .M //

is the quotient of �1.M / by all the centers of the peripheral subgroups. The following lemma ensures
that we can always find a finite cover of M whose toroidal compactification is smooth:

Lemma 4.3 Let � � PU.n; 1/ be torsion free and let M D � nHn
C be the quotient. There exists a finite

cover M 0!M such that the toroidal compactification of M 0 is smooth.

Proof By the main theorem of [22, page 2453] , there exists a finite subset F �� of parabolic isometries
such that if N E � is a normal subgroup satisfying F \N D ∅, then any parabolic isometry in N
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has no rotational part. Since � is residually finite and F is finite, we can find a finite-index normal
subgroup � 0E� such that � 0\F D∅. Therefore the finite cover M 0 WD� 0 nHn

C of M admits a toroidal
compactification which is smooth.

4.3 Proof of Theorem 1.1

Proof By Lemma 4.3 we may assume that � � SU.n; 1/ is torsion free and the toroidal compactification
T .M / is smooth. In particular, � and all of its peripheral subgroups are residually finite.

Suppose .�;P/ admits a relatively geometric action on a CAT.0/ cube complex X . Given a finite-index
subgroup �0 � � , let P0 be the induced peripheral structure on �0, and let �0 be �1.T .M0//, where
M0D �0 nHn

C . Since the kernel of the quotient map �0!�0 is normally generated by subgroups in P0,
we get an induced peripheral structure .�0;A0/, where A0 is the collection of images of elements of P0.
Our strategy is to show that there exists a finite-index subgroup �0 � � such that the pair .�0;A0/ is
relatively hyperbolic and admits a relatively geometric action on a CAT.0/ cube complex. Since T .M0/

is smooth (since T .M / is), �0 is Kähler. Thus, as n� 2, we will get a contradiction by Theorem 1.3.

Let P DfP1; : : : ;Pkg be the induced peripheral structure on � . Now let Z.Pi/ be the center of Pi . As in
Section 2.1 let Q be a set of finite-index subgroups of elements of P such that any infinite stabilizer for the
�–action on X contains a conjugate of an element of Q. We apply Theorem 2.6(1) to a sufficiently long
Q–filling Z D fZ1; : : : ;Zkg where Zi �Z.Pi/ is a finite-index subgroup. Residual finiteness of Z.Pi/

implies the existence of such sufficiently long Q–fillings. We thus obtain a Dehn filling  W�!�D�=K

determined by the Zi such that Y DK nX is a CAT.0/ cube complex.

Let .�;A/ be the induced peripheral structure on �. By Theorem 2.6, we know that .�;A/ is relatively
hyperbolic. Lemma 2.7 implies that the action of � on Y is relatively geometric.

Finally, we claim that there exists a finite-index subgroup �0 �� that is torsion-free. Since the elements
of A are virtually abelian, and hence residually finite, � is also residually finite by [11, Corollary 1.7].
Since � is torsion free, by [18, Theorem 4.1] so long as the filling �!� is long enough (which we may
assume without loss of generality), any element of finite order in � is conjugate into some element of A.
As there are finitely many elements of A, each of which has only finitely many conjugacy classes of
finite-order elements, we can find a finite-index subgroup �0 �� which avoids each of these conjugacy
classes, and hence is torsion free.

The induced peripheral structure .�0;A0/ is relatively hyperbolic and �0 Õ Y is relatively geometric by
Lemma 2.2. Let �0D 

�1.�0/ and let P0D fP0;1; : : : ;P0;r g be the induced peripheral structure on �0.
Then K � �0, and since �0 is torsion free, this implies K \P0;i D Z.P0;i/ for each i . As P0 is the
collection of cusp subgroups of M0 D �0 nHn

C , we conclude that �0 D �1.T .M //. Thus �0 is Kähler
and acts relatively geometrically on Y . By Theorem 1.3, we conclude that �0 is virtually a hyperbolic
surface group, which is impossible because �0 contains a subgroup isomorphic to Z2n�2 and n� 2.
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4.4 Proof of Corollary 1.2

Proof A uniform lattice (resp. nonuniform lattice) � in a semisimple Lie group G is hyperbolic (resp.
hyperbolic relative to its cusp subgroups P) if and only if G has rank 1. One direction of this is proved
by Farb [14, Theorem 4.11], and the other by Behrstock, Drut,u and Mosher [3, Theorem 1.2]. Any
rank-1 noncompact semisimple Lie group is commensurable with one of SO.n; 1/, PU.n; 1/, Sp.n; 1/
for n � 2, or the isometry group of the octonionic hyperbolic plane H2

O. The last and Sp.n; 1/ have
property (T), while SO.n; 1/ and PU.n; 1/ do not. Hence if � is commensurable with a lattice in Sp.n; 1/
or Isom.H2

O/, then � has (T).

By a result of Niblo and Reeves [25, Theorem B], any action of a group with property (T) on a finite-
dimensional CAT.0/ cube complex has a global fixed point, so lattices in Sp.n; 1/ and Isom.H2

O/ admit
neither geometric nor relatively geometric actions on CAT.0/ cube complexes. Hence if � is as in the
statement of the result, it must be commensurable to a lattice in either PU.n; 1/ or SO.n; 1/. For n� 2, the
uniform case of � � PU.n; 1/ is eliminated by the work of Delzant and Gromov [8, Corollary, page 52].
The corollary now follows from Theorem 1.1.
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