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Projective twists and the Hopf correspondence

BRUNELLA CHARLOTTE TORRICELLI

Given Lagrangian (real, complex) projective spacesK1; : : : ; Km in a Liouville manifold .X; !/ satisfying
a certain cohomological condition, we show there is a Lagrangian correspondence (in the sense of
Wehrheim and Woodward (2012)) that assigns a Lagrangian sphere Li �K of another Liouville manifold
.Y;�/ to any given projective Lagrangian Ki �X for i D 1; : : : ; m.

We use the Hopf correspondence to study projective twists, a class of symplectomorphisms akin to
Dehn twists, but defined starting from Lagrangian projective spaces. When this correspondence can be
established, we show that it intertwines the autoequivalences of the compact Fukaya category Fuk.X/
induced by the projective twists �Ki 2 �0.Sympct.X// with the autoequivalences of Fuk.Y / induced by
the Dehn twists �Li 2 �0.Sympct.Y // for i D 1; : : : ; m.

Using the Hopf correspondence, we obtain a free generation result for projective twists in a clean plumbing
of projective spaces and various results about products of positive powers of Dehn/projective twists in
Liouville manifolds.

The same techniques are also used to show that the Hamiltonian isotopy class of the projective twist
(along the zero section in T �CPn) in Sympct.T

�CPn/ does depend on a choice of framing for n> 19.
Another application of the Hopf correspondence delivers smooth homotopy complex projective spaces
K 'CPn that do not admit Lagrangian embeddings into .T �CPn; d�CPn/ for nD 4; 7.
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1 Introduction

1.1 Questions

Given a symplectic manifold .M;!/ with contact boundary, an interesting object of study is the group
Sympct.M/ of compactly supported symplectomorphisms that are the identity in a neighbourhood of the
boundary. Its quotient �0.Sympct.M// by the relation of symplectic isotopy is the symplectic mapping
class group, and is already a highly nontrivial object. When H 1.M IR/ D 0, a symplectic isotopy is
automatically Hamiltonian, and �0.Sympct.M// coincides with the quotient Sympct.M/=Hamct.M/

by the subgroup Hamct.M/� Sympct.M/ of (compactly supported) Hamiltonian symplectomorphisms
(namely time-1 maps of compactly supported Hamiltonian flows).

The symplectic mapping class group carries a (forgetful) comparison map

(1) c W �0.Sympct.M//! �0.DiffCct .M//

to the (compactly supported and orientation-preserving) smooth mapping class group of M. In general,
the map is neither injective nor surjective. Its kernel is of particular interest as it captures phenomena
which are exclusively symplectic and not visible in the smooth mapping class group. The question of
whether a symplectomorphism ' 2 Sympct.M/ is a nontrivial element of the kernel of c (ie is smoothly
isotopic to the identity but not symplectically so) is called the symplectic isotopy problem.

In dimension two, the kernel of c is always trivial, and the symplectic mapping class group is isomorphic
to the smooth mapping class group �0.DiffCct .M//; this is a consequence of Moser’s argument [1965].

Dehn twists often provide examples of nontrivial symplectomorphisms that lie in the kernel of (1). Given
a sphere L (and a choice of parametrisation, called a framing; see Definition 2.7), the periodicity of the
(co)geodesic flow can be used to construct a compactly supported symplectomorphism of the cotangent
bundle �L 2 Sympct.T

�L/ (see Definition 2.8), called a standard Dehn twist.

The standard Dehn twist has infinite symplectic order, ie infinite order in �0.Sympct.T
�Sn// [Seidel

2000] and, for nD 2, it generates the entire mapping class group �0.Sympct.T
�S2// [Seidel 1998].

Given a general symplectic manifold .M;!/ and an embedded Lagrangian sphere L � M, the local
construction of the standard Dehn twist can be implanted in a neighbourhood of L via Weinstein’s
neighbourhood theorem, to yield a compactly supported symplectomorphism �L 2 Sympct.M/. When
dim.L/ is even, the Dehn twist has finite order in DiffCct .M/ but often has infinite order in Sympct.M/.
Seidel’s early investigations provided the first global examples of (symplectically) nontrivial Dehn twists,
in particular nontrivial elements of the kernel of the comparison map (1). For example, for a K3–surface
.M;!/ containing two disjoint Lagrangian spheres L1; L2 �M, the class of �L1 has infinite order in
�0.Sympct.M//, and hence in that case c has infinite kernel [Seidel 2000]. Other important examples in
which the kernel of c is large include Dehn twists in Milnor fibres of any isolated hypersurface singularity
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[Keating 2014] and Dehn twists in projective hypersurfaces of degree d > 2 (and more general divisors
[Tonkonog 2015]).

One of the widely employed methodologies used in these investigations is symplectic Picard–Lefschetz
theory. In this context, Dehn twists are regarded as the class of symplectomorphisms that encode
symplectic monodromy maps associated to nodal degenerations, ie monodromies of Lefschetz fibrations
(see Section 2).

For an exact symplectic manifold .M;!/, any Dehn twist �L along a Lagrangian sphere L� .M;!/ can
be realised as the local monodromy of an exact Lefschetz fibration (with exact smooth fibre .M;!/ and
exact base). One important result that has been proved recently in [Barth et al. 2019] (an alternative proof
of which can be found in this paper) is that the global monodromy of such Lefschetz fibrations can never
be isotopic to the identity in the symplectic mapping class group.

Theorem A [Barth et al. 2019, Theorem 1.4] Let .M;!/ be a Liouville manifold , and letL1; : : : ; Lm�
M be Lagrangian spheres. Let � D

Qk
iD1 �Lji

2 Sympct.M/, ji 2 f1; : : : ; mg be a positive word of Dehn
twists. Then � is not compactly supported isotopic to the identity in Sympct.M/.

As a result, Dehn twists represent an extremely important source of (symplectically) nontrivial symplectic
automorphisms of exact symplectic manifolds.

In a more general setting, we can consider both positive as well as negative powers of Dehn twists. In
this case, the intersection pattern of the Lagrangians generating the twists determines the behaviour of a
product of such twists. For example, if L and L0 are two Lagrangian spheres of a Liouville manifold
.M;!/ which intersect in a single point, then the corresponding twists �L; �L0 2 Sympct.M/ satisfy the
braid relation, an isotopy �L�L0�L' �L0�L�L0 in Sympct.M/ [Seidel 1999; Seidel and Thomas 2001]. In
a general situation, Keating showed that the suitable quantifier that obstructs the possibility of a nontrivial
relation between the twists �L and �L0 is the rank of the Floer cohomology group HF.L;L0/, as follows:

Theorem 1.1 [Keating 2014, Theorems 1.1 and 1.2] Let .M;!/ be a Liouville manifold of dimension
greater than 2, and L;L0 �M be two Lagrangian spheres satisfying rank HF.L;L0/> 2 and that are such
that L and L0 are not quasi-isomorphic in the Fukaya category. Then the Dehn twists �L and �L0 generate
a free subgroup of �0.Sympct.M//, and the associated functors TL and T 0L generate a free subgroup of
Auteq.Fuk.M//.

Note that the two-dimensional case holds via a result due to Ishida [1996].

Seidel [2000] introduced a class of symplectomorphisms defined from Lagrangian submanifolds with
periodic geodesic flow. This type of Lagrangian includes spheres — in which case the symplecto-
morphisms are squared Dehn twists — and projective spaces. This paper focuses on the latter class of
symplectomorphisms, which we call projective twists (the appellation Dehn will be associated exclusively
to Dehn twists along spheres). The complex projective analogues of Dehn twists are always contained in

Algebraic & Geometric Topology, Volume 24 (2024)



4142 Brunella Charlotte Torricelli

the kernel of the comparison map (1) [Seidel 2000, Proposition 4.6], which means that they are a class
of symplectomorphisms which are never detectable by the smooth structure. Similarly to Dehn twists,
projective twists arise as local monodromies of fibration-like structures [Perutz 2007]; these fibrations are
called Morse–Bott–Lefschetz fibrations and their singularities are Morse–Bott degenerations.

Unlike their spherical counterparts, projective twists have not been in the spotlight of research in symplectic
topology, and this is for a number of reasons. The definition of projective twist requires the existence of
a Lagrangian embedding of a projective space in the ambient symplectic manifold, which can result in
strong topological restrictions. Moreover, the symplectic Picard–Lefschetz theory of [Seidel 2008a] does
not have such immediate applications as for Dehn twists.

Nevertheless, a series of recent results indicates that projective twists do have interesting properties of the
calibre of Dehn twists [Evans 2011; Harris 2011; Mak and Wu 2018].

The results of the present research are driven by the following questions, which in the existing literature
have been considered for Dehn twists exclusively:

Questions 1 Let .M;!/ be a Liouville manifold.

(a) Can a reduced word of projective twists be symplectically isotopic to the identity (ie are there
twists satisfying any nontrivial relations) in Sympct.M/?

(b) Can a reduced positive word (ie a product of positive powers) of projective twists be symplectically
isotopic to the identity in Sympct.M/?

1.2 Methods: the Hopf correspondence

How can we study projective twists? Because much of the scholarship that emerged from the study of
Dehn twists is the result of successful applications of symplectic Picard–Lefschetz theory, a first intuitive
move is to approach the study of projective twists by means of their presentation as monodromies of
Morse–Bott–Lefschetz fibrations. One strategy could be to adapt some of the arguments originally tailored
for Dehn twists to a more general Picard–Morse–Bott–Lefschetz theory, as developed in [Wehrheim
and Woodward 2016]. However, this setting presents serious complications related to a potential loss of
compactness of the moduli spaces of pseudoholomorphic curves of these fibrations (the total space of
Morse–Bott–Lefschetz fibrations is in general not exact, and the singular locus — a smooth manifold of
the singular fibre — often admits rational curves).

To examine the properties of these symplectomorphisms, in this paper we adopt a strategy that allows
to reduce the study of projective twists to that of Dehn twists in an auxiliary Liouville manifold; this is
made possible via the theoretical device of Lagrangian correspondences.

A Lagrangian correspondence between two symplectic manifolds .W; !/ and .Y;�/ is a Lagrangian
submanifold of the product W � �Y WD .W �Y;�!˚�/. By [Wehrheim and Woodward 2012; 2010a;
2010b; Gao 2017a; 2017b], under suitable conditions, a Lagrangian correspondence induces a functor
which associates a Lagrangian in Y to a Lagrangian in W.

Algebraic & Geometric Topology, Volume 24 (2024)
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In a first stage, we define an appropriate Lagrangian correspondence that relates a set of Lagrangian
projective spaces in a given Liouville manifold .W; !/ to a set of Lagrangian spheres in an auxil-
iary manifold .Y;�/ expressly built under some cohomological conditions. Fix a tuple .A; k;�; R/ 2
f.R; 0; 1;Z=2Z/; .C; 1; 2;Z/g. Assume there are Lagrangian projective spaces APnŠK1; : : : ; Km�W

and a nontrivial class ˛ 2H�.W IR/ such that ˛jKi generates H�.APnIR/. Then there is a Liouville
manifold .Y;�/, realised as a T �Sk–bundle q W Y ! W, which contains an Sk–fibred coisotropic
submanifold V !W, defining a Lagrangian correspondence � WD f.q.y/; y/ j y 2 V g �W � �Y in the
sense of [Perutz 2008]. Over each projective Lagrangian Ki �W, the correspondence yields a Lagrangian
sphere Li � Y for i D 1; : : : ; m (Sections 3.1 and 3.2). We name � the Hopf correspondence.

Once the Hopf correspondence is constructed, we use Ma’u–Wehrheim–Woodward theory and Gao’s
extension for nonclosed correspondences to show that there is an induced functor‚� WFuk.W /!Fuk.Y /
between the compact Fukaya categories (see Section 4.2). We then prove the existence of a commuting
diagram (Section 4.4)

(2)

Fuk.Y /
TLi

// Fuk.Y /

Fuk.W /

‚�

OO

TKi
// Fuk.W /

‚�

OO

where TKi 2Auteq.Fuk.W // and TLi 2Auteq.Fuk.Y // are the twist functors induced by the graphs of
the respective twists �Ki 2 Sympct.W / and �Li 2 Sympct.Y /.

1.3 Results

1.3.1 Free groups generated by projective twists In Section 5 we consider Question 1(b) and give a
first answer to it. We consider a clean plumbing (see Definition 5.1) of Lagrangian projective spaces: a
symplectic construction in which two copies of cotangent bundles T �APn are glued along a common
submanifold of the zero sections, and prove the following:

Theorem B Let W WD T �APn #AP l T
�APn be a clean plumbing of (real , complex) projective spaces

along a linearly embedded subprojective space AP l �W, A 2 fR;Cg. Let K1; K2 ŠAPn �W denote
the Lagrangian core components of the plumbing. Then the projective twists �K1 and �K2 generate a
free group inside �0.Sympct.W //, and the associated functors TK1 and TK2 generate a free subgroup of
Auteq.Fuk.W //.

In the complex case, this theorem yields a new criterion for projective twists to generate a free subgroup
of the kernel of the comparison map (1).

We prove Theorem B using the Hopf correspondence to relate the functors TK1 ; TK2 2Auteq.Fuk.W // to
functors TL1 ; TL2 2 Auteq.Fuk.Y // induced by Dehn twists in a Liouville manifold .Y;�/ constructed
as a T �Sk–bundle over W for k 2 f0; 1g. This is made possible via the commuting diagram (2).

Algebraic & Geometric Topology, Volume 24 (2024)



4144 Brunella Charlotte Torricelli

We can then apply Keating’s result (Theorem 1.1) to our setting to obtain a free generation result for TL1
and TL2 , which we translate into a free generation result for TK1 and TK2 via the Hopf correspondence.

Remark 1.2 The case W WD T �CP11 #pt T
�CP12 can be obtained with the current literature [Seidel

1999; Seidel and Thomas 2001; Khovanov and Seidel 2002], by considering W as an A2–configuration
and using the isotopies �CP1

i
' �2

S2
i

(see Remark 5.2). G

1.3.2 Positive products of twists in Liouville manifolds In Section 6.3, we restrict our attention to
products of positive powers of twists, ie Question 1(b). In a first instance, we analyse this question for
Dehn twists, and we present an alternative proof of Theorem A, which was originally proved (by Barth,
Geiges and Zehmisch [Barth et al. 2019]) via techniques involving open book decompositions. Our proof
is implemented using Picard–Lefschetz theory. The idea is to build a Lefschetz fibration � WE!C with
smooth fibre the Liouville manifold .M;!/ and vanishing cycles the given Lagrangian spheres involved
in the product � 2 Sympct.M/. In that way, the monodromy of � is given by �. Assuming that there
exists an isotopy � ' Id as in the statement, we extend � to a fibration over CP1, and, by analysing the
moduli space of pseudoholomorphic sections (following [Seidel 2003]), obtain a contradictory statement.

It can happen that a product of Dehn twists, despite being necessarily not (compactly supported sym-
plectically) isotopic to the identity, preserves some Lagrangian submanifolds of M. The question arises
whether one can find a Lagrangian T �M such that there can be no compactly supported symplectic
isotopy �.T /' T. The existence of such a Lagrangian would result in a stronger version of Theorem A.
In Section 6.2, we address this question. We find one possible candidate Lagrangian T �M with the
above properties, but unfortunately cannot prove that such a Lagrangian always exist.

A Lagrangian T �M is called conical if it is an exact, properly embedded Lagrangian that is preserved
by the Liouville flow over the cylindrical ends of M.

Theorem C Let .M 2n; !/ be a Liouville manifold containing embedded Lagrangian spheresL1; : : : ; Lm
and a conical Lagrangian disc T intersecting one of the spheres Lj transversely in a point. Let � WDQk
iD1 �Lji

2 Sympct.M/ with ji 2 f1; : : : ; mg be a positive word of Dehn twists involving �Lj . Then the
Lagrangians T and �.T / are not isotopic via a compactly supported Lagrangian isotopy.

Example 1.3 For m> 0, consider an iterated transverse plumbing

M WD T �Sm #pt T
�Sm #pt T

�Sm #pt � � � #pt T
�Sm

(see Section 5.1 for the definition of plumbing). Let � 2 Sympct.M/ be a product of Dehn twists along
the Lagrangian spheres of M such that � contains the Dehn twist along the j th sphere. In this case, there
is at least one conical Lagrangian disc T �M as in Theorem C; any cotangent fibre of the j th summand
will do. G
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The arguments we use in the proof of Theorem C are centred around the same principles as the method
used for Theorem A, with some necessary adjustments due to the noncompactness of the Lagrangian
T �M.

At last, in Section 6.3, we turn to applications related to projective twists. Using the Hopf correspondence,
we prove a result that can be considered the (real) projective counterpart to Theorem A.

Theorem D Let .W 2n; !/ be a Liouville manifold containing Lagrangian real projective spaces
K1; : : : ; Km with Ki Š RPn. Suppose that there is a class ˛ 2 H 1.W IZ=2Z/ such that , for every
i D 1; : : : ; m, ˛jKi generates H�.RPnIZ=2Z/. Let ' 2 Sympct.W / be a positive word in the subset of
projective twists f�Ki gi2f1;:::;mg. Then ' is not isotopic to the identity in �0.Sympct.W //.

Using the cohomological assumption of the theorem, we establish the Hopf correspondence and prove the
theorem by contradiction. The idea is that, in these circumstances, there exists a product of Dehn twists
� 2 Sympct.

�W / in the symplectic double cover q W .�W ; z!/! .W; !/ such that q ı � D ' ı q. Then an
isotopy ' ' Id in Sympct.W / can be lifted to an isotopy � ' Id in Sympct.

�W /, contradicting Theorem A.

Unfortunately, the same techniques do not yield a result for complex projective twists; in that case, the
auxiliary manifold .Y;�/ defines a C�–bundle q W Y ! W and a compactly supported isotopy on W
does not lift to a compactly supported isotopy on Y, so that the arguments used for Theorem D do not
apply here.

1.3.3 Framing of projective twists and Lagrangian embeddings of homotopy projective spaces
The last section uses the Hopf correspondence to examine the ways in which the symplectic structure
interferes with the underlying topological structures, such as diffeomorphism and homeomorphism class,
of Lagrangian homotopy projective spaces. In this paper, a manifold that is homeomorphic but not
diffeomorphic to a standard (real or complex) projective space is called an AD projective space. A
manifold that is homotopy equivalent but not homeomorphic to a standard (real or complex) projective
space is called an AT projective space. Similarly, an AD sphere is a sphere that is homeomorphic but not
diffeomorphic to the standard sphere (we decide to drop the usual epithet exotic; see Definition 7.6).

A notorious conjecture, the nearby Lagrangian conjecture, states that, given a closed smooth manifold Q,
any closed exact Lagrangian submanifold of .T �Q;d�Q/ is Hamiltonian isotopic to the zero section.
This conjecture has generated a lot of interest in the symplectic community, but its statement is currently
confirmed only up to simple homotopy equivalence [Abouzaid 2012b; Kragh 2013; Abouzaid and Kragh
2018]; in Section 7.1 we summarise the state of the art of this conjecture. For a homotopy sphere L,
it is known that the choice of smooth structure can be an obstruction to the existence of a Lagrangian
embedding L ,! T �Sn. Namely, for n> 4 odd, AD spheres which do not bound parallelisable manifolds
admit no Lagrangian embedding into T �Sn [Abouzaid 2012a; Ekholm et al. 2016].

Algebraic & Geometric Topology, Volume 24 (2024)
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Using the existing literature about S1–actions on AD spheres [Bredon 1967; James 1980; Kasilingam
2016], we find, in Section 7.1, examples of nonstandard homotopy complex projective spaces which
do not admit Lagrangian embeddings into T �CPn. These results are compatible with the predictions
derived from the nearby Lagrangian conjecture.

Theorem E There is a manifold P homotopy equivalent to CP4 and with the same first Pontryagin class
such that neither P nor P #†8 admits an exact Lagrangian embedding into T �CP4.

Theorem F There is an element †14 in the group of homotopy 14–spheres ‚14 such that CP7 #†14

does not admit an exact Lagrangian embedding into T �CP7.

On the other hand, in Section 7.2, we present new results which prove that, in general, the Hamiltonian
isotopy class of projective twists does depend on a choice of framing, ie a choice of smooth parametrisation
f WCPn!L (see Definition 2.7). It was proved by Dimitroglou Rizell and Evans [2015] that a nonstandard
parametrisation Sn! L of a Lagrangian sphere can give rise to a Dehn twist that is not isotopic to the
standard Dehn twist �Sn .

We use classical homotopy theory and the Hopf correspondence to transpose the existence of nonstandard
parametrisations of Dehn twists of [Dimitroglou Rizell and Evans 2015] into instances of projective twists
depending on their framing.

Theorem G The CPn–twist depends on the framing when nD 19; 23; 25; 29.

This shows that, in general, Sympct.T
�CPn/ is not generated by the standard projective twist along the

zero section �CPn (see Corollary 7.26). Moreover, we also note that the use of advanced topological
technology (topological modular forms) can prove the existence of infinitely many nonstandardly framed
(complex) projective twists (Proposition 7.24).

Organisation of the paper

The rest of the paper is organised as follows.

Sections 3 and 4 are the two theoretical cores that support the arguments throughout the paper. After
recalling the principal properties of twists in Section 2, in Section 3 we prove commutative diagrams
involving Dehn twists, the Hopf map and projective twists in the geometric setting. In Section 4, we
define the Hopf correspondence and its applications for diagrams of functors of the Fukaya category
induced by Dehn/projective twists.

The central body of the paper is divided in three parts, in which we apply the methods developed. We
prove a free group generation criterion for projective twists in plumbings in Section 5, we study positive
products of twists in general Liouville manifolds in Section 6, and we study framings of projective twists
as well as Lagrangian embeddings of homotopy projective spaces in Section 7.
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May we remember that mathematics is a verb, conjugated plurally.

2 Twists

This section provides the contextualisation necessary for studying Dehn twists and projective twists in
symplectic topology; it can be skipped by the expert reader. We summarise the constructions of twists
from a geodesic flow perspective (Section 2.1), and as local monodromies of fibrations (Section 2.2).
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2.1 Twists from geodesic flow

In this section we recall the definitions of Dehn and projective twists that employ the periodicity of
the geodesic flow of spheres and projective spaces (the main references are [Seidel 2003, Section 1.2;
2000, Section 4.b; Mak and Wu 2018, Section 2.1]). Let .K; g/ be a closed connected Riemannian
manifold admitting a periodic cogeodesic flowˆtK WT

�K!T �K on its cotangent bundle .T �K; d�T �K/
such that each geodesic of length 2� is closed (so that the shortest period of a unit-speed geodesic is 2�).

Let k � kK be the norm associated to the given Riemannian metric g. The normalised cogeodesic flow
satisfies ˆ2�K D Id and can be extended to a Hamiltonian S1–action �Ht on T �K nK, with moment map
H W T �K nK!R, H.v/D kvkK .

Definition 2.1 Let K be diffeomorphic to Sn. For " > 0, define an auxiliary smooth cut-off function
r" WRC!R such that 0 < r".t/ < � for all t < " and

r".t/D

�
� � t if t � ";

0 if t > ":
(3)

The model Dehn twist � loc
K W T

�K! T �K is defined as

� loc
K .�/D

�
�H
r".k�kK/

.�/ if � …K;
�� if � 2K: G

(4)

Definition 2.2 Let K be diffeomorphic to APn for A 2 fR;C;Hg. For " > 0, let r" W RC! R be a
smooth cut-off function such that 0 < r".t/ < 2� for all t < " and

r".t/D

�
2� � t if t � ";

0 if t > ":
(5)

The model projective twist � loc
K W T

�K! T �K is defined as

� loc
K .�/D

�
�H
r".k�kK/

.�/ if � …K;
� if � 2K: G

(6)

Remark 2.3 Our choice of cut-off functions r" follows [Mak and Wu 2018, Section 2.1], but the
construction is independent of such choices, up to suitable isotopy [Seidel 2000]. G

Theorem 2.4 [Seidel 2000, Corollary 4.5] Let .K; g/ be a Riemannian manifold admitting a periodic
(co)geodesic flow and satisfying H 1.KIR/D 0. Then the symplectomorphisms � loc

K have infinite order
in �0.Sympct.T

�K//.

Theorem 2.5 [Seidel 2000, Proposition 4.6] The symplectomorphism � loc
CPn of Definition 2.1 is isotopic

to the identity in Diffct.T
�CPn/.

Remark 2.6 We will often denote the standard twists by �Sn WD � loc
Sn or, for A2fR;C;Hg, �APn WD �

loc
APn .

With the conventions (3) and (5), the isomorphisms S1 Š RP1, S2 Š CP1 and S4 Š HP1 induce
isotopies �2

S1
' �RP1 , �2

S2
' �CP1 and �2

S4
' �HP1 , respectively (see [Seidel 2000; Harris 2011]). G
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Now suppose .L; g/ is a Riemannian manifold admitting a Lagrangian embedding L�M into a general
symplectic manifold .M;!/.

Definition 2.7 Let K 2 fSn;RPn;CPn;HPng. A framed Lagrangian sphere/projective space is a
Lagrangian submanifold L�M together with an equivalence class Œf � of diffeomorphisms f WK! L,
where f1� f2 if and only if f �12 f1 is isotopic, in Diff.K/, to an element of the isometry group Iso.K; g/.
An equivalence class Œf � as above is called a framing. G

Definition 2.8 Let .L; Œf �/ be a framed Lagrangian sphere/projective space in .M;!/. Using Wein-
stein’s neighbourhood theorem, extend a framing representative f WK! L to a symplectic embedding
� W DsT

�K ! M, where DsT �K WD fv 2 T �K j kvkK < sg for s > 0. There is a model twist � loc
K ,

supported in the interior of DsT �K, and we define

�L Š

�
� ı � loc

K ı �
�1 on Im.�/;

Id elsewhere.

In the case where L is a sphere, the map �L is the well-known Dehn twist. When L is a projective space,
the resulting map is called a projective twist. In this paper, the term Dehn twist is exclusively reserved for
twists that are constructed from a Lagrangian sphere. G

Remark 2.9 (1) A Dehn twist along an exact Lagrangian sphere, or a projective twist along an exact
projective Lagrangian in an exact symplectic manifold, is an exact symplectomorphism in the
sense of Definition 2.11. The same holds for products of such twists. This follows by construction
(for direct computations, see for example [Barth et al. 2019, Lemma 4.4; Chiang et al. 2016,
Lemma 2.1]).

(2) Theorem 2.5 implies that, given a symplectic manifold .M;!/, any Lagrangian LŠCPn �M

will define an element �L 2 Sympct.M/ that is isotopic to the identity in Diffct.M/. G

As shown by Dimitroglou Rizell and Evans [2015], the choice of framing does play a role in determining
the symplectic isotopy class of a spherical Dehn twist. In Section 7, we prove that this is also the case for
projective twists. Before then, any given Lagrangian submanifold involved in the construction of a twist
is assumed to be endowed with a choice of framing and we omit mentioning this datum, as the results of
this paper, up to the last section, are independent of such choices. This is because the autoequivalence of
the Fukaya category induced by a Dehn twist (see Section 2.3) is independent of the choice of framing
(as a consequence of the shape of the functor; see [Seidel 2008a, Corollary 17.17]). The same is true for
the functor induced by the projective twist [Mak and Wu 2018, Theorem 6.10].

2.2 Twists as monodromies

This section approaches twists from a different perspective, one that presents these symplectomorphisms
as monodromy maps of fibration-like structures. Dehn twists occur as (local) monodromies of Lefschetz
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fibrations, and this is one of the features that has made the study of Dehn twists particularly productive.
On the other hand (it is a lesser known fact that) projective twists can be modelled as local monodromies
of Morse–Bott–Lefschetz fibrations, another class of fibrations admitting more degenerate singularities,
which we will not discuss here.

Below we give a brief review of Lefschetz fibrations (mainly following [Seidel 2008a; Maydanskiy and
Seidel 2010]) on Liouville manifolds, aimed at setting the notation for future sections, and recall the
well-known Picard–Lefschetz theorem.

Definition 2.10 A Liouville manifold of finite type is an exact symplectic manifold .W; ! D d�W /,
where �W 2�1.W / is called the Liouville form, such that there exists a proper function hW WW ! Œ0;1/

and c0 > 0 with the following property: for all c 2 .c0;1/ and x 2 h�1W .c/, the vector field ZW dual
to �W , called the Liouville vector field, satisfies dhW .ZW /.x/ > 0.

For a regular value c of hW , a closed sublevel set M WD h�1W .Œ0; c�/ of a Liouville manifold .W; d�W /
is a compact symplectic manifold with contact type boundary .† WD h�1W .c/; �W j†/, and it is called a
Liouville domain. G

Definition 2.11 An exact symplectomorphism between two Liouville manifolds .W1;d�1/ and .W2;d�2/
is a diffeomorphism  W W1 ! W2 satisfying  ��2 � �1 D df for a compactly supported function
f WW1!R. G

Definition 2.12 Now let .M; d�/ be a Liouville domain with contact boundary .† D @M; ˛ D �j†/.
The negative Liouville flow identifies a collar neighbourhood C.†/ of the boundary with .�"; 0��@M, so
that �jC.†/ D et˛. An almost complex structure J of contact type near the boundary is one that satisfies
det ıJ D��. G

Definition 2.13 Given a Liouville domain .M; d�/ as above, we can use the identification of the collar
neighbourhood C.†/ to glue an infinite cone and define the symplectic completion of M,

.W; !W / WD
�
M [ Œ0;1/� @M; d.et˛/

�
;(7)

where t is the coordinate on .0;1/, such that the Liouville flow extends to ZW with ZW jŒ0;1/�@M D @t .

An almost complex structure J of contact type extends to an almost complex structure JW on the
completion satisfying:

� JW .@=@t/DR˛, where R˛ is the Reeb vector field associated to ˛.

� JW is invariant under translations in the t–direction.

� JW jM D J.

This kind of almost complex structure will be called cylindrical. G
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We will only consider Liouville manifolds that are complete (ie with complete Liouville vector field) and
of finite type, which we can identify as the union of a Liouville domain with a cylindrical noncompact
end, equipped with an almost complex structure cylindrical at infinity.

Let .E2nC2; �E ; �E / be a Liouville manifold, with a compatible almost complex structure JE , and
consider the complex plane with its standard symplectic form and complex structure jC . Let � WE!C

be a map with finitely many critical points, which are all nondegenerate, and contained in a compact set
of E. Denote by Crit.�/ WD fx 2E jDx� D 0g the set of critical points, and by Crit v.�/ WD �.Crit.�//
the set of critical values.

Definition 2.14 A Lefschetz fibration on (the Liouville manifold) E is a .JE ; jC/–holomorphic map � ,
ie D� ıJE D jC ıD� , with the above properties and the following additional features:

(1) For all x 2E nCrit.�/, ker.Dx�/� TxE is symplectic.

(2) Every smooth fibre is symplectomorphic to the completion of a Liouville domain .M; d�M /.

(3) There is an open neighbourhood U h � E such that � W E nU h! C is proper and �jUh can be
trivialised via an isomorphism f W U h ŠC � .Œ0;1/� @M/ such that

(8) f �.�E /D �CC e
t�M : G

For more details about how this fibration is modelled outside of a neighbourhood of the critical points,
see [Maydanskiy and Seidel 2010, (2.1)].

By the first point above, there is a symplectic splitting

TxE D ker.Dx�/˚TxEh;(9)

where TxEh is the symplectic complement of ker.Dx�/ with respect to �E . The decomposition
in (9) defines a canonical connection over C nCrit v.�/. By the triviality condition (3), for every path
 W Œ0; 1�!D nCrit.�/, there are well-defined parallel transport maps h WE.0/!E.1/ which yield
symplectomorphisms between smooth fibres.

Definition 2.15 A pair .JE ; jC/ is said to be compatible with � if the following holds:

� D� ıJE D jC ıD� .

� There is a local Kähler structure J0 such that JE D J0 in a neighbourhood of Crit.�/.

� On the neighbourhood U h, JE is a product, f �.JE / D .jC; J
vv/, where J vv is a cylindrical

almost complex structure compatible with d.et�M /.

� �E . � ; JE � / is symmetric and positive definite. G
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Remark 2.16 This choice of almost complex structure is not generic. However, the space of compatible
almost complex structures on the total space of an exact Lefschetz fibration is contractible [Seidel 2003,
Section 2.1], and the moduli spaces we will consider still meet the usual regularity requirements [Seidel
2003, Section 2.2]. G

For a Lefschetz fibration on a Liouville manifold .E;�E /, the proper fibration obtained as E nU h!C

for an open neighbourhood U h � E as above carries the same symplectic information as � with the
difference that its fibres are Liouville domains, and as a result the total space admits a nontrivial horizontal
boundary, given by the union of the boundaries of all fibres.

In most of the paper we will employ this latter type of Lefschetz fibration (for notational simplicity), and,
unless specified, an exact Lefschetz fibration will denote a fibration obtained in this way.

Now let � W E ! C be an exact Lefschetz fibration, with smooth fibre given by the Liouville domain
.M; d�/. By the triviality assumption of Definition 2.14, there is a neighbourhood of U @ � E of the
horizontal boundary @hE that is isomorphic to an open neighbourhood of the trivial bundle C � @M,

U @ ŠC �M out
�C �M;(10)

where M out �M is a collar neighbourhood of @M. The isomorphism is compatible with the Liouville
forms and the almost complex structures.

Let � W E ! C be a Lefschetz fibration with exact compact fibre .M;!/ and distinct critical values
Crit v.�/D fw0; : : : ; wmg �DR, where DR �C is a disc of radius R. Fix a basepoint z� 2R such that
z�� R, and an identification ��1.z�/ŠM. In what follows we will frequently use the fact that, via
parallel transport, any fibre ��1.z/ for z 2C with Re.z/ > R can be symplectically identified with the
smooth fixed fibre M via parallel transport.

Definition 2.17 (1) A vanishing path associated to a critical value wi 2 Crit v.�/ is a properly
embedded path i WRC!C with �1i .Crit v.�//D f0g, i .0/D wi and limt!1 Re..t//D1
such that, outside of a compact set containing the critical values, the image of i is a horizontal
half ray at height ai 2R:

9T > 0 8t > T Re.i .t// > R and Im.i .t//D ai :(11)

(2) A distinguished basis of vanishing paths for � is a collection ofmC1 disjoint paths .0; : : : ; m/�C

defined as above, with pairwise distinct heights satisfying a0 < a1 < � � �< am.

(3) The corresponding basis of Lefschetz thimbles is the unique set of Lagrangian discs .�0 ; : : : ; �m/
in E, where �i is defined as the set of points which under the limit t! 0 of the parallel transport
maps over i are mapped to the critical point in �1.wi / (the proof of uniqueness can be found in
[Seidel 2008a, (16b)]). Given a general Lefschetz thimble L, define its height a.L/ as the value
defined in (11). For a pair of thimbles .L0;L1/, set L0 > L1 if a.L0/ > a.L1/.
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a0

am

w0

wm

z�

0

m
`m

`0

Figure 1: A distinguished basis of vanishing paths .0; : : : ; m/.

(4) There is an associated basis of vanishing cycles .V0; : : : ; Vm/ where, for all i D 0; : : : ; m,

Vi D @�i D�i \M �M

(using the above identification for smooth fibres). Every vanishing cycle Vi � M is an exact
Lagrangian sphere which comes with an equivalence class in of diffeomorphisms Sn! Vi defined
up to the action of O.nC1/ (called a framing). This is induced by the restriction of a diffeomorphism
DnC1!�i (which is canonical; see [Seidel 2003, Lemma 1.14]). G

Definition 2.18 The global monodromy is the symplectomorphism � 2 Sympct.M/ whose Hamiltonian
isotopy class is defined by the anticlockwise parallel transport map around a loop through the basepoint z�
encircling all the critical values of the fibration. (Typically, this loop is defined as the smoothing of the
concatenation of the loops centred at z� going around a single critical value as in Figure 1.) G

The symplectic Picard–Lefschetz theorem [Arnold 1995] states that the global monodromy � is isotopic
to the product of the Dehn twists along the vanishing cycles .V0; : : : ; Vm/,

� ' �V0 � � � �Vm 2 Sympct.M/;(12)

and the Hamiltonian isotopy class is independent of the choice of basis of vanishing paths.

On the other hand, given the data f.M;!/; .V0; : : : ; Vm/g, there is an exact Lefschetz fibration � WE!C

with fibre .M;!/, and vanishing cycles .V0; : : : ; Vm/ � M, unique up to exact symplectomorphism
[Seidel 2008a, (16e)].

Remark 2.19 Lefschetz fibrations can be viewed as a special case of Morse–Bott–Lefschetz (abbreviated
MBL) fibrations, a class of fibrations which allows nonisolated singularities. The monodromies of such
fibrations are symplectomorphisms called fibred twists [Perutz 2007], which naturally generalise Dehn
twists. Projective twists are a special type of fibred twists, and therefore also admit a presentation as local
monodromies. However, in this paper, we won’t study projective twists from this perspective. G
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2.3 Functor twists

This section only contains the notation (and the general notions involved) that we will use for the functors
of the Fukaya category that are induced by twists.

Let .M;!/ be a Liouville manifold and let k be a field of characteristic 2. Given two closed exact
Lagrangian submanifolds L0; L1 �M the Floer complex is freely generated as a vector space by the
intersection points of the (perturbed) Lagrangians CF.L0; L1I k/ WD

L
x2L0\L1

khxi. The boundary
operator @ W CF.L0; L1I k/! CF.L0; L1I k/ counts JM–holomorphic strips with boundary conditions
on .L0; L1/ and asymptotic conditions on intersection points. For a compatible cylindrical almost
complex structure JM , the moduli spaces of such curves are compact oriented manifolds [Seidel 2008a,
Sections 8–9] and the operator @ squares to zero [Seidel 2008a, (9e)], so that .CF.L0; L1I k/; @/ is a
well-defined cochain complex whose cohomology is the Floer cohomology ring HF.L0; L1I k/. Floer
cohomology is designed to be invariant under Hamiltonian isotopies; if � is the flow of a Hamiltonian
vector field, then HF.L0; �.L1//Š HF.L0; L1/.

Very simply put, the compact Fukaya category, Fuk.M/, is anA1–category whose objects are closed exact
Lagrangian branes, which are Lagrangian submanifolds with additional algebraic data, and morphisms the
Floer cochain groups between transversely intersecting Lagrangians [Seidel 2008a, (9j) and (12g)]. This
category encodes intersection data associated to all its objects, including the Floer differential @D �1,
the Floer cup product �2 and higher-order products �k (see eg [Seidel 2008a, (9j) and (12g)]). It is well
defined for any Liouville manifold (see [Seidel 2008a]).

Two Lagrangians that are Hamiltonian isotopic are quasi-isomorphic objects in the Fukaya category,
which means they are isomorphic objects of the associated cohomological category, which we denote
by H.Fuk.M//. We denote the automorphisms of H.Fuk.M// (ie the automorphisms of the Fukaya
category up to quasi-isomorphism) by Auteq.Fuk.M//.

Let Tw.Fuk.M// be the category of twisted complexes in Fuk.M/ (see [Seidel 2008a, (3k)]), and
D[ Fuk.M/ WDH.TwFuk.M// the cohomology category of Tw.Fuk.M//.

There is a map

ˆ W Sympct.M/! Auteq.D[ Fuk.M//(13)

to the group of auto-equivalences of the Fukaya category (modulo quasi-isomorphism) such that, given
� 2 Sympct.M/, ˆ.�/ sends a Lagrangian L � M to another Lagrangian �.L/ � M (we avoid dis-
cussing a graded situation in this context). The map factors through the quotient by the subgroup
Hamct.M/ � Sympct.M/ of compactly supported Hamiltonian diffeomorphisms, so, given an exact
Lagrangian sphere/projective space L and its associated twist �L, ˆ.�L/ defines a well-defined element
of Aut.D[ Fuk.M//, which we denote by TL.
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Seidel [2003] showed that, for a Dehn twist �L, the induced functor TL 2 Aut.D[ Fuk.M// fits into an
exact triangle (see [Seidel 2008a, (17j)]).

Recently, there have been generalisations of Seidel’s triangle for a wider class of symplectomorphisms,
achieved through a range of different techniques. Wehrheim and Woodward [2016] proved the existence
of an exact triangle for fibred twists using quilt theory adapted to Morse–Bott Lefschetz fibrations.

Mak and Wu [2018] treated the case of projective twists, using Lagrangian cobordism theory as developed
in [Biran and Cornea 2013; 2014]. They proved that the autoequivalence induced by a (real, complex,
quaternionic) projective twist is isomorphic to a double cone of functors in Aut.TwFuk.M// [Mak and
Wu 2018, Theorem 6.10].

Under the appropriate circumstances, the mirror symmetry conjecture gives conjectural descriptions
of such functors. If a symplectic manifold .M;!/ has a mirror complex manifold .X; J /, there are
autoequivalences of the Fukaya category of M that are induced by autoequivalences of the derived
category of coherent sheaves of X (we call such autoequivalences algebraic twist functors, and will only
refer to them in Remark 4.15).

3 Commuting diagrams of twists

In this section we introduce the geometric ideas underpinning the philosophy of the Hopf correspondence.
We prove a criterion for relating projective twists in a Liouville manifold .W; !/ to Dehn twists in another
Liouville manifold .Y;�/.

3.1 Complex projective Lagrangians

We begin by considering Lagrangian complex projective spaces.

Fix the round metric on S2nC1, with norm k � kS , and consider the free S1–action on S2nC1 by complex
multiplication. The orbits of the action are great circles (“Hopf circles”), hence geodesics, and the action
is isometric.

Consider the quotient map h WS2nC1!CPn, which is the (generalised) Hopf fibration. It is a Riemannian
submersion that uniquely defines the Fubini–Study metric gP on CPn. Identify the tangent bundles with
their corresponding cotangent bundles TS2nC1 Š T �S2nC1 and TCPn Š T �CPn via the canonical
isomorphism induced by the metrics.

The Hopf action on S2nC1 lifts to a Hamiltonian S1–action on the cotangent bundle .T �S2nC1; !T �Sn/
[Guillemin and Sternberg 1990]. Let � W T �S2nC1!R be the moment map of this action. Assume 0 is
a regular value of � and consider the level set V WD ��1.0/� T �S2nC1, which has the structure of a
principal S1–bundle p W V ! T �CPn over the symplectic quotient T �S2nC1==S1 WD V=S1 Š T �CPn.
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Lemma 3.1 Let �S2nC1 2 Sympct.T
�S2nC1/ and �CPn 2 Sympct.T

�CPn/ be the model Dehn and
projective twists , respectively. Let p W V WD ��1.0/! T �CPn be the symplectic quotient map as above.
There is a commuting diagram

(14)
V

�
S2nC1

jV
//

p
��

V

p
��

T �CPn
�CPn

// T �CPn

Proof The Hopf action is isometric, ie for any g 2S1, the induced map  g 2Diff.S2nC1/ is an isometry.
This implies that the differential maps on the tangent bundlesDx g WTxS2nC1!T g.x/S

2nC1 commute
(for any x 2 S2nC1) with the geodesic flow.

The cogeodesic flow ˆtH on T �S2nC1 is induced by the Hamiltonian function

(15) zH W T �S2nC1!R; .x; �/ 7! k�kS :

This is S1–invariant, so there is a Hamiltonian function H W T �CPn!R defined on the quotient with
respect to the submersion metric gP , which induces the (co)geodesic flow on T �CPn. Since p is induced
by a Riemannian submersion, we have the relation p ıˆt

zH
jV Dˆ

t
H ıpjV , and, for any choice of cut-off

function r" as in Section 2.1,

p ı �
zH
r".k�kS /

.�/D �Hr".kp.�/kP / ıp.�/; � 2 V � T �S2nC1;(16)

where �Ht and � zHt are the Hamiltonian S1–actions induced by H and zH, respectively, as in Section 2.1.

Any geodesic connecting a point on S2nC1 to its antipode projects, under p, to a closed geodesic of
minimal period on CPn (it cannot collapse to a point since the Hopf action is isometric), so the definitions
of the twists in Section 2.1 imply that p ı �S2nC1 jV D �CPn ıpjV .

We now extend the above discussion to a more global situation; in order to do that it is necessary to set
the following assumption:

Assumption (CX) Let .W; !/ be a 4n–dimensional Liouville manifold with a homology class ˛ 2
H 2.W IZ/ and Lagrangian complex projective spaces K1; : : : ; Km �W such that

˛jKi D x 2H
2.CPnIZ/ for all i;

where x D c1.OCPn.�1// is the generator of the cohomology ring H�.CPnIZ/Š ZŒx�=xnC1.

Proposition 3.2 Let .W; !/ be a 4n–dimensional Liouville manifold containing embedded Lagrangian
complex projective spaces K1; : : : ; Km � W. Assume there exists a class ˛ 2 H 2.W IZ/ satisfying
Assumption (CX). Then there is a .4nC2/–dimensional Liouville manifold .Y;�/ with Lagrangian

Algebraic & Geometric Topology, Volume 24 (2024)



Projective twists and the Hopf correspondence 4157

spheres L1; : : : ; Lm � Y, a coisotropic submanifold V � Y with the structure of an S1–fibre bundle
p W V !W such that , for each i 2 f1; : : : ; mg, Li � V , and there is a commuting diagram

(17)
V

�Li jV
//

p

��

V

p

��

W
�Ki

// W

The class ˛ 2 H 2.W IZ/ restricts to a generator x 2 H 2.CPnIZ/ on each Lagrangian Ki , so there
is a complex line bundle L ! W satisfying c1.L/ D ˛ which is modelled on the tautological line
bundle OCPn.�1/ over Ki for i D 1; : : : ; m. Fix a metric k � kL on L, and for u 2 L define a function
r.u/ WD kukL. Set V WD fu 2 L; r.u/D 1g. Over Ki , V defines a sphere Li WD V jKi .

Lemma 3.3 The C�–bundle associated to L is a Liouville domain , where the spheres Li are embedded
as Lagrangian submanifolds.

Proof enote this bundle by q W Y !W. Following [Ritter 2014, Section 7.2], we build a symplectic form
� on Y, making the spheres Li Lagrangian, and find the appropriate vector field which will be Liouville
with respect to �.

The metric induces a connection one-form r on L n 0 satisfying

r jHru
D 0; r jT vuL D  for all u 2 L n 0; Œdr �D�q�.c1.L//D�q�.˛/;(18)

whereHru L is the horizontal distribution associated to the connection r at u, T vu L the vertical distribution,
and  the fibrewise angular form defined by the metric. Let � WD q�! C d.f .r/r/ for a function
f 2 C1.R/ with

f .1/D 0; f 0.r/ > 0 for all r 2R:

Then � defines a symplectic form in a neighbourhood of fr D 1g, and Li is Lagrangian with respect to �.
Let � be the Liouville one-form on W with d�D !. Define �Y WD q��C f .r/r , so that d.�Y /D�.
Then .�Y ; �/ defines a Liouville structure near fr D 1g (the symplectic dual to �Y points outwards along
a small neighbourhood of fr D 1g). Therefore, a symplectic completion along this neighbourhood yields
a Liouville manifold that is diffeomorphic to Y, containing the Lagrangian spheres L1; : : : ; Lm.

Proof of Proposition 3.2 Let L! W be the complex line bundle we have constructed above with
c1.L/D ˛. For each Lagrangian projective space Ki �W, the restriction of the bundle LjKi is modelled
on the tautological line bundle, which implies that Li ! Ki is modelled on the Hopf quotient map
h W S2nC1! CPn. The commutativity of (17) follows by the local commuting diagram of cotangent
bundles (14).
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Example 3.4 Without Assumption (CX), Proposition 3.2 is in general not true, as the following example
illustrates. Consider the manifold W obtained by attaching a 3–handle to the contact boundary of
DsT

�CP2 (s > 0) such that H 2.W IZ/ D 0. On one hand, W contains a nontrivial Lagrangian
K DCP2 �W coming from the zero section (which is preserved by the handle attachment, since it is
disjoint from the boundary; note that the handle attachment is subcritical, so in fact the whole wrapped
Fukaya category is preserved; see [Ganatra et al. 2024]). However, as there is no nontrivial 2–cohomology
class on W, there is no nontrivial S1–bundle over W that can be used to build a sphere over K. G

3.2 Real projective Lagrangians

A similar procedure can be applied to a Liouville manifold containing real projective Lagrangians with
an appropriate cohomology criterion. First recall the following.

Let S0ŠZ=2Z act on the sphere Sn by the antipodal map. The quotient map h WSn!RPn is in this case
a covering map, and induces a symplectic double cover q W T �Sn! T �RPn with q�!T �RPn D !T �Sn .

Lemma 3.5 [Mak and Wu 2018, Lemma 2.4] Let �RPn 2 Sympct.T
�RPn/ be the RPn–twist defined

as in Section 2.1. Then the diagram

(19)
T �Sn

�Sn
//

q
��

T �Sn

q
��

T �RPn
�RPn

// T �RPn

:

commutes.

Assumption (RE) Let .W; !/ be a 2n–dimensional Liouville manifold with a homology class ˛ 2
H 1.W IZ=2Z/ and Lagrangian real projective spaces K1; : : : ; Km �W such that

˛jKi D x 2H
1.RPnIZ=2Z/ for all i;

where x D e.1;nC1R / is the Euler class of the real tautological bundle 1;nC1R !RPn, and generator of
the cohomology ring H�.RPnIZ=2Z/Š Z=2ZŒx�=xnC1.

Proposition 3.6 Let .W; !/ be a 2n–dimensional Liouville manifold containing embedded Lagrangian
real projective spaces K1; : : : ; Km � W. Assume there is a class ˛ 2 H 1.RPnIZ=2Z/ satisfying
Assumption (RE). Then there is a 2n–dimensional Liouville manifold .�W ; z!/ containing Lagrangian
spheres L1; : : : ; Lm � �W and a commuting diagram

(20)

�W �Li
//

q

��

�W
q

��

W
�Ki

// W
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Proof In this case, the class ˛ 2H 1.W IZ=2Z/ defines a symplectic double cover q W .�W ; z!/! .W; !/.
Each Lagrangian Ki ŠRPn then lifts to its double cover Li , which is a sphere Sn � �W. Let � be the
Liouville form on W. As q is symplectic, z! D q�.!/D q�.d�/D d.q�.�//, and Q� WD q�.�/ defines a
Liouville form on �W, which gives �W the structure of a Liouville manifold. Then the result follows by the
local case, illustrated by Lemma 3.5.

Remark 3.7 It is possible to obtain an analogous diagram for the quaternionic twist as follows. Consider
the free S3' Sp.1/–action on S4nC3 inducing the quotient map h W S4nC3!HPn. This is a submersion
as in the complex case, and the same arguments (with the natural metrics) yield the local commuting
diagram

(21)
��1.0/

�
S4nC3

j
��1.0/

//

p

��

��1.0/

p

��

T �HPn
�HPn

// T �HPn

where p W ��1.0/! T �HPn is the S3–fibre bundle induced given by the symplectic quotient map of the
Hamiltonian action induced on T �S4nC3.

Given an 8n–dimensional symplectic manifold .W; !/ containing quaternionic projective Lagrangians,
one would hope to find a cohomological condition to ensure the existence of a symplectic .8nC6/–
dimensional manifold .Y;�/ with corresponding Lagrangian spheres, as we did for the real and complex
cases. However, homotopy classes of maps W !HP1Š Sp.1/ do not classify quaternionic line bundles
over W, so there is no analogue of Assumptions (CX) and (RE) to ensure the existence of such a manifold
and a commuting diagram of the form of (17). G

4 The Hopf correspondence

In this section we discuss the main theoretical device in action in this paper; Lagrangian correspondences.
We begin by reviewing the main concepts from Wehrheim–Woodward Lagrangian correspondence theory
(Section 4.1). The rest of the section is then focussed on the correspondence that will be used in our
applications, the Hopf correspondence. Given a real/complex projective Lagrangian K �W in a Liouville
manifold .W; !/ satisfying (RE)/(CX), the Hopf correspondence associates to it a Lagrangian sphere
L � Y in an auxiliary Liouville manifold .Y;�/. The key use of the Hopf correspondence in this
section is aimed at achieving a categorical version of the commuting diagrams of the previous section.
To do this, we first show that the Hopf correspondence � � W � � Y induces a well-defined functor
‚� W Fuk.W /! Fuk.Y / (Sections 4.2 and 4.3). We then show that the functors of Fuk.W / induced
by projective twists are entwined, via the correspondence, with the functors of Fuk.Y / induced by the
Dehn twists (Section 4.4). In Section 4.5, we show that the Hopf correspondence can be used to build a
symplectic Gysin sequence as established in [Perutz 2008].
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4.1 Lagrangian correspondences

We summarise the basic definitions and results associated to Lagrangian correspondences in the setting of
[Wehrheim and Woodward 2012; 2010a; 2010b; Ma’u et al. 2018]. For the entire section we let k be a
coefficient field of characteristic two.

Definition 4.1 [Wehrheim and Woodward 2010b] A Lagrangian correspondence between two sym-
plectic manifolds .Mk; !k/ and .MkC1; !kC1/ (“from Mk to MkC1”) is a Lagrangian submanifold
Lk;kC1 � .M

�
k
�MkC1/ WD .Mk �MkC1;�!k ˚!kC1/. A cycle of Lagrangian correspondences of

length r > 1 is a sequence of symplectic manifolds .M0; : : : ;MrC1 DM0/ together with a sequence of
Lagrangian correspondences L WD .L01; L12; : : : ; L.r�1/r ; Lr0/ such that Lk.kC1/ �M�k �MkC1 for
k D 0; : : : ; r . G

For example, a Lagrangian submanifold L of a symplectic manifold .M;!/ is a trivial example of
Lagrangian correspondence, seen as L� fptg� �M DM (see other examples below).

Definition 4.2 [Wehrheim and Woodward 2010a, Definition 2.0.4] Let .Mi ; !i / for i D 0; 1; 2 be
symplectic manifolds and L01 �M�0 �M1 and L12 �M�1 �M2 be Lagrangian correspondences.

(1) The correspondence transpose toL01 is defined asLt01 WDf.m1; m0/ j .m0; m1/2L01g�M
�
1 �M0.

Note that, for a simple Lagrangian L�M of a single symplectic manifold M, we won’t distinguish
L from its conjugate.

(2) The composition of L01 and L12 is defined as

(22) L01 ıL12 WD f.m0; m2/ 2M
�
0 �M2 j .m0; m1/ 2 L01; .m1; m2/ 2 L12 for some m1 2M1g

�M�0 �M2

and it is called embedded if it defines an embedded Lagrangian submanifold of M�0 �M2. G

Example 4.3 [Perutz 2008, 1.1] Let .M 2n; !M / be a symplectic manifold with a coisotropic embedding
� W V ,!M. If the foliation defined by the integrable distribution T V ! is a fibration p W V ! B, then the
leaf space is a symplectic manifold .B; !B/ satisfying p�!B D ��.!M /. The (transpose) graph of p,

� WD f.p.v/; v/ j v 2 V g � .B �M;�!B ˚!M /;

is a Lagrangian correspondence. G

A special case of Example 4.3 is when the coisotropic submanifold is obtained as a level set of a moment
map induced by a Hamiltonian action:

Example 4.4 [Wehrheim and Woodward 2010b, Example 2.0.2(e)] Let .M;!M / be a symplectic
manifold. Let G be a compact Lie group acting on M Hamiltonianly with moment map � WM ! g�.
If G acts freely on ��1.0/, the latter is a smooth G–fibred coisotropic over the symplectic quotient
W WDM==G D ��1.0/=G. W is a symplectic manifold with symplectic structure !M==G given by the
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Marsden–Weinstein theorem (see for example [McDuff and Salamon 2017, Section 5.4]). The graph of
the quotient map p W ��1.0/!W is a Lagrangian submanifold of .M �W;�!M ˚!W / and defines a
Lagrangian correspondence, relating Lagrangians ofM with Lagrangians of its symplectic quotient. G

4.2 Induced functors

Wehrheim and Woodward [2010a; 2010b] introduced a Floer cohomology theory adapted to cycles of
closed Lagrangian correspondences L WD .L01; : : : ; Lr0/, called quilted Floer cohomology and denoted
by HF.LI k/. Pseudoholomorphic quilts are a generalisation of the usual pseudoholomorphic strips used
in standard Lagrangian Floer theory, and the quilted invariant is defined by counting pseudoholomorphic
quilts with boundary constraints defined by the Lagrangian correspondences [Wehrheim and Woodward
2010b, Section 5]. It can be viewed as a Floer theory in product symplectic manifolds (we refer to
[Wehrheim and Woodward 2010b, Section 4.3] for definitions).

One of the main features is that, given a cycleL of Lagrangian correspondences, quilted Floer cohomology
is invariant under embedded composition (as in Definition 4.2) of subsequent Lagrangians in L.

Theorem 4.5 [Wehrheim and Woodward 2010b, Theorem 5.4.1] Let LD .L01; : : : ; Lr0/ be a cyclic
sequence of closed , exact embedded and oriented Lagrangian correspondences between Liouville
manifolds .M0; : : : ;MrC1 D M0/ such that L.i�1/i ı Li.iC1/ is embedded for each i . Then , for
L0 WD .L01; : : : ; L.j�1/j ıLj.jC1/; : : : ; Lr0/, there is an isomorphism HF.LI k/Š HF.L0I k/.

Ma’u et al. [2018] proved that, under certain assumptions, a Lagrangian correspondence �01 between
given symplectic manifolds .M0; !0/ and .M1; !1/ defines an A1–functor ‚�01 between Fuk.M0/ and
the dg-category of A1–modules over Fuk.M1/. The functor is realised as the geometric composition
. � / ı�01 of Lagrangians submanifolds of M0 with the correspondence, and this important result relies
on the invariance of Theorem 4.5. If for every Lagrangian in M0 the composition outputs an embedded
Lagrangian of M1, the induced functor is between Fukaya categories.

Theorem 4.6 [Ma’u et al. 2018, Theorem 1.1] Assume M0 and M1 are Liouville manifolds , and let
�01 �M

�
0 �M1 be a closed , exact and embedded correspondence such that , for any closed embedded

Lagrangian K0 �M0, the geometric composition

L1 WDK0 ı�01 D fm1 2M1 j .m0; m1/ 2 �01 for some m0 2K0g �M1(23)

is a closed embedded Lagrangian in M1. This assignment defines an A1–functor

(24) ‚�01 W Fuk.M0/! Fuk.M1/; ‚�01.K0/D L1:

In the above theorem, the correspondences are required to be closed, exact (or satisfy suitable monotonicity
conditions) and embedded. Gao [2017a; 2017b] developed noncompact generalisations of Theorem 4.6,
including noncompact Lagrangian correspondences, in the setting of wrapped Fukaya categories.
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In both cases, the main theoretical device at work behind a result such as Theorem 4.6 (or Gao’s equivalent)
is quilted Floer theory, which, in [Gao 2017b], was adapted to a version suitable for noncompact
correspondences. In this work we focus on a Lagrangian correspondence in a setting that features some
properties of both theories. Before introducing our setting (see below), we review the types of Lagrangians
that are admitted in a Gao’s setting.

Let .M0; !0/ and .M1; !1/ be Liouville manifolds with cylindrical almost complex structures J0 and J1
and Liouville flows Z0 and Z1, respectively. The product manifold .M0 �M1;�!0 �!1/ is a Liouville
manifold with respect to the product almost complex structure J01 WD �J0 � J1 and Liouville flow
Z01 WD �

�
0 .Z0/C�

�
1 .Z1/ for the projections �i WM0 �M1!Mi for i D 1; 2.

Let †�M0 �M1 be the contact hypersurface given in [Gao 2017b, Section 2.2], so that we can fix a
choice of cylindrical end that is compatible with the choices above. In other words, there is a compact
set U �M0 �M1 bounded by † such that there is a diffeomorphism M0 �M1 nU Š Œ0;1/�† [Gao
2017b, (2.5)].

Definition 4.7 A Lagrangian submanifold is said to be conical if it is an exact, properly embedded
Lagrangian which is preserved by the Liouville vector field over the cylindrical end. G

Definition 4.8 [Gao 2017b, Definition 3.9] A Lagrangian submanifold �01 � M�0 �M1 is called
admissible if it is

(1) either a product of conical Lagrangian submanifolds of M�0 and M1,

(2) or a Lagrangian that is conical with respect to the cylindrical end †� Œ0;C1/. G

Gao [2017b, Theorem 1.5] defines geometric composition for this type of Lagrangian correspondences
and proves the analogue of Theorem 4.5. Moreover, he shows the open version of Theorem 4.6, namely
that such a Lagrangian correspondence induces a functor of wrapped Fukaya categories [Gao 2017a,
Theorem 1.2].

Below we focus on the type of correspondences we consider in this paper, which arises as a special
case of Example 4.3 for a noncompact coisotropic. It is a class of exact, embedded, but not closed
correspondences between Liouville manifolds.

Setting Let .M0; !0/ and .M1; !1/ be Liouville manifolds such that there is a fibration q WM1!M0

with Liouville fibres.

Let �01 � M�0 �M1 be a Lagrangian correspondence obtained as the (transpose) graph of a proper
fibration p W V !M0, where V �M1 is a fibred coisotropic as in Example 4.3, and qjV D p.

On M�0 �M1 set the product almost complex structure J01 D�J0 �J1 for cylindrical almost complex
structures on M0 and M1, so that the fibration .id; q/ WM�0 �M1!M�0 �M0 is .J01; J00/–holomorphic
for J00 D�J0 �J0.
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Then �01 D f.p.v/; v/ j v 2 V g is properly fibred over the diagonal �M0 WD f.p.v/; p.v// j v 2 V g �
M�0 �M0, which is a conical Lagrangian correspondence in M�0 �M0. However, the original correspon-
dence �01 is not conical, or more generally admissible in the sense of Definition 4.8.

Consequently, the above setting doesn’t exactly fit either the compact or the open quilted theories, but it is
a combination of the two: it depicts a class of noncompact correspondences which nevertheless induces a
functor of compact Fukaya categories.

Axiom 1 The type of Lagrangian correspondence �01 �M�0 �M1 defined in the above setting induces
a functor

(25) ‚�01 W Fuk.M0/! Fuk.M1/; ‚�01.K0/D L1:

Experts will recognise the validity of the above statement that we have set as an axiom. Proving it as
a theorem would require a lengthy digression necessary to fill in all details covered in [Wehrheim and
Woodward 2010a; Gao 2017b; 2017a]. In Lemma 4.9, we restrict to proving the invariance of quilted
Floer cohomology under Lagrangian correspondences. Given invariance, the results of [Wehrheim and
Woodward 2010a] yield a functor on the cohomological category. The extension to an A1–functor, which
would turn Axiom 1 into a theorem, can then be obtained by considering higher A1–products, which we
omit here.

Lemma 4.9 Let K �M0 and L0 �M1 be closed exact Lagrangians and consider the cycle of correspon-
dences .K; �01; L0/ � .pt;M0;M1/. Then the quilted Floer cohomology group HF.K; �01; L0/ is well
defined and satisfies the invariance property

HF.K; �01; L0/Š HF.K ı�01; L0/D HF.L;L0/:(26)

Proof By definition (see [Wehrheim and Woodward 2010b, Section 4.3]), the generators of the cochain
complex CF.K; �01; L0/ are given by the generators of CF.K�L;�01/. These intersection points must be
contained in a compact region, since K �M0 and L0 �M1 are closed Lagrangians. By [Wehrheim and
Woodward 2012, Proposition 2.2.1], the cochain groups CF.Kı�01; L0/DCF.L;L0/ and CF.K�L;�01/
are isomorphic.

We now analyse the Floer trajectories involved in the computation of HF.K; �01; L0/.

By the maximum principle, the only noncompactness phenomenon that could occur would be a J01–
holomorphic curve escaping a compact set on the noncompact boundary condition �01. However, all such
curves, and any Floer trajectory of interest, are contained in a compact set, as we now explain.

By assumption, J01–holomorphic curves with boundary conditions on .K; �01; L0/ project under .id; q/
to J00–holomorphic curves involved in the complex for the tuple .K;�M0 ; K

0/, where K 0 ı�01 D L0

and .id; q/.�01/D�M0 .
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The (quilted) Floer cohomology group for the cycle of Lagrangian correspondences .K;�M0 ; K
0/ �

.pt;M0;M0/ can be defined as the Floer cohomology group HF.K;�M0 ; K
0/ WD HF�.K �K 0; �M0/

[Gao 2017b, Lemma 4.8]. Moreover, by [Gao 2017a, Theorem 1.2], �M0 induces the identity functor, so
clearly all the J00–holomorphic strips involved in the complex CF.K;�M0 ; K

0/ are well behaved, and
moreover we have HF.K;�M0 ; K

0/Š HF.K;K 0/.

Because of properness of .q; id/j�01 W�01!M0�M0, if there were any J01–holomorphic curve escaping
to infinity at the boundary condition �01, then it would project to a J00–holomorphic curve escaping to
infinity at the boundary condition on �M0 , which cannot happen.

Remark 4.10 Let K;K 0 � .M0; !0/ be closed exact Lagrangians. For any conical correspondence (not
just the diagonal) �00 � M�0 �M0, compactness of moduli spaces of curves involved in the quilted
complex CF.K; �00; K 0/ (for compact Lagrangians K;K 0 �M0) is preserved. Namely, all intersection
points lie in a compact region, so, by exactness, both energy and symplectic area are bounded. We can
apply a reverse isoperimetric inequality, according to which the length of the boundary of such a curve is
bounded by a quantity proportional to its area [Groman and Solomon 2014, Theorem 1.4].

This ensures that the boundary of all pseudoholomorphic curves is contained in a compact set, which can
then be determined by using a monotonicity lemma in the likes of [Seidel and Smith 2005, Lemma 13].
Again, by exactness there is no bubbling, so the moduli spaces of such curves are compact. G

4.3 The Hopf correspondence

We can finally introduce the correspondence of interest, the Hopf correspondence. This is a Lagrangian
correspondence obtained as the graph of a spherically fibred coisotropic submanifold as in Example 4.3.

We use the discussions of Sections 3.1 and 3.2 to explain how, for each type of Lagrangian projective space
K ŠAPn �W with A 2 fR;Cg in a Liouville manifold .W; !/ satisfying the appropriate cohomology
assumption (RE) or (CX), there is a Lagrangian correspondence relating K to a Lagrangian sphere L in
an auxiliary Liouville manifold .Y;�/.

4.3.1 Lagrangian CPn Let .W 4n; !/ be a Liouville manifold admitting Lagrangian submanifolds
Ki ŠCPn ,!W for i D 1; : : : ; m. Assume there is a class ˛ 2H 2.W IZ/ satisfying Assumption (CX).
The discussion of Section 3.1 delivers a C�–bundle q W Y !W (associated to the complex line bundle
L!W with c1.L/D ˛), whose total space is a Liouville manifold .Y;�/ (proof of Proposition 3.2). Set
V WD Y jfrD1g, the unit length bundle (determined by the metric on Y induced by a choice of hermitian
metric on L). If V ,! Y is the inclusion, then, by construction, ���D q�!jV , so the symplectic reduction
of V by S1 is given by .W; !/, and V is a fibred coisotropic submanifold of .Y;�/ with S1–fibre bundle
structure p D qjV W V !W.

For any Lagrangian projective space Ki �W, the restriction V jKi !Ki is a Lagrangian sphere Li Š
S2nC1 � Y.
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Definition 4.11 The (transpose) graph

� WD f.p.y/; y/; y 2 V g �W � �Y(27)

defines a Lagrangian correspondence [Perutz 2008, Proposition 1.1], which we call the Hopf correspon-
dence. By construction, for Ki ŠCPn � fptg �W, the correspondence maps Ki to the embedded La-
grangian sphere Li WDKi ı�ŠS2nC1�fptg�Y ŠY for i D 1; : : : ; m via geometric composition. G

Remark 4.12 This Lagrangian correspondence can equivalently be thought of as a correspondence of
the type of Example 4.4, where the coisotropic V is a regular level set of a Hamiltonian S1 “Hopf” action,
and .W; !/ its symplectic quotient (note that the local models (14), (19) and (21) are obtained from this
perspective). This explains the choice of name for the correspondence. G

4.3.2 Lagrangian RPn Let .W 2n; !/ be a Liouville manifold admitting Lagrangian embeddings
Ki ŠRPn ,!W for i D 1; : : : ; m. Assume there is a cohomology class ˛ 2H 1.W IZ=2Z/ satisfying
Assumption (RE).

Then there is a Liouville manifold .Y;�/D .�W 2n; z!/ obtained as the symplectic double cover of W and
containing Lagrangian spheres L1; : : : ; Lm � �W. The double cover q W �W !W defines an S0–fibration
over W, and in this case the “coisotropic submanifold” is the total space itself. As above, we define the
Hopf correspondence as � WD f.q.y/; y/ j y 2 �W g �W � � �W.

4.4 Commuting diagrams of functors

Let .W; !/ and .Y;�/ be Liouville manifolds and K1; : : : ; Km � W be real/complex projective La-
grangians satisfying (RE)/(CX). Let q WY !W be the fibration we constructed in the previous subsections,
and � � W � � Y be the Hopf correspondence obtained as the graph � D f.p.v/; v/ j v 2 V g of the
spherically fibred coisotropic pD qjV W V !W. This correspondence is properly fibred over the diagonal
�W D f.p.v/; p.v// j v 2 V g �W

� �W, via .id; q/ WW �Y !W �W, and satisfies the conditions of
Axiom 1. Therefore, there is a well-defined functor

‚� W Fuk.W /! Fuk.Y /; ‚�.K/DK ı� DW L:(28)

Let L1; : : : ; Lm � Y be the Lagrangian spheres associated to K1; : : : ; Km through the correspondence.
For each i D 1; : : : ; m, let TKi 2 Auteq.Fuk.W // and TLi 2 Auteq.Fuk.Y // be the (geometric) twist
functors induced by the graphs of the respective twists �Ki 2 Sympct.W / and �Li 2 Sympct.Y /.

Corollary 4.13 There is a commuting diagram at the level of compact Fukaya categories

(29)

Fuk.Y /
TLi // Fuk.Y /

Fuk.W /

‚�

OO

TKi // Fuk.W /

‚�

OO

In particular , iterative applications of this diagram yield

(30) ‚� ı
Y

T
ki
Ki
D

Y
T
ki
Li
ı‚� :
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Proof Consider the functors TKi and TLi as correspondences induced by the graphs of the respective
twists �Ki 2 Sympct.W / and �Li 2 Sympct.Y /. Then we have to check that the compositions of corre-
spondences ‚� ıTKi D TLi ı‚� , as Lagrangians in W � �Y, coincide. By construction, this equality
amounts to the commutativity of the diagram (17) or (20), respectively.

Remark 4.14 For a coefficient field of characteristic zero, the functor associated to the real projective
twist has a different shape which produces a different diagram [Mak and Wu 2019, Corollary 1.3]. G

Remark 4.15 Given a hypothetical mirror pair .X;M/ for a symplectic manifold .M;!/with c1.M/D0

and complex manifold .X; J /, we can make the following observation.

Huybrechts and Thomas [2006] conjectured that the functors induced by projective twists on the derived
Fukaya category D[.Fuk.M// should be mirror to a class of autoequivalences of D[.X/, induced by
so-called P–objects (see [Huybrechts and Thomas 2006, Definition 1.1]). This is the analogue of the
statement proved by Seidel that autoequivalences of D[.Fuk.M// induced by Dehn twists should be
mirror to autoequivalences of D[.X/ induced by “spherical objects” (see [Seidel and Thomas 2001,
Definition 1.1]).

From this perspective, we can view the diagram 4.13 as a conjectural mirror to the following situation.

By [Huybrechts and Thomas 2006, Proposition 1.4], a P–object P 2 D[.X/ in the central fibre of
an algebraic deformation j W X ,! X and satisfying 0 ¤ A.P/ � �.X / 2 Ext2.P;P/ has an associated
spherical object given by j�.P/ 2 D[.X /. Here, A.P/ 2 Ext1.P;P ˝�1X / is the Atiyah class of P
and �.X / 2H 1.X; TX / the Kodaira–Spencer class of the family X . Furthermore, the autoequivalences
associated to each object (also called “twists”), TP and Tj�P , are related by a commutative diagram
[Huybrechts and Thomas 2006, Proposition 2.7]

(31)

D[.X/
j�

//

TP
��

D[.X /

Tj�P
��

D[.X/
j�

// D[.X / G

4.5 Lagrangian Gysin sequence

Let � �W � �Y be the Hopf correspondence. Given real/complex projective Lagrangian submanifolds
K;K 0 � W and their corresponding spherical lifts L;L0 � Y through the functor ‚� , a version of
Perutz’s Gysin sequence [2008] can be used to establish a relationship between the ranks of the Floer
cohomology groups HF.K;K 0/ and HF.L;L0/. We will need this relation in the next section for the
proof of Theorem B.

Let V ! W be the Sk–fibred coisotropic defining the correspondence, k 2 f0; 1g, with Euler class
˛ 2HkC1.W IR/, R 2 fZ=2Z;Zg and Lagrangian projective spaces K;K 0 �W satisfying (RE)/(CX),
respectively.
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Let LD‚�.K/DK ı� � Y and L0 D‚�.K 0/DK 0 ı� � Y be the associated Lagrangian spheres
given by the correspondence.

Lemma 4.16 There is an exact triangle of the shape

(32)

HF�.K;K 0/ ˛[�
// HF�CkC1.K;K 0/

��uu

HF�CkC1.L;L0/

hh

Proof This exact sequence follows from the Gysin triangle proved by Perutz [2008, Theorem 1], which
has the more general form

� � � ! HF�.K;K 0/ e.V /[������! HF�CkC1.K;K 0/ ���! HF�CkC1.K; � t ; �;K 0/! � � � ;(33)

where the last group is the quilted Floer cohomology group of the cycle of Lagrangian correspondences
L WD .K; �; � t ; K 0/� .pt; W; Y;W /, satisfying HF.K; �; � t ; K 0/Š HF�.K ı�;K 0 ı�/Š HF.L;L0/.

The isomorphism follows from Axiom 1 (in particular Lemma 4.9 applied to a sequence of four Lagrangian
correspondences). The compositions LDK ı� and L0 D � t ıK 0 DK 0 ı� are embedded, and coincide
with the spheres (which are Lagrangian in W ) in the sphere bundle V over K and K 0, respectively.

The first map in the original exact sequence (32) is the quantum cup product with the Euler class
e.V / 2QH�.W /. In this case the exactness assumptions on the ambient symplectic manifold W ensure
the well-definedness of the operation and, as QH�.W / ŠH�.W / is a ring isomorphism, there is no
quantum deformation involved and we obviously have e.V / D ˛ 2 H�.W /. The second map, ��, is
induced by the Lagrangian correspondence, and needs to be understood in the context of quilted Floer
theory. We refer the reader to [Perutz 2008, Section 4.1] for a more refined description of the maps (in
the setting of Hamiltonian Floer theory).

Corollary 4.17 The Gysin sequence produces the rank inequality

hf.L;L0/ WD rank HF.L;L0/6 2 rank HF.K;K 0/:(34)

In Section 5, we will need to compare functors induced by (projective and Dehn) twists to the identity
functor. In particular, it will be necessary to distinguish objects of Fuk.W / with their image under the
twist functors. The following lemma gives a helpful criterion:

Lemma 4.18 Let K 0 and K 0 be quasi-isomorphic objects in Fuk.W /. Then the maps

f1 W CF�.K;K 0/ ˛[���! CF�CkC1.K;K 0/ and f2 W CF�.K;K 0/ ˛[���! CF�CkC1.K;K 0/

have quasi-isomorphic mapping cones.

Proof Consider the long exact sequences associated to the mapping cones of the cup product maps
f1 W CF�.K;K 0/! CF�CkC1.K;K 0/ and f2 W CF�.K;K 0/! CF�CkC1.K;K 0/.
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These sequences fit in a diagram of the shape

CF�.K;K 0/ CF�CkC1.K;K 0/ Cone.f1/ CF�CkC1.K;K 0/

CF�.K;K 0/ CF�CkC1.K;K 0/ Cone.f2/ CF�CkC1.K;K 0/

f1D˛[�

f2D˛[�

SinceK 0 andK 0 are quasi-isomorphic objects in Fuk.W /, there is a characteristic element �2HF.K 0; K 0/
which induces an isomorphism HF.K;K 0/! HF.K;K 0/ (the Floer product with �; see [Seidel 2008a,
(8k)]). Therefore, the vertical maps CF�.K;K 0/! CF�.K;K 0/ are well defined, and they are quasi-
isomorphisms. By the five lemma, the mapping cones Cone.f1/ and Cone.f2/ are also quasi-isomorphic.

5 Free groups generated by projective twists

In this section we apply the Hopf correspondence to prove our first result about products of projective
twists.

Consider a transverse plumbing W WD T �APn #pt T
�APn of cotangent bundles of projective spaces

for A 2 fR;Cg. Then the main result of this section (Theorem B) shows that the Lagrangian cores of
the plumbing define two projective twists which generate a free subgroup of �0.Sympct.W //. In fact,
Theorem B is a stronger statement, which holds not only for transverse plumbings but also, more generally,
for clean plumbings along subprojective spaces (see Definition 5.1).

For the proof, we use the Hopf correspondence to reduce the statement of Theorem B to a statement
about Dehn twists, and apply Keating’s free generation result [2014] (Theorem 5.3) for Dehn twists.

As a corollary, we show that there are infinitely many Lagrangian isotopy classes of embeddings CPn ,!W

which are smoothly isotopic, but pairwise not Lagrangian isotopic.

5.1 Clean Lagrangian plumbing

We first recall a construction from [Abouzaid 2011, Appendix A] of clean Lagrangian plumbing of
two Riemannian manifolds Q1 and Q2 along a submanifold B � Qi for i D 1; 2. Fix three closed
smooth manifolds B , Q1 and Q2, for each i D 1; 2 an embedding B ,! Qi , and an isomorphism
% W �B=Q1 ! ��

B=Q2
from the normal bundle �B=Q1 to the conormal bundle ��

B=Q2
.

Pick a Riemannian metric on B, an inner product and a connection on �B=Q1 Š �
�
B=Q2

(which induces an
inner product and connection on �B=Q2 Š �

�
B=Q1

). This data induces a metric on the total spaces �B=Qi ,
and a neighbourhood Ui of B �Qi can be identified with a disc subbundle D"�B=Qi of radius " > 0.
With this identification we write x 2 Ui as x D .a; b/ for b 2 B and a 2D".�B=Qi /b (the fibre over b).
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For each x D .a; b/ 2 Ui , the connection gives a decomposition of the fibres T �xQi Š T
�
b
B˚ .��

B=Qi
/b .

We get an identification of a neighbourhood of B � T �Qi as

(35) D"�B=Qi ˚D"T
�B˚D"�

�
B=Qi

:

Let Vi be a neighbourhood of Qi � T �Qi which in (35) coincides with D"T �B ˚D"��B=Qi over
Ui ŠD"�B=Qi .

Definition 5.1 (1) As a smooth manifold, the clean plumbing of Q1 and Q2 along B, denoted by
M WDD".T

�Q1#BT �Q2/, is defined by gluing V1 to V2 alongD"�B=Q1˚D"T
�B˚D"�

�
B=Q1

�

V1 identified with D"��B=Q2 ˚D"T
�B˚D"�B=Q2 via .%; idT �B ;�%�/. Its Liouville completion

will be denoted by T �Q1 #B T �Q2.

(2) The plumbing construction inherits an exact symplectic structure, since the identification maps
of (1) preserve the canonical structures on D�Qi . Let Zi be the standard radial Liouville vector
field on Vi . We define a Liouville vector field Z on the plumbing by letting Z D �1Z1C�2Z2 for
smooth functions �i WM ! Œ0; 1� supported on Vi such that �1C�2 D 1. This endows M with the
structure of an exact symplectic manifold. G

In the next sections, we will apply this plumbing construction to cotangent bundles of projective spaces
and spheres. We will work with (ungraded) Floer cohomology groups HF.Q1;Q2; k/, where k is a
coefficient field of characteristic two. Note that, by exactness of the Lagrangians and the manifold W,
the Floer differentials in CF.Qi ;Qi / vanish, and, as Q1 and Q2 intersect cleanly along B, there is an
isomorphism HF.Q1;Q2/ŠH�.B/ [Poźniak 1994].

5.2 Proof of Theorem B

We now prove the main theorem of this section.

Theorem B Let W WD T �APn #AP l T
�APn be a clean plumbing of (real , complex) projective spaces

along a linearly embedded subprojective space AP l �W, A 2 fR;Cg. Let K1; K2 ŠAPn �W denote
the Lagrangian core components of the plumbing. Then the projective twists �K1 and �K2 generate a
free group inside �0.Sympct.W //, and the associated functors TK1 and TK2 generate a free subgroup of
Auteq.Fuk.W //.

Remark 5.2 The case W WD T �CP11 #pt T
�CP12 can be deduced from the existing literature by consid-

ering X as an A2–configuration and the isotopies �CP1
i
' �2

S2
i

of Remark 2.6. There is a homomorphism
[Seidel 1999, Proposition 8.4] � W Br3! �0.Sympct.W // sending the generators of the braid group �i to
�.�i /D �S2

i
for i D 1; 2. The associated homomorphism O� W Br3! Auteq.Fuk.W // fits in the diagram

(36)

Br3
�

//

O�

))

�0.Sympct.W //

��

Auteq.Fuk.W //
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and its injectivity [Seidel and Thomas 2001] implies the injectivity of �. Then, as h�21 ; �
2
2 i Š Free2, it

follows that h�K1 ; �K2i Š Free2.

Also note that � is in fact an isomorphism [Wu 2014], so �0.Sympct.T
�S2 #pt T

�S2//D Br3. G

Theorem B takes inspiration from Keating’s free generation result for Dehn twists in Liouville manifolds.

Theorem 5.3 [Keating 2014, Theorem 1.1 and 1.2] Let .Y;�/ be a Liouville manifold of dimension
greater than 2, and L;L0 � Y be two Lagrangian spheres satisfying rank HF.L;L0/ > 2 and such that
L and L0 are not quasi-isomorphic in Fuk.Y /. The Dehn twists �L; �L0 generate a free subgroup of
�0.Sympct.Y //, and the associated functors TL; TL0 2 Auteq.Fuk.Y // generate a free subgroup of
Auteq.Fuk.Y //.

Keating proves the geometric part of Theorem B by making a categorical detour, first proving that the
associated functors TL; TL0 2 Auteq.Fuk.Y // induced by the Dehn twists generate a free subgroup of
Auteq.Fuk.Y //, so that the composition

Free2! �0Sympct.Y /! Auteq.Fuk.Y //(37)

is injective.

By identifying a Dehn twist with its associated functor, Keating exploits the algebraic properties of the
latter to arrive at the following rank inequalities (which are central in her final proof):

Lemma 5.4 [Keating 2014, Lemma 8.1] Let zL;L;L0 � Y be Lagrangians such that zL is a sphere ,
zL© L in the Fukaya category, and hf.zL;L/ WD rank.HF.zL;L0//> 2. Then , for all n¤ 0,

hf.zL;L0/ > hf.L;L0/ D) hf.zL; �n
zL
.L0// < hf.L; �n

zL
.L0//:(38)

Lemma 5.5 [Keating 2014, Claim 8.2] Let L;L0� Y be two Lagrangian spheres in an exact symplectic
manifold as in Theorem 5.3 satisfying hf.L;L0/D 2. Then , for all m¤ 0,

hf.L0; L/D hf.L0; �mL0L/ < hf.L; �mL0L/:(39)

We will apply these inequalities to Lagrangian spheres obtained from the Hopf correspondence, to produce
similar results for projective twists and prove Theorem B.

5.2.1 Strategy The plumbing .W; !/ and its real/complex projective Lagrangian cores K1; K2 �W
satisfy the cohomological conditions (RE)/ (CX).

In the case in which W is a transverse plumbing (which retracts to the wedge sum of the two spheres),
there is a ring isomorphism (with A 2 fR;Cg and R 2 fZ=2Z;Zg)

zH�.W IR/Š zH�.K1IR/˚ zH
�.K2IR/Š zH

�.APnIR/˚ zH�.APnIR/;
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so it is immediate to see the existence of a class ˛D .˛1; ˛2/2Hk.W IR/ restricting inK1 andK2 to the
generator of H�.APnIR/ for k 2 f1; 2g. For a clean plumbing along a linearly embedded subprojective
space AP l , this restriction property still holds because the “difference” map of the Mayer–Vietoris
sequence is always zero.

By Propositions 3.2 and 3.6, the cohomological condition ensures the existence of a Liouville manifold
.Y;�/! .W; !/ and a Hopf correspondence � � W � � Y that gives rise to associated Lagrangian
spheres SmŠLi DKi ı� � Y for i D 1; 2 and commuting diagrams of twist functors (29). Then, given
a product (a word in �K1 and �K2) ' 2 Sympct.W / of projective twists, the Hopf correspondence yields a
corresponding product of Dehn twists (a word in �L1 and �L2) � 2 Sympct.Y /.

In the real projective case, the geometric statement of Theorem B can be obtained by an isotopy-lifting
argument using the geometric diagrams of Section 3 (the strategy adopted in Section 6.3). Assuming the
projective twists do satisfy a relation, this procedure lifts the isotopy to Sympct.Y /, producing a relation
between Dehn twists, which cannot hold, by Keating’s theorem. However, this geometric argument does
not give a statement at the level of Fukaya categories, for which the use of the Hopf correspondence at
the level of functors in Auteq.Fuk.W // is necessary (Sections 4.4 and 4.5).

The spheres L1; L2 Š Sm intersect cleanly along a subsphere Sr for a tuple .A; m; r/ that is one of
.R; n; l/ or .C; 2nC 1; 2l C 1/g (n; l 2N�), and, as noted before, HF.L1; L2I k/ŠH�.Sr I k/. Since
Li � Y are exact spheres, HF.Li ; Li I k/ŠH�.SmI k/ [Floer 1988] and therefore

(40) rank HF.L1; L2/D rank HF.Li ; Li /D 2 for i D 1; 2:

In the following sections we will study the ranks of the Floer cohomology groups HF. � ; '. � // and show
that there is always a Lagrangian yK �W such that

(41) HF. yK; yK/© HF. yK; '. yK//:

As a result, yK and '. yK/ are not quasi-isomorphic objects in Fuk.W /, and therefore the functor induced
by ' cannot be isomorphic to the identity in AuteqFuk.W /. This will also rule out the possibility of '
being isotopic to the identity in Sympct.W /.

We prove (41) by applying the rank inequalities (38) and (39) to Lagrangian spheres in .Y;�/ obtained via
the correspondence � , in combination with the symplectic Gysin sequence associated to � (Corollary 4.17).

In the following section, we rederive a part of Keating’s proof of Theorem 5.3 using the rank inequalities
(38) and (39), which hold for the word of Dehn twists � 2 h�L1 ; �L2i associated to ' via the Hopf
correspondence. This will clarify the methods used in proving the analogous statement for projective
twists (namely Theorem B) in Section 5.2.3.

5.2.2 Associated word of Dehn twists Let ' 2 h�L1 ; �L2i � Sympct.W / be a word of projective twists
as in the statement of Theorem B. Consider the Hopf correspondence � �W � �Y and the associated
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word of Dehn twists � 2 Sympct.Y / as above. In this section we replicate the last steps in Keating’s proof
of the injectivity of the homomorphism

Free2! Auteq.Fuk.W //:

We first make the following observation about a word of twists and its conjugates:

Lemma 5.6 Let � 2 Sympct.Y / be a symplectomorphism which has the shape of a global conjugate , ie
� D �1�0 for  ; �0 2 Sympct.Y / not isotopic to the identity. Then there is a closed Lagrangian zL� Y
such that HF.zL; �.zL//©HF.zL; zL/ if and only if �0 satisfies HF.yL; �0.yL//©HF.yL; yL/ for some closed
Lagrangian yL� Y.

Proof Assume there is a Lagrangian yL� Y such that HF.yL; �0.yL//©HF.yL; yL/. Then, by invariance of
Floer cohomology under symplectomorphisms, HF. �1 yL; �1�0 . �1 yL//ŠHF. �1 yL; �1.�0 yL/Š
HF.yL; �0 yL/© HF.yL; yL/, so, for zL WD  �1.yL/, we have HF.zL; �.zL//© HF.zL; zL/. The other direction
is similar.

We will apply the above lemma to a word of Dehn twists � 2Sympct.Y / which in its reduced has the shape
of a global conjugate, ie a word � D  �1�0 for two reduced words  ; �0 2 h�L1 ; �L2i � Sympct.Y /

not isotopic to the identity. Then the lemma shows that it is always possible to switch between � and
its conjugate, as the correct choice of Lagrangian keeps track of the Floer cohomological action of the
original word.

Without loss of generality, we can therefore use this conjugation argument to restrict the focus on reduced
words � 2 h�L1 ; �L2i which are either (for i; j 2 f1; 2g)

(1) a power of a single Dehn twist, ie � D �sLi , s 2 Z� (Lemma 5.7); or

(2) a word starting with a power of �Li and ending in a power of �Lj with i ¤ j (Lemma 5.9).

Lemma 5.7 Let � D �sLi 2 Sympct.Y / be a reduced word of Dehn twists which is a power of a single
Dehn twist , with i 2 f1; 2g and s 2 Z�. The associated functor is not isomorphic to the identity in
Auteq.Fuk.Y //, so , in particular , � cannot be isotopic to the identity in Sympct.Y /.

Proof We show that there exists a closed Lagrangian yL� Y such that

HF.yL; �.yL//© HF.yL; yL/:

For � D �sLi , a possible candidate is given by yLD Lj for i; j 2 f1; 2g and i ¤ j.

Namely, the rank inequality stated by Lemma 5.5, gives

2D hf.Lj ; Lj /D hf.Li ; Lj /D hf.Li ; �sLiLj / < hf.Lj ; �sLiLj /:

Remark 5.8 The geometric result of the above lemma can also be proven independently from Keating’s
results, as a corollary to Theorem A (see Section 6.1). G
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Lemma 5.9 Let � 2 h�L1 ; �L2i � Sympct.Y / be a reduced word of Dehn twists around the Lagrangian
(spherical ) cores which is a product where the first and last factors are powers of distinct Dehn twists.
Then the functor associated to � is not isomorphic to the identity in Auteq.Fuk.Y //, so , in particular , �
cannot be isotopic to the identity in Sympct.Y /.

Proof We show that there is a closed Lagrangian yL� Y such that HF.yL; � yL/© HF.yL; yL/.

We can assume without loss of generality that the first factor of � is a power of �L2 and the last is a power
of �L1 (otherwise consider ��1), so that we have a word of shape

� D �
bk
L2
�
ak
L1
� � � �

b1
L2
�
a1
L1
; ai ; bi 2 Z� for 16 i 6 k:(42)

In the case we are considering, we have hf.L1; L2/D 2. Apply Lemma 5.5 to get

2D hf.L1; L1/D hf.L2; L1/D hf.L2; �
b1
L2
�
a1
L1
L1/ < hf.L1; �

b1
L2
�
a1
L1
L1/:

Now apply Lemma 5.4 (with nD a2, zLD L1, LD L2 and L0 D �b1L2�
a1
L1
L1) and get

hf.L1; �
b1
L2
�
a1
L1
L1/D hf.L1; �

a2
L1
�
b1
L2
�
a1
L1
L1/ < hf.L2; �

a2
L1
�
b1
L2
�
a1
L1
L1/:

Apply Lemma 5.4 again (with nD b2, zLD L2, LD L1 and L0 D �a2L1�
b1
L2
�
a1
L1
L1)

hf.L2; �
a2
L1
�
b1
L2
�
a1
L1
L1/D hf.L2; �

b2
L2
�
a2
L1
�
b1
L2
�
a1
L1
L1/ < hf.L1; �

b2
L2
�
a2
L1
�
b1
L2
�
a1
L1
L1/:

Continue to apply Lemma 5.4 iteratively until the final step

hf.L2; �
bk
L2
�
ak
L1
� � � �

b1
L2
�
a1
L1
L1/ < hf.L1; �

bk
L2
�
ak
L1
� � � �

b1
L2
�
a1
L1
L1/:

Then
hf.L1; �

bk
L2
�
ak
L1
� � � �

b1
L2
�
a1
L1
L1/ > 2C 2k� 1D 2kC 1:

So, setting yLD L1, we have HF.yL; �.yL//© HF.yL; yL/.

Corollary 5.10 Let � 2 h�L1 ; �L2i � Sympct.Y / be a word of Dehn twists that is a product of the
shape (42). Then there is a Lagrangian yL� Y such that

lim
s!1

rank HF�.yL; �s.yL//D1:

Proof Let � be of the shape (42). Then

�s D .�
bk
L2
�
ak
L1
� � � �

b1
L2
�
a1
L1
/. � � � /. � � � /.�

bk
L2
�
ak
L1
� � � �

b1
L2
�
a1
L1
/

has “factor length” k � s (in the sense of (42)). By the proof of Lemma 5.9, the rank of HF.L1; �.L1//
depends on the number k 2N appearing in the factor decomposition of �. Therefore,

hf.L1; �s.L1// > 2ksC 1;

so we can set yL WD L1.
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5.2.3 Proof We now go back to the original word ' 2 h�K1 ; �K2i � Sympct.W / of projective twists in
the statement of Theorem B, and we show that it cannot induce the identity functor in Auteq.Fuk.W //.
Lemma 5.6 holds for any symplectomorphism, so, by the same conjugation argument explained before,
we can focus the attention on words that are either (for i; j 2 f1; 2g)

(1) a power of a single twist ' D �sKi , s 2 Z�, or

(2) a mixed product of the shape ' WD �bkKi �
ak
Kj
� � � �

b1
Ki
�
a1
Kj
2 Sympct.W / with i ¤ j and am; bm 2 Z�

for 16m6 k.

Proposition 5.11 Let ' D �sKi 2 h�K1 ; �K2i � Sympct.W / be a reduced word of projective twists which
is a power of a single twist with i 2 f1; 2g and s 2Z�. Then the functor induced by ' is not isomorphic to
the identity in Auteq.Fuk.W //, and in particular ' cannot be isotopic to the identity in Sympct.W /.

Proof Let ' D �sKi 2 Sympct.W / with s 2 Z�. Assume by contradiction that the functor induced by '
(still denoted by ') is isomorphic to the identity, so that any Lagrangian yK �W is quasi-isomorphic, as
an object of Fuk.W /, to '. yK/.

By Lemma 4.18, there is a quasi-isomorphism of the mapping cones of the cup product maps

f1 W CF�. yK; yK/! CF�CkC1. yK; yK/ and f2 W CF�. yK; '. yK//! CF�CkC1. yK; '. yK//

(we are considering ungraded Floer cohomology groups, so technically the degrees are irrelevant here).
Therefore, by the exact triangle of Lemma 4.16, if yL�Y is the Lagrangian lift of yK through the correspon-
dence � and � 2 Sympct.Y / the symplectomorphism associated to ', then HF.yL; yL/Š HF.yL; �.yL//.

So, if we set yK WDKj with j ¤ i , by assumption we have HF.Kj ; '.Kj //ŠHF.Kj ; Kj / and the above
argument yields HF.Lj ; �.Lj //D HF.Lj ; �si .Lj //Š HF.Lj ; Lj /, which is clearly in contradiction to
(the proof of) Lemma 5.7 (according to which these two groups have distinct ranks). Hence, ' cannot be
isomorphic to the identity functor in Auteq.Fuk.W //.

Proposition 5.12 Let ' 2 h�K1 ; �K2i � Sympct.W / be a reduced word of projective twists around the
Lagrangian cores which is a product where the first and last factors are powers of distinct projective twists.
Then the functor induced by ' is not isomorphic to the identity in AuteqFuk.W /; so , in particular , ' is
not isotopic to the identity in Sympct.W /.

Proof By the analogous discussion in the proof of Lemma 5.9, it is enough to prove the statement for a
word whose reduced form is of the shape

' WD �
bk
K2
�
ak
K1
� � � �

b1
K2
�
a1
K1
2 Sympct.W /; am; bm 2 Z�; 16m6 k:(43)

Denote the product of twist functors induced by (43) also by ' 2 Auteq.Fuk.W //. By iteratively using
commutativity of the functors in diagram (29), one can define the corresponding composition of (Dehn)
twist functors � 2 Auteq.Fuk.Y //, which, by Theorem 5.3, cannot be isomorphic to the identity functor.
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Moreover, Corollary 5.10 shows that, not only is HF.L1; �.L1// nonisomorphic to HF.L1; L1/, but also
lims!1 hf.L1; �s.L1//!1.

The Lagrangian L1 D � ıK1 � Y is the Lagrangian associated to K1 via the Hopf correspondence,
and the symplectic Gysin exact sequence (Corollary 4.17) applied to the Hopf correspondence gives the
inequality

hf.L1; �.L1//6 2hf.K1; '.K1//;(44)

which implies that rank hf.K1; 's.K1// also grows at least linearly with s.

Corollary 5.13 Let ' 2 h�K1 ; �K2i � Sympct.W / be a word of projective twists of the shape (43). Then
there is a Lagrangian yK �W such that

lim
s!1

rank HF�. yK; 's. yK//D1:

Finally, we can summarise the proof of Theorem B.

Proof of Theorem B Let ' 2 h�K1 ; �K2i � Sympct.W / be a word in the projective twists along the
Lagrangian cores of W.

(1) If the word has the shape 'D �sKi 2 Sympct.W / with i 2 f1; 2g and s 2Z�, then its induced functor
is not isomorphic to the identity in Auteq.Fuk.W // by Proposition 5.11.

(2) If the word has the shape ' WD �
bk
Ki
�
ak
Kj
� � � �

b1
Ki
�
a1
Kj
2 Sympct.W / with i; j 2 f1; 2g and i ¤ j,

and am; bm 2 Z� for 1 6 m 6 k, then its induced functor is not isomorphic to the identity in
Auteq.Fuk.W // by Proposition 5.12.

(3) If ' has any other form, then it must be a conjugate of a word of shape (1) or (2) and hence the
induced functor is not isomorphic to the identity by Lemma 5.6.

5.3 Knotted Lagrangian projective spaces

The phenomenon that a single (smooth) isotopy class of submanifolds contains infinitely many Lagrangian
isotopy classes is called Lagrangian “knottedness” [Seidel 1999; Evans 2010; Hind 2012; Li and Wu
2012; Wu 2014]. Often, the quest for knottedness is intimately related to the study of isotopy classes of
Dehn twists.

In the plumbing of spheres Li Š S2 and Y WD T �L1 #pt T
�L2, we know that, for any r 2 Z, �2rL2.L1/ is

smoothly isotopic to the identity, but not symplectically; as first shown by Seidel [1999, Theorem 1.1],
none of the powers �2rL2.L1/ are Hamiltonian isotopic. Our results yield the analogue for plumbing of
complex projective spaces (of any dimension):

Corollary 5.14 Let W WD T �CPn #CP l T
�CPn be a clean plumbing along a projective subspace

CP l � CPn. Each Lagrangian core Ki Š CPn of W defines a smooth isotopy class which contains
infinitely many symplectic isotopy classes of Lagrangian projective spaces.
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Proof Let K1; K2 Š CPn �W be the two Lagrangian cores of the plumbing. For i; j 2 f1; 2g with
i ¤ j, define the element ' WD �Ki �Kj . Then, by Proposition 5.12,

lim
s!1

rank HF.Kj ; 's.Kj //D1;(45)

which, in particular, means that 'sa.Kj / is not Lagrangian isotopic to ';sb .Kj / for any sa ¤ sb , despite
being smoothly isotopic (by Theorem 2.5).

Remark 5.15 The low-dimensional case nD 1 corresponds to a transverse plumbing of spheres W WD
T �L1 #pt T

�L2 and Li Š S2. In that case, the symplectic mapping class group �0.Sympct.W // is
generated by the Dehn twists �L1 and �L2 (see Remark 5.2). Moreover, Hind [2012] proved that, for any
Lagrangian sphere L�W, there is a word � 2 h�L1 ; �L2i such that �.L/ is isotopic to one of the cores
L1 or L2. G

6 Positive products of twists in Liouville manifolds

The present section covers our results about products of positive powers of Dehn and projective twists.

In the first part, Section 6.1, we analyse products of (positive powers of) Dehn twists. We reprove a
theorem by Barth, Geiges and Zehmisch (Theorem A) asserting that, in a Liouville manifold .M;!/, no
product � 2 Sympct.M/ of positive powers of Dehn twists can be symplectically isotopic to the identity.
We provide an alternative proof that was suggested by Paul Seidel. Based on symplectic Picard–Lefschetz
theory, the argument for the proof relies on a count of pseudoholomorphic sections of a Lefschetz fibration
constructed from the data given by � and the Lagrangian spheres associated to the Dehn twists.

Using similar tools, we then prove Theorem C (Section 6.2), which can be interpreted as a relative version
of Theorem A. This states that a Liouville manifold .M;!/ containing Lagrangian spheres and a conical
Lagrangian disc T (Definition 4.7) intersecting one of the spheres transversely at a point cannot admit a
positive product of Dehn twists preserving T up to compactly supported symplectic isotopy.

In Section 6.3, we explore the analogous questions for projective twists, by means of the tools developed
in Section 4. After setting the necessary conditions to ensure the existence of the Hopf correspondence,
we use Theorem A to prove a comparable result for real projective twists.

6.1 Alternative proof of Theorem A

In this section, we reprove the following theorem:

Theorem A [Barth et al. 2019, Theorem 1.4] Let .M;!/ be a Liouville manifold , and letL1; : : : ; Lm�
M be Lagrangian spheres. Let � D

Qk
iD1 �Lji

2 Sympct.M/, ji 2 f1; : : : ; mg be a positive word of Dehn
twists. Then � is not compactly supported isotopic to the identity in Sympct.M/.
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Example 6.1 The exactness condition of Theorem A is necessary, as the following examples show:

(a) Consider the 2–torus M WD T 2, and let a; b �M represent the longitude and meridian of M. Then
the associated Dehn twists satisfy .�a�b/6 D Id in �0.Sympct.M//. This is a classical result; see
for example [Farb and Margalit 2012] (see [Auroux 2003, Section 3.1] for the same example in a
symplectic setting).

(b) Let .M WD S2�S2; !S2˚!S2/, and consider the antidiagonal x� WD f.x; y/ 2 S2�S2 j xCy D
0g �M. Then the Dehn twist �x� is symplectically isotopic to an involution .x; y/ 7! .y; x/, which
implies �2� D Id in �0.Sympct.M// (see [Seidel 2008b, Example 2.9]). G

Remark 6.2 (1) The two-dimensional case of Theorem A (for a product of Dehn twists in a Riemann
surface) is a consequence of [Smith 2001, Theorem 1.3].

(2) The outcome of Theorem A is strictly geometric, and may not hold for the compact Fukaya category:
we are not able to obtain information about the functors associated to the Dehn twists. Consider
a punctured torus M WD T 2 n f�g (the same applies to a punctured genus g surface), and the
two (Lagrangian) circles a and b, representatives of the homological generators. In the closed
case, the composition .�a�b/6 is isotopic to the identity by the example above. In the punctured
torus, there is an isotopy .�a�b/6 ' �d , where �d is the Dehn twist along the boundary curve d
encircling the puncture (this is a consequence of the chain relation; see [Farb and Margalit 2012,
Proposition 4.12]). But, since the support of �d is disjoint from any exact compact circle in M, the
product .�a�b/6 still acts as the identity on objects of the compact Fukaya category Fuk.M/. G

The original proof of [Barth et al. 2019] relies on the theory of open book decompositions, whereas the
proof below uses Picard–Lefschetz theory. To simplify notation we prove the version of the theorem
where .M;! D d�M / is a Liouville domain.

Let � D
Qk
iD1 �Lji

2 Sympct.M/ with ji 2 f1; : : : ; mg be the word in positive powers of Dehn twists in
the given collection, and assume by contradiction that this product is compactly supported Hamiltonianly
isotopic to the identity (recall � is an exact symplectomorphism).

Let � W .E;�E ; �E /! .C; �C/ be the exact Lefschetz fibration determined by the data

f.M; �M /; .Lj1 ; : : : ; Ljk /g

as in Section 2.2. Let z� 2C be the basepoint, so that ��1.z�/ŠM, and � 2 Sympct.M/ be the total
monodromy of � .

Let jC be the standard complex structure on C.

By assumption, the monodromy of � is isotopic to the identity via a compactly supported Hamiltonian
isotopy .�t /t2Œ0;1� with �0 D � and �1 D Id. Then � can be extended to a fibration O� W yE ! CP1 as
follows. Let DR �C be a large circle of radius R > 0 passing through z� and containing all the critical
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values. Define a fibration E 0!DRC1 by extending EjDR to a larger disc DRC1 such that, for t 2 Œ0; 1�,
the monodromy aroundDRCt is �t 2 Sympct.M/. Then yE is obtained after gluing E 0 to a trivial fibration
with fibre .M;!/ over a disc neighbourhood of the point at “infinity”, Oz 2C[f1g 'CP1.

Moreover, as the symplectic connection around the fibre O��1. Oz/ is trivial, O� W yE!CP1 has the following
properties:

(1) There is a closed (possibly degenerate) two-form �� yE on yE satisfying �� yE j O��1.z/ D�E j��1.z/
for all z 2CP1 n Oz,

(2) A neighbourhood of the horizontal boundary V � @h yE can be trivialised as V Š CP1 �M out,
where M out �M is an open neighbourhood of the boundary of the smooth fibre.

Definition 6.3 The set of almost complex structures compatible with O� , denoted by J . yE; O�; j /, is
defined as follows. An element yJ 2 J . yE; O�; j / satisfies:

� D O� ı yJ D j ıD O� , where j is the standard complex structure on CP1.

� There is an integrable almost complex structure J0 such that yJ D J0 in a neighbourhood of Crit. O�/.

� For all z 2CP1, the restriction J vv WD yJ j O��1.z/ is an almost complex structure of contact type
compatible with the Liouville form �M , and its restriction to V is isomorphic to a product j �J vv .

� �� yE . � ; yJ � / is symmetric and positive definite. G

The form �� yE can be modified to a symplectic form �� WD ��E C O��.ˇ/ that tames yJ for ˇ 2�2.CP1/

(similar to [Seidel 2003, Lemma 2.1; McDuff and Salamon 2017, Theorem 6.1.4]).

From now onwards, we fix a generic element yJ 2 J . yE; O�; j /, so that, by the same arguments as in
[Seidel 2003, Lemma 2.4], all the moduli spaces we encounter satisfy the necessary regularity conditions.

Consider the moduli space of closed . yJ ; j /–holomorphic sections

M yJ
D fu WCP1! yE j O� ıuD idCP1 ; yJ ıDuDDu ı j g:(46)

The moduli space has a nonempty boundary, but, as we explain below, this does not cause compactness
issues, as the only sections reaching the boundary must be trivial.

Lemma 6.4 The space M yJ
is not empty. Moreover , there is a compact subset K � yE n @h yE such that ,

for all u 2M yJ
, either Im.u/�K or u is a trivial (constant) section.

Proof Let q 2 V a point in a neighbourhood @h yE � V of the horizontal boundary as in .2/ above. Via
the trivialisation of this neighbourhood, one obtains a trivial section s WCP1! yE with s.z/D q for all
z 2 CP1, which is a regular . yJ ; j /–holomorphic section, so M yJ

is not empty. The rest of the proof
follows from a maximum principle as in [Seidel 2003, Lemma 2.2].
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We can adapt the argument of [Seidel 2003, Lemma 2.3] to the case of closed curves to show that, for
our choice of almost complex structure yJ, the moduli space M yJ

is a compact smooth manifold with
boundary. The only issue that could possibly occur is a loss of compactness for the component containing
sections outside the compact part K, which, by Lemma 6.4, can only be trivial sections. These elements
have bounded energy, as they are all in the same homology class. By the Gromov compactness theorem,
the only noncompact phenomenon that can occur in this case is sphere bubbling. The next lemma shows
how to discard bubbles.

Lemma 6.5 Let u1 be the limit of a (sub )sequence of pseudoholomorphic sections .un/n2N of the
Lefschetz fibration O� . A component of u1 is either an element in the class Œui � (for i 2N) or is contained
in a single fibre. In the latter case , the component is a bubble.

Proof Let v1; v2; : : : ; vk be the components of u1. The limiting curve u1 is assumed to be . yJ ; j /–
holomorphic and nonconstant, so it has to have degree one, as

Pk
jD1Œ� ı vi �D Œ� ı u1�D ŒCP1�. It

follows that the degrees of its components sum up to one. All degrees are nonnegative, so there is only
one component with degree one. If in addition there were a bubble, it would be represented in a degree
zero component and therefore would have to be entirely contained in a fibre (note that, by positivity of
intersections, the bubble cannot intersect other fibres).

Since the fibres are exact, there can be no bubbling of the type of Lemma 6.5, so the moduli space M yJ
is

compact.

Lemma 6.6 Through each point of the smooth fibre M there is at least one holomorphic section s 2M yJ
.

Proof As in the proof of Lemma 6.4, we consider a neighbourhood of the horizontal boundary V � @h yE
and q 2 V such that O�.q/DW zgen 2 CP1 nCrit v. O�/ and the trivial section through q is s W CP1! yE.
Consider

M. yJ ; q/ WD fu 2M yJ
j q 2 Im.u/g �M yJ

:

It is a smooth compact manifold (by the same arguments as for M yJ
). Moreover, by Lemma 6.4, the only

element in M. yJ ; q/ is the trivial yJ –holomorphic section s WCP1! yE through q.

Let p2 O��1.zgen/ be any other point in the fibre of q, and consider a path ˛ W Œ0; 1�!M with ˛.0/Dp and
˛.1/Dq. For every point ˛.t/, t 2 Œ0; 1�, define M. yJ ; ˛.t/; Œs�/ WD fu2M yJ

j˛.t/2 Im.u/ and Œu�D Œs�g.
Clearly, M. yJ ; ˛.1/; Œs�/DM. yJ ; q/.

Consider

Mcob WD
[
t2Œ0;1�

M. yJ ; ˛.t/; Œs�/�M yJ
:(47)

The boundary components of (47) are given by @Mcob DM. yJ ; p; Œs�/tM. yJ ; q/. We want to show that
the space Mcob is compact, so that it defines a one-dimensional cobordism between M. yJ ; p; Œs�/ and
M. yJ ; q/. As before, since yJ 2 J . yE; O�; j / is chosen to be generic, Mcob is a smooth manifold.
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To show that Mcob is compact, the same strategy applies as in the case of M yJ
. In particular, consider a

sequence ti � Œ0; 1� and for each i a section ui 2M. yJ ; ˛.ti /; Œs�/�Mcob.

All the sections of the sequence we are considering belong to the same homology class, by definition. In
particular, they have the same area, so Gromov’s theorem applies. Consequently, as ti tends to a limit
value t1, the sequence ui converges to a stable map u1. As before (in the proof of Lemma 6.5), if
sphere bubbling occurred, bubbles would have to be “vertical” (meaning entirely contained in the fibres),
which is impossible by the exactness of the fibres.

It follows that Mcob is compact, and hence M. yJ ; p; Œs�/ and M. yJ ; q/ are indeed cobordant. Since the
signed count of the boundary components of a one-dimensional compact manifold is zero, the zero-
dimensional components of the two spaces have the same cardinality. In particular, for any p 2 O��1.zgen/,
M. yJ ; p; Œs�/ is not empty, which means there is at least one element in M yJ

that passes through p.

Corollary 6.7 The map induced by the evaluation map

(48) ev WM yJ
�CP1! yE; .u; z/ 7! evz.u/D u.z/;

is surjective.

Proof By Lemma 6.6, the image of the map (48) is dense, since each point on a smooth fibre has a
preimage. As M yJ

is compact and the mapping is continuous, the result extends to all points of yE and
hence (48) is surjective.

Proof of Theorem A Assume by contradiction that the product � D �Lj1 � � � �Ljk is isotopic to the
identity, and build the fibration O� W yE!CP1 and the moduli space M yJ

as above. By Corollary 6.7, the
evaluation map ev WM yJ

�CP1! yE is surjective. Consider the commuting diagram

M yJ
�CP1

ev
//

pr2

%%

yE

O�
��

CP1

where pr2 WM yJ
�CP1!CP1 is the projection to the second factor.

Let x 2 Crit. O�/ � yE be any point in the critical set. By the surjectivity of ev, there is a pair .u;w/ 2
M yJ
�CP1 such that u.w/D x, so that w 2CP1 is the critical value associated to x. From the diagram,

we obtain
D.u;w/.pr2/DD.u;w/. O� ı ev/; D.u;w/.pr2/DDx O�D.u;w/.ev/:

As x is a critical point,Dx O�D 0, which forcesD.u;w/.pr2/ to be the zero map. But this is in contradiction
with D.u;w/.pr2/ being surjective.

Corollary 6.8 There is no exact Lefschetz fibration with global monodromy symplectically isotopic to
the identity, except for the trivial fibration.

Algebraic & Geometric Topology, Volume 24 (2024)



Projective twists and the Hopf correspondence 4181

6.2 Relative version

Let

M WD T �Sm #pt T
�Sm #pt T

�Sm #pt � � � #pt T
�Sm(49)

be a “multiplumbing” of m spheres (an iterated construction of transverse plumbing of spheres; see
Section 5.1 for the definition of plumbing). By Theorem A, we know that no product � 2 Sympct.M/ of
Dehn twists along the core spheres can be compactly supported symplectically isotopic to the identity.
However, the theorem, a priori, doesn’t prevent such a product from acting trivially on some Lagrangian
submanifolds of M. Is it possible to tell whether there are Lagrangians that detect the nontriviality of �?
Let T be a cotangent fibre of the j th T �Sn–summand for j 2 f1; : : : ; mg. The theorem we prove in this
section shows that any product of positive Dehn twists along Lagrangian cores and involving the j th

sphere does not preserve T up to compactly supported symplectic isotopy.

Theorem C Let .M 2n; !/ be a Liouville manifold containing embedded Lagrangian spheresL1; : : : ; Lm
and a conical Lagrangian disc T intersecting one of the spheres Lj transversely in a point. Let � WDQk
iD1 �Lji

2 Sympct.M/ with ji 2 f1; : : : ; mg be a positive word of Dehn twists involving �Lj . Then the
Lagrangians T and �.T / are not isotopic via a compactly supported Lagrangian isotopy.

We prove the statement of Theorem C in the equivalent version where .M;! D d�M / is a Liouville
domain and T �M is a Lagrangian disc preserved by the Liouville flow near the boundary @M (so that
@T � @M ). This is only chosen so that the Lefschetz fibrations involved have exact compact fibres.

As in the statement, write � D
Qk
iD1 �Lji

with ji 2 f1; : : : ; mg. By assumption, there is at least one index
l 2 f1; : : : ; kg such that jl D j. Assuming �.T /' T via a compactly supported isotopy, we arrive at the
contradictory statement j … fj1; : : : ; jkg.

From the data .M; .Lj1 ; : : : ; Ljl ; : : : ; Ljk //, build an exact Lefschetz fibration � 0 W .E 0; �E 0 ; �E 0/!
.C; �C/ with smooth fibre the Liouville domain .M; d�/, basepoint z� 2 R with z� � 0 such that
the k critical values Crit v.� 0/D fwj1 ; : : : ; wjl ; : : : ; wjkg are ordered vertically on the imaginary line,
Crit v.�/� iR with a basis of vanishing paths .j1 ; : : : ; jk / [Seidel 2008a, (16e)].

Let .�j1 ; : : : ; �jk / be the corresponding basis of Lefschetz thimbles and Vji WD �
�1.z�/\�ji

for
i D 1; : : : ; k, be the associated vanishing cycles, which, under the identification ��1.z�/DM, correspond
to Lji . Let � W S1!C be a loop encircling all critical values.

Build a new exact fibration � W .E;�E ; �E /! .C; �C/ associated to the data

.M; .Vj1 ; : : : ; Vjl ; : : : ; Vjk ; Vjl //;

with basepoint z� 2C, an extra critical value wjC1 2 Crit v.�/� iR and an extra vanishing path jkC1
such that Im.jkC1/\ Im.�/D∅ (all the other choices are the same as for � 0).

Algebraic & Geometric Topology, Volume 24 (2024)



4182 Brunella Charlotte Torricelli

z�

wjk

wjl
z0

wjkC1
Qıj

�

Figure 2: The new fibration � has an extra critical value wjkC1 and a matching sphere that fibres
over the smoothing ıj of the red arc Qıj .

Compared to � 0, there are now two critical pointswjl andwjkC1 associated to the same vanishing cycle Vjl .
Therefore, there is a matching path ıj W Œ0; 1�!C with ıj .0/Dwjl and ı

�
1
2

�
D z�, ıj .1/DwjkC1 whose

parallel transport is a Lagrangian matching sphere Sj Š SnC1 � E (Section 2.2 and [Seidel 2008a,
(16g)]) fibred by Lagrangians isomorphic to Lj (see Figure 2). Let z0 2 Im.ıj /\ Im.�/, and, via parallel
transport, identify T � ��1.z�/ with a copy of the Lagrangian in ��1.z0/.

By construction, the monodromy around � is given by the product �. By assumption, there is an isotopy
�.T /' T, so parallel transport of T along � yields a well-defined Lagrangian P� �E. For z 2 Im.�/, let
Tz � �

�1.z/ be the exact fibres of P� . Then �E jP� D df� C�
�.�� / for a function f� 2 C1.P� ;R/

such that, for every z 2 Im.�/, f� j��1.z/ makes Tz exact and �� 2�1.Im.�// [Seidel 2003, Lemma 1.3].

Lemma 6.9 The Lagrangian P� defines a nontrivial class in HnC1.E; @EIZ/.

Proof The matching sphere Sj and the disc bundle P� are properly embedded Lagrangian submanifolds
meeting transversely at the point y 2 Lj lying over the intersection between � and the matching path
associated to Sj . Their homological intersection, which is the image of a nondegenerate pairing

HnC1.EIZ/�HnC1.E; @EIZ/! Z;

is one, so, in particular, P� represents a nontrivial homology class in HnC1.E; @EIZ/.

6.2.1 Proof of Theorem C Let D �C be the disc bounded by the loop � in the base of � . The idea
for the proof of Theorem C is based on a section count which follows the same principles as Section 6.
In this context, however, we consider pseudoholomorphic sections defining boundary conditions for EjD
on P� .

Let J .�;E; jC/ be the set of almost complex structures compatible with � (see Definition 2.15), where
jC is the standard complex structure on C. For a generic element J 2 J .�;E; jC/, let

M.J; P� / WD fu W .D; @D/! .E; P� / j � ıuD idD; J ıDuDDu ı jCjDg(50)

be the moduli space of pseudoholomorphic sections with boundary condition on P� .
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The Lagrangian P� is fibred by copies of the exact Lagrangian T �M, and therefore P� \ @hE ¤∅, ie
it is not disjoint from the horizontal boundary. As a result, the moduli space M.J; P� / is not compact,
but fortunately its noncompact ends are very well behaved.

Below, we show that, for a generic almost complex structure in J .�;E; jC/, the “noncompact” elements
(those sections reaching the horizontal boundary) of the moduli space (50) are regular. We do this by
showing that such sections must be trivial — and the trivial section can be made regular, as the almost
complex structure is product-like near @hE. For all the other holomorphic sections, which are entirely
contained in the compact region, the same regularity arguments as in [Seidel 2003] apply.

Lemma 6.10 There is yJ 2 J .�;E; jC/ with the following property: there is no yJ –holomorphic
section v W .D; @D/ ! .E; P� / with boundary condition on P� such that there are z1; z2 2 @D with
v.z1/ 2 P� n .P� \ @

hE/ and v.z2/ 2 P� \ @hE.

Proof We show that any generic element J 2 J .�;E; jC/ can be deformed to an almost complex
structure yJ 2 J .�;E; jC/ as in the statement. To do that we use a reverse isoperimetric inequality from
[Groman and Solomon 2014] that applies to the Liouville completion of E.

Identify a collar neighbourhood of @hE with C.@hE/ WDC� ..�"; 0��@M/), and consider the Liouville
completion of E, .E; !E /, obtained by gluing a cylindrical end U h WD C � .Œ0;1/ � @M/ along a
collar neighbourhood of the horizontal boundary @hE, such that !E jUh D d.�C C e

t�M j@M / for the
coordinate t on Œ0;1/.

Let .M; x!/ be the generic smooth fibre of E, and T �M the Lagrangian obtained from T by gluing
a conical end at the boundary. Accordingly, let P� � E be the “completion” of P� � E in E. This
Lagrangian can be trivialised outside of a compact set as @D �U1 �C �U1 �E, where U1 �M is
a neighbourhood of the cylindrical end of T. Extend J to a cylindrical almost complex structure xJ on E
(see Definition 2.12).

By [Ganatra et al. 2020, Lemma 2.43], .E; !E / has bounded geometry in the sense of [Ganatra et al.
2020, Definition 2.42], which is equivalent to the notion of bounded geometry of [Groman and Solomon
2014, Section 1.4]; see [Ganatra et al. 2020, page 104]. The same holds for the Lagrangian P� �E, as it
is compact in the base direction, and conical in the fibre direction (see the proof of [Ganatra et al. 2020,
Lemma 2.43]). Bounded geometry implies that for any xJ –holomorphic section u W .D; @D/! .E; P� /

there is a reverse isoperimetric inequality [Groman and Solomon 2014, Theorem 1.4]

`.uj@D/6 a.u/ �C;(51)

where ` is the length function associated to a xJ –compatible metric g xJ , C > 0 is a constant depending
on E, and a.u/ is the area of the curve.

LetA WD
R
@D �� (for �� 2�1.Im.�// as above), and setR WDA�C. ForR>0, consider a piece of symplec-

tisation .ERC1 WDE[C� .Œ0; RC1��@M/; !RC1/ with !RC1jE D!E and !RC1jC�.Œ0;RC1��@M/D

d.�C C e
t�M /, and a compatible almost complex structure JRC1 D xJ jERC1 of contact type. Clearly
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E �ERC1 �E, and there is a diffeomorphism  WERC1!E that is the identity on E nC.@hE/ and
compresses C � ..�"; RC 1�� @M/ to C � ..�"; 0�� @M/ via the negative Liouville flow.

Every xJ –holomorphic curve u W .D; @D/! .E; P� / such that there are z1; z2 2 @D with u.z1/ 2 Int.E/
and u.z2/ 2E nERC1 satisfies d.u.z1/; u.z2// > A �C and the inequality (51)

Now set yJ WD  �.JRC1/. This satisfies the requirements of the lemma.

Namely, let v W .D; @D/! .E; P� / be a yJ –holomorphic section as in the statement, ie such that there are
z1; z22@D with v.z1/2P�n.P�\@hE/ and v.z2/2P�\@hE. Then we certainly have d.v.z1/; v.z2//<
`.vj@D/ for the distance function d and the length ` associated to a compatible metric g yJ . On the other
hand, the area of v is bounded by a fixed upper bound since a.v/ D

R
D v
��E D

R
D d.v

��E / DR
@D v

�.�E /D
R
@D �� D A by exactness of �E and fibrewise exactness of P� .

By stretching the neck in a neighbourhood of the boundary of E to ERC1, the pullback  �.v/ pro-
duces a contradiction, since d

�
 �.v.z1//;  

�.v.z2//
�
< `. �.vj@D// < a. 

�.v// �C D A �C, but also
d
�
 �.v.z1//;  

�.v.z2//
�
> A �C by construction of ERC1.

From now onwards, fix an almost complex structure yJ 2 J .�;E; jC/ as in Lemma 6.10. The above
results imply that the only possible scenario left to consider in the case of a nonconstant section with
boundary condition on P� intersecting @hE is to be entirely contained in the horizontal boundary of the
fibration.

Lemma 6.11 Let u WD!E be a yJ –holomorphic section such that Im.u/� @hE. Then u is a constant
section.

Proof Assume there is a nonconstant section u W D ! E such that Im.u/ � @hE. Identify (via a
trivialisation as in (8)) a neighbourhood of @hE as U @ ŠC�M out �C�M for a collar neighbourhood
M out �M of @M. Then the projection of Im.u/ to M defines a nonconstant yJ jM–holomorphic disc
u W .D; @D/! .M; T /, which, by the exactness assumptions on M, cannot exist. Therefore, u must be a
constant section.

We now prove that there are no compactness issues. The moduli space M. yJ ; P� / has noncompact end,
but by the regularity discussion above, the only sections reaching it are the constant ones, and all elements
of M. yJ ; P� / have bounded energy so that the Gromov compactness theorem applies. The bubbles in
the Gromov limit of a sequence of . yJ ; jC/–holomorphic sections in M. yJ ; P� / are either spheres in the
fibres over D, or discs in the fibres ��1.z/ for z 2 Im.�/ with boundary condition on Tz . Both options
can be discarded by exactness of E and fibrewise exactness of P� .

Lemma 6.12 The evaluation map

(52) ev WM. yJ ; P� /�D!E; .u; z/ 7! u.z/;

(i) is proper;

(ii) restricts to a surjective map M. yJ ; P� /� @D! P� of degree one.
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Proof (i) To prove this property is enough to show that every sequence of sections fukgk2N in M. yJ ; P� /

whose image under ev lies in a relatively compact set of E has a convergent subsequence. Consider such
a sequence. If its image under (52) lie in a compact set, then, by exactness, there is an upper bound to the
energy of all elements in the sequence (which is bounded by a finite value determined by the maximum
among all areas of the curves). Then, by the Gromov compactness theorem, fukgk admits a subsequence
converging to a stable map, which, in the absence of bubbles, can only be another section.

(ii) To prove the second point, we show that the algebraic count of sections through every point
of P� is one. Let U @ � @hE be a neighbourhood of the horizontal boundary as in the proof of the
previous lemma and q 2 U @ \ ��1.�/. Since � is compactly supported in a neighbourhood of the
vanishing cycles, the monodromy around � preserves q. By Lemmas 6.10 and 6.11, the moduli space
M. yJ ; q/ WD fu 2M. yJ ; P� / j q 2 Im.u/g �M. yJ ; P� / is compact and only contains the constant section
s WD!E through q.

Given another point p 2 P� , consider the path ˛ W Œ0; 1�!M with ˛.0/D p and ˛.1/D q, and define

M. yJ ; P� ; ˛.t/; Œs�/ WD fu 2M. yJ ; P� / j ˛.t/ 2 Im.u/ and Œu�D Œs�g:

Clearly, M. yJ ; P� ; ˛.1/; Œs�/DM. yJ ; q/.

Consider

Mcob WD
[
t2Œ0;1�

M. yJ ; P� ; ˛.t/; Œs�/�M. yJ ; P� /:(53)

All elements in Mcob are in the same homology class so that the same compactness arguments apply as
above. Compactness implies that, for every p 2 P� , the moduli space M. yJ ; P� ; p; Œs�/ is cobordant to
the moduli space M. yJ ; q/. Therefore, by the same reasoning as in the proof of Lemma 6.6, through each
point of P� there is algebraically a unique section in M. yJ ; P� /, so the restriction M. yJ ; P� /�@D!P�

is surjective and of degree one.

Proof of Theorem C Under the assumption that �.T / ' T, we have proved that P� represents a
nontrivial class in HnC1.E; @E/ (Lemma 6.9). The same assumption however also yields Lemma 6.12,
which in particular implies that ev�.M yJ

.E; P� /�@D/D ŒP� �2HnC1.E; @E/ is realised as the boundary
of the chain ev�.M yJ

.E; P� /�D/ 2 CnC2.E; @E/. This is a contradiction.

6.3 Product of projective twists

We continue the investigation on positive products of twists in Liouville manifolds, this time focussing on
projective twists. Ideally, one would try to generalise as many results from the previous sections to this
situation.

The previous section heavily relied on the link between Dehn twists and Lefschetz fibrations, and many
constructions we used depended on section-count invariants of Lefschetz fibrations.
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Perutz [2007] showed that any fibred twist admits a representation as the local monodromy of a Morse–
Bott–Lefschetz (MBL) fibration. Projective twists can be thought of as an example of S1–fibred twists,
so we could envisage extending the mechanisms behind the proof for the spherical case to the setting
of MBL fibrations (following [Perutz 2007; Wehrheim and Woodward 2016]) to show the analogous
statement for projective twists.

Question 2 Let ' 2 Sympct.W / be a nonempty composition of positive powers of projective twists on a
Liouville manifold .W; !/ of dimension at least four. Can ' be isotopic to the identity in Sympct.W /?

Unfortunately, the section-count strategy presents a route filled with obstacles, the central problem being
the lack of compactness of moduli spaces of sections of MBL fibrations. The critical locus Crit.�/ of
such a fibration is a compact symplectic submanifold of the total space, and in general contains rational
curves. The total space of a MBL fibration � WE!C associated to a projective twist cannot be made
into an exact symplectic manifold, so bubbling phenomena can become an issue when considering moduli
spaces of pseudoholomorphic sections.

Instead, the idea remains, as in Section 5, to use the Hopf correspondence to translate a situation involving
projective twists into one involving Dehn twists.

Theorem D Let .W 2n; !/ be a Liouville manifold containing Lagrangian real projective spaces
K1; : : : ; Km with Ki Š RPn. Suppose that there is a class ˛ 2 H 1.W IZ=2Z/ such that , for every
i D 1; : : : ; m, ˛jKi generates H�.RPnIZ=2Z/. Let ' 2 Sympct.W / be a positive word in the subset of
projective twists f�Ki gi2f1;:::;mg. Then ' is not isotopic to the identity in �0.Sympct.W //.

Proof As in Section 4.3.2, let q W .�W ; z!/! .W; !/ be the symplectic double cover given by the class ˛ and
L1; : : : ; Lm � �W Lagrangian spheres obtained as double cover of K1; : : : ; Km �W. The composition of
projective twists ' 2 Sympct.W / lifts to a composition of spherical Dehn twists � 2 Sympct.

�W /. Assume
there is an isotopy .'t /06t61 connecting the composition of projective twists '0 D ' to the identity
'1 D Id. The isotopy lifts to a family of compactly supported maps .�t /06t61 in the double cover �W,
where �0D � is the lift of '. Then �1 covers the identity and can therefore only be either the identity or a
deck transformation. The latter type would define a noncompactly supported symplectomorphism, hence
�1 must be the identity. It follows that � 2 Sympct.

�W / is a composition of Dehn twists in a Liouville
domain which is isotopic to the identity, contradicting Theorem A.

Remark 6.13 A similar argument fails when applied to complex projective twists. Let .W 4n; !/ be a
symplectic manifold with complex projective Lagrangians K1; : : : ; Km satisfying Assumption (CX). The
fibration .Y;�/! .W; !/ constructed from the cohomological condition is not proper, so an isotopy in
Sympct.W / cannot be lifted to an isotopy in Sympct.Y /. G
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7 Epilogue: framings of projective twists, homotopy projective Lagrangians

As a last application of the Hopf correspondence, we examine homotopy projective Lagrangians. We
prove two nonembedding results for Lagrangian projective spaces in nonstandard homeomorphism/diffeo-
morphism classes (Theorems E and F), and, for n> 19, the existence of projective twists obtained from a
nonstandard choice of framing that are not Hamiltonian isotopic to the standard �CPn 2 Sympct.T

�CPn/:

Theorem G The CPn–twist depends on the framing when nD 19; 23; 25; 29.

Embedding theorems are obtained in Section 7.1 using homotopy theory results combined with the
existing state of the art of the nearby Lagrangian conjecture, and the use of the Hopf correspondence.

We subsequently investigate the question of framings for projective twists in Section 7.2. For that purpose,
we utilise the current literature on framing of Dehn twists, a pairing constructed by Bredon, and the Hopf
correspondence. This enables us to obtain instances in which the (Hamiltonian isotopy class of the) local
projective twist does depend on a choice of framing of the associated Lagrangian projective space. With
the additional use of topological modular forms, we explain why there should be infinitely many such
examples.

7.1 Lagrangian nonembeddings of projective spaces

The nearby Lagrangian conjecture states that, given a closed smooth manifold Q, any closed exact
Lagrangian submanifold of .T �Q;d�Q/ is Hamiltonian isotopic to the zero section. If this conjecture
were true, the existence of another closed exact Lagrangian embedding L ,! T �Q would yield a
diffeomorphism LŠQ. By Weinstein’s neighbourhood theorem, the latter version of the statement can
also be read as: if .T �L; d�T �L/ is symplectomorphic to .T �Q;d�T �Q/, then L is diffeomorphic to Q.

The conjecture has been verified for some specific examples (T �S2 and T �RP2 by [Hind 2012; Li and
Wu 2012] and T �T 2 by Dimitroglou Rizell, Goodman and Ivrii [Dimitroglou Rizell et al. 2016]), and
weaker versions of it have been proved. Currently, the most general feature one can deduce from an exact
Lagrangian embedding in .T �Q;d�T �Q/ is (simple) homotopy equivalence:

Theorem 7.1 [Abouzaid 2012b; Kragh 2013; Abouzaid and Kragh 2018] If L � T �Q is a closed ,
exact Lagrangian embedding , then the projection L� T �Q p

�!Q is a (simple) homotopy equivalence.

Remark 7.2 If L�T �Q p
�!Q is a Lagrangian as in the above statement, then TL˝CŠp�.TQ˝C/.

The Pontryagin classes pi 2 H 4k. � / satisfy 2pi .L/ D 2pi .Q/. Moreover, the (rational) Pontryagin
classes pi are homeomorphism invariants [Novikov 1965]. G

Equipped with the connected sum operation, the set of h–cobordism classes of homotopy m–spheres ‚m
has an abelian group structure (where the standard sphere plays the role of neutral element). We will
always assume m > 5, in which case the elements of ‚m correspond to diffeomorphism classes of
m–spheres.
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The group ‚m fits in an exact sequence [Kervaire and Milnor 1963]

0! bPmC1!‚m
 
�! coker.Jm/! bPm:(54)

Here bPmC1 D ker. / � ‚m denotes the subgroup of homotopy m–spheres bounding an .mC1/–
dimensional parallelisable manifold, and Jm W �m.O/! �m.S/ is a map from the mth stable homo-
topy group �m.O/ D liml!1 �m.SO.l// to the mth stable homotopy group of spheres �m.S/ WD
liml!1 �mCl.S l/ (see eg [Levine 1985, Section 3]). This group is also called the mth stable stem.

Throughout the section, we will repeatedly use the following fact about the sequence (54):

Theorem 7.3 [Kervaire and Milnor 1963, Theorem 5.1] If m is an odd integer , bPmD 0. Consequently,
for any odd m,  W‚m! coker.Jm/ is surjective.

In the symplectic setting, homotopy spheres are good candidates to test the nearby Lagrangian conjecture.

Theorem 7.4 [Abouzaid 2012a] (extended by [Ekholm et al. 2016]) Let m> 4 odd. If †;†0 2‚m
and T �† is symplectomorphic to T �†0, then Œ†�D˙Œ†0� 2‚m=bPmC1.

It will be practical to paraphrase the above theorem as follows:

Corollary 7.5 If m> 4 is odd and † 2‚m n bPmC1, then † does not admit a Lagrangian embedding
into T �Sm.

Definition 7.6 We choose to depart from the classic terminology of exotic manifolds. Instead, we will
call a smooth manifold that is homeomorphic, but not diffeomorphic, to the standard sphere an AD
sphere (AD stands for alternative differentiable structure). Correspondingly, a smooth manifold that is
homeomorphic, but not diffeomorphic, to the standard CPn will be called an AD projective space. Finally,
a smooth manifold that is homotopy equivalent, but not homeomorphic, to the standard projective space
will be called an AT projective space (where AT stands for alternative topological structure). G

7.1.1 Results The results of this section hinge on the existence of homotopy projective spaces that are
obtained as the reduced space of a circle action on an AD sphere. It is not always possible to relate an
n–dimensional AD/AT projective space to a .2nC1/–dimensional AD sphere in this way. Below, we start
by exploring a few facts about AD/AT projective spaces, after which we can discuss three interesting
examples where the desired phenomenon is observed (the spaces of Theorems E and F).

Definition 7.7 [Kawakubo 1969] The inertia group I.M/ of an oriented closed smooth manifold M is
the subgroup of ‚m consisting of homotopy spheres S 2‚m such that the connected sum M #S is in
the same diffeomorphism class as M. G
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If I.CPn/D0 and‚2n is nontrivial, one can build an AD projective space as follows. Given an AD sphere
† 2‚2n the connected sum CPn #† (a zero-dimensional surgery) is another manifold homeomorphic
to CPn but not diffeomorphic to it. For n> 8, there are examples for which the inertia group I.CPn/

is nontrivial (see [Kawakubo 1969]); in those cases the smooth structure of the resulting manifold is not
automatically distinct from the standard smooth structure on CPn. In dimension four, we know:

Theorem 7.8 [Kasilingam 2016] There are two possible distinct smooth structures on a manifold
homeomorphic to CP4: the standard CP4–structure , and the one on CP4 #†8, where †8 2‚8 is the
unique AD 8–sphere.

In contrast, it is known that there is an abundance of AT projective spaces: for even integers n> 4, there
are infinitely many AT projective spaces, distinguished by the first Pontryagin class p1 2H 4.CPnIZ/

[Hsiang 1966].

Is there a way to associate an AD sphere to an AD/AT projective space? Given an AD/AT projective
space K, the unit bundle of the line bundle L! K satisfying c1.L/ D ˛K (where ˛K 2 H 2.KIZ/ is
the cohomology generator) could still be diffeomorphic to a standard sphere. Note that, in the special
case where the projective space is a surgery of the form K DCPn #†, for an AD sphere † 2‚2n, the
.2nC1/–sphere obtained as the unit bundle of L!K is given by stab.†/ 2‚2nC1 (where stab is the
map constructed in Section 7.2; see Remark 7.17).

On the other hand, one could examine S1–quotients of AD spheres zS 2‚2nC1. A priori this is not always
a successful strategy, as not all homotopy spheres admit a smooth free circle action. But, if such an action
exists, then the quotient P WD zS=S1 resulting from it is an AD or AT projective space. Namely, this
reduced space is necessarily homotopy equivalent to a projective space [Hsiang 1966], but it is at least not
diffeomorphic to the standard CPn (since circle bundles over P are classified by elements of H 2.P IZ/,
and, if P were the standard projective space, then the total space of the line bundle would have to be a
standard sphere).

Theorem 7.9 [James 1980, Sections 2–3] There is a homotopy 9–sphere zS such that :

(i) zS … bP10 Š Z=2Z.

(ii) zS admits a free action of S1.

(iii) The quotient P WD zS=S1 is not homeomorphic to CP4.

(iv) P and the standard CP4 have the same tangent bundles.

Remark 7.10 James [1980, Section 3] notes that there is another S1–action on zS with quotient space
P #†8. The latter is an AT projective space that is not diffeomorphic to P. G

We now have enough material to state and prove the results of this section.

Algebraic & Geometric Topology, Volume 24 (2024)



4190 Brunella Charlotte Torricelli

Theorem E There is a manifold P homotopy equivalent to CP4 and with the same first Pontryagin class
such that neither P nor P #†8 admits an exact Lagrangian embedding into T �CP4.

Proof Consider the homotopy 9–sphere zS admitting a free S1–action of Theorem 7.9. We let P WD zS=S1

and prove it is the right candidate to satisfy the claim. The quotient P is homotopy equivalent to CP4, but,
by Theorem 7.9(iii), it is not homeomorphic to it. The first Pontryagin classes of P and CP4 coincide by
Theorem 7.9(iv). Assume there is a Lagrangian embedding P ,! T �CP4. The Hopf correspondence (see
Lemma 3.1) lifts P to zS , giving an exact Lagrangian embedding zS ,! T �S9. However, by Theorem 7.9,
zS 2‚9 n bP10, so the existence of the Lagrangian embedding contradicts Corollary 7.5.

The same argument applies to prove that P #†8 does not embed as Lagrangian into T �CP4. Namely,
the Hopf correspondence would, in that case too, lift (via the S1–action of Remark 7.10) P #†8 to zS
[James 1980, Section 3].

Remark 7.11 Our techniques do not allow to prove whether the AD projective space CP4 #†8 of
Theorem 7.8 does admit a Lagrangian embedding into T �CP4 or not. G

Theorem F There is an element †14 in the group of homotopy 14–spheres ‚14 such that CP7 #†14

does not admit an exact Lagrangian embedding into T �CP7.

Proof First note that ‚14 Š Z=2Z and bP15 D 0 [Kervaire and Milnor 1963], so there is a unique
AD 14–sphere. We define †14 to be this AD 14–sphere and prove it is the right candidate to satisfy
the claim. By [Bredon 1967, Theorem 4.6], there is an AD sphere †15 2‚15 n bP16 admitting a free
S1–action, with quotient P WDCP7 #†14. If P admitted a Lagrangian embedding in T �CP7, the Hopf
correspondence would yield a Lagrangian embedding †15 ,! T �S15. But †15 … bP16, which would
contradict Corollary 7.5 (for the same reasons as in the proof of Theorem E).

7.2 Framing of projective twists

The background material that we use to examine the question of framing of projective twists is based on
[Dimitroglou Rizell and Evans 2015], in which it is proved that the Hamiltonian isotopy class of a Dehn
twist does in general depend on a choice of framing.

Let .M;!/ be a symplectic manifold. Given a framing of a Lagrangian sphereL�M, ie a diffeomorphism
Sn! L (see Section 2.1), the precomposition with an element F 2 Diff.Sm/ yields another framing.

Consider the symplectomorphism F � W T �Sm! T �Sm induced by the lift of F to the cotangent bundle
T �Sm. The standard model twist � loc

Sm 2 Sympct.T
�Sm/ can be replaced by F � ı � loc

Sm ı .F
�1/�, and the

latter can be implanted in a Weinstein neighbourhood as in Definition 2.8 to produce a new element in
Sympct.M/. To study framings of twists, we can then restrict to these parametrisations of the standard
model twist �Sm WD � loc

Sm 2 Sympct.T
�Sm/.
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A core fact for the study of parametrisations of twists is the isomorphism �0.DiffC.Sm// Š ‚mC1

[Kervaire and Milnor 1963; Cerf 1970]. In particular, given a nontrivial diffeomorphism F 2 DiffC.Sm/,
there is an .mC1/–dimensional AD sphere constructed as follows:

Definition 7.12 Let F 2 Diff.Sm/ be a diffeomorphism not isotopic to the identity. Then †F WD
DmC1[F D

mC1 2†mC1 is an .mC1/–dimensional homotopy sphere obtained by gluing two .mC1/–
discs along their boundary Sm twisted by F. In the notation of [Dimitroglou Rizell and Evans 2015,
Definition 1.4] (which is more apt to visualise the Lagrangian suspension we utilise in Section 7.2.2), this
is equivalent to

†F WD .D
mC1
�S0/[ˆ S

m
� Œ0; 1�

glued along Sm �S0 via ˆ W Sm �S0! Sm �S0, ˆ.x; y/D .F.x/; y/. G

Also recall there is an isomorphism �0.DiffC.Sm//Š �0.DiffCct .D
m// induced by a map DiffCct .D

m/!

DiffC.Sm/ which extends all elements of DiffCct .D
n/ over a capping disc.

Dimitroglou Rizell and Evans proved the existence of Dehn twists, whose Hamiltonian isotopy class
depends on the choice of framing.

Definition 7.13 [Dimitroglou Rizell and Evans 2015, Definition 1.1] Fix a cotangent fibre ƒ� T �Sm

and let Lm �‚m be the subset of homotopy spheres which admit a Lagrangian embedding into T �Sm

with the additional requirement that the embedding intersects ƒ transversely in exactly one point. G

Theorem 7.14 [Dimitroglou Rizell and Evans 2015, Theorem A] Let F 2 DiffC.Sm/ be such that
†F … LmC1. Then ��1Sm ı .F

� ı �Sm ı .F
�1/�/ is not trivial in �0.Sympct.T

�Sm//.

In the rest of the section, we analyse the analogous problem for reparametrisations f 2 Diff.CPn/ of
projective twists. We prove that there exist n 2 N such that the twist �f WD f � ı �CPn ı .f

�1/� is
not isotopic to the standard projective twist in �0.Sympct.T

�CPn//, where f � W T �CPn! T �CPn

is the symplectomorphism induced by the lift of f to the cotangent bundle. We will not directly use
Theorem 7.14 but an intermediary result (Proposition 7.15 below) that Dimitroglou Rizell and Evans
proved (using [Abouzaid 2012a; Abouzaid and Kragh 2018; Ekholm and Smith 2014]) to support their
arguments.

Proposition 7.15 [Dimitroglou Rizell and Evans 2015, Proposition 1.2] There is an inclusion Lm �
bPmC1.

Remark 7.16 There is a slight abuse of terminology in the entirety of the section. A framing will
be employed (as in the rest of the paper) in the nonstandard sense à la Seidel to signify a smooth
parametrisation of a sphere. The classical topological notion of framing (as a trivialisation of the normal
bundle) is also needed in this section, and, in order to avoid a conflict of nomenclature, we call the latter
a normal framing. G
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7.2.1 Bredon’s pairing We begin by introducing an essential component of the arguments of this
section: a map

stab W‚m!‚mC1(55)

obtained as a special case of a homomorphism ‚m˝�l.S/!‚mCl studied in [Bredon 1967].

Consider the linear action of SO.2/' S1 on SmC1 �RmC2 via the representation

SO.2/! SO.mC 2/; A 7! '.A/D

24A A
:: :

35 ;
with 1 in the right-hand bottom corner if m is odd. This is the linear S1–action on SmC1, which is free if
m even (in which case it is the standard Hopf action), and whose fixed-point set is S0 if m odd.

For †2‚m, Bredon’s construction [1967, Sections 1 and 4] yields a homotopy .mC1/–sphere as follows.
Let V �† be an open neighbourhood of a point p 2†, and g W .V; p/! .Rm; 0/ an orientation-reversing
diffeomorphism. Let B WD g�1.Dm/� V �†, where Dm �Rm is the unit disc.

Let C Š S1 � SmC1 be a principal orbit of the SO.2/–action on SmC1, equipped with a normal framing
F W C �Rm! SmC1.

Define

stab.†/ WD SmC1 n .F.C �Dm//[ C � .† nB/;(56)

where the two pieces are glued along their boundaries, which can be identified via a diffeomorphism
F.C � .Rm n f0g//Š C � .V n fpg/ as in [Bredon 1967, page 435].

The normally framed orbit .C;F/ represents an element  2 �mC1.Sm/ Š �4.S
3/ Š Z=2Z via the

Thom–Pontryagin construction (see [Milnor 1965, Section 7]). With this identification in mind, the map
stab is derived from a pairing ‚m � �mC1.Sm/! ‚mC1, .†; / 7! stab.†/ D h†; i (see [Bredon
1967, (1)]). The latter induces a homomorphism [Bredon 1967, (2)]

‚m˝�1.S/!‚mC1:(57)

To determine the class  , we follow [Bredon 1967, (4.1)] and find that  D �j , where � 2 �1.S/ WD
�4.S

3/Š Z=2Z is the nontrivial element in the stable stem �1.S/ and

j D

�1
2
m if m even (ie the action on SmC1 is free);
1
2
.m� 1/ if m odd (ie the action SmC1 is not free):

Intuitively, if a normally framed Hopf circle in S3 represents the class � 2 �4.S3/, then  is determined
by the number of times (mod 2) that this normal framing fits in the normal bundle to C � SmC1.

For mC 1D 2nC 1 and mC 1D 2nC 2, we have j D n and

(58)  D �n D

�
� if n odd;
0 if n even:
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Remark 7.17 For an even-dimensional homotopy sphere † 2 ‚2n, the image stab.†/ can also be
described as follows (this remark is relevant for Section 7.1). Consider the surgery CPn #† and the
complex line bundle L!CPn #† associated to the generator of H 2.CPn #†IZ/. Then stab.†/ is the
homotopy sphere obtained as the unit circle bundle of L. G

We now focus on the case mC 1D 2nC 2.

Lemma 7.18 The map ‚2nC1!‚2nC2=bP2nC3 is nontrivial for nD 19; 23; 25; 29.

Proof There is a commuting diagram (see [Bredon 1967, Corollary 2.2]) obtained from the exact
sequence (54),

(59)

‚2nC1
stab

//

 

��

‚2nC2

 

��

coker.J2nC1/
.�/��n

// coker.J2nC2/

where .�/ ��n W coker.J2nC1/! coker.J2nC2/, is a map descending from the multiplication �2nC1.S/�
�1.S/! �2nC2.S/ with the class � 2 �1.S/ Š Z=2Z, which is well defined since, for l C 1 < m,
Im.Jm/ � Im.Jl/� Im.JmCl/, the image of the J –homomorphism is preserved under multiplication with
elements of the stable stems.

By (58), we know that a necessary requirement for the map stab to be nontrivial is to have nD 2kC 1
for some k 2N so that �n D � is nontrivial. In that case, we get

(60)

‚4kC3
stab

//

 

��

‚4.kC1/

 

��

coker.J4kC3/
.�/��

// coker.J4.kC1//

The vertical maps are both surjective since is always surjective in odd dimensions and whenm�0 mod 4
(see [Levine 1985, Theorem 5.4]).

The exact sequence (54) implies that coker.J4kC4/ Š ‚4kC4=ker. / Š ‚4kC4, and the nontriviality
of the composition  ı stab W ‚4kC3 ! ‚4kC4 is equivalent to the nontriviality of the multiplication
.�/ � � W coker.J4kC3/! coker.J4kC4/. This amounts to looking for elements in the stable stems whose
�–multiples are not in the image of J. As � is of order two, this information can be found in the “two-
primary part” of the stable stems, the subgroups obtained after quotienting all elements of odd order.
These are tabulated in a diagram in [Hatcher 2002, page 385], where the elements of interest appear to be
in degrees 2nC 1 2 f39; 47; 51; 59g, which means that n 2 f19; 23; 25; 29g.

The rest of the section is dedicated to explaining how to relate a parametrisation f 2 DiffC.CPn/ of the
standard projective twist to a parametrisation F 2 DiffC.S2nC1/ of the standard Dehn twist.
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Lemma 7.19 Let n be an odd integer and f 2 DiffC.CPn/ an orientation-preserving diffeomorphism.
There exists a diffeomorphism F 2 DiffC.S2nC1/ satisfying h ıF D f ı h, ie F is the lift of f by the
Hopf bundle map.

Proof Let h W S2nC1 ! CPn the Hopf bundle map. A diffeomorphism f W CPn ! CPn induces a
continuous function F W f �.S2nC1/! S2nC1 covering f such that the diagram

(61)

f �.S2nC1/
F

//

h0

��

S2nC1

h
��

CPn
f

// CPn

commutes, where h0 W f �.S2nC1/!CPn is the pullback bundle of h by f. The map induced by f on the
second cohomology Nf WH 2.CPn/!H 2.CPn/ is˙Id. Therefore, the Euler classes of h WS2nC1!CPn

and h0 W f �.S2nC1/!CPn coincide up to sign, so these principal S1–bundles must have diffeomorphic
total spaces. It follows that F W f �.S2nC1/! S2nC1 is in fact a diffeomorphism F W S2nC1! S2nC1

covering f satisfying h ıF D f ı h.

Lemma 7.20 Let n be an odd integer and f 2DiffC.CPn/ be an orientation-preserving diffeomorphism
supported in an open chart , ie f is induced by an element of DiffCct .D

2n/, and let †f 2‚2nC1 be the
homotopy .2nC1/–sphere associated to f.

Let F 2DiffC.S2nC1/ be the S1–equivariant lift of f of Lemma 7.19 and †F 2‚2nC2 the corresponding
homotopy .2nC2/–sphere. Then stab.†f /D†F .

Proof The lift F 2 DiffC.S2nC1/ is supported in a tubular neighbourhood of a Hopf circle in S2nC1.
To build †F , identify S2nC1 with an equator in S2nC2, and consider the above circle as a normally
framed circle C � S2nC2. That requires a choice of trivialisation of the normal bundle to a Hopf circle, a
normal framing F W C �R2nC1! S2nC2 that defines the support of the gluing map for the construction
of †F : on F.C �D2nC1/, F acts as id�f. By the same arguments as in the beginning of this section,
the normal framing of this Hopf circle corresponds to the class �n 2 �1.S/, so †F D stab.†f / by the
construction (56).

7.2.2 Results We first mention an auxiliary result from [Dimitroglou Rizell and Evans 2015] we will
need in the proof of Theorem G.

Lemma 7.21 [Dimitroglou Rizell and Evans 2015, Proposition 2.5] Consider .T �S2nC1; d�T �S2nC1/
equipped with the well-known structure of a Lefschetz fibration T �S2nC1 ! C with smooth fibre
.T �S2n; d�T �S2n/ and two singular fibres. Let L� T �S2nC1 be the standard Lagrangian embedding of
the zero section. There is an open symplectic embedding

e W T �S2nC1 �T �Œ0; 1�! T �S2nC2(62)

such that :
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� L� Œ0; 1� is sent to a subset of the zero section S2nC2 � T �S2nC2 (the matching sphere).

� The image of the embedding is disjoint from a particular cotangent fibreƒ�T �S2nC2 (a Lefschetz
thimble).

Proposition 7.22 If the map stab W ‚2nC1 ! ‚2nC2 is nontrivial and n is odd , then the CPn–twist
depends on a choice of framing.

Proof Choose a framing f 2 DiffC.CPn/, coming from an element of DiffCct .D
2n/ extended by

the identity on the projective space. Let F 2 DiffC.S2nC1/ be the S1–equivariant lift of f as in
Lemma 7.19, supported in a tubular neighbourhood of a Hopf circle F W Š S1 �D2n � S2nC1. Let
†f 2 ‚2nC1 be the sphere associated to f, and †F 2 ‚2nC2 that associated to F. By Lemma 7.20,
†F D stab.†f /Dh†f ; �ni 2‚2nC2. Since n is odd, �nD � and †F D stab.†f /2‚2nC2 is nontrivial.

The map f � induced by f on the cotangent bundle is not compactly supported, but can be used to define
the compactly supported conjugation

(63) �f WD f
�
ı �CPn ı .f

�1/� W T �CPn! T �CPn

of the projective twist �CPn 2 Sympct.T
�CPn/.

We next show below that �f belongs to a Hamiltonian class distinct from that of the standard projective
twist:

Lemma 7.23 The twist �f defined in (63) is not isotopic to the standard twist �CPn 2 Sympct.T
�CPn/.

Proof Assume by contradiction that ��1CPnı�f is (Hamiltonian) isotopic to the identity in Sympct.T
�CPn/.

Let .�t /t2Œ0;1� be an isotopy connecting the two symplectomorphisms in Sympct.T
�CPn/ such that there

are s0 > s 2 .0; 1/ with

�t D

�
��1CPn ı �f if t 6 s;

Id if t > s0:
(64)

Let H W T �CPn� Œ0; 1�!R be the generating Hamiltonian function. Define the Lagrangian embedding

(65)  0 WK � Œ0; 1�! T �CPn �T �Œ0; 1�; .x; t/ 7!
�
�t .x/; t;�H.�t .x/; t/

�
;

where K � T �CPn is the standard Lagrangian embedding of the zero section. By construction, near
the ends of the interval, K � Œ0; 1� is preserved by (65) in the sense that  0.K � Œ0; s�/�K � Œ0; s� and
 0.K � Œs0; 1�/�K � Œs0; 1�.

On each fibre T �CPn of T �CPn �T �Œ0; 1�, apply the Hopf correspondence to lift the image of (65) to
a Lagrangian embedding

‰ W L� Œ0; 1�! T �S2nC1 �T �Œ0; 1�(66)

(where L � T �S2nC1 is the standard Lagrangian embedding of the zero section) such that L � I is
preserved by ‰ near the ends of the interval.
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By Lemma 7.21, we can replace e.L� Œ0; 1�/� T �S2nC2 by the Lagrangian suspension ‰.L� Œ0; 1�/,
so that the ends of ‰.L � Œ0; 1�/ are “capped” into a .2nC2/–dimensional sphere diffeomorphic to
†F 2‚2nC2 (see [Dimitroglou Rizell and Evans 2015, Section 3.3]) which intersects a cotangent fibre
once transversely and is therefore contained in L2nC2. By Proposition 7.15, L2nC2 � bP2nC3 and since
bP2nC3 D 0 (this holds for all odd integers; see [Kervaire and Milnor 1963]), †F has to be the standard
sphere. However, as we have seen above, †F D h�n; †f i 2 ‚2nC2 is nontrivial as n is odd. This is
a contradiction, which proves Lemma 7.23; �f cannot be isotopic to the standard projective twist in
Sympct.T

�CPn/.

This also concludes the proof of Proposition 7.22.

The above results are sufficient to prove the following:

Theorem G The CPn–twist depends on the framing when nD 19; 23; 25; 29.

Proof The statement is proved by combining Lemma 7.18 with Proposition 7.22.

Proposition 7.24 The CPn–twist depends on the choice of framing for infinitely many dimensions n.

Proof One way to obtain infinite families of nontrivial multiples of � which are not contained in the
image of J is by detecting them in topological modular forms, denoted by tmf (we refer to [Henriques
2014] for a survey on the subject). There is a “Hurewicz homomorphism” ��.S/! ��.tmf/ between the
ring of stable homotopy groups of spheres and the homotopy ring of tmf, and the two primary components
of the ring of homotopy groups have a certain kind of periodicity of degree 192. Therefore, if we can
identify an element in one of the homotopy groups �4kC3.tmf/ that is also in the image of the Hurewicz
homomorphism and arises as a product of �, we obtain a periodic family of elements to which the
argument of Lemma 7.18 applies.

A (partially conjectural) diagram depicting the two-primary components can be found in [Henriques
2014] and it is helpful to first identify a potential candidate. Degree 39D 4 � 9C 3 presents an element
which has been confirmed to be the image of a nontrivial multiple of � (see [Hopkins and Mahowald 2014,
Corollary 11.2 ], there the element in question is called u and arises as image of a product of x�; �; � and �;
all of these are standard names of generators of stable homotopy groups stems). It follows that, in every
dimension m� 39 mod 192, there is an element for which the map .�/ � � W coker.Jm/! coker.JmC1/
and hence stab W‚m!‚mC1 are not trivial. Recall thatmD 4kC3D 2nC1, so that, by Proposition 7.22,
the projective twist depends on the framing for n� 19 mod 96. Further scrutiny of the literature would
provide other such elements, eg for mD 59 .nD 29/.

Remark 7.25 It is very likely that a version of Theorem G holds for HPn–twists as well. Bredon
[1967, page 446] computes the class that would be associated to a framing of S3 � S4nC3, which is a
power of � 2 �3.S/D limm �mC3.Sm/Š �8.S5/Š Z24. Nontriviality results for the map stab in this
case would not only depend on the parity of n, so a nonvanishing criterion would be harder to obtain.
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But such a criterion could then be combined with the existence of smooth semifree actions of S3 on
homotopy .4kC3/–spheres explicitly computed in [Bredon 1967, Theorems 4.4 and 4.7] (also note that
there are infinitely many inequivalent free S3–actions on homotopy S4kC3–spheres, by [Hsiang 1966,
Theorem 3]). Then the above strategy could be applied to obtain infinitely many dimensions in which the
HPn–twist would depend on the framing. G

Corollary 7.26 In the above dimensions , Sympct.T
�CPn/ 6' Z.

Proof If �CPn 2 �0.Sympct.T
�CPn// is the standardly framed twist along the zero section, then

we claim that Zh�CPni ¨ �0.Sympct.T
�CPn//. Let f 2 DiffCct .CPn/ be a framing such that the

projective twist �f 2 Sympct.T
�CPn/ defined using f is not isotopic to �CPn , as in Theorem G. Then

��1
f
ı �CPn cannot be isotopic to any power �kCPn for any k 2 Z. This is because �CPn , viewed as a

graded symplectomorphism, acts nontrivially on the grading of the zero section, viewed as a graded
Lagrangian (see [Seidel 2000, Lemma 5.7]), whereas ��1

f
ı �CPn acts trivially on the grading (see also

[Dimitroglou Rizell and Evans 2015, Remark 1.5]).
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On keen weakly reducible bridge spheres

PUTTIPONG PONGTANAPAISAN

DANIEL RODMAN

A bridge sphere is said to be keen weakly reducible if it admits a unique pair of disjoint compressing
disks on opposite sides. In particular, such a bridge sphere is weakly reducible, not perturbed, and not
topologically minimal in the sense of David Bachman. In terms of Jennifer Schultens’ width complex, a
link in bridge position with respect to a keen weakly reducible bridge sphere is distance one away from a
local minimum. We give infinitely many examples of keen weakly reducible bridge spheres for links in b
bridge position for b � 4.

57K10, 57K20, 57K30

1 Introduction

Suppose that we have a decomposition of the 3–sphere S3D VC[†V� where VC and V� are 3–balls and
† is a 2–sphere. A link L� S3 intersecting † transversely is said to be in bridge position with respect
to † if L\VC D ˛C and L\V� D ˛�, where ˛C and ˛� are b–strand trivial tangles. The punctured
sphere †L D †nL is called a b–bridge sphere. To each bridge sphere, we can assign a disk complex
D.†L/, which is a simplicial complex whose vertices are isotopy classes of compressing disks in S3nL
for †L and whose k simplices are spanned by kC 1 vertices with pairwise disjoint representatives.

We say that †L is topologically minimal if one of the following holds:

(1) D.†L/D∅.

(2) There exists i 2N [f0g such that the i th homotopy group of D.†L/ is nontrivial.

The topological index of †L is defined to be 0 if D.†L/D∅, or the smallest i such that �i�1.D.†L// is
nontrivial if D.†L/¤∅. The notion of topological minimality was introduced by David Bachman [2010]
as a generalization of useful concepts such as incompressibility and strong irreducibility of surfaces in a
3–manifold. It turns out that topologically minimal surfaces possess desirable properties. For instance, in
an irreducible 3–manifold, a topologically minimal surface can be isotoped to intersect an incompressible
surface in such a way that any intersection loop is essential in both surfaces. Furthermore, the concept of
topological minimality gave rise to examples of 3–manifolds containing arbitrarily many nonminimal
genus, unstabilized Heegaard surfaces that are weakly reducible [Bachman 2013]. Moriah [2007] dubbed
these examples “the nemesis of Heegaard splittings” as they are difficult to find.

© 2024 The Authors, under license to MSP (Mathematical Sciences Publishers). Distributed under the Creative Commons
Attribution License 4.0 (CC BY). Open Access made possible by subscribing institutions via Subscribe to Open.
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Conjecturally, there is a special and mysterious relationship between topologically minimal surfaces and
geometrically minimal surfaces, which are surfaces whose mean curvature is identically zero. Every
geometrically minimal surface has a Morse index, which roughly speaking counts the maximal number
of directions the surface can be deformed so as to decrease its area. Freedman, Hass and Scott [Freedman
et al. 1983] showed that every surface of topological index zero is isotopic to a geometrically minimal
surface of Morse index zero. By works of Pitts and Rubinstein [1987] and of Ketover, Liokumovich, and
Song [Ketover et al. 2019], a Heegaard surface of topological index one is isotopic to a geometrically
minimal surface of Morse index at most one. Campisi and Torres [2020] showed that the genus two
Heegaard surface of the 3–sphere has topological index three. By Urbano [1990], this Heegaard surface
must have Morse index at least six. Thus, it is not true in general that a surface of topological index k is
isotopic to a surface of Morse index at most k, but the precise connection is not well understood.

One can ask the interesting question of which surfaces are topologically minimal. Several authors have
given examples of topologically minimal Heegaard surfaces [Bachman and Johnson 2010; Campisi and
Rathbun 2018; Campisi and Torres 2020; Lee 2015] and bridge surfaces [Lee 2016; Pongtanapaisan and
Rodman 2021; Rodman 2018]. Heegaard surfaces that are not topologically minimal have also been
studied by several authors who constructed keen weakly reducible Heegaard surfaces. That is, each of
these surfaces possesses a unique weak reducing pair, a pair of compressing disks on opposite sides
of the surface whose boundaries are disjoint. By a result of McCullough [1991], the disk complex of
the boundary of a handlebody is contractible. Thus having a unique pair of weak reducing disks on
distinct sides of a Heegaard splitting means that in the disk complex, there is a unique edge connecting
the two contractible subcomplexes corresponding the two handlebodies, resulting in a contractible disk
complex for the Heegaard surface. The examples of keen weakly reducible Heegaard surfaces in the
literature with simple descriptions include the canonical Heegaard surface of a surface bundle whose
monodromy has sufficiently high translation distance by Johnson [2012], some Heegaard surfaces arising
from self-amalgamations by E and Lei [2014], and certain unstabilized genus three Heegaard surfaces in
irreducible and orientable 3–manifolds by Kim [2016]. More complicated constructions of keen weakly
reducible Heegaard surfaces of genus g � 3 can also be found in [E 2017; Liang et al. 2018].

The goal of this paper is to provide infinitely many examples of nontopologically minimal bridge spheres,
which are lacking in the literature, by verifying that the canonical bridge sphere for certain links in plat
position is keen weakly reducible. Such links are obtained by “amalgamating” two types of links whose
canonical bridge spheres are topologically minimal. Keen weakly reducible bridge spheres also belong to
a family of surfaces with finitely many pairs of disjoint compressing disks [E and Zhang 2023], which is
interesting in its own right.

Theorem 1.1 There exist infinitely many links with keen weakly reducible bridge spheres.

This paper is organized as follows. In Section 2, we discuss properties of a keen weakly reducible bridge
sphere related to perturbations of bridge spheres, thin position of links, and essential surfaces in the link

Algebraic & Geometric Topology, Volume 24 (2024)
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exterior. In Section 3, we define the notion of a plat position for a link, consider a particular family of
links in plat position, and describe useful positions of curves on a punctured sphere with respect to a train
track. In Section 4, we characterize the behaviors of curves that bound disks above or below the bridge
sphere. In Section 5, we use a criterion presented in [Cho 2008] to show that keen weakly reducible
bridge spheres are not topologically minimal.

Acknowledgements

The authors would like to thank Roman Aranda, David Bachman, Ryan Blair, Charlie Frohman, and
Maggy Tomova for helpful conversations. We thank the referees for finding a mistake in an earlier draft.
Research conducted for this paper is supported by the Pacific Institute for the Mathematical Sciences
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2 Consequences of being keen weakly reducible

In this section, we discuss some consequences of putting a link in bridge position with respect to a keen
weakly reducible bridge sphere. We remark that a priori keen weakly reducible bridge spheres are not
necessarily canonical bridge spheres for links in plat position.

2.1 Unperturbed bridge spheres

Let L be a link in bridge position with respect to †. Then L \ VC D ˛C is a collection of disjoint
embedded arcs with the property that there exists an isotopy (rel @˛C) taking ˛C into †. For each arc ˛i

C

of ˛C, the trace of such an isotopy is a disk called a bridge disk Di
C

. From each bridge disk Di
C

we can
obtain a compressing disk dDi

C
called the frontier ofDi

C
using the construction dDi

C
D .@N .Di

C
//\VC.

Analogous definitions can be made for L\V� D ˛�.

We say that a bridge sphere †L is perturbed if there exist two bridge disks D1
C
� VC and D1� � V� such

that D1
C
\D1� is a single point contained in L. It is an interesting problem to search for unperturbed

bridge spheres for a link up to isotopy since a perturbed bridge can always be obtained from a bridge
sphere that is not perturbed by an isotopy which introduces a maximal point and a minimal point as
shown in Figure 1. In some cases, the only destabilized bridge sphere is the one that realizes the bridge
number [Otal 1985; Ozawa 2011; Zupan 2011]. Another common way to show that a bridge sphere †L
for a nontrivial link L is unperturbed is to show that there is no weak reducing pair for †L. Being keen
weakly reducible implies the following.

Proposition 2.1 If †L is keen weakly reducible , then †L is unperturbed.

It is well known that a perturbed bridge sphere has a weak reducing pair; we prove that result here, and
show that such a bridge sphere in fact has at least two weak reducing pairs.

Algebraic & Geometric Topology, Volume 24 (2024)
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Figure 1: Introducing a canceling pair of critical points.

Proof If†L is a perturbed bridge sphere for a link L in 2–bridge position, then Lmust be the unknot and
there exists a unique compressing disk D above and a unique compressing disk E below. Furthermore,
D\E ¤∅, which implies that †L does not admit a weak reducing pair, and therefore †L cannot be
keen weakly reducible. To complete the proof, we consider perturbed bridge spheres for links in b–bridge
position, where b � 3.

Suppose that †L is perturbed. By definition, there exist bridge disks D1
C
� VC and D1� � V� such that

D1
C
\D1� D fpg 2 L. Let AC be a set of b disjoint bridge disks for †, each corresponding to one of the

components of ˛C, and suppose further that D1
C
2AC. Let A� be a similarly defined set of bridge disks

below † with D1� 2A�. (We are able to define AC and A� after D1
C

and D1� by [Scharlemann 2005,
Lemma 3.2].) The elements of A� may or may not intersect the interior of the arc D1

C
\†. Below, we

describe how if they do, we can replace them with another set of b disjoint bridge disks below †, each of
which is disjoint from the interior of D1

C
\†.

Suppose that the elements of A� intersect the interior of D1
C
\†. Consider a point q of intersection

closest to p. Let D0� 2A� denote the bridge disk containing q. We perform a surgery on D0� as depicted
in Figure 2, resulting in a new disk D00�. Notice that D00� is disjoint from the other elements of A�, and
D0� and D00� both correspond to the same bridge arc. In slight abuse of notation, we will replace D0� with
D00� in the collection A�. After this replacement, A� remains a collection of pairwise disjoint bridge
disks for the bridge arcs below †. The difference is that now, the elements of A� intersect the interior of
D1
C
\† in one fewer point.

Figure 2: Bridge disks below †K can be isotoped to intersect D1
C in two points in K.

Algebraic & Geometric Topology, Volume 24 (2024)
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We can repeatedly perform such surgeries until the bridge disks of A� are all disjoint from the interior of
D1
C
\†. It follows that the bridge disks of A� intersect D1

C
only in the two points of D1

C
\L\†, each

of which intersects a bridge disk of A�. Since L is in a b bridge position with b > 2, these two bridge
disks must be distinct. In addition to these two, there must be at least one more bridge disk D2� 2A�

since b � 3, and so D2� is disjoint from D1
C

. Therefore, dD1
C

and dD2� comprise a weak reducing pair
for †L.

Now consider dD1�. We can mimic the trick in the previous paragraph so that a particular set of b pairwise
disjoint bridge disks above † intersects D1� only in the two points of D1�\L\†. Then there is some
bridge disk D2

C
disjoint from D1�, which means that dD1� and dD2

C
comprise another weak reducing

pair for †L. Therefore, a perturbed bridge sphere never admits a unique weak reducing pair and can
never be keen weakly reducible.

2.2 Width complex

Suppose that L is a link and h W S3!R is the standard Morse function. Assume also that hjL is a Morse
function. Suppose that c1< � � �<cn are critical values of hjL. Consider h�1.ri /, where ri is a regular value
between ci and ciC1. We say that a level sphere h�1.ri / is a thin level if jh�1.ri�1/\Lj> jh�1.ri /\Lj
and jh�1.ri / \ Lj < jh�1.riC1/ \ Lj. On the other hand, a level sphere h�1.ri / is a thick level if
jh�1.ri�1/\Lj< jh

�1.ri /\Lj and jh�1.ri /\Lj> jh�1.riC1/\Lj. We say that a disk D � S3nL is
a strong upper (resp. lower) disk with respect to h�1.ri / if

(1) @D D ˛[ˇ where ˛ � L contains exactly one maximal (resp. minimal) point and ˇ is an arc in
h�1.ri /, and

(2) the interior of D contains no critical point with respect to the height function h.

If there exists a strong upper disk and a strong lower disk intersecting in exactly one point lying in L (see
Figure 1, for instance), then there is an isotopy that cancels a maximal point and a minimal point. We call
such a move a type I move. On the other hand, if there exists a strong upper disk and a strong lower disk
that are disjoint, then there is an isotopy that interchanges a maximal point and a minimal point. We call
such a move a type II move.

Schultens [2009] associated to a knot K a graph called the width complex ofK to understand the structure
of the collection of Morse embeddings of a fixed knot K. Two embeddings k and k0 of K are considered
to be equivalent if their thin and thick levels are isotopic. With this definition of equivalence, each vertex
of the width complex is an equivalence class of embeddings of K such that hjK is a Morse function. An
edge connects two vertices representing embeddings k and k0 if k differs from k0 by one of the following
moves: a type I move, the inverse of a type I move, a type II move, or the inverse of a type II move.
Schultens proved the following interesting result.

Theorem 2.2 [Schultens 2009] The width complex of a knot is connected.

Algebraic & Geometric Topology, Volume 24 (2024)
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The proof of Theorem 2.2 uses the fact that projections of k and k0 to the vertical plane differ by a finite
number of Reidemeister moves and planar isotopy. Furthermore, each of these local moves either affects
an embedding by a type I or a type II move or does not alter the equivalence class at all. As any two
projections of a multicomponent link L are also related by Reidemeister moves and planar isotopy, it
follows that the width complex of a multicomponent link is also connected.

A vertex that is particularly interesting is one representing an embedding that admits no type I or type II
moves. Such an embedding is said to be in locally thin position.

Proposition 2.3 Suppose that l is an embedding of a link L in bridge position with respect to a keen
weakly reducible bridge sphere. In the width complex of L, there is an edge between l and an embedding
l 0 of L in a locally thin position.

Proof Let D � VC and E � V� be a weak reducing pair for a keen weakly reducible bridge sphere †L.

Claim @D and @E each cut out a twice punctured disk from †L.

Proof of claim Suppose that @D cuts †L into two components F1 and F2, where each component is a
punctured disk containing more than two punctures. The loop @E is contained in one of the components,
say F1. There exists at least one bridge disk D1

C
such that @D1

C
D ˛[ˇ where ˛ �L and ˇ � F2. Then,

dD1
C

and E give rise to a weak reducing pair distinct from D and E, which is a contradiction. The same
argument also implies @E cuts out a twice-punctured disk from †L.

Observe that D cuts off a 3–ball containing a unique bridge disk, which is a strong upper disk disjoint
from a strong lower disk contained in a 3–ball cut off by E. This pair of disks gives rise to a type II move.
After the type II move is performed, there are neither type I nor type II moves left to perform because
any pair of strong upper disk and strong lower disk (intersecting in one point of L or mutually disjoint)
that emerges after the type II move on D and E will yield a distinct pair of strong upper disk and strong
lower disk on †L, and hence †L admits more than one weak reducing pair, which is a contradiction.

After a type II move is performed along D and E, a thin level emerges. This thin level is incompressible
because a compressing disk for this level would imply the existence of another weak reducing pair
different from D and E. Thus, we obtain the following corollary.

Corollary 2.4 A link with a keen weakly reducible bridge sphere contains an essential meridional surface
in its exterior.

3 Setting

In this section, we redevelop and summarize several tools and concepts of Johnson and Moriah [2016].
Specifically, Section 3.1 is a brief summary of Johnson and Moriah’s plat links and accompanying tools
such as their �i and �y projection maps. Then in Section 3.3, we develop Johnson and Moriah’s taos,
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A4;1 A4;2 A4;3 A4;4 A4;5

A5;1 A5;2 A5;3 A5;4

Figure 3: A .6; 5/–plat structure.

eyelets, and train tracks and adapt them slightly to our situation. Finally in Section 3.4 we define the
concepts of carried and almost carried arcs, loops, and graphs in a manner very similar to that of Johnson
and Moriah, differing only in some minor ways that suit our purposes.

3.1 Plat positions

Consider the standard Morse function h W S3!R with exactly one maximum, C1, and one minimum,
�1. Let ˛ � S3 be a strictly increasing arc such that @˛ D f˙1g. We identify S3n˛ with R3 with
Cartesian coordinates .x; y; z/ in such a way that the xz–plane lies in h�1.0/, and more generally, for
each t 2 R, the plane y D t lies in h�1.t/. We orient our perspective so that the x–axis is horizontal,
the y–axis is vertical, and the z–axis points towards the reader. (This allows us to use terms like “up”,
“down”, “left”, and “right”.) We denote h�1.t/ by Pt .

For each y 2R, and k 2 Z, let cy;k be the circle of radius 1
2

in Py , centered at x D kC 1
2

, z D 0. The
plat tube Ai;j is defined to be the annulus

Ai;j D

(S
y2Œi;iC1� cy;2j if i is even;S
y2Œi;iC1� cy;2jC1 if i is odd:

For n;m 2 f2; 3; 4; : : :g, the .n;m/–plat structure is the union of the plat tubes Ai;j where i ranges from
1 to n� 1 and j either ranges from 1 to m or 1 to m� 1 depending upon whether i is even or odd,
respectively.

For n;m 2 f2; 3; 4; : : :g, an .n;m/–plat braid is a union of 2m pairwise disjoint arcs in R3 whose
projections to the y–axis are monotonic, satisfying the following properties:

(1) One endpoint of each arc lies in P1 and the other endpoint lies in Pn.
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Figure 4: The upper gray box containsDa, a 4–twisted .2m�4;m/–plat braid, wherem� 4. The
lower gray box contains Db a 4–twisted .n;m�1/–plat braid.

(2) Each arc can be cut into subarcs, each of which is contained either in the .n;m/–plat structure or
in one of the vertical lines x D 2 or x D 2mC 1 in the xy–plane.

(3) The intersection of the braid with each plat tube consists of a pair of arcs which intersect the plane
z D 0 in a minimal number of components and whose endpoints lie in z D 0.

Observe that the plane z D 0 cuts Ai;j into two disks. Here we define the twist number ai;j . If the
braid intersects Ai;j in vertical arcs, then we define ai;j D 0. Otherwise, the disk with nonnegative
z–coordinates contains some number of arcs of the plat braid whose projection to the plane z D 0 is a set
of parallel line segments. We define jai;j j to be this number of parallel arcs. The sign of ai;j is defined
to be the sign of the slope (�y=�x) of the line segments. The integer ai;j is called the twist number
for Ai;j .

For our purposes, we will only consider .n;m/–plat braids with n even. In this case, we can obtain a link
from an .n;m/–plat braid by first connecting the point .2j; 1; 0/ to .2j C1; 1; 0/ for each 1� j �m with
the unique (up to isotopy) arc in the portion of the plane z D 0 which lies below the line y D 1. Similarly,
for each 1� j �m, we also connect the point .2j; n; 0/ to the point .2j C 1; n; 0/ with the unique arc
in the portion of plane z D 0 above the line y D n. These 2m arcs can be isotoped in the plane z D 0
(with respect to their endpoints) so that each is injective when projected to the x–axis and each contains
either a single maximum or minimum point (with respect to h), with the result that the set of 2m arcs is
pairwise disjoint. The embedding of a link constructed as the union of the plat braid and these 2m arcs in
this way is said to be an .n;m/–plat position of a link. If a link has an .n;m/–plat position, it is called an
.n;m/–plat link. A plat link is called k–twisted if jai;j j � k for every twist number ai;j .

Throughout the rest of the paper, when discussing plat links, ˛1
C
: : : ˛m

C
will refer to the bridge arcs above

Pn, labeled from left to right. Likewise, let ˛1� : : : ˛
m
� be the bridge arcs below P1, labeled from left to
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Figure 5: A (10,5)-plat link L 2 L.

right. Let Li be the link component that contains ˛i
C

. (Of course, since an m–bridge link may have fewer
than m components, it may be that the component containing ˛i

C
also contains ˛j

C
for some j ¤ i , and

so Li D Lj .)

There are two types of projection maps that we will often refer to. The first type of projection map
is the Euclidean projection map �i W R3 ! R3 defined by �i .x; y; z/ D .x; i; z/. The second type of
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projection map is the map �y WR� Œ1; n��R! Py , which sends each component of the plat braid to the
corresponding point .j; y; 0/, and extends to a homeomorphism from Py0 to Py for each y0 2 Œ1; n�. (In a
slight abuse of notation, we will refer to this homeomorphism as �y .)

3.2 The family of links we consider

Let Da be a 4–twisted .na; m/–plat position of a link La such that m� 4 and naD 2m�4, and let Db be
a 4–twisted .nb; m�1/–plat position of a link Lb . Position Da above Db as shown on the left of Figure 4.
Let Dab be an .naCnb; m/–plat position obtained from Da tDb by replacing each of the 0–tangles in
the dashed ovals with vertical half-twists as shown on the right of Figure 4. (Note: the subscripts a and
b are used for “above” and “below”.) We define L to be the family of links constructed in this fashion
which have the following additional properties.

(1) The rightmost twist regions of every row alternate in sign from row to row. That is, the sign of the
rightmost nonzero twist region of each row is opposite to the sign of the rightmost nonzero twist
regions of any adjacent rows.

(2) The sign of an�1;2, the twist number for the second twist region in the top row of Da, is even, and
every other twist region that involves L3 has an odd twist number. (This forces L3 to be an unknot
component containing the bridge arcs ˛3

C
and ˛m� .)

(3) The signs of the twist numbers for the twist regions involving Lm are chosen so that Lm contains
the lower left bridge arc ˛1�.

(4) The rest of the twist numbers for Dab are chosen so that Dab is an m–component link and so that
the bridges ˛m

C
and ˛1� are contained in the same link component, namely Lm. (It follows that for

each i; j 2 f1; : : : ; mg, with i ¤ j , Li is a distinct link component from Lj.)

(5) Excluding the pair fL1; L3g, every pair of link components comprises a two-bridge nonsplit sublink.
(Note: The sublink L1[L3 will always be split no matter what set of twist numbers is chosen.)

Below in Proposition 3.1, we will show that L is a nonempty set. First, observe that L is a family of links
in .n;m/–plat position for m� 4 and nD naCnb with the following conditions on the twist numbers:

(1) For i > nb , jai;j j � 4 for all possible values of j .

(2) If i is odd, 1� i � nb , and 1� j �m� 2, (resp. j Dm� 1), then jai;j j � 4 (resp. ai;j D 0/.

(3) If i is even, 1� i � nb , and 1� j �m� 1, (resp. j Dm), then jai;j j � 4 (resp. ai;j D 0/.

(4) If ai;� denotes the rightmost nonzero twist number in row i, then ai;� �ai�1;�<0 and ai;� �aiC1;�<0.
In other words, the signs of the rightmost nonzero twist numbers alternate from row to row.

Figure 5 shows an example of what L 2 L may look like. In this case, nD 10, and mD 5. It follows
from the definition of the family L that for any L 2 L, L3 is the component containing the lower right
bridge arc ˛m� .
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L1 L2 L3 L4 L5 L6 L7

L7 L6 L5 L4 L2 L1 L3

level 22 (naCnb)

level 21

level 20

level 19

level 18

level 17

level 16

level 15

level 14

level 13

level 12 (nb)

level 11

level 10

level 9

level 8

level 7

level 6

level 5

level 4

level 3

level 2

level 1

4 224 777 340 164 5000

12 24 �45 �57 88 �4 �20

8 �10 9 99 90 18

�10 62 �8 �33 15 34 �4

100 �100 100 5 555 50

4 4 4 4 �7 71 �14

�12 �16 6 �6 41 511

�14 4 4 �4 8 �9 �89

22 �26 30 38 4 11

�7 61 45 33 21 �81

133 �5 �5 �5 5

41 139 45 95 95 �11

7 81 251 23 7

9 9 99 1001 9 �9

11 �11 195 9 5

99 �97 95 �93 91 �89

5 5 5 5 5

7 7 7 7 7 �49

�77 �5 61 63 65

17 9 83 �11 �65 �77

5 7 9 11 13

Figure 6: This figure illustrates Proposition 3.1, showing an example a 7–bridge link in L. The
seven different colors and line styles represent seven different link components. Each rectangle
represents a twist region, and the integer inside each rectangle is the twist number indicating the
number and sign of half twists present in that twist region.
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Proposition 3.1 For each integer m� 4, the family L contains infinitely many links of bridge number m.

Proof It is not difficult to satisfy properties (1) and (2). We need to show that properties (3), (4), and (5)
can be satisfied. We will do this by constructing an infinite family of examples for each bridge number
m� 4.

Fix m� 4. Let Da and Db be a .2m�4;m/–plat link and an .2m�2;m�1/–plat link. We will show that
the right choices of the parities and magnitudes of the twist numbers of Da and Db will allow us to fulfill
the conditions given above.

First, after choosing odd numbers for the particular twist numbers in Da prescribed by property (2),
choose all even numbers for the rest of the twist numbers in Da. Then choose any integers of magnitude
at least four (regardless of parity) for the row of twist regions between Da and Db . The twist number
choices we have made so far guarantee that at level nb , the punctures of Pnb

occur in pairs corresponding
to the link components in this order, from left to right: L1; L2; L4; L5; : : : ; Lm; L3. That is, they are
arranged in numerical order from left to right except that the punctures of L3 appear at the end of the line.

Then for every twist region below Pnb
(ie the twist numbers corresponding to Db), we choose all odd

twist numbers. This guarantees that the punctures of P1 occur in pairs corresponding from left to right to
the link components Lm; Lm�1; : : : ; L5; L4; L2; L1; L3. That is, they area arranged in reverse numerical
order, except that again, the punctures of L3 are at the end of the line. Thus L is an m–component link
whose lower left bridge arc is contained in Lm, satisfying conditions (3) and (4).

Since every twist number in Db is odd, it follows that for each pair fLi ; Lj g of distinct link components
from the set fL1; L2; L4; : : : ; Lmg (the set of all link components excluding L3), there are exactly four
twist regions in Db which involve both Li and Lj . The choices of twist numbers in Da guarantees that
there is one twist region containing arcs of both L2 and L3, and there are exactly four twist regions
containing arcs of both L3 and Lj for each j � 4. Now let fLi ; Lj g be any pair of link components
except for the pair fL1; L3g. To satisfy condition (5), simply choose twist numbers such that the linking
number of Li [Lj is nonzero. For example here is one way to do so. There will be some positive
number N of twist regions that involve strands from both Li and Lj . For these twist regions, choose
twist numbers t1; t2; : : : ; tN such that jt1j>

PN
kD2 jtkj.

Proposition 3.2 Each link in the family L is nonsplit.

Proof Let L 2 L, and assume S is a splitting sphere for L.

Case 1 The link components L1 and L2 are both on the same side of S .

In this case, let Lj be a link component on the other side of S . Then by condition (5) of the definition
of L, L2[Lj is a nonsplit link which is split by S , a contradiction.

Case 2 The link components L1 and L2 are not both on the same side of S .

Then S is a splitting sphere for the nonsplit link L1[L2, another contradiction.
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To say that a given compressing disk C is a cap is to say that there exists some bridge disk D such that
C D dD. If ˛ is the bridge arc corresponding to D, then we say that C is a cap for ˛. It follows that
@C cuts the bridge sphere into two components, one of which is a twice-punctured disk, where the two
punctures are the intersection points of the bridge sphere with ˛.

Proposition 3.3 Let D and E be compressing disks above and below P , respectively. If fD;Eg is a
weak reducing pair for P , then D is a cap for ˛1

C
, and E is a cap for ˛m� .

Proof The loop @D � P partitions the link components of L into two nonempty sets, A and A0 (based
on which side of @D the punctures of each link component lie). Let A be the set containing L1. The loop
@E also partitions the link components into two nonempty sets, B and B 0. Let B be the set containing L3.
If A contains Li for any i ¤ 1, then fD;Eg is a weak reducing pair for the sublink Li [L3, a nonsplit
2–bridge link, a contradiction. Similarly, if B contains Lj for any j ¤ 3, then fD;Eg is a weak reducing
pair for the sublink L1[Lj, a nonsplit 2–bridge link, another contradiction. Therefore D is a cap for ˛1

C
,

the bridge arc above P contained in L1, and E is a cap for ˛m� , the bridge arc below P contained in L3.

The rest of the paper will be devoted to proving that each L 2L admits a keen weakly reducible bridge
sphere. The reason Proposition 3.3 does not immediately imply this is because for any given bridge arc,
there are infinitely many distinct caps for that bridge arc, provided there are at least three bridges on each
side of the bridge sphere, which is the case for all of the links in L.

3.3 Plat train tracks

Speaking generally, let †L denote a bridge sphere, and let I denote a closed unit interval. A train track
� is a compact subsurface of †L whose interior is fibered by open intervals and the fibration extends
to a fibration of � by closed intervals except for at finitely many intervals called singular fibers. Let ˛
be a singular fiber, and denote its closed neighborhood in � by N.˛/. Then there is a homeomorphism
f WN.˛/! .I � I /n

��
1
4
; 3
4

�
�
�
1
2
; 1
��

such that f .˛/D I �
˚
1
2

	
. We will refer to the inverse image of�

I �
˚
1
2

	�
n
��
I �

�
0; 1
4

��
t
�
I �

�
3
4
; 1
���

under f as a switch of � ; see Figure 7.

Figure 7: A train track at a singular fiber. The closed red line segment is a switch.
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Figure 8: At left, a left-handed tao diagram. At right, a right-handed tao diagram.

In this paper, we will assign a train track �i to each bridge sphere Pi for i D 1; 2; : : : ; n� 1. (There is no
need for a train track at the top level Pn.) To this end, we will construct a certain trivalent graph, called a
train graph, on each bridge sphere based on the parity of i and the twist numbers ai;j for the row. The
train track will then be constructed from the train graph in a natural way.

We define a train graph to be a connected trivalent graph with the property that the three edges incident
to each vertex are tangent to each other at the vertex, and not all three edges emanate from the vertex in
the same direction. (See the left side of Figure 14.) Below, we will construct a specific train graph Ti
embedded in Pi for each i D 1; 2; : : : ; n� 1, and these train graphs will have the property that PinTi
consists of 2m once-punctured disks and one (nonpunctured) disk. We will informally express this by
saying that each puncture is “surrounded by” Ti .

To construct each train graph, there are various cases to consider. Recall from Section 3.2 that L is a
family of links in .n;m/–plat position for nDnaCnb . If i is odd and n�1� i �nbC1 (resp. i <nbC1),
we define `i;j to be the circle in Pi centered at

�
2j C 3

2
; i; 0

�
with radius 3

4
for j D 1; 2; : : : ; m� 1

(resp. for j D 1; 2; : : : ; m�2/. If i is even and n�2� i � nbC1 (resp. i < nbC1/, we define `i;j to be
the circle in Pi centered at

�
2j C 1

2
; i; 0

�
with radius 3

4
for j D 1; 2; : : : ; m (resp. j D 1; 2; : : : ; m� 1).

Now, each `i;j cuts out a twice-punctured disk from Pi . We will distinguish two types of arcs that
separate the two punctures. If `i;j is directly below a positive twist region, then we draw a right-handed
tao arc separating the two punctures as shown on the right of Figure 8. In the case where `i;j is directly
below a negative twist region, we instead draw a left-handed tao arc. The union of a left-handed tao arc
(resp. right-handed tao arc) with `i;j will be called a left-handed tao diagram (resp. right-handed tao
diagram). An important aspect of these tao diagrams is that at a tao arc’s endpoints, the circle and the tao
arc are tangent to each other as pictured.

Figure 9: The way we add an edge between two adjacent tao diagrams depends on their handedness.
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Figure 10: Adding eyelets to “leftover” punctures that are adjacent to a tao diagram.

At this point we have constructed various disconnected tao diagrams in each Pi . We next connect each
pair of adjacent tao diagrams with an edge in one of the four ways pictured in Figure 9, depending on the
handedness of each tao diagram. If i is even and i � nbC 1, the result of this procedure is a train graph
which we call Ti .

In all other cases (ie if i is odd and/or i < nb C 1), begin the construction of the train graph as above,
combining tao diagrams and connecting edges; however, after doing so, there will be “leftover” punctures
that are not surrounded by any tao diagrams. If any such puncture is adjacent to a puncture surrounded by
a tao diagram, then we modify our graph according to Figure 10, adding a vertex and two edges to the
graph in a way that depends on which side of the tao diagram the puncture is on and the handedness of
the tao diagram. The newly added subgraph consists of two edges, one forming a loop around a puncture,
and the other connecting the loop to a tao diagram. We refer to such a subgraph as an eyelet. If i is odd
and i � nbC 1, this procedure gives a connected trivalent graph containing two eyelets, surrounding all
the punctures. We call this train graph Ti .

For 1� i < nbC 1, there are still “leftover” punctures that are not surrounded by a tao diagram or eyelet.
Since the sign of the rightmost nonzero twist region of a row is opposite to the sign of the rightmost

Pn�.2m�4/

Pn�.2m�3/

Pn�.2m�2/

Pn�.2m�1/

Figure 11: Adding eyelets to “leftover” punctures on Pi for 1� i < nbC 1. If the rightmost tao
in Pn�.2m�4/ is left-handed (resp. right-handed), we add eyelets according to the left (resp. right)
picture.
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Figure 12: A fibration of N.e/ by intervals.

nonzero twist region of adjacent rows, there are only two possibilities for the rightmost tao and the eyelet
adjacent to it. These are depicted in gray in Figure 11. If an�1;m�1 < 0, we add the eyelets according to
the left of Figure 11. If an�1;m�1 > 0, we add the eyelets according to the right of Figure 11. The newly
added eyelets are colored gold. After doing so, we have a train graph that surrounds all the punctures for
each Pi for 1� i � n� .2m� 4/, and we call this train graph Ti .

We have constructed a train graph Ti on each bridge sphere Pi . Now we will use each train graph Ti
to construct a train track �i on each sphere Pi . Let Vi and Ei be the vertex set and the edge set for Ti ,
respectively. For each vertex v 2 Vi , let N.v/ be a closed regular neighborhood of v in Pi .

Let e0 denote the connected component of Tin
S
v2Vi

N.v/ corresponding to the edge e. Let N 0.e0/
be a closed regular neighborhood of e0 in Pi , and then define N.e/ D N 0.e0/n

S
v2Vi

N.v/. Notice
that

�S
v2Vi

N.v/
�
t
�S

e2Ei
N.e/

�
is a regular neighborhood of Ti which we call N.Ti /, and the set

fN.e/;N .v/ j e 2Ei ; v 2 Vig is a partition for N.Ti /.

We fiber each set N.e/ with interval fibers, each one intersecting e0 transversely exactly once as in
Figure 12. Then we impose a singular fibration on each N.v/ containing exactly one singular fiber, as in
Figure 13. This makes N.v/ into a neighborhood of a switch in a train track. The surface N.Ti /, together
with the singular fibration, is a train track which we call �i , constructed from the train graph Ti . This
construction process is illustrated in Figure 14.

3.4 Carried and almost carried

We want to isotope certain objects in the bridge sphere Pi to a position that behaves nicely with respect
to the train track �i .

Definition 3.4 For an arc ˛ (not necessarily properly) embedded in Pi , �i is said to almost carry ˛ if
the following are true.

Figure 13: A singular fibration on N.v/ containing one singular fiber.
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Figure 14: Constructing a train track �i from the train graph Ti .

(1) For each point p 2 ˛, either p … �i or p is a transverse intersection point of ˛ with an interval fiber
of �i .

(2) No point of ˛ is an endpoint of an interval fiber of �i .

(3) No connected component ˛0 of ˛n V�i is parallel (rel @˛0) into a switch.

(4) No connected component ˛0 of ˛n V�i is parallel (rel @˛0) into an arc ˛00 � @�i with the property
that ˛00 is partitioned into three subintervals: the outer two being subintervals of switches and the
middle subinterval of ˛00 being an interval of fiber endpoints of �i (see Figure 15).

Remark 3.5 It follows from Definition 3.4 that if �i almost carries an arc ˛, and an endpoint of ˛ lies
in @�i , then that endpoint lies in the interior of a switch.

Remark 3.6 If an arc ˛ satisfies conditions (1), (2), and (3) of Definition 3.4, then each arc of ˛\.Pin V�i /
which is properly embedded in Pin V�i but which does not satisfy condition (4) can be isotoped into the
train track, as illustrated in Figure 15. This results in a position of ˛ which is now almost carried.

Definition 3.7 A loop ` � Pi is said to be almost carried by the train track �i if every connected
component of �i \ ` and every connected component of .Pin V�i /\ ` is an arc which is almost carried
by �i .

Remark 3.8 An arc or loop in Pi which is completely disjoint from �i still satisfies the definition of
being almost carried by �i .

Figure 15: The red shaded arc is ˛00 from Definition 3.4.
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Figure 16: The black graph is T , the vertical gray lines are fibers of � , and N.T /, the closed
regular neighborhood of T , is outlined with dashed lines. On the right, we see that a slight isotopy
of N.T / makes it into a train track diagram � with fibers inherited from � . That is, every fiber of
� is a subinterval of a fiber of � .

Definition 3.9 A train graph T is said to be almost carried by the train track �i if each edge of T is
almost carried by �i .

As a simple example, for each i , the train graph Ti is almost carried by the train track �i .

Definition 3.10 Let T 0i be a subgraph of the train graph Ti (eg a tao), and let � 0i � �i be the sub train
track constructed from T 0i following the instruction in Section 3.3. If ` is a loop or train graph, then ` is
said to cover T 0i if ` is almost carried by � 0i and ` intersects every interval fiber of � 0i .

Definition 3.11 Let � and � be two different train tracks contained in the same bridge sphere Pi . Then
� is said to almost carry � if for each interval fiber I of � , I is disjoint from � or I is contained in the
interior of some interval fiber of � .

Proposition 3.12 Let T be a train graph in the bridge sphere P , corresponding to train track diagram � ,
and let � be another train track diagram in P . If T is almost carried by � , then � is almost carried by � .
Furthermore , if p is a point in T which lies in the interval fiber I � � , and p also lies in the interval fiber
J � � , then I � J .

Proof Our strategy here is to reexamine the construction of � and see that it has the desired properties.
Let T be a train graph in P , almost carried by � , and let N.T / be a closed regular neighborhood of T .

By definition, every point of T is either disjoint from � or lies in the interior of a fiber interval of � . It
follows that N.T / is disjoint from the fiber endpoints of � .

Near each vertex v of T which lies in � , we perform a slight isotopy of N.T / (pictured in Figure 16) as
follows. We locate an arc � of @N.T / located between the two edges of T which emanate from v in the
same direction. We isotope N.T / so that � is a subinterval of one of the fiber intervals of � .
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Next we allow the portion of N.T / which lies inside � to inherit a fibering from � this way: if J is a
fiber of � , then J \N.T / is a (possibly empty) set of fibers of N.T /.

After extending this fibration to the rest of N.T / which lies outside of � , N.T /, endowed with a fibration,
is now a train track diagram � with the desired properties.

4 How compressing disks meet train tracks

It is desirable to isotope a simple closed curve to intersect a train track in a way over which we can have
some control.

For future convenience, we partition the compressing disks into two disjoint sets. Consider ˛1
C

, the
leftmost bridge arc above Pn. A vertical isotopy of ˛1

C
into bridge sphere Pn traces out a bridge disk D1

C
.

Let BDdD1
C

; that is, B is the cap which is the frontier of a regular neighborhood ofD1
C

in VC. Similarly,
consider ˛m� , the rightmost bridge arc below P1. The bridge arc ˛m� gives rise to a bridge disk Dm�
and a corresponding caps B 0 D dDm� . We will refer to these two isotopy classes of caps as blue disks.
Compressing disks for Pi that are not blue will be referred to as red disks.

Proposition 4.1 [Johnson and Moriah 2016, Lemma 8.4] If D is a compressing disk above Pn, then
�n�1.@D/ covers at least one tao of �n�1, and away from those one or more taos , �n�1.@D/ intersects
�n�1 in almost carried arcs or in fiber intervals.

Definition 4.2 A subgraph T 0i of Ti is called a mini-graph of Ti if it has the following properties.

(1) T 0i is a union of taos, connecting arcs, and eyelets of the train graph Ti .

(2) Two adjacent taos of Ti are contained in T 0i if the taos’ connecting arc is contained in T 0i .

(3) An eyelet E � Ti is contained in T 0i only if both the tao T nearest to E in Ti and every other eyelet
between E and T are also contained in T 0i .

Definition 4.3 Let T 0i be a mini-graph of Ti . The mini-graph directly below T 0i is defined to be the
unique mini-graph T 0i�1 of Ti�1 with the following properties.

(1) If T � T 0i is a tao or an eyelet and �i�1.T / intersects a tao T 0 of Ti�1, then T 0 � T 0i�1.

(2) If T � T 0i is a tao and �i�1.T / intersects two taos of Ti�1, say T 0 and T 00, then the connecting arc
between T 0 and T 00 is contained in T 0i�1.

(3) If T � T 0i is a tao and �i�1.T / intersects an eyelet E 0 of Ti�1, then E 0 � T 0i�1.

(4) If T � T 0i is an eyelet and �i�1.T / is an eyelet of Ti�1, then �i�1.T / is also an eyelet of T 0i�1.

Let i; i�j 2 f1; 2; : : : ; n�1g, with i > i�j . Let T 0i and T 0i�j be mini-graphs of Ti and Ti�j , respectively.
We say that T 0i�j is below T 0i if and only if there exists a sequence of mini-graphs T 0i ; T

0
i�1; T

0
i�2; : : : ; T

0
i�j

such that for k D 1; 2; : : : ; j , the mini-graph T 0
i�k�1

is directly below Ti�k . Naturally, we will say that a
mini-graph T 0i lies (directly) above a mini-graph T 0i�j if and only if T 0i�1 lies (directly) below T 0i .
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Figure 17: Illustration of Proposition 4.1. In this and following figures, an arc with a label (such
as the arc coming out of the bottom of the second picture in the bottom row, marked with an r),
represents not just one, but a number of parallel arcs, according to the label. The box at the bottom
of the figure illustrates that the small squares placed at various places in this and following figures
represents a set of parallel arcs separating into two different sets of parallel arcs. In particular, the
square does not represent a vertex of a graph.

Observation 4.4 If T 0i and T 00i are mini-graphs of Ti , then T 0i [T
00
i is a mini-graph of Ti as well.

Observation 4.5 Suppose that T 0i and T 00i are mini-graphs of Ti , that T 0i�1 and T 00i�1 are mini-graphs of
Ti�1, that T 0i�1 is below T 0i , and that T 00i�1 is below T 00i . Then T 0i�1[T

00
i�1 is the mini-graph below T 0i [T

00
i .

Proposition 4.6 First , if T 0n�1 is the leftmost tao of Tn�1, and if T 01 is the mini-graph of T1 constructed
by excluding from T1 only the rightmost two eyelets , then T 0n�1 is above T 01. Second , if T 00n�1 is any other
tao of Tn�1 besides the leftmost tao , then T 00n�1 is either above T1 itself or above some mini-graph T 001 of
T1 constructed by excluding from T1 the leftmost eyelet and/or the rightmost eyelet.

In reading through the following proof, the reader may find it helpful to use the example link in Figure 5
to help locate and visualize the various mini-graphs we discuss.
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Proof We will need to define a few more specific mini-graphs. Define T 0nbC1
to be the mini-graph

constructed from TnbC1 by excluding from it the rightmost eyelet, tao, and connecting arc. Define T 0nb
to

be the mini-graph of Tnb
consisting of all of the taos and connecting arcs of Tnb

but excluding both eyelets.
Now the reader can observe that by virtue of the dimensions of the link La, that is, since na D 2m� 4,
the tao T 0n�1 is above the mini-graph T 0nbC1

. Further, observe that T 0nbC1
is directly above T 0nb

, which is
above T 01. Therefore, T 0n�1 is above T 01.

For the next part of the proof, suppose that T 00n�1 is a tao of Tn�1, but not the leftmost one. Appealing
again to the dimensions of La, the tao T 00n�1 is above some mini-graph T 00nbC1

of TnbC1 which includes
at least all of the taos of TnbC1 but the leftmost one. That is, while T 00nbC1

may contain the leftmost tao
of TnbC1, T 00nbC1

does contain all the other taos of TnbC1. It follows that T 00nbC1
is directly above some

mini-graph T 00nb
of Tnb

which contains at least all but the leftmost tao of Tnb
and also the first of the two

eyelets on the right side of Tnb
. Going down another level, T 00nb

must be directly above a mini-graph
T 00nb�1

of Tnb�1 which contains all the taos and connecting arcs of Tnb�1 as well as the first and second
(but not necessarily the third) eyelet on the right.

If nb D 2, then Tnb�1 D T1, and we can define T 001 D T
00
nb�1

, in which case the proof is finished, for the
tao T 00n�1 is above T 001 , which has been shown to have the desired properties.

If nb > 2, then observe that at each level from level nb � 1 down to level 1, T 00nb�1
will be above a

mini-graph consisting of all of the level’s taos and connecting arcs as well as all of the level’s eyelets,
possibly excluding the leftmost eyelet and/or the rightmost eyelet. Therefore T 00nb�1

is above some
mini-graph T 001 with the desired properties, which finishes the proof.

Definition 4.7 It will be helpful to name a few special types of mini-graphs.

(0) If T is a tao, we will call T a type 0 mini-graph.

(1) A type 1 mini-graph consists of a final eyelet of Ti and an adjacent tao.

(2) A type 2 mini-graph consists of a final eyelet E2, an eyelet E1 adjacent to E2, and a tao adjacent
to E1.

(3) A type 3 mini-graph consists of a final eyelet E3, an eyelet E2 adjacent to E3, an eyelet E1 adjacent
to E2, and a tao adjacent to E1.

(4) Collectively we will refer to mini-graphs of type 0, 1, 2, or 3 as typed mini-graphs.

Observation 4.8 If T 0i is a mini-graph of Ti , then for some positive integer k, T 0i can be decomposed
into a union T 0i D t1 [ t2 [ � � � [ tk [ c, where t1; t2; : : : ; tk are typed mini-graphs and c is a (possibly
empty) union of connecting arcs.

Observation 4.9 Suppose T 0i is a mini-graph of Ti , and T 0i�1 is the mini-graph directly below T 0i . Let
T 0i be decomposed into a union T 0i D t1[ t2[ � � �[ tk [ c, where t1; t2; : : : ; tk are typed mini-graphs and
c is a union of connecting arcs. For each j 2 f1; 2; : : : ; kg, let uj be the mini-graph directly below tj .
Then T 0i�1 D u1[u2[ � � � [uk .
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s�2

s�3
s�1

s�2

Figure 18: A type 0 mini-graph (ie a tao) covers the mini-graph directly below it. In each picture
which includes both red and blue arcs, only either the blue arcs or the red arcs will be present,
depending on the handedness of the tao.

Proposition 4.10 For each i D 2; 3; : : : ; n� 1, if T 0i is a mini-graph of Ti , then �i�1.T 0i / covers the
mini-graph directly below T 0i .
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Figure 19: A type 1 mini-graph may lie directly above two taos and their connecting arc. If so,
the type 1 mini-graph will cover the two taos and their connecting arc. The dashed lines of the
train track diagram and of the train graph are either both present or both absent.

r �1

r �1

r

r

r �1

r r �2

Figure 20: A type 1 mini-graph may lie directly above a type 2 mini-graph, in which case the
former will cover the latter.
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Figure 21: A type 2 mini-graph always lies directly above and covers a type 3 mini-graph.

Proof Fix 2� i � n�1. Let T 0i � Ti be a mini-graph, and let T 0i�1 be the mini-graph directly below T 0i .
We will prove this proposition by proving several special cases which will lead us to the general result.

To begin, consider the case in which T 0i is a type 0 mini-graph (a tao). The mini-graph T 0i�1 may consist
of two adjacent taos and their connecting arc, as in the first or second column of pictures in Figure 18, or
T 0i�1 may instead be a type 1 mini-graph, as depicted in the third column of pictures in Figure 18. In any
case, the result of the isotopy of the bridge sphere from level i to level i �1 is shown from the top row of
pictures to the second row, or from the fourth row of pictures to the fifth row.

Observe that an isotopy of �i�1.T 0i / in Pi�1 (the result of which is shown in the third and sixth rows of
pictures in Figure 18) shows how we may push �i�1.T 0i / into �i�1 so that �i�1.T 0i / covers T 0i�1.

Next, if T 0i is a type 1 mini-graph, then either T 0i�1 is a pair of taos (pictured in Figure 19) or T 0i�1 is a
type 2 mini-graph (pictured in Figure 20). Either way, the figures illustrate that �i�1.T 0i / covers T 0i�1.

Now suppose T 0i is a type 2 mini-graph. In this case, T 0i�1 must be a type 3 mini-graph. Figure 21 depicts
this case and shows that �i�1.T 0i / covers T 0i�1.

Finally, suppose T 0i is a type 3 mini-graph. It follows that T 0i�1 is a type 2 mini-graph, as depicted in
Figure 22, which shows that as before, �i�1.T 0i / covers T 0i�1.

Observation 4.11 Notice that in each of the cases above, if c is a connecting arc of Ti which is attached
to T 0i at vertex v, then the connected component of c \ �i�1 which contains v is almost carried by �i�1.
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Figure 22: A type 3 mini-graph always lies directly above and covers a type 2 mini-graph
(assuming there exists a level below the level of the type 3 minigraph).

Now that we have proven the proposition for cases in which T 0i is a typed mini-graph, we are ready to prove
it in the general case where T 0i is an arbitrary mini-graph. According to Observation 4.8, we can view T 0i
as a union T 0i D t1[ t2[� � �[ tk[c of typed mini-graphs and connecting arcs. For each j 2 f1; 2; : : : ; kg,
define uj to be the mini-graph of Ti�1 below tj . By Observation 4.9, T 0i�1 D u1 [u2 [ � � � [uk . The
special cases above demonstrate that for each j 2 f1; 2; : : : ; kg, the mini-graph uj is covered by tj , so it
follows that u1[u2[� � �[uk is covered by �i�1.t1[ t2[� � �[ tk/. Further, if c0 is one of the connecting
arcs of c, then by Observation 4.11, c0 is also almost carried by �i�1. Therefore, since u1[u2[� � �[uk is
covered by �i�1.t1[ t2[� � �[ tk/ and c is almost carried by �i�1, we can conclude that u1[u2[� � �[uk
is covered by �i�1.t1[ t2[ � � � [ tk [ c/, or more simply, T 0i�1 is covered by �i�1.T 0i /.

Corollary 4.12 Let ` be a loop which covers a mini-graph T 0i � Ti , and let T 0i�1 be the mini-graph
directly below T 0i . The loop �i�1.`/ covers T 0i�1.

Proof Let J be an interval fiber of � 0i�1 that T 0i�1 intersects. By Proposition 4.10, �i�1.T 0i / covers T 0i�1,
and so by the definition of covering, J is also intersected by �i�1.T 0i /.

Let p be a point of .�i�1.T 0i //\ J , and let I be the interval fiber of �i�1.�i / which contains p. By
Proposition 3.12, I � J . Further, since ` covers T 0i , ` must by definition intersect I . It follows that since
I � J , ` intersects J .

Corollary 4.13 Let i1 < i2, and let T 0i1 � Ti1 be the mini-graph below a mini-graph T 0i2 � Ti2 . If ` is a
loop which covers T 0i2 � Ti2 , then �i1.`/ covers T 0i1 .
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Recall the notation of Proposition 4.6. The leftmost blue disk B above Pn is the only disk whose boundary
loop covers T 0n�1 but no other taos. In contrast, the boundary of every red disk above Pn must cover at
least one of the other taos. The next corollary then follows from Proposition 4.6 and Corollary 4.13.

Corollary 4.14 The boundary of the blue disk B above Pn covers T 01 (the mini-graph defined in
Proposition 4.6), and the boundary of every red disk above P covers either T1 or some mini-graph T 001
constructed from T1 by excluding the leftmost and/or the rightmost eyelet of T1.

An almost carried loop ` that covers enough taos and eyelets is very beneficial in the sense that its presence
allows us to predict the behavior of loops which are disjoint from `.

Remark 4.15 The following is [Johnson and Moriah 2016, Lemma 6.5].

Lemma 4.16 If ` is a loop in Pi that covers a mini-graph T 00i of Ti , and if `0 is another loop in Pi
disjoint from `, then `0 can be isotoped to be almost carried by � 00i , the train track diagram corresponding
to T 00i .

Proof Let N.`/ be an open regular neighborhood of ` disjoint from `0. Since � 00i is covered by `, every
interval fiber of � 00i intersects N.`/.

We perform a small isotopy of � 00i with the following properties:

(1) The image of each interval fiber of � 00i at each moment of the isotopy is a subinterval of the original
interval fiber.

(2) The endpoints of each interval fiber of � 00i never intersect ` throughout the isotopy.

(3) After the isotopy, both endpoints of every interval fiber of � 00i lie in N.`/.

The result of this isotopy is illustrated in Figure 23. The point is that each arc of @� 00i consisting of
endpoints of interval fibers gets pushed into N.`/. Now each component of � 00i nN.`/ is a band in Pi
fibered by intervals (each of which is a subinterval of the original interval fibers of � 00i ). The two interval
fibers contained in the boundary of a band will be referred to as exits. Note that topologically, each of
these bands is a closed disk.

Now we isotope `0 in PinN.`/ to intersect these bands minimally. Suppose `0 \ � 00i D ¿. Then by
Remark 3.8, `0 is almost carried by � 00i . If `0\ .Pin V�i

00
/ is empty (that is, `0 lies completely in a band),

then we can perform an isotopy of `0, pushing it out of the band through an exit, contradicting minimality.

Assume then that both `0\� 00i and `0\.Pin V�i
00
/ are nonempty. Consider a component ˛ of `0\.� 00i nN.`//.

The component ˛ must be an arc properly embedded in a band. Since `0\N.`/ is empty, the endpoints
of ˛ must lie in exits. Further, the endpoints of ˛ must lie on different exits, for otherwise ˛ could be
isotoped out of the band, reducing the number of components of `0 \ .� 00i nN.`//, again contradicting
minimality. Thus ˛ is an arc that travels through a band from one exit to another, so it follows that the
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Figure 23: The loop `, shown in blue, covers the train track � 00i . We perform a small isotopy of � 00i
which takes each arc of @� 00i consisting of fiber endpoints into a regular neighborhood N.`/ of `.

arc ˛ can then be made transverse to each fiber of the band, and thus `0 fulfills conditions (1) and (2) of
the definition of almost carried. (Note that ˛ also vacuously fulfills condition (3).)

Now let ˇ be a component of `0 \ .Pin V�i
00
/. The endpoints of ˇ lie on @� 00i . Since the interval fiber

endpoints of � 00i all lie in N.`/ and `0\N.`/ is empty, the endpoints of ˇ must lie in exits. Clearly then, ˇ
satisfies conditions (1) and (2) of the definition of almost carried. The arc ˇ cannot be parallel in PinN.`/
to a subarc of an exit, for the parallelism would guide an isotopy of `0 through a band of � 00i nN.`/, thereby
removing two components of intersection between `0 and the bands, once again contradicting minimality.
Thus `0 fulfills condition (3) of the definition of almost carried.

We have shown that each arc of `\ � 00i and each arc of `\ .Pin V�i
00
/ satisfies conditions (1), (2) and (3)

of Definition 3.4. Remark 3.6 tells us that each such arc can be isotoped to be almost carried by � 00i .
Therefore `0 is by definition almost carried by � 00i .

Henceforth, on Pn, we label the punctures as p1; p2; : : : ; p2m in order from left to right. We label the
straight arcs connecting the puncture labeled p2k�1 to the puncture labeled p2k as ˇk . Finally, we label
the straight arcs connecting the puncture labeled p2k to the puncture labeled p2kC1 as k .

Lemma 4.17 As above , let T 01 be the mini-graph of T1 constructed by excluding the rightmost two
eyelets , and let � 01 be the train track diagram corresponding to T 01. Let T 001 be a mini-graph of T1
constructed by possibly excluding the leftmost and/or rightmost eyelet of T1, and let � 001 be the train
track diagram corresponding to T 001 . Neither � 01 nor � 001 almost carries the boundary of any red cap for the
rightmost bridge arc ˛m� .

Proof We prove this by contradiction. Let R be a red cap for ˛m� (which implies R is not isotopic to the
blue cap B 0 D dDm� ), and assume @R is almost carried by � 01 or � 001 . Assume R is in minimal position
with respect to the vertical bridge disks below P1.
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We will first establish that R must intersect a lower vertical bridge disk. Let �1 be the unique straight line
segment in P1 which both contains all of the punctures and has p1 and p2m as endpoints. If @R does not
intersect �1, then R is trivial, a contradiction. So R must intersect �1. Suppose @R passes between the
i th and the .iC1/st vertical bridge disks for i 2 f1; 2; : : : ; m� 3;m� 2g. (This is equivalent to supposing
that @R intersects �1.i /.) Since �1.i / is surrounded by a tao, and since @R is almost carried by the
train track � 01 or � 001 , the loop @R is forced to intersect one of the lower vertical bridge disks. Suppose @R
passes between the .m�1/st and mth vertical bridge disk. If @R does not also pass between some other
pair of bridge disks, then R is the blue disk B 0, a contradiction. Then @R must pass between two of the
other bridge disks, and so according to the argument above, @R will intersect one of the lower bridge
disks. Thus we have established that R is not disjoint from the vertical bridge disks.

Let ƒ D R \
�Sm

iD1D
i
�

�
, which is nonempty, as shown above. Since R is in minimal position with

respect to the bridge disks, ƒ contains no loops of intersection, and so ƒ is a collection of arcs. Let
 �ƒ be an outermost arc in R, cutting off an outermost disk Rout from R. Define q DRout\P1. Then
q is an arc in P1 with endpoints on ˇi for some i . Let ˇ� be the subarc of ˇi which shares its endpoints
with q.

We examine what q can look like (and eventually arrive at a contradiction). First if q never crosses the
arc �1, then q would define an isotopy of R through which we could decrease the number of components
of ƒ, contradicting the fact that R is in minimal position with respect to the lower vertical bridge disks.
Since the interior of q is by definition disjoint from the lower vertical bridge disks, q must therefore
intersect �1.k/ for some k. If q passes between the j th and the .jC1/st vertical bridge disks for
j 2 f1; 2; : : : ; m� 3;m� 2g, then as above, since q is almost carried and since the point q\ �1.k/ is
surrounded by a tao, the train track � 01 or � 001 (whichever is relevant) will force q to intersect two distinct
vertical bridge disks, a contradiction. Therefore q must pass between the .m�1/st and the mth bridge
disks.

Suppose that @R is almost carried by � 001 . There are five ways that q, as an almost carried arc, can pass
between the .m�1/st and the mth bridge disks, and they are illustrated in Figure 24. In cases 1 and 2,
since q is almost carried, the endpoints of q must lie on both the .m�1/st and the .m�2/nd bridge disks,
but that contradicts the definition of q, for both endpoints of q must lie on the same vertical bridge disk.
Similarly, in cases 4 and 5, the endpoints of q must lie on both the .m�1/st and the mth bridge disks,
which contradicts the definition of q in the same way. Therefore the only case remaining is case 3, in
which we see q must enter a switch of � 001 and go on to intersect the .m�1/st bridge disk. By the definition
of q, the other endpoint of q must also intersect the .m�1/st bridge disk on the same side. Thus q has
these properties:

� The arc q has both endpoints on the .m�1/st bridge disk.

� Of the two bands of � 001 going through the .m�1/st bridge disk, an endpoint of q is contained in the
rightmost one.
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Figure 24: There are only five ways for a loop or arc to pass between the rightmost two bridge
arcs while remaining almost carried by � 001 . The leftmost and rightmost eyelets in this figure are
shaded a lighter color to remind the reader that they may or may not be present in � 001 .

� The arc q is almost carried by � 001 .

� The interior of q does not intersect any bridge disks below P1.

� The arc q leaves the .m�1/st bridge disk in the same direction from both endpoints.

Up to isotopy, there is only one arc that has these properties, and it is depicted in Figure 25. Let a and b
be the left and right endpoints, respectively, of q.

The loop q [ ˇ� cuts P1 into two punctured disks, one of which contains exactly two punctures: the
endpoints of ˇm. Call this 2–punctured disk Q (see Figure 25). Observe that @R must intersect ˇm, or
else R would be isotopic to B 0, contradicting the definition of R. Further, since both endpoints of ˇm
must be on the same side of @R, there must be an even number of points of intersection between ˇm
and @R. It follows that along the interior of ˇ�, there must be at least four points of intersection with @R.
Along ˇ�, let c be the point of ˇı�\ @R nearest to a, and let d be the point of ˇı�\ @R nearest to b.

Since R is a cap, R cuts a 2–punctured disk FR out of P1 (see Figure 26). Consider the components of�Sm
iD1D

i
�

�
\FR. There are two components which are arcs that connect a puncture in FR to @R at points

we will call x and y. All of the rest of arcs are parallel arcs which separate the two punctures of FR.

The points x and y cut @R into two arcs, one of which must contain both endpoints of q; otherwise q
would intersect ˇm at point x or at point y, contradicting the definition of q. Now in FR, a and b are

a bc d e f

Q

q

Figure 25: The arc q and the disk Q.
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a b

c d

q

q0

FR

Figure 26: The arc q in relation to the disk FR. The outer circle is @R, and the red vertical arcs
are subarcs of ˇ�.

connected via arcs of @R to the points c and d , respectively. These two arcs in FR with endpoints a, b, c,
and d , along with the arc q and another arc of @R form a quadrilateral in FR whose interior is disjoint
from

Sm
iD1D

i
� (clear from Figure 25). Let the side of this quadrilateral whose endpoints are c and d be

called q0.

Now q0 is parallel to q. But at this point we could repeat this argument, focusing on q0 instead of on q,
which would lead us to accept the existence of another parallel arc q00, and we could repeat this infinitely
many times, each time obtaining another arc of @R with endpoints on ˇm�1, each of which is nested
inside the last one. But this contradicts general position; it cannot be the case that ˇm�1 cuts @R into
infinitely many subarcs. Therefore we conclude that R cannot be almost carried by � 001 .

Assume then that @R is almost carried by � 01. In this case, there are more options for what the arc q may
look like, but q still must be an arc with endpoints on a ˇ–arc and with interior disjoint from any ˇ–arcs
(see Figure 27). The arc q cannot have its endpoints on ˇm, as in Figure 28, because that would force

Figure 27: When @R is almost carried by � 01, there are many possibilities for the arc q. Three are
illustrated here (each with a different stroke style.)
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Figure 28: Pictured here are the only nonisotopic possibilities for what q could look like, given
that its endpoints lie on ˇm. Either way, @Rnq must contain an arc that cobounds a bigon with ˇm,
contradicting minimality.

@Rnq to contain an arc which bounds a bigon with ˇm; in other words, @R would not be in minimal
position with respect to ˇm. Then since @q lies in ˇi for some i 2 f1; 2; 3; : : : ; m� 1g, then q [ ˇ�
bounds a disk Q � FR which contains ˇm. At this point we can apply the same logic as above, leading
us to assert the existence of an infinite set fq; q0; q00; q000; : : :g of pairwise disjoint arcs of @R cut out by ˇi ,
which again contradicts general position. Therefore, we may conclude that @R cannot be almost carried
by � 001 either.

Lemma 4.18 The blue disks B and B 0 are a weak reducing pair for the bridge sphere.

Proof Observe that for all points along @B , the y–coordinates are all less than 4. (We will speak
informally this way even though technically we mean that an isotopy class of @B in Pn has the property
that all the y–coordinates are less than 4.) Moving down a level, �n�1.@B/ is a loop in Pn�1 whose
y–coordinates are all less than 5. Similarly, �n�2.@B/ is a loop in Pn�2 whose y–coordinates are all less
than 6, and so on. In general, for the levels corresponding to Da, �n�k.@B/ is a loop in Pn�k whose
y–coordinates are all less than 4C k. Recall that nD naCnb , so nbC 1D n�naC 1D n� .na � 1/.
Therefore �nbC1.@B/D �n�.na�1/.@B/ is a loop in Pn�.na�1/ whose y–coordinates are all less than
4Cna � 1. Since the dimensions of Da were chosen so that na D 2m� 4, it follows by substitution that
the y–coordinates of �nbC1.@B/ are all less than 4C.2m�4/�1D 2m�1. This means that �nbC1.@B/

is completely to the left of the rightmost two punctures of PnbC1. Thus �nbC1.@B/ is disjoint from
�nbC1.ˇm/ (the straight line segment connecting those two punctures).

Consider the �–projections of @B at consecutively lower levels. For 1 � t � nb , �t .@B/ will remain
disjoint from �t .ˇm/ because the isotopy �t from PtC1 to Pt fixes the two rightmost punctures of the
bridge sphere pointwise. Observe that �1.ˇm/D ˇm DDm� \P1. Therefore �1.@B/ is disjoint from ˇm,
which implies that �1.@B/\ @B 0 D¿, and so fB;Bg are a weak reducing pair.

Observation 4.19 In general, if we compress the cap R for a bridge arc ˛ along a boundary compressing
disk �, the result will be two disjoint compressing disks whose boundary loops cut the bridge sphere into
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two punctured disks and a twice-punctured annulus, the latter of whose punctures correspond to ˛. This
means that neither of the resulting compressing disks are caps for ˛.

Lemma 4.20 The blue cap B for ˛1
C

intersects all of the red disks below P1.

Proof First, by Proposition 3.3, we already know that B intersects all of the red disks below P1 which
are not caps for ˛m� , so it only remains to show that B also intersects all the red caps for ˛m� .

Observe that @B 0 cuts P1 into a disk F1 with two punctures and another disk F2 with 2m� 2 punctures.
By Corollary 4.14, �1.@B/ covers T 01 (the mini-graph defined in Proposition 4.6 consisting of all of T1
except the rightmost two eyelets). It follows from Lemma 4.18 that �1.@B/ is contained in F2.

Let R be a red cap for ˛m� , and assume by way of contradiction that fB;Rg is a weak reducing pair.
Arrange for R to be in minimal position with respect to the bridge disk Dm� . An outermost disk � on
Dm� cut out by an outermost arc of Dm� \R must be a boundary compressing disk for R, or else Dm� and
R would not be in minimal position. We perform a boundary compression of R along �, resulting in a
disjoint union R1 tR2 of two nonparallel compressing disks for P1. Since R was disjoint from @B , and
the boundary compression happened away from @B , both R1 and R2 are also disjoint from B . Further, by
Observation 4.19, neither R1 nor R2 are caps for ˛m� , and so we have two weak reducing pairs, fB;R1g
and fB;R2g which both contradict Proposition 3.3.

Lemma 4.21 If Ra andRb are red disks above and below the bridge sphere (respectively), then fRa; Rbg
is not a weak reducing pair.

Proof Assume to the contrary that fRa; Rbg is a weak reducing pair of red disks. By Proposition 3.3,
Ra and Rb are caps for ˛1

C
and ˛m� , respectively. By Corollary 4.14, the loop �1.@Ra/ covers either T1

or some mini-graph T 001 constructed from T1 by excluding the leftmost and/or the rightmost eyelet of T1.

Suppose @Rb is disjoint from �1.@Ra/. Then by Lemma 4.16, @Rb is isotopic to an almost carried loop,
which contradicts Lemma 4.17.

The following lemma is an immediate corollary of [Pongtanapaisan and Rodman 2021, Theorem 5.10]
since the upper braid Da of our link is a .na; m/ plat link with na D 2m� 4.

Lemma 4.22 The cap B 0 is disjoint from all red disks on the other side of the bridge sphere.

We have now shown that B and B 0 are the only weak reducing pair, and so we have proved our main
theorem.

Theorem 1.1 There exist infinitely many links with keen weakly reducible bridge spheres.

Since a bridge sphere †L of a link L induces a Heegaard surface z†L for the 2–fold cover of S3 branched
along L, it is natural to ask whether z†L satisfies properties that †L possesses. In our situation, the answer
is no.
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@Q

Figure 29: The purple curve bounds a once-punctured disk Q above the bridge sphere and
@Q\ @B 0 D∅. To visualize Q, imagine a hemisphere shaped disk whose boundary is the purple
loop and which is punctured by the second pictured bridge arc.

Proposition 4.23 Keen weakly reducible bridge spheres in this paper do not lift to keen weakly reducible
Heegaard surfaces.

Proof The blue compressing disk B 0 is not only disjoint from B , but @B 0 is also disjoint from a curve
bounding a once-punctured disk Q above †L (see Figure 29). Such a once-punctured disk lifts to a
compressing disk for one of the handlebodies of the Heegaard splitting of the double branched cover.
Since B 0 lifts to a compressing disk in the other handlebody whose boundary is disjoint from lifts of both
B and Q, the Heegaard surface z†L is not keen.

5 Nontopologically minimal bridge spheres

One of the main motivations of this article is to search for examples of bridge spheres that are not
topologically minimal. The following criterion is needed for our construction of links with nontopologically
minimal bridge spheres.

5.1 Cho’s criterion

For a link in bridge position, we have that V˙nN.˛˙/ is homeomorphic to a handlebody. Therefore, the
complex spanned by compressing disks for the bridge sphere for L in V˙nN.˛˙/ is a full subcomplex of
the disk complex of the handlebody. We recall the following criterion by Cho [2008]:

Theorem 5.1 If L is a full subcomplex of the disk complex of the handlebody K.V˙nN.˛˙// that
satisfies the following condition , then L is contractible:

Let D and E be disks representing vertices of L and suppose that D \E ¤ ¿. We assume that D
intersects E minimally and transversely. If ��D is an outermost subdisk cut off by an outermost arc of
D\E, then at least one of the disks obtained from surgery on E along � is also a vertex of L.

Proposition 5.2 The disk complex of .V˙; ˛˙/ is contractible

Proof Suppose that compressing disks D and E in .V˙; ˛˙/ intersect transversely and minimally. Then
the boundary of one of the disks that arises from surgery on E along � defined as in Theorem 5.1 must
enclose at least two punctures. Otherwise, D\E would not be minimal.

Using Cho’s criterion and Theorem 1.1, we obtain the following corollary.
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Corollary 5.3 There is an infinite family of nontrivial links with bridge spheres that are not topologically
minimal.

Proof Since the bridge sphere P1 for each link L2L contains a unique pair of disjoint compressing disks
on opposite sides of P1, there is exactly one edge connecting the contractible disk complex of .VC; ˛C/
to the contractible disk complex of .V�; ˛�/ showing that the disk complex of P1 is contractible.
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Upper bounds for the Lagrangian cobordism relation on Legendrian links
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Lagrangian cobordism induces a preorder on the set of Legendrian links in any contact 3–manifold. We
show that any finite collection of null-homologous Legendrian links in a contact 3–manifold with a
common rotation number has an upper bound with respect to the preorder. In particular, we construct
an exact Lagrangian cobordism from each element of the collection to a common Legendrian link. This
construction allows us to define a notion of minimal Lagrangian genus between any two null-homologous
Legendrian links with a common rotation number.

57K33; 53D12, 57K10

1 Introduction

The relation � defined by (exact, orientable) Lagrangian cobordism between Legendrian submanifolds
in the symplectization of the contact manifold raises a host of surprisingly subtle structural questions.
While the Lagrangian cobordism relation is trivially a preorder (ie is reflexive and transitive), it is not
symmetric [Baldwin and Sivek 2018; Chantraine 2010; Cornwell et al. 2016]; it is unknown whether
the relation is a partial order. Further, not every pair of Legendrians is related by Lagrangian cobordism,
with the first obstructions coming from the classical invariants: for links ƒ˙ in R3, if ƒ� �ƒC via the
Lagrangian L � R�R3, then r.ƒC/ D r.ƒ�/ and tb.ƒC/� tb.ƒ�/ D ��.L/ [Chantraine 2010]. A
growing toolbox of nonclassical obstructions has been developed to detect this phenomenon; see, just to
begin, [Baldwin et al. 2022; Baldwin and Sivek 2018; Ekholm et al. 2016; Golla and Juhász 2019; Pan
2017; Sabloff and Traynor 2013].

If two Legendrians are not related by a Lagrangian cobordism, one may still ask if they have a common
upper or lower bound with respect to �. Implicit in the work of Boranda, Traynor and Yan [Boranda et al.
2013] is that any finite collection of Legendrian links in the standard contact R3 with the same rotation
number has a lower bound with respect to �. In another direction, Lazarev [2020] has shown that any
finite collection of formally isotopic Legendrians in a contact .2nC1/–manifold with n� 2 has an upper
bound with respect to a moderate generalization of �.

The goal of this paper is to find both lower and upper bounds for finite collections of Legendrian links in
any contact 3–manifold. On one hand, in contrast to the diagrammatic methods of [Boranda et al. 2013],

© 2024 The Authors, under license to MSP (Mathematical Sciences Publishers). Distributed under the Creative Commons
Attribution License 4.0 (CC BY). Open Access made possible by subscribing institutions via Subscribe to Open.
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Figure 1: An upper bound for the maximal right-handed trefoil and an m.52/ knot.

our topological techniques allow us to find lower bounds in any contact 3–manifold, though we also
present a refinement of the proof in [Boranda et al. 2013] that better suits our goal of constructing upper
bounds. On the other hand, in contrast to Lazarev’s use of an h–principle, which restricts his results to
higher dimensions, our direct constructions of upper bounds work for Legendrian links in dimension 3.

Theorem 1.1 Letƒ andƒ0 be oriented Legendrian links in a contact 3–manifold .Y; �/, and suppose that
there exist Seifert surfaces † and †0 for which rŒ†�.ƒ/D rŒ†0�.ƒ

0/. Then there exist oriented Legendrian
links ƒ˙ � .Y; �/ such that ƒ� �ƒ�ƒC and ƒ� �ƒ0 �ƒC.

Remark 1.2 For Legendrian links in R3, the rotation number may be defined without reference to Seifert
surfaces, and the hypotheses merely require r.ƒ/D r.ƒ0/.

Remark 1.3 If ƒ� and ƒC are connected, then all Lagrangians constructed in the proof of Theorem 1.1
will be connected as well.

Example 1.4 In Figure 1, we display an upper bound for the maximal Legendrian right-handed trefoil
and a Legendrian m.52/ knot. These two Legendrian knots are not related by Lagrangian cobordism. To
see why, note that any Lagrangian cobordism between them must be a concordance since they have the
same Thurston–Bennequin number, but no such concordance exists even topologically.

Example 1.5 In Figure 2, we display an upper bound for the maximal Legendrian unknot and the
maximal Legendrian figure-eight knot. Once again, these two Legendrian knots are not related by
Lagrangian cobordism. The fact that the figure-eight has lower Thurston–Bennequin number shows that
there cannot be a cobordism from the unknot to the figure-eight; the fact that the figure-eight has two
normal rulings shows that there cannot be a cobordism from the figure-eight to the unknot [Cornwell
et al. 2016, Theorem 2.7].

In fact, we prove the following strengthened version of Theorem 1.1.

Algebraic & Geometric Topology, Volume 24 (2024)
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Figure 2: An upper bound for the maximal unknot and the maximal figure-eight knot. The colors
in the diagram of the upper bound are only meant to distinguish components of the link to improve
readability.

Proposition 1.6 Under the same hypotheses of Theorem 1.1, there exist oriented Legendrian links
ƒ�; ƒC � Y and oriented exact decomposable Lagrangian cobordisms L and L0 from ƒ� to ƒC, such
that

� the Legendrian link ƒ appears as a collared slice of L;

� the Legendrian link ƒ0 appears as a collared slice of L0; and

� L and L0 are exact-Lagrangian isotopic.

Remark 1.7 There are statements analogous to Theorem 1.1 and Proposition 1.6 that hold for unoriented
Legendrian links and unoriented (and possibly nonorientable) exact Lagrangian cobordisms, for which
there are no requirements on the rotation number.

The main theorem has several interesting consequences. First, we recall that not every Legendrian knot has
a Lagrangian filling. The figure-eight knot in Figure 2 is one such example. By transitivity, this implies
that not every Legendrian knot lies at the top of a Lagrangian cobordism from a fillable Legendrian. On
the other hand, we have the following corollary of the main theorem:

Corollary 1.8 For any Legendrian link ƒ, there exists a Legendrian link ƒC with a Lagrangian filling
and a Lagrangian cobordism from ƒ to ƒC.

The proof simply requires us to apply Theorem 1.1 with ƒ being the given Legendrian and ƒ0 being the
maximal Legendrian unknot. The upper bound ƒC is Lagrangian fillable since there is a cobordism to it
from the unknot.
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A second consequence of the main theorem is that we are able to define a notion of the minimal
genus of a Lagrangian cobordism between any two Legendrian links with the same rotation number.
Roughly speaking, we define a Lagrangian zigzag-cobordism between ƒ and ƒ0 to be a sequence
ƒ D ƒ0; ƒ1; : : : ; ƒn D ƒ

0 of Legendrian links together with upper (or lower) bounds between each
of ƒi and ƒiC1. The genus of the zigzag-cobordism is the genus of the (smooth) composition of the
underlying Lagrangian cobordisms between the ƒi and their bounds; we may then define gL.ƒ;ƒ

0/ to be
the minimal genus of such a Lagrangian zigzag-cobordism. When there is a Lagrangian cobordism from
ƒ to ƒ0 and ƒ is fillable, gL.ƒ;ƒ

0/ agrees with the relative smooth genus gs.ƒ;ƒ
0/; see Lemma 6.7.

The remainder of the paper is organized as follows. In Section 2, we review key ideas in the definition
and construction of Lagrangian cobordisms between Legendrian links. We also define the notion of a
Legendrian handle graph, which will form the basis of our later constructions. In Sections 3 and 4, we
prove that any two Legendrians in a contact 3–manifold have a lower bound with respect to �, and encode
the Lagrangian cobordisms involved with Legendrian handle graphs. We present two approaches to this
goal: in Section 3, we prove the claim for general contact 3–manifolds using convex surface theory, while
in Section 4, we provide a diagrammatic proof in R3, refining a proof of [Boranda et al. 2013]. We then
proceed in Section 5 to prove Proposition 1.6, and hence Theorem 1.1. We end the paper in Section 6 by
beginning an exploration of Lagrangian zigzag-cobordisms and their genera, finishing with some open
questions.
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2 A description of Lagrangian cobordisms

In this section, we describe Lagrangian cobordisms, how to construct them, and how to keep track of
those constructions.

2.1 Lagrangian cobordisms

We begin with the formal definition of a Lagrangian cobordism between Legendrian links.
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Definition 2.1 Let ƒ� and ƒC be Legendrian links in the contact manifold .Y; �/, where � D ker.˛/
for a contact 1–form ˛. An (exact, orientable) Lagrangian cobordism L from ƒ� to ƒC is an exact,
orientable, properly embedded Lagrangian submanifold L� .R�Y; d.et˛// that satisfies the following:

� there exists TC 2R such that L\ .ŒTC;1/�Y /D ŒTC;1/�ƒC;

� there exists T� < TC such that L\ ..�1;T���Y /D .�1;T���ƒ�; and

� the primitive of .et˛/jL is constant (rather than locally constant) at each cylindrical end of L.

Note that the last condition enables us to concatenate Lagrangian cobordisms while preserving exactness.

We will use three constructions of Lagrangian cobordisms in this paper, which we will call the elementary
Lagrangian cobordisms:

� 0–handle Adding a disjoint, unlinked maximal Legendrian unknot ‡ to ƒ induces an exact
Lagrangian cobordism from ƒ to ƒt‡ [Bourgeois et al. 2015; Ekholm et al. 2016].

� Legendrian isotopy A Legendrian isotopy from ƒ to ƒ0 induces an exact Lagrangian cobordism
from ƒ to ƒ0, though the construction is more complicated than simply taking the trace of the
isotopy [Bourgeois et al. 2015; Ekholm et al. 2016; Eliashberg and Gromov 1998].

� Legendrian ambient surgery We describe this construction in more detail in Section 2.2, and
we will develop a method for keeping track of a set of ambient surgeries in Section 2.3.

2.2 Legendrian ambient surgery

Our next step is to explain Dimitroglou Rizell’s [2016] Legendrian ambient surgery construction in the
3–dimensional setting. Similar constructions appear in [Bourgeois et al. 2015; Ekholm et al. 2016],
though Dimitroglou Rizell’s more flexible language is best suited for our purposes. In dimension 3,
Legendrian ambient surgery begins with the data of an oriented Legendrian link ƒ � .Y; �/ and an
embedded Legendrian curve D with endpoints on ƒ that is, in a sense to be defined, compatible with
the orientation of ƒ. The construction then produces a Legendrian ƒD , contained in an arbitrarily small
neighborhood of ƒ[D, that is obtained from ƒ by ambient surgery along D. Further, the construction
produces an exact Lagrangian cobordism from ƒ to ƒD .

More precisely, given ƒ� .Y; �/ with contact 1–form ˛, a surgery disk is an embedded Legendrian arc
D � Y such that

(1) D\ƒD @D;

(2) the intersection D\ƒ is transverse; and

(3) the vector field H � Tpƒ defined for all p 2 @D (up to scaling) by d˛.G;H.p// > 0 for all
outward-pointing vectors G in TpD either completely agrees with or completely disagrees with
the framing on @D induced by the orientation of ƒ.
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Figure 3: Left: the standard model in .R3; ˛0/ of a surgery disk D0 with endpoints on a Legen-
drian ƒ0. Top right: another example of a surgery disk. Bottom right: a disk that fails condi-
tion (3).

For an unoriented surgery, we need not specify a framing for @D, and the last condition is no longer
relevant.

The standard model for such a surgery disk appears in Figure 3, left. In fact, up to an overall orientation
reversal on ƒ, there is a neighborhood U of D in Y that is contactomorphic to a neighborhood of the
standard model for ƒ0 and D0 [Dimitroglou Rizell 2016, Section 4.4.1]. Working in the standard model,
we may replace ƒ0 by the Legendrian arcs ƒ1 as in Figure 4, a process that realizes the ambient surgery
on ƒ0 along D0. Pulling this construction back to the neighborhood of D in Y , we call the resulting link
Legendrian ambient surgery on ƒ along D.

Theorem 2.2 [Dimitroglou Rizell 2016] Given an oriented Legendrian link ƒ and a surgery disk D, let
ƒD be the Legendrian link obtained from ƒ by Legendrian ambient surgery along D. Then there exists
an exact Lagrangian cobordism from ƒ to ƒD arising from the attachment of a 1–handle to .�1;T ��ƒ.

Figure 4: Surgery on the standard model ƒ0[D yields a new Legendrian ƒ1.
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Figure 5: Reidemeister moves for Legendrian graphs in R3.

Remark 2.3 The construction of Legendrian ambient surgery and the associated Lagrangian cobordism is
local. In particular, for a small neighborhood U of D, the surgery construction does not alter ƒ\ .Y nU /,
and the cobordism L outside of R�U is cylindrical over ƒ\ .Y nU /.

2.3 Legendrian handle graphs

In this section, we introduce a structure for keeping track of independent ambient surgeries. We use the
notion of a Legendrian graph, following the conventions in [O’Donnol and Pavelescu 2012].

Before we begin, recall from eg [O’Donnol and Pavelescu 2012] that two Legendrian graphs in .R3; �0/ are
Legendrian isotopic if and only if their front diagrams are related by planar isotopy and six Reidemeister
moves, as seen in Figure 5.

Definition 2.4 A Legendrian handle graph is a pair .G; ƒ/, where G � .Y; �/ is a trivalent Legendrian
graph and ƒ� .Y; �/ is a Legendrian link (called the underlying link), such that

� ƒ�G;

� the vertices of G lie on ƒ; and

� G nƒ is the union of a finite collection of pairwise disjoint Legendrian arcs 1; : : : ; m whose
closures satisfy the conditions of surgery disks for ƒ.

We also say that G is a Legendrian handle graph on ƒ. The set of closures of the components of G nƒ is
denoted by H.

See the bottom of Figure 6 for an example of a Legendrian handle graph whose underlying Legendrian
link is a Legendrian Hopf link in .R3; �0/.

Definition 2.5 Let .G; ƒ/ be a Legendrian handle graph and let H0 be a subset of the arcs in H. The
Legendrian ambient surgery Surg.G; ƒ;H0/ is the Legendrian handle graph .G0; ƒ0/ resulting from
performing Legendrian ambient surgery along each arc in H0, as described in Section 2.2.
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Figure 6: The Legendrian link at the top of the figure is the Legendrian ambient surgery on the
Legendrian handle graph .G; ƒ/ at the bottom.

We will, at times, abuse notation and refer to the underlying Legendrian link ƒ0 by Surg.G; ƒ;H0/; we
will also use Surg.G; ƒ/ when H0 D H. For example, in Figure 6, the Legendrian link at the top is
Surg.G; ƒ/ for the Legendrian handle graph .G; ƒ/ at the bottom.

By the work of Dimitroglou Rizell [2016] as described in Section 2.2, Legendrian ambient surgery on any
given Legendrian arc corresponds to an exact Lagrangian cobordism. This implies that, given an order
oD .j1

; : : : ; jm
/ of the components of H0, one obtains an exact Lagrangian cobordism L.G; ƒ;H0; o/

from ƒ to Surg.G; ƒ;H0/ by performing Legendrian ambient surgery in the order given by o. The order,
in fact, does not matter.

Proposition 2.6 Suppose .G; ƒ/ is a Legendrian handle graph , and o1 and o2 are orders of the com-
ponents of H0. The Lagrangian cobordisms L.G; ƒ;H0; o1/ and L.G; ƒ;H0; o2/ are exact-Lagrangian
isotopic.

Proof It suffices to consider the case where o1 and o2 differ by an adjacent transposition

.j1
; j2

/! .j2
; j1

/:

The cobordism L.G; ƒ;H0; o/ is defined by composing the elementary Lagrangian cobordisms associated
to the arcs 1; : : : ; m. Since there are finitely many of these, by shrinking the neighborhoods of j
as in Remark 2.3, we may assume the neighborhoods to be pairwise disjoint. This implies that the
elementary Lagrangian cobordisms associated to j1

and j2
may be constructed simultaneously and

shifted past each other along the cylindrical parts of the cobordism. Thus, the parameter given by the
relative heights of these two cobordisms gives an exact Lagrangian isotopy between L.G; ƒ;H0; o1/ and
L.G; ƒ;H0; o2/.
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Figure 7: The surgery joining the two inner cusps cannot be performed until after the surgery
joining the two outer cusps.

Proposition 2.6 allows us to associate an isotopy class L.G; ƒ;H0/ of exact Lagrangian cobordisms to a
Legendrian handle graph .G; ƒ/ and H0 �H.

Remark 2.7 It would be extremely surprising if every decomposable cobordism can be described using
a Legendrian handle graph. As shown in Figure 7, one may need to perform one ambient surgery in order
for another to be possible; this would violate Proposition 2.6. We emphasize here the particularity of those
decomposable cobordisms that can be described by a Legendrian handle graph, as much of Sections 3
and 4 revolves around ensuring the cobordisms we are building belong to this class.

3 Lower bounds via contact topology

In this section, for a pair of Legendrian links with the same rotation number, we construct a pair of exact
Lagrangian cobordisms from a common lower bound, encoded by Legendrian handle graphs with the
same underlying link.

Proposition 3.1 Let ƒ and ƒ0 be oriented Legendrian links in a contact manifold .Y; �/ and suppose
that there exist Seifert surfaces † and †0 for which rŒ†�.ƒ/D rŒ†0�.ƒ

0/. Then there exists an oriented
Legendrian link ƒ� � .Y; �/ and Legendrian handle graphs G and G0 on ƒ� such that Surg.G; ƒ�/
(resp. Surg.G0; ƒ�/) is Legendrian isotopic to ƒ (resp. ƒ0).

Our proof of Proposition 3.1 relies on convex surface theory applied to the Seifert surfaces † and †0. To
accomplish this, we require two basic results. The first is a lemma extending the work of Boranda, Traynor,
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ƒ�

ƒC

Figure 8: A handle graph giving rise to a Lagrangian cobordism from SC ıS�.ƒ/ to ƒ.

and Yan [Boranda et al. 2013] by placing their result in the context of Legendrian handle graphs. The
second translates Dimitroglou Rizell’s [2016] Legendrian ambient surgery into a convex surface-theoretic
model.

Lemma 3.2 (cf [Boranda et al. 2013, Lemma 3.3]) Let ƒ be an oriented Legendrian link in a contact
manifold .Y; �/, and SCıS�.ƒ/ the result of successive negative and positive stabilization on a component
of ƒ. Then there is a Legendrian handle graph G on SC ı S�.ƒ/ such that Surg.G;SC ı S�.ƒ// is
Legendrian isotopic to ƒ.

Proof The proof is essentially contained in Figure 8, which explicitly identifies a local model for the
desired Legendrian handle graph.

Our next task is to describe an explicit, convex surface-theoretic local model for Legendrian ambient
surgery. In service of this goal, consider the Legendrian graph G depicted in the left part of Figure 9,
which will serve as our local model below. The graph G contains three distinguished subsets:

(1) a max-tb unlink ƒ of two components, consisting of the two blue arcs and the two black cusps at
the two ends;

(2) a dotted red arc D joining the two components of ƒ; and

(3) a large, black max-tb unknot ƒ0.

Importantly, one can identify ƒ0 with Surg.G; ƒ/ in this local model.

The right part of Figure 9 illustrates a convex disk bounded by ƒ0 and containing the Legendrian graph
G as an explicit subset. The key observation is that the above actually yields a convex surface-theoretic
local model of the Legendrian ambient surgery operation.

A more general situation is illustrated in Figure 10. On its right, this figure depicts a portion of a convex
surface †, bounded by a Legendrian link ƒ0, and containing a Legendrian graph G. The graph G is the
union of ƒ0, the two blue arcs, and the dotted red arc D, and we let ƒ be the union of the two blue arcs
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Figure 9: Left: a planar Legendrian graph depicting the Legendrian ambient surgery operation
performed on a max-tb unlink. Right: a corresponding convex surface-theoretic interpretation;
here, the green arc represents the dividing set.

and ƒ0, minus the two black boundary arcs between the blue arcs. Then, as in the simpler case above, we
have a Legendrian graph G that lies on a convex surface †, together with distinguished subsets ƒ, D,
and ƒ0, colored blue/black, red, and black respectively. We now claim that this convex surface-theoretic
picture corresponds to Legendrian ambient surgery as illustrated on the right of Figure 10.

Lemma 3.3 Let †, G, ƒ, ƒ0, and D be as described in the paragraph above. Then ƒ0 can be identified
with Surg.G; ƒ; fDg/.

Proof This follows immediately from the observation that Legendrian ambient surgery is itself a local
operation [Dimitroglou Rizell 2016]. In other words, since Lemma 3.3 is true for a single example —
where ƒ is a max-tb unlink of two components, D is a trivial arc joining them, and ƒ0 is a max-tb
unknot) — it must be true in general.

Remark 3.4 While the configuration depicted in Figure 10 provides one possible convex surface-theoretic
local model for the Legendrian ambient surgery operation, it is not necessarily unique.

Lemma 3.5 Let ƒ be an oriented , null-homologous Legendrian link in a contact manifold .Y; �/. Then
there exists an oriented Legendrian unknot ƒU � .Y; �/ and a Legendrian handle graph G on ƒU such
that Surg.G; ƒU / is Legendrian isotopic to ƒ.

Proof Suppose that † is a Seifert surface for ƒ. Applying Lemma 3.2 to successively double-stabilize
each component of ƒ if necessary, we obtain a Legendrian handle graph .G1; ƒ1/ and a Seifert surface

Figure 10: A convex surface-theoretic local model for Legendrian ambient surgery. Again, the
green arcs represent the dividing set.
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†1

ƒ1

Figure 11: The convex Seifert surface †2, dividing set �†, and arc basis, viewed in disk-band form.

†1 for ƒ1 isotopic to †, such that the twisting of � relative to †1 along each component of @†1 Dƒ1

is negative, and Surg.G1; ƒ1/ is Legendrian isotopic to ƒ. Below, we will denote this first condition by
the shorthand notation tw.�;†1/ < 0, and similarly for other surfaces.

By work of Kanda [1998], since tw.�;†1/ < 0, there is an isotopy of †1 relative to @†1 Dƒ1 such that
the resulting surface †2 is convex. (While we will not use this, we may assume that this isotopy is a
C 0 perturbation near the boundary, followed by a C1 perturbation of the interior.) Further, by possibly
Legendrian-isotoping the handle arcs of G1, we obtain a Legendrian handle graph .G2; ƒ2 Dƒ1/ whose
handle arcs G2 nƒ2 intersect †2 transversely in a finite number of points.

To aid the discussion to follow, we picture the convex Seifert surface †2 in disk-band form, meaning that
we view it as the union of a 0–handle (disk) and a number g of 1–handles (bands); see Figure 11. Below,
we shall fix a particular choice of disk-band decomposition. The cocores a1; : : : ; ag of the 1–handles
form an arc basis for †2. (Note that Figure 11 is an abstract diagram of †2; as †2 is embedded in Y ,
the bands may be “linked”.) Since tw.�;†2/ < 0, the dividing set must intersect each component of ƒ.

To obtain the desired Legendrian handle graph .G; ƒU /, our strategy is to cut the bands of †2. More
precisely, let fa1; : : : ; agg be an arc basis for †2 consisting of a collection of properly embedded arcs
in †2, such that the intersection of each ai with G2 nƒ2 is empty. Figure 12 depicts a band of †2 and a
corresponding basis arc ai .

ƒ2

ai

Figure 12: A band of the convex Seifert surface †2 and a corresponding basis arc ai .
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Figure 13: A double-stabilization ƒ3 of ƒ2 whose new Seifert surface †3 contains an arc basis
disjoint from its dividing set.

Now construct a (not necessarily Legendrian) link ƒ2:5 as follows: Take a parallel push-off of ƒ2 in
†2 and, for each basis arc ai that intersects the dividing set �†2

, perform a finger move of the pushoff
across each of the dividing curves involved and back, as shown in Figure 13. We may choose to perform
this finger move from either end of ai — and it is sufficient to perform it on only one side — and we
may choose to turn either left or right on the way back; these choices are immaterial. The goal of the
finger move is to obtain a curve that is smoothly isotopic to ƒ2, such that instead of ai (whose ends are
on ƒ2), we may choose a cocore a0i (with ends on the new curve) that does not intersect the dividing set.
Since ai \ .G2 nƒ2/D∅ for each i , we may assume that the finger moves avoid all intersection points
between G2 nƒ2 and †2.

Recall that the Legendrian realization principle (LeRP) states that, given a convex surface S and a
multicurve C � S that is transverse to �S , if each component of S nC intersects �S , then S can be
isotoped to another convex surface �.S/ such that �.C / is Legendrian (see [Kanda 1998; Honda 2000,
Section 3]). Here, since tw.�;†2/ < 0, each component of †2 nƒ2:5 intersects �†2

, and so we can apply
the LeRP to ƒ2:5 �†2 to obtain an isotopy of †2 to a convex surface †2:5 with @†2:5 Dƒ2, such that
the image ƒ3 of ƒ2:5 under the isotopy is Legendrian, and �†2:5

is the image of �†2
.

A closer look at the proof of [Kanda 1998; Honda 2000, Section 3] reveals that the LeRP in fact applies
more generally to graphs G � S satisfying the complement condition. We will need this fact towards the
end of this proof.

Since the finger moves giving rise to ƒ2:5 — and hence ƒ3 — each involved isotoping across elements of
the dividing set an even number of times, we have that the Legendrian link ƒ3 is necessarily an iterated
double-stabilization of ƒ2. In fact, ƒ3 is Legendrian isotopic to ƒ2 outside of a tubular neighborhood Ua

of the ai’s. We now construct a Legendrian handle graph on ƒ3 as follows: First, extend the Legendrian
isotopy between ƒ2 nUa and ƒ3 nUa to a local contact isotopy, and apply the local contact isotopy to the
Legendrian handle arcs in G2 nƒ2, obtaining Legendrian handle arcs that are attached to ƒ3. Second, by
Lemma 3.2, we may add a collection H3 of Legendrian handle arcs to this collection to obtain a Legendrian
handle graph .G3; ƒ3/ such that Surg.G3; ƒ3;H3/ is Legendrian isotopic to .G2; ƒ2/. In particular, this
means that Surg.G3; ƒ3/ is Legendrian isotopic to ƒ. As before, by possibly Legendrian-isotoping the
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ƒ4

a00i

Figure 14: The result ƒ4 of iteratively doubly stabilizing ƒ3, whose Seifert surface †4 contains
an arc basis, each component of which intersects the dividing set in exactly four points.

handle arcs of G3, we may assume that the Legendrian handle arcs in .G3; ƒ3/ intersect†2:5 transversely
in a finite number of points. (Note that, by Figure 8 in the proof of Lemma 3.2, the Legendrian handle
arcs of H3 can be taken to be contained in an arbitrarily small tubular neighborhood of the ai’s, implying
that the complication in Remark 2.7 does not arise, since the Legendrian handle arcs in H3 are contained
in a neighborhood disjoint from G2:5 nƒ3.)

Let†3 be the closure of the component of†2:5nƒ3 that does not intersect @†2:5. Then we have obtained
a Legendrian link ƒ3 bounding a convex Seifert surface †3 that contains an arc basis fa0

1
; : : : ; a0gg that

does not intersect the dividing set �†3
, and a Legendrian handle graph G3 on ƒ3 such that Surg.G3; ƒ3/

is Legendrian isotopic to ƒ.

We have one final preparatory step before we construct the desired unknot and the accompanying
Legendrian handle graph. In this step, we double-stabilize ƒ3 at each point where it intersects the arc
basis fa0

1
; : : : ; a0gg. The result is a Legendrian link ƒ4 bounding a convex Seifert surface †4 whose

dividing set differs from that of †3 by a collection of nested pairs of boundary-parallel dividing curves,
as shown in Figure 14. We again produce an arc basis fa00

1
; : : : ; a00gg which now intersects each of the

newly added dividing curves exactly once. As in two paragraphs above, we obtain a Legendrian handle
graph G4 on ƒ4 by applying a local contact isotopy to the Legendrian handle arcs in G3 nƒ3, and then
adding the handle arcs required to perform the double-stabilizations.

We are now ready to construct the unknot ƒU and the desired Legendrian handle graph G on ƒU . We do
this in two steps. First, see Figure 15. Let G4:5 be the graph consisting of

(1) the Legendrian link ƒ4;

(2) the curves b1
i and b2

i for i 2 f1; : : : ;gg, which are topologically parallel to the arc basis elements
a00i but have endpoints shifted as in Figure 15; and

(3) the arcs Di for i 2 f1; : : : ;gg, each joining b1
i to b2

i and intersecting the dividing set once.

Since each component of the complement †4 nG4:5 contains elements of the dividing set, we can apply
the LeRP to isotope †4 rel boundary to obtain a convex surface †5 containing ƒ4:5 as a Legendrian
graph G.
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b1
i b2

i
Di

ƒ4

Figure 15: An identification of the convex surface-theoretic local model in †5 for Legendrian
ambient surgery.

Finally, we build ƒU Dƒ5 by taking the segments of ƒ4 in the complement of the short arcs joining the
bi arcs (black in Figure 15) together with the bi arcs. By construction, this is a Legendrian knot which is
topologically trivial.

The key observation is that the Legendrian graph G satisfies the hypotheses of Lemma 3.3 — the “par-
allelogram” in the center of Figure 15 between the bi arcs is isotopic to Figure 10. Thus, Legendrian
ambient surgery of ƒU along the collection of arcs fD1; : : : ;Dgg is precisely @†4 Dƒ4.

We add to the collection fD1; : : : ;Dgg the handles in G4 to obtain GDG5. Thus, we obtain a Legendrian
handle graph .G; ƒU / such that, by construction, Surg.G; ƒU / is Legendrian isotopic to ƒ, completing
the proof.

We are now ready to prove the main result of this section.

Proof of Proposition 3.1 According to Lemma 3.5, there are oriented Legendrian unknots ƒU and ƒ0
U

and Legendrian handle graphs G and G0, such that Surg.G; ƒU / (resp. Surg.G0; ƒ0
U
/) is Legendrian

isotopic to ƒ (resp. ƒ0).

Since rŒ†�.ƒ/ D rŒ†0�.ƒ
0/, it follows that r.ƒU / D r.ƒ0

U
/. This also implies that tb.ƒU / and tb.ƒ0

U
/

differ by a multiple of 2. Without loss of generality, assume that tb.ƒU /� tb.ƒ0
U
/; then by successively

applying Lemma 3.2 to ƒU if necessary, we obtain a Legendrian handle graph .G; ƒU / such that
tb.ƒU / D tb.ƒ0

U
/ and Surg.G; ƒU / is Legendrian isotopic to G. Again, by Figure 8 in the proof

of Lemma 3.2, the Legendrian handle arcs of G can be taken to be contained in an arbitrarily small
neighborhood of a point; thus, we may combine these Legendrian handle arcs with those of G, as in the
proof of Lemma 3.5 to obtain a Legendrian handle graph . zG; ƒU / such that Surg. zG; ƒU / is Legendrian
isotopic to ƒ.

Now ƒU and ƒ0
U

are unknots in the contact 3–manifold .Y; �/ with the same Thurston–Bennequin
and rotation numbers. We claim that, possibly after further applying Lemma 3.2 until the Thurston–
Bennequin numbers of both unknots are negative, there exists a contact isotopy �t of .Y; �/ taking ƒU

to ƒ0
U

. If .Y; �/ is tight, the existence of such an isotopy follows from Eliashberg and Fraser’s [2009,
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VI

VI

IV,II

I

Figure 16: Left: moving a triple point off of a cusp using a Reidemeister VI move from [O’Donnol
and Pavelescu 2012]. Right: clearing a cusp of ƒ for a Reidemeister I move.

Theorem 1.5] classification of Legendrian unknots in tight contact manifolds. If .Y; �/ is overtwisted,
then our assumption that the Thurston–Bennequin numbers are negative allows us to apply [Eliashberg
and Fraser 2009, Proposition 4.12] to find the desired isotopy.

We now apply the isotopy �t to the Legendrian handle graph zG and perturb the result so that the attached
Legendrian handles are disjoint from those of G0. We then obtain a pair of Legendrian handle graphs for
the unknot ƒ0

U
, surgery along which yields Legendrian links isotopic to ƒ and ƒ0 respectively.

4 Lower bounds via diagrams

In this section, we reprove Lemma 3.5 for Legendrian links in the standard contact R3 using diagrammatic
techniques rather than convex surface theory. This proof refines that of [Boranda et al. 2013] to produce
a handle graph as well as a Lagrangian cobordism from an unknot. While this section is not logically
necessary for the proof of Theorem 1.1 given our work in the previous section, the techniques introduced
herein are essential for the understanding and practical application of the main ideas of this paper, as
justified in Examples 5.1 and 6.3 below.

We begin with a sequence of lemmas that reduce the number of crossings of the front diagram of the
Legendrian link in a Legendrian handle graph at the expense of increasing the number of handles. But
first, we state a technical general position result.

Lemma 4.1 For any Legendrian handle graph .G; ƒ/, there exists a C 0–close , isotopic Legendrian
handle graph .G0; ƒ0/ such that all singular points of the front diagram of G have distinct x–coordinates.

Proof While this lemma simply expresses general position for the graph G, we note in Figure 16, left,
that moving a triple point off of a cusp of ƒ is tantamount to using a Reidemeister VI move.

First, we remove negative crossings.
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.G�; ƒ�/

.GC; ƒC/

Figure 17: The Legendrian handle graph .G�; ƒ�/ has one fewer negative crossing than
.GC; ƒC/. Red curves represent surgery disks, ie cores of handles, while green curves represent
cocores.

Lemma 4.2 Given a Legendrian linkƒC, whose front diagram has a negative crossing , and a Legendrian
handle graph GC on ƒC, there exists a Legendrian handle graph .G�; ƒ�/ and a subset H0 of handles
of G�, such that Surg.G�; ƒ�;H0/ is Legendrian isotopic to .GC; ƒC/, and the front diagram of ƒ�
has one fewer negative crossing than that of ƒC.

After applying Lemma 4.1 to isolate negative crossings, the proof of Lemma 4.2 is contained in Figure 17.

Next, we remove positive crossings.

Lemma 4.3 Given a Legendrian link ƒC, the leftmost crossing of whose front diagram is positive , and a
Legendrian handle graph GC on ƒC, there exists a Legendrian handle graph .G�; ƒ�/ and a subset H0

of handles of G�, such that Surg.G�; ƒ�;H0/ is Legendrian isotopic to .GC; ƒC/ and the front diagram
of ƒ� has one fewer positive crossing than that of ƒC.

Proof Apply Lemma 4.1 to isolate crossings and cusps ofƒC from handles of GC. Consider the leftmost
crossing X0 of ƒC. Without loss of generality, we may assume that ƒC is oriented from right to left
on both strands of X0. The upper-left strand incident to X0 must thus next return to X0; the same is
true for the bottom-left strand. Since there are no crossings of ƒC to the left of X0, either the upper
left strand must next cross the x–coordinate of X0 above X0 or the lower left strand must next cross the
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.GC; ƒC/

.G�; ƒ�/

Figure 18: The Legendrian handle graph .G�; ƒ�/ has one fewer positive crossing than
.GC; ƒC/. Red curves represent cores of handles, while green curves represent cocores.

x–coordinate of X0 below X0. Without loss of generality, assume that this holds for the upper left strand
as in the upper-right portion of Figure 18. Let ���ƒC be the compact 1–manifold that starts at X0 and
traverses along the upper-left strand of X0 until returning to the same x–coordinate, and let � be �� with
the orientation reversed, so that X0 is at the end of �.
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As in the second diagram down in Figure 18, create a finger of ƒC parallel to � using a Reidemeister I
move at the initial point of � and next to every cusp of � along with Reidemeister II moves to pass the
lead cusp of the finger through handles of GC that are incident to �. Move the end of the finger just
to the right of X0. Place a cocore of a handle inside the finger just below each crossing created by a
Reidemeister I move. Place two additional cocores from the finger to the original link on either side of
the crossing X0.

Finally, replace the cocores by surgery disks to create a new Legendrian handle graph as in the third
row of Figure 18. Isotope the new Legendrian handle graph as at the bottom of Figure 18, using a
combination of the move in Figure 16, right, to move the handles away and Reidemeister I moves to
remove the crossings. The result is a Legendrian handle graph that has many more surgery disks, but
whose underlying Legendrian link has one fewer crossing than before.

The procedure above may produce a disconnected Legendrian link. We next see how to join these
components.

Lemma 4.4 Let .GC; ƒC/ be a Legendrian handle graph , where ƒC has n� 2 components , which are
mutually disjoint in the front diagram. Suppose that there exists a path  in the front diagram of GC that
starts on componentƒ0C�ƒC, ends onƒ00C�ƒC, and does not intersectƒC otherwise. Then there exists
a Legendrian handle graph .G�; ƒ�/ and a subset H0 of handles of G�, such that Surg.G�; ƒ�;H0/

is Legendrian isotopic to .GC; ƒC/, one component of ƒ� is topologically the connected sum of ƒ0C
andƒ00C, the other components ofƒ� match the remaining components ofƒC, and none of the components
of ƒ� intersect in the front diagram.

Proof We may assume that  intersects ƒ0C and ƒ00C away from triple points, crossings, and cusps.
Create a finger of ƒ0C that follows  , starting with a Reidemeister I move and using Reidemeister II
moves to cross handles of GC and additional Reidemeister I moves when  has a vertical tangent; see
the middle diagram of Figure 19. Stop the finger just before  intersects ƒ00C, performing an additional
Reidemeister I move if necessary to ensure that the orientations of parallel strands of the finger and ƒ00C
are opposite. Place a cocore of a handle between those two parallel strands. Finally, replace the cocore by
a core of a handle to create a new Legendrian handle graph .G�; ƒ�/ as in the bottom-left portion of
Figure 19.

That the new component of ƒ� is the connect sum of ƒ0C and ƒ00C comes from the facts that the diagrams
of ƒ0C and ƒ00C are disjoint and that  is disjoint from the diagram of ƒC on its interior. The final two
conclusions of the lemma follow immediately from the construction.

With the tools above in place, we are ready to reprove Lemma 3.5 using the diagrammatic techniques of
this section.

Diagrammatic proof of Lemma 3.5 in .R3; �0/ Given a Legendrian ƒ, use Lemma 4.2 repeatedly, and
then Lemma 4.3 repeatedly, to obtain a Legendrian handle graph .G1; ƒ1/ such that the front diagram of
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ƒ00C

ƒ0C

ƒ00C

ƒ0C

ƒ0C #ƒ00C



Figure 19: The Legendrian link ƒ� has a component that is topologically the connected sum of
two components of ƒC.

ƒ1 has no crossings, and Surg.G1; ƒ1/ is Legendrian isotopic to ƒ. Use Lemma 4.4 to find a Legendrian
handle graph .G2; ƒ2/ with a subset H0 of handles, such that ƒ2 is connected, and Surg.G2; ƒ2;H0/

is Legendrian isotopic to Surg.G1; ƒ1/, which implies that Surg.G2; ƒ2/ is Legendrian isotopic to ƒ.
Finally, note that ƒ2 is a smooth unknot since it is the connected sum of smooth unknots.

5 Upper bounds

With constructions of a common lower bound and corresponding handle graphs for ƒ and ƒ0 in hand, we
are ready to find an upper bound. The structure of the following proof parallels that of Lazarev [2020] in
higher dimensions.
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Proof of Proposition 1.6 Given oriented Legendrian links in ƒ and ƒ0 in .Y; �/, Proposition 3.1 implies
that there exist an oriented Legendrian link ƒ� and Legendrian handle graphs .G; ƒ�/ and .G0; ƒ�/
such that Surg.G; ƒ�/ (resp. Surg.G0; ƒ�/) is Legendrian isotopic to ƒ (resp. ƒ0).

We Legendrian isotope the handles H0 of G0 to be in general position with respect to the handles H of G.
In particular, we may assume that the Legendrian handle graph .G0; ƒ�/ has H0 is disjoint from H, with
Surg.G0; ƒ�/ still Legendrian isotopic to ƒ0.

Define the Legendrian graph GC D G [G0; it is clear that .GC; ƒ�/ is a Legendrian handle graph.
Note that Surg.GC; ƒ�;H/ is Legendrian isotopic to a Legendrian handle graph .GC;1; ƒ/; similarly,
Surg.GC; ƒ�;H0/ is Legendrian isotopic to a Legendrian handle graph .GC;2; ƒ

0/.

Observe that both Surg.GC;1; ƒ/ and Surg.GC;2; ƒ
0/ are Legendrian isotopic to Surg.GC; ƒ�/, which

we denote by ƒC. Let L Wƒ�!ƒC be the concatenation of L.G; ƒ�/ with L.GC;1; ƒ/; similarly, let
L0 Wƒ�!ƒC be the concatenation of L.G0; ƒ�/ with L.GC;2; ƒ

0/. Then it is clear that ƒ (resp. ƒ0)
appears as a collared slice of L (resp. L0). At the same time, Proposition 2.6 implies that L and L0

are exact-Lagrangian isotopic, since they are both obtained from the same Legendrian handle graph
.GC; ƒ�/ by Legendrian ambient surgery, only in a different order — in other words, they both belong to
the isotopy class L.GC; ƒ�/.

Example 5.1 Figures 20 and 21 display the full process of creating the upper bounds in Figures 1 and 2,
respectively.

6 The Lagrangian cobordism genus

In this section, we use the construction of upper and lower bounds for a pair of Legendrian knots to define
a new quantity, the relative Lagrangian genus, and a new relation, Lagrangian zigzag-concordance. We
explore foundational properties and immediate examples, leaving deeper explorations, as embodied in the
list of open questions at the end, for future work. For ease of notation, we work with Legendrian links
in the standard contact R3, though our definitions may easily be adapted to Legendrians in any contact
3–manifold.

6.1 Lagrangian quasicobordism

We begin with a definition that undergirds the two concepts referred to above.

Definition 6.1 A Lagrangian zigzag-cobordism between Legendrian knots ƒ and ƒ0 consists of an
ordered set of nC 1 Legendrian links

ƒD .ƒDƒ0; ƒ1; : : : ; ƒn Dƒ
0/;

another ordered set of n nonempty Legendrian links

ƒ� D .ƒ�1; : : : ; ƒ
�
n/;
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Figure 20: The handle graph at the bottom of the figure is used to create the upper bound of the
trefoil and an m.52/ knot that appeared in Figure 1.

such that ƒ�i is an upper or lower bound for the pair .ƒi�1; ƒi/, and connected Lagrangian cobordisms

LD .L<
1 ;L

>
1 ;L

<
2 ;L

>
2 ; : : : ;L

<
n ;L

>
n /

that realize the upper or lower bound constructions.

There are several quantities associated to a Lagrangian zigzag-cobordism.

Definition 6.2 Given a Lagrangian zigzag-cobordism .ƒ;ƒ�;L/, its length is one less than the number
of elements in ƒ, while its Euler characteristic �.ƒ;ƒ�;L/ is the sum of the Euler characteristics of the
Lagrangians in L and its genus g.ƒ;ƒ�;L/ defined, as usual, in terms of the Euler characteristic.

Further, we define the relative Lagrangian genus gL.ƒ;ƒ
0/ between the Legendrian knots ƒ and ƒ0 as

the minimum genus of any Lagrangian zigzag-cobordism between them. Two Legendrian knots ƒ and
ƒ0 are Lagrangian zigzag-concordant if gL.ƒ;ƒ

0/D 0.

Example 6.3 Let‡ be the maximal Legendrian unknot, and letƒ be a maximal Legendrian representative
of m.62/. Note that both ‡ and ƒ have Thurston–Bennequin number �1 and that the smooth 4–genus of
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Figure 21: The handle graph at the bottom of the figure is used to create the upper bound of the
figure eight knot and the unknot that appeared in Figure 2. Note that the Legendrian knots in the
handle graphs in the middle level are isotopic to the unknot (left) and the figure eight (right).

62 is equal to 1 [Livingston and Moore 2021]. It follows from the behavior of the Thurston–Bennequin
invariant under Lagrangian cobordism that there cannot be a Lagrangian cobordism joining ‡ and ƒ
in either direction. Nevertheless, there is a genus-1 Lagrangian zigzag-cobordism between the two; see
Figure 22.

Lagrangian zigzag-cobordism induces an equivalence relation on the set of isotopy classes of Legendrian
links. As in the smooth case, this equivalence relation is uninteresting, as shown by the following
immediate corollary of Theorem 1.1 or Proposition 3.1, together with Remark 1.3:

Corollary 6.4 Any two Legendrian knots with the same rotation number are Lagrangian zigzag-cobordant.
In fact , the zigzag-cobordism may be chosen to have length 1.

The corollary shows that the relative Lagrangian genus is defined for any two Legendrian knots of the
same rotation number.
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Figure 22: A genus 1 Lagrangian quasicobordism between the maximal unknot ‡ and a maximal
representative ƒ of the mirror of the 62 knot. The zigzag-cobordism was produced using the ideas
in [Boranda et al. 2013, Section 5], especially Figures 25 and 27.

On the other hand, Lagrangian zigzag-concordance also clearly induces an equivalence relation on the set
of isotopy classes of Legendrian knots. The relative Lagrangian genus descends to Lagrangian zigzag-
concordance classes. Using [Chantraine 2010] and the connectedness of the Lagrangians, we see that both
the rotation number and the Thurston–Bennequin number are invariants of Lagrangian zigzag-concordance,
though nonclassical invariants coming from Legendrian contact homology or Heegaard Floer theory will
have a more complicated relationship with zigzag-concordance.

6.2 Relation to smooth genus

To connect the relative Lagrangian genus to smooth constructions, note that we may define the smooth
cobordism genus between two smooth knots K1 and K2 to be the minimum genus of all cobordisms
between them; we denote this by gs.K1;K2/. Chantraine [2010] proved that Lagrangian fillings minimize
the smooth 4–ball genus of a Legendrian knot, and so one might ask if this minimization property extends
to gL. We begin with a simple lemma.

Lemma 6.5 Given Legendrian knots ƒ and ƒ0, we have gs.ƒ;ƒ
0/� gL.ƒ;ƒ

0/.

Proof Let .ƒ;ƒ�;L/ be a Lagrangian zigzag-cobordism betweenƒ andƒ0. Assume for ease of notation
that each ƒ� 2ƒ� is an upper bound. Let L>

i be the smooth cobordism from ƒ�i to ƒi obtained from
reversing L>

i ; note that L>
i is not, in general, a Lagrangian cobordism. Since Euler characteristic is

additive under gluing, the smooth cobordism L<
1
ıL>

1
ıL<

2
ı � � � ıL>

n has genus g.ƒ;ƒ�;L/, and hence
gs.ƒ;ƒ

0/� gL.ƒ;ƒ
0/.
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It is natural to ask under what conditions on ƒ1 and ƒ2 — as Legendrian or as smooth knots — is the
inequality in Lemma 6.5 an equality? On one hand, we cannot expect to achieve equality in all cases.

Example 6.6 Let ƒ be any Legendrian knot, and let ƒ0 be a double stabilization of ƒ with the same
rotation number asƒ. Sinceƒ andƒ0 have the same underlying smooth knot type, we have gs.ƒ;ƒ

0/D 0.
On the other hand, let .ƒ;ƒ�;L/ be a Lagrangian zigzag-cobordism between ƒ and ƒ0. Note that
�.L<

i /; �.L
>
I
/ � 0 for all i , since each of L<

i and L>
i is connected and has at least two boundary

components. Since tb.ƒ/ > tb.ƒ0/, some pair ƒi ; ƒiC1 in ƒ must have different Thurston–Bennequin
numbers. In particular, the bound ƒ�i must have a different Thurston–Bennequin number than at least
one of ƒi or ƒiC1. It follows that �.L<

i /C �.L
>
i / < 0, and hence that �.ƒ;ƒ�;L/ < 0. Since ƒ

and ƒ0 are knots, this implies that g.ƒ;ƒ�;L/ > 0. In particular, we have gL.ƒ;ƒ
0/ > 0 even though

gs.ƒ;ƒ
0/D 0.

On the other hand, there is a simple sufficient condition for equality in the lemma above.

Lemma 6.7 If the Legendrian knot ƒ has a Lagrangian filling , and there exists a Lagrangian cobordism
from ƒ to ƒ0, then gs.ƒ;ƒ

0/D gL.ƒ;ƒ
0/.

Proof We begin by setting notation. Let L0 be the Lagrangian filling of ƒ and let L<
1

be the Lagrangian
cobordism from ƒ to ƒ0. Taking L>

1
to be the trivial cylindrical Lagrangian cobordism from ƒ0 to itself,

and taking ƒ�
1
Dƒ0, we see that

(1) gL.ƒ;ƒ
0/� g.L<

1 /:

Let † be the smooth cobordism from ƒ to ƒ0 that minimizes the smooth cobordism genus. We know
that L0 ıL<

1
is a Lagrangian filling of ƒ0, and hence that g.L0 ıL<

1
/� g.L0 ı†/. Since ƒ is a knot,

the genus is additive under composition of cobordisms, and we obtain

(2) g.L<
1 /� g.†/:

Combining (1) and (2), we obtain

gL.ƒ;ƒ
0/� g.†/D gs.ƒ;ƒ

0/:

The lemma now follows from Lemma 6.5.

6.3 Open questions

We end with a list of questions about Lagrangian zigzag-cobordism and zigzag-concordance beyond the
motivating question above about the relationship between the relative Lagrangian genus and the relative
smooth genus.

(1) Building off of Example 6.3, is there an example of a pair ƒ and ƒ0 that are Lagrangian zigzag-
concordant but not Lagrangian concordant?
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(2) Taking the previous question further, for two Lagrangian zigzag-concordant Legendrians ƒ and ƒ0,
what is the minimal length of any Lagrangian zigzag-concordance between them? Are there
examples for which this minimal length is arbitrarily high?

(3) Even more generally, define gL.ƒ;ƒ
0; n/ to be the minimal genus of any Lagrangian zigzag-

cobordism between ƒ and ƒ0 of length at most n. The sequence .gL.ƒ;ƒ
0; n//1

nD1
decreases to

and stabilizes at gL.ƒ;ƒ
0/. Are there examples for which the number of steps it takes the sequence

to stabilize is arbitrarily long?

(4) Can gL.ƒ;ƒ
0/ � gs.ƒ;ƒ

0/ be arbitrarily large when ƒ and ƒ both have maximal Thurston–
Bennequin invariant?

(5) Can the hypotheses of Lemma 6.7 be weakened to ƒ having only an augmentation instead of a
filling?

(6) Is there a version of this theory for Maslov 0 Lagrangians, which would better allow the use of
Legendrian contact homology, especially the tools in [Pan 2017]?
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Interleaving Mayer–Vietoris spectral sequences

ÁLVARO TORRAS-CASAS

ULRICH PENNIG

We discuss the Mayer–Vietoris spectral sequence as an invariant in the context of persistent homology.
In particular, we introduce the notion of "–acyclic carriers and "–acyclic equivalences between filtered
regular CW–complexes and study stability conditions for the associated spectral sequences. We also look
at the Mayer–Vietoris blowup complex and the geometric realization, finding stability properties under
compatible noise; as a result we prove a version of an approximate nerve theorem. Adapting work by
Serre, we find conditions under which "–interleavings exist between the spectral sequences associated to
two different covers.

55N31, 55T99

1 Introduction

One of the benefits of homology as a topological invariant over, for example, the homotopy groups, is
its computability via long exact sequences. The classical Mayer–Vietoris exact sequence has been used
in countless examples to compute Hk.X/ from a decomposition of a space X into two open subsets U
and V . When we generalise this concept to open covers .Ui /i2I consisting of more than just two subsets,
the relations between the parts Hk.Ui / become more intricate and are encoded in the Mayer–Vietoris
spectral sequence. These sequences first appeared in work of Leray and later Serre, and they proved to be
one of the most powerful tools in pure algebraic topology. Applications of spectral sequences in applied
algebraic topology, however, is still a young subject.

In [Torras-Casas 2023] it was proven that the persistence Mayer–Vietoris spectral sequence can be used
to compute persistent homology. The starting point is a filtered simplicial complex X together with a
cover by subcomplexes U. Then, one computes PHi .U� / for all i � 0 and � 2 NU. Here, notice that
NU is the nerve of the cover U whose simplices � 2NU are subsets from U; this leads to the notation
U� D

T
U2� U . The Mayer–Vietoris spectral sequence starts from these groups and the morphisms

induced by inclusions and converges to PHi .X/. As pointed out in [Yoon and Ghrist 2020], the additional
insight gained from the cover U can be used, for example, for multiscale feature detection. Similar
information was also explored much earlier in [Zomorodian and Carlsson 2008] in the form of localized
homology.

Motivated by these results, we study the spectral sequenceE�p;q.X;U/ and answer the following questions:

© 2024 MSP (Mathematical Sciences Publishers). Distributed under the Creative Commons Attribution License 4.0 (CC BY).
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4266 Álvaro Torras-Casas and Ulrich Pennig

� Let a pair .X;U/ consist of a space,X , and a cover forX , U. The Mayer–Vietoris spectral sequence
E�p;q.X;U/ converges to PH�.�U.X//. Is PH�.�U.X// stable? Can this result be generalised?

� Suppose that the data in each covering set U� for � 2NU is modified slightly. If the underlying
cover U is ignored, then we would not expect E�p;q.X;U/ to be stable. Are there natural coherence
conditions between changes in the sets U� that imply stability? If so, what do we mean by stability
of spectral sequences?

� Let U and V be covers of the same space X . Can we compare E�p;q.X;U/ and E�p;q.X;V/ up to
"–interleavings?

To explain why the first question is important and how it is linked to spectral sequences, we note
that E�p;q.X;U/ converges to the target persistent homology PH�.�U.X// (this is usually denoted
by E�p;q.X;U/ ) PH�.�U.X//). The blowup complex �U.X/ already appeared in the context of
topological data analysis in [Lewis and Morozov 2015] and [Zomorodian and Carlsson 2008]. It is
homotopy equivalent to a homotopy colimit, and therefore enjoys good properties with respect to local
homotopy equivalences. For example, if we assume that U� is contractible for all � 2NU, then we can
use [Hatcher 2002, Proposition 4G.2] to recover Leray’s nerve theorem. That is, there are homotopy
equivalences

X '�U.X/'�U.�/DN.U/;

where � denotes the constant complex of spaces on U; see [Hatcher 2002, Appendix 4.G]. The fundamental
importance of this result in applied topology is underlined by the persistent nerve lemma presented in
[Chazal and Oudot 2008]. It is worth mentioning the approximate nerve theorem [Govc and Skraba
2018] and the generalised nerve theorem [Cavanna 2019], which are approximate versions of the Leray
theorem within the context of persistence. In particular, in [Govc and Skraba 2018] the spectral sequence
E�p;q.X;U/) PH�.X/ is examined, and it is studied how much it differs from another spectral sequence
E�p;q.�;U/) PH�.N.U//, by careful inspection of all pages as well as the extension problem.

Throughout the paper we focus on the category RCW-cpx of regularly filtered regular CW–complexes
as well as the subcategory FCW-cpx of filtered regular CW–complexes; see Section 2.1. Instead of
restricting our attention to a space X together with a cover U, we look at regular diagrams D in RCW-cpx
over a simplicial complex K. There is a natural replacement for the Mayer–Vietoris blowup complex
in this setting, denoted by �K.D/, as explained in [Hatcher 2002, Appendix 4.G]. This object also
appears in the context of semisimplicial spaces, where it is called the geometric realization [Ebert and
Randal-Williams 2019]; in fact, it has an associated spectral sequence [Ebert and Randal-Williams 2019,
Section 1.4]. As we explain in Section 3, there are good reasons why it is worth taking this more general
perspective. In particular, we consider the spectral sequence

E2p;q.D/) PHpCq.�KD/:

In order to address the first two questions, we introduce the notion of acyclic carriers to define "–acyclic
equivalences. Using the acyclic carrier theorem we show the following: Let X and Y be two objects
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Interleaving Mayer–Vietoris spectral sequences 4267

in RCW-cpx. If there exists an "–acyclic equivalence F " WX � Y , then PH�.X/ is "–interleaved with
PH�.Y / (see Corollary 4.7 and Proposition 4.2 for a stronger statement in FCW-cpx). These equivalences
provide a very flexible notion that works in different contexts as Examples 4.5, 4.6 and 4.8 show.

We address the first question in the following way. Let D and L be two diagrams over the same simplicial
complex K and assume that for all � 2 K there are "–acyclic equivalences F "� W D.�/ � L.�/ which
satisfy a compatibility condition with respect to composition in the poset category associated to K;
see Theorem 5.2 for details. Then, there is an "–acyclic equivalence F " W �K.D/ � �K.L/. This
result implies stability in the targets of convergence of the spectral sequences. We use this result to
show a “strong approximate multinerve theorem” in Corollary 5.3. Later, in Section 6, we introduce
."; n/–interleavings, which are given by spectral sequence morphisms that start at some page n together
with a shift by a persistence parameter ">0. Assuming the same conditions as in the geometric realization
case, we can obtain a ."; 1/–interleaving between E�p;q.D/ and E�p;q.L/; see Theorem 5.2. This result
appears in Theorem 6.5 and a specialised strong statement for covers of spaces in FCW-cpx is given in
Proposition 6.4.

As for the third question about the comparison of the spectral sequences associated to two covers U and V of
a spaceX , we rely on work of Serre [1955], in which he studied the relation between the Čech cohomology
of two different covers; here we adapt this work in the context of cosheaves and cosheaf homology. Take
a cosheaf F of abelian groups on X and assume that there is a refinement V�U. Serre showed that the
refinement morphism induced on Čech homology �UV W LH�.V;F/! LH�.U;F/ is independent of the
particular choice of morphism in the cochains. In [Serre 1955] it was also shown that �UV can be factored
through a construction that uses a double complex associated to both covers Cp;q.U;VIF/, see [Serre
1955, Proposition 4, Section 29]. This construction introduces two double complex spectral sequences
IE
�

p;q.U;VIF/ and IIE
�

p;q.U;VIF/, both of which converge to LH�.U\VIF/' LH�.VIF/. Here one
might study conditions on IIE�p;q.U;VIF/ to find when an inverse of �UV exists. As an application,
Serre [1955, Theorem 1, Section 29] obtained an analogous result to the Leray theorem in the context of
sheaves.

We start our analysis of the third question in Section 7. In case V�U there is a unique morphism induced
by the refinement map on the second page

�UV
WE�p;q.X;V/!E�p;q.X;U/:

On the other hand, Theorem 7.10 tells us under what conditions there exists an "–shifted morphism
 WE�p;q.X;U/!E�p;q.X;V/Œ"� such that �UV and  form an ."; 2/–interleaving between E�p;q.X;U/
and E�p;q.X;V/. Finally, in Proposition 7.12 we give a means of obtaining an ."; 2/–interleaving be-
tween E�p;q.X;U/ and E�p;q.X;V/ through the computation of local Mayer–Vietoris spectral sequences
E�p;q.U� ;VjU� / for all � 2 NU. Since the open regions U� are assumed to be “small” in comparison
to X , this gives a means of using local calculations to deduce the interleaving. As Corollary 7.14 we
present the case when V does not need to refine U.

Algebraic & Geometric Topology, Volume 24 (2024)
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2 Background

2.1 Regular CW–complexes with filtrations

Recall the definition of CW–complex from [Hatcher 2002, Chapter 0]. In contrast to the usual treatment
of CW–complexes, but in line with the structure we are dealing with in TDA, we consider the cell
decomposition as part of the data of our CW–complexes. For a CW–complex X , if c is an open cell
in X we follow the notation from [Cooke and Finney 1967] and denote this by c 2 X . We denote by
Xn the set of n–dimensional cells from X and we denote by X�n the n–skeleton from X . Recall that
X has a natural filtration given by its skeleta X0 �X�1 � � � � �X�N � � � � , and a cellular morphism
f WX ! Y respects this filtration, in the sense that it restricts to morphisms f m WX�m! Y �m for all
m� 0. We work with regular CW–complexes, which are CW–complexes where the attaching maps are
homeomorphisms. It is recommended to consult [Cooke and Finney 1967; Massey 1991] for properties
and results related to regular CW–complexes. An intuitive way of understanding incidences of cells in
regular complexes is through the barycentric subdivision, as explained in [Ellis 2019, Section 2.1]. Given
a pair of cells a 2Xn and b 2Xn�1, we denote by Œb W a� the degree of attaching map @a! Nb=@b.

Definition 2.1 A cellular morphism f WX ! Y is a regular morphism whenever the closure f .a/ is a
subcomplex of Y for all cells a 2X . For such a morphism and a pair a 2Xn and b 2 Y n, we denote by
Œb W f .a/� the degree of the morphism f restricted to the open cell a and mapping into the open cell b.

We write CW-cpx to denote the category of finite regular CW–complexes and regular morphisms. Denote
by R the ordered category .R;�/ of real numbers. We focus on functors X W R! CW-cpx which we
call regularly filtered CW–complexes, and we denote their category by RCW-cpx. We say that an object
X 2RCW-cpx is tame, whenever X is constant along a finite number of right open intervals decomposing
the poset R. For X 2 RCW-cpx, we write Xr for the regular CW–complex X.r/ for all r 2 R. On
the other hand we write X.r � s/ to denote the morphisms Xr ! Xs for all r � s in R; we call such
morphisms structure maps. The reader might find an example of such a regularly filtered complex in the
appendix. If the morphisms X.r � s/ W Xr ! Xs are injections preserving the cellular structure for all
r � s in R, then we call X a filtered CW–complex, denoting by FCW-cpx the corresponding subcategory
of RCW-cpx. Notice that objects in FCW-cpx can be seen as a pair .colimX�; f / where colimX� is a
regular CW–complex and f W colimX�!R is a filtration function.

Throughout this text, we work with a fixed field F . Given X 2 RCW-cpx, we define the persis-
tent homology in degree n as the functor PHn.X/ W R! vect given by computing cellular homology
PHn.X/r D Hcell

n .Xr IF/ for all r 2 R. As Xr is finite, the vector space PHn.X/r is finite dimensional
for all r 2 R. If in addition X is tame, PHn.X/ only changes at a finite number of points r 2 R. We call
the category of functors R! vectF persistence modules and denote it by PMod. Given a 2 .0;1/ and
X 2 RCW-cpx, we write XŒa� for the element of RCW-cpx such that XŒa�r DXrCa for all r 2 R. We
use †" to denote the "–shift functor †" W RCW-cpx! Hom.RCW-cpx/ which sends X 2 RCW-cpx to
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†"X WX !XŒ"�, where "� 0. Also, for any morphism of filtered CW–complexes f W A! B , one can
check that f Œ"� ı†"AD†"B ı f , where we use f Œ"� W AŒ"�! BŒ"�. Similarly, there are shift functors
for persistence modules †" W PMod! Hom.PMod/ for "� 0.

Remark 2.2 Notice that the standard algorithm for the computation of persistent homology cannot be
applied to objects in RCW-cpx. However, if X is tame and one successfully computes the coefficients
for the morphisms C cell

� .Xr/ ! C cell
� .Xs/ for all r � s in R, then one can use [Torras-Casas 2023,

Algorithm 2 image_kernel] to obtain a barcode basis for the filtered cellular complex C cell
� .X/. Then

we compute homology of the persistence morphisms given by the differentials dn W C cell
n .X/! C cell

n�1.X/

by the use of image_kernel. See [Torras-Casas 2023] for an explanation.

2.2 Acyclic carriers

Fix a field F . We say that X 2 CW-cpx is F–acyclic if the reduced homology zH�.X IF/ with F–
coefficients vanishes in all dimensions; as the field is understood from the context, we just say that X is
acyclic. Consider two objectsˆ and � from CW-cpx with their respective pairs of chains and differentials
.C cell
� .ˆ/; ıˆ/ and .C cell

� .�/; ı�/. Let h � ; � iˆ and h � ; � i� denote the inner products on C cell
� .ˆ/ and

C cell
� .�/, where the cells form an orthonormal basis. We define a relation � on ˆ by setting � � � if
h�; ıˆ.�/iˆ ¤ 0 and by taking the transitive closure. We denote by � the partial order generated by �.
Thus, � � � does not necessarily imply dim.�/C 1D dim.�/. Also, notice that h�; ıˆ.�/iˆ D Œ� W ��;
see the cellular boundary formula from [Hatcher 2002, Section 2.2].

Definition 2.3 A carrier F Wˆ� � is a map from the set of cells of ˆ to subcomplexes of � that is
semicontinuous in the sense that for any pair � � � in ˆ, F.�/� F.�/. A carrier F Wˆ� � is called
acyclic, if for every � 2ˆ, F.�/ is a nonempty acyclic subcomplex of � .

Given a chain map wp W C cell
p .ˆ/! C cell

pCr.�/ of degree r D 0; 1, we say that it is carried by F if for all
cells � 2 p̂,

f 2 �pCr j hwp.�/; i� ¤ 0g � F.�/;

where we followed the notation from [Nanda 2012].

The next statement is an application of [Munkres 1984, Theorem 13.4]. In Proposition 4.2 we prove a
version of this statement that applies to filtered CW–complexes. Notice that this theorem works for carriers
which are F–acyclic and which do not necessarily need to be Z–acyclic; see the proof of Proposition 4.2.

Theorem 2.4 Let F Wˆ� � be an acyclic carrier between CW–complexes ˆ and � . Then:

� Existence There is a chain map carried by F .

� Equivalence If F carries two chain maps � and ', then F carries a chain homotopy between �
and '.

Algebraic & Geometric Topology, Volume 24 (2024)
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Given two acyclic carriers F;G Wˆ� � , we write F �G whenever F.�/�G.�/ for all � 2ˆ. Given
another pair of acyclic carriers F 0 W ˆ � � and G0 W � � ‰, we also define the composition carrier
G0 ıF 0 Wˆ�‰, where each � 2ˆ is sent to

G0 ıF 0.�/ WD
[

�2F.�/

H.�/:

In particular, notice that if f is carried by F 0 and g is carried by G0, then g ıf is “carried” by G0 ıF 0.
However, this composition does not need to be acyclic.

Example 2.5 Consider a regular morphism f Wˆ! � . We define the (not necessarily acyclic) carrier
Ff W ˆ� � induced by f that sends � 2 ˆ to f .�/. By continuity of f , for any pair � � � in ˆ, we
have that f .�/� f .�/. Also, f .�/¤∅ since it must contain at least a point. Given an acyclic carrier
G W � � ‰, we denote by G.f .�// the composition of carriers G ıFf .�/ for all � 2 ˆ. This comes
up very often in this text and whenever we are looking at the composition G ıFf we assume that it is
acyclic. Note that Ff is acyclic if f is an embedding of the regular CW–complex ˆ as a subcomplex
of � . The hypothesis that f is regular is key to define the carrier Ff . If we considered a more general
continuous morphism f Wˆ! � , a possible strategy would be to use outer approximations [Kaczynski
et al. 2004; Nanda 2012]. However, for simplicity, we restrict to regular morphisms in this article.

2.3 Regular diagrams of filtered complexes

First, recall a few gluing constructions that one can perform in algebraic topology. For a brief introduction
to these, see [Hatcher 2002, Appendix 4.G]. They are also relevant in Kozlov’s approach [2008], where
diagrams of spaces over trisps are studied.

Let K be a simplicial complex. We view K as a category whose objects are given by the simplices
� 2 K. For any pair of simplices �; � 2 K such that � � � , there is a unique arrow � ! � in K. We
are particularly interested in Kop, the opposite category of K whose arrows are given by reversing the
arrows of K. The example one should have in mind here is the case where K is the nerve of a cover of a
cellular complex. Splitting the input data up by the cover then provides a diagram over the nerve where
higher intersections of covering sets are included into smaller degree intersections. We formalise these
constructions in the following definition.

Definition 2.6 Let K be a simplicial complex. A functor D WKop!CW-cpx is called a regular diagram
of CW–complexes and its category is denoted by RDiag.K/; notice here that, for any pair of simplices
� � � of K, the morphism D.� � �/ WD.�/!D.�/ is regular; we call such morphisms face maps. Given
a pair of diagrams D;L 2 RDiag.K/, a morphism of diagrams ' W D! L is a natural transformation; ie
the commutativity relation

D.� � �/ ı'.�/D '.�/ ıD.� � �/

holds for any pair � � � of simplices in K.
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Example 2.7 Let L be a simplicial complex and suppose that it is covered by a pair of nontrivial
subcomplexes L0 and L1. Consider a pair of vertices v;w 2L0\L1 and suppose that both are connected
by a pair of paths 0 and 1 within the respective 1–skeletons of L0 and L1. Further, we ask that these
paths are simple, in the sense that they do not self intersect. Now, consider a diagram D 2 RDiag.�1/
given by the closures of the paths on the vertices D.0/D x0 and D.1/D x1, while D.Œ0; 1�/D�1, the
standard one-simplex. We define the face maps of D, for i D 0; 1, as the regular morphism mapping 0 7! v

and 1 7! w, while Œ0; 1� is sent to i . On the other hand, we consider a diagram L 2 RDiag.�1/ which
is given by the cover fL0; L1g; that is, we define L.0/DL0 and L.1/DL1, while L.Œ0; 1�/DL0\L1;
also, the face maps of L are given by inclusions. Then, we might consider a morphism of diagrams
' W D! L given by inclusions D.0/ ,! L.0/ and D.1/ ,! L.1/, while D.Œ0; 1�/D�1 is sent to some
path within L0 \L1 so that ' is well defined. In fact, ' can only be well defined whenever 0 D 1.
Later, in Definition 5.1, we introduce .";K/–acyclic carriers; in this case, one might be able to consider
such a carrier F " W D � L so that 0 and 1 are only required to lie within some acyclic complex.

The main object of study in this work are diagrams of filtered CW–complexes. These arise naturally in
topological data analysis, for example whenever point clouds come equipped with a cover. We therefore
make the following definition:

Definition 2.8 A regularly filtered regular diagram of CW–complexes D over K is a functor

D WKop
! RCW-cpxI

we denote this category by RRDiag.K/. As in RDiag.K/, morphisms in RRDiag.K/ are given by
natural transformations. We might consider the subcategory of RRDiag.K/ given by functors

D WKop
! FCW-cpx;

which we call filtered regular diagrams of CW–complexes, denoting the corresponding category by
FRDiag.K/. If for a diagram D 2 FRDiag.K/ the face maps D.� � �/ are inclusions respecting the
cellular structures for all � � � from K, then we call D a fully filtered diagram of CW–complexes, whose
category we denote by FFDiag.K/.

Example 2.9 Consider a filtered CW–complex X covered by filtered subcomplexes U. We define XU

over the nerve NU as XU.�/DU� for all � 2NU. This diagram XU is part of FFDiag.NU/ since all
morphisms XU.� � �/ are actually embeddings of subcomplexes. On the other hand, we can define the
constant diagram �U as �U.�/r D � if XU.�/r ¤∅ or �U.�/r D∅ otherwise; for all � 2 NU and all
r 2 R. We also have that �U is in FFDiag.NU/. Then, there is an obvious epimorphism of diagrams
XU!�U. Continuing with the same example, we can also define the complex of spaces �U

0 given by
�U
0 .�/D �0.U� / for all � 2NU; where for each r 2R, �0.U� .r// denotes the discrete topological space

given by the connected components of U� .r/. Thus, each �0.U� / is a disjoint union of points that are
identified with each other as the filtration value increases and so it cannot be an element in FCW-cpx,
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but rather an element from RCW-cpx. Thus, in this case �U
0 2 RRDiag.K/. For all r 2 R, there is an

epimorphism XU.r/! �0
U.r/ sending each cell from XU.r/ to its respective connected component

from �0
U.r/; these morphisms are consistent along R. Altogether we have a sequence of epimorphisms

XU! �0
U!�U.

2.4 Geometric realization

For an abstract simplicial complex K, we denote by jKj its underlying topological space. Given a simplex
� 2 K, we write j� j to denote the number of vertices of � . We use dim.�/ for the dimension of a
simplex � , that is dim.�/D j� j � 1. We denote by �n the topological space associated to the standard
n–simplex. Given a simplex � 2K, we use the notation �� WD�dim.�/ for simplicity. Given a pair � � �
in K, we have a corresponding inclusion �� ,!�� . As a special case of a CW–complex, we denote by
Kn and K�n the set of n–cells and the n–skeleton respectively.

Definition 2.10 Let D 2 RDiag.K/. The geometric realization �KD of D is the object in CW-cpx
defined as

�KDD
G
�2K

�� �D.�/
ı
�

where, for any pair � � � in K, the relation identifies a pair of points

.�� ,!�� /.x/�y � x �D.� � �/.y/

for each pair of points x 2�� and y 2 D.�/. This �KD has a natural filtration given by

F p�KDD
[

�2K�p

�� �D.�/

for all p � 0. A cell � � c is a face of another cell � � a if and only if � � � and also c 2 D.� � �/.a/.
If the underlying simplicial complex K is clear from the context, we write �D instead of �KD.

Notice that Definition 2.10 also applies to diagrams D 2 RRDiag.K/. We define �KD by setting
.�KD/r WD�K.Dr/ for all r 2 R. Notice that our gluing conditions are consistent in this case as

D.� � �/ ı†tD.�/.y/D†tD.�/ ıD.� � �/.y/

for any pair � �� fromK and all t >0 and all points y 2D.�/. Altogether we obtain�K.D/2RCW-cpx.
Given a regular morphism F W D! L of diagrams in RRDiag.K/, there is an induced morphism on the
geometric realization which we denote by �F. Denote by �D the diagram given by

�
D.�/r D

�
� if D.�/r ¤∅;
∅ otherwise:

and note that there is a homotopy equivalence �.�D/r ' jK
D
r j, where KD is the filtered simplicial

complex with the same underlying vertex set as K and � 2KD
r if and only if D.�/r ¤∅. The projection

onto the simplex coordinates gives a base projection pb W�D!�.�D/' jKDj.
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Example 2.11 Let D 2 FRDiag.K/. We define the multinerve of D as

MNerv.D/D�.�0.D//:

This object was first introduced in [Colin de Verdière et al. 2014] in the case of �U
0 for a space X covered

by U. In [Colin de Verdière et al. 2014] it was defined as a simplicial poset, a notion that is equivalent to
that of a �–complex. There are epimorphisms �D!MNerv.D/!�.�D/' jKj.

Remark 2.12 Let D be a diagram of CW–complexes over the simplicial complex K. We can extend
D to a diagram D0 on the barycentric subdivision Bd.K/ by defining D0.�0 � � � � � �n/D D.�n/ on an
n–simplex �0 � �1 � � � � � �n in Bd.K/. A nonidentity morphism in Bd.K/ that has �0 � �1 � � � � � �n
as its codomain must have the same flag with one of the �k left out as its domain. The diagram D0 maps
such a morphism to the identity in case k ¤ n or the morphism D.�n�1 � �n/ in case k D n. It is clear
from the definition of the homotopy colimit via the simplicial replacement that the geometric realization
�.D0/ coincides with the definition of hocolim D; see [Dugger 2008, Section 4] and also [Kozlov 2008,
Definition 15.8]. Notice that in the category K, each flag is to be interpreted as a sequence of arrows
�0  �1  � � �  �n. A modified version of the homotopy equivalence jKj ' jBd.K/j shows that
�.D/'�.D0/. Hence, we could have worked with homotopy colimits all throughout, but we chose to
work with the geometric realization since it is technically easier to handle and because in some instances
it is the Mayer–Vietoris blowup complex, which has already appeared before in TDA [Zomorodian
and Carlsson 2008]. An instance of a homotopy colimit in TDA can be found in [Cavanna et al. 2017,
Appendix B].

Proposition 2.13 Let F W D! L be a morphism of diagrams in RDiag.K/. If F.�/ is a homotopy
equivalence for all � 2K, then �F W�D!�L is a homotopy equivalence.

One way to see this is to view �D as a homotopy colimit (see Remark 2.12), which is a homotopy
invariant functor on diagrams. Also, a proof of this result in the more general context of diagrams of
spaces can be found in [Hatcher 2002, Proposition 4G.1].

Example 2.14 Let X 2 CW-cpx covered by U and recall the diagram XU from Example 2.9. In this
case �.XU/ is the Mayer–Vietoris blowup complex associated to the pair .X;U/ and it can be described
as a subspace of the product X � jNUj. This leads to the fiber projection pf W�.XU/! X and to the
base projection pb W�.XU/! jNUj. As shown in [Hatcher 2002, Proposition 4G.2], pf is a homotopy
equivalence �.XU/ ' X . If each XU.�/ is contractible for all � 2 NU, then pb is also a homotopy
equivalence by Proposition 2.13.

An interesting direction of research would be to use Proposition 2.13 to define compatible collapses, such
as in discrete Morse theory (see [Bauer 2011; Nanda 2012; Sköldberg 2006]) and end up with a diagram
of regular CW–complexes. This motivates the study of spectral sequences associated to such diagrams.
We see further reasons in Section 3. On the other hand, given the importance of Proposition 2.13, we
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would like to adapt it to an approximate version in the context of diagrams in RRDiag.K/. Instead of
studying homotopy equivalences, we consider equivalences induced by acyclic carriers. This is done in
Section 5.

2.5 Spectral sequences of bounded filtrations

Let A� be a graded module with differentials dn W An! An�1 for all n � 1, and such that Am D 0 for
all m< 0. Assume that there is a filtration 0D F�1A� � F 0A� � F 1A� � � � � � FNA� D A� of A�
that is preserved by the differentials d� in the sense that dn.F pA/� F pA for all p � 0. We say that A�
is a filtered differential graded module and denote this by the triple .A; d; F /. Then there is a spectral
sequence

E1p;q D Hq.F pA�=F p�1A�/) HpCq.A�/

for all p; q � 0; see [McCleary 2001, Theorem 2.6]. A morphism of spectral sequences is a sequence
of bigraded morphisms f r W Erp;q ! Erp;q that commute with the spectral sequence differentials, ie
dr ıf

r D dr ıf
r for all r � 0. Apart from that, these morphisms satisfy f rC1 DH.f r/ for all r � 0.

Suppose that .A�; Nd; F / is another filtered differential graded module together with its corresponding spec-
tral sequence Erp;q . Consider a morphism f WA�!B� that commutes with the differential f ıd D Nd ıf
and also preserves filtrations f .F pA�/� F p.A�/ for all p � 0. This induces a morphism of spectral
sequences

Erp;q!Erp;q

by [McCleary 2001, Theorem 3.5]. We denote by SpSq the category of spectral sequences, and we denote
by PSpSq the category of functors F W R! SpSq.

3 Spectral sequences for geometric realizations

Recall the persistent Mayer–Vietoris spectral sequence [Torras-Casas 2023] associated to a pair .X;U/ of
a space with a cover:

(1) E1p;q.X;U/D
M
�2N

p
U

PHq.XU.�//) PHpCq.�XU/' PHpCq.X/:

For the details about this spectral sequence in the persistent case we refer the reader to [Torras-Casas
2023]. There are some limitations to the applicability of this spectral sequence to Vietoris–Rips complexes
that were already pointed out in [Yoon and Ghrist 2020]: if we choose a cover of a point cloud X and
then deduce a cover U of the associated Vietoris–Rips complex VR�.X/ by subcomplexes, then we
can only recover PHk.VR.X// from PHk.�VR�.X/U/ for filtration parameters below an upper bound
R determined by the overlaps of the covering sets. In this section we present a regular diagram of
CW–complexes that avoids this upper limit problem completely; see Example 3.6.
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Before we solve our problem, we need to introduce some chain complexes. We come back to the case of
filtrations later, but for now we focus on regular diagrams instead. Given a diagram D in RDiag.K/, we
denote by D.� � �/� the induced morphism of cellular chain complexes C cell

� .D.�//!C cell
� .D.�//. The

cellular chain complex C cell
� .�D; ı�/ associated to �D is defined as follows: For all m� 0 we have that

C cell
m .�D/ is a vector space generated by cells � � c with dim.�/D p and c 2D.�/q so that pCq Dm.

On such a cell � � c the differential ı� is given byX
�i��

.�1/i
� X
a2D.�i��/.c/

Œa W D.�i � �/.c/��i � a

�
C .�1/dim.�/

X
b2Ncnc

Œb W c�� � b

where the first sum runs over the faces �i of � . As shown in the proof of Lemma 3.1, the map ı� is
indeed a differential. In addition, notice that the filtration of �K.D/ carries over to C cell

� .�KD/ by taking
F pC�.�KD/ WD C�.F

p�KD/ for all p � 0.

Now, consider the double complex .Cp;q.D/; dV ; dH / given by

Cp;q.D/D
M
�2Kp

C cell
q .D.�//

for all p; q � 0. The vertical differential is defined by the direct sum of chain differentials

dVp;q D .�1/
p
M
�2Kp

d�q

where d�� denotes the differential from C cell
� .D.�// for all � 2Kp; of course dV ıdV D 0. The horizontal

differential is given by the Čech differential dHp;q which is defined for a cell a 2 D.�/ asX
�i��

.�1/iD.�i � �/�.a/;

where D.�i � �/� denotes the induced chain morphism C cell
� .D.�//! C cell

� .D.�i // for all faces �i
from � . Also, dH ıdH D0 by functoriality ofC cell

� . � / and the fact that D.�� �/�D.� ��/�DD.���/�

for any three simplices � � � � � . Note that for each pair of indices i < j , the face map D.�ij � �/�

appears twice with respective coefficients .�1/i .�1/j and .�1/i .�1/j�1; which have opposite sign and
cancel out. On the other hand, anticommutativity dV ı dH D�dH ı dV follows since D.� � �/� is a
chain morphism for all � � � from K.

Now, we consider the double complex spectral sequence from [McCleary 2001, Section 2.4]. Given D in
RDiag.K/ there is a spectral sequence

E1p;q.D/D
M
�2Kp

Hq.D.�//) HpCq.STot
� .D//

where STot.D/ is the total complex defined as

STot
n .D/D

M
pCqDn

Cp;q.D/
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together with a differential dTot D dV C dH . Also, recall that the total complex has a filtration induced
by the vertical filtration on Cp;q.D/ given by

FmSTot
� .D/D

M
pCqDn
p�m

Cp;q.D/

for all integers m� 0; see [Torras-Casas 2023] for an explanation. Next, we relate this total complex to
the geometric realization from Definition 2.10.

Lemma 3.1 There is an isomorphism C cell
� .�D; ı�/ ' STot

� .D/ which preserves filtration. That is ,
F pC cell

� .�D; ı�/' F pSTot
� .D/ for all p � 0.

Proof First we define a chain morphism  W C cell
m .�D/! STot

m .D/ generated by the assignment: a cell
��c 2 .�D/m with � 2Kp and c 2D.�/q for integers pCqDm, is sent to  .��c/D .c/� 2 STot

m .D/;
where by .c/� we refer to the vector from STot

m .D/which is zero in all components except at the component
indexed by � , where it is equal to c. On the other hand,  is a chain morphism since we have the equality

 .ı�.� � c//D
X
�i��

.�1/i
� X
a2D.�i��/.c/

.Œa W D.�i � �/.c/�a/�i

�
C .�1/dim.�/

X
b2Ncnc

.Œb W c�b/�

D

X
�i��

.�1/i .D.�i � �/�.c//�i C .�1/
dim.�/.d�q .c//�

D .dH C dV /..c/� /

D dTot..c/� /:

One can see that  is injective, and admits an inverse  �1 W STot
m .D/! C cell

m .�D/ that sends .�/c to
� � c. Notice that by definition  sends a chain in F pC cell

n .�D/ to a chain in F pSTot
n .D/ for all p � 0

and in particular it preserves filtration.

Remark 3.2 Continuing with Remark 2.12, as both �Bd.K/D
0 and hocolim.D/ refer to the same space,

we could have considered the homotopy colimit spectral sequence

E1p;q.Bd.K/;D0/D
M

�2Bd.K/p
Hq.D0.�//) HpCq.hocolim D/:

Let us construct a diagram of spaces whose geometric realization is homeomorphic to jKj for any finite
simplicial complex K. We start by taking a finite partition P of the vertex set V.K/ and denote by K.U /
the maximal subcomplex of K with vertices in U 2 P. We denote by �P the standard simplex with
vertices in P. For a simplex � 2K, we define P.�/ 2�P to be the simplex consisting of all partitioning
sets U 2 P such that � \ U ¤ ∅. In particular if U 2 P.�/, then it determines a standard simplex
�.U / 2K.U / of dimension j� \U j � 1� 0 whose vertices are precisely those from � \U , so that there
is an inclusion ��.U / ,! jK.U /j. For a vertex v 2 K, we denote by P.v/ the partitioning set from P

which contains v.
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We define the .K;P/–join diagram JKP W .�
P/op! FCW-cpx for all � � P by assigning the subspace

formed by the union of products of images

JKP .�/D
[
�2K

P.�/D�

Y
U2�

Im.��.U / ,! jK.U /j/

for all � 2�P; by definition, notice that JKP .�/�
Q
U2� jK.U /j. Additionally, JKP .U /D jK.U /j for all

U 2P. However, JKP .�/ could even be empty for � 2�P with dim.�/ > 0. For any pair � � � in�P, we
consider the projection ���� W

Q
U2� jK.U /j!

Q
U2� jK.U /j that forgets all product components which

are indexed by vertices of � that are not vertices of � . We claim that ���� restricts to a well-defined face
map JKP .� � �/ W J

K
P .�/! JKP .�/. In order to show this, we consider an arbitrary simplex � 2K such

that P.�/D � . Next, we consider the face �.�/� � which is spanned by the vertices from �\U for all
U 2 � , so that P.�.�//D � and also �.�/.U /D �.U / for all U 2 P. Then, we obtain the equality

����

� Y
U2�

Im.��.U / ,! jK.U /j/
�
D

Y
U2�

Im.��.�/.U / ,! jK.U /j/;

so the face maps are well defined, as claimed.

Lemma 3.3 Let K be a simplicial complex together with a partition P of its vertex set V.K/. There is a
CW–complex homeomorphism �.JKP /' jKj.

Proof Consider the continuous map f W�.JKP /! jKj defined by mapping a point� X
U2P.�/

yUU;

�X
v2U

xvv

�
U2P.�/

�
2�P.�/

�

Y
U2P.�/

��.U /
.
�

to
P
v2� yP.v/xvv in�� for all � 2K, where we have values 0� yU � 1 and 0� xv � 1 for all U 2P.�/

and all v 2 U , and such that
P
U2P.�/ yU D 1 and

P
v2U xv D 1 for all U 2 P. On the other hand, letP

v2� xvv 2�
� be a point such that 0� xv � 1 for all v 2�� and such that

P
v2� xv D 1. Then we can

define the inverse continuous map

f �1
�X
v2�

xvv

�
D

� X
U2P.�/

�X
v2U

xv

�
U;

�
 U

�X
v2�

xvv

��
U2P.�/

�
;

where we consider a map  U W�� !��.U / given by

 U

�X
v2�

xvv

�
D

8<:
P
v2�.U /

�
xvP

v2�.U / xv

�
v if

P
v2�.U / xv ¤ 0;

� 2��.U / otherwise, where � denotes any point (see below):

By the equivalence relation used to define �.JKP /, the product factor ��.U / is collapsed to a single point
for the subset of points whose U –coordinate in �P.�/ vanishes. If

P
v2�.U / xv D 0, then xv D 0 for all

v 2 �.U / and the U –coordinate of the point
P
v2� xvv in �P.�/ is 0. It is straightforward to check that

f and f �1 are well defined and consistent along K.
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K

U V

JKP .U / JKP .V /

JKP .ŒU; V �/

ŒU; V �U V

�P

JKP

�JKP

Figure 1: Depiction of K, JKP and �JKP from Example 3.4. Over the edge ŒU; V �, we consider
JKP .ŒU; V �/� jK.U /j � jK.V /j, where we add dashed lines to illustrate the embedding into the
product. On the bottom left we depict �JKP , where each red dashed line and each green line is
collapsed to a single point.

Example 3.4 Consider the simplicial complex K depicted in the top left part of Figure 1, formed by
gluing a 2–simplex to a 4–simplex along an edge. We consider a partition of the vertex set of K into the
two subsets PD fU; V g, where points in U are indicated by black circles and points in V are indicated by
red squares. In the top right of Figure 1, we depict the standard 1–simplex �P together with the diagram
JKP over it. In particular, notice that JKP .ŒU; V �/ is a subset of the product jK.U /j � jK.V /j and that the
morphisms JKP .ŒU; V �/! JKP .V /D jK.V /j and JKP .ŒU; V �/! JKP .U /D jK.U /j are both projections.
In addition, notice that JKP .ŒU; V �/ has five vertices corresponding to the five different edges connecting
vertices from U to V , five edges corresponding to five 2–simplices containing vertices in both U and
V and a single 2–cell corresponding to the unique 4–simplex in K. Finally, the bottom left of Figure 1
shows the geometric realization �JKP .

Observe that JKP is a diagram of prodsimplicial complexes as in [Kozlov 2008, Definition 2.43], which are
in particular regular CW–complexes. By the observations above we can therefore consider the associated
double complex spectral sequence

E1p;q.J
K
P /D

M
�2�P

Hq.JKP .�//) HpCq.�JKP /' HpCq.K/:

Next, we show that the “size” of K is the same as the “size” of the diagram JKP . For this, recall that each
simplex � 2K corresponds to a unique simplex P.�/ 2�P. This is different to the case of a cover U

for K, where a simplex in K might correspond to several simplices from the nerve NU. Here, we write
#L for the number of cells in a complex L.
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Proposition 3.5 #K D
X
�2�P

#JKP .�/.

Proof Consider an assignment  W K !
F
�2�P JKP .�/ given by sending � 2 K to .�.U //U2P.�/ in

JKP .P.�//, where .�.U //U2P.�/ 2
Q
U2P.�/ jK.U /j. By the definition of JKP ,  is well defined and

surjective. Also,  is injective as the vertex set from � 2K is uniquely determined by the simplices �.U /
for all U 2 P.�/.

Now, let us consider a filtered simplicial complex K� 2 FCW-cpx such that its vertex set V.K�/ is
fixed throughout all values of R. Let P be a partition of V.K�/. We define the filtered regular diagram
JKP 2 FRDiag.P/ by sending r 2 R to JKrP . These diagrams inherit the shift morphisms †K� from K�

in the following way: Let � 2�P and notice that we have restrictions †s�rKjU W jKr.U /j ! jKs.U /j
for all U 2 � , so that we have induced morphismsY

U2�

†s�rKjU W J
Kr
P .�/! JKsP .�/

for all � 2�P. In turn, these induce a shift morphism on �JKP which respect filtrations, so that we have
a commutative diagram

E�p;q.J
Kr
P / �JKrP Kr

E�p;q.J
Ks
P / �JKsP Ks

'

'

and thus PH�.�JKP /' PH�.K�/. For each simplex � 2�P one can see JKP .�/ as a filtered simplicial
complex, so that

E1p;q.J
K
P /D

M
�2.�P/p

PHq.JKP .�//) PHpCq.K/:

Example 3.6 Consider a point cloud X, a partition P and consider its Vietoris Rips complex VR�.X/ in
FCW-cpx. In this case we have a fixed partition of the vertex set of VR�.X/, which allows us to consider
the spectral sequence

E1p;q.J
VR�.X/
P /D

M
�2�P

PHq.J
VR�.X/
P .�//) PHpCq.VR�.X//:

This is very convenient as it avoids the main difficulties with the Mayer–Vietoris blowup complex
associated to a cover. Namely, one recovers PH�.K/ completely without any bounds depending on the
cover overlaps. In addition, notice that �J

VR�.X/
P has the same number of cells as VR�.X/, contrary to

the Mayer–Vietoris blowup complex, whose number of cells is much larger, as shown in Proposition 3.5.

The .K;P/–join diagram is related to [Robinson 2020, Example 4]. There the motivation behind
the filtrations is given by a consistency radius and a filtration based on the differences between local
measurements. The same example appears (without a filtration) as one of the opening examples in
[Hatcher 2002, Appendix 4.G].
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4 "–acyclic carriers

The following definition encodes our notion of “noise”.

Definition 4.1 Let X; Y 2 RCW-cpx. An "–acyclic carrier F "� W X� � Y Œ"�� is a family of acyclic
carriers F "a WXa � YaC" for all a 2 R such that

Y.aC "� bC "/F "a .c/� F
"
b .X.a � b/.c//

for all cells c of Xa and a; b 2 R with a � b.

The proposition below is an adaptation of [Munkres 1984, Theorem 13.4] or [Cooke and Finney 1967,
Lemma 2.4] to the context of tame filtered CW–complexes.

Proposition 4.2 Let X�; Y� 2 FCW-cpx be tame , and assume that there exists an "–acyclic carrier

F "� WX�� Y Œ"��:

Then there exist chain morphisms f "a W C�.Xa/ ! C�.YaC"/ carried by F "a for all a 2 R, so that
Y.aC " � b C "/ ı f "a D f "

b
ıX.a � b/. Furthermore , given another such sequence of morphisms

g"a W C�.Xa/! C�.YaC"/, there exist chain homotopy equivalences H "
a W g

"
a ' f

"
a which are carried by

F "a for all a 2 R.

Proof Let b 2 R and assume that f "a has already been defined for all values a < b, where we allow for
b D �1. We first define f "

b
on all cells which are in the image of X.a < b/ for any a < b using the

definition
f "b ıX.a < b/D Y.aC " < bC "/ ıf

"
a :

Notice that the assumption that Xa � Xb is crucial for this to work. By hypotheses, given a cell
c 2 Im.X.a < b//, its image f "

b
.c/ is then contained in

Y.aC " < bC "/F "a . Qc/� F
"
b .X.a < b/. Qc//;

where Qc 2Xa is such that c DX.a < b/. Qc/. Hence, f "
b

satisfies the carrier condition. Next we define f "
b

on the remaining cells in
zXb DXb n

�[
a<b

X.a < b/

�
:

We proceed to prove this by induction. First, choose a 0–cell f "
b
.v/ 2 F "

b
.v/ for each remaining 0–cell

v 2 zXb , and notice that d�f "b .v/D 0D f
"
b
.d�v/, where we use d� for the chain complex differentials.

Next, by induction, assume that for a fixed p � 0, the p–cells s 2 Xb have image f "
b
.s/ carried by

F "
b
.s/ and such that d� ı f "b .s/ D f

"
b
ı d�.s/. We would like to extend f "

b
to the .pC1/–cells. By

semicontinuity, given such a cell c 2 Xb , its boundary d�c is contained in F "
b
.c/. On the other hand,

notice that by linearity and the induction hypotheses d�f "b .d�c/D f
"
b
.d�d�c/D 0; thus f "

b
.d�c/ is a
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cycle in C�.F "b .c//. By acyclicity, there exists h 2C�.F "b .c// such that d�hD f "b .d�c/ and thus we can
define f "

b
.c/D h. Altogether, we have defined a chain morphism f "

b
which is carried by F "

b
.

Since X� is tame, there exist a finite sequence of values a1 < a2 < � � �< aN such that Xs DXai for all
s 2 .ai�1; ai / where we define a0D�1 and aNC1D1. We apply the construction of f "

b
for all values

b ranging over ai from i D 1 up to i DN . This determines the chain morphism f "� WC�.X�/!C�.Y Œ"��/,
where we set f "s D f

"
ai

for all s 2 .ai�1; ai � where i D 1; 2; : : : ; N and also f "t D f
"
aN

for all t > aN .

Now, assume that g"
b

is also carried by F "
b

for all b 2R. Following [May 1999, Section 12.3], we define
the chain complex I given by I0 D hŒ0�; Œ1�i and I1 D hŒ0; 1�i and Ik D 0 for k � 2. This is the cellular
chain complex of the unit interval I decomposed into two 0–cells and one 1–cell. A chain homotopy
h"
b
W f "
b
' g"

b
corresponds to a chain map h"

b
W C cell
� .Xb/˝I! C cell

� .Yb/ such that h"
b
.x; Œ0�/D f "

b
.x/

and h"
b
.x; Œ1�/D g"

b
.x/ for all x 2 Xb . Let H "

b
.c; i/D F "

b
.c/ for a cell .c; i/ 2 X � I . By assumption,

H " WX � I � Y is an "–acyclic carrier. Note that C cell
� .Xb/˝IŠ C cell

� .Xb � I /. Replicating the first
part of the proof we can now extend any map h"

b
W C cell
� .Xb/˝I0! C cell

� .Yb/ with the above properties
to all cells of X � I .

Definition 4.3 Let X�; Y� 2RCW-cpx. A shift carrier is an "–acyclic carrier I "X WX��X�C" carrying
the standard shift †"X�. Let two "–acyclic carriers

F " WX�� Y�C"; G" W Y��X�C";

together with shift carriers I 2"X and I 2"Y . We say that X� and Y� are "–acyclic equivalent whenever we
have inclusions G" ıF " � I 2"X and F " ıG" � I 2"Y .

The motivation for the definition of "–acyclic equivalences is the following lemma:

Proposition 4.4 Let X� and Y� be two tame elements from FCW-cpx which are "–acyclic equivalent.
Then PH.X�/ and PH.Y�/ are "–interleaved.

Proof By Proposition 4.2 we know that there exist two chain maps f "� W C�.X�/! C�.Y�C"/ and
g" W C�.Y�/! C�.X�C"/ carried by F " and G" respectively. By hypothesis the compositions g" ı f "

and f " ı g" are carried by corresponding shift carriers I 2"X and I 2"Y . Thus, using the second part of
Proposition 4.2 we obtain chain homotopies g" ıf " '†2"C�.X/ and f " ıg" '†2"C�.Y /. Altogether,
in homology these compositions are equal to the corresponding shifts, and PH�.X�/ and PH�.Y�/ are
"–interleaved.

Example 4.5 Consider two finite metric spaces X and Y . Let dH .X;Y / be their Hausdorff distance
and set " D 2dH .X;Y /. Given a subcomplex K � VR.X/, we denote its vertex set by X.K/ � X.
Likewise for a simplex � 2 VR.X/, we write X.�/ � X for the vertices spanning � . Define a carrier
F " W VR.X/� VR.Y / by mapping a simplex � 2 VR.X/a to

F ".�/D
ˇ̌
supfK � VR.Y /aC" j dH.X.�/;Y .K//� "=2g

ˇ̌
:
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This is clearly semicontinuous. If v0; : : : ; vn are vertices in F ".�/, then by definition fv0; : : : ; vng is
an n–simplex in F ".�/. Therefore we have F ".�/ ' �N for some N 2 Z�0, which is acyclic. In
particular, F " is an "–acyclic carrier. Interchanging the roles of X and Y we also obtain an "–acyclic
carrier G" W VR.Y /� VR.X/. Similarly, we define for a simplex � 2 VR.X/a the shift carrier

I 2"X .�/D
ˇ̌
supfK � VR.X/aC2" j dH.X.�/;X.K//� "g

ˇ̌
:

Analogously one defines I 2"Y . Since G" ı F " � I 2"X and F " ıG" � I 2"Y , Proposition 4.4 implies that
PH�.VR.X// and PH�.VR.Y // are "–interleaved. This is similar to the proof using correspondences;
see [Oudot 2015, Proposition 7.8, Section 7.3].

Example 4.6 Consider RN together with a 1–Lipschitz function f W RN ! R with constant " > 0.
On the other hand, consider the lattices ZN and rZN C l for a pair of vectors r; l 2 RN such that the
coordinates of r satisfy 0 < ri � 1 for all 1� i �N . Then we take their corresponding cubical complexes
C.ZN / and C.rZN C l/ thought as embedded in RN . The function f induces a natural filtration for
these cubical complexes: a vertex v 2C.ZN / is contained in C.ZN /f .v/, while a cell a 2C.ZN / appears
at the maximum filtration value on its vertices. There is an "–acyclic carrier F " W C.ZN /� C.rZN C l/

sending each cell a 2 C.ZN / to the smallest subcomplex F ".a/ containing all b 2 C.rZN C l/ such
that Nb \ a ¤ ∅. In an analogous way the inverse acyclic carrier can be defined, and the compositions
F " ıG" and G" ıF " define the shift carriers. Thus, using Proposition 4.4, one shows that PH�.C.ZN //
and PH�.C.rZN C l// are "–interleaved.

An important assumption of Proposition 4.2 is that we are dealing with tame filtered CW–complexes.
However, what if we considered a pair of elements X�; Y� 2 RCW-cpx instead? In this context, we
notice that given an "–acyclic carrier F " WX�! Y�Œ"�, it is not necessarily true that the compositions

Y.aC "� bC "/F "a .c/ and F "b .X.a � b/.c//

are still acyclic for all pairs a�b from R. Thus, whenever we talk about "–acyclic carriers F " WX�!Y�Œ"�

in this context we assume that F "
b
.X.a � b/.c// is acyclic for all pairs a; b 2 R with a � b and all cells

c 2X.a/.

Corollary 4.7 Let X�; Y� 2 RCW-cpx be a pair of elements such that both are "–acyclic equivalent in
the above sense. Then dI .PH�.X�/;PH�.Y�//� ".

Proof For each persistence value a 2 R, we use Theorem 2.4 twice to obtain a pair of chain morphisms
fa WC

cell
a .X/!C cell

aC".Y / and gaC" WC cell
aC".Y /!C cell

aC2".X/. In a similar way we obtain a pair of chain ho-
motopies gaC"ıfa' .†2"C cell

� .X//a and faC"ıga' .†2"C cell
� .Y //a so that we have equalities between

the induced homology morphisms ŒgaC"�ı Œfa�D Œ.†2"C cell
� .X//a� and ŒfaC"�ı Œga�D Œ.†2"C cell

� .Y //a�

for all a 2 R. Now, for a pair of values a � b from R, it is not necessarily true that

Y.aC "� bC "/ ıfa D fb ıX.a � b/:
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However, since Y.aC " � b C "/ ı fa and fb ıX.a � b/ are both included in F "
b
.X.a � b/.c// by

hypotheses, then by applying Theorem 2.4 again there is a chain homotopy equivalence

Y.aC "� bC "/ ıfa ' fb ıX.a � b/;

which implies
ŒY.aC "� bC "/� ı Œfa�D Œfb� ı ŒX.a � b/�;

and we have defined a persistence morphism Œf�� W PH�.X�/! PH�.Y�Œ"�/. Similarly, we can also put
together the ga for all a 2 R so that we obtain a morphism Œg�� W PH�.Y�/! PH�.X�Œ"�/. This leads to
the claimed "–interleaving.

Example 4.8 In the appendix, we describe a filtered CW–complexX , a regularly filtered CW–complex Y ,
together with a pair of 0–acyclic carriers (ie " D 0) F W Y � X and G W X � Y which, together with
the compositions G ıF and G ıF as shift carriers, define a 0–acyclic equivalence between Y and X .
Therefore, by Corollary 4.7 we obtain isomorphisms PHn.X/Š PHn.Y / for all n� 0. In this case, notice
that Y is much smaller than X ; thus it is worth considering the regularly filtered complex Y in place of X .
Next, we briefly describe how one could use "–equivalences. In this case, one could have considered a
filtered complex zX which is equal to X� outside the intervals .i � "; i C "/ for values i D 1; 2; 3; 4 and
for some " < 1=2. Notice that in this case one should be able to obtain an "–acyclic equivalence between
zX and Y , so that by Corollary 4.7 PHn. zX/ and PHn.Y / are "–interleaved for all n� 0.

Remark 4.9 Notice that our notion of acyclicity is different from that in [Cavanna 2019] and [Govc and
Skraba 2018]. In [Govc and Skraba 2018] a filtered complex K� is called "–acyclic whenever the induced
homology maps H�.Kr/! H�.KrC"/ vanish for all r 2R. In this case, one can still (trivially) define
acyclic carriers between � and K�. The problem arises when defining the shift carrier IA"K for some
constant A> 0, which does not exist in general. One can however, adapt the proof of Proposition 4.2 so
that there is a chain morphism  ".dim.Kr /C1/ W C�.Kr/! C�.KrC".dim.Kr /C1//; and that this coincides
up to chain homotopy with the composition through C�.�/. One does this by following the same proof
as in Proposition 4.2, but increasing the filtration value by " each time we assume that some cycle lies in
an acyclic carrier. Thus, if we have dim.K/D supr2R.dim.Kr// <1, then one could say that there is
an ".dim.K/C1/–approximate chain homotopy equivalence between C.�/ and C.K�/.

5 Interleaving geometric realizations

Next, we focus on acyclic carrier equivalences between a pair of diagrams D;L 2 RRDiag.K/. We start
by taking "–acyclic carriers F "� W D.�/� L.�/ for all � 2K which have to be compatible in the sense
that for any pair � � � and any cell c 2 D.�/, there is an inclusion

(2) L.� � �/.F "� .c//� F
"
� .D.� � �/.c//
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and we assume in addition that F "� .D.� � �/†
rD.�/.c// is acyclic for all r � 0. This compatibility leads

to “local” diagrams of spaces. That is, given a pair of values a 2 R and r � 0 and a cell c 2 D.�/a, we
consider an object F r;"��c 2 RDiag.�� /. It is given by the space F r;"��c.�/D F "�

�
D.� � �/†rD.�/.c/

�
for all faces � � � . For any sequence � � � � � in K, there are morphisms in F r;"��c given by restricting
morphisms from L:

� F
r;"
��c.�/ F "�

�
D.� � �/†rD.�/.c/

�
� F

r;"
��c.�/ F "�

�
D.� � �/†rD.�/.c/

�L.���/�

Using condition (2) repeatedly on the cells from L D D.� � �/†rD.�/.c/, we see that we have an
inclusion

L.� � �/.F "� .L//� F
"
�

�
D.� � �/.L/

�
:

Thus the diagram F
r;"
��c is indeed well defined, and we may consider the geometric realization �F r;"��c .

By hypothesis, each F
r;"
��c.�/ is acyclic for all � � � , so the first page of the spectral sequence

E�p;q.F
r;"
��c/) HpCq.�F

r;"
��c/ is equal to

E1p;q.F
r;"
��c/D

M
�2.�� /p

Hq.F r;"��c.�//D
�L

�2.�� /p F if q D 0;
0 otherwise:

In fact, computing the homology with respect to the horizontal differentials on the first page corresponds
to computing the homology of �� . Thus, E2p;q.F

r;"
��c/ is zero everywhere except at p D q D 0 where it

is equal to F . Thus, the spectral sequence collapses on the second page, and �F r;"��c is acyclic. We use
the notation F "��c D F

0;"
��c .

Definition 5.1 Let D and L be two diagrams in RRDiag.K/. Suppose that there are "–acyclic carriers
F "� W D.�/� L.�/ for all � 2K, and that

L.� � �/.F "� .c//� F
"
� .D.� � �/.c//

for all c 2 D.�/ and in addition F "� .D.� � �/†
rD.�/.c// is acyclic for all r � 0. Then we say that the

set fF "� g�2K is an .";K/–acyclic carrier between D and L. We denote this by F " W D � L.

Theorem 5.2 Let D and L be two diagrams in RRDiag.K/. Suppose that there are .";K/–acyclic
carriers F " W D � L and G" W L � D, together with a pair of shift .";K/–acyclic carriers I 2"D W D � D

and I 2"L W L � L, and such that these restrict to acyclic equivalences

G"� ıF
"
� � .I

2"
D /� and F "� ıG

"
� � .I

2"
L /�

for each simplex � 2K. Then there is an "–acyclic equivalence F " W�D ��L which preserves filtration.
That is , there are "–acyclic equivalences F pF " W F p�D � F p�L for all p � 0.
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Proof Let � �c 2�D be a cell, where c is an m–cell in D.�/. Define an acyclic carrier F " W�D ��L

by sending � � c to the acyclic carrier �F "��c , which is a subcomplex of �L. Let us first check
semicontinuity. For any pair of cells � � a � � � c in �D, the cell a is contained in the subcomplex
D.� � �/.c/, and by continuity of D.� � �/ we have that D.� � �/.a/� D.� � �/.c/. Thus there are
inclusions

F "� .D.� � �/.a//� F
"
� .D.� � �/.c//D F

"
� .D.� � �/.c//

for all � � � . More concisely, F "��a.�/ � F
"
��c.�/ for all � � � . As a consequence �F "��a � �F

"
��c

and semicontinuity holds.

Next, notice that F ".†r�D.� � c// D F ".� �†rD.�/.c// D �F r;"��c which is an acyclic carrier. In
order for F " to be an "–acyclic carrier, it remains to show the inclusion †r�L ıF " � F " ı†r�D for
all r � 0. For this, take � � c 2�D and see that

†r�L ıF ".� � c/D†r�L

�[
���

� �F "� .D.� � �/.c//

�
D

[
���

� �†rL.�/
�
F "� .D.� � �/.c//

�
�

[
���

� �F "� .†
rD.�/D.� � �/.c//

D

[
���

� �F "�
�
D.� � �/†rD.�/.c/

�
D F ".� �†rD.�/.c//D F " ı†r�D.� � c/:

Similarly, one can define an "–acyclic carrier G" W�L ��D sending � �c 2�L to �G"��c . In addition,
we define respective shift "–acyclic carriers I 2"D W�D ��D and I 2"L W�L ��L sending, respectively,
� � c 2�D to �.I 2"D /��c and � � a 2�L to �.I 2"L /��a. Then we have

G" ıF ".� � c/DG".�F "��c/

DG"
�[
���

� �F "� .D.� � �/.c//

�
D

[
�����

��G"�
�
L.� � �/F "� .D.� � �/.c//

�
�

[
���

��G"�F
"
� .D.� � �/.c//��.I

2"
D /��c D I

2"
D .� � c/;

where we have used the commutativity condition and equivalence of F "� and G"�. Consequently,
G" ıF " � I 2"D ; the other inclusion F " ıG" � I 2"L follows by symmetry. Altogether, we have obtained
an "–equivalence F " W �D � �L. Finally, notice that for all p � 0 and for each cell � � c 2 F p�D,
its carrier �F "��c is contained in F p�D and so it preserves filtration. The same follows for the other
acyclic carriers.
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Let X 2 FCW-cpx together with a cover U. Recall the definitions of the diagrams XU and �U
0 over NU

from Example 2.9. Let dI
�
PH�.XU.�//;PH�.�U

0 .�//
�
� " for all � 2 NU. This example has been of

interest before; see for example [Govc and Skraba 2018] or [Cavanna 2019]. As mentioned in Remark 4.9,
our notion of "–acyclicity is much stronger than that from [Govc and Skraba 2018]. This is why we obtain
a result closer to the persistence nerve theorem from [Chazal and Oudot 2008] than to the approximate
nerve theorem from [Govc and Skraba 2018].

Given a diagram D 2 FRDiag.K/, recall the diagram �0D from Example 2.11. We may define an
.";K/–acyclic carrier �"0D W D � �0D where we send cells to their corresponding connected component
classes. The compatibility condition �0.D.� � �//.�"0D.D.�///� �"0D.D.�// also follows for any pair
of simplices � � � from K.

Corollary 5.3 (strong approximate multinerve theorem) Consider a diagram D in FRDiag.K/. Assume
that there is a .";K/–acyclic carrier F " W �0D � D such that the composition F "� ı �

"
0D� carries the

shift morphism †2"D� for all � 2 K. Then , there is an "–acyclic equivalence F " WMNerv.D/ � �D.
Consequently,

dI .PH�.MNerv.D//;PH�.�D//� ":

Proof The shift .2";K/–carrier I 2"�0D sends points to points, while the other I 2"D is defined as the
composition F "� ı�

"
0D� , which is a .2";K/–acyclic carrier by hypotheses. Thus, by Theorem 5.2 there

exists an "–acyclic equivalence F " WMNerv.D/��D.

Example 5.4 Consider a filtered simplicial complex L� together with a partition of its vertex set P. As-
sume that the .L�;P/–join diagram JL�P is such that there exists a .";K/–acyclic carrierF " W�0JL�P �JL�P

such that F "� ı�
"
0JL�P .�/ is a carrier for †2"JL�P .�/ for all � 2�P . Then, by Corollary 5.3, there is an

"–acyclic equivalence ��0.J
L�
P /��JL�P such that

dI
�
PH�.MNerv.JL�P //;PH�.L�/

�
� ":

Acyclic carriers have been used in [Kaczynski et al. 2004] and in [Nanda 2012] for approximating
continuous morphisms by means of simplicial maps. Here we have used the same tools to obtain an
approximate homotopy colimit theorem. The acyclic carrier theorem is an instance of the more general
acyclic model theorem; see [Eilenberg and MacLane 1953, Section 2]. An interesting future research
direction would be to see how that general result can bring new insights into applied topology.

6 Interleaving spectral sequences

Definition 6.1 Let A and B be from SpSq. A n–spectral sequence morphism f WA!B is a spectral
sequence morphism f WA!B which is defined from page n.
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Definition 6.2 Given two objects A and B in PSpSq. We say that A and B are ."; n/–interleaved
whenever there exist two n–morphisms  WA!BŒ"� and ' WB!AŒ"� such that the diagram

(3)

A B

AŒ"� BŒ"�

AŒ2"� BŒ2"�

 †"A ' †"B

 Œ"�†"AŒ"� 'Œ"� †"BŒ"�

commutes for all pages r � n. This interleaving defines a pseudometric in PSpSq,

dnI .A;B/ WD inff" jA and B are ."; n/–interleavedg:

Proposition 6.3 Suppose that A and B are ."; n/–interleaved. Then these are .";m/–interleaved for all
m� n. In particular , we have that

dmI .A;B/� d
n
I .A;B/

for any pair of integers m� n.

Proof This follows directly from the definitions.

We start now by considering Mayer–Vietoris spectral sequences. Under some conditions which are a
special case of Theorem 5.2, one can obtain one-page stability. In fact, this stability is due to morphisms
directly defined on the underlying double complexes, which is a very strong property.

Proposition 6.4 Let X and Y be two tame elements in FCW-cpx together with a pair of respective finite
covers U and V by subcomplexes such thatK DNUDNV. Suppose that there are .";K/–acyclic carriers
F " WXU � Y V and G" W Y V �XU, together with a pair of shift .";K/–acyclic carriers I 2"

XU WX
U �XU

and I 2"
Y V W Y

V � Y V, and such that these restrict to acyclic equivalences

G"� ıF
"
� � .I

2"
XU/� and F "� ıG

"
� � .I

2"
Y V/�

for each simplex � 2K. Then there is a pair of double complex morphisms

�" W C�;�.X;U/! C�;�.Y;V/Œ"� and  " W C�;�.Y;V/! C�;�.X;U/Œ"�

inducing a first page interleaving between E��;�.X;U/ and E��;�.Y;V/.

Proof Unpacking the definitions, this means we have to give chain homomorphisms

.�"� /r W C�.X
U.�/r/! C�.Y

V.�/rC"/; . "� /r W C�.Y
V.�/r/! C�.X

U.�/rC"/

that are natural in � 2K and in r 2R. Since K is a poset category, these can be constructed inductively as
follows: As in Proposition 4.2 we may define �"� on all simplices � 2K of dimension dim.�/D dim.K/.
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Note that .�"� /r is carried by .F "� /r for all r 2 R. Assume by (reverse) induction that �"� are defined
and carried by F "� for all � 2 K with n � dim.�/ � dim.K/ in such a way that for all cofaces � � �
the naturality condition �"� ıX

U.� � �/ D Y V.� � �/Œ"� ı �"� holds. Now let � 2 K have dimension
dim.�/ D n � 1 � 0. The naturality condition on the simplices fixes �"� on the filtered subcomplex
X� D

S
��� Im.XU.� � �//, where the union is taken over all cofaces � of � . Here notice that we

can assume that �"� is well defined since the previous choices of �"� for all cofaces � � � are consistent
due to the fact that for each cell c 2 X� there exists a unique maximal simplex � 2 NU such that
c 2 XU.�/. In addition, notice that by hypotheses Y V.� � �/..F "� /.c// � F

"
� .X

U.� � �/.c// for all
a 2 R and c 2XU.�/, so that our definition of �"� in X� is indeed carried by F "� . We then proceed as in
Proposition 4.2 to define .�"� /a on all simplices in the subset XU.�/a nX

�
a for all a 2 R. The resulting

chain map .�"� /a is carried by .F "� /a for all a 2 R. Since XU is tame, we only need finitely many steps
to obtain a morphism �"� W C�.X

U.�//! C�.Y
V.�/Œ"�/ that satisfies the induction hypotheses.

Thus, we obtain double complex morphisms �"p;q WCp;q.X;U/!Cp;q.Y;V/Œ"� for all p; q � 0 by adding
up our defined local morphisms

�"p;q W
M
�2Kp

�"� W
M
�2Kp

Cq.X
U.�// �!

M
�2Kp

Cq.Y
V.�//Œ"�:

Notice that the �"p;q commute both with horizontal and vertical differentials since we assumed that each
�"� is a chain morphism and these satisfy a naturality condition with respect to K. Thus, this double
complex morphism induces a spectral sequence morphism �"p;q W E

�
p;q.X

U/! E�p;q.Y
V/Œ"�. By doing

the same construction, we can obtain local chain morphisms  "� WC�.Y
V.�//!C�.X

U.�//Œ"� so that by
Proposition 4.2 we have equalities Œ "� �ıŒ�

"
� �D Œ†

2"C�.X
U.�//� and also Œ�"� �ıŒ 

"
� �D Œ†

2"C�.Y
V.�//�

for all � 2K. Then we can construct a double complex morphism  "p;q W Cp;q.Y;V/! Cp;q.X;U/Œ"�

inducing an “inverse” spectral sequence morphism  "p;q WE
�
p;q.Y;V/!E�p;q.X;U/Œ"�. These are such

that from the first page, �"�;� and  "�;� form a ."; 1/–interleaving of spectral sequences.

Notice that the proof of Proposition 6.4 relies heavily on the fact that the diagrams we are considering
come from a cover. This allows us to define a pair of double complex morphisms that are compatible
along the common indexing nerve. However, in Theorem 5.2 we observed that, under some conditions,
the geometric realizations of regularly filtered regular diagrams are stable. Does this stability carry over
to the associated spectral sequences? The next theorem shows that this is indeed the case.

Theorem 6.5 Let D and L be two diagrams in RRDiag.K/. Suppose that there are .";K/–acyclic
carriers F " W D � L and G" W L � D, together with a pair of shift .";K/–acyclic carriers I 2"D W D � D

and I 2"L W L � L, and such that these restrict to acyclic equivalences

G"� ıF
"
� � .I

2"
D /� and F "� ıG

"
� � .I

2"
L /�

for each simplex � 2K. Then
d1I .E.D; K/;E.L; K//� ":
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Proof Recall from Theorem 5.2 that there is a filtration-preserving "–acyclic carrier F " W�KD ��KL.
Given r 2R, this implies that there is a chain complex morphism f "r WC�.�D/r!C�.�L/rC" carried by
F "r and which respects filtrations in the sense that f "r .F

pC�.�D/r/� F
pC�.�L/rC" for all p � 0. By

Lemma 3.1 this defines a morphism f "r W S
Tot
� .D/r ! STot

� .L/rC" which respects filtrations. Altogether
we deduce that f "r determines a morphism of spectral sequences f "r WE

�
p;q.D/r!E�p;q.L/rC". Similarly

as in Corollary 4.7, the commutativity

(4) †sE�p;q.L/rC" ıf
"
r D f

"
rCs ı†

sE�p;q.D/r

does not need to hold for all r 2 R and all s � 0. However, by definition of "–acyclic carrier, there
is an inclusion †s�L ı F " � F " ı†s�D where the superset is acyclic, so †sC�.�L/rC" ı f

"
r and

f "rCs ı†
sC�.�D/r are both carried by the filtration preserving acyclic carrier F " ı†s�Dr . This implies

that there exist chain homotopies h"r W Cn.�D/r ! CnC1.�L/rCsC" which respect filtrations and satisfy

f "rCs ı†
sC�.�D/r �†

sC�.�L/rC" ıf
"
r D ı

�
ı h"r C h

"
r ı ı

�:

for all r 2 R and all s � 0. Recall that the zero page terms are given as quotients on successive filtration
terms E0p;q.D/r D F pSTot

pCq.D/r=F
p�1STot

pCq.D/r , for all r 2 R and all integers p; q � 0. Thus, by
Lemma 3.1, these chain homotopies carry over to STot

� .D/r and the commutativity relation from (4) holds
from the first page onwards.

Similarly, we can define spectral sequence morphisms g"r WE
�
p;q.L/r !E�p;q.D/rC" for all r 2 R which

commute with the shift morphisms from the first page. Also, by inspecting the shift carriers, we can obtain
equalities of 1–spectral sequence morphisms g"rC"ıf

"
r D†

2"E�p;q.D/r and also f "rC"ıg
"
rD†

2"E�p;q.L/r

for all r 2 R, and the result follows.

Example 6.6 Consider a pair of point clouds X;Y 2RN , together with partitions P and Q for X and Y

respectively. Also, assume that there is an isomorphism � W�P!�Q such that dH .X\V;Y \�.V // < "
for all V 2 P. As defined in Example 4.5, there are "–acyclic carrier equivalences

F "V W VR�.X\V /� VR�.Y \V /

for all V 2U. Now suppose that, for some � > 0, if J
VR�.X/
P .�/r ¤∅ then J

VR�.Y/
P .�.�//rC� ¤∅ for

all � 2�P and all r 2 R. For any � 2�P, one can define ."C�/–acyclic carriers

zF ."C�/� W J
VR�.X/
P .�/� J

VR�.Y/
Q .�/

by sending a cell
Q
V 2� �V 2J

VR�.X/
P .�/r to

Q
V 2� †

�VR�.Y\V /.F "V .�V //2J
VR�.Y/
Q .�/rC."C�/ for

all r 2 R. Similarly, we assume the converse that J
VR�.Y/
P . Q�/r ¤∅ implies J

VR�.X/
P .��1. Q�//rC� ¤∅

for all Q� 2�Q and all r 2 R. With an analogous definition to that of zF ."C�/� , we obtain “inverses” for
the carriers zF ."C�/� , so that these become ."C�/–acyclic equivalences. One can check that these are
compatible along �P and �Q, so by Theorem 6.5

d1I
�
E��;�.J

VR�.X/
P ; �P/; E��;�.J

VR�.Y/
Q ; �Q/

�
� "C �:
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7 Interleavings with respect to different covers

7.1 Refinement induced interleavings

In the previous sections we considered general diagrams in FRDiag.K/ for some simplicial complex K.
We now focus on the situation where we have a filtered complex X together with a cover U, which
provides a diagram XU WNU! FCW-cpx. The associated spectral sequence is denoted by E��;�.X;U/,
as done at the start of Section 3. We want to measure how E��;�.X;U/ changes depending on U and
follow ideas from [Serre 1955] to achieve this. First we consider a refinement V � U, which means
that for all V 2 V, there exists U 2 U such that V � U . In particular, one can choose a morphism
�U;V W NV! NU such that V� � U�� for all � 2 NV. This choice is of course not necessarily unique.
We would like to compare the Mayer–Vietoris spectral sequences of both covers. For this, we recall the
definition of the Čech chain complex outlined in the introduction of [Torras-Casas 2023], which leads to
the following isomorphism on the terms from the 0–page:

(5) E0p;q.X;U/D LCp.UIC
cell
q / WD

M
�2N

p
U

C cell
q .U� /'

M
s2Xq

f
�.s;U/
� .C cell

p .��.s;U///:

Here, �.s;U/ is the simplex of maximal dimension in NU such that s 2XU.�.s;U//, and

f �.s;U/ W��.s;U/ ,!NU

denotes the inclusion. The isomorphism in (5) is given by sending a generator

.a/� 2
M
�2N

p
U

C cell
q .U� /

to its transpose .�/a, for all cells a 2X and all � 2NU.

Returning to a refinement V�U and a morphism �U;V WNV!NU, there is an induced double complex
morphism �

U;V
p;q W Cp;q.X;V/! Cp;q.X;U/ given by

�U;V
p;q ..�/a/D

�
.�U;V�/a if dim.�U;V�/D p;

0 otherwise;

for all generators .�/a 2 Cp;q.X;V/ with � 2Np
V and a 2Xq .

Lemma 7.1 �
U;V
�;� is a morphism of double complexes. Thus , it induces a morphism of spectral sequences

�U;V
p;q WE

�
p;q.X;V/!E�p;q.X;U/

dependent on the choice of �U;V.

Proof Let ıV and ıU denote the respective Čech differentials from LCp.VIC cell
q / and LCp.UIC cell

q /. The
refinement �U;V WNV!NU induces a chain morphism �

U;V
� W C

cell
� .NV/! C cell

� .NU/, so that we have
commutativity �U;V

�;� ıı
VD ıUı�

U;V
�;� . This implies that �U;V

�;� commutes with the horizontal differential dH.
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For commutativity with dV, we consider a generating chain .�/a 2E0p;q.X;V/ with � 2Np
V and a 2Xq .

Then, if dim.�U;V�/D p,

�
U;V
p;q�1 ı d

V ..�/a/D �
U;V
p;q�1

�
.�1/p

X
b�Na

.Œb W a��/b

�
D .�1/p

X
b�Na

.Œb W a��U;V�/b D .�1/
pd cell
q ..�U;V�/a/D d

V
ı �U;V
p;q ..�/a/

and for dim.�U;V�/ < p commutativity follows since both terms vanish.

A morphism of double complexes gives rise to a morphism of the vertical filtration. By [McCleary 2001,
Theorem 3.5] this induces a morphism of spectral sequences �U;V

�;� .

Since �U;V W NV ! NU is not unique, the induced morphism �
U;V
�;� on the 0–page does not need to be

unique either. We have, however, the following:

Proposition 7.2 The 2–morphism obtained by restricting �U;V
�;� is independent of the particular choice of

refinement map �U;V WNV!NU.

Proof We have to show that �U;V
�;� is independent of the particular choice of the refinement morphism.

First, define a carrier R WNV �NU by the assignment

� 7!R.�/D f� 2NU j V� � U�g:

The geometric realization of the subcomplex R.�/ is homeomorphic to a standard simplex, in particular
contractible, so R is acyclic. Note that �U;V

�;� is carried by R. Hence, by Theorem 2.4 for any pair of
refinement maps �U;V; �U;V WNV!NU, there exists a chain homotopy k� WCn.NV/!CnC1.NU/ carried
by R such that

k�ı
V
C ıUk� D �

U;V
� � �U;V

�

for all n� 0 and where �U;V
� and �U;V

� are induced morphisms of chain complexes C�.NV/!C�.NU/. In
particular, using the same notation, this translates into chain homotopies k� WE0p;q.X;V/!E0pC1;q.X;U/

on the 0–page such that
k�ı

V
C ıUk� D �

U;V
�;� � �

U;V
�;� :

Thus, �U;V
�;� D �

U;V
�;� from the second page onward.

Example 7.3 Consider a filtered cubical complex C�. At value 0, C� is given by the vertices on R2

at the coordinates a D .0; 0/, b D .1; 0/, c D .2; 0/, d D .3; 0/, e D .0; 1/, f D .1; 1/, g D .2; 1/ and
hD .3; 1/, together with all edges contained in the boundary of the rectangle adhe. Then, at value 1
there appears the edge bf with the face abfe. At value 2 the edge gc with the face fgcb, and finally
at value 3 the face ghdc appears. This is depicted on Figure 2. Then, consider the cover U0 by three
subcomplexes on the squares AD .a; b; f; e/, B D .b; c; g; f / and C D .c; d; h; g/. Also, we consider
the cover U1 given by A and C [B , and U2 given by all C�. The induced morphisms on second-page
terms at different filtration values are either null or the identity, as illustrated on Figure 3.
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a b c d

e f g h

a b c d

e f g h

a b c d

e f g h

a b c d

e f g h

Figure 2: Cubical complex C� at values 0, 1, 2 and 3.

A consequence of Proposition 7.2 is that if we have a space X together with covers U� V�U, then by
uniqueness the morphism on the second page induced by the consecutive inclusions coincides with the
identity. This gives rise to the next result.

Proposition 7.4 Suppose a pair of covers U and V of X are a refinement of one another. Then there is a
2–spectral sequence isomorphism E2�;�.X;U/'E

2.X;V/.

This implies that for any cover U of X , the cover U[X obtained by adding the extra covering element
X is such that the second page E2p;q.X;U[X/ has only the first column nonzero.

Lemma 7.5 Consider a cover U of a space X , and suppose that X 2U. Then E2p;q.X;U/D 0 for all
p > 0.

Proof This follows from the observation that the cover fXg consisting of a single element satisfies
fXg �U� fXg. Using Proposition 7.4 we therefore obtain isomorphisms E2p;q.X;U/'E

2
p;q.X; fXg/,

and the result follows.

Suppose that none of the two covers V and U refines the other. One can still compare them using the
common refinement V\UD fV \U gV 2V;U2U which is a cover of X . Thus, there are two refinement
morphisms

(6) E2p;q.X;U/
�

U;V\U
p;q
 ����E2p;q.X;V\U/

�
V;V\U
p;q
����!E2p;q.X;V/:

Id
0

U0

0
1

Id
2

0

U1

Id

Id

U2

Figure 3: Cubical complex C� with covers U0, U1 and U2, and with filtration values 0, 1 and 2.
Blue dots represent classes in E21;0.C;Ui / and red loops represent classes on E20;1.C;Ui /, for
i D 0; 1; 2.
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.V1\V2/\U2

V1\U1 V1\U2 V2\U2 V1\ .U1\U2/

.V1\V2/\U2

V1\U1 V1\U2 V2\U2 V1\ .U1\U2/

Figure 4: Cp;q.V;U;PHk/ at filtration values 0 and 1.

Following [Serre 1955, Section 28] we can now build the double complex Cp;q.V;U;PHk/ which, for
each k � 0, is given byM

�2N
pC1
V

�2N
q
U

PHk.V� \U� /
M

�2N
pC1
V

�2N
qC1
U

PHk.V� \U� /

M
�2N

p
V

�2N
q
U

PHk.V� \U� /
M
�2N

p
V

�2N
qC1
U

PHk.V� \U� /

ıV

.�1/pC1ı U

ıV

.�1/pı U

for any pair of integers p; q � 0. From this double complex we can study the two associated spectral
sequences

IE1p;q.V;UIPHk/D
M
�2N

p
V

LHq.V� \UIPHk/;

IIE1p;q.V;UIPHk/D
M
�2N

q
U

LHp.V\U� IPHk/;

whose common target of convergence is LHn.V \ UIPHk/ with p C q D n. For details about the
spectral sequence associated to a double complex, the reader is recommended to look at [McCleary 2001,
Theorem 2.15].

Example 7.6 Consider the cubical complex C� from Example 7.3. Set UDU1, that is, U is the cover
by the sets U1 D A and U2 D B [C . On the other hand, consider V to be formed of V1 D A[B and
V2DC . The double complex Cp;q.V;U;PHk/ is illustrated on Figure 4 for filtration values 0 and 1, and
for k D 0. We encourage the reader to work out the refinement morphisms from (6) and see that these are
actually projections.

Consider the nerve NV\U as a subset of the product of nerves NV �NU. We have then two projections
�VWNV\U!NV and�UWNV\U!NU, both of which induce chain morphisms�V

� WC�.NV\U/!C�.NV/
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and�U
� WC�.NV\U/!C�.NU/. For example, �V

� is given by�V
� .���/D� if dim.�/D0 or�V

� .���/D0

otherwise, for all � 2NV and � 2NU. These induce a pair of morphismsM
�2N

p
V

C cell
k .V� /

�V
p;k
 ��

M
�2N

p
V

�2N
q
U

C cell
k .V� \U� /

�U
q;k
��!

M
�2N

q
U

C cell
k .U� /;

for any pair of integers p; q � 0. The induced map �V
p;k

on Ck.V� \U� / satisfies

�V
p;k..� � �/a/D .�

V
� .� � �//a

for all � 2 Np
V , � 2 NU and all a 2 .V� \U� /

k . The map �U
�;� acts similarly. By definition �U

�;� and
�V
�;� both commute with the Čech differentials ıU and ıV respectively. Let � 2Np

V and � 2N 0
U. Then

we have

.� � �/a .�/a

P
b2Na.Œb W a�� � �/b

P
b2Na.Œb W a��/b

�V
�;�

dn dn

�V
�;�

for all cells a 2 .V� \U� /
k . This implies that �V

�;� commutes with dn and the same holds for �U
�;�. We

obtain a morphism �V
p;k
W LCp.V\UIC cell

k
/! LCp.VIC

cell
k
/ commuting with d� and ıV\U and ıV. This

induces �V
p;k
W LCp.V\UIPHk/! LCp.VIPHk/ and, in turn, this induces

�
V;V\U
p;k

W LHp.V\UIPHk/! LHp.VIPHk/:

There is a very natural way of understanding how much �V;V\U
p;k

fails to be an isomorphism. To start,
notice that �V

p;k
is equal to the composition

LCp.V\UIPHk/� IE0p;0.V;UIPHk/
I�V
p;k
��! LCp.VIPHk/;

where the first morphism forgets the summands with � … N 0
U; the second morphism is the restriction

of �V
p;k

to the remaining terms. Next, we take for each simplex � 2 Np
V , the Mayer–Vietoris spectral

sequence for V� covered by V� \U

M 2
q;k.V� \U/) PHqCk.V� /;

where we changed the notation from E2
q;k
.V� ;V� \U/ to M 2

q;k
.V� \U/ as it helps distinguishing this

spectral sequence from IE�p;q . Then, we write more compactly

IE1p;q.V;UIPHk/D
M
�2N

p
V

M 2
q;k.V� \U/:

Taking IE
1
p;0.V;UIPHk/ as a chain complex, I�

V
p;k induces a chain morphism

I�
V
p;k W

IE
1

p;0.V;UIPHk/! LCp.VIPHk/
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for all p � 0. In particular, the restriction of I�V
p;k

to the summand M 2
0;k
.V� \U/ equals the composition

M 2
0;k.V� \U/�M10;k.V� \U/ ,! PHk.V� /:

Notice that PH0 is a cosheaf, and in this case M 2
0;0.V� \U/D PH0.V� / for all � 2Np

V . This implies
that I�V

p;0 is an isomorphism for all p � 0. By the same argument, there is another chain morphism for
all q � 0,

II�
U
q;k W

IIE
1

0;q.V;UIPHk/! LCq.UIPHk/:

Going back to the morphism �
V;V\U
p;k

, it is given by the composition

LHp.V\UIPHk/� IE1p;0.V;UIPHk/ ,!
IE2p;0.V;U;PHk/

I�V
p;k
��! LHp.VIPHk/:

Using Lemma 7.5, if V�U then M 2
q;k
.V� \U/D 0 for all q > 0 and I�V

p;k
becomes an isomorphism.

In addition, IE1p;q D 0 for all q > 0 and the first two arrows in the above factorisation of �V;V\U
p;k

are isomorphisms. Altogether, the inverse .�V;V\U
p;k

/�1 is well defined, and by composition we define
morphisms �U;V

p;k
D �

U;V\U
p;k

ı .�
V;V\U
p;k

/�1. Here notice that �U;V\U
p;k

is defined in an analogous way
to �V;V\U

p;k
, but it factors through II�U

q;k
instead of I�V

p;k
. The following proposition should also follow

from applying an appropriate version of the universal coefficient theorem to [Serre 1955, Proposition 4.4].
Instead, we prove the dual statement of this proposition by means of acyclic carriers.

Proposition 7.7 Suppose that V�U, and let �U;V denote a refinement map. The morphism

�
U;V
p;k
WE2p;k.X;V/!E2p;k.X;U/

coincides with the standard morphism induced by �U;V.

Proof Since V�U, the morphism �
V;V\U
p;k

W LHp.V\U;PHk/! LHp.V;PHk/ is an isomorphism. Now
consider the diagram

LHp.VIPHk/ LHp.UIPHk/

LHp.V\UIPHk/ IIE10;p.V;UIPHk/ IIE20;p.V;UIPHk/

�
U;V
p;k

' II�U
p;k

To check that it commutes we study triangles of acyclic carriers

NV\U

NV NU

PUF

R

where R is defined in Proposition 7.2. The carrier F is given for every � 2NV by F.�/D�� � jR.�/j.
In fact, F defines an acyclic equivalence by considering the inverse carrier PV WNV\U �NV sending
� � � to �� . In this case the shift carrier IV W NV � NV is given by the assignment � 7! �� , and
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IV\U WNV\U �NV\U is given by � �� 7!�� ���[�
0

, where � 0 2NU is such that jR.�/j D��
0

�NU.
Here, we need to show that �� ���[�

0

is a subcomplex of NV\U. First notice that, by hypotheses,
V� \U� ¤ ∅ and, by definition of R.�/, we have V� � U� 0 . Consequently V� \ .U� \U� 0/ ¤ ∅,
which accounts for �� ���[�

0

being a subcomplex of NV\U.

Since F is acyclic, there exists �� W C�.NV/! C�.NV\U/ carried by F and inducing a chain morphism
f� W LCp.V; C

cell
k
/! LCp.V\U; C cell

k
/ by the assignment .�/s 7! .��.�//s for all cells s 2 X and all

� 2NV. On the other hand, recall that �V;V\U
p;k

is induced by �V
p;k

, which is given as an assignment

.� � �/s! .�V
� .� � �//s:

As �V
� is carried by PV and, as noted earlier, F defines an acyclic equivalence, it follows that �V

� ı ��

is the identity in C�.NV/ up to boundary. Thus, �V
p;k
ı f� is the identity in LCp.V; C cell

k
/ up to the

Čech boundary LıV. This implies that f� D .�
V;V\U
p;k

/�1 as morphisms LHp.V;PHk/! LHp.V\U;PHk/.
Consequently, �U;V

p;k
is induced by the assignment .�/s 7! .�U

� ı ��.�//s for all � 2 NV and all s 2 X ,
where �U

� ı �� is carried by PUF D R. Altogether, as �U;V is carried by R, we obtain the equality
�

U;V
p;k
D �

U;V
p;k

as morphisms LHp.V;PHk/! LHp.U;PHk/.

Still assuming that V�U, we now look for conditions for the existence of an inverse of �U;V
p;k

,

'
V;U
p;k
WE2p;k.X;U/!E2p;k.X;V/:

Proposition 7.8 Suppose that V�U. If M 2
p;k
.V\U� /D 0 for all p > 0, k � 0 and all � 2N q

U, then
the maps �U;V

�;� induce a 2–isomorphism of spectral sequences

E�2�;�.X;U/'E
�2
�;�.X;V/:

Proof By Propositions 7.2 and 7.7 we can choose a refinement map �U;V WNV!NU giving a morphism
of spectral sequences

�U;V
�;� WE

�2
�;�.X;V/!E�2�;�.X;U/

that coincides with �U;V
�;� . Our assumption aboutM 2

p;k
implies IIE

2
p;q.V;UIPHk/D 0 for all p >0, which

in turn, gives

(7) Ker
�
LHq.V\UIPHk/� IIE

1

0;q.V;UIPHk/
�
D 0

and

(8) Coker
�IIE

1

0;q.V;UIPHk/ ,!
IIE

2

0;q.V;U;PHk/
�
D 0:

Now note that II�U
q;k

yields an isomorphism IIE
2
0;q.V;U;PHk/' LHq.U;PHk/. This shows that �U;V

q;k
is

a composition of isomorphisms; thus the statement follows.

We now relax the conditions in Proposition 7.8 and use the relations of left-interleaving and right-
interleaving of persistence modules (denoted by �"L and �"R, respectively) to achieve this (see [Govc and
Skraba 2018, Section 4]). We have to adapt [Govc and Skraba 2018, Proposition 4.14].
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Lemma 7.9 Suppose that we have persistence modules A, B and C , and a parameter " � 0 such that
A�"R B and B �"L C . Denote by ˆ the morphism ˆ W A! C given by the composition A� B ,! C .
Then there exists ‰ W C ! AŒ2"� such that ˆ and ‰ define a 2"–interleaving A�2" C .

Proof By hypothesis, we have a sequence

E1! A
f
�� B

g
,�! C ! E2

which is exact inA andC and where E1�
" 0 and E2�

" 0. Then, let v2C and notice that†"C.v/2 Im.g/.
Thus, there exists a unique vector w 2 B such that g.w/ D †"C.v/. On the other hand, there exists
z 2 A, not necessarily unique, such that f .z/ D w. This defines a unique element †"A.z/ 2 A. To
see this, suppose that another z0 2 A is such that f .z0/D w. Then f .z � z0/D 0 and z � z0 2 Ker.f /,
which implies 0D†"A.z� z0/D†"A.z/�†"A.z0/, and then †"A.z/D†"A.z0/. Altogether, we set
‰ D†"A ıˆ�1 ı†"C , which is well defined.

Recall that for V�U we have that LHq.VIPHk/' LHq.V\UIPHk/ for all k � 0 and q � 0. There is a
natural way to relax (7) and (8) to the persistent case. We assume that for "� 0, there are right and left
interleavings

(9) LHq.V\UIPHk/�
"
R

IIE
1

0;q.V;UIPHk/�
"
L

IIE
2

0;q.V;U;PHk/:

If we define ˆq;k W LHq.V \ UIPHk/ ! IIE
2
0;q.V;U;PHk/ to be the composition of the associated

persistence morphisms as in Lemma 7.9, then there exists

‰q;k W
IIE

2

0;q.V;U;PHk/! LHq.V\UIPHk/Œ2"�

such that ˆq;k and ‰q;k define a 2"–interleaving. We repeat this argument for the local Mayer–Vietoris
spectral sequences. Assume that for some � � 0 there are interleavings

(10) IIE
1

0;q.V;U;PHk/�
�
R

M
�2N

q
U

M1k;0.V\U� /�
�
L

M
�2N

q
U

PHk.U� /:

Let …q;k W IIE
1
0;q.V;U;PHk/!

L
�2N

q
U

PHk.U� / be the composition of the associated morphisms. By
Lemma 7.9 there exists „q;k such that …q;k and „q;k define a 2�–interleaving. By slight abuse of
notation we continue to denote the induced 2�–interleaving between IIE

2
0;q.V;U;PHk/ and LHq.UIPH�/

by …q;k and „q;k . Altogether we have that

�
U;V
q;k
D…q;k ıˆq;k ı .�

V;V\U
q;k

/�1

and in this situation there is an “inverse”  V;U
q;k
D �

V;V\U
q;k

ı‰q;k ı„q;k , which increases the persistence
values by 2."C �/.

Theorem 7.10 Suppose that V�U and for "� 0 and � � 0 the interleavings in (9) and (10) hold. Then

 V;U
p;q WE

�
p;q.X;U/!E�p;q.X;V/Œ2."C �/�
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A B

C D

Figure 5: Cubical complex C� at values 0, 1 and 1C ".

is a 2–morphism of spectral sequences such that �U;V
p;q and  V;U

p;q define a second page 2."C�/–interleaving
between E�p;q.X;U/ and E�p;q.X;V/.

Proof The only thing that remains to be proved is that  V;U
p;q commutes with the spectral sequence

differentials dn for all n� 2. Since these differentials commute with the shift morphisms †2."C�/, this
follows from considering the diagram

Enp;q.X;U/ Enp�n;qCn�1.X;U/

Enp;q.X;V/ Enp�n;qCn�1.X;V/

Enp;q.X;V/Œ2."C �/� Enp�n;qCn�1.X;V/Œ2."C �/�

dn

 
V;U
p;q  

V;U
p�n;qCn�1

dn

�
U;V
p;q

†2."C�/

�
U;V
p�n;qCn�1

†2."C�/
dn

in which the two trapeziums and the two triangles commute.

Example 7.11 Consider a cubical complex C� as shown in Figure 5, together with the covers

VD fA;B;C ;Dg and UD fA[B;C [DgI

see Figure 5 for the cells A, B , C and D. In this case, we have

LH1.VIPH0/' LH1.V\UIPH0/' I.0; 1C "/˚ I.1; 1C "/�" I.0; 1/' IIE
2

0;1.V;U;PH0/

and also
IIE

1

0;0.V;U;PH1/' 0�" I.1; 1C "/˚ I.1; 1C "/'
M

dim.�/D0

PH1.U� /:

These interleavings are shown in Figure 6. Theorem 7.10 implies that there is a 4"–interleaving between
E�p;q.X;U/ and E�p;q.X;V/. Notice that in this example, the nontrivial interleaved terms are in different
positions of the spectral sequences. Therefore we can improve the upper bound to 2". We use this
observation later in Proposition 7.12.

Id 0

Figure 6: Morphisms �U;V
1;0 along Œ0; 1/ and along Œ1; 1C "/.
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7.2 Interpolating covers and spectral sequence interleavings

Consider X 2 FCW-cpx, together with a pair of covers W and U such that W �U. Motivated by the
interleaving constructed in Theorem 7.10 we take a closer look at the following finite sequence of covers
interpolating between W and a cover that both refines and is refined by U. Let the strict r th intersections
of U be the family of sets Ur D fU�g�2N rU

for all r � 0. We define the .r;W;U/–interpolation as the
covering set Wr DW[Ur . In particular, note that the .0;W;U/–interpolation has the property that
W0 �U�W0, and consequently E2p;q.X;U/'E

2
p;q.X;W

0/. In addition if U is a finite cover, then we
have UN D∅ for N � 0 sufficiently large and consequently WN DW.

Proposition 7.12 (local checks) Let W�U be a pair of covers for X , where U is finite. Let N � 0 be
such that UN D∅. For every 0� r �N , we assume that there exist "r � 0 and �r � 0 such that for all
� 2N r

U,
E20;q.U� ;W

rC1
jU�

/�
�r
R E10;q.U� ;W

rC1
jU�

/�
�r
L PHq.U� /;

and also
dI .E

2
p;q.U� ;W

rC1
jU�

/; 0/� "r

for all p > 0 and q � 0. Then we have that

d2I
�
E�p;q.X;W

r/; E�p;q.X;W
rC1/

�
� 2max."r ; �r/:

Therefore , by using the triangle inequality, we obtain

d2I
�
E�p;q.X;U/; E

�
p;q.X;W/

�
�

NX
rD0

2max."r ; �r/:

Proof We need to consider the spectral sequence IIE2p;q.W
rC1;Wr IPHk/. Note that, by the construction

of Wr, for each � 2NUr with dim.�/ > 0 the set Wr
� is contained in one of the open sets from WrC1. By

Lemma 7.5 this implies that IIE1p;q.W
rC1;Wr IPHk/D 0 for all p > 0, q > 0 and k � 0. Moreover, we

have that IIE10;q.W
rC1;Wr IPHk/D

L
�2N

q

Wr
PHk.Wr

� / for all q > 0 and k � 0. The resulting spectral
sequence is shown in Figure 7.

As a consequence of these observations condition (10) holds for these indices with � D 0. In addition,
IIE20;q.W

rC1;Wr IPHk/DE2q;k.X;W
r/ holds for all q � 2 and k � 0 (see Figures 7 and 8). In particular,

IIE12;0.W
rC1;Wr IPHk/ 0 0

: : :

IIE11;0.W
rC1;Wr IPHk/ 0 0 0

IIE10;0.W
rC1;Wr IPHk/

M
�2N1

Wr

PHk.Wr
� /

M
�2N2

Wr

PHk.Wr
� /

M
�2N3

Wr

PHk.Wr
� /

d1

Figure 7: First page of IIE
�

p;q.W
rC1;Wr IPHk/.
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� "r 0 0
: : :

� "r 0 0 0

IIE
2
0;0.W

rC1;Wr IPHk/ IIE
2
0;1.W

rC1;Wr IPHk/ E2
2;k
.X;Wr / E2

3;k
.X;Wr /

d2

d3

Figure 8: Second page of IIE
�

p;q.W
rC1;Wr IPHk/ together with higher differentials.

there is only one possible nontrivial differential for each entry in the bottom row as indicated in Figure 8.
Note that our hypothesis dI .E2p;q.U� ;W

rC1
jU�

/; 0/� "r applies to the entries in the first column with p > 0
and gives left and right interleavings of the form

LHq.W
rC1
\Wr

IPHk/�
"r
R

IIE10;q.W
rC1;Wr

IPHk/�
"r
L

IIE20;q.W
rC1;Wr

IPHk/

for all q > 0 and k � 0. Hence, condition (9) holds with value "r .

Let us look now at the case q D 0. Here we have LH0.W
rC1 \Wr IPHk/ D IIE

2
0;0.W

rC1;Wr IPHk/
and consequently (9) holds with value "D 0. Next, by hypothesis, for all k � 0 we have right and left
interleavings

M 2
0;k.U� \WrC1/�

�r
R M10;k.U� \WrC1/�

�r
L PHk.U� /;

for all � 2N r
U. Thus by taking the direct sum of these interleavings we obtain

IIE10;0.W
rC1;Wr

IPHk/�
�r
R

M
�2N 0

Wr

M10;k.W
r
� \WrC1/�

�r
L E10;k.X;W

r/:

and condition (10) also holds for q D 0. The result now follows from Theorem 7.10.

Notice that we can slightly improve the statement of Theorem 7.10 here: for each term in the bottom
row of the spectral sequence in this particular example only one of the two conditions (9) and (10) is
nontrivial, and the proof of Theorem 7.10 carries over with 2max."r ; �r/ replacing 2."r C �r/.

Remark 7.13 Notice that for reasonable cases the parameters �r are bounded above by K"r for some
constant K > 0 by a result from [Govc and Skraba 2018]. Nevertheless, we would like to keep �r and "r
separated here, since we hope to compute it from M �

p;k
.U� ;W

rC1
jU�

/ for � 2N r
U hereby get more accurate

estimates. Intuitively, asking for "r and �r to be small is equivalent to asking for cycle representatives in
covers from Wr to be approximately contained in covering sets from WrC1.

Finally, we would like to compare two separate covers U and V and have an estimate for the interleaving
distance between the associated spectral sequences. The main idea of Proposition 7.12 is to translate this
comparison problem into a few local checks that can be run in parallel. We formalize this in the following
corollary.

Corollary 7.14 (stability of covers) Consider two pairs .X;U/ and .X;V/, where X is a space and U

and V are covers. Let W D U\V and denote by Wr
U and Wr

V the respective .r;W;U/ and .r;W;V/
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interpolations. For every 0� r �N , we assume that there exist "r ; "0r � 0 and �r ; �0r � 0 such that for all
� 2N r

U and � 2N r
V

E20;q.U� ;W
rC1
U /�

�r
R E10;q.U� ;W

rC1
U /�

�r
L PHq.U� /;

E20;q.V� ;W
rC1
V /�

�0r
R E10;q.V� ;W

rC1
V /�

�0r
L PHq.V� /;

for all r � 0, and also

dI .E
2
p;q.U� ;W

rC1
U /; 0/� "r ; dI .E

2
p;q.V� ;W

rC1
V /; 0/� "0r

for all p > 0, and q � 0. Then we have that

d2I
�
E�p;q.X;U/; E

�
p;q.X;V/

�
�R.U;V/

where R.U;V/Dmax
�PN

rD0 2max."r ; �r/;
PN
rD0 2max."0r ; �

0
r/
�
.

Proof By Lemma 7.1 there are double complex morphisms given by the refinement maps

LCp.U; C
cell
q /

�
U;W
p;q
 �� LCp.W; C cell

q /
�

V;W
p;q
��! LCp.V; C

cell
q /:

In turn, these induce 2–morphisms of spectral sequences

E2p;q.X;U/
�

U;W
p;q
 ��E2p;q.X;W/

�
V;W
p;q
��!E2p;q.X;V/:

Let  U;W
p;q and  V;W

p;q be the “inverses” of �U;W
p;q and �V;W

p;q , respectively, witnessing the interleavings of the
two spectral sequences (see Theorem 7.10 and Proposition 7.12). The result follows from considering the
commutative diagram

E2p;q.X;U/ E2p;q.X;W/ E2p;q.X;V/

E2p;q.X;U/ŒR.V;U/� E2p;q.X;W/ŒR.V;U/� E2p;q.X;V/ŒR.V;U/�

†R.V;U/
 

W;U
p;q

�
U;W
p;q �

V;W
p;q

†R.V;U/ †R.V;U/
 

W;V
p;q

�
U;W
p;q �

V;W
p;q

where all arrows are 2–morphisms of spectral sequences.

8 Outlook

We expect spectral sequences associated to the geometric realizations of diagrams of CW–complexes
to have a natural use in the distributed computation of persistent homology. The first future research
direction is to develop further examples and use cases that benefit from the theory developed in this
article.

The "–acyclic carriers and equivalences which we introduced here in the context of persistent homology
are of course based on acyclic carriers, which are similar to the ones used for example in [Björner 2003,
Theorem 6] to prove a generalisation of the nerve theorem. A possible future research direction might
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be to ask for conditions on the acyclic carriers with the goal of obtaining similar results as those from
[Björner 2003] within the category of regularly filtered diagrams.

The bounds obtained in Section 7 for the interleavings between the second pages of two spectral sequences
can certainly be improved; one possible direction is to explore similar examples as those in [Govc and
Skraba 2018, Section 9] where the authors found sharp bounds.

In general, we think that spectral sequences deserve a more prominent role in applied algebraic topology
and hope that the tools we developed here will motivate further study.

Appendix Example of acyclic equivalence in RCW-cpx

Consider a filtered regular CW–complex X which is constant along R, except at values 1, 2, 3 and 4,
where it changes; see Figure 9. In order to describe X , we use the notation .CD/1 for the edge between
C and D, .FGIJ /2 for a two cell whose vertices are F , G, I and J , and so on. By regularity of X , and
since we do not define multiple edges between the same pair of vertices, X is determined by

X1 D fA;B;C;D;E; F;H g[f.AH/1; .BC/1; .CD/1; .EF /1g;

X2 DX1[fGg[f.AB/1; .DE/1; .FG/1; .GH/1g;

X3 DX2[fI; J g[f.BI /1; .CJ /1; .FJ /1; .GI /1; .IJ /1g[f.FGIJ /2g;

X4 DX3[fKg[f.AK/1; .CK/1; .EK/1; .GK/1g[f.ABCK/2; .CDEK/2; .EFGK/2; .AKGH/2g;

where X0 D ∅; this is shown in Figure 9, which illustrates X . Of course, as X is a filtered complex,
the structure maps of X are given by inclusions Xs ,! Xt for all s < t from R. Next, we describe the
regularly filtered CW–complex Y , which is constant along R, except at values 1, 2, 3 and 4, where it
changes; this is also depicted in Figure 9. We define Y� by

Y1 D f˛; ˇ; g;

Y2 D Y1[f.˛ˇ/1; .˛/1; .ˇ/1g;

Y3 D .Y2 n f.˛/1g/[fı; �g[ f.�/1; .�ı/1; .˛ı/1; .ˇı/1; .ˇ�/1g;

Y4 D Y3 n f˛; .˛ˇ/1; .˛ı/1g;

and Y0 D∅.

The structure maps of Y are defined as follows, where we use the overline notation N� to denote the closure
of some cell:

� Y.1� 2/ is an inclusion,

� Y.2 � 3/ restricts to an inclusion in the subcomplex .˛ˇ/1 [ .ˇ/1, while .˛/1 is sent to
.˛ı/1[ .ı�/1[ .�/1.

� Y.3� 4/ restricts to the identity in Y3 n f.˛ˇ/1; ˛; .˛ı/1g while it maps the vertex ˛ to  , the edge
.˛ˇ/1 to .ˇ/1 and the edge .˛ı/1 to f.�/1; �; .�ı/1g.
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Figure 9: The spaces Yi are shown at the top and Xi are at the bottom for values i D 1; 2; 3; 4. In
filtration value 4, a cone with vertex in K is attached along the octahedron at the boundary of X3;
notice that we used 2–cells which are not 2–simplices.

One might check that Y is well defined according to Section 2.1. Next, we proceed to define an acyclic
carrier F W Y �X , which we depict in Figure 10, as follows:

� F1.˛/D .AH/1, F1.ˇ/D .BC/1[ .CD/1, F1./D .EF /1,

� F2..˛ˇ/1/ D F1.˛/ [ F1.ˇ/ [ f.AB/1g, F2..˛/1/ D F1.˛/ [ F1./ [ f.HG/1; G; .FG/1g,
F2..ˇ/1/D F1.ˇ/[F1./[f.DE/1g,

� F3.ı/DG, F3.�/DF, F3..˛ı/1/D.AH/1[.HG/1, F3..ı�/1/D.IJFG/2, F3..�/1/D.EF /1,
F3..ˇı/1/D .BC/1[ .CD/1[ .BI /1[ .IG/1, F3..ˇ�/1/D .BC/1[ .CD/1[ .CJ /1[ .JF /1,

� F4./D F4..ˇ/1/D F4..�/1/D St.K/.

If we did not define a carrier, this is because we assume it is continued from an earlier definition. On the
other hand, we define the carrier G WX � Y as follows:

� G1.A/D G1.H/D G1..AH/1/D ˛, G1.E/D G1.F /D G1..EF /1/D  , G1.B/D G1.C /D
G1.D/DG1..BC/1/DG1..CD/1/D ˇ,

� G2..AB/1/D .˛ˇ/1, G2..DE/1/D .ˇ/1, G2..HG/1/DG2.G/DG2..GF /1/D .˛/1,

� Define A3 D fI; J;G; .IJ /1; .GI /1; .FJ /1; .HG/1; .GF /1; .FGIJ /2g; then for all � 2 A3, we
have G3.�/D .˛ı/1[ .ı�/1[ .�/1, G3..BI /1/D .ˇı/1, G3..CJ /1/D .ˇ�/1,

� for all � 2X4 n f.BI /1; .CJ /1g, G4.�/D .ˇ/1[ .�/1[ .�ı/1.

We define the shift carriers on X and Y by composition, that is, I 0X DG ıF and I 0Y D F ıG, which in
this particular case lead to well-defined acyclic carriers as one can check; to illustrate this, we write a
couple of compositions:

G3 ıF3..ˇ�/1/D .˛ı/1[ .ı�/1[ .�/1[ .ˇ�/1;

F3 ıG3..IJ /1/D .AH/1[ .HG/1[ .IJFG/2[ .EF /1:
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Figure 10: We depict the acyclic carriers from F . For each acyclic carrier we include its initial
filtration value within a square on the top left while we write the cell(s) it corresponds to within
a square on the top right; sometimes we write a pair of numbers a; b to indicate that the carrier
applies for the filtration values in Œa; b/ and that a new carrier is defined at b. Solid lines connecting
the middle top of a box to the middle bottom of another box indicate that the containment relation
must hold, where the carrier in the lower box needs to be embedded into the carrier on the
upper box. We use dashed lines for containment relations involving a union of carriers, eg
F3..˛ı/1/� F4..�/1/[F4..ı�/1/.

One can check that the conditions from Definition 4.3 are satisfied and so by Corollary 4.7 we obtain
isomorphisms PH�.X/Š PH�.Y /.
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Slope norm and an algorithm to compute the crosscap number
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We give three algorithms to determine the crosscap number of a knot in the 3–sphere using 0–efficient
triangulations and normal surface theory. Our algorithms are shown to be correct for a larger class of
complements of knots in closed 3–manifolds. The crosscap number is closely related to the minimum
over all spanning slopes of a more general invariant, the slope norm. For any irreducible 3–manifold M

with incompressible boundary a torus, we give an algorithm that, for every slope on the boundary that
represents the trivial class in H1.M IZ2/, determines the maximal Euler characteristic of any properly
embedded surface having a boundary curve of this slope. We complement our theoretical work with an
implementation of our algorithms, and compute the crosscap number of knots for which previous methods
would have been inconclusive. In particular, we determine 196 previously unknown crosscap numbers in
the census of all knots with up to 12 crossings.

57K10, 57K31; 57K32

1 Introduction

Let K be a knot in the 3–sphere with knot exterior M . The crosscap number c.K/ of K denotes the
smallest genus of a nonorientable surface S �M such that @S DK. It is a classical knot invariant that
is defined for all knots in the 3–sphere.

Our main contributions are algorithms to compute the crosscap number of a knot in the 3–sphere. Efforts
to compute the crosscap number of a knot have been at the centre of various other research projects using
a variety of techniques. Among these is a formula for the crosscap number of torus knots by Teragaito
[2004], an algorithm for alternating knots developed by Adams and Kindred [2013], and upper and
lower bounds for the general case via the Jones polynomial by Kalfagianni and Lee [2016]. Recent work
by Ito and Takimura [2018; 2020a; 2020b] establishes various further bounds. The KnotInfo database
[Livingston and Moore 2021], and in particular their page on crosscap numbers, gives a detailed overview
and results for specific knots.

Our work completes an approach put forward by Burton and Ozlen [2012]. Our starting point is Jaco
and Sedgwick’s generalisation [2003] of a celebrated result by Hatcher [1982]: they showed that in any
orientable irreducible 3–manifold with incompressible boundary a torus, there are only finitely many
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boundary slopes of geometrically incompressible and @–incompressible surfaces. This paper rests on
a technical observation in [Jaco and Sedgwick 2003] that concerns fundamental surfaces (stated here
as Proposition 12). We refer the reader to [Burton and Ozlen 2012; Jaco and Rubinstein 2003; Jaco
and Sedgwick 2003; Matveev 2007] for the definitions and basic properties of normal surface theory in
(singular) triangulations, [Burton and Ozlen 2012; Jaco and Rubinstein 2003] for basic facts concerning
0–efficient triangulations used herein, and [Burton and Tillmann 2018; Tillmann 2008; Tollefson 1998]
for basic properties of working with quadrilateral coordinates only.

In Sections 2–4, we first develop our algorithms using standard coordinates for normal surfaces under
varying hypotheses on the triangulations. We then extend the theory to work in quadrilateral coordinates
in Section 5, and report on our computational results within this framework in Section 6. Throughout this
paper, a fundamental surface is a normal surface whose normal coordinates are fundamental in standard
(triangle–quadrilateral) normal surface space, and a Q–fundamental surface is a connected normal surface
whose normal Q–coordinates are fundamental in quadrilateral space.

Slope norm The dual tree to the Farey tessellation of the hyperbolic plane is used to organise the set of
all boundary slopes of properly embedded surfaces with a single boundary curve. This allows us to give
an algorithm that, for an irreducible 3–manifold with boundary a torus and a slope on the boundary that
represents the trivial class in H1.M IZ2/, determines the maximal Euler characteristic of any properly
embedded connected surface having connected boundary of this slope (Theorem 15). We call the negative
of this number the norm of the slope, and the minimum over all these norms the slope norm of M . This
norm is used in forthcoming work to apply the complexity bounds given in [Jaco et al. 2020b; 2020a;
2009] to infinite families of Dehn fillings. The existence of such an algorithm goes back to Schubert
[1961]; see also Matveev [2007, Theorems 4.1.10 and 4.1.11]. Our new contribution is that we do not
need to adapt a triangulation to the slope. Similar results to our slope norm algorithm were obtained
independently by Howie [2021], and used for different applications. Our work here on slope norm feeds
into the proof of the main theorem. We later show that there is an algorithm to determine the slope norm
of M and the set of all minimising slopes in quadrilateral space (Corollary 22).

Crosscap number We next give two algorithms to determine the crosscap number of a knot in the
3–sphere (Theorems 1 and 3). Both use standard coordinates for normal surfaces, but they make different
assumptions on the underlying triangulation. Our algorithms are shown to be correct for a larger class of
complements of knots in closed 3–manifolds N that represent the trivial class in H1.N IZ2/, including
all that have a complete hyperbolic structure of finite volume.

Burton and Ozlen [2012] introduce triangulations that contain no normal 2–spheres and have an edge
in the boundary that represents the meridian. These triangulations are called efficient suitable, and they
guarantee the existence of fundamental spanning surfaces of maximal Euler characteristic. Efficient suitable
triangulations can be constructed from any input triangulations, and we outline the algorithm in Section 3.1.
Burton and Ozlen describe a procedure (Algorithm 3), where on input a knot in the 3–sphere the output
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Slope norm and an algorithm to compute the crosscap number 4309

is either one integer (the crosscap number) or a pair of consecutive integers (one of which is the crosscap
number). Theorem 1 shows that in the latter case, the crosscap number is the larger integer. The apparent
difficulty of determining the crosscap number algorithmically lies in the case where every maximal Euler
characteristic fundamental spanning surface is orientable. This is solved in Lemma 19. The following
result thus improves and generalises [loc. cit., Algorithm 3], and the result is given in Algorithm 18.

Theorem 1 Let M be the exterior of a nontrivial knot K in a closed 3–manifold N with ŒK� D

0 2H1.N IZ2/. Suppose that M is irreducible and contains no embedded nonseparating torus and no
embedded Klein bottle. Let T be an efficient suitable triangulation of M . Then c.K/Dmin.A;B/, where

ADminf1��.S/ j S is a nonorientable fundamental spanning surface for Kg;

B Dminf2��.S/ j S is an orientable fundamental spanning surface for Kg;

and we let min∅D1.

Theorem 1 has the following consequence when a knot has no orientable spanning surface:

Corollary 2 Let M be the exterior of a nontrivial knot K in a closed 3–manifold N with ŒK� D

0 2 H1.N IZ2/ and ŒK� ¤ 0 2 H1.N IZ/. Suppose that M is irreducible and contains no embedded
nonseparating torus and no embedded Klein bottle. Let T be an efficient suitable triangulation of M . Then

c.K/Dminf1��.S/ j S is a fundamental spanning surface for Kg:

For arbitrary 0–efficient triangulations (which do not contain properly embedded nonvertex linking normal
spheres or discs), we give a more general algorithm (Theorem 3) that uses the slope norm algorithm. The
basic idea is that Burton and Ozlen’s suitable triangulations ensure that minimal spanning surfaces can be
found amongst the normal surfaces even though in general they may be @–compressible. In an arbitrary
triangulation, there may be no nonorientable normal spanning surfaces of maximal Euler characteristic,
but our slope norm algorithm keeps track of optimal boundary compression sequences. To do this we
define what we call the even integral subtree distance as the length d.@S;Fe/ of the shortest path from
a given boundary slope @S to the subtree Fe corresponding to the slopes of spanning surfaces; see
Section 3.3 for details.

Theorem 3 Let M be the exterior of a knot K in a closed 3–manifold N with ŒK�D 0 2H1.N IZ2/.
Suppose that M is irreducible and contains no embedded nonseparating torus and no embedded Klein
bottle. Let T be a 0–efficient triangulation of M and suppose that the coordinates for a meridian for K

on the induced triangulation T@ of @M are given. Then c.K/Dmin.A;B;Z/, where

ADminf1��.S/ j S is a nonorientable fundamental spanning surface for Kg;

B Dminf2��.S/ j S is an orientable fundamental spanning surface for Kg;

Z Dmin
˚
1��.S/C d.@S;Fe/

j S is a fundamental nonspanning surface with connected essential boundary
	
;

and we let min∅D1.
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Since d.@S;Fe/D 0 for a spanning surface S , the above theorem could have been stated using two terms
rather than three, but we wanted to keep the notation in line with Theorem 1. Again, when there is no
orientable spanning surface, this specialises to:

Corollary 4 Let M be the exterior of a nontrivial knot K in a closed 3–manifold N with ŒK� D

0 2 H1.N IZ2/ and ŒK� ¤ 0 2 H1.N IZ/. Suppose that M is irreducible and contains no embedded
nonseparating torus and no embedded Klein bottle. Let T be a 0–efficient triangulation of M and suppose
that the coordinates for a meridian for K on the induced triangulation T@ of @M are given. Then

c.K/Dminf1��.S/C d.@S;Fe/ j S is a fundamental surface with connected essential boundaryg:

Knot genus As an interlude, we show in Section 4 that in our framework one can give a short proof of
Schubert’s classical result that the genus of a knot is realised by one of the fundamental surfaces. Schubert
[1961] originally proved this in the context of normal surfaces with respect to handle decompositions.

Theorem 5 Let M be the exterior of a nontrivial knot K in a closed 3–manifold N with ŒK� D

0 2H1.N IZ/. Suppose that M is irreducible and let T be a 0–efficient triangulation of M . Then an
orientable spanning surface of maximal Euler characteristic is amongst the fundamental surfaces.

Quadrilateral space All results up to this point were stated in the context of normal surface theory with
standard coordinates. For computations, it is of advantage to be able to work with quadrilateral coordinates
only, as this makes otherwise impossible calculations feasible. In Section 5, we give some extensions of
the previous results in this context; see for instance [Burton and Tillmann 2018] for similar results for
closed normal surfaces. For definitions and basic properties of working with quadrilateral coordinates
only, we refer to [Burton and Tillmann 2018; Tillmann 2008; Tollefson 1998]. The following is the main
result of this paper; whilst the previous results were given for either efficient suitable triangulations or for
0–efficient triangulations, we now need to combine these properties:

Theorem 6 Let M be the exterior of a nontrivial knot K in a closed 3–manifold N with ŒK�D 0 2

H1.N IZ2/. Suppose M is irreducible and contains no embedded nonseparating torus and no embedded
Klein bottle. Let T be a 0–efficient suitable triangulation of M . Then c.K/Dmin.A0;B0/, where

A0 Dminf1��.S/ j S is a nonorientable Q–fundamental spanning surface for Kg;

B0 Dminf2��.S/ j S is an orientable Q–fundamental spanning surface for Kg:

Computations We use our methods to determine the crosscap numbers of 196 knots with up to 12
crossings for which the crosscap number was previously not known. As a result, crosscap numbers of
all knots up to and including ten crossings are now known. Our algorithms give a theoretical method to
determine the crosscap numbers of knots with a unified method, where previously different techniques
were needed. From a practical viewpoint, using our algorithm in standard coordinates allows us to handle
triangulations of up to about 26 tetrahedra. Making use of our results in quadrilateral space allows us to
push this limit to about 30 tetrahedra. See Section 6 for our computational results.
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2 The norm of an even slope

Throughout this section let M be an orientable compact irreducible 3–manifold with @M a single
incompressible torus. Suppose T is a (singular or semisimplicial) triangulation of M with the property
that the induced triangulation T@ of @M has exactly one vertex. For instance, a 0–efficient triangulation
has this property [Jaco and Rubinstein 2003]. In the following, we choose the single vertex of T as the
basepoint for the fundamental group of M and omit it in the notation.

We first show that every connected essential curve c � @M with Œc�D 0 2H1.M;Z2/ bounds a properly
embedded connected surface S �M with @S D c (Corollary 10). We then use a result by Jaco and
Sedgwick (Proposition 12) to conclude that if T is 0–efficient and S is of maximal Euler characteristic
amongst all connected surfaces with this slope and @–incompressible, then a surface of equal boundary
slope and Euler characteristic must be represented by a fundamental surface in T . This then leads to
Algorithm 16, which computes the smallest norm of a given boundary slope on @M with respect to a
given framing.

Lemma 7 Let � W �1.M /!Z2 be a homomorphism with the property that �.m/D 1 for some primitive
peripheral element m 2 im.�1.@M /! �1.M //. Then for every primitive peripheral element  2 ker.�/,
there is a properly embedded surface S in M with @S a single boundary curve that satisfies Œ@S �D ˙1

as free homotopy classes of unoriented loops. In particular , Œ �D 0 2H1.M;Z2/.

The proof of the lemma introduces the way we will use the Farey graph in our later algorithms.

Proof Note that there is l 2 im.�1.@M /! �1.M // with �.l/D 0 and hm; li D im.�1.@M /! �1.M //.
The primitive peripheral elements in ker � are precisely m2k lq , where k 2 Z and gcd.2k; q/D 1. Since
the boundary of M is incompressible and has abelian fundamental group, we have

(2-1) im.�1.@M /! �1.M //Š �1.@M /ŠH1.@M;Z/:

We therefore identify all groups and freely switch between additive and multiplicative notation for
peripheral elements. Since we are only interested in unoriented isotopy classes of primitive elements, we
always choose mplq with q � 0.

We first show that there is a surface for some peripheral element in the kernel. Our 0–efficient triangulation
T of M has exactly one vertex. Hence every edge is a loop and represents an element of �1.M /. This
maps to either 0 or 1 under �. Place a normal corner on an edge if and only if the corresponding element
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00

0

0

11

Figure 1: Labelling of edges and canonical normal curves and surfaces.

maps to 1. As observed in [Jaco et al. 2009], this results in a normal surface in M having at most a single
triangle or a single quadrilateral in each tetrahedron, as shown in Figure 1. Since �.m/D 1, this normal
surface has a single boundary curve Œ@S �D m2k0

lq
0

for some q0 � 0 and gcd.2k 0; q0/D 1. This single
boundary curve meets each boundary triangle in a single normal arc.

We now show how all other boundary curves m2k lq , where q > 0, k 2 Z and gcd.2k; q/ D 1, can be
obtained by adding saddles to S . To this end, we use the layering procedure (see [loc. cit.] and Figure 3)
in conjunction with the Farey tessellation as an organising principle for the set of isotopy classes of
triangulations of the torus with a marked point. This is different from the L–graph used in [loc. cit.].

We treat the single vertex in the induced triangulation T@ of @M as a marked point, and give the torus
@M a Euclidean structure with the property that the marked point lifts to the integer lattice via a universal
covering map R2! @M . Moreover, up to the action of the Deck group, we may assume that m and l lift
to horizontal and vertical lines, respectively. The map

mplq 7!
p

q

gives a bijection between the set of isotopy classes of primitive curves and Q[f1g. Now the isotopy
classes of triangulations with a single vertex at the marked point correspond to the orbit of the triple�

1
0
; 0

1
; �1

1

�
under the action of SL.2;Z/ by Möbius transformations. Identifying R [ f1g with the

boundary of the Poincaré disc model of the hyperbolic plane and each triple with an ideal triangle gives
the well-known Farey tessellation.

Each triple .p0=q0, p1=q1, p2=q2/ contains precisely one fraction with even numerator, say p0=q0. Note
that the corresponding primitive element is in the kernel of �, whilst the other two are mapped to 1. The
normal curve resulting from our above procedure of assigning 0 or 1 to each edge, when applied to the
corresponding marked triangulation of the boundary, results in a normal curve of slope mp0 lq0 . We call
p0=q0 the even slope of the triple.

The dual 1–skeleton to the Farey tessellation is an infinite trivalent tree. Any two triangulations that
correspond to triangles sharing an edge in the tessellation are related by an edge flip. If one of the
triangulations corresponds to T@, then, as an operation on the triangulation T of M , one can layer a
tetrahedron � on T along the edge that is being flipped; see Figure 3. This results in a new triangulation
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Figure 2: The Farey tessellation. Each ideal triangle corresponds to an isotopy class of 1–vertex
triangulations of the torus. The ideal vertices are labelled with the slopes of the edges, and each
ideal triangle is labelled with its unique even slope. The base triangle is marked in green, and the
canonical triangles for the even slopes in yellow. Adjacent triangles differ by an edge flip.

T 0 D T [ � of M with the property that the isotopy class of the triangulation of the boundary has
changed. Since the trivalent tree is connected, one observes that all isotopy classes of triangulations of
@M can be realised as the induced triangulations of the boundary of M . In particular, every even slope is
an edge in some triangulation of the boundary of M . It remains to relate this information to triangulations
of M and boundary curves of properly embedded surfaces.
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Figure 3: Layering on a boundary edge adds a tetrahedron to the triangulation of M .

Each triangulation of @M allows three distinct flips, corresponding to the three edges of the ideal triangle
in the Farey tessellation. Layering a tetrahedron on the triangulation has the effect of changing the normal
surface S to a normal surface S 0 by adding a quadrilateral. If the corresponding ideal edge in the Farey
tessellation has endpoint at the even slope, then the layering adds a pinched annulus to S and maintains
its boundary slope. If the ideal edge does not have an endpoint at the even slope, then a punctured and
pinched Möbius strip (which we call a saddle) is added to S . Hence its Euler characteristic is lowered by 1,
and its slope changes to the even slope of the adjacent triangle in the Farey tessellation. Topologically, the
relationship between the surfaces is that for two of the three layerings, S is obtained from S 0 by deleting
a pinched annulus, whilst for the last, S is obtained from S 0 by performing a boundary compression. The
three possibilities are shown in Figure 4.

This completes the proof of the lemma, since starting with S , for every even slope, this constructs a
properly embedded surface with boundary that slope. This construction and our observations about the
Farey tessellation are key to the algorithm given in Theorem 15.

The inclusion map induces a homomorphism H1.@M;Z2/!H1.M;Z2/, which we precompose with
the natural map H1.@M;Z/!H1.@M;Z2/ to obtain ' WH1.@M;Z/!H1.M;Z2/. The next lemma
shows that the homomorphism in the hypothesis of Lemma 7 exists and is unique:

Lemma 8 We have H D im.' WH1.@M;Z/!H1.M;Z2//Š Z2.

It follows from the lemma that we may choose a basis .m2; l2/ of H1.@M;Z/ with the property that
'.m2/¤ 0D '.l2/. We say that the basis .m2; l2/ is a 2–torsion framing of @M and call m2 a 2–meridian
and l2 a 2–longitude.

First proof (geometric topology) First assume that H D im.' W H1.@M;Z/! H1.M;Z2// D f0g.
Let .m; l/ be any basis of H1.@M;Z/. Choose a sufficiently fine simplicial triangulation of M so that
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Figure 4: The three possible layerings on the boundary torus. Two add a pinched annulus to the
surface and do not change the boundary slope. The last adds a saddle and changes the boundary
slope according to the labelling of the associated ideal triangles in the Farey graph.

we may choose a simple closed curve L in the 1–skeleton in @M that is isotopic to l. Since '.l/D 0,
there is a 2–chain C in the 2–skeleton with @C DL. Since we are working with Z2 coefficients, C is an
assignment of 0 or 1 to each 2–simplex in the triangulation. We add a product collar to @M and add the
annulus L� Œ0; 1� to C . We let M and C denote the resulting manifold and chain again.

Each 1–simplex in the interior of M meets C in an even number of 2–simplices. Hence, away from the
vertices, we can resolve the 2–simplices in pairs to obtain a properly embedded but possibly singular
surface S 0 in M with the property that its singularities are contained in the set of interior vertices of the
triangulation of M . Now a small regular neighbourhood N of the union of all vertices meets S 0 in a
union of circles. Hence, we replace S \N with a union of discs, giving a properly embedded surface S

in M with @S DL.
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Since m meets l in a single point, the intersection pairing implies that '.m1/¤ 0 2H1.M;Z2/. But
this contradicts our hypothesis that H D f0g.

Hence H ¤ f0g. It now follows from Lemma 7 that the rank of H cannot be two, so it must be one.

Second proof (algebraic topology) First assume that H D im.' WH1.@M;Z/!H1.M;Z2//D f0g.
Glue a solid torus to M , resulting in a closed 3–manifold N . Since N is closed, the Euler characteristic
of N is zero and we have b1.N;Z2/D b2.N;Z2/. Consider the following part of the Mayer–Vietoris
long exact sequence in homology with Z2 coefficients:

� � � !H1.@M;Z2/!H1.M;Z2/˚H1.S
1
�D2;Z2/!H1.N;Z2/! � � � :

Since H D f0g, we have H1.N;Z2/ŠH1.M;Z2/. Now H D f0g also implies that there is a relative
Z2–chain in M that attaches to the meridian disc of the solid torus. The intersection pairing with the core
curve of the solid torus implies that the rank of H2.N;Z2/ is one larger than the rank of H2.M;Z2/. In
particular, b1.M;Z2/D b2.M;Z2/C 1.

Now consider the long exact sequence for the pair .M; @M / with Z2–coefficients. We obtain

0!H2.M;Z2/!H2.M; @M;Z2/!H1.@M;Z2/! 0:

Using Poincaré–Lefschetz duality and the universal coefficient theorem, we have

H1.M;Z2/ŠH 1.M;Z2/ŠH2.M; @M;Z2/ŠH2.M;Z2/˚H1.@M;Z2/

This gives b1.M;Z2/D b2.M;Z2/C 2, contradicting the calculation in the first paragraph.

Hence H ¤ f0g. It now follows from Lemma 7 that the rank of H is one.

Remark 9 The standard half-lives half-dies argument [Hatcher 2023, Lemma 3.5] implies for homology
with rational coefficients that one may choose a basis hm1; l1i D H1.@M;Z/ with the property that
m1 maps to an element of infinite order whilst l1 maps to an element of finite order under the inclusion
map to H1.M;Z/. In particular, l1 is uniquely determined up to sign, whilst m1 is only well defined
up to sign and a power of l1. We call l1 the homological longitude and m1 a homological meridian.

It is not necessarily the case that one may choose .m2; l2/ D .m1; l1/. To make this statement less
mysterious, we give a third proof of the lemma that does not appeal to a contradiction:

Third proof (geometric topology) Suppose the order of l1 is m in H1.M;Z/. The significance of
the order is that m1 maps to an element of the form amh 2 H1.M;Z/, where a generates a free Z

summand and h is a torsion element. A geometric interpretation of this algebraic relationship arises
from a construction due to Stallings [1961] that produces a properly embedded connected oriented
surface S in M with Œ@S �D l˙m

1 dual to the action of �1.M / on R associated with a homomorphism
�1.M /!H1.M;Z/!Z with a 7! 1. Moreover, S has exactly m boundary components, which implies
that all have the same induced orientation, and the meridian has algebraic intersection number ˙m with
the surface.
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Note that if one connects any two adjacent boundary components with a boundary parallel annulus, then
one obtains a (nonorientable) surface. In particular, if m is odd, then one may connect (possibly zero)
pairs of boundary components with annuli to obtain a properly embedded surface S in M with a single
boundary curve Œ@S �D l˙1

1 . In particular, m1 maps to a generator of the image and l1 is contained in
the kernel of ' WH1.@M;Z/!H1.M;Z2/. Hence we may choose m2 Dm1 and l2 D l1.

If m is even, the same construction of connecting boundary components in pairs results in a closed
nonorientable surface in M . Since m is the order of l1 in H1.M;Z/, there are two cases, depending on
whether '.l1/ maps to zero or not.

First assume that mD 2 and '.l1/ is the generator of a Z2–summand. Then there is a homomorphism
� W �1.M / ! Z2 with �.l1/ D 1. So then �. / D 0, where either  D m1 or  D m1l1. Now
Œ �D 0 2H1.M;Z2/ according to Lemma 7. It follows that we may choose m2 D l1 and l2 D  .

The remaining case is that '.l1/D 0. In this case, the construction from the first proof of the surface S

with Œl1�D Œ@S �D 0 2H1.M;Z2/ can be applied, and we let l2 D l1. Since m1 meets l1 in a single
point, '.m1/¤ 0 2H1.M;Z2/. So we let m2 Dm1.

We use the following terminology and notation for unoriented isotopy classes of nontrivial simple closed
loops on the boundary torus. Let ˛ 2 im.�1.@M /! �1.M //. Recalling the identification (2-1), consider
Œ˛� 2H1.@M;Z/. If Œ˛�Dm

p
2
l
q
2

is a nontrivial primitive class in H1.@M;Z/ with q � 0, then we call ˛
a slope. We may therefore identify a slope with an unoriented isotopy class of a nontrivial simple closed
loop on the torus. Conversely, each such unoriented isotopy class arises from a unique slope. A slope ˛
is an even slope if ˛ maps to zero in H1.M;Z2/. We remark that this is consistent with the terminology
concerning even slopes in the Farey construction in Lemma 7, and that the notion of an even slope is
independent of the chosen 2–torsion framing.

Given a surface S with connected boundary, we give @S the unique orientation that makes Œ@S � 2 �1.M /

a slope. Now Lemmas 7 and 8 imply:

Corollary 10 Let ˛ 2 im.�1.@M /! �1.M // be a slope. There is a properly embedded surface S in
M with Œ@S �D ˛ if and only if ˛ is an even slope.

The norm of an even slope ˛ is defined as

k˛k Dminf��.S/ j S is a properly embedded surface in M with Œ@S �D ˛g:

Since @M is incompressible, k˛k � 0 for all even slopes. We say that S is taut for ˛ if S is connected,
Œ@S �D ˛ and k˛k D ��.S/.

Remark 11 We emphasise here that the slope norm is defined on isotopy classes of simple closed
connected curves on the boundary of M , and that it gives the maximal Euler characteristic of a surface
with connected boundary of this slope. A related approach, which we do not take, would be to also
consider surfaces with multiple boundary components.
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The slope norm of M is defined as

kM k Dminfk˛k j ˛ is an even slopeg:

Each even slope ˛ satisfying k˛k D kM k is called a minimising slope for M .

We will use key results of Jaco and Sedgwick [2003, Proposition 3.7 and Corollary 3.8]. We require a
few definitions in order to state them. We refer readers unfamiliar with the concepts in normal surface
theory that are mentioned here to either of [Jaco and Rubinstein 2003; Jaco and Sedgwick 2003].

The boundary curves of a normal surface S form a collection of normal curves on @M . It is shown in
[Jaco and Sedgwick 2003] that two normal curves are normally isotopic with respect to T@ if and only if
they are isotopic on @M , and that a normal curve is trivial if and only if it is vertex linking. It follows
that we can identify a slope with the normal isotopy class of a nontrivial normal curve on the torus. For a
collection C of pairwise disjoint normal curves on the torus containing at least one nontrivial component,
the slope of C is the isotopy class of a nontrivial component. Two slopes are complementary if their
Haken sum is a collection of trivial curves.

Jaco and Sedgwick [2003, Proposition 3.7] show that if two normal surfaces are compatible and meet
@M in nontrivial slopes, then these slopes are either equal or complementary. This allows the possibility
that some or all boundary curves of a normal surface are trivial. The projective solution space of normal
surface theory is denoted by P.T /. Given a normal surface S , its carrier is the unique minimal face
C .S/�P.T / that contains the projectivised normal coordinates of S .

Proposition 12 [Jaco and Sedgwick 2003, Corollary 3.8] Let M be an orientable compact connected
3–manifold with @M a single torus. Suppose T is a triangulation of M that restricts to a one-vertex
triangulation of @M . Suppose S is a normal surface and @S ¤ 0. Assume also that @S contains at least
one essential curve. There are at most two slopes (complementary ones) for all surfaces in the carrier
C .S/�P.T /.

Lemma 13 Let M be an orientable compact irreducible 3–manifold with @M a single incompressible
torus. Let T be a 0–efficient triangulation of M and let ˛ 2 im.�1.@M /! �1.M // be an even slope. If
there is an incompressible and @–incompressible surface S in M with Œ@S �D ˛ and �.S/D�k˛k, then
there is a fundamental surface F of T with Œ@F �D ˛ and �.F /D�k˛k.

Proof Let S be an incompressible and @–incompressible surface S with Œ@S �D ˛ and �.S/D�k˛k.
Since M is irreducible and has incompressible boundary, we can isotope S to be a normal surface. If S

is not fundamental, then S is a sum of fundamental surfaces. Now S has boundary a single curve. It
follows from Proposition 12 that there is only a single summand, F , with nonempty boundary and all
other summands are closed normal surfaces. To see this, note that otherwise S would have disconnected
boundary or a trivial curve in the boundary, whence Œ@F � D Œ@S � D ˛. Since �.S/ D �k˛k, we have
�.F /� �.S/. Since Euler characteristic is additive under Haken sums and the triangulation is 0–efficient,
this forces �.F /D �.S/.
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Corollary 14 Let M be an orientable compact irreducible 3–manifold with @M a single incompressible
torus. Let T be a 0–efficient triangulation of M . Then ˛ is a minimising slope for M if and only if there
is a fundamental surface F of T with Œ@F �D ˛ and �.F /D�kM k.

Proof Suppose ˛ is a minimising slope for M . Then there is a surface S in M with Œ@S � D ˛ and
�.S/D�kM k. Since kM k is minimal, there is no surface in M with a single boundary component and
larger Euler characteristic than S . Hence S is incompressible and @–incompressible. The result therefore
follows from Lemma 13.

The above corollary gives an algorithm to compute kM k and the set of all minimising slopes. This can
be improved to compute the norm of every even slope:

Theorem 15 Let M be an orientable compact irreducible 3–manifold with @M a single incompressible
torus. Suppose T is a 0–efficient triangulation of M , and .m2; l2/ a 2–torsion framing of @M .

There is an algorithm that , upon input T with a 2–torsion framing and an even slope , computes the norm
of this slope.

Proof Let ı be an even slope and S be a taut surface for ı. Hence S has a single boundary curve of
slope ı, is incompressible, and satisfies kık D ��.S/. If S is not @–incompressible, we can perform
boundary compressions on S until we have an incompressible and @–incompressible surface. Denote the
resulting sequence of surfaces S D S0, S1; : : : ;Sn with boundary slopes ı D ı0; ı1; : : : ; ın, where Sn

is an incompressible and @–incompressible surface, and Si is obtained from Si�1 by a single boundary
compression. In particular, �.Si/D �.Si�1/C 1.

Let ıi be the slope of Si . Since S D S0 is a taut surface for ı0, it follows inductively that Si is a taut
surface for ıi , since otherwise reversing the process of boundary compressions by adding saddles to a taut
surface would result in a surface of higher Euler characteristic. It now follows from Lemma 13 that Sn is
isotopic to a fundamental surface with respect to the 0–efficient triangulation T .

A priori, there are infinitely many possibilities for the slope ı1 that result from a boundary compression
on S0, as can be seen from the Farey tree described in Figure 2. However, the facts that we have a
sequence of boundary compressions terminating at a fundamental surface (and hence at one of only a
finite list of slopes) and that the set of boundary slopes can be organised via the trivalent tree that is the
dual 1–skeleton of the Farey tessellation, makes the problem of determining �.S/ finite.

In order to compute the norm of the given even slope ı, we first compute the (finite) set of all fundamental
surfaces. This is equivalent to enumerating a Hilbert basis on the projective solution space. Amongst
these, we select the surfaces with connected boundary. Denote these surfaces by Fi and their slopes by ˛i .
We remark that Fi may not be taut for ˛i . For all the surfaces in the list that have the same slope, we
only keep one of maximal Euler characteristic.

Consider the Farey tessellation associated with the framing .m2; l2/. Recall that the dual 1–skeleton is an
infinite trivalent tree. We use this to define distances between ideal triangles (equivalently, isotopy classes
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of 1–vertex triangulations). For every slope, there are infinitely many ideal triangles with a vertex at this
slope. We canonically (but arbitrarily) choose, for each slope ˛i of a fundamental normal surface Fi , the
ideal triangle �.˛i/D .˛i ; ˇi ; i/ that is at shortest distance from the base triangle

�
1
0
; 0

1
; �1

1

�
. This is

characterised by the relationship ˛i D ˇi ˚ i in Farey addition (whereby numerators and denominators
are simply added). Note that the set of all ideal triangles with ˛i as an ideal vertex corresponds to an
infinite path in the dual tree; see Figure 9 for a number of these infinite paths in the case where ˛i is an
integral even slope.

The effect of a boundary compression on the slope of a surface is exactly one step in the dual tree between
triangles with distinct even slopes. The reverse step is the addition of a saddle. Hence the sequence
S DS0, S1; : : : ;Sn described above corresponds to a path without backtracking between �.ı0/ and �.ın/
in the dual tree. The difference �.Sn/��.S0/ is the number of edges in this path that have endpoints in
triangles of different even slopes. This difference is well defined since the dual 1–skeleton of the Farey
tessellation is a tree.

Given even slopes ˛ and ˇ, let d.˛; ˇ/ be the number of edges in the shortest path between �.˛/ and
�.ˇ/ that have endpoints in triangles of different even slopes. Note that this is independent of the choice
of �.˛/ and �.ˇ/ as triangles with those even slopes. It follows that

kık D ��.S/Dmin
Fi

f��.Fi/C d.˛i ; ı/g:

The proof leads to the following algorithm:

Algorithm 16 Compute the norm of a given even slope.

Input:
(1) T , a 0–efficient triangulation of M

(2) .m2; l2/, a 2–torsion framing of @M
(3) p=q, an even boundary slope
compute fundamental surfaces of T

for S fundamental surface with connected boundary do
compute boundary slope of S with respect to .m2; l2/

if boundary slope already in Farey tessellation data structure then
update normDmin.norm;��.S/)

else
insert boundary slope and norm into Farey tessellation data structure

end if
end for
insert p=q into boundary slope into Farey tessellation data structure
return minimum of (distance + norm) of p=q to boundary slopes in the Farey tessellation data structure
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Remark 17 (Farey tessellation data structure) In the proof, we have chosen to associate a canonical
triangle in the Farey tessellation with an even slope. In practice, one may use any triangle with the
slope, thus saving some computations. If the norms of many slopes are to be computed, then it would be
worthwhile to first set up a data structure containing the norm for each slope of a fundamental surface.

It is important to note that we do not have to deal with the infinite object that is the Farey tessellation, but
with a finite tree that is modelled on the dual 1–skeleton of the Farey tessellation. The nodes of our data
structure are those of the dual 1–skeleton corresponding to even boundary slopes realised as boundary
slopes of fundamental surfaces. Arcs are established between nodes along edges in the dual 1–skeleton
of the Farey tessellation. This is an efficient procedure thanks to the Euclidean algorithm. It may add
auxiliary nodes that are common to paths coming from different nodes. The arcs are assigned weights
equal to the number of edges in the dual 1–skeleton of the Farey tessellation that have endpoints in
triangles of different even slopes. With this setup, providing a query boundary slope amounts to inserting
this extra slope into the data structure (exactly as before), and computing weighted path lengths without
backtracking to all other nodes.

3 Crosscap number of knots

We now restrict our view to knot exteriors with the following special property. Suppose N is a closed
orientable 3–manifold, and K �N a knot with ŒK�D 0 2H1.N IZ2/.

Let �.K/ be an open regular neighbourhood of K. We assume that the exterior M D N n �.K/ is
irreducible and contains no embedded nonseparating torus and no embedded Klein bottle. For instance,
this is the case for any knot in N D S3, and it is the case for any hyperbolic knot in N, ie when M has a
complete hyperbolic structure of finite volume.

The knot K is trivial in N if there is a properly embedded disc in M that has nontrivial slope on @M . In
particular, K is nontrivial if and only if M has incompressible boundary.

The crosscap number c.K/ of a nontrivial knot K �N is defined by

c.K/Dminf1��.S/ j S is a nonorientable spanning surface for Kg:

The crosscap number of a trivial knot is defined to be zero. The subtle difference between crosscap number
and slope norm is that the crosscap number is not simply obtained by computing the minimal norm over
all slopes of spanning surfaces, since it also takes into account the orientability class of a taut surface.

3.1 Geometric framings and spanning surfaces

The closure of �.K/ is a solid torus, and the curve mg on @M bounding the meridian disc for this solid
torus is the geometric meridian for K. This information allows us to pass between .N;K/ and .M;mg/.

A spanning surface for K in N is an embedded connected surface S in N with @S D K. If S is a
spanning surface for K in N , then F D S \M has the property that @F has algebraic intersection
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number ˙1 with mg on the boundary torus (after choosing orientations for both curves). Conversely,
suppose F is a properly embedded surface in M with a single boundary component. If @F has algebraic
intersection number ˙1 with mg, then F extends to a spanning surface of K in N .

The condition that ŒK� D 0 2 H1.N IZ2/ implies that K has a (possibly nonorientable) spanning
surface. The intersection pairing with the meridian shows that mg maps to a nontrivial element of
im.H1.@M;Z/!H1.M;Z2//, and hence is a 2–meridian.

Recall the definition of a homological framing in Remark 9. In the setting here, it is more natural to
define a geometric framing that includes the class of the boundary of the meridian disc as a generator.

Geometric framing, I Suppose K has an orientable spanning surface S . Then the boundary of S is the
homological longitude of M and, due to the intersection pairing, the geometric meridian is a homological
meridian. In particular, K has an orientable spanning surface if and only if ŒK� D 0 2 H1.N IZ/. By
the discussion above, in this case, every nonorientable spanning surface has boundary slope of the form
m2k

g l1 (recall that we represent isotopy classes of unoriented curves by choosing a representative with
nonpositive longitudinal coordinates). Any orientable spanning surface can be turned into a nonorientable
spanning surface by attaching a saddle, and iteratively adding saddles shows that the set of all slopes of
spanning surfaces is precisely the set

S.K/D fm2k
1 l1 j k 2 Zg

for any homological meridian m1. Alternatively, one may define a geometric longitude lg D l1, and
hence

S.K/D fm2k
g lg j k 2 Zg

is the set of all boundary slopes of spanning surfaces. See Figure 9 for the subtree of spanning slopes
sitting inside the dual of the Farey tessellation.

Geometric framing, II Now suppose K has no orientable, but a nonorientable spanning surface S . This
is the case if and only if ŒK�D 0 2H1.N IZ2/ and ŒK�¤ 0 2H1.N IZ/. The “only if” direction follows
from the existence of S and the discussion above, and the “if” direction from the construction given in
the proof of Lemma 7. By the above, we have Œ@S �Dm2k0

1 l
q0
1 for some q0; k0 2 Z, q0 and 2k0 coprime,

and q0 > 0. Since this is isotopic to the core curve of �.K/, mg D mr0
1ls0
1, where 2k0s0 � q0r0 D˙1.

Each slope of a nonorientable surface is zero in H1.M IZ2/ and meets the geometric meridian once
algebraically. Again, by adding saddles to S , one can obtain all possible slopes that arise this way, and
we conclude that the slopes of all spanning surfaces are precisely the set

S.K/D fm2k
g .m2k0

1 l
q0
1/ j k 2 Zg:

To obtain a more pleasing description, we define a geometric longitude lg as follows. Fix a Euclidean
norm on H1.@M;Z/ with the property that kl1k D 1 and kmgk D 1. Then define lg to be a shortest
curve in S.K/. It then follows that

S.K/D fm2k
g lg j k 2 Zg:
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Figure 5: The figure-8 graphs and their orientations for the three types of essential normal curves.

Computing intersection numbers Suppose T is a triangulation of M with the property that the induced
triangulation T@ of @M is a two-triangle triangulation of the torus. The purpose of this section is to show
how to set up the equations to determine whether a given normal surface is a spanning surface.

Given a normal surface S with nonempty boundary, we obtain @S D c as a (not necessarily connected)
normal curve in T@. The normal curve c is connected if and only if the greatest common divisor of its
coordinates equals one. Hence S can only be a spanning surface if this is the case.

We assume that the geometric meridian mg is given as a normal curve with respect to T@. We now explain
how to compute the minimal number of intersections between the isotopy classes of any two essential
connected normal curves (such as mg and @S D c). This makes use of the fact that, on the torus, the
geometric and the algebraic intersection numbers of oriented curves coincide.

Represent the triangulation T@ as the identification space of a square with a diagonal and label the normal
coordinates, as in Figure 5. It was shown in [Jaco and Sedgwick 2003] that the normal coordinates
.x1;x2;x3/ of one triangle determine the normal coordinates in the second triangle, as indicated in
the figure. A connected essential normal curve contains no vertex linking curves, and hence its nor-
mal coordinates satisfy xi D 0 for at least one i 2 f1; 2; 3g. Again, we check that @S D c satisfies
this requirement.

It follows that an essential normal curve can be isotoped to be in the neighbourhood of a figure-8 graph
on the torus that is composed of four normal arcs. There are three such graphs, as shown in Figure 5. The
normal coordinates can be viewed as weights on the edges of this graph. It was observed in [Bachman
et al. 2016] that each essential normal curve can be given a canonical orientation which depends only
on which normal coordinate is zero. This in turn can be viewed as an orientation of the edges of the
corresponding figure-8 graph as shown in Figure 5.

In particular, the oriented intersection numbers between an oriented normal curve and two oriented edges
ev and eh of the triangulation T@ can be read off from the normal coordinates. We call them oriented edge
weights. Hence the intersection number of two essential normal curves can be computed as a determinant
in these oriented edge weights. With respect to the labelling shown in Figure 5, the normal coordinates
x D .x1;x2;x3/ result in the oriented edge weights .x2Cx3;x3/ if x1 D 0, .x3;x1Cx3/ if x2 D 0 and
.x2;�x1/ if x3 D 0. The intersection number between two oriented essential normal curves is then the
determinant of the 2�2 matrix with these oriented edge weights as columns. For example, if xD .0;x2;x3/

and y D .y1; 0;y3/, then the intersection number is .x2Cx3/.y1Cy3/�x3y3 D x2y1Cx2y3Cx3y1.
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The upshot of this discussion is that given a normal curve with respect to T@ that represents the meridian,
we have an algorithm to determine whether a normal surface is a spanning surface.

Efficient suitable triangulations One of the tools used in [Burton and Ozlen 2012] is the following
concept. We say that T is an efficient suitable triangulation of M if there is no normal 2–sphere with
respect to T , the induced triangulation T@ of the boundary has a single vertex, and the geometric meridian
is isotopic with a boundary edge. As in [loc. cit.], it follows easily from [Jaco and Rubinstein 2003,
Proposition 5.15 and Theorem 5.20] that if K is a nontrivial knot in N , then M has an efficient suitable
triangulation and that this can be constructed algorithmically from any triangulation of M . Namely, one
first constructs a 0–efficient triangulation of M . If one of the edges in the boundary is isotopic with
the geometric meridian, then we are done. Otherwise, we layer tetrahedra on the triangulation until
one of the edges is the geometric meridian. A minimal layering sequence can be determined from the
Farey tessellation. Now a 0–efficient triangulation has no normal 2–spheres. Consider a step in the
layering procedure. If the triangulation before layering a tetrahedron on the boundary has no normal
2–sphere, then so does the triangulation after layering a tetrahedron, since any normal surface that meets
the new tetrahedron in a disc has nonempty boundary. So it follows inductively that an efficient suitable
triangulation can be obtained from a 0–efficient triangulation.

Normalisation An excellent discussion of the procedure that constructs normal surfaces from properly
embedded surfaces transverse to a triangulation can be found in Matveev’s book [2007, Section 3.3.3].
See also [Burton and Ozlen 2012] for a similar discussion to what follows. Normalisation moves are
isotopies, removal of trivial components, compressions along circles of intersection of the surface with
triangles of the triangulation, or boundary compressions along discs that have part of their boundary in
the interior of boundary edges of the triangulation.

Suppose S is a properly embedded surface in M that is incompressible and transverse to the triangulation.
Since M is irreducible, any normalisation move that would result in a 2–sphere or properly embedded disc
split off from S can be avoided by a suitable isotopy of S that is supported in a regular neighbourhood
of a ball bounded by the 2–sphere or cobounded by the disc. In particular, this isotopy removes some
intersection points of S with the edges or some intersection circles of S with the triangles (possibly both).
Instead of a normalisation move of this type, we perform the associated isotopy. If S can be transformed
to a normal surface in this way, then we say that S normalises by isotopies.

The only normalisation moves that cannot be replaced by an isotopy are boundary compressions where
the boundary compression disc D is contained in a 3–simplex � of the triangulation and @D D  [  0

with the property that  is an arc contained in the interior of an edge e � @M of � and  0 is an arc
contained in S . Moreover, D n is contained in the interior of �. Note that such a boundary compression
decreases S \ e by two points and leaves the intersections with all other boundary edges unchanged. The
normalisation procedure may involve multiple boundary compressions. The upshot of this discussion is
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that if S meets one boundary edge in a single point, then this is also true of any surface obtained from S

by applying the normalisation procedure (with or without the modification of using isotopies).

3.2 Crosscap number via suitable triangulations

Theorem 1, which is proved in this section, is a result about the crosscap number of certain knots in closed
3–manifolds, which, in particular, gives an algorithm to compute the crosscap number of an arbitrary knot
in S3. The result requires the use of efficient suitable triangulations, as defined in the previous section.
Theorem 3 in Section 3.3 is the equivalent result for arbitrary 0–efficient triangulations. Both results
share Lemma 19, which is why forward references to Theorem 3 and Section 3.3 appear in this section.

The proof of Theorem 1 shows that the following algorithm to compute the crosscap number is correct:

Algorithm 18 Compute the crosscap number of the knot K in the 3–manifold M , satisfying the
conditions of Theorem 1.

Input:
(1) T , an efficient suitable triangulation of M with boundary T@

(2) m, a meridian of K represented by an edge of T@

compute S0, the set of fundamental surfaces of T

compute S1 D fS 2 S0 j @S \mD 1g, the set of spanning fundamental surfaces
compute xDmaxf�.S/ j S 2 S1g, maximum Euler characteristic of all spanning fundamental surfaces
if x D 1 then

return c.K/D 0

end if
if x D 0 then

return c.K/D 1

end if
compute S2 D fS 2 S1 j �.S/D xg, the set of maximal Euler characteristic spanning fundamental
surfaces
if S2 contains nonorientable surface then

return c.K/D 1�x

else
return c.K/D 2�x

end if

Proof of Theorem 1 Let So be an orientable spanning surface of maximal Euler characteristic and Sn be
a nonorientable spanning surface of maximal Euler characteristic. Then c.K/Dmin.1��.Sn/; 2��.So//.
If there is no orientable spanning surface, then c.K/D 1��.Sn/. The definitions imply that c.K/ �

min.A;B/, since any orientable spanning surface can be turned into a nonorientable spanning surface by
adding a saddle appropriately.
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Both So and Sn are incompressible due to the maximality condition on the Euler characteristic.

Since @M is a torus and So is orientable, this also implies that So is @–incompressible. We may therefore
assume that So is normal in M . By [Jaco and Sedgwick 2003, Corollary 3.8], two compatible normal
surfaces with nonempty boundary either have the same slope (and hence their sum has at least two
boundary curves) or complementary boundary curves (and hence their sum has boundary containing a
trivial curve). Therefore only one of the fundamental surface summands, Go, yielding So has nonempty
boundary and @So D @Go. Since Euler characteristic is additive and there are no normal 2–spheres,
�.So/� �.Go/. Since @So D @Go, Go is also a (not necessarily orientable) spanning surface.

If �.Sn/<�.So/, then Go must be orientable.1 Also, �.Sn/<�.So/ implies c.K/D2��.So/�1��.Sn/.
Since Go is an orientable spanning surface, �.Go/D �.So/, and therefore c.K/D 2��.Go/�B. Thus
c.K/D B.2

Hence assume �.Sn/� �.So/. In this case c.K/D 1��.Sn/ < 2��.So/.

Now Sn may not be @–incompressible. We use the following argument from [Burton and Ozlen 2012].
Since @Sn has algebraic intersection number one with the geometric meridian mg, we may isotope Sn in
M so that it meets the edge in T@ that represents mg in exactly one point. We now isotope Sn so that it
is transverse to the triangulation. This still meets mg in exactly one point. As noted above, any surface
obtained by applying the normalisation procedure to Sn results in a surface meeting mg in exactly one
point, and hence a spanning surface.

In particular, any nontrivial boundary compression involved in putting Sn into normal form results in
a spanning surface of larger Euler characteristic. Since �.Sn/ � �.So/, this surface must again be
nonorientable, which contradicts the maximality of the Euler characteristic of Sn. Hence Sn can be
normalised by isotopies. As above, we see that only one of the fundamental surface summands, Gn,
yielding Sn has nonempty boundary. Since Euler characteristic is additive, �.Sn/ � �.Gn/. Since
@Sn D @Gn, Gn is also a spanning surface.

We now have the following cases:

If �.Sn/ > �.So/, then Gn must be nonorientable. This forces �.Gn/D �.Sn/, and we have c.K/�A,
which implies c.K/DA< B.

If �.Sn/ D �.So/, then �.Go/ D �.Sn/ D �.So/ D �.Gn/. The proof is continued with Lemma 19,
where it is shown that there is at least one nonorientable fundamental spanning surface with this maximal
Euler characteristic. Hence c.K/DA< B.

Lemma 19 Suppose M and T are as in the hypothesis of Theorem 1 or Theorem 3. Also assume , in the
case of Theorem 3, that c.K/ <Z.

1See the proof of Theorem 5 for an argument that Go is always orientable if So is of least weight in its isotopy class.
2Note that in this case, we either have c.K/D B <A or c.K/D B DA. See Section 6 for examples of both cases.
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Suppose So is an orientable spanning surface of maximal Euler characteristic , and Sn is a nonorientable
spanning surface of maximal Euler characteristic. If �.Sn/D�.So/, then there is at least one nonorientable
fundamental spanning surface F with �.F /D �.Sn/D �.So/.

Proof We prove this by contradiction. We know that every nonorientable spanning surface of maximal
Euler characteristic is isotopic to a normal surface (since we either assume that the triangulation is suitable
or that c.K/ <Z). We also know (from the last paragraph in the proof of both Theorems 1 and 3) that
there is at least one fundamental spanning surface of Euler characteristic �.Sn/D �.So/. Suppose every
such fundamental spanning surface is orientable, and hence Sn is isotopic to a nontrivial Haken sum S of
normal surfaces. We then show that this implies that S must be orientable as well, a contradiction.

Here is the outline of our proof:

(1) Setup Let S be a nonorientable normal spanning surface with �.S/D �.Sn/ that is of least weight.

(2) Setting up the Haken sum for S We show that S DRCT , where T is a torus, R is connected
(incompressible), and no patch is a disc.

(3) R meets T an even number of times We show that R\T is an even number of essential curves on T .

(4) All components of R nT above T are annuli We show that any patch of R in the component of
M nT that does not contain @M must be a (separating) annulus.

(5) RCT is orientable We use the above statements to conclude that RCT must be orientable.

Setup Suppose x D �.Sn/D �.So/ is the maximum Euler characteristic of a fundamental spanning
surface. We assume that all fundamental spanning surfaces with maximum Euler characteristic are
orientable. Since K is nontrivial, none of these is a disc. Since there are no orientable spanning surfaces
of Euler characteristic 0, we can assume for the remainder of the proof that all orientable fundamental
spanning surfaces have strictly negative Euler characteristic.

We know that a nonorientable normal spanning surface S with �.S/ D x exists. Furthermore, we
may assume that S has least weight amongst all nonorientable normal spanning surfaces with Euler
characteristic x.

By hypothesis, S is not fundamental.

Setting up the Haken sum for S By Proposition 12, two compatible normal surfaces with nonempty
boundary either have the same slope (so their sum has at least two boundary curves) or complementary
boundary curves (so their sum has boundary containing a trivial curve). Hence only one of the fundamental
surface summands, F , yielding S has nonempty boundary and @F D @S . In particular, F is a spanning
surface for K and has negative Euler characteristic.

By hypothesis, T does not admit any normal spheres, and since M is irreducible with nonempty boundary
a torus it does not admit any embedded RP2. Hence every surface in the Haken sum giving S has
nonpositive Euler characteristic. Since F is a spanning surface and Euler characteristic is additive in Haken
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sums, the maximality of Euler characteristic x amongst all spanning surfaces forces �.F /D x, and all
other summands have Euler characteristic zero. Since F is a fundamental spanning surface and �.F /D x,
it follows that F is orientable. Since M contains no Klein bottles, all other summands are fundamental tori.

Note that removing any normal torus from any Haken sum with result S must produce an orientable
surface, since S is least-weight.

Let R be such an orientable surface, and let T be the missing torus such that RC T D S . There
are potentially many such decompositions, and we claim that for at least one of them R is connected.
Assume that we have RCT D S with R disconnected. Then R must consist of one spanning surface of
maximal Euler characteristic, and a number of tori. Since RCT D S is connected, all of these extra
torus components of R must intersect T . Pick one of these tori, denote it by T 0, and use the remaining
components of R to form the Haken sum R0 D .R n T 0/C T . By construction, S D R0 C T 0 and
R0\T 0 �R\T is a proper subset. Iterating this process eventually yields a decomposition S DRCT

with R connected.

Since R is an orientable spanning surface of maximal Euler characteristic, it is incompressible and
boundary incompressible.

As is customary when talking about Haken sums, we call the connected components of .R[T /n�.R\T /

patches. Every patch is a compact orientable subsurface of S with nonempty boundary. Since both R

and T are orientable, the patches are connected on S by annuli contained on the frontier of �.R\T /.
These are called the exchange annuli. The core curve of an exchange annulus is called a trace curve.
Note that a trace curve corresponds to the boundary curves of patches on both R and T that are joined by
the corresponding annulus.

The complementary annuli on the frontier of �.R\T / are the irregular annuli. Let  �R\T . Attaching
the exchange annuli to the patches is called a regular exchange at  , and attaching the irregular annuli to
the patches is called an irregular exchange.

Amongst all ways to write S DRCT , where R is an orientable normal spanning surface of maximal
Euler characteristic and T is a normal torus, we assume we have chosen one with the least number of
patches. Note that jR\T j ¤∅ as S is nonorientable.

No patch of S D RC T is a disc This follows almost verbatim from the proof of [Jaco and Oertel
1984, Lemma 2.1]. We repeat a slightly adapted version of the beginning of the proof here, as our setup
is slightly different. However, the endgame remains the same.

Suppose  �R\T and denote the two associated trace curves by  0 and  00. Suppose  0 bounds a patch
D0 that is a disc on S . Since a disc is 2–sided in M , there is an embedded disc D �M with interior
disjoint from S and boundary curve  00. Since S is incompressible, this implies that  00 also bounds a
disc D00 on S . Since D0 is a patch, D00 ª D0. We claim that D00 is not a patch.

If D0 �D00, then D00 is clearly not a patch.
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Figure 6: Cross section of the intersection of T and R together with the transverse orientation of
R and marked potential obstructions to orientability of the resolution realised by the Haken sum
S DRCT .

Hence assume that D0 ª D00. Then D0\D00 D∅. Perform an irregular exchange along  and regular
exchanges along all other curves in RCT . If an irregular annulus does not join D0 and D00, then we can
construct a 2–sphere in M that separates S , a contradiction since S is connected. Hence the union of
D0, D00 and an irregular annulus is an embedded 2–sphere in M . Now if both D0 and D00 are patches,
then we may perform a regular exchange along only  and no other component of R\T to obtain new
normal surfaces R0 and T 0 with S DR0CT 0. Moreover, R0 is isotopic with R and T 0 is isotopic with T .
So R0 C T 0 still satisfies our hypothesis on the Haken sum that R0 is an orientable normal spanning
surface of maximal Euler characteristic and T 0 is a normal torus. Now R0CT 0 has two patches fewer
than RCT , since D0 and D00 are now contained in patches. It follows that D00 is not a patch.

So in either case, we establish that D00 is not a patch. To conclude, we know that for each patch D0 that is a
disc there is an associated disc D00 on S which is not a patch and with the property that the boundary curves
of D0 and D00 are associated with the same curve in R\T . Now the construction and argument given in
the last four paragraphs in the proof of [loc. cit., Lemma 2.1] results in a surface of lower weight than S

and isotopic with S . Hence no patch is a disc, and in particular, no patch is of positive Euler characteristic.

Irregular exchanges Recall that we have established that R\T is a collection of essential curves on T

slicing up T into a set of annuli. Any such situation can be fully reconstructed from the schematic picture
shown in Figure 6, where the horizontal line represents the torus T , and the vertical lines represent R

slicing through T . Every possible Haken sum is then described by an orientation at each intersection for
how the Haken sum operates, and the transverse orientation for every sheet of R.

Suppose any nonempty subset of components of R\T are resolved via irregular exchanges, whilst all
other components are resolved via regular exchanges. This results in a surface that is not normal, has
nonempty boundary and is not necessarily connected. However, it contains a component C that is a
maximum Euler characteristic spanning surface. Since we have performed at least one irregular exchange,
we know that C is not a normal surface and hence normalises to a normal surface of lower weight than S .

We claim that C is orientable. This is the only place where we have different arguments given the
hypotheses of the theorems:
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First assume the hypotheses of Theorem 1. Since @C D @S , the surface C is a maximum Euler
characteristic spanning surface that meets the meridian edge in exactly one point and hence normalises
by isotopies. In particular, the resulting normal surface is again a spanning surface. The minimality of the
weight of S implies that this spanning surface (and therefore C ) is orientable.

Next assume the hypotheses of Theorem 3 and that c.K/ <Z. If C is nonorientable, then it normalises
by isotopies. But this contradicts the minimality of S . Hence C is orientable.

This proves the claim. It follows that if we perform at least one irregular exchange, then there is a
component C that is a maximum Euler characteristic spanning surface and that normalised to an orientable
spanning surface of maximal Euler characteristic. We will repeatedly make use of this observation.

R meets T an even number of times Since RCT is nonorientable and R and T are orientable, every
orientation-reversing loop in RCT must pass through patches of both R and T . Take one such loop
c �RCT that minimises the number of times it intersects the exchange annuli between patches of R

and T . We claim that c intersects each exchange annulus in at most one arc from one boundary component
to the other.

To see this, first note that if c intersects an exchange annulus in an arc going back to the same boundary
component we can simply isotope it out of the exchange annulus. This is a contradiction to the assumption
that c minimises intersections with exchange annuli.

If c intersects the same exchange annulus in more than one arc, take two such arcs that are next to each
other and isotope them into a small disc containing a section of the exchange annulus and a piece of R

and T on either side. Delete the two arcs meeting the disc and connect the four ends outside the exchange
annulus to obtain a curve c0 meeting the exchange annuli of RCT fewer times than c (see Figure 7).

We show that one component of c0 must still be orientation reversing. Referring to Figure 7, we start at
end 1, which can be connected to ends 2, 3 or 4.

� If it is connected to end 2, we immediately obtain a contradiction to the assumption that c is connected;
see Figure 7, first row.

� If it is connected to end 3, then end 2 must connect to end 4. Tracing transverse orientations through
both arcs and connecting them in the disc leaves us with no, one or two orientation-reversing components
of c0. We can now check that if neither or both components were orientation reversing, then c would have
been orientation preserving, which is a contradiction. Hence exactly one of them is orientation reversing,
a contradiction to the assumption that c intersects the exchange annuli of RCT a minimum number of
times; see Figure 7, middle row.

� If it is connected to end 4, then end 2 must be connected to end 3. Similarly to the case before, we
can trace orientations through c0, thereby checking all four choices. As before, in each case we obtain
contradictions to either c being orientation reversing or c having minimal intersection with the exchange
annuli of RCT ; see Figure 7, bottom row.
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Figure 7: Top row: 1 is connected to 2 and c is not connected. Middle row: 1 is connected to 3.
Two cases of 16 for choosing orientations on c near 1, 2, 3 and 4 are shown. The others follow by
flipping R and T , top and bottom, and direction of all arrows. Bottom row: 1 is connected to 4.
Again, only two out of 16 cases are shown and the others follow by symmetry.

Altogether it follows that c intersects every exchange annulus at most once.

Now assume that c is disjoint to the two exchange annuli coming from some component of R\T . If this
is the case, we can make an irregular exchange along that component and regular exchanges along all
other components of R\T . Then the resulting new surface still contains an orientation-reversing loop c,
and hence is nonorientable — a contradiction to S being least-weight, as explained above.

Next, assume that c intersects both exchange annuli coming from some component of R\T . Consider
the solid torus D2�S1 that is a regular neighbourhood of this component and contains the two exchange
annuli. Choose an open regular neighbourhood of the two exchange annuli on S . There is an isotopy of c
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on S that is the identity on the complement of this neighbourhood, and has the effect that the intersection of
c with these exchange annuli is contained in some disc DDD2�fxg. In D we now have a similar picture
as before, and we refer to Figure 7. Performing an annular exchange yielding a new surface .RCT /0 cuts
c open along two small arcs with ends 1, 2, 3 and 4. Connecting ends 1 and 3 and ends 2 and 4 through
the newly added annuli yields another curve c0 in the changed surface. An analysis of how orientations
can be traced on c0 results in an orientation-reversing loop, assuming that c was orientation reversing. It
follows that .RCT /0 must be nonorientable, a contradiction to the assumption that RCT is least-weight.

Altogether we conclude that c must meet exactly one of the two exchange annuli coming from a component
of R\ T for every such component. Running through c, we meet patches of R or T and exchange
annuli in an alternating fashion. Moreover, a patch of R, followed by an exchange annulus, must then be
followed by a patch of T and vice versa (ie c runs through patches of R and T in an alternating fashion
as well). In particular, c must run through an even number of exchange annuli. But since the number of
exchange annuli meeting c is in bijection to the components of R\T , we conclude that the number of
components of R\T must be even.

All patches of S on one side of T are annuli The Euler characteristic of S equals the sum of the
Euler characteristics of all patches on S . Since no patch is a disc, the Euler characteristic of any patch is
nonpositive. We already know that all patches of S contained on T are annuli. Since T is separating in M

we say that the component of M nT containing @M is below T and that the other component is above T .

Since jR\T j is even, we now perform (possibly irregular) exchanges on R\T so that we obtain a new
surface S 0 that is isotopic to a surface disjoint from T . This is achieved by alternating the exchanges
so that patches on R above T are joined via annuli on T with patches above T , and patches below T

with patches below T . This results in one surface, R0, below T and one surface, T 0, above T . As above,
�.R0/D �.S/, and this forces all patches that are not contained on R0 to be annuli.

RCT is orientable Every properly embedded annulus above T is separating in M nT , since otherwise
we have a nonseparating torus in M . Take an innermost annulus patch of S , ie a patch contained in a
component C of R nT with the property that the frontier of C bounds an annulus on T that does not
contain any components of R\T . There are four possibilities for how the Haken sum RCT connects
the patch on C with patches on T . One of them produces a separate connected torus component, and
hence contradicts the connectedness (least-weight) assumption for RCT (see Figure 8, top right). Two
solutions give us the opportunity to resolve the Haken sum in the opposite way on one of the crossings,
producing an extra torus component and not changing the nonorientability of the rest of the Haken sum
(see Figure 8, bottom row). This leaves us with the last option, which is an exchange of annuli between
the summands (see Figure 8, top left).

Given that all components of R nT on the side of M not containing @M are separating annuli, we can
iterate this argument stating that the entire Haken sum can be resolved this way. But then RC T is
disconnected, which is a contradiction.

Algebraic & Geometric Topology, Volume 24 (2024)



Slope norm and an algorithm to compute the crosscap number 4333

annular exchange possible annular exchange possible

RCT not connectedok

R

T

R

RR

RCT

RCT

RCT

RCT

RCT

RCT

TT

T

Figure 8: Resolving a separating annulus in all four possible ways.

We conclude that there is no nonorientable normal spanning surface S with �.S/D�.So/. This contradicts
our hypothesis that �.So/D �.Sn/ and the hypothesis that Sn is normal.

3.3 Crosscap number via arbitrary 0–efficient triangulations

A trade-off in the previous algorithm is that one cannot apply it to arbitrary 0–efficient or minimal
triangulations.

Even integral subtree With respect to the geometric framing .mg; lg/, construct the Farey tessellation.
We claim that the dual 1–skeleton restricted to all ideal triangles that are labelled with the slopes of
spanning surfaces is connected. These are precisely the ideal triangles with labels of the form 2k=1,
where k 2 Z. For each fixed k, these triangles correspond to an infinite path in the dual 1–skeleton. The
path corresponding to .2k � 2/=1 then connects to the path corresponding to 2k=1 through a single arc
to form what we call the even integral subtree of the dual 1–skeleton of the Farey tessellation, denoted
by Fe. A portion of this tree is shown in Figure 9.

In more detail, first suppose k > 0. There is a Farey triangle with vertices 1=0, 2k=1 and .2k � 1/=1.
This is since we can act by the element �

1 2k

0 1

�
on the base triangle with vertices 1=0, 0=1 and �1=1. Then flipping across the ideal edge Œ1=0; .2k�1/=1�

gives the triangle with vertices 1=0, .2k � 1/=1 and .2k � 2/=1. Travelling along the path corresponding
to .2k � 2/=1, we arrive at the triangle with vertices 1=0, .2k � 2/=1 and .2k � 3/=1. Hence inductively
we arrive at the base triangle with even slope 0=1.
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Figure 9: The even integral subtree Fe representing spanning slopes in the dual of the Farey
tessellation. Every spanning slope is represented by an infinite path of a given colour, and paths
are connected by a single saddle attachment (black arcs). Only a small portion of Fe is shown.

Now suppose k < 0. Then there is a Farey triangle with vertices 1=0, 2k=1 and .2k C 1/=1. This is
obtained by acting by �

1 2k

0 1

�
on the triangle with vertices 1=0, 0=1 and 1=1. Again, flipping across the ideal edge Œ1=0; .2kC 1/=1�

gives a triangle with even slope .2kC 2/=1. So inductively we arrive at the ideal triangle with vertices
1=0, 0=1 and �1=1, which shares an edge with the base triangle. This completes the proof that the even
integral subtree is connected.

For any slope p=q, we define its even integral subtree distance d.p=q;Fe/ to be the number of edges in
the shortest path between �.p=q/ and Fe that have endpoints in triangles of different slopes.

Proof of Theorem 3 It follows from the definitions that c.K/�A and c.K/� B. Note that if S is a
fundamental nonspanning surface for K with connected essential boundary, then adding d.@S;Fe/ saddles
according to the corresponding shortest path in the Farey tessellation gives a nonorientable spanning
surface of Euler characteristic �.S/� d.@S;Fe/ for K. Hence c.K/ � Z. So c.K/ � min.A;B;Z/,
and we need to show equality.

Let So be an orientable spanning surface of maximal Euler characteristic, and let Sn be a nonorientable
spanning surface of maximal Euler characteristic. We have c.K/Dmin.1��.Sn/; 2��.So//.
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As in the proof of Theorem 1, So is incompressible and @–incompressible, and hence may be normalised
using isotopies. As before, there is a fundamental surface Go with �.So/��.Go/ and @SoD @Go. Hence
Go is also a spanning surface. If �.Sn/ < �.So/, then Go must be orientable. This forces �.Go/D �.So/,
and we have c.K/D B.

Hence assume �.Sn/� �.So/. In this case c.K/D 1��.Sn/ < 2��.So/� B.

Note that Sn is incompressible, but Sn may not be @–incompressible.

Normalisation of Sn may involve a finite number of nontrivial boundary compressions resulting in surfaces
that are not spanning surfaces. Each nontrivial boundary compression increases Euler characteristic by
one. Suppose Sn normalises to the normal surface S 0n, and, topologically, the latter is obtained from the
former by performing k > 0 nontrivial boundary compressions. Then �.Sn/D �.S

0
n/� k. Now if S 0n is

not fundamental, then we obtain a fundamental surface Gn with @Gn D @S
0
n and �.S 0n/ � �.Gn/. The

maximality of �.Sn/ implies that �.S 0n/D �.Gn/ and k D d.@Gn;Fe/ since any surface obtained by
adding saddles to Gn is nonorientable (regardless of whether Gn is orientable or not). Hence

c.K/D 1��.Sn/D 1��.Gn/C d.@Gn;Fe/�Z;

and so c.K/DZ.

We may therefore assume that c.K/<min.B;Z/. So �.Sn/��.So/ and every nonorientable fundamental
spanning surface with maximal Euler characteristic �.Sn/ normalises by isotopies. As above, we obtain
a fundamental surface Gn with @Gn D @Sn and �.Sn/� �.Gn/.

If �.Sn/ > �.So/, then Gn must be nonorientable. This forces �.Gn/D �.Sn/, and we have c.K/�A,
which implies c.K/DA.

If �.Sn/ D �.So/, then �.Go/ D �.Sn/ D �.So/ D �.Gn/. The proof is continued with Lemma 19,
where it is shown that there is at least one nonorientable fundamental spanning surface with this maximal
Euler characteristic. Hence c.K/DA.

Remark 20 It is known from work by Clark [1978] that a knot in the 3–sphere has crosscap number
zero or one if and only if it is a .2; 2kC1/–cable of a knot for k 2Z. Hence, one corollary of Theorem 3
is that a given 0–efficient triangulation of a nontrivial knot complement in the 3–sphere is that of a
.2; 2kC1/–cable of a knot if and only if one of the fundamental surfaces is a Möbius strip.

4 Genus of knots

In our setting it is not difficult to recover a special case of a more general result of Schubert [1961] (which
was originally proved in the context of normal surfaces with respect to handle decompositions). Namely,
there is an algorithm to determine the genus of a knot using normal surface theory.

Proof of Theorem 5 Suppose So is an orientable spanning surface of maximal Euler characteristic.
Since @M is a torus and So is orientable, this also implies that So is @–incompressible. We may therefore
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assume that So is normal in M . Amongst all maximal Euler characteristic orientable normal spanning
surfaces, we choose a surface S of least weight.

By [Jaco and Sedgwick 2003, Corollary 3.8], two compatible normal surfaces with nonempty boundary
either have the same slope (and hence their sum has at least two boundary curves) or complementary
boundary curves (and hence their sum has boundary containing a trivial curve). Therefore only one of the
fundamental surface summands, F , yielding S has nonempty boundary and @S D @F .

Since Euler characteristic is additive and there are no normal 2–spheres, �.S/� �.F /. We also note that
the weight of F is strictly less than the weight of S unless S D F .

These two observations imply that if F is orientable then S D F , and hence S is fundamental.

Suppose that F is nonorientable. In this case, S DFCG is a nontrivial Haken sum with G ¤∅ a closed
normal surface. We give all patches of F CG the induced orientation from S . Since F is nonorientable,
there is a closed curve  in F\G where the induced orientations from S on the two patches on F meeting
in  do not agree. Since the Haken sum is orientable, it is also the case that the induced orientations on G

do not agree. It follows that if one performs an irregular exchange at  and regular exchanges at all other
intersection curves, then one obtains an orientable spanning surface with the same Euler characteristic
(and boundary) as S but which is not normal. Hence a normalisation of this surface will have lower
weight than S . This is a contradiction, and so F is indeed orientable.

5 Quadrilateral space

We now provide some results that allow us to obtain minimising slopes and crosscap numbers of knots
using computations in quadrilateral space.

We begin with some general observations that will then be adapted under varying hypotheses. We assume
that M is an orientable compact irreducible 3–manifold with @M a single incompressible torus, and that
T is a 0–efficient triangulation of M .

For a normal surface F , denote by ŒF �Q the normal Q–coordinates of F . If F is not a vertex linking
disc, then ŒF �Q¤ 0. If ŒF �Q¤ 0 is not fundamental, then we write ŒF �QD

P
ŒFi �Q, where the ŒFi �Q are

fundamental normal Q–coordinates (with possible repetitions), and each of the corresponding normal
surfaces Fi is connected and not a vertex link. Such an Fi is called a Q–fundamental surface. With
respect to standard coordinates, fFig is a compatible set of normal surfaces since triangle coordinates do
not affect compatibility, and each Fi is a fundamental normal surface that is not a vertex linking disc.

Let D be a vertex linking disc. Then F CkD D
P

Fi as a Haken sum of normal surfaces. The boundary
of Fi may consist of essential curves and trivial curves, only consist of trivial curves, or be empty.
Since the Fi are compatible normal surfaces, [Jaco and Sedgwick 2003, Corollary 3.8] implies that
essential curves of at most two different slopes appear in the Haken sum, namely the slope of @F and its
complementary slope (which depends on the triangulation of the boundary).
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Since the triangulation is 0–efficient, �.Fi/� 0. Let fFigD fGj g[fHng be a partition into two nonempty
sets. Then there are normal surfaces G and H with the property that none of their connected components
is a vertex linking disc, and integers k 0 and k 00 such that GCk 0DD

P
Gj and H Ck 00DD

P
Hn. Now

F C kD D
X

Fi D

X
Gj C

X
Hn DGCH C .k 0C k 00/D;

since vertex linking discs can be isotoped to be disjoint from a Haken sum. Similarly k�k 0Ck 00. Note that

�.G/D �.F /C .k � k 0� k 00/��.H /� �.F /;

since �.H / D
P
�.Hn/ � 0. We write k D Qk C Ok, where Ok is the total number of trivial boundary

components of the Fi . As in [loc. cit.], let �.@F / be the maximal normal arc coordinate of the slope @F .
We have that Qk equals �.@F / times the total number of essential boundary components of complementary
slope in the Fi . To see this, note that forming the Haken sum of normal surfaces with boundary slopes
@F and its complementary slope produces �.@F / copies of the trivial curve. In particular, Qk is a multiple
of �.@F /, and hence either Qk D 0 or Qk � �.@F /.

Suppose @F is a single essential boundary curve. Since @FCk@D consists of kC1D . QkC1/C Ok curves,
[loc. cit., Corollary 3.8] implies that the essential boundary curves of the surfaces fFig are 1C Qk=�.@F /

connected curves of the slope of F and Qk=�.@F / connected curves of the complementary slope.

In particular, if k D 0, then there is exactly one surface, say F1, with @F1 ¤ ∅. Hence we have F1

fundamental, @F1 D @F a connected essential curve, �.F1/ � �.F / (by choosing G D F1), and since
there are no vertex linking discs in the sum, F1 has lower weight than F unless F D F1. Also, F1 has
lower Q–weight than F unless F D F1. Here weight still refers to the number of intersections of a
normal surface with the 1–skeleton, and Q–weight is the total number of quadrilateral discs.

5.1 Minimising slopes

Proposition 21 Let M be an orientable compact irreducible 3–manifold with @M a single incompressible
torus. Suppose T is a 0–efficient triangulation of M .

Let S be a connected surface of maximal Euler characteristic amongst all properly embedded surfaces
in M with boundary a single essential curve on @M . Then there is a Q–fundamental surface F with
@F D @S and �.F /D �.S/.

Proof Suppose S is a surface of maximal Euler characteristic amongst all properly embedded surfaces
with boundary a single essential curve in M . Then S must be incompressible and @–incompressible, and
hence normalises by isotopies. Amongst all normal surfaces with a single essential boundary component
of the same slope as S and the same Euler characteristic as S , choose one of least weight. Call this surface
F (noting that F may not be isotopic with S ) and apply the preliminary observations. In particular, since
F is of least weight, either ŒF �Q is fundamental or k > 0.

So suppose k > 0. If Qk=�.@F / is odd, let fGj g be the subset of surfaces in fFig with slope complementary
to @F . If Qk=�.@F / is even (and hence 1C Qk=�.@F / is odd), let fGj g be the subset of surfaces in fFig
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with the same slope as @F . It follows that the surfaces in fGj g all have the same slope, and possibly some
trivial curves as boundary. Thus GC Ok 0D D

P
Gj , @G consists of an odd number of essential curves

(and may have some trivial curves), and Ok 0 is bounded above by the total number of trivial curves in the
boundaries of the Gj .

In particular, we may attach annuli to pairs of essential boundary components of G so that (after a small
isotopy) we obtain a properly embedded surface G0 with a single essential boundary component and
�.G0/D �.G/. Note that G0 may not be connected. Denote by G00 the component of G0 with boundary
containing the essential curve. Since the triangulation is 0–efficient and no component of G0 is a vertex
linking disc, each component of G0 has nonpositive Euler characteristic, and hence �.G00/� �.G0/. If
G00 has any boundary components that are trivial, we cap these off with disc, and denote the resulting
surface again by G00. This still satisfies �.G00/� �.G0/.

Similarly
P

Hn has boundary a family of parallel essential curves, and hence H C Ok 00D D
P

Hn,
where Ok 00 is bounded above by the total number of trivial curves in the boundaries of the Hn. We have
Ok 0C Ok 00 � Ok, which implies

F C . QkC Ok/D D F C kD D
X

Fi D

X
Gj C

X
Hn DGCH C . Ok 0C Ok 00/D:

If Qk > 0, then �.G00/��.G0/D�.G/D�.F /C. QkC Ok� Ok 0C Ok 00/��.H / >�.F /D�.S/, contradicting
the maximality of the Euler characteristic of S amongst all surface with boundary a single essential curve.

Hence Qk D 0. But then there is a unique surface in fFig with an essential curve in its boundary. Without
loss of generality, assume this is F1. If F1 only has one boundary component, then �.F1/� �.F / and
either the weight of F1 is less than that of F (which would be a contradiction) or FDF1 is Q–fundamental.
If F1 has more than one boundary component, then the other boundary components are trivial, and hence
we may cap them off with discs, obtaining a surface F 0 with @F 0 D @F and �.F 0/ > �.F / D �.S/,
contradicting the maximality of the Euler characteristic of S . Hence ŒF �Q is fundamental.

Corollary 22 Let M be an orientable compact irreducible 3–manifold with @M a single incompressible
torus. Suppose T is a 0–efficient triangulation of M . Then ˛ is a minimising slope for M if and only if
there is a Q–fundamental surface F of T with Œ@F �D ˛ and �.F /D�kM k.

The above corollary gives an algorithm to compute kM k and the set of all minimising slopes from the
Q–fundamental solutions. However, in the presence of incompressible and @–incompressible surfaces at
slopes other than the minimising slopes, we only obtain an upper bound on the norm of any slope if only
the Q–fundamental solutions and not all fundamental solutions are computed.

5.2 Crosscap number

This section gives a proof of Theorem 6. We organise the proof in three stages. It follows from the
previous section that the crosscap number can be computed from the Q–fundamental solutions if a
spanning slope is a minimising slope for M . This is immediate in the case where a nonorientable surface
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achieves the minimising slope (Corollary 23), and requires a little more effort when all these surfaces are
orientable (Proposition 24). The proof is then completed by showing that we can always compute the
crosscap number from the Q–fundamental solutions that are spanning surfaces.

Corollary 23 Let M be the exterior of a nontrivial knot K in a closed 3–manifold N with ŒK� D

0 2H1.N IZ2/. Suppose that M is irreducible and contains no embedded nonseparating torus and no
embedded Klein bottle. Let T be a 0–efficient triangulation of M and suppose that the coordinates for a
meridian for K on the induced triangulation T@ of @M are given.

Suppose that amongst the Q–fundamental surfaces with a single boundary component , the maximal Euler
characteristic is achieved by a nonorientable spanning surface S for K. Then c.K/D 1��.S/.

Proof Suppose So is an orientable spanning surface of maximal Euler characteristic, and Sn is a
nonorientable spanning surface of maximal Euler characteristic. Then c.K/Dmin.1��.Sn/; 2��.So//.

It follows from Proposition 21 that there is no spanning surface in M of larger Euler characteristic than
the surface S in the hypothesis. Hence �.So/� �.S/D �.Sn/, and therefore c.K/D 1��.S/.

In order to break up the proof of our main theorem, we offer the following improvement to the previous
corollary in the context of a 0–efficient and suitable triangulation. This result is an auxiliary step towards
our main result Theorem 6.

Proposition 24 Let M be the exterior of a nontrivial knot K in a closed 3–manifold N with ŒK� D
0 2H1.N IZ2/. Suppose that M is irreducible and contains no embedded nonseparating torus and no
embedded Klein bottle. Let T be a 0–efficient suitable triangulation of M .

Suppose that amongst the Q–fundamental surfaces with a single boundary component , the maximal Euler
characteristic is achieved by a spanning surface S for K. Then c.K/Dmin.A0;B0/, where

A0 Dminf1��.S/ j S is a nonorientable Q–fundamental spanning surface for Kg;

B0 Dminf2��.S/ j S is an orientable Q–fundamental spanning surface for Kg:

Proof Suppose So is an orientable spanning surface of maximal Euler characteristic, and Sn is a
nonorientable spanning surface of maximal Euler characteristic. The surface So (if it exists) is isotopic to
a normal surface. Since the triangulation is suitable, the same is true for Sn. We may therefore assume
that Sn and So are least-weight normal representatives amongst all normal spanning surfaces in the same
orientability class and with maximal Euler characteristic.

In the preliminary observation, let F be a normal spanning surface of maximal Euler characteristic. First
suppose Qk > 0. We let fGj g be the subset of surfaces in fFig with boundary curves of the same slope as F ,
and fHng be the complementary set. As in the proof of Proposition 21, we write GC Ok 0DD

P
Gj , where

Ok 0 is bounded above by the total number of trivial curves in the boundaries of the Gj and G does not contain
any vertex linking discs. Hence @G consists of Qk=�.@F /C 1 essential curves and some trivial curves.
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Similarly
P

Hn has boundary a family of Qk=�.@F / parallel essential curves of complementary slope and
some trivial curves, and we write H C Ok 00D D

P
Hn, where no component of H is a vertex linking disc

and Ok 00 is bounded above by the total number of trivial curves in the boundaries of the Hn. This implies

F C . QkC Ok/D D
X

Fi D

X
Gj C

X
Hn DGCH C . Ok 0C Ok 00/D:

Since Ok � Ok 0C Ok 00 and we assume Qk > 0, we have �.G/D �.F /C . QkC Ok � Ok 0� Ok 00/��.H / > �.F /,
and similarly �.H / > �.F /. Now either G or H has an odd number of essential boundary components,
and hence a connected component X with an odd number of essential boundary components. By
capping off trivial boundary components of X by discs and connecting essential boundary components in
pairs, we obtain a properly embedded surface X 0 with boundary a single essential simple closed curve,
and �.X 0/ � �.X / > �.S/. It follows that X 0 is not a spanning surface since F is a maximal Euler
characteristic spanning surface. For future reference we note that

�.X 0/��.X /��.H /��.F /C. QkC Ok� Ok 0� Ok 00/��.G/��.F /C Qk��.G/��.F /C�.@F />�.F /;

and @X 0 is a single curve of complementary slope to @F . We will analyse this in detail in the proof
of Theorem 6.

Note that Proposition 21 implies that there is a Q–fundamental surface Y of larger Euler characteristic than
�.F / and with a single boundary curve (which is possibly not of complementary slope). The existence of
Y contradicts our hypothesis that amongst the Q–fundamental surfaces with a single boundary component,
the maximal Euler characteristic is achieved by a spanning surface S for K.

Hence Qk D 0 and
F C OkD D

X
Fi

We may assume that the boundary curves of the Fi are pairwise disjoint since they are a single essential
curve and a finite number of trivial curves. There is exactly one surface, say F1, with @F � @F1. Now

�.F1/D �.F /C Ok �
X
i�2

Fi � �.F /C Ok:

If @F D @F1, then F1 is a spanning surface. Since F is a spanning surface of maximal Euler characteristic,
this implies Ok D 0 and �.F1/D �.F /. If @F1 also contains trivial curves, then we may cap these off with
discs to obtain a spanning surface F 0

1
with �.F 0

1
/ > �.F1/� �.F /, which is a contradiction.

Hence Ok D 0 and we have @F1 D @F and �.F1/D �.F /. So for every normal spanning surface F of
maximal Euler characteristic

F D
X

Fi ;

where the Fi are Q–fundamental and, without loss of generality, F1 is a normal spanning surface of
maximal Euler characteristic. In particular, for each i � 2, we have �.Fi/D 0 and @Fi D∅.

If �.Sn/ > �.So/, then F1 is nonorientable and c.K/D 1��.F1/DA0 < B0.

Similarly if �.So/ > �.Sn/, then F1 is orientable and c.K/D 2��.F1/D B0 �A0.

Algebraic & Geometric Topology, Volume 24 (2024)



Slope norm and an algorithm to compute the crosscap number 4341

Hence suppose �.So/D�.Sn/, and let FDSn. Again, if F1 is nonorientable, then c.K/D1��.F1/DA0.
Therefore suppose that amongst all Q–fundamental spanning surfaces there is no nonorientable surface
with Euler characteristic equal to �.Sn/. In particular

Sn D F1C

X
i�2

Fi ;

where F1 is orientable and
P

i�2 Fi is a closed surface of Euler characteristic zero, and hence a union
of separating tori. We are therefore in the setting of the proof of Lemma 19. The arguments therein
hinge on Sn being of least weight and equalling a Haken sum of the form F1C

P
i�2 Fi , but do not

depend on whether the Fi are fundamental. Hence we obtain a contradiction, and there must be a
nonorientable Q–fundamental spanning surface F 0 with Euler characteristic equal to �.Sn/. Therefore
c.K/D 1��.F 0/DA0 and we are done.

Proof of Theorem 6 There is only one place in the proof of Proposition 24 where we used the
hypothesis that, amongst the Q–fundamental surfaces with a single boundary component, the maximal
Euler characteristic is achieved by a spanning surface S for K.

Hence suppose F is a spanning surface of maximal Euler characteristic, and that there is a nonspanning
surface X 0 with a single boundary curve of complementary slope to @F and satisfying

�.X 0/� �.F /C Qk � �.F /C�.@F /:

Let  D @F and ? D @X 0. Since F is a spanning surface of maximal Euler characteristic, we have

�.F /� �.X 0/� d.?;Fe/

Hence
�.F /C d.?;Fe/� �.X

0/� �.F /C�. /;

and so

(5-1) d.?;Fe/� �. /:

This reduces our proof to a calculation in the Farey tessellation, with the aim of obtaining a contradiction
to the above inequality. The boundary slope of F is  Dm2m

g lg for some m 2 Z. The complementary
slope ? depends on the boundary pattern of the triangulation of @M .

There is p � 0 such that the oriented boundary edges represent the classes mg, mp
g lg and m

pC1
g lg. Hence

the signed edge weights of  with the three edges are

hmg;  i D 1; hmp
g lg;  i D p� 2m and hmpC1

g lg;  i D pC 1� 2m:

This determines the signed edge weights of  with respect to the framing, as shown in Figure 10. Using
the convention from Figure 5, we can compute the normal arc coordinates of  from this information. We
then compute the normal arc coordinates of ?, and hence the slope of ? with respect to our framing.
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mpl

mpC1l

p� 2m

pC 1� 2m

1

x1

x1

x2

x2

x3

x3

m

Figure 10: The boundary pattern and arc coordinates, and signed edge weights of  .

Since ? is not a spanning slope, we show below that p=1< ? < .pC 1/=1. Now exactly one of p=1

or .pC 1/=1 is a spanning slope. This implies that we can compute d.?;Fe/ as the saddle distance of
? to this spanning slope. Our proof is completed by showing that in each case, (5-1) cannot be satisfied.

We remark that at this point one could change the framing to simplify some of the notation, but we choose
not to, as it does not simplify the argument.

Case 1 First suppose that p� 2m� 0. Then the normal arc coordinates of  are .p� 2m; 1; 0/, and so
�. /Dmax.1;p� 2m/.

If p�2mD0, then the complementary slope has normal arc coordinates .1; 0; 1/, and hence ?Dm
pC2
g lg

is a spanning slope. This is a contradiction.

If p�2mD1, then the complementary slope has normal arc coordinates .0; 0; 1/, and hence ?Dm
pC1
g lg,

which again contradicts ? not being the slope of a spanning surface.

Hence p� 2m> 1 and so �. /D p� 2m. Then the complementary slope has normal arc coordinates
.0;p� 2m� 1;p� 2m/, and hence satisfies

hmg; 
?
i D 2p� 4m� 1; hmp

g lg; 
?
i D 2m�p and hmpC1

g lg; 
?
i D p� 2m� 1;

and so (switching to additive notation) we have

? D .2p2
� 2m.1C 2p//mgC .2p� 1� 4m/lg:

 ?

p�2m

2p�4m�1

p�2mC1

p�2mD 0

1 1 1

p�2m

p�2m

1

1

p�2m

p�2mD 1 p�2m� 2

2m�p

2m�p

1 1 1

1
1

1 1

1

1

�1

�1

�1�2

�2

2p�4m�1

p�2m�1

p�2m

p�2m

p�2m�1

p�2m�1

Figure 11: Normal coordinates of  and its complementary curve in the first case.
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To determine the distance to the even slope tree, we flesh out a part of the Farey tessellation. The continued
fraction expansion determines a path of edges to ? in the Farey tessellation. We compute:

2p2� 2m.1C 2p/

2p� 1� 4m
D pC

1

2C 1=.2m�p/
D pC Œ2; 2m�p�:

Note that, since p=1˚ .pC 1/=1D .2pC 1/=2 and

det
�

p 2pC 1

1 2

�
D�1;

there is a triangle � with vertices p=1; .2pC 1/=2 and .pC 1/=1. Let

j D
pC 1

1
˚ j

2pC 1

2
;

where j 2 f0; : : : ; j0g and j0 D p� 2m� 2. Note that

pC 1

1
D 0 > 1 > � � �> j0

> ? >
2pC 1

2
>

p

1
:

We have

j0
D

2p2� .2mC 1/.1C 2p/

2p� 3� 4m
:

Then since

det
�

2p2� .2mC 1/.1C 2p/ 2pC 1

2p� 3� 4m 2

�
D 1

and j0
˚ .2pC 1/=2D ?, there is a triangle � 0 in the Farey triangulation with vertices j0

; ? and
.2pC 1/=2. It follows from the expression for j , that there are j0 D p� 2m� 2 triangles between the
triangles � and � 0 with pivot around the common vertex .2pC 1/=2.

pC 1

1
D 0

2

1

j0�1

?

� � �

j0

2pC 1

1

p

1

pC 1

1
D 0

2pC 1

1

p

1

2

j0�1

?

j0

1

� � �

Figure 12: Relevant part of the Farey tessellation in the first case (not drawn to scale) if p is even
(left) and if p is odd (right). Even slopes and arcs adding saddles are marked in red.
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 ?

p�2m

p�2m pC2�2m

pC2�2m

p�2mC1

1

1

1

1 1

1

1 1

1

2

p�2m�1

p�2m�1

2m�p�1D 0

2m�p�1
2m�p�2

2m�p�2

2m�p�1

2m�p�1D 1 2m�p�1� 2

1

1

1

1

1

11

1

4m�2p�3

4m�2p�3

2m�p�1

Figure 13: Normal coordinates of  and its complementary curve in the second case.

If p is even d.?;Fe/D j0=2C 1D .p� 2m/=2. Hence

p� 2m

2
D d.?;Fe/� �. /D p� 2m:

This is impossible since p� 2m> 1.

If p is odd d.?;Fe/D .j0� 1/=2C 1D .p� 2m� 1/=2. Hence

p� 2m� 1

2
D d.?;Fe/� �. /D p� 2m:

This is also impossible since p� 2m> 1.

Case 2 Suppose that p�2m< 0, or equivalently 2m�p � 1. Then the normal arc coordinates of  are
.2m�p� 1; 0; 1/, and so �. /Dmax.1; 2m�p� 1/.

If 2m�p D 1 then ? Dm
pC1
g lg is a spanning slope. This is a contradiction.

If 2m�p D 2 then ? Dm
p
g lg is a spanning slope. This is a contradiction.

Hence 2m�p � 3 and so �. /D 2m�p�1. Then the complementary slope has normal arc coordinates
.0; 2m�p� 1; 2m�p� 2/, and hence we have

hmg; 
?
i D 4m� 2p� 3; hmp

g lg; 
?
i D pC 2� 2m and hmpC1

g lg; 
?
i D 2m�p� 1:

This gives (again shown in additive notation)

? D .2m.1C 2p/� 2.pC 1/2/mgC .4m� 2p� 3/lg:

Now
? D pC 1C

1

�2C 1=.2m�p� 1/
D pC 1C Œ�2; 2m�p� 1�:

Let
j D

p

1
˚ j

2pC 1

2

for j 2 f0; : : : ; j0g, where j0 D 2m�p� 3. In particular,

j0
D

4mpC 2m� 6p� 2p2� 3

4m� 2p� 5
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and we have
pC 1

1
>

2pC 1

2
> ? > j0

> � � �> 2 > 1 > 0 D
p

1
:

We observe that ? D j0
˚ .2pC 1/=2 and that

det
�

4mpC 2m� 6p� 2p2� 3 2pC 1

4m� 2p� 5 2

�
D�1;

and so there is a triangle in the Farey tessellation with vertices ?, j0
and .2pC 1/=2. As above, this

allows us to compute the slope distance of ? to the nearest spanning slope from the triangles pivoting
about .2pC 1/=2.

If p is even d.?;Fe/D .j0� 1/=2C 1D .2m�p� 2/=2. Hence

.2m�p� 2/=2D d.?;Fe/� �. /D 2m�p� 1:

This is impossible since 2m�p � 3.

If p is odd d.?;Fe/D j0=2C 1D .2m�p� 1/=2. Hence

2m�p� 1

2
D d.?;Fe/� �. /D 2m�p� 1:

This is also impossible since 2m�p � 3.

Since in each case the existence of X 0 with complementary slope to @F gives a contradiction to the
maximality of �.F / amongst all spanning surfaces, this completes the proof.

pC 1

1
2pC 1

2

j0

1

� � �

2

j0�1

?

p

1
D 0

2

p

1
D 0

2pC 1

2

pC 1

1

j0

� � �

1

j0�1

?

Figure 14: Relevant part of the Farey tessellation in the second case (not drawn to scale) if p is
even (left) and if p is odd (right). Even slopes and arcs adding saddles are marked in red.
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6 Implementation and computational results

According to the KnotInfo database [Livingston and Moore 2021], crosscap numbers are known for all
knots with fewer than 10 crossings due to work of [Burton and Ozlen 2012; Kindred 2020; Murakami and
Yasuhara 1995; Hirasawa and Teragaito 2006; Teragaito 2004]. But there are 5 knots with 10, 96 knots
with 11, and 668 knots with 12 crossings for which only bounds have been known for the crosscap number.

Here we present 196 crosscap numbers of knots, for which crosscap numbers were previously unknown.
This includes all five such 10–crossing knots, 45 of the missing 96 crosscap numbers for 11–crossing
knots, and 146 of the missing 668 crosscap numbers for 12–crossing knots. As a result, crosscap numbers
for all knots up to and including ten crossings are now known.

6.1 Implementation

Our implementation uses out-of-the-box Regina functions. It is based on Proposition 24, rather than the
stronger Theorem 6, because we were also interested in the Euler characteristic of nonspanning surfaces
with connected boundary.

Algorithm 25 Compute crosscap numbers using Q–coordinates and Proposition 24.

Input:
(1) T , a 0–efficient suitable triangulation of M with boundary T@

(2) m, a meridian of K represented by an edge of T@

compute S0, the set of Q–fundamental surfaces of T

compute S1 D fS 2 S0 j @S ¤ ∅ is connected and nontrivialg, Q–fundamental surfaces with single
essential boundary component
compute B0 Dminf2��.S/ j S 2 S1 orientable; j@S \mj D 1g

compute A0 Dminf1��.S/ j S 2 S1 nonorientable; j@S \mj D 1g

compute N 0 Dminf1��.S/ j S 2 S1; j@S \mj> 1g

if N 0 <min.A0;B0/ then
return cannot determine crosscap number

else
return min.A0;B0/

end if

The main computational effort is in Regina’s enumeration algorithm for Q–fundamental surfaces [Burton
et al. 1999–2024], which in turn runs a Hilbert basis enumeration on a high-dimensional polytope.
The verification of the correctness of the input also takes up significant — but smaller amounts of —
computational resources. The first verification is the test for 0–efficiency of the triangulation. The second
verifies the meridian edge. Here we perform a Dehn surgery along this edge, and then use Regina’s
3–sphere recognition routine to check that the resulting 3–manifold is indeed the 3–sphere.
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DT c.K/ nOr or nSp DT c.K/ nOr or nSp DT c.K/ nOr or nSp

10157 4 �3 �5 �7 10159 4 �3 �5 �4 10164 4 �3 �3 �6

10158 4 �3 �5 �6 10163 4 �3 �5 �6

11n2 4 �3 �5 �6 11n59 4 �3 �5 �5 11n120 4 �3 �7 �6

11n3 4 �3 �3 �5 11n75 4 �3 �5 �6 11n121 4 �3 �5 �6

11n4 4 �3 �5 �6 11n76 3 �2 �7 �6 11n123 4 �3 �3 �7

11n7 4 �3 �5 �6 11n77 4 �3 �7 �5 11n124 4 �3 �5 �6

11n11 4 �3 �5 �7 11n78 3 �2 �7 �5 11n130 4 �3 �5 �8

11n22 4 �3 �5 �6 11n83 4 �3 �3 �6 11n134 4 �3 �3 �4

11n25 4 �3 �5 �6 11n86 4 �3 �5 �6 11n137 4 �3 �5 �5

11n29 4 �3 �3 �5 11n87 4 �3 �5 �7 11n158 4 �3 �7 �5

11n33 4 �3 �5 �6 11n89 4 �3 �5 �5 11n162 4 �3 �3 �6

11n39 4 �3 �3 �5 11n93 4 �3 �5 �5 11n164 4 �3 �5 �6

11n45 4 �3 �5 �6 11n100 4 �3 �3 �5 11n170 4 �3 �3 �6

11n47 4 �3 �7 �6 11n109 4 �3 �5 �6 11n172 4 �3 �5 �5

11n52 4 �3 �5 �7 11n112 4 �3 �5 �6 11n173 4 �3 �7 �6

11n54 4 �3 �5 �5 11n114 4 �3 �3 �7 11n175 4 �3 �5 �5

11n55 4 �3 �5 �6 11n117 3 �2 �3 �4 11n180 4 �3 �5 �6

Table 1: New 10– and 11–crossing crosscap numbers.

6.2 Computational results

Supporting material for [Burton and Ozlen 2012] contains a list of triangulations of all knot complements
up to 12 crossings that are 0–efficient, with real boundary and one of the boundary edges running parallel
to the meridian m (ie 0–efficient suitable triangulations). This list is available from the webpage of the
first author. Using this list of triangulations, we applied the implementation outlined in Section 6.1.

The results are summarised in Tables 1 and 2. Here “nOr” is the maximal Euler characteristic of a
nonorientable Q–fundamental spanning surface, “or” that of an orientable Q–fundamental spanning
surface and “nSp” that of a Q–fundamental nonspanning surface with single boundary component. As
an additional check, we also ran our algorithm for a larger collection of knots for which computations
are feasible.

We ran our computations on a machine with 2�24 Intel Xeon Gold6240R processors and 192GB of
memory. Computations were feasible for triangulations of up to 30 tetrahedra (on a standard laptop,
triangulations up to 27 tetrahedra can still be handled). We used roughly six months of CPU time to
obtain the data in Tables 1 and 2. We only tried Regina’s default choice of Hilbert basis algorithm.

6.3 Surfaces realising crosscap number

One interesting aspect of our algorithms is the relationship between our numbers A and B from Theorem 1
and A0 and B0 from Theorem 6. We have min.A;B/ D c.K/ D min.A0;B0/. Since Q–fundamental
surfaces are fundamental surfaces, A�A0 and B � B0.
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DT c.K/ nOr or nSp DT c.K/ nOr or nSp DT c.K/ nOr or nSp

12n1 5 �4 �5 �6 12n195 3 �2 �5 �6 12n423 4 �3 �5 �7
12n7 4 �3 �5 �5 12n203 4 �3 �5 �5 12n425 5 �4 �7 �6
12n8 4 �3 �7 �6 12n210 4 �3 �5 �6 12n430 4 �3 �3 �4
12n10 4 �3 �5 �6 12n211 4 �3 �5 �7 12n437 4 �3 �5 �6
12n11 4 �3 �3 �6 12n215 3 �2 �5 �6 12n442 4 �3 �3 �5
12n16 3 �2 �7 �5 12n220 4 �3 �7 �6 12n452 4 �3 �3 �6
12n19 3 �2 �5 �6 12n225 4 �3 �3 �8 12n469 3 �2 �5 �6
12n20 5 �4 �5 �6 12n229 4 �3 �7 �5 12n476 4 �3 �5 �5
12n24 4 �3 �5 �6 12n230 3 �2 �5 �5 12n479 4 �3 �3 �7
12n38 5 �4 �5 �7 12n237 4 �3 �5 �7 12n484 4 �3 �5 �6
12n40 5 �4 �7 �7 12n241 4 �3 �5 �5 12n494 4 �3 �7 �5
12n42 4 �3 �5 �5 12n247 3 �2 �3 �5 12n495 4 �3 �5 �7
12n43 4 �3 �7 �7 12n257 3 �2 �5 �5 12n509 4 �3 �7 �5
12n45 5 �4 �5 �6 12n261 4 �3 �7 �6 12n526 4 �3 �7 �7
12n51 4 �3 �3 �6 12n271 4 �3 �5 �6 12n535 4 �3 �3 �6
12n53 4 �3 �3 �7 12n274 4 �3 �3 �6 12n547 4 �3 �3 �7
12n56 4 �3 �5 �6 12n276 4 �3 �5 �6 12n552 3 �2 �5 �6
12n63 4 �3 �5 �6 12n278 4 �3 �3 �7 12n554 4 �3 �3 �7
12n64 4 �3 �7 �5 12n279 4 �3 �3 �7 12n566 4 �3 �3 �5
12n67 4 �3 �7 �6 12n280 4 �3 �5 �6 12n572 4 �3 �5 �5
12n68 4 �3 �7 �6 12n285 4 �3 �5 �6 12n573 4 �3 �5 �5
12n71 4 �3 �7 �4 12n290 4 �3 �5 �7 12n580 4 �3 �3 �6
12n73 4 �3 �5 �6 12n304 4 �3 �5 �6 12n585 4 �3 �5 �6
12n74 4 �3 �7 �6 12n308 4 �3 �5 �5 12n601 4 �3 �5 �6
12n78 4 �3 �3 �6 12n311 4 �3 �3 �6 12n605 4 �3 �7 �6
12n82 4 �3 �5 �7 12n312 4 �3 �5 �7 12n607 3 �2 �5 �6
12n84 4 �3 �5 �7 12n324 4 �3 �3 �7 12n610 4 �3 �7 �7
12n89 4 �3 �7 �7 12n327 4 �3 �7 �6 12n623 4 �3 �7 �6
12n93 4 �3 �7 �6 12n331 3 �2 �5 �4 12n630 4 �3 �5 �5
12n97 4 �3 �5 �6 12n334 4 �3 �3 �5 12n641 4 �3 �7 �6
12n104 4 �3 �7 �6 12n341 4 �3 �5 �6 12n642 4 �3 �3 �4
12n106 4 �3 �7 �5 12n342 4 �3 �3 �5 12n643 3 �2 �5 �7
12n116 4 �3 �5 �6 12n343 4 �3 �3 �5 12n650 4 �3 �3 �5
12n124 4 �3 �3 �6 12n345 4 �3 �7 �6 12n674 4 �3 �7 �6
12n129 4 �3 �5 �6 12n354 4 �3 �5 �5 12n688 4 �3 �9 �6
12n134 4 �3 �7 �5 12n355 3 �2 �5 �5 12n699 4 �3 �3 �6
12n146 4 �3 �3 �6 12n359 4 �3 �3 �7 12n709 4 �3 �7 �5
12n150 4 �3 �7 �6 12n360 4 �3 �3 �6 12n718 4 �3 �5 �6
12n152 4 �3 �5 �6 12n362 4 �3 �5 �6 12n719 4 �3 �5 �6
12n154 4 �3 �5 �5 12n366 4 �3 �5 �6 12n726 4 �3 �3 �5
12n160 4 �3 �5 �6 12n377 4 �3 �5 �5 12n730 4 �3 �5 �6
12n162 4 �3 �5 �5 12n379 4 �3 �5 �6 12n739 3 �2 �7 �5
12n170 4 �3 �3 �6 12n381 4 �3 �3 �6 12n764 4 �3 �5 �5
12n179 4 �3 �5 �7 12n383 4 �3 �3 �5 12n797 4 �3 �3 �6
12n185 4 �3 �7 �5 12n388 4 �3 �5 �5 12n808 4 �3 �5 �5
12n187 4 �3 �7 �7 12n390 4 �3 �5 �6 12n824 4 �3 �5 �7
12n188 4 �3 �7 �6 12n397 4 �3 �5 �6 12n870 3 �2 �5 �5
12n190 4 �3 �7 �5 12n407 3 �2 �5 �5 12n884 4 �3 �3 �7
12n193 3 �2 �5 �6 12n418 3 �2 �7 �5

Table 2: New 12–crossing crosscap numbers.
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Our computations give rise to the following observations:

(1) A0 < B 0 and A0 DA �B �B 0 This is the most common case for small crossing knots. Smallest
examples are the trefoil and the figure-8 knot. Moreover, the gap between A0 and B0 can be arbitrarily
large, as can be seen from the torus knots T .2; 2kC 1/ for k � 1: the crosscap number of these knots
is 1, whereas the knot genus is k. In other words, we have A0 DAD 1< 2kC 1D B � B0.

(2) A0DB 0 and A0DADB DB 0 Here the crosscap number is realised by a @–compressible surface
obtained from a minimum-genus Seifert surface with a Möbius band attached, but the existence of a
@–incompressible nonorientable spanning surface realising it is not excluded. Smallest knots with this
property are 7a6 (74) and 8a18 (83). All such knots must necessarily have genus k and crosscap number
2kC 1. It is worthwhile to mention that 7a6 is known not to admit a @–incompressible nonorientable
spanning surface realising the crosscap number; see [Ichihara et al. 2002].

(3) A0 > B 0 and A0 �A �B DB 0 Interesting examples from our calculations are:

(a) The case A0 >AD B0 D B occurred for the 11–crossing knot 11a362 of genus one and crosscap
number three, where A0 D 4 > 3 D A D B D B0 for the suitable triangulation with Regina
isomorphism signature

uLLvMPvwMwAMQkcacfgihjmklnnrqstrqrtnkvjhavkbveekgjxfcvp:

In standard coordinates, fundamental normal surfaces realising the spanning punctured torus T

and a spanning nonorientable surface S of Euler characteristic �2 have complementary boundary
slopes, and �.@T / D 1 D �.@S/. In quadrilateral coordinates S CD D AC T , where A is a
fundamental boundary parallel annulus with boundary curves parallel to @S , and D is the vertex
linking disk. In particular, using the notation from Section 5, Qk D 1, Ok D 0, Fi DA, Gj D S and
Ok 0 D Ok 00 D 0.

(b) The case A0 DA> B D B0 occurred for the 11–crossing knot 11n139. This knot has genus one
and crosscap number three, but A0 DAD 4> 3D B D B0.

(4) For 112 knots we computed A, A0, B and B0, and observed B D B0.
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A cubical Rips construction

MACARENA ARENAS

Given a finitely presented groupQ and a compact special cube complexX with nonelementary hyperbolic
fundamental group, we produce a nonelementary torsion-free cocompactly cubulated hyperbolic group �
that surjects onto Q, with kernel isomorphic to a quotient of G D �1X and such that maxfcd.G/; 2g �
cd.�/� cd.G/� 1.

20F06, 20F67

1 Introduction

The Rips exact sequence, first introduced by Rips [1982], is a useful tool for producing examples of
groups satisfying combinations of properties that are not obviously compatible. It works by taking as input
an arbitrary finitely presented group Q, and producing as output a hyperbolic group � that maps onto Q
with finitely generated kernel. The “output group” � is crafted by adding generators and relations to a
presentation of Q in such a way that these relations create enough “noise” in the presentation to ensure
hyperbolicity. One can then lift pathological properties of Q to (some subgroup of) � . For instance,
Rips used his construction to produce the first examples of incoherent hyperbolic groups, hyperbolic
groups with unsolvable generalised word problem, hyperbolic groups having finitely generated subgroups
whose intersection is not finitely generated, and hyperbolic groups containing infinite ascending chains of
r–generated groups.

Our purpose here is to present a new variation of the Rips exact sequence. Our main result is:

Theorem 1.1 (Theorem 4.1) Let Q be a finitely presented group and G be the fundamental group of
a compact special (in the sense of [Haglund and Wise 2008]) cube complex X . If G is hyperbolic and
nonelementary, then there is a short exact sequence

1!N ! �!Q! 1;

where:

(i) � is a hyperbolic cocompactly cubulated group.

(ii) N ŠG=K for some K <G.

(iii) maxfcd.G/; 2g � cd.�/� cd.G/� 1. In particular , � is torsion-free.

© 2024 The Author, under license to MSP (Mathematical Sciences Publishers). Distributed under the Creative Commons
Attribution License 4.0 (CC BY). Open Access made possible by subscribing institutions via Subscribe to Open.
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Remark 1.2 By Agol’s theorem [2013], the group � obtained in Theorem 4.1 is in fact virtually special.

Many variations of Rips’ original construction have been produced over the years by a number of authors,
including Arzhantseva and Steenbock [2023], Barnard, Brady and Dani [Barnard et al. 2007], Baumslag,
Bridson, Miller and Short [Baumslag et al. 2000], Belegradek and Osin [2008], Bridson and Haefliger
[1999], Bumagin and Wise [2005], Haglund and Wise [2008], Ollivier and Wise [2007], and Wise [2003;
1998]. Below is a sample of their corollaries:

� There exist non-Hopfian groups with Kazhdan’s property (T) [Ollivier and Wise 2007].

� Every countable group embeds in the outer automorphism group of a group with Kazhdan’s
property (T) [Ollivier and Wise 2007; Belegradek and Osin 2008].

� Every finitely presented group embeds in the outer automorphism group of a finitely generated
residually finite group [Wise 2003].

� There exists an incoherent group that is the fundamental group of a compact negatively curved
2–complex [Wise 1998].

� There exist hyperbolic special groups that contain (nonquasiconvex) nonseparable subgroups
[Haglund and Wise 2008].

� Properties (T) and FA are not recursively recognisable among hyperbolic groups [Belegradek and
Osin 2008].

The groups in Rips’ original constructions are cubulable by [Wise 2004], as are the groups in [Haglund and
Wise 2008]; on the other extreme, the groups produced in [Ollivier and Wise 2007] and in [Belegradek and
Osin 2008] can have property (T), and so will not be cubulable in general; see [Niblo and Reeves 1997].

A notable limitation of all available Rips-type techniques is that the hyperbolic group � surjecting onto
Q will have cohomological dimension at most equal to 2. This is unsurprising, since, in a precise sense,
“most” hyperbolic groups are 2–dimensional; see [Gromov 1993; Ollivier 2005]. Moreover, examples
of hyperbolic groups having large cohomological dimension are scarce: Gromov [1987] conjectured
that all constructions of high-dimensional hyperbolic groups must utilise number-theoretic techniques,
and later on, Bestvina [2000] made this precise by asking whether for every K > 0 there is an N > 0

such that all hyperbolic groups of (virtual) cohomological dimension �N contain an arithmetic lattice
of dimension � K. Both of these questions have been answered in the negative by work of a number
of people, including Mosher and Sageev [1997], Januszkiewicz and Świątkowski [2003], and later on
Fujiwara and Manning [2010] and Osajda [2013], but flexible constructions are still difficult to come by.

Theorem 4.1 produces cocompactly cubulated hyperbolic groups containing quotients of arbitrary special
hyperbolic groups. While our construction particularises to Rips’ original result, it can also produce groups
with large cohomological dimension. Thus, it serves to exhibit a collection of examples of hyperbolic
groups that is new and largely disjoint from that produced by all other Rips-type theorems.
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Most versions of Rips’ construction, including the original, rely on some form of small cancellation. This
is what imposes a bound on the dimension of the groups thus obtained: group presentations are inherently
2–dimensional objects, and one can prove that the presentation complexes associated to (classical and
graphical) small cancellation presentations are aspherical.

We rely instead on cubical presentations and cubical small cancellation theory, which are intrinsically
higher-dimensional. Roughly speaking, cubical small cancellation theory considers higher-dimensional
analogues of group presentations: pieces in this setting are overlaps between higher-dimensional sub-
complexes, and cubical small cancellation conditions measure these overlaps. This viewpoint allows for
the use of nonpositively curved cube complexes and their machinery, and has proved fruitful in many
contexts, most notably in Agol’s proofs [2013; 2008] of the virtual Haken and virtual fibred conjectures,
which build on work of Wise [2021] and his collaborators [Bergeron and Wise 2012; Haglund and Wise
2012; Hsu and Wise 2015].

While many groups have convenient cubical presentations, producing these, or proving that they do satisfy
useful cubical small cancellation conditions, is difficult in general. Some examples are discussed in [Wise
2021; Arzhantseva and Hagen 2022; Jankiewicz and Wise 2022]. Other than these, we are not aware of
instances where explicit examples of nontrivial cubical small cancellation presentations are given, nor
of many results producing families of examples with some given list of properties. This note can be
viewed as one such construction, and can be used to produce explicit examples that are of a fundamentally
different nature to those already available.

Structure In Section 2 we present the necessary background on hyperbolicity, quasiconvexity and cubical
small cancellation theory. In Section 3 we state and prove Theorem 3.2, which is the main technical
result, and also state and prove some auxiliary lemmas. In Section 4 we give the proof of Theorem 4.1.
Finally, in Section 5 we review some standard material on the cohomological dimension of groups, and
analyse the cohomological dimension of � .

Acknowledgements I am grateful to Henry Wilton, Daniel Groves, and the referee for useful comments
and suggestions, and to Sami Douba and Max Neumann-Coto for stylistic guidance. The author was
funded by a Cambridge Trust & Newnham College scholarship.

2 Background

We utilise the following theorem of Arzhantseva [2001]:

Theorem 2.1 Let G be a nonelementary torsion-free hyperbolic group and H a quasiconvex subgroup of
G of infinite index. Then there exist infinitely many g 2G for which the subgroup hH;gi is isomorphic
to H � hgi and is quasiconvex in G.

Since cyclic subgroups of a hyperbolic group G are necessarily quasiconvex, one can repeatedly apply
Theorem 2.1 to produce quasiconvex free subgroups of any finite rank:

Algebraic & Geometric Topology, Volume 24 (2024)
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Corollary 2.2 If G is a nonelementary torsion-free hyperbolic group , then for every n 2N there exists a
quasiconvex subgroup Fn <G.

Recall that for a graph B , a subgraph A�B is full if, whenever vertices a1; a2 2A are joined by an edge e
ofB , e�A. In other words, A is the subgraph ofB induced byA0. A mapX!Y between cell complexes
is combinatorial if it maps cells to cells of the same dimension. An immersion is a local injection.

Definition 2.3 A local isometry ' W Y ! X between nonpositively curved cube complexes is a com-
binatorial map such that, for each y 2 Y 0 and x D '.y/, the induced map ' W link.y/! link.x/ is an
injection of a full subgraph.

A more visual way to think about local isometries is the following: an immersion ' is a local isometry
if, whenever two edges '.e/ and '.f / form the corner of a square in X , we have that e and f already
formed the corner of a square in Y .

A key property of local isometries is that they are �1–injective. It is then natural to ask which subgroups
of the fundamental group of a nonpositively curved cube complex can be realised by local isometries of
compact nonpositively curved cube complexes. In the setting of nonpositively curved cube complexes with
hyperbolic fundamental group, one large class of subgroups having this property is that of quasiconvex
subgroups. This is proved in [Haglund 2008], and collected in [Wise 2021, Proposition 2.31 and
Lemma 2.38], as presented below.

Definition 2.4 A subspace zY � zX is superconvex if it is convex and for every bi-infinite geodesic line L,
if L�Nr. zY / for some r > 0 then L� zY . A map Y !X is superconvex if the induced map between
universal covers zY ! zX is an embedding onto a superconvex space.

Proposition 2.5 Let X be a compact nonpositively curved cube complex with �1X hyperbolic. Let
H < �1X be a quasiconvex subgroup and let C � zX be a compact subspace. Then there exists a
superconvex H–cocompact subspace zY � zX with C � zY .

Proposition 2.6 Let X be a compact nonpositively curved cube complex with �1X hyperbolic. Let
H < �1X be a quasiconvex subgroup. Then there exists a local isometry Y !X with �1 Y DH .

2.1 Cubical small cancellation theory

Cubical presentations, cubical small cancellation theory, and many related notions were introduced in
[Wise 2021]. We recall them below.

Definition 2.7 A cubical presentation hX j fYigi consists of a connected nonpositively curved cube
complexX together with a collection of local isometries of connected nonpositively curved cube complexes
Yi

'i
�! X . In this setting, we shall think of X as a “generator” and of the Yi ! X as “relators”. The

fundamental group of a cubical presentation is defined as �1X=hhf�1 Yigii.

Algebraic & Geometric Topology, Volume 24 (2024)
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Associated to a cubical presentation hX j f'i W Yi ! Xgi there is a coned-off space X� obtained from
.X [fYi � Œ0; 1�g/=f.yi ; 1/� 'i .yi /g by collapsing each Yi �f0g to a point. By the Seifert–Van Kampen
theorem, the group �1X=hhf�1 Yigii is isomorphic to �1X�. Thus, the coned-off space is a presentation
complex of sorts for hX j fYigi. In practice, when discussing cubical presentations, we often have in
mind the coned-off space X�, rather than the abstract cubical presentation.

Remark 2.8 A group presentation ha1; : : : ; as j r1; : : : ; rmi can be interpreted cubically by letting X
be a bouquet of s circles and letting each Yi map to the path determined by ri . On the other extreme,
for every nonpositively curved cube complex X there is a “free” cubical presentation X� D hX j i with
fundamental group �1X D �1X�.

In the cubical setting, there are two types of pieces: wall-pieces and cone-pieces. Cone-pieces are very
much like pieces in the classical sense — they measure overlaps between relators in the presentation.
On the other hand, wall-pieces measure the overlaps between cone-cells and rectangles (hyperplane
carriers) — wall-pieces are always trivial in the classical case, since the square part of X� coincides with
the 1–skeleton of the presentation complex.

Definition 2.9 (elevations) Let Y !X be a map and yX !X a covering map. An elevation yY ! yX is
a map such that

(i) the composition yY ! Y !X equals yY ! yX !X , and

(ii) assuming all maps involved are basepoint preserving, �1 yY equals the preimage of �1 yX in �1 Y .

Notation 2.10 In the entirety of this text, a path � !X is assumed to be a combinatorial path mapping
to the 1–skeleton of X .

Definition 2.11 (pieces) Let hX j fYigi be a cubical presentation. An abstract contiguous cone-piece of
Yj in Yi is an intersection zYj \ zYi where either i ¤ j , or where i D j but zYj ¤ zYi . A cone-piece of Yj in
Yi is a path p! P in an abstract contiguous cone-piece of Yj in Yi . An abstract contiguous wall-piece
of Yi is an intersection N.H/\ zYi where N.H/ is the carrier of a hyperplane H that is disjoint from zYi .
To avoid having to deal with empty pieces, we shall assume that H is dual to an edge with an endpoint
on zYi . A wall-piece of Yi is a path p! P in an abstract contiguous wall-piece of Yi .1

A piece is either a cone-piece or a wall-piece.

Remark 2.12 In Definition 2.11, two lifts of a cone Y are considered identical if they differ by an element
of Stab�1X . zY /. This is in keeping with the conventions of classical small cancellation theory, where
overlaps between a relator and any of its cyclic permutations are not regarded as pieces. This hypothesis
lets us replace relators by their proper powers to achieve good small cancellation conditions in some cases.

1The “abstract contiguous cone-piece” and “abstract contiguous wall-piece” terminology comes from the fact that it is also
a priori necessary to consider “noncontiguous cone-pieces” and “noncontiguous wall-pieces”. However, [Wise 2021, Lemma 3.7]
shows that one can limit oneself to the analysis of contiguous pieces.
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The C.p/ and C 0.1=p/ conditions are now defined as in the classical case (making no distinction between
the two types of pieces when counting them). Namely:

Definition 2.13 A cubical presentation X� satisfies the C.p/ small cancellation condition if no essential
closed path �!X� is the concatenation of fewer than p pieces, and the C 0.1=p/ condition if, whenever
�! X� is a piece in an essential closed path � ! X�, we have that j�j < .1=p/j� j, where j�j is the
distance between endpoints of Q�� zX .

As in the classical case, if the fundamental group of X in a cubical presentation X� D hX j fYigi is
hyperbolic, sufficiently good small cancellation conditions lead to hyperbolicity. The following form of
[Wise 2021, Theorem 4.7] follows immediately from the fact that a cubical presentation that is C 0.1=˛/
for ˛ � 12 can be endowed with a nonpositively curved angling rule that satisfies the short innerpaths
condition when ˛ � 14 [Wise 2021, Theorem 3.32 and Lemma 3.70]:

Theorem 2.14 Let X� be a cubical presentation satisfying the C 0.1=p/ small cancellation condition for
p � 1

14
. Suppose �1X is hyperbolic and X� is compact. Then �1X� is hyperbolic.

Definition 2.15 A collection fH1; : : : ;Hrg of subgroups of a group G is malnormal provided that
H
g
i \Hj D 1 unless i D j and g 2Hi .

Compactness, malnormality and superconvexity will together guarantee the existence of a uniform bound
on the size of both cone-pieces and wall-pieces. This is the content of [Wise 2021, Lemmas 2.40 and 3.52],
which we recall below:

Lemma 2.16 Let X be a nonpositively curved cube complex with �1X hyperbolic. For 1� i � r , let
Yi !X be a local isometry with Yi compact , and assume the collection f�1 Y1; : : : ; �1 Yrg is malnormal.
Then there is a uniform upper bound D on the diameters of intersections g zYi \ h zYj between distinct
.�1X/–translates of their universal covers in zX .

Lemma 2.17 Let Y be a superconvex cocompact subcomplex of a CAT.0/ cube complex X . There
exists D � 0 such that for each n� 0, if I1�In!X is a combinatorial strip whose base 0�In lies in Y
and such that d..0; 0/; .0; n//�D, then I1 � In lies in Y .

Recall that a wallspace is a set X together with a collection of walls fWigi2I DW whereWi Df
 �
W i ;
�!
W ig

and
 �
W i ;
�!
W i �X for each i 2 I , and such that

(i)
 �
W i [

�!
W i DX and

(ii)
 �
W i \

�!
W i D∅.

Moreover, W satisfies a finiteness property: for every p; q 2X , the number of walls separating p and q,
denoted by #W.p; q/, is finite. The

 �
W i and

�!
W i above are the half-spaces of Wi .
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Once we have specified a cubical presentation, we will cubulate its fundamental group �1X� via Sageev’s
construction, which produces a CAT.0/ cube complex that is dual to a wallspace. We will assume the
reader is familiar with this procedure. Good references include [Sageev 1995; Chatterji and Niblo 2005;
Bestvina et al. 2014]. Cocompactness of the action on the dual cube complex will readily follow from
Proposition 2.18, which is a well-known result of Sageev [1997]. Properness is more delicate, and will
follow from Theorem 2.27 once we know that �1X� is hyperbolic, since in that case �1X� has no
infinite torsion subgroups.

Proposition 2.18 Let G be hyperbolic and fH1; : : : ;Hng be a collection of quasiconvex subgroups.
Then the action of G on the dual CAT.0/ cube complex C is cocompact.

Before stating Theorem 2.27, we need some definitions:

Definition 2.19 Let Y !X be a local isometry. AutX .Y / is the group of automorphisms  W Y ! Y

such that the diagram below is commutative:

Y Y

X

 

If Y is simply connected, then AutX .Y / is equal to Stab�1X .Y /.

Definition 2.20 A cubical presentation hX j Yi i satisfies the B.6/ condition if it satisfies:

(i) Small cancellation hX j Yi i satisfies the C 0.1=˛/ condition for ˛ � 14.

(ii) Wallspace cones Each Yi is a wallspace where each wall in Yi is the union
F
Uj of a collection

of disjoint embedded 2–sided hyperplanes in Yi , and there is an embedding
F
N.Uj / ! Yi of the

disjoint union of their carriers into Yi . Each such collection separates Yi . Each hyperplane in Yi lies in a
unique wall.

(iii) Hyperplane convexity If P ! Yi is a path that starts and ends on vertices on 1–cells dual to a
hyperplane U of Yi and P is the concatenation of at most seven pieces, then P is path homotopic in Yi
to a path P !N.U /! Yi .

(iv) Wall convexity Let S be a path in Yi that starts and ends with 1–cells dual to the same wall of Yi .
If S is the concatenation of at most seven pieces, then S is path-homotopic into the carrier of a hyperplane
of that wall.

(v) Equivariance The wallspace structure on each cone Y is preserved by AutX .Y /.

Historical Remark 2.21 In the setting of classical small cancellation theory, the B.2n/ condition was
defined in [Wise 2004]. Specifically, the “classical” B.2n/ condition states that for each 2–cell R in a
2–complex X , and for each path S ! @R which is the concatenation of at most n pieces in X , we have
jS j � 1

2
j@Rj. The classical B.2n/ condition is intermediate to the C 0.1=.2n// and C.2n/ conditions in
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the sense that C 0.1=.2n//D) B.2n/D) C.2n/. While not a perfect parallel with the notion considered
here, this notation is meant to suggest the fact that, in the classical setting, the B.6/ condition is sufficient
to guarantee the existence of a wallspace structure on X that leads to cocompact cubulability.

The B.6/ condition is extremely useful because it facilitates producing a wallspace structure on the
coned-off space X� by starting only with a wallspace structure (satisfying some extra conditions) on
each of the cones. This is done by defining an equivalence relation � on the hyperplanes of zX� as
explained below.

Definition 2.22 Let U and U 0 be hyperplanes in zX�. Then U � U 0 provided that, for some translate of
some cone Yi in zX�, the intersections U \Yi and U 0\Yi lie in the same wall of Yi . A wall of zX� is a
collection of hyperplanes of zX� corresponding to an equivalence class.

That this equivalence relation does in fact define a wallspace structure on X� when the B.6/ condition is
satisfied is the content of [Wise 2021, Section 5.f].

Definition 2.23 A hyperplane U is m–proximate to a 0–cube v if there is a path P D P1; : : : ; Pm such
that each Pi is either a single edge or a piece, v is the initial vertex of P1 and U is dual to an edge in Pm.
A wall is m–proximate to v if it has a hyperplane that is m–proximate to v. A hyperplane is m–far from
a 0–cube if it is not m0–proximate to it for any m0 �m.

Definition 2.24 A hyperplane U of a cone Y is piecefully convex if, for any path ��! Y with endpoints
on N.U /, if � is a geodesic and � is trivial or lies in a piece of Y containing an edge dual to U , then ��
is path-homotopic in Y to a path �!N.U /.

The following is noted in [Wise 2021, Remark 5.43]. We write zN.U / WD AN.U /.
Proposition 2.25 Let K be the maximal diameter of any piece of Yi in X�. Then a hyperplane U of Yi
is piecefully convex provided that its carrier N.U / satisfies d zYi .g

zN.U /; zN.U // > K for any translate
g zN.U /¤ zN.U /� zYi .

Definition 2.26 (cut by a wall) Let g 2G be an element acting on zX . An axis Rg for g is a g–invariant
copy of R in zX . An element g is cut by a wall W if gnW \Rg D fng for all n 2 Z.

The theorem below is a restatement of [Wise 2021, Theorem 5.44] with [Wise 2021, Corollary 5.45], and
the fact that the short innerpaths condition is satisfied when C 0.1=˛/ holds for ˛ � 14.

Theorem 2.27 Suppose X� D hX j fYigi satisfies the following hypotheses:

(i) X� satisfies the B.6/ condition.

(ii) Each hyperplane U of each cone Yi is piecefully convex.

(iii) Let k! Y 2 fYig be a geodesic with endpoints p and q. Let U1 and U 01 be distinct hyperplanes in
the same wall w1 of Y . Suppose k traverses a 1–cell dual to U1, and either U 01 is 1–proximate to q
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or k traverses a 1–cell dual to U 01. Then there is a wall w2 in Y that separates p and q but is not
2–proximate to p or q.

(iv) Each infinite-order element of Aut.Yi / is cut by a wall.

Then the action of �1X� on C has torsion stabilisers.

3 Cubical noise

In the classical setting, there are two essentially distinct strategies for producing group presentations
satisfying good small cancellation conditions: taking large enough powers of the relators, and adding
“noise” to the presentation by multiplying each relator by a sufficiently long, suitably chosen word. In
the cubical setting, taking powers of relators translates to taking finite-degree covers of the cycles that
represent the relators, and this method generalises to taking finite-degree covers of cube complexes with
more complicated fundamental groups. This is the line of enquiry that has been most explored, and
for which there exist useful theorems producing cubical small cancellation. This will, however, not be
suitable for our applications, because once a cubical presentation hX j f yYi !Xgi has been obtained by
taking covers, any modifications of the cones (other than taking further covers) will dramatically affect
the size of pieces, and possibly invalidate whatever small cancellation conclusions had been attained.
Thus, we instead prove a cubical small cancellation theorem that builds on the idea of adding noise to a
presentation. The procedure we describe will be more stable, in the sense that slightly perturbing the
choice of cones will not affect the small cancellation conclusions.

Remark 3.1 We state and prove Theorem 3.2 in more generality than is needed for later applications. In
practice the reader may take Y to be a bouquet of finitely many circles, as this is all that is required for
the proof of Theorem 4.1. It is also worth noting that while the statement of Theorem 3.2(iii) requires
that X and Y be special, the proof only uses that hyperplanes are embedded and 2–sided.

Theorem 3.2 Let X and Y be compact nonpositively curved cube complexes with hyperbolic funda-
mental groups and let H be the set of hyperplanes of X . Let fH1; : : : ;Hrg be a malnormal collection of
free nonabelian quasiconvex subgroups of �1X , and suppose that Hi \Stab. zU/ is trivial or equal to Hi
for all U 2H. Let 1!X _Y; : : : ; r !X _Y be closed essential paths based at the wedge point and
let y1; : : : ; yr be the words in �1X ��1 Y represented by the i . Then for each ˛ � 1 there are cyclic
subgroups hwi i �Hi � hyi i such that wi D w0iyi where w0i 2Hi for each i 2 f1; : : : ; rg and :

(i) The group �1X ��1 Y=hhw1; : : : ; wrii has a cubical presentation satisfying the C 0.1=˛/ condition.

(ii) If ˛ � 14, then the group �1X ��1 Y=hhw1; : : : ; wrii is hyperbolic.

(iii) If X and Y are special , there is an ˛0 � 14 such that if ˛ � ˛0, then �1X ��1 Y=hhw1; : : : ; wrii
acts properly and cocompactly on a CAT.0/ cube complex.

Remark 3.3 The reader might wish to compare Theorem 3.2 with [Wise 2021, Corollary 5.48], which is
the analogous result for finite-degree coverings, and whose proof informs the proof below.
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Proof Obtaining small cancellation Since H1; : : : ;Hr are quasiconvex subgroups of �1X ��1 Y and
�1X��1 Y is hyperbolic, by Proposition 2.6 there are based local isometriesC1!X_Y; : : : ; Cr!X_Y

of superconvex subcomplexes with �1 Ci ŠHi for each i 2 f1; : : : ; rg. So there is a cubical presentation
.X _Y /�D hX _Y j fCi!X _Y griD1i with fundamental group �1X ��1 Y=hh�1 C1; : : : ; �1 Crii. By
Lemmas 2.16 and 2.17, malnormality of fH1; : : : ;Hrg and superconvexity of the fC1; : : : ; Crg ensures
that there is a uniform upper bound K on the diameter of pieces.

By hyperbolicity, any cyclic subgroup of �1X��1 Y is quasiconvex. So for any choice of cyclic subgroups
hwi i< �1X ��1 Y with i 2 f1; : : : ; rg there are local isometries Wi !X _Y with �1Wi Š hwi i.

Let ˛ � 1, and choose each �i !X _Y so that �i D � 0ii where

(i) � 0i is a based closed path in Ci �X ,

(ii) � 0i is not a proper power and does not contain subpaths of length �K˛ that are proper powers,

(iii) � 0ii does not have any backtracks, and

(iv) the Wi corresponding to hwi i D h�i i has diameter kWik �K˛2.

For instance, one can choose � 0i to be of the form � 0i D �1�2�1�
2
2 � � ��1�

K˛
2 where �1 and �2 are paths

representing distinct generators of the correspondingHi <�1X . Without loss of generality, we can assume
that �1, �2 and 1; : : : ; r have minimal length in their homotopy classes, and therefore that none of the
�i or i have any backtracks, so any backtracks in � 0ii arise from cancellation between � 0i and i . If any
cancellation happens, we can rechoose �1 and �2 to eliminate it (for instance, by shortening �1 and �2).

Pieces in each Ci have size bounded by K, and each Wi !X _Y factors through the corresponding Ci ,
so the size of pieces between different cone-cells or between cone-cells and rectangles is bounded by K;
the size of pieces between a cone-cell and itself is bounded by K˛� 1 and kWik � .K˛/ŠCK˛ �K˛2,
so hX _Y j fWi !X _Y griD1i satisfies the C 0.1=˛/ condition.

Obtaining hyperbolicity As explained above, the hwi i can be chosen so that

.X _Y /� D hX _Y j fWi !X _Y griD1i

satisfies the C 0.1=˛/ condition for ˛ � 14. Since �1X ��1 Y is hyperbolic and .X _Y /� is compact,
Theorem 2.14 then implies that .X _Y /� is hyperbolic.

Obtaining cocompact cubulability Define a wallspace structure on .X_Y /� as follows. By subdividing
X _Y , we may assume that each Wi has an even number of hyperplanes cutting the generator of hwi i.
The specialness hypothesis ensures that all hyperplanes of X _ Y and of each Wi are embedded and
2–sided. Moreover, since each Wi has cyclic fundamental group and Hi \ Stab. zU/ is trivial or equal
to Stab. zU/ for each zU , all the hyperplanes of each Wi are contractible or have the homotopy type of a
circle representing the generator of �1Wi . Hence, we can define a wallspace structure on each of the
cones by defining a wall to be either a single hyperplane if the hyperplane does not cut the generator
of the corresponding hwi i, or by defining a wall to be an equivalence class consisting of two antipodal
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Figure 1: A potential cone-cell and its hyperplanes. The generator of its fundamental group is
drawn in green, the hyperplanes that cross it are drawn in red, and the hyperplanes that do not
cross it are drawn in blue. A pair of antipodal hyperplanes is indicated.

hyperplanes cutting the generator. Concretely, if the generator of hwi i is a cycle �!X _Y of length 2n,
then letting � D e1 � � � e2n, hyperplanes U and U 0 are in the same equivalence class if and only if U is dual
to ej and U 0 is dual to ejCn .mod n/ for some j 2 f1; : : : ; 2ng. These choices are exemplified in Figure 1.

We now check condition (i) of Theorem 2.27, which will allow us to extend the wallspace structure on
the cones to a wallspace structure for .X _Y /� using the equivalence relation in Definition 2.22.

Choose the hwi i so that .X _ Y /� D hX _ Y j fWi ! X _ Y griD1i satisfies the C 0.1=˛/ condition for
˛ � 14. With the choice of walls described above, each cone is a wallspace satisfying condition (ii) of
Definition 2.20. The C 0

�
1
14

�
condition is also sufficient to ensure that condition (iii) is met. Indeed, the

only way for a path with endpoints on the carrier of a hyperplane U to not be homotopic into the carrier
of the hyperplane is if the path is homotopic into a power of the generator of Wi , and such a path would
have to traverse at least 14 pieces. Moreover, condition (iv) is met by rechoosing the cyclic subgroups
so that the cubical presentation satisfies C 0

�
1
16

�
. To wit, since pairs .U; U 0/ of hyperplanes lying on the

same wall W are antipodal and .X _Y /� satisfies C 0.1=˛/, the number of pieces in a path � ! Ci with
endpoints on distinct hyperplanes of W is at least 1

2
˛, and so choosing ˛ � 16 ensures that such a path

traverses at least 8 pieces. The choice of wallspace on each cone also ensures that condition (v) is met:
any automorphism of X _Y sends a wall not cutting a generator to a wall not cutting a generator, and a
wall cutting a generator to a wall cutting a generator.

Thus, condition (i) of Theorem 2.27 is satisfied. Since each wall arises from a quasiconvex subgroup,
Proposition 2.18 ensures cocompactness of the action on the dual cube complex. To ensure properness of
the action, we check the rest of the conditions of Theorem 2.27.

Similar modifications to X� will ensure that conditions (ii) and (iii) of Theorem 2.27 are met. For
condition (ii), by Proposition 2.25, it suffices to ensure that d �Wi .g zN.U /; zN.U // > K for any translate
g zN.U / ¤ zN.U / � �Wi . Since each piece of Wi contains at least one edge, this can be guaranteed by
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rechoosing the wi so that X� satisfies the C 0.1=K 0/ condition, where K 0 DmaxfK; 16g. Condition (iii)
also follows, because any two hyperplanes in the same wall are at least 8–far, so there is a hyperplane V
crossing the generator of hwi i that is 2–far from both U and U 0, and one can ensure that the antipodal
hyperplane V 0 is also 2–far from both U and U 0 by rechoosing X� so that it satisfies the C 0.1=K 00/
condition, where K 00 Dmaxf2K; 16g.

Finally, the choice of walls implies that condition (iv) also holds: since �1.Wi / is cyclic for each i 2 I ,
every element g 2Aut.Wi / has an axis, which is cut by a wall of X� crossing the generator of �1.Wi /.

Definition 3.4 (height) The height of H �G is the maximal n 2N such that there exist distinct cosets
g1H; : : : ; gnH for which Hg1 \ � � � \Hgn is infinite.

In [Gitik et al. 1998] it was proven that:

Theorem 3.5 Quasiconvex subgroups of hyperbolic groups have finite height.

Definition 3.6 The commensurator CG.H/ of a subgroup H of G is the set

CG.H/D fg 2G j ŒH WH
g
\H� <1 and ŒHg

WHg
\H� <1g:

Remark 3.7 If G is hyperbolic and the subgroup H is infinite and quasiconvex, then ŒCG.H/ WH� <1
by [Kapovich and Short 1996]. In particular, CG.H/ is also a quasiconvex subgroup of G, and if G is
torsion-free and H is free and nonabelian then so is CG.H/.

The following result will be used in the proof of Lemma 3.9:

Lemma 3.8 [Wise 2021, Lemma 8.6] Let G be hyperbolic and torsion-free and let H1; : : : ;Hr
be a collection of quasiconvex subgroups of G. Let K1; : : : ; Ks be representatives of the finitely
many distinct conjugacy classes of subgroups consisting of intersections of collections of distinct
conjugates of H1; : : : ;Hr in G that are maximal with respect to having infinite intersection. Then
fCG.K1/; : : : ; CG.Ks/g is a malnormal collection of subgroups of G.

The ensuing lemma surely exists in some form in the literature, but we include a proof for completeness:

Lemma 3.9 Let G be a nonelementary torsion-free hyperbolic group. For every k 2N, G contains a
malnormal collection fH1; : : : ;Hkg of infinite-index quasiconvex nonabelian free subgroups.

Before proving Lemma 3.9, we make a few observations about malnormal subgroups of free groups.
Recall that a subgroup H <G is isolated if g 2H whenever gn 2H for g 2G; a subgroup H <G is
malnormal on generators if agi …H for any i 2 f1; : : : ; ng, for any generating set fa1; : : : ; ang for H ,
g 2G and g …H .

Lemma 3.10 [Fine et al. 2002, Lemma 1] Let F be a free group and H � F a 2–generator subgroup.
Then H is malnormal if and only if H is isolated and malnormal on generators.
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Claim 3.11 Let F be a finite-rank nonabelian free group and let fh1; : : : ; hkg be a finite collection of
nontrivial elements of F . Then there is a subgroup J < F for which fJ; hhi ig is a malnormal collection
for each i 2 f1; : : : ; kg.

Proof Assume that a basis is given for F , and, abusing notation, also write h1; : : : ; hk to denote reduced
words on the basis representing the finite set of elements h1; : : : ; hk . We may also assume that hi ¤ hmj
whenever m 2 Z�f0g and i ¤ j . Let J D ha; bi where aD h1ˇ1 � � � hkˇk and b D ˇ01h1 � � �ˇ

0
k
hk , and

where each ˇi and ˇ0i is a reduced word on the basis satisfying that, for each i 2 f1; : : : ; kg:

(i) ˇi ¤ ˇ
m
j , ˇ0i ¤ .ˇ

0
j /
m and ˇi ¤ .ˇ0j /

m whenever i ¤ j and m 2 Z�f0g.

(ii) No ˇi or ˇ0i is a product of hi or their inverses.

(iii) For each ˇi , its first letter is not equal to the last letter of hi , and its last letter is not equal to the
first letter of hiC1 (modulo k). Similarly, for each ˇ0i , its last letter is not equal to the first letter of hi ,
and its first letter is not equal to the last letter of hiC1 (modulo k). Moreover, the last letter of ˇk is not
equal to the inverse of the last letter of hk , the first letter of ˇ01 is not equal to the inverse of the first letter
of h1, and the last letter of ˇk is not equal to the first letter of ˇ01.

As there is no cancellation, J is a rank-2 free group. By Lemma 3.10, to prove that J is malnormal it
suffices to show that J is isolated and malnormal on generators. The choice of the ˇi and ˇ0i implies
in particular that a and b are not proper powers, and this implies in turn that J is isolated, since F is
free. We now show that J is malnormal on generators. Consider a conjugate ag D .h1ˇ1 � � � hkˇk/g

where g … J (the case of bg is analogous). Since g … J , g cannot be written as a nontrivial product of
powers of a and b and their inverses. If g cannot be written as a subword of a product of a’s and b’s and
their inverses, then ag cannot be an element of J as there will be no cancellation. The choice of a and b
implies that no cyclic permutation of a, b, their product or their proper powers lies in J , so no conjugate
of a by a subword of a product of a’s and b’s and their inverses lies in J .

Finally, consider a conjugate hgi of hi . If hhgi i \ J is nontrivial, then since F is free, it follows that g
must be a subword of some j 2 J , and even in this case hgi can only be a (nontrivial) cyclic permutation
of a, b, their product or their proper powers, but no such cyclic permutation is an element of J , so J
intersects all conjugates of the hi trivially.

Proof of Lemma 3.9 It suffices to show that G contains a malnormal quasiconvex free subgroup J
of arbitrarily high rank, for then if J D ha1; : : : ; ak; b1; : : : ; bki, the collection fH1; : : : ;Hkg where
Hi Dhai ; bi i is also malnormal and quasiconvex. For this, it suffices to show thatG contains a malnormal
quasiconvex free group J of some rank � 2. Indeed, for any n 2Z, J contains infinitely many subgroups
of rank n, all of which are malnormal and quasiconvex.

By Theorem 2.1, G contains a free nonabelian quasiconvex subgroup J0; we may assume further that J0
has infinite index in G. Let J0 be the lattice of infinite intersections of conjugates of J0. This lattice is
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finite by Theorem 3.5. If J0 contains a nonabelian free group J1 then we replace J0 with J1, and we can
repeat this process a finite number of times until we either reach a maximal intersection of conjugates
of some Ji that is itself free nonabelian or until all subgroups in the lattice Ji are cyclic. In the former
case, the commensurator CG.Ji / is malnormal and quasiconvex by Lemma 3.8. In the latter case, by
Claim 3.11, Ji contains a free nonabelian subgroup J that forms a malnormal collection with each of
these cyclic subgroups, and hence J is malnormal in G.

Lemma 3.9 can be improved to control intersections with quasiconvex subgroups:

Corollary 3.12 Let G be a nonelementary torsion-free hyperbolic group and let fS1; : : : ; Slg be a
collection of quasiconvex subgroups of G. Then the collection fH1; : : : ;Hkg from the conclusion of
Lemma 3.9 can be chosen so that Hi \Sj is either trivial or equal to Hi for each i 2 f1; : : : ; kg and each
j 2 f1; : : : ; lg.

Remark 3.13 In particular, if G is the fundamental group of a compact nonpositively curved cube
complex X , and H is the set of hyperplanes of X , then fH1; : : : ;Hkg can be chosen so that Hi \Stab. zU/
is either trivial or equal to Hi for each U 2H and each i 2 f1; : : : ; kg. Indeed, since X is compact, it has
finitely many hyperplanes, and hence finitely many hyperplane stabilisers. Each hyperplane stabiliser is
quasi-isometrically embedded and �1X is hyperbolic, so each hyperplane stabiliser is quasiconvex.

Proof of Corollary 3.12 It suffices to prove the result for a single malnormal quasiconvex nonabelian
subgroup J �G. Indeed, as explained in the first paragraph of the proof of Lemma 3.9, the subgroups in
the malnormal collection fH1; : : : ;Hkg are produced as subgroups of a single nonabelian free subgroup J ,
so if we ensure that J \Sj is either trivial or equal to J for each j 2 f1; : : : ; lg, then this will also be the
case for fH1; : : : ;Hkg.

We now proceed by induction on l . Assume that l D 1 and consider the intersection J \S1, where J is
as provided in Lemma 3.9. If this intersection is trivial, then there is nothing to show, so suppose that
K1 WD J \S1 is nontrivial. So K1 is either cyclic or free of rank � 2. If K1 is cyclic, say generated by k1,
then as J is free, by Claim 3.11 there exists a J 0 � J such that fJ 0; hk1ig is malnormal, so in particular
J 0\S1 is trivial; if K1 is free of rank � 2, then since K1 is quasiconvex, Lemma 3.9 implies that there
exists a quasiconvex, nonabelian free subgroup J 00 �K1 that is malnormal in G, so that J 00\S1 D J 00.

Now assume that the result holds for m D l � 1 and let fS1; : : : ; Slg be a collection of quasiconvex
free nonabelian subgroups. Then by the induction hypothesis and Lemma 3.9, there is a quasiconvex
nonabelian subgroup J <G such that J \Si is trivial or equal to J for each i 2 f1; : : : ; mg. As before, if
Kl WD J \Sl D f1g then there is nothing to show, if Kl is cyclic then by Claim 3.11 there exists a J 0 � J
such that J 0\Sl is trivial, and since J 0 � J then it is still the case that J 0\Si is trivial or equal to J 0

for each i 2 f1; : : : ; mg. Finally, if Kl is nonabelian then since it is quasiconvex, Lemma 3.9 produces a
new J 00 inside Kl for which J 00\Sl D J 00. Since J 00 < J , then J 00\Si is trivial or equal to J 00 for each
i 2 f1; : : : ; mg, and the result follows.
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4 Main theorem

Theorem 4.1 Let Q be a finitely presented group and G be the fundamental group of a compact special
cube complex X . If G is hyperbolic and nonelementary, then there is a short exact sequence

(1) 1!N ! �!Q! 1

where:

(i) � is a hyperbolic cocompactly cubulated group.

(ii) N ŠG=K for some K <G.

(iii) maxfcd.G/; 2g � cd.�/� cd.G/� 1. In particular , � is torsion-free.

In what follows, we prove all parts of Theorem 4.1 except for (iii), which we explain in the next section.

Remark 4.2 Cocompact cubulability of � hinges on the specialness of X as this is the hypothesis that is
used in Theorem 3.2. However, as noted in Remark 3.1, in reality all that is needed is for the hyperplanes
of X to be embedded and 2–sided.

Proof Choose a finite presentation ha1; : : : ; as j r1; : : : ; rki for Q, let B be a bouquet of s circles
a1; : : : ; as , and let X be a compact nonpositively curved cube complex with �1X DG D hx1; : : : ; xmi.

By Lemma 3.9 and Remark 3.13, there is a malnormal collection fHlg[ fH 0ij g[ fH
00
ij g of quasiconvex

free subgroups of rank � 2 of �1.X _B/, so we can apply Theorem 3.2 to X and B , where the yi are
given by

(i) yl D rl for each 1� l � k,

(ii) y0ij D aixja
�1
i for each 1� i � s and 1� j �m,

(iii) y00ij D a
�1
i xjai for each 1� i � s and 1� j �m.

Hence, there are words w1; : : : ; wl ; w01;1; : : : ; w
0
ij ; w

00
1;1; : : : ; w

00
ij 2 �1X for which the group

� DG ��1B=hhfrlwlg
k
lD1; faixja

�1
i w0ij g

s;m
iD1;jD1; fa

�1
i xjaiw

00
ij g
s;m
iD1;jD1ii

is hyperbolic and acts properly and cocompactly on a CAT.0/ cube complex.

There is a homomorphism �
�
�! �1B that sends every generator of �1X to 1. Hence the relations

frlwl D 1gl map exactly to the relations frl D 1gl in �1B , and so we see that the image of the
homomorphism is Q.

The relations faixja�1i w0ij D 1gi2S;j2M , and fa�1i xjaiw
00
ij D 1gi2S;j2M ensure that hx1; : : : ; xmi is a

normal subgroup of � , so N D Ker� D hx1; : : : ; xmi and N Š �1X=K for some subgroup K <G.

5 Cohomological dimension

We briefly recall some standard facts about the cohomological dimension of groups. We refer the reader
to [Brown 1982] for more details and proofs.
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A resolution for a module M over a ring R is a long exact sequence of R–modules

� � � !Mn!Mn�1! � � � !M1!M0!M ! 0:

A resolution is finite if only finitely many of the Mi are nonzero. The length of a finite resolution is the
maximum integer n such that Mn is nonzero. A resolution is projective if each Mi is a projective module.

Definition 5.1 The cohomological dimension cd.G/ of a group G is the length of the shortest projective
resolution of Z as a trivial ZG–module.

There is a natural topological analogue of cohomological dimension:

Definition 5.2 The geometric dimension gd.G/ of a group G is the least dimension of a classifying
space for G.

Remark 5.3 The cellular chain complex of a classifying space for a group G yields a free (in particular,
projective) resolution of Z over ZG, the length of which is equal to the dimension of the classifying
space. This implies immediately that cd.G/ � gd.G/ for any group G. In particular, if G is free, then
cd.G/D 1.

Remark 5.4 The universal covers of nonpositively curved cube complexes are CAT.0/ spaces, and
hence are contractible, so every nonpositively curved cube complex X is a classifying space for its
fundamental group. Therefore, if G D �1X for a compact nonpositively curved cube complex X , then
the cohomological dimension of G is bounded above by the dimension of X .

Proposition 5.5 The following hold for any group G:

(i) If G0 <G then cd.G0/� cd.G/, and equality holds provided that cd.G/�1 and ŒG WG0� <1.

(ii) If 1!G0!G!G00! 1 is exact , then cd.G/� cd.G0/C cd.G00/.

(iii) If G DG1 �G2, then cd.G/Dmaxfcd.G1/; cd.G2/g.

The following result is a consequence of Corollary 5.11, stated below.

Proposition 5.6 Let G, Q, B and � be as in Theorem 4.1 and let q W G � �1B ! � be the natural
quotient. Then Ker.q/ is free.

Proposition 5.7 � can be chosen so that cd.�/� cd.G/� 1.

Proof There is a short exact sequence

1! Ker.q/!G ��1B! �! 1:

Since Ker.q/ is a free group and cd.G � �1B/ D maxfcd.G/; 1g D cd.G/, we have that cd.G/ �
cd.�/C cd.Ker.q//D cd.�/C 1.

The torsion-freeness of � will follow from having a finite upper bound on its cohomological dimension:
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Proposition 5.8 � can be chosen so that maxfcd.G/; 2g � cd.�/.

Before proving Proposition 5.8, we state some auxiliary results:

Definition 5.9 (the Cohen–Lyndon property) Let G be a group, fHigi2I a family of subgroups and
Ni C Hi for each i 2 I . The triple .G; fHig; fNig/ has the Cohen–Lyndon property if for each i 2 I
there exists a left transversal Ti of Hi

˝̋ S
i2I Ni

˛̨
in G such that

˝̋ S
i2I Ni

˛̨
is the free product of the

subgroups N t
i for t 2 Ti , so ��[

i2I

Ni

��
D

©
i2I;t2Ti

N t
i :

The Cohen–Lyndon property was first defined and studied in [Cohen and Lyndon 1963], where it was
proven to hold for triples .F; C; hci/where F is free, C is a maximal cyclic subgroup of F and c 2C�f1g.
This was later generalised in [Edjvet and Howie 1987] to the setting of free products of locally indicable
groups. Most remarkably, it was recently proven in [Sun 2020] that triples .G; fHig; fNig/ have the Cohen–
Lyndon property when the Hi are “hyperbolically embedded” subgroups of G and the Ni avoids a finite
set of “bad” elements depending only on the Hi . We will not define hyperbolically embedded subgroups
here, and instead state only the particular case of the theorem that is required for our applications:

Theorem 5.10 [Sun 2020] Let G be hyperbolic , fHig be malnormal and quasiconvex subgroups of G,
and Ni CHi for each i . Then there exists a finite set of elements fg1; : : : ; gng 2

S
i Hi �f1g such that

the triple .G; fHig; fNig/ has the Cohen–Lyndon property provided that Ni \fg1; : : : ; gng D∅ for all i .

To simplify notation, let fHlg[ fH 0ij g[ fH
00
ij g WDH and write H� 2H . Let S �H be a finite set. It is

clear from the constructions in Theorems 4.1 and 3.2 (say, by applying Claim 3.11 to S before producing
the cyclic subgroups in the proof of Theorem 3.2) that the elements frlwlgklD1, faixja�1i w0ij g

s;m
iD1;jD1

and fa�1i xjaiw
00
ij g
s;m
iD1;jD1 can be chosen so that for each

c� 2 frlwlg
k
lD1[faixja

�1
i w0ij g

s;m
iD1;jD1[fa

�1
i xjaiw

00
ij g
s;m
iD1;jD1;

where c� 2H�, the intersection hhc�iiH� \S is empty, and hence:

Corollary 5.11 � can be chosen so that the triple .G ��1B; fH�g; fhhc�iiH�g/ has the Cohen–Lyndon
property.

The following is proven in [Petrosyan and Sun 2024]:

Proposition 5.12 If .G; fHig; fNig/ has the Cohen–Lyndon property, then

cd.G=hh[i2INi ii/�max
˚
cd.G/; supfcd.Hi /C 1g; supfcd.Hi=Ni /g

	
:

Definition 5.13 A graphical small cancellation presentation is a 1–dimensional cubical small cancellation
presentation, namely, a cubical presentation X� D hX j fYigi where X is a graph and Yi !X are graph
immersions.
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In the particular setting of graphical presentations, it is well known that the coned-off space X� is
aspherical. Concretely, the following theorem holds. A proof is given in [Gruber 2015], though we
caution the reader that the language utilised there differs from ours.

Theorem 5.14 Let X� D hX j fYigi be a C.6/–graphical small cancellation presentation. Then X� is
aspherical.

Remark 5.15 As in Corollary 5.11, we simplify the notation so that fHlg[ fH 0ij g[ fH
00
ij g WDH , for

c� 2H�, equals the corresponding rlwl , aixja�1i w0ij or a�1i xjaiw
00
ij , and C�!X _B and W�!X _B

are the corresponding local isometries defined in the proof of Theorem 3.2 having �1.C�/ D H� and
�1.W�/D hc�i for each �.

Proof of Proposition 5.8 By the Cohen–Lyndon property for .G ��1B; fH�g; fhhc�iiH�g/, we have that
cd
�
G ��1B=

˝̋ S
� c�
˛̨ �
�max

˚
cd.G/��1B; supfcd.H�/C1g; supfcd.H�=hhc�iiH�g/

	
, and since each H�

is free, cd.H�/D 1 for all H� 2H . We claim that each of the quotients H�=hhc�iiH� has a C.6/–graphical
small cancellation presentation, and so cd.H�=hhc�iiH�/� 2 for all H� 2H .

To see this, consider the cubical presentation hX _ B j fW� ! X _ Bg�i constructed in the proof of
Theorem 4.1. As explained in the proof of Theorem 3.2, eachH� is carried by a local isometry C�!X_B .
Since each C� is itself a nonpositively curved cube complex and �1 C� ŠH� is free, each C� is homotopy
equivalent to a graph C� in C .1/� . Similarly, each W� is homotopy equivalent to a cycle W � in W�, and we
can further assume that each W � lies in C�. The intersections between pieces of each W � are contained in
the corresponding intersections between pieces of W�, and the length of each W � is bounded below by the
diameter of the corresponding W�, so each W � has at least as many pieces as the corresponding W�. Since
the W� are chosen to satisfy at least C 0

�
1
16

�
, and in particular C 0

�
1
16

�
D) C.6/, each hC� j W �! C�i

satisfies the C.6/ condition, and the proof is complete.

This finishes the proof of Theorem 4.1.
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This work is part of a series of papers focusing on multipath cohomology of directed graphs. Multipath
cohomology is defined as the (poset) homology of the path poset — ie the poset of disjoint simple
paths in a graph — with respect to a certain functor. This construction is essentially equivalent, albeit
more computable, to taking the higher limits of said functor on (a certain modification of) the path
poset. We investigate the functorial properties of multipath cohomology. We provide a number of
sample computations, show that multipath cohomology does not vanish on trees, and show that, when
evaluated at the coherently oriented polygon, it recovers Hochschild homology. Finally, we use the same
techniques employed to study the functoriality to investigate the connection with the chromatic homology
of (undirected) graphs introduced by L Helme-Guizon and Y Rong.

05C20, 13D03, 18G85

1 Introduction

Directed graphs are ubiquitous objects in mathematics and science in general. Due to their simplicity and
flexibility, (directed) graphs find application in a wide range of fields: physics, computer science, complex
systems, engineering, biology, neuroscience, medicine, robotics, etc, encompassing and embracing most
scientific domains. Extracting topological and combinatorial information from directed graphs is, therefore,
not only interesting, but also particularly important from different perspectives.

Cohomological invariants of directed graphs have been extensively studied in the last decades, with
prominent work in combinatorial topology — see [Wachs 2003; Kozlov 2008; Jonsson 2008] — and have
deep connections with other areas of mathematics — see [Jonsson 2008, Chapter 1] for an overview.
One of the common strategies is to construct suitable simplicial complexes — eg matching complexes,
independence complexes, complexes of directed trees, etc [Jonsson 2008] — associated to a (directed)
graph, and then to analyse the associated homology groups. In this work we follow a similar approach;
we first represent a graph using a suitable poset, called the path poset [Turner and Wagner 2012], and
then apply a cohomology theory of posets known as poset homology — see eg [Chandler 2019] — to get
cohomological invariants of directed graphs. We call these invariants multipath cohomology groups, as
they are constructed using the combinatorial information of multipaths (ie the elements of the path poset)
in a directed graph.

© 2024 MSP (Mathematical Sciences Publishers). Distributed under the Creative Commons Attribution License 4.0 (CC BY).
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Roughly speaking, poset homology associates to a poset P and a functor F on P a graded module. As,
in our case, the poset P (and the functor F ) depend on a directed graph G, we obtain a (cohomology)
theory for directed graphs. This idea is not novel; for instance Helme-Guizon and Rong [2005], using a
different poset, defined chromatic homology. On a different note, one might use a different homology
theory of posets, for instance, the classical functor homology groups, an approach pursued by Turner
and Wagner [2012]. Comparisons between multipath cohomology, Helme-Guizon and Rong’s chromatic
homology, Turner–Wagner’s homology, and other theories obtained using different (co)homologies for
posets will be carried out in Sections 6 and 7.

Our main goal is to investigate structural and combinatorial properties of digraphs through the lenses of
multipath cohomology. In this work, we are interested in the definition and general properties of multipath
cohomology, such as functoriality, and in its relationship with similar theories. The investigation of
combinatorial properties, and the computations of multipath cohomology groups for various families of
directed graphs are the subject of [Caputi et al. 2023; 2024b] and forthcoming papers. We believe that
the framework developed here can be helpful both in answering theoretical questions, as well as solving
problems in the applied setting — see Section 8.

1.1 Other approaches

The development and investigation of homology theories for directed graphs (shortly, digraphs) is a very
active research field. To define such theories, a first approach comes from the observation that a (directed)
graph can naturally be seen as a topological space (a 1–dimensional CW–complex) on which ordinary ho-
mology can be applied. However, in this case, the homology groups in degree i > 1 would vanish. To side-
step this issue, there are various ways that can be pursued. For instance, one can define (higher-dimensional)
simplicial complexes from a graph — eg by constructing the (directed) flag complex (also known as
clique complex) [Ivashchenko 1994; Chen et al. 2001; Aharoni et al. 2005; Govc et al. 2021], or the
matching complexes, independence complexes — see [Jonsson 2008] — and hence, compute their ordinary
(simplicial) homology. Alternatively, one can construct the so-called path complex (see eg [Grigoryan et al.
2016]), whose homology is called path homology. In a third approach, one can associate to a digraph the so-
called path algebra. Then, homology groups of digraphs can be defined as the Hochschild homology groups
of the path algebras — see [Happel 1989; Caputi and Riihimäki 2024]. A pitfall of most of these homology
theories is that they vanish when evaluated on trees; this hints to the fact that they might be discarding
an important part of the combinatorics of the input digraph, including their directionality information.

Turner and Wagner [2012] move in a different direction. Given a graph G they consider its path poset P.G/,
that is, the collection of all the unions of disjoint simple paths in G, partially ordered by inclusion. Since
posets can be seen as categories in a natural way, one can apply homology with functor coefficients [Gabriel
and Zisman 1967] to the path poset and obtain topological invariants of the directed graph. On the one
hand, this homology is nontrivial. In particular, for a given algebra A, the Turner–Wagner homology of the
coherently oriented polygon with n edges is isomorphic, up to degree n, to the Hochschild homology groups

Algebraic & Geometric Topology, Volume 24 (2024)
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of A— see [Turner and Wagner 2012, Theorem 1]. On the other hand, the homology of a category with
coefficients in a functor is generally difficult to compute. Computations can be done with relative ease if
one considers the constant functor, ie the functor which associates to each element of the path poset the base
ring. However, in this case, the result is trivial since the path poset has a minimum: the empty multipath.

Close to Turner–Wagner homology sits the so-called chromatic homology, introduced in [Helme-Guizon
and Rong 2005]. Chromatic homology is a homology theory for unoriented graphs, inspired by Khovanov
homology [2000], and with the remarkable property that it categorifies the chromatic polynomial. Przytycki
[2010] has shown that a version of the chromatic homology (further extended to incorporate the orientation
in the case of linear and polygonal graphs) can recover (a truncation of) the Hochschild homology. This
fact was later used to prove [Turner and Wagner 2012, Theorem 1] by showing that for coherently oriented
polygons their homology is in fact isomorphic to Przytycki’s version of chromatic homology.

In this work, inspired by the approaches of Turner and Wagner and of Helme-Guizon and Rong, we follow
a certain modification of Turner and Wagner’s functorial framework; instead of directly applying functors
to the path poset P.G/ of G, we use poset homology [Chandler 2019], a suitable adaptation of Helme-
Guizon and Rong’s construction to this context. Alternatively, instead of the naive poset homology, one
can use the so-called cellular cohomology, introduced in [Everitt and Turner 2015]. Cellular cohomology
extends poset homology to arbitrary finite (ranked) posets; this yields, after some minor modifications
on the path poset, an essentially equivalent theory — see Section 6. Nonetheless, the advantage of poset
homology over cellular homology is its computability, which is essential in view of possible applications —
see Question 91 and the computations developed in [Caputi et al. 2023].

1.2 Statement of results

We construct a cochain complex .C �F .P /; d
�/; this depends on the datum of a poset P associated to a

graph G, and a covariant functor F , defined on (the category associated to) P with values in an additive
category A. Roughly, C nF .P / is given by a directed sum of F.x/ for all x 2 P of “level” n. The
differential d� is induced by the functor F applied to the covering relations in P. In Section 4.1, we
specialise this construction to obtain multipath cohomology. First, we fix a ring R, an R–algebra A, and
an .A;A/–bimodule M. Then the role of the poset P is played by the path-poset P.G/, and the part of the
functor F is taken by FA;M . The latter assigns a tensor product of copies of M and A to each H 2 P.G/.
We finally denote by .C ��.GIA;M/; d�/ the cochain complex .C �FA;M .P.G//; d

�/. The main definition
of multipath cohomology as homology of this complex is given in Definition 46.

Unless otherwise specified, for the rest of the Introduction we set M DA. In particular, we drop M from
the notation of multipath cohomology, writing H��.GIA/ instead of H��.GIA;M/. Some computations of
multipath cohomology, for ADRDK a field, are collected in Table 1.

A key property of cohomology theories is that they are functorial. One of the main results of this paper is
that functoriality for multipath cohomology holds once we fix the number of vertices in our graphs.

Algebraic & Geometric Topology, Volume 24 (2024)
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Digraph G H0�.GIK/ H1�.GIK/ H2�.GIK/ Hi
�.GIK/, i > 2

K 0 0 0

. . . 0 0 0 0

0 K 0 0

0 0 0 0

0 K2 0 0

0 0 K2 0

Table 1: Some digraphs and their respective multipath cohomologies.

Theorem 1 Let R–Alg be the category of R–algebras , let Digraph.n/ be the category of digraphs with
n vertices , and let R–Modgr be the category of graded R–modules. Then , multipath cohomology

H�.�I�/ W Digraphop .n/�R–Alg!R–Modgr

is a bifunctor for all n.

We need to restrict to the category Digraph.n/ for a purely technical reason; intuitively, the issue is due to
the tensor products involved in the definition of multipath cohomology. More formally, the functor FA;A
is not a coefficients system — see Remark 59. This technical issue is solved when either we fix the number
of vertices, or we take ADR. In the latter case, we have a stronger result (see Theorem 65).

Hochschild homology is a homology theory for pairs .A;M/ with A an algebra and M an .A;A/–
bimodule [Loday 1992]. It has been proven in [Przytycki 2010] that (a suitable modification of) the
chromatic homology of the coherently oriented n–polygon recovers the Hochschild homology up to
degree n. It turns out that multipath cohomology shares the same property — see Corollary 82.

A consequence of Corollary 82 and Theorem 1 is that, once one fixes a digraph G, the functor H�.GI �/,
which is a functor between R–Alg and R–Modgr, can be seen as a homology theory of algebras. From this
viewpoint, we can rephrase Corollary 82 by stating that the family of homologies for algebras fH�.GI �/gG
generalises Hochschild homology (compare also with [Turner and Wagner 2012]). In light of these results,
one can expect chromatic homology and multipath cohomology to be, in some sense, related. Despite
being defined on different categories (of undirected and directed graphs, respectively) we obtain a short
exact sequence featuring the two theories — see Proposition 84.

A great advantage of multipath cohomology is that it is amenable to computations. We postpone the
(combinatorial) analysis, as well as the description of an algorithm to calculate the multipath cohomology
of certain graphs, to [Caputi et al. 2023; 2024b] and forthcoming papers. In the present work, we limit our
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computations to a restricted number of cases (with coefficients in a field KDRDADM ); see Section 4.2
and Table 1. Such computations hint to the fact that multipath cohomology might be sensible to some
combinatorial properties of graphs. We observe that multipath cohomology does not vanish, nor is it
concentrated in degree 0, in the case of trees.

Another consequence of the computations collected in Table 1 is that chromatic, multipath, and Turner–
Wagner (co)homologies are not isomorphic. We conclude with the following observation. Although
not isomorphic “on the nose”, Turner–Wagner and multipath cohomology are related, if ADR, by the
universal coefficients short exact sequence. On the one hand, Turner–Wagner homology computes the
higher colimits of the functor FR;R. On the other hand, multipath cohomology computes the associated
higher limits; then, the short exact sequence gives the relation between the two, with a correcting Ext term.
We refrain from giving a more detailed account of this case here, inviting the interested reader to Section 6.

Conventions

Typewriter font, eg G, H, etc, will be used to denote graphs (both directed and unoriented). Calligraphic
font, eg F , G, etc, will be used to denote functors. Bold capital letters, eg A, C, etc will be used to
denote categories. Depending on the context, A will denote an Abelian, or more generally, an additive
category, and, for a given poset P, we will denote with the same letter in roman and bold, that is P, its
associated category. All rings are assumed to be unital and commutative, and algebras are assumed to
be associative. Unless otherwise stated, R will denote a base ring, A will denote an R–algebra, M will
denote an .A;A/–bimodule, and all tensor products ˝ are assumed to be over the base ring. Given a
(co)chain complex C �, we will denote by C �Œi � the shifted complex C �Ci.
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2 Basic notions

In this section we introduce and provide the basic notions and conventions about graphs and posets that
will be used throughout the paper. In particular, in Section 2.2, we introduce the path poset, one of the
main ingredients in the construction of multipath homology (Section 4.1).
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2.1 Digraphs and posets

We will only consider finite graphs and digraphs. For a set V, let }.V / denote its power set. We recall
the definitions of various types of graphs — see, for instance, [West 1996].

An unoriented graph G is a pair .V;E/, where V is the set of vertices and E (the edges) are unordered
pairs of distinct vertices. A graph is a directed graph, or a digraph, when the edges are ordered pairs,
ie E � V �V n f.v; v/ j v 2 V g. Finally, a graph is oriented if it is a digraph and for any vertices v;w at
most one among .v; w/ and .w; v/ are in E.

The main object of interest in this work is digraphs. Unless otherwise stated, we will refer to digraphs
simply as graphs. When dealing with (un)oriented graphs the adjective “(un)oriented” will be explicitly
stated. Two vertices v and w in a digraph can share at most two edges: .v; w/ and .w; v/. There are no
multiple edges between two vertices in oriented and unoriented graphs.

For the sake of simplicity, we restrict to the case of digraphs. Everything in this paper can be carried out
verbatim in the more general case of directed multigraphs.

By definition, an edge of a digraph is an ordered set of two distinct vertices, say eD .v; w/. The vertex v
is called the source of e, while the vertex w is called the target of e. The source and target of an edge e
will be denoted by s.e/ and t .e/, respectively. If a vertex v is either a source or a target of an edge e, we
will say that e is incident to v.

Later we shall also deal with more than one graph at the time. In such cases, the sets of vertices and
edges of a digraph G will be denoted by V.G/ and E.G/, respectively. A morphism of digraphs from G1
to G2 is a function � W V.G1/! V.G2/ such that

e D .v; w/ 2E.G1/ D) �.e/ WD .�.v/; �.w// 2E.G2/:

A morphism of digraphs sends directed edges to directed edges; in particular, it does not allow collapsing —
that is, .v; w/ 2E.G1/) �.v/¤ �.w/. A morphism of digraphs is called regular if it is injective as a
function; digraphs and regular morphisms of digraphs form a category that we denote by Digraph. If G1
and G2 are isomorphic in Digraph, we write G1 Š G2.

A subgraph H of a graph G is a graph such that V.H/ � V.G/ and E.H/ � E.G/, and in such case we
write H � G. If H � G and H¤ G we say that H is a proper subgraph of G, and write H < G. If H � G and
V.H/D V.G/ we say that H is a spanning subgraph of G. Given a proper spanning subgraph H� G, we
can always find an edge e in E.G/ nE.H/. We use the following notation:

Notation 2 The spanning subgraph of G obtained from H by adding an edge e is denoted by H[ e.

Let S be a set. Recall that a (strict) partial order on S is a transitive binary relation G such that, for each
x; y 2 S, at most one of the following is true: x Gy, y G x, or x D y. As a matter of notation, we will
write x E y in place of “x Gy or x D y”.
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Given a partial order, there is an associated covering relation given by x zGy if, and only if, xGy and there
is no z such that x G z, z Gy. A partial order can be also seen as the transitive closure1 of its associated
covering relation. Moreover, the associated covering relation is the smallest relation whose transitive
closure is the given partial order. A partially ordered set, or simply poset, is a pair .S;G/ consisting of
a set S and a partial order G on S. A morphism of posets f W .S;G/! .S 0;G0 / is a monotonic map of
sets, that is, a function f W S! S 0 such that x Gy implies f .x/G0 f .y/. Posets and morphisms of posets
form a category, which will be denoted by Poset.

Remark 3 Each poset P D .S;G/ can be seen as a (small) category P in a straightforward manner; the
set of objects of P is the set S, and the set of morphisms between x and y contains a single element if,
and only if, x Gy or x D y, and it is empty otherwise.

Let P D .S;G/ be a poset. An element m 2P is a maximal element if there are no elements of P strictly
greater than m, ie if mE s with s 2 P, then mD s. A maximum of P is an element M 2 S which is
greater than any other element, ie s EM for all s 2 S.

The following two facts are standard:

(M.i) If P D .S;G/ is a finite poset — that is, S is finite — then for each s 2 S there exists a maximal
element m 2 S such that s Em.

(M.ii) A poset has a unique maximal element if, and only if, said element is a maximum.

Minimal elements and minima are defined analogously by exchanging the role of s with m and M in
the definitions of maximum and maximal elements, respectively. Moreover, the obvious translations of
facts (M.i) and (M.ii) hold.

A poset is called a Boolean poset if it is isomorphic to the power set }.S/— ie the set of all subsets —
of a finite set S with partial order � given by inclusion. The standard Boolean poset (of size 2n) is by
definition the poset B.n/D .}.f0; 1; 2; : : : ; n� 1g/;�/.

Example 4 Let G be a (possibly unoriented) graph. Among others, we can specifically consider two posets:
the poset of subgraphs SG.G/ and the poset of spanning subgraphs SSG.G/. The elements of these posets
are all the subgraphs and all the spanning subgraphs of G, respectively. In both cases the order relation <
is given by the property of being a proper subgraph. The covering relation � of < in SSG.G/ is easily
checked to be

H� H0 () there exists e 2E.H0 / nE.H/ such that H0 D H[ e:

Equivalently, H � H0 if, and only if, E.H0 / nE.H/D feg and E.H/ nE.H0 /D ∅. The covering relation
on SG.G/ is slightly different from �; we need to consider, in addition to the case above, also the case
where E.H0 /DE.H/ and V.H0 /D V.H/[fvg for a certain v … V.H/.

1The transitive closure of a relation R � S �S is a relation R0 such that .s; s0 / 2R0 if, and only if, either .s; s0 / 2R, or there
exists s00 2 S such that .s; s00 /; .s00; s0 / 2R0.
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Note that SSG.G/ is a Boolean poset; in fact, we have natural isomorphisms of posets

.SSG.G/; </Š .}.E.G//;�/

given by H 7!E.H/. On the contrary, the poset SG.G/ is generally not isomorphic to a Boolean poset; a
counterexample is given by the 1–step graph — see Figure 1. However, SG.G/ is a subposet of a Boolean
poset, namely the poset .}.V .G/[E.G//;�/.

Definition 5 Given a poset .S;G/ a subposet is a subset S 0 � S with the order GjS 0�S 0 induced by G.
A subposet .S 0;GjS 0�S 0/ is called downward closed (resp upward closed ) with respect to .S;G/ if for
every h 2 S such that hG h0 (resp h0 G h) for some h0 2 S 0, we have h 2 S 0.

The poset of spanning subgraphs SSG.G/ is a subposet of the subgraphs poset SG.G/, but it is easily
checked not to be downward closed. Nonetheless, it is upward closed.

Furthermore, observe the complement of an upward closed subposet is downward closed, and vice versa.

We conclude the subsection with the definition of two properties which will be essential to define multipath
cohomology.

Definition 6 Let .S;G/ be a poset and .S 0;GjS 0�S 0/ be a subposet of .S;G/.

(1) We say that .S;G/ is squared if for each triple x; y; z 2 S 0 such that z covers y and y covers x, there
is a unique y0 ¤ y such that z covers y0 and y0 covers x. Such elements x, y, y0, and z will be called a
square in S.

(2) We say that .S 0;GjS 0�S 0/ is faithful if the covering relation in S 0 induced by GjS 0�S 0 is the restriction
of the covering relation in S induced by G.

Observe that square posets have also been called thin posets in the literature; see eg [Björner 1984,
Section 4] or [Chandler 2019]. Prime examples of squared posets are Boolean posets.

Example 7 Downward and upward closed subposets are faithful. Furthermore, each downward or
upward closed subposet of a squared poset is squared.

The following proposition is straightforward:

Proposition 8 Let .S;G/ be a poset. Given the subposets S 0; S 00 � S, we have:

(1) If S 00 � S 0 is faithful and S 0 � S is faithful , then S 00 is faithful in S .

(2) If S 0 and S 00 are faithful in S (resp squared ), then S 0\S 00 is faithful in S (resp squared ).

2.2 Path posets

We now define one of the main ingredients in the construction of multipath cohomology: the path poset.

Let G be a graph and let jGj denote its geometric realisation as a CW–complex. A connected component
of G is a subgraph H of G whose realisation jHj is connected. A simple path of G is a sequence of edges
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v0 v1 . . . vn�1 vn

Figure 1: The n–step graph In.

e1; : : : ; en of G such that s.eiC1/D t .ei / for i D 1; : : : ; n� 1, and no vertex is encountered twice, ie if
s.ei /D s.ej / or t .ei /D t .ej /, then i D j, and it is not a cycle, ie s.e1/¤ t .en/.

Remark 9 If a connected graph G admits an ordering of all its edges with respect to which it is a simple
path, then it is isomorphic to the graph In shown in Figure 1. The explicit isomorphism is given by the
morphism of digraphs � W V.G/! V.In/, s.ei / 7! vi�1; t .en/ 7! vn.

We are interested in taking disjoint sets of simple paths; following [Turner and Wagner 2012], we call
them multipaths.

Definition 10 A multipath of G is a spanning subgraph such that each connected component is either a
vertex or its edges admit an ordering such that it is a simple path.

Remark 11 Every spanning subgraph of a multipath is still a multipath. In particular, the set of multipaths
of a graph G — denoted by P.G/— forms a downward closed subposet of SSG.G/ (with the induced
order). Moreover, there is a unique minimum in both P.G/ and SSG.G/, which is the spanning subgraph
with no edges.

With the definition of multipath in place we can present the main actor of the section.

Definition 12 The path poset of G is the poset .P.G/; </ associated to G, that is, the set of multipaths
of G ordered by the relation of “being a subgraph”.

When the partial order on P.G/ is not specified, we will always implicitly assume it to be the order
relation <. Moreover, with abuse of notation, we will also write P.G/ instead of .P.G/; </.

We now provide some examples of path posets.

Example 13 Consider the coherently oriented linear graph In with n edges, illustrated in Figure 1. In
this case all spanning subgraphs are multipaths, that is P.In/D SSG.In/. In particular, it follows that
.P.In/; </ is a Boolean poset.

Example 14 Consider the coherently oriented polygonal graph Pn with nC 1 edges, illustrated in
Figure 2. Note that, according to our definition, also the digon P1, which is shown explicitly in Figure 3,
is a digraph. In this case all spanning subgraphs but the polygon itself are multipaths. Equivalently, we
have .P.Pn/[fPng; </D .SSG.Pn/; </. In particular, .P.Pn/; </ for n 2N nf0g is not a Boolean poset
(as it is missing the maximum).
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Figure 2: The coherently oriented polygonal graph Pn with a fixed ordering of vertices.

v0 v1

e1

e0

Figure 3: The digon graph P1.

Recall that the symbol zG denotes a covering relation. In order to visually represent path posets associated to
digraphs, we use the Hasse diagrams. The Hasse digraph Hasse.S;G/ of a poset .S;G/ is the graph whose
vertices are the elements of S and such that .x; y/ is an edge if, and only if, xzGy. Note that the Hasse graph
of a poset S completely encodes the covering relation of S and hence, by transitivity, the order relation.

Example 15 Consider the Y –shaped graphs in Figure 4. Their associated path posets, up to isomorphism,
are shown in Figure 5; the figures show the covering relation in the posets or, alternatively, the Hasse
digraph of the path poset. Note that the path poset of the graph in Figure 4(b) is isomorphic to the path
poset of the graph in Figure 4(a); in fact, these two graphs are isomorphic up to reversing the orientation
in all arcs of one of the two. However, the path poset of the graph in Figure 4(b) is not isomorphic to the
path poset of the graph in Figure 4(c) (eg there are no multipaths of with two edges in the latter).

Example 16 Consider the H–shaped digraph of Figure 6. The associated path poset, which is illustrated
in Figure 7, has multipaths with at most two edges.

The following remark will be essential in the functorial applications — see Section 5.

Remark 17 A morphism f W G1! G2 in Digraph (which is regular by definition) induces a morphism
of posets Pf W P.G1/! P.G2/; more precisely, to a multipath H � P.G1/ we associate the spanning
subgraph Pf .H/ of G2 defined by E.Pf .H// D ff .e/ j e 2 E.H/g. This association yields a functor
P W Digraph! Poset. Note that Pf .P.G1// is a faithful subposet of P.G2/.

We conclude the section by noting that, in favourable cases, the path poset determines the graph.

Proposition 18 Let G be a connected graph with n edges. If P.G/ has a maximum then we have that
P.G/Š B.n/ and GŠ In. In particular , a connected graph has a Boolean path poset if , and only if , it is
isomorphic to In.
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Figure 4: Three nonisomorphic Y –shaped digraphs.
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fv0; v1; v2; v3g
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Figure 5: The path posets of the Y –shaped digraphs in Figure 4(a), left, and (c), right.

v0 v1 v2

v3 v4 v5

Figure 6: A figure H–type digraph.

Proof Denote by M the maximum, which is the unique maximal element, of P.G/. We shall now prove
that M D G. That being true, G would be a connected graph admitting an ordering of the edges with
respect to which is a simple path, since M is a connected multipath. The statement would then follow
from Remark 9.

Since P.G/ is finite poset, for every x 2 P.G/ there is a maximal element m 2 P.G/ such that x � m.
Assume, for the sake of contradiction, that M¤ G. Then, there exists an edge e 2E.G/ nE.M/. Consider
the (multi-)path e defined by E.e/D feg. Then, as stated above, we have a maximal multipath M0 such
that e� M0. In particular, M¤ M0; this is not possible as we have a unique maximal element in P.G/.

We pointed out in Example 14 that the coherently oriented polygonal graphs have a path poset which is
almost a Boolean poset; more precisely, the path poset of Pn is a Boolean poset minus the maximum.
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fv0; v1; v2; v3; v4; v5g

v0 v1 v2

v3 v4 v5

v0 v1 v2

v3 v4 v5

v0 v1 v2
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v0 v1 v2

v3 v4 v5
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v0 v1 v2
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v0 v1 v2
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v0 v1 v2
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v0 v1 v2
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Figure 7: The path poset of the H–shaped digraph of Figure 6.

v0 v1 v2

fv0; v1; v2g

v0 v1 v2 v0 v1 v2

Figure 8: A noncoherent linear digraph with two edges and its path poset.

fv0; v1g

e1
v0 v1e0

v0 v1

Figure 9: The path poset of the digon graph P1 in Figure 3.

Example 19 Consider the digon graph P1 illustrated in Figure 3. As depicted in Figure 9, its associated
path poset consists of a minimum together with two elements corresponding to the two edges of the digon.
It is easy to see that this poset is equivalent to the path poset associated to the linear digraph with two
edges and noncoherent orientation illustrated in Figure 8.

We claim that, aside from the graph in Figure 8, the only connected graphs whose path poset is a Boolean
poset minus its maximum are the coherently oriented polygonal graphs. The key observation to prove our
claim is the following;
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Remark 20 If G is a graph with n edges, and P.G/ is isomorphic to B.n/ minus its maximum, then all
the subgraphs of G but G itself must be multipaths. In fact, SSG.G/ has exactly 2n elements, which is
the same number of elements in B.n/. It follows that only one subgraph H of G does not belong to P.G/.
Since P.G/ is downward closed in SSG.G/, we must have HD G.

Proposition 21 Let G be a connected graph with n edges. If P.G/ is isomorphic to B.n/ minus its
maximum , then GŠ Pn�1.

Proof Take one of the n maximal elements in P.G/, say M. Note that jE.M/j D n� 1. Moreover, since M
differs from G by a single edge, and G is connected, then M has at most two connected components.

Assume, for the sake of contradiction, that M is not connected. Each component of M is a simple path. It
follows that G is either In — which is absurd by Proposition 18 — or contains the graph in Figure 8 (up
to orientation reversal of both edges) as a subgraph. Note that the graph in Figure 8 cannot be G since
jE.G/j D n > 2. It follows that any proper spanning subgraph containing a copy of the graph in Figure 8
is a subgraph different than G which belongs to SSG.G/ but not to P.G/. This contradicts Remark 20.

From our argument above, it follows that M is connected, and thus isomorphic to In (since it is a multipath).
So either GŠ Pn�1, GŠ In (absurd), or again it contains a copy of the graph in Figure 8. The latter case
can be excluded with the same argument as above.

3 Digraph (co)homologies

The goal of this section is to outline a rather general framework within which to define cohomology theories
of directed graphs, using poset homology [Chandler 2019] as main tool — see also Remark 27. For the sake
of being self-contained, and also for clarity, we provide a fairly detailed exposition of the construction of
poset homology for posets of subgraphs. This is carried out in the first subsection. As the aforementioned
construction might, a priori, depend upon the choice of a sign assignment on the considered posets, we
further explore such dependence in the second subsection. We point out here that more general cohomology
theories of posets can be used to obtain similar digraph cohomologies; we explore it in Section 6.

3.1 A poset homology

In this subsection we define, given a special type of poset coherently assigned to each digraph, and a
choice of a sign assignment (see Definition 22), a cohomology theory for directed graphs; the cohomology
theory depends on many choices and the functorial discussion is postponed to Section 5. The construction
presented here has been inspired by [Turner and Wagner 2012], on one side, and by [Helme-Guizon and
Rong 2005], on the other side. In the former paper homologies for digraphs were defined using the path
poset functor — see Definition 12 and Remark 17; while in [Helme-Guizon and Rong 2005] a homology
for nonoriented graphs was obtained via a construction similar to [Khovanov 2000]. Poset homology
[Chandler 2019] interpolates between the two constructions.
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Recall from Definition 6(1) that a square in a poset .S;G/ is given by elements x, y, y0, and z such that
y ¤ y0, x zGy zG z, and x zGy0 zG z, where zG denotes the covering relation in S. Let Z2 be the cyclic group
on two elements.

Definition 22 A sign assignment on a poset .S;G/ is an assignment of elements �x;y 2 Z2 to each pair
of elements x; y 2 S with x zGy such that the equation

(1) �x;y C �y;z � �x;y0 C �y0;zC 1 mod 2

holds for each square x zGy; y0 zG z.

Observe that the restriction of a sign assignment to a subposet is a sign assignment. In general the
existence of a sign assignment on a given poset is not clear. However, for the spanning subgraphs poset —
or, better, for Boolean posets — and their subposets, there is an easy sign assignment:

Example 23 Let G be a graph with a fixed total ordering G on the set of edges E.G/. Recall from
Notation 2 and Example 4 that H� H0 in SSG.G/ if, and only if, H0 D H[ e. Then, we can define a sign
assignment on the poset SSG.G/ as

�.H; H0 / WD #fe0 2E.H/ j e0 G eg mod 2;

where H0 D H[ e. The verification is straightforward, but the reader may consult eg [Khovanov 2000].

The following definition will be used to define the cochain complexes.

Definition 24 Let P � SG.G/ be a faithful subposet. We define the level of an element H 2 P as

`.H/D #E.H/C #V.H/�minf#E.H0 /C #V.H0 / j H0 2 P g:

Note that the level of an element H 2 P � SG.G/ if P has a minimum is just the difference between the
distances of H and the minimum of P, respectively, from the minimum of SG.G/ in Hasse.SG.G//. Note
also that if P D SG.G/, P.G/� SSG.G/ then ` is the number of edges.

Recall from Remark 3 that a poset .S;G/ can be seen as a category S with set of objects S, and the set of
morphisms between x and y containing a single element if and only if x Gy or x D y.

Remark 25 Let C be a small category. For each square x zGy; y0 zG z in .S;G/ and any covariant functor
F W S ! C, we have

F.y zG z/ ıF.x zGy/D F.x G z/D F.y0 zG z/ ıF.x zGy0 /:

In other words, all functors preserve the commutativity of the squares in .S;G/.

Let A be an additive category, P � SG.G/ squared and faithful and � a sign assignment on P. Given a
covariant functor F WP!A, we can define the cochain groups

C nF .P / WD
M
H2P
`.H/Dn

F.H/
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and the differentials
dn D dnF WD

X
H2P
`.H/Dn

X
H02P
H�H0

.�1/�.H;H
0 /F.H� H0 /:

Note that the differentials dn, and therefore the cochain complexes, depend, a priori, upon the choice
of the sign assignment �. However, in the cases we are interested in, this choice does not affect the
isomorphism type of the complexes — see Corollary 36. We will further discuss this topic in Section 3.2
below. We now give the proof that the defined complexes are indeed cochain complexes.

In the proof of the theorem below, P being squared plays an essential role; otherwise, the square of the
differential might not be zero.

Theorem 26 Let A be an additive category , P � SG.G/ a squared and faithful poset , and � a sign
assignment on P. Then , for any n 2N and any covariant functor F WP!A, we have dn ı dn�1 � 0. In
particular , .C �F .P /; d

�/ is a cochain complex.

Proof Fix a natural number n; then
C nF .P /D

M
H2P
`.H/Dn

F.H/:

Let �H WC
�
F .P /!F.H/ and �H WF.H/!C �F .P / be the projection onto F.H/ and the inclusion of F.H/ in

C �F .P / as direct summand, respectively. Note that the composition dn ıdn�1 equals 0 if, and only if, the
composition �H00 ıd

nıdn�1 is trivial for all H00 2P such that `.H00 /D nC1. In particular, dnıdn�1� 0
if there are no H00 2 P with `.H00 /D nC 1.

Every element of C n�1F .P / is a linear combination of elements of F.H/ for H ranging in P with `.H/D
n� 1, and d is linear. Thus, if the composition �H00 ı d

n ı dn�1 ı �H equals 0 for all H; H00 such that
`.H/C 2 D `.H00 / D nC 1, then dn ı dn�1 � 0. We can factor the map �H00 ı d

n ı dn�1 ı �H through
C nF .P /, and write

�H00 ı d
n
ı dn�1 ı �H D

X
H�H0�H00

.�H00 ı d
n
ı �H0/ ı .�H0 ı d

n�1
ı �H/:

The right-hand side of the above equation vanishes if there is no H0 such that H� H0 � H00. It follows that
it is sufficient to check this case.

Since P is squared, if there is H� H01 � H00, then there a unique H02 .¤ H01/ such that H� H02 � H00. In other
words, H; H01; H

0
2; H
00 form a square in P. Thus, we obtain

�H00 ı d
n
ı dn�1 ı �H

D .�H00 ı d
n
ı �H01

/ ı .�H01
ı dn�1 ı �H/C .�H00 ı d

n
ı �H02

/ ı .�H02
ı dn�1 ı �H/

D .�1/�.H;H
0
1/C�.H

0
1;H
00 /F.H01 � H00 / ıF.H� H01/C .�1/

�.H;H02/C�.H
0
2;H
00 /F.H02 � H00 / ıF.H� H02/

D ..�1/�.H;H
0
1/C�.H

0
1;H
00 /
C .�1/�.H;H

0
2/C�.H

0
2;H
00 //F.H02 � H00 / ıF.H� H02/;
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where the last equality is due to the fact the functor F preserves the commutative squares in P —
see Remark 25. The result now follows immediately as � is a sign assignment on P .

Remark 27 The definition of the cochain complex CF .P / relies on the structure of the input graph G,
via the associated squared and faithful poset P � SG.G/, on the choice of the functor F , and on a sign
assignment � on P. More in general, the same machinery can be applied without graphs but dealing only
with a certain type of posets. This viewpoint was taken by Chandler, and we refer the reader to [Chandler
2019] for a more comprehensive discussion. For completeness we pursue our independently developed
approach. In particular, we shall provide an independent proof of functoriality with respect to graphs,
extending the generality to include also coefficients systems, in Section 5.

We conclude the section by observing that the general discussion of this section can be applied to the
case of G WP!A a contravariant functor. All proofs are straightforward adaptations of the proofs in the
case of covariant functors.

3.2 Existence and uniqueness of sign assignments

The cochain complexes defined in the previous subsection may depend on the choice of the sign assignment.
In this subsection, we see that this is actually not the case for a quite general class of posets, including
path posets.

A sign assignment on .S;G/ can be seen as a map � WE.Hasse.S;G//! Z2 such that (1) holds for each
square x zG y; y0 zG z of S. Consider the Hasse graph Hasse.S;G/ of a poset .S;G/ as a CW–complex
(formally, by taking its geometric realisation).

Definition 28 Given a poset .S;G/ define K .S;G/ as the CW–complex obtained from .S;G/ by attaching
to the (geometric realisation of the) Hasse graph Hasse.S;G/ a 2–cell ex;y;y0;z for each square xzGy; y0zGz
in .S;G/.

We will now show that the existence and uniqueness of a sign assignment on a poset .S;G/ depends only
upon the topological structure of the CW–complex K .S;G/. Denote by .C �CW.K .S;G/IZ2/; d�CW/ the
CW–cochain complex of K .S;G/, with respect to the given CW–structure, with coefficients in Z2. We
can interpret the sign assignments as cochains in the CW–cochain complex associated to K .S;G/:

Lemma 29 Let � be a sign assignment on a poset .S;G/, and denote by  the 2–cochain which associates
1 2 Z2 to each 2–cell in K .S;G/. Then , � defines a cochain a.�/ 2 C 1CW.K .S;G/IZ2/ such that
dCW a.�/D  . Moreover , for each a 2 C 1CW.K .S;G/IZ2/ such that dCW aD  there is a unique sign
assignment � such that aD a.�/.

Proof A 1–cocycle a with values in Z2 is a map from the set of 1–cells (which are the edges of the
Hasse graph, in our case) to Z2. Since the edges of the Hasse graph correspond to the pairs in the
covering relations, this is equivalent to the assignment of an element Z2 for each pair .x; y/ such that
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x zGy. It is left to show that the differential of a is  if, and only if, (1) holds for each square. Note that
dCW a.e/D

P
.x;y/2@e a.x; y/ for 2–cells e; therefore dCW aD  if, and only if,

a.x; y/C a.y; z/C a.x; y0/C a.y0; z/� 1 mod 2

for each square x zGy; y0 zG z, concluding the proof.

It is easy to see that a poset .S;G/ admits a sign assignment if the CW–complex K .S;G/ has trivial
second homology group:

Proposition 30 Let .S;G/ be a poset. If H2CW.K .S;G/IZ2/D 0, then there exists a sign assignment
on .S;G/.

Proof Consider the cochain  W CCW
2 .K .S;G/IZ2/! Z2 assigning 1 2 Z2 to each 2–cell of K .S;G/.

Since K .S;G/ has no 3–cells, dCW. /� 0 and hence  is a cocycle. Since, by assumption, we have
H2CW.K .S;G/IZ2/D 0, every 2–cocycle is a coboundary. Thus, there is a 2 C 1CW.K .S;G/IZ2/ such
that dCWaD  . The statement now follows directly from the second part of Lemma 29.

The above proposition provides a condition for a poset to admit a sign assignment. We now describe
when also the uniqueness is satisfied. First, we introduce the notion of isomorphisms of sign assignments.

Definition 31 Let �; �0 be sign assignments on a poset .S;G/. An isomorphism of sign assignments
between � and �0 is a map � W S D V.Hasse.S;G//! Z2 such that

(2) �.x/C �0x;y D �x;y C �.y/ mod 2

holds for all x zGy.

Roughly speaking, an isomorphism of sign assignments is a map � W S!Z2 such that the elements of Z2
on the edges of the square

x

�x

��

�x;y
// y

�y

��

x
�0x;y

// y

add up to 0 2 Z2. Intuitively this condition encodes the “commutativity” of such squares. We can now
provide a uniqueness result for sign assignments on posets — compare with [Putyra 2014, Lemma 5.7].

Proposition 32 Let � and �0 be two sign assignments on a poset .S;G/. If H1CW.K .S;G/IZ2/D 0, then
there is an isomorphism � of sign assignments from � to �0.

Proof Let a.�/; a.�0 / be the 1–cochains corresponding to �; �0 as in Lemma 29. Notice that

dCW.a.�/� a.�
0 //D dCW.a.�//� dCW.a.�

0 //D  � D 0;
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∅

f1gf0g

f0; 1g

10

00

∅

f1gf0g

f0; 1g

00

10

Figure 10: Two (isomorphic) sign assignments on the poset .}.f0; 1g/;�/.

where  is the usual 2–cocycle assigning 1 2 Z2 to each face of K .S;G/. Since, by assumption,
H1CW.K .S;G/IZ2/ D 0, we must have a.�/� a.�0 / D dCW.�/ for some � 2 C 0CW.K .S;G/IZ2/. We
can see � as a map

� W f0-cells of K .S;G/g D V.Hasse.S;G//! Z2:

Moreover, the equality a.�/� a.�0 /D dCW.�/ applied to each edge of the Hasse graph gives precisely
the condition of isomorphisms of sign assignment in (2), concluding the proof.

Example 33 Consider the two sign assignments on the Boolean poset .}.f0; 1g/;�/ illustrated in
Figure 10. By definition K .}.f0; 1g/;�/ is a disk.

Thus, H1CW.K .}.f0; 1g/;�/IZ2/D 0. This implies the uniqueness of the sign assignment up to isomor-
phism in this case. It is not difficult, in this case, to produce a concrete isomorphism:

� W V.Hasse.}.f0; 1g/;�//! Z2; v 7!

�
1 if v D f1g;
0 otherwise:

Recall the definition of downward closed subposet .S 0;GjS 0�S 0/ of a poset .S;G/— see Definition 5. As
a consequence of Proposition 32, we get the following:

Theorem 34 Let P be a downward (or upward ) closed subposet of SSG.G/. Then , any two sign
assignments � and �0 on P are isomorphic.

Proof The poset SSG.G/ is a Boolean poset — see Example 4. It follows that its Hasse diagram is the
1–skeleton of an n–dimensional cube, with n D jE.G/j. This implies that K .SSG.G/; </, which for
n � 2 is the union of the 1– and 2–skeletons of an n–dimensional cube, has trivial homology groups
in degree i D 1— this being trivial for n D 1. Therefore, the statement follows in this case from
Proposition 32. Note that there always exists a sign assignment on Boolean posets; this is true for
homological reasons for n¤ 3, see Proposition 30, and we can even define it explicitly for all n— see
for instance [Khovanov 2000, Section 3].

In the general case in which P is a downward or upward closed proper subposet of a cube, observe that it
is squared (see Example 7) and it contains either the minimum or the maximum of the cube. Furthermore,
the sub-CW–complex K .P;</�K .SSG.G/; </ retracts onto the minimum (or the maximum); hence,
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again by Proposition 32, the uniqueness of the sign assignment up to isomorphism follows. For a detailed
proof of this fact we refer the interested reader to [Chandler 2019, Theorem 4.5] (to be read in conjunction
with Theorems 2.9 (3) and 5.14 of that work).

In particular, if P D P.G/ is the path poset of a digraph G — see Remark 11 — we get:

Corollary 35 Any two sign assignments � and �0 on P.G/ are isomorphic.

We conclude the section with an application to the cohomology theories defined in Section 3.1.

Corollary 36 Let G be a digraph , P � SSG.G/ be a downward (or upward ) closed subposet , and
F WP!A a covariant functor to an additive category A. Then , the cochain complex .C �F .P /; d

�/ does
not depend , up to isomorphism , on the choice of the sign assignment on P.

Proof Let � and �0 be two sign assignments on P. Denote by .C �F .P /; d
�
� / and .C �F .P /; d

�
�0/ the

associated cochain complexes defined using � and �0, respectively. By Theorem 34, any two sign
assignments on P are isomorphic. Let � be an isomorphism between them and define the map

ˆ W .C �F .P /; d
�
� /! .C �F .P /; d

�
�0/;

as ˆ WD
L

HˆH, where ˆHD .�1/
�.H/ IdF.H/. Observe that this clearly gives an isomorphism of modules.

Furthermore, the commutativity of ˆ with the differentials is immediate by the definition of isomorphisms
of sign assignments (see (2)); hence it provides an isomorphism of chain complexes, concluding the
proof.

4 Multipath cohomology

The goal of this section is to define multipath cohomology of directed graphs using poset homology. This
will be achieved in the first subsection, whereas the second subsection is devoted to providing some compu-
tations. In particular, we will see that the multipath cohomology may be nontrivial when evaluated on trees.

4.1 Multipath cohomology

In this subsection we specialise the general construction described in Section 3.1 by taking as poset the
path poset P.G/ (Definition 12), and defining an explicit functor FA;M WP.G/!R–Mod. In order to
define FA;M and an explicit sign assignment on P.G/, we need some auxiliary data, more precisely, an
ordering on the vertices of G. An ordered digraph is a digraph with a fixed well-ordering2 of the vertices.
Note that the order of the vertices induces an order of the edges of G; this order is given by ordering the
pairs source-target lexicographically. We can use the ordering on the vertices of an ordered graph to index
the connected components of any subgraph H< G; the order being given according to the minimum of the
vertices belonging to each component.

2Every nonempty subset has a minimal element.
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Notation 37 Given a subgraph H of an ordered graph G, we will denote by indexH.c/ the position of a
connected component c of H with respect to the aforementioned order — we start the count at 0. More
precisely, if the ordered connected components of H are c0 < c1 < � � �< ck , then indexH.c/D i if c D ci .
Note that the definition of index is well-posed. Whenever H is clear from the context, we will remove it
from the notation of the index.

Definition 38 Consider H 2 SG.G/ and e 2E.G/nE.H/ such that s.e/; t.e/ 2 V.H/. The source (resp the
target) index of e with respect to H is defined as

s.e; H/D indexH.c/ such that s.e/ 2 c (resp. t .e; H/D indexH.c/ such that t .e/ 2 c).

The naming is motivated by the following facts: index.s.e// D s.e; G∅/ and index.t.e// D t .e; G∅/,
where G∅ denotes the spanning subgraph of G with no edges.

With this notation in place we are now ready to define a sign assignment �e on P.G/:

(3) �e.H; H0 /D
�
t .e; H/C 1 if H0 D H[ e and t .e; H/ > s.e; H/;
s.e; H/ if H0 D H[ e and s.e; H/ > t.e; H/

mod 2:

Lemma 39 The function �e in (3) gives a sign assignment on P.G/.

For the sake of presentation we moved the proof of the lemma to the Appendix.

Remark 40 More generally, observe that, for each faithful and squared poset P � P.G/, the restric-
tion �ejP is a sign assignment. Here we are using the faithfulness of P in P.G/ (and, by Proposition 8, in
SSG.G/) to be sure that the covering relation only amounts to the addition of a single edge.

We now construct an explicit functor FA;M WP.G/!R–Mod. From now on,R will denote a commutative
ring with identity, A an associative unital R–algebra and M an .A;A/–bimodule, ie M is both a left and
a right A–module, and the two actions are compatible.

Let G be an ordered graph and let v0 2 V.G/ be the minimum with respect to the given ordering. Given
a multipath H< G, to each connected component of H but the one containing the vertex v0 we associate a
copy of A, and to the component containing v0 we associate a copy ofM. Then we take the ordered tensor
product. More concretely, if c0 < � � �< ck is the set of ordered connected components of H, we define

(4) FA;M .H/ WDMc0 ˝R Ac1 ˝R � � � ˝R Ack ;

where all the modules are labelled by the respective component.

Assume H0DH[e. Denote by c0; : : : ; ck the ordered components of H, denote by c00; : : : ; c
0
k�1

the ordered
components of H0, and assume that the addition of e merges ci and cj . Then, for each hD 0; : : : ; k� 1,
there is a natural identification

(5) c0h D

8<:
ch if 0� h < i or i < h < j;
ci [ e[ cj if hD i;
chC1 if j � h < k
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ci

cj

ck

e1

e2

Figure 11: A schematic description of case (A) subcase (b).

for some 0� i < j � k. Using this identification, we define �H�H0 W FA;M .H/! FA;M .H0 / as

�H�H0.a0˝� � �˝ak/D a0˝� � �˝as.e;H/�1˝as.e;H/ �at.e;H/˝as.e;H/C1˝� � �˝1at.e;H/˝� � �˝ak�1˝ak;
where 1at.e;H/ indicates the at.e;H/ is missing. We set

(6) FA;M .H� H0 / WD
�
�H�H0 if H� H0;
IdFA;M .H/ if HD H0:

Equations (4) and (6) describe a functor

(7) FA;M WP.G/!R–Mod

from the category P.G/ associated to the path poset P.G/ to the additive category R-Mod of left R–
modules. In fact, we have the following:

Lemma 41 Let G be an ordered digraph. The assignment FA;M .H� H0 / WD �H�H0 in (6) preserves all the
commutative squares in P.G/— see Remark 25.

Proof The possible configurations of squares in P.G/ are described in the proof of Lemma 39, contained
in the Appendix — see Figures 16 and 17. We leave the full checking to the dedicated reader and present
here only one case, namely case (A), subcase (b). The remaining checks can be dealt with similarly. In
the case at hand we have H0 D H[fe1; e2g with

t .e2; H/D i < j D s.e1; H/ < s.e2; H/D t .e1; H/D k:

The schematic description of this configuration is shown in Figure 11. Now, we compute the two
compositions directly, and we obtain

FA;M .H[e1 � H0/ıFA;M .H� H[e1/.a0˝� � �˝ah/D a0˝� � �˝.ajak/ai˝� � �˝ Oaj˝� � �˝ Oak˝� � �˝ah;

FA;M .H[e2 � H0/ıFA;M .H� H[e2/.a0˝� � �˝ah/D a0˝� � �˝aj .akai /˝� � �˝ Oaj˝� � �˝ Oak˝� � �˝ah:

The statement follows in this case by the associativity of A (and the definition of .A;A/–bimodule if
i D 0).

Proposition 42 Let G be an ordered digraph. The assignment FA;M WP.G/!R–Mod defines a covariant
functor.
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Proof It is clear that FA;M preserves the identities. Let fH;H0 W H! H0 be a morphism in P.G/. The
morphism fH;H0 can be written as the composition of the covering morphisms fHi ;HiC1 for any given chain
HD H0 � H1 � � � � � Hn�1D H0 in P.G/— this is well-defined since we have a unique morphism between
two related objects in P.G/; see Remark 3. We only have to show that the composition

FA;M .Hn�2 � Hn�1/ ı � � � ıFA;M .H0 � H1/

depends only on HD H0 and H0 D Hn�1 and not on the chosen chain.

Note that H0 D H[fe1; : : : ; en�1g, and each chain corresponds to a choice of the order in which we add
the edges e1; : : : ; en�1 to H. Therefore, the proof boils down to showing that we can switch the order
in which we add two edges to H. This is equivalent to showing that FA;M preserves the commutative
squares in P.G/. Thus, the proposition follows directly from Lemma 41.

The above proof shows that both the poset P.G/ and its squared faithful subposets are, in the language of
[Chandler 2019], diamond transitive. For a more general proof of this fact in the case of downward or
upward closed subposets of SSG.G/, or even more in general, the reader can consult [Chandler 2019].

We conclude this section with the following theorem which is an immediate consequence of Theorem 26,
Lemma 39, and Proposition 42.

Theorem 43 Given a graph G the graded R–module C ��.GIA;M/ WD C �FA;M .P.G// endowed with the
map d� WD d�FA;M ;� is a cochain complex.

By Corollary 36, up to isomorphism of chain complexes, .C ��.GIA;M/; d�/ does not depend on the
choice of the sign �e.

Assume now thatM is isomorphic to A as an .A;A/–bimodule. Then, the chain complex does not depend,
up to isomorphism, on the given ordering of the vertices of the graph. In other words, the isomorphism
class of .C ��.GIA;A/; d

�/ depends only on the underlying graph G and on the algebra A:

Proposition 44 Let G be an ordered digraph. Then , the cochain complex .C ��.GIA;A/; d
�/ does not

depend on the choice of the ordering on V.G/.

Proof A permutation of the ordering on the vertices of G induces for each H 2 P.G/ a permutation on
the factors appearing in F.H/. There is an induced natural isomorphism of modules induced by the latter,
which extends to an isomorphism of chain complexes; the commutativity with the differentials is clear up
to sign. The statement now follows by Corollary 36.

Remark 45 More generally, the cochain complex .C ��.GIA;M/; d�/ does not depend, up to isomor-
phisms, on the choice of the order on V.G/ preserving the minimum — which can be considered as a base
vertex.
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We are ready to give the main definition of the paper:

Definition 46 The multipath cohomology H��.GIA;M/ of a digraph G with .A;M/–coefficients is the
homology of the cochain complex .C ��.GIA;M/; d�/. When ADM we simply write H��.GIA/.

Consider the category Digraph� of pointed digraphs, ie digraphs with the choice of a base vertex, and
morphisms of pointed digraphs, ie morphisms of digraphs that preserve the base vertex. Then, we can
define multipath cohomology of a pointed digraph .G; v0/ with .A;M/–coefficients as the homology of the
cochain complex .C ��.GIA;M/; d�/. Note that in the caseM ¤Awe need to keep track of the base vertex
because the associated cohomology groups H��.GIA;M/ may depend upon this choice — see Remark 51.

We conclude this subsection by observing that the sign assignment on SSG.G/, given in Example 23,
induces, by restriction, a sign assignment on the path poset P.G/. The cochain complex obtained from this
sign assignment and the one obtained from �e are isomorphic. However, this is not true for more general
subposets of P.G/ (as it depends on their topology) and the two constructions may lead to nonisomorphic
cohomology theories of digraphs.

4.2 Computations and examples

In this section we provide some computations of multipath cohomology — see Table 1. Further calculations,
new computational tools and more general results concerning the structure of multipath homology, are
developed in [Caputi et al. 2023; 2024b].

For the whole section, unless otherwise specified, we will always implicitly assume both M and A to be
the ground ring R, and RDK to be a field. Tensor products ˝ will always be tensor products over K.

We remark here that, from our computations, see Table 1, it follows that there exist trees with nontrivial
multipath cohomology. Most digraph homology theories known to the authors — as path homology,
clique homology and Hochschild homology of digraphs, or Turner–Wagner homology with constant
coefficients — vanish on trees.

Our first example is the noncoherently oriented linear digraph on three vertices. In this case we provide
the explicit computation of the multipath cohomology both with constant coefficients, that is, M DADK,
and in a nonconstant setting, namely M DADKŒx�=.x2/. As we will see, these two coefficients provide
different cohomologies, showing that the multipath cohomology actually depends on the choices of A
and M. Note also that, being the base ring a field, this example additionally shows that the classical
universal coefficients theorem is not sufficient to recover the cohomology computed using A from the
cohomology computed using R.

Example 47 Let G be the noncoherent linear digraph on three vertices v0; v1; v2 — see Figure 8. Appli-
cation of the functor FA;A on (the category associated to) its path poset P.G/ gives the following diagram
of K–modules:

Av0 ˝KAv1 ˝KAv2
.m˝IdA/˚.IdA˝m/
�����������! A.v0;v1/˝KAv2 ˚Av0 ˝KA.v2;v1/;
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where we have decorated the modules with the components of the corresponding multipaths, and the
arrows with the induced signs �e as by (3). The map on the left sends the elementary tensor product
a0˝a1˝a2 2Av0˝KAv1˝KAv2 to the element .a0 �a1/˝a2 2A.v0;v1/˝KAv2 , whereas the map on
the right sends the same element to a0˝ .a2 � a1/ 2 Av0 ˝KA.v2;v1/. If ADK, using the identification
K˝K KŠK and the commutativity of K, we get the cochain complex

0!K
d0D.IdK;IdK/
��������!K2

d1D0
���! 0:

It is now straightforward that the homology of such a cochain complex is concentrated in degree 1 and is
of dimension 1.

Now, take A to be the K–algebra KŒx�=.x2/. Fix the basis e0 D 1 and e1 D x for A as a K–vector
space. The basis for a tensor product of copies of A will be given by elementary tensors of e0 and e1
ordered lexicographically. We can now write explicitly the matrix associated to the differential d0 with
respect to these bases, which yields a matrix Md0 of rank 6 (over any field). Therefore, we have that
dim.H 0

�.GIA;A//Ddim.Ker.d0//D2, and that dim.H 1
�.GIA;A//D8�dim.Img.d1//D2, concluding

our computations.

To facilitate the calculations in the remaining examples, we will use some basic notions of algebraic Morse
theory; a general reference is [Kozlov 2008, Chapter 11, Section 3]. Roughly speaking, algebraic Morse
theory gives a way to reduce a (co)chain complex by eliminating acyclic summands via changes of bases.

The theory works as follows: Consider a finitely generated complex of K–vector spaces, say .C �; d�/,
and a basis Bi D fbij gj of C i as a K–vector space for each i . With respect to these bases, the differential
can be expressed as

d.bij /D
X
h

ciC1
j;h

biC1
h

for some ciC1
j;h
2K. One can now construct a digraph C by taking V.C/D

S
i Bi , and .bi

k
; b
j

h
/ 2E.C/ if,

and only if, i D j � 1 and the coefficient ciC1
k;h

is nontrivial.

An acyclic matching M on a graph C is a subset of pairwise disjoint3 edges of C such that the graph
obtained from C by changing the orientations of the edges in M has no cycles, ie there are no embedded
copies of Pn in C.

The main result in algebraic Morse theory (see [Kozlov 2008, Theorem 11.24]) is that, given an acyclic
matching M on C, the complex .C �; d�/ is quasi-isomorphic to a complex .C �M ; d

�
M /, where C iM is

generated by all the bij ’s that are not incident to the edges in M.

Remark 48 If M is an acyclic matching and fv 2 V.C/ j v D s.e/ or v D t .e/; e 2M g D V.C/, then
the complex .C �; d�/ has trivial homology.

3Two edges e and e0 are said to be disjoint if the sets fs.e/; t.e/g and fs.e0 /; t.e0 /g are disjoint.
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Remark 49 If M is an acyclic matching and

V.C/ n fv 2 V.C/ j v D s.e/ or v D t .e/; e 2M g � Bi

for a fixed i , then .C �M ; d
�
M / is concentrated in degree i . Therefore, .C �M ; d

�
M / has a trivial differential.

Hence the homology of .C �; d�/ is concentrated in degree i , and it is isomorphic to C iM .

In the following examples, for each digraph G, we can take the graph C to be the Hasse graph of the path
poset P.G/. This is due to the following two facts:

� All tensor products are taken over K and ADM DK; hence FA;M .H/ŠK has a single generator for
each multipath H in the path poset.

� For each pair of multipaths H; H0 such that H � H0, the map FA;M .H � H0 /, under the identifications
FA;M .H/ŠK and FA;M .H0 /ŠK, can be taken to be the identity up to a sign.

We can now proceed with the computation of the multipath cohomology of the n–step graph In.

Example 50 Let In be the n–step graph in Figure 1. We claim that H��.InIK/D 0 for all n > 0.

If nD 0, we have the degenerate case where In is just a vertex with no edges. By definition, the cochain
complex .C ��.I0IK/; d

�/ is just a copy of K in degree 0 and has trivial differential. Hence, we have
H��.I0IK/D H0�.I0IK/DK.

Let us turn back to the general computation. Notice that the path poset P.In/ is a Boolean poset —
see Example 13. Since FA;M .H/ŠK for each multipath H 2 P.In/, it follows that

C k�.InIK;K/D
M
H2P
`.H/Dk

FA;M .H/ŠK.
n
k/

for each k D 0; : : : ; n. In other words, the resulting cochain complex C ��.InIK;K/ is of the form

0!K
d0
�!Kn

d1
�! � � � !K.

n
k/ d

.nk/
��!K.

n
kC1/! � � � !Kn

dn
�!K

dnC1
��! 0:

An acyclic matching (the check of the nonexistence of cycles is left to the reader) on the Hasse graph
of P.In/ Š }.f0; : : : ; n � 1g/ is given by all edges .s; s [ f0g/ with s 2 }.f1; : : : ; n � 1g/. Since
each s2}.f0; : : : ; n�1g/ either contains 0 or does not, this matching touches all vertices of Hasse.P.In//,
and our claim follows from Remark 48.

In the general case A¤K, the computation that H��.InIA/D 0 is more convoluted. In Corollary 81 we
will prove the claim for every unital algebra A and positive degrees. In [Caputi et al. 2023] we prove a
more general result on the vanishing of multipath cohomology for ADK.

In degree 0, the multipath cohomology is possibly not trivial — eg H��.InIA/¤ 0; see Corollary 81. In
the next remark we see that H��.�IA;M/, when M ¤ A, depends on the choice of the base vertex.
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fv0; v1; v2; v3g

v0 v1

v2

v3

v0 v1

v2

v3

v0 v1

v2

v3

v0 v1

v2

v3

v0 v1

v2

v3

fv0; v1; v2; v3g

v0 v1

v2

v3

v0 v1

v2

v3

v0 v1

v2

v3

Figure 12: Acyclic matchings (in red and thicker) in the path posets of the graphs Y1(left) and
Y2 (right) depicted in Figure 4(a) and (c).

Remark 51 When the bimodule M is not the R–algebra A itself, the multipath cohomology of a
digraph G may depend upon the choice of the base vertex. As an example, let I2 be the 2–step graph
on vertices v and w and the only directed edge .v; w/. Choose first v to be the base vertex; then, the
associated cochain complex C�.GIA;M/ is

0!M ˝A
d0
�!M ! 0;

where d0 is induced by the left action: .m˝ a/ 7!m � a. If we choose the base vertex to be w, we get

0! A˝M
d0
�!M ! 0;

where now d0 is induced by the right action: .a˝m/ 7! a �m. Therefore, if left and right action do not
agree, then the homology groups may differ, in this case.

fv0; v1; v2; v3; v4; v5g

v0 v1 v2

v3 v4 v5

v0 v1 v2

v3 v4 v5

v0 v1 v2

v3 v4 v5

v0 v1 v2

v3 v4 v5

v0 v1 v2

v3 v4 v5

v0 v1 v2

v3 v4 v5

v0 v1 v2

v3 v4 v5

v0 v1 v2

v3 v4 v5

v0 v1 v2

v3 v4 v5

v0 v1 v2

v3 v4 v5

v0 v1 v2

v3 v4 v5

Figure 13: An acyclic matching (in red and thicker) in the path poset of the H–shaped digraph in Figure 6.
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We proceed with the computation of the multipath cohomology groups of the examples in Table 1.

Example 52 Consider the graphs Y1 and Y2 depicted in Figure 4(a) and (c), respectively. Let us start
with Y1. In this case we have an acyclic matching on Hasse.P.Y1// which touches all vertices (see
Figure 12). It follows from Remark 48 that H��.Y1IK/D 0.

Moving on to the graph Y2, all (nonempty) acyclic matchings on Hasse.P.Y2// consist of a single edge
going from .Y2/∅ (ie the multipath with no edges) to a multipath with a single edge (eg see Figure 12).
This leaves only two vertices unmatched (ie not incident to the edges in the matching), both corresponding
to multipaths with a single edge (and thus representing two generators in cohomological degree 1). It
follows from Remark 49 that H��.Y2IK/DH

1
�.Y2IK/ŠK2.

Example 53 Let G be the digraph illustrated in Figure 6. An acyclic matching M on the Hasse graph
associated to P.G/ is shown in Figure 13. There are only two multipaths not incident to the edges in M,
both with two edges. It follows from Remark 49 that H��.GIK/DH

2
�.GIK/ŠK2.

5 Functorial properties and exact sequences

The aim of the following section is to better understand the functorial properties of multipath cohomology.
The machinery developed here can be adapted also to other contexts and to the general framework
described in Section 3. As an application, in Section 7.2 we will clarify the relationship between multipath
cohomology and chromatic homology.

Let Digraph.n/ be the subcategory of the category Digraph consisting of digraphs with precisely
n vertices, and morphisms of digraphs. In this section, among others, we prove the following functoriality
result, which is one of the main results of the paper.

Theorem 54 (Theorem 1) Let R–Alg be the category of unital R–algebras , Digraphop.n/ the opposite
category of Digraph.n/, and R–Modgr the category of graded R–modules. Then , multipath cohomology

H� W Digraphop .n/�R–Alg!R–Modgr

is a bifunctor for all n 2N.

We start by discussing the functoriality of multipath cohomology with respect to the algebras.

Proposition 55 Let G be a graph , and let P be a squared and faithful subposet of SSG.G/ with a fixed
sign assignment. Then

H�F�;�.P / WR–Alg!R–Modgr;

which associates to A the graded R–module H�FA;A.P /, is a covariant functor. In particular , the multipath
cohomology of a fixed graph is covariant with respect to morphisms of R–algebras.

Algebraic & Geometric Topology, Volume 24 (2024)



4400 Luigi Caputi, Carlo Collari and Sabino Di Trani

Proof Let A be an R–algebra, and let f W A ! B be a homomorphism of R–algebras. Recall the
definition of the functor FA;A from Section 4.1; we have FA;A.H/ WD Ac1 ˝R � � � ˝R Ack for each H 2 P,
and FA;A.H� H0 / is induced by the multiplication. Since f W A! B is an R–algebra homomorphism, it
induces maps between the tensor powers

f ˝ � � �˝f W Ac1 ˝R � � � ˝R Ack D FA;A.H/! FB;B.H/D Bc1 ˝R � � � ˝R Bck :

For each n 2N, these extend to a map

C nFA;A.P /D
M
H2P
`.H/Dn

FA;A.H/!
M
H2P
`.H/Dn

FB;B.H/D C nFB;B .P /

because f extends linearly to directed sums. Note that the sign assignment is the same on both complexes.
Since f commutes with the multiplication, the induced map commutes with the differentials. Thus the
map induced by f is a map of cochain complexes. The fact that this construction respects compositions is
straightforward since f ˝k ıg˝k D .f ıg/˝k for any composable morphisms of R–algebras f and g.

We remark here that an R–algebra homomorphism f W A! B provides a natural transformation between
the two functors FA;A W P ! R–Mod and FB;B W P ! R–Mod; this follows since f extends to tensor
powers and directed sums. A natural transformation � W F ! G between two functors F ;G W P ! A,
which preserves the biproducts in A, induces a morphism of cochain complexes �� W CF .P /! CG.P /.

Before turning back to multipath cohomology, we consider the behaviour of the cohomology HF under a
change of graph. First, we need a “coherent” way to choose, for each graph, a squared subposet of SSG.G/.
Recall that for a poset P we denote by P the associated category — see Remark 3.

Definition 56 Let S W Digraph! Poset be a covariant functor. The functor S is called path-like if the
following properties hold for each regular morphism of digraphs � W G0! G:

� S.G/� SSG.G/ is a faithful subposet.

� S.�/.S.G0 // is a downward closed subposet of S.G/.

� S.�/, seen as a functor between the associated categories S .G0 / and S .G/, is faithful4 as a functor.

Example 57 The functors SSG WDigraph! Poset and P WDigraph! Poset associating to a digraph G
the poset of spanning subgraphs and the path poset, respectively, are path-like functors. This follows from
Remark 17 in the case of the functor P ; in a similar way, this is also true for the functor SSG.

Observe that, if S is a path-like functor, then S.G/D S.IdG/.S.G// is squared.

The second ingredient needed is a way to fix F for each graph. Let S W Digraph! Poset be a covariant
functor and A an Abelian category (eg R–Mod).

4A functor is called faithful if, for each pair of objects, it is injective on the sets of morphisms between them.
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Definition 58 A coefficients system for S is family of functors fFS;G W S .G/!AgG such that, given a
regular morphism of digraphs � W G0! G, the associated functor S.�/ WS .G0 /!S .G/ makes the following
diagram commute:

S .G0 /
S.�/

//

FS;G0 ""

S .G/
FS;G

}}

A

Remark 59 The functor FA;A is not a coefficients system for the functor path poset P unless either we
restrict to Digraph.n/� Digraph, or we work with constant coefficients — ie ADR.

Notation 60 For � W G0! G a regular map of digraphs and S WDigraph! Poset a functor, we denote by
S�.G0; G/ the poset

S�.G0; G/ WD S.G/ nS.�/.S.G0 //:

We are ready to compare, under mild hypotheses, the cochain complexes associated to two graphs.

Remark 61 Recall that the complex C �F .P / depends also on a sign assignment � on P and should
have been denoted by C �F .P; �/. By Theorem 34, if P � SSG.G/ is upward or downward closed,
then C �F .P; �/Š C

�
F .P; �

0 / for any two sign assignments �; �0 on P. This fact motivated the removal of
the sign assignment from the notation.

When comparing complexes associated to different graphs, their subcomplexes, or their quotient complexes,
we need to be more careful; it is often the case that we have a chain map

f0 W C
�
F .P; �0/! C �F 0.P

0; �00/;

while we might need a chain map
f1 W C

�
F .P; �1/! C �F 0.P

0; �01/:

In our case, P and P 0 will be either upward or downward closed. Hence, to obtain f1 it is sufficient to
compose f0 with isomorphisms associated to the change of sign assignments, say � and �0, such that the
diagram

C �F .P; �1/

�

��

f1
// C �F 0.P

0; �01/

C �F .P; �0/ f0

// C �F 0.P
0; �00/

�0

OO

is commutative. Formally, in order to prove functoriality, one needs to find a coherent way to fix the
isomorphisms �, �0 once and for all. One approach would be to extend the category of posets to pairs
of poset-sign assignments, and expand the notion of coefficient systems to this setting. This can be
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done formally — compare with [Chandler 2019, Sections 6 and 7], where a similar approach is pursued.
Nonetheless, for the sake of simplicity and to ease the notation, signs and the induced isomorphisms will
be treated naively in this section. We do not fix them nor require compatibility; instead we just make use
of the existence of such isomorphisms.

From now on, given any P �SSG.G/, for some digraph G, we fix a sign assignment on P as a restriction of
a (fixed) sign assignment on SSG.G/. This choice is immaterial, up to isomorphism of the complex C �F .P /,
when assuming P to be a downward (or upward) closed subposet of SSG.G/ by Theorem 34.

Recall that `P denotes the level in a faithful subposet P � SG.G/; see Definition 24.

Proposition 62 Let S W Digraph! Poset be a path-like functor , and FS;� be a coefficient system for S.
Then , we have the following short exact sequence of cochain complexes:

0! C �FS;G.S�.G
0; G//

�
� min
x2S�.G0;G/

f`S.G/.x/g
�
! C �FS;G.S.G//! C �FS;G0 .S.G

0 //! 0:

Proof By definition, we have

C nFS;G.S.G//D
M

H2S.G/
`S.G/.H/Dn

FS;G.H/;

C nFS;G.S�.G
0; G//

�
� min
x2S�.G0;G/

f`G.x/g
�
D

M
H2S�.G0;G/
`S.G/.H/Dn

FS;G.H/;

where we used `S.G/.H/D `S�.G0;G/.H/Cminf`G.x/ j x 2 S�.G0; G/g for H 2 S�.G0; G/. As a consequence,
we get a natural inclusion of cochain complexes. Note that the inclusion commutes with the differential
due to the fact that the poset S�.G0; G/ is upward closed, and the sign assignment on S�.G0; G/ is induced
by SSG.G/.

We need to identify the quotient, with respect to this inclusion, with the cochain complex associated
to S.G0 /. At the level of modules, we have

C nFS;G.S.G//

C nFS;G.S�.G
0; G//

�
�minx2S�.G0;G/f`G.x/g

� D M
H2S.G/nS�.G0;G/
`S.G/.H/Dn

FS;G.H/:

Since S.�/.S.G0 // and S�.G0; G/ are, by definition, complementary in S.G/, we can identify the above
quotient withC �FS;G.S.�/.S.G

0 ///. Now, the components of the differentials corresponding to the coverings
H0 � H with H … S.�/.S.G0 // are set to 0 in the quotient. Thus, the above identification commutes with
the differentials, hence inducing an isomorphism of cochain complexes, since the sign assignment on the
poset S.�/.S.G0 // is induced by SSG.G/.
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To conclude the proof, we need to identify C �FS;G.S.�/.S.G
0 /// with C �FS;G0 .S.G

0 //. The functor S is
path-like. Therefore, by definition, we have that

FS;G0.H/D FS;G.S.�/.H//;

and similarly for the maps associated to the covering relations. This gives us an identification of
C �FS;G.S.�/.S.G

0 /// with C �FS;G0 .S.G
0 // as graded R–modules. Observe that there is no shift in the

identification because S.�/.S.G0 // is downward closed. This identification commutes with the differentials
up to an isomorphism induced by a change of sign assignment in one of the complexes. Composing the
quotient map with such isomorphism gives us the desired short exact sequence.

We now consider the functor S to be either the path poset functor P or SSG, and the functor F to be the
functor FA;A for A an R–algebra.

Proposition 63 Let � W G0! G be a regular morphism of digraphs. The inclusion of S.G0 / in S.G/ induces
the following short exact sequence of complexes:

0! C �FA;A.S�.G
0; G//

�
� min
x2S�.G0;G/

f`.x/g
�
! C �FA;A.S.G//! C �FA;A.S.G

0 //˝A˝#.V.G/nV.G0 //
! 0:

In particular , if G0 is a spanning subgraph of G, we have the short exact sequence

(8) 0! C �FA;A.S�.G
0; G//

�
� min
x2S�.G0;G/

f`.x/g
�
! C �FA;A.S.G//

�G;G0��! C �FA;A.S.G
0 //! 0:

Proof The proof proceeds exactly as the proof of Proposition 62, until the identification of the complexes
C �FA;A.S.G

0 // and C �FA;A.S.�/.S.G
0 ///. At this point, we need to use that the family of functors FS;� D

FA;A is a coefficient system; however, this is not true — see Remark 59. Nonetheless, we have

FS;G0.H/D FS;G.S.�/.H//˝A˝#.V.G/nV.G0 //;

and the identification extends to the maps associated to the covering relations by tensoring with the
opportune tensor power of IdA. The proof now continues exactly as in Proposition 62. We conclude the
proof by observing that if G0 2 SSG.G/, we have A˝#.V.G/nV.G0 // DR, and the statement follows.

With the same notation, we can now consider compositions of morphisms of digraphs:

Lemma 64 If G00 2 SSG.G/ and G00 � G0 � G, then �G;G0 ı �G0;G00 D �G;G00 , where �G;G0 is the induced
morphism in (8).

Proof We can explicitly write the maps:

C nFA;A.S.G//D
L

H2S.G/
`G.H/Dn

FA;A.H/
�G;G00

//

�G;G0

��

L
H2S.G00 /
`G.H/Dn

FA;A.H/D C nFA;A.S.G
00 //

C nFA;A.S.G
0 //D

L
H2S.G0 /
`G0 .H/Dn

FA;A.H/

�G0;G00

33
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Since each of the maps above restricts to the identity for H appearing in the summands, and is zero
otherwise, we get a commutative diagram of cochain complexes. Note that we are implicitly using the
fact that the (family of) functor(s) FA;A is a coefficients system (since G0; G00 are spanning subgraphs of G)
for S D SSG or S D P, and Remark 61.

We are ready to conclude the proof of the functoriality.

Proof of Theorem 1 The statement follows from Lemma 64, giving the functoriality with respect to
maps of digraphs, and Proposition 55, giving the functoriality with respect to maps of R–algebras.

We conclude the section with the result of functoriality with respect to change of base rings:

Theorem 65 Let Ring be the category of unital rings and Abgr be the category of graded Abelian groups.
Then , the multipath cohomology

H�.�I�/ W Digraphop
�Ring! Abgr

is a bifunctor.

Proof For a homomorphism f WR! S of rings, there is an extension-of-scalars functor along f defined
as S ˝R .�/ W R–Mod! S–Mod, where the tensor product in S is regarded as an R–module via the
map f. In this way, we get natural isomorphisms S ˝R R Š S (more generally, it is true that if R
is commutative and M an R–module, then M ˝R R Š M ), and, for each product R˝R � � � ˝R R,
isomorphisms S ˝R R˝R � � � ˝R RŠ S ˝R RŠ S. Reasoning as in Lemma 64 and Theorem 1 gives
the functoriality with respect to all regular maps of digraphs (with any finite number of vertices).

6 Other poset (co)homologies and Turner and Wagner’s approach

The definition of multipath cohomology given in Section 4 uses a certain homology of posets which we
referred to as poset homology. After application of the path poset functor P W Digraph! Poset — see
Remark 17 — other (co)homology theories of posets can also be used to get similar graph (co)homology
theories, for example, the general functor homology (of categories) — see eg [Gabriel and Zisman 1967;
Mac Lane 1971] — or the cellular cohomology (of posets) introduced in [Everitt and Turner 2015]. In this
section, we provide a brief review of these (co)homology theories, and compare them with poset homology
on (suitable modifications of) path posets. In particular, we argue that, after mild modifications, we can
interpret multipath cohomology groups as (cellular and hence) functor cohomology groups, shedding
light on the nature of multipath cohomology.

6.1 Functor homology (of posets)

For a poset P, recall that P denotes its associated category — see Remark 3. Given a functor F WP!A,
where A is a complete and cocomplete Abelian category, we can define the functor homology (resp coho-
mology) groups H�.P IF / (resp H�.P IF /) as the associated higher colimits (resp higher limits). For the
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sake of completeness, we spell out the definition. Denote by 1 the category with a single object and a
single morphism. Then, there is a unique functor T WP! 1. Since A is complete and cocomplete, both
left and right Kan extensions of F exist. In particular, the left Kan extension LanT F of F along T exists,
and it yields the colimit functor of F.

Definition 66 [Mac Lane 1971] The functor homology Hn.P IF / of P with coefficients in F is the nth

left derived functor of LanT F.

Analogously, the right Kan extension along T yields the limit of F ; thus, Hn.P IF / is given by the nth

derived functor of limF. Definition 66 is rather abstract; more concretely, H�.P IF / can be computed
(see [Gabriel and Zisman 1967]) as the homology groups of the chain complex

� � �
@n
�!

M
c0!���!cn

F.c0/
@n�1
��! � � �

@2
�!

M
c0!c1!c2

F.c0/
@1
�!

M
c0!c1

F.c0/
@0
�!

M
c02P

F.c0/! 0

with differential

@n.f .c0!� � �! cnC1//DF.c0! c1/f .c1!� � �! cnC1/C

nC1X
iD1

.�1/if .c0!� � �! Oci!� � �! cnC1/;

where Oci means that ci is missing, and .c0 ! � � � ! cn/ denotes the inclusion of f 2 F.c0/ into the
summand corresponding to the sequence c0! � � � ! cnC1. Dually, the Roos complex [1961] computes
the functor cohomology groups Hn.P IF /. More precisely, H�.P IF / is the cohomology of the cochain
complex

0!
Y
c02P

F.c0/
d0
�!

Y
c0!c1

F.c1/
d1
�!

Y
c0!c1!c2

F.c2/
d2
�! � � �

dn�1
��!

Y
c0!���!cn

F.cn/
dn
�! � � �

endowed with differential dn, whose evaluation on f 2
Q
c0!���!cn

F.cn/, is given by

dn.f /.c0! � � � ! cnC1/

D .�1/nC1F.cn! cnC1/f .c0! � � � ! cn/C

nX
iD0

.�1/if .c0! � � � ! Oci ! � � � ! cnC1/:

Note that here .c0!� � �! cn/ denotes the projection onto the factor corresponding to the sequence c0!
� � � ! cnC1. In other words, functor (co)homology groups are defined as the (co)homology groups of a
suitable (co)simplicial replacement. We also point out that similar constructions can be performed using
contravariant functors instead of covariant.

The homology of a category with coefficients in a functor has been extensively studied and the literature
on it is very rich. When restricting to constant functors, the functor (co)homology groups depend only on
the geometric realisation of the source category — see [Quillen 1973]. In particular, by Corollary 2 of
that work, every poset with an initial element has with respect to the constant functor the homology of a
point. We now provide an example.

Algebraic & Geometric Topology, Volume 24 (2024)



4406 Luigi Caputi, Carlo Collari and Sabino Di Trani

Example 67 Consider the path poset associated to the digon digraph — see Figure 9. Its associated
category is the pushout category 1 0! 2, where the initial object 0 corresponds to the empty multipath.
For an Abelian category A and functor F, set f WD F.0! 1/ and g WD F.0! 2/. The corresponding
functor homology groups are the homology groups of the chain complex

0! A0˚A0! A0˚A1˚A2! 0;

where A0; A1; A2 are objects of A with F.i/D Ai , and the only nontrivial map is given by

.a; b/ 7! .�.aC b/; f .a/; g.b//:

The homology groups of the complex are therefore H0.P IF /D colimF, H1.P IF /' ker.f /\ ker.g/,
and they are 0 in higher degrees. Note that the functor cohomology groups are trivial in all degrees but
the 0th (in which it agrees with A0), because the category has an initial object. Note also that the poset
homology groups as defined in Section 3 would be given by the kernel and image of f �g.

Assume now that F takes values in A D Ab, the category of Abelian groups, and assume that F sends
every morphism in P, ie every x � y in P, to an isomorphism of A. Then, F induces a local coefficient
system on the classifying space5 BP of P, ie on the order complex of P. Quillen [1973] has shown that
there is an isomorphism

H�.P ;F /Š H�.BP ;F /

between the homology groups of the category P and the classical homology groups of the space BP,
with local coefficients (here for simplicity denoted with the same symbol F ). In order to show it, one
considers the skeleton filtration

BP.0/
� BP.1/

� � � �

and the associated spectral sequence with E1–term E1p;q D HpCq.BP.p/; BP.p�1/;F /. When q D 0,
the E1–term yields the homology groups Hp.P ;F /. The spectral sequence converges to Hp.BP ;F /,
providing the isomorphism. In a similar fashion, Turner and Everitt have defined the so-called cellular
cohomology groups of posets, as we shall recall in the next subsection.

6.2 Cellular poset cohomology

Cellular poset (co)homology is a rather general (co)homology theory of posets introduced in [Everitt
and Turner 2015]. The cellular poset (co)chain groups are defined using a relative version of functor
(co)homology and, for a rather large class of posets, it agrees with functor (co)homology, providing a
tool to the computation of the higher (co)limits of functors on posets. We now proceed by reviewing its
definition in the cohomological case (the homological case is analogous).

5The geometric realisation of the nerve.
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v0
v1

v2

Figure 14: The poset P (left) and a graph realising P as its path poset.

In what follows, we assume that P is a finite and ranked poset, with rank function rk W P !N. Let r WD
maxfrk x j x 2 P g be the maximum rank; then one can filter P with subposets

P k WD fx 2 P j rk.x/� r � kg;

yielding a filtration P 0 � P 1 � � � � � P r D P. Let F be a contravariant functor (a presheaf) on (the
associated category of) P.

Definition 68 [Everitt and Turner 2015, Definition 2.1] The cellular cochain complex has cochain
groups

Cicell.P IF / WD Hn.P i ;P i�1;F /;

where Hn.P i ;P i�1;F / are the relative functor cohomology groups.

The differentials are also induced from functor cohomology — see [Everitt and Turner 2015] for a
description of the differential. Observe that, as taking the classifying space of a category is natural, the
relative cohomology groups appearing in the definition can be interpreted as the usual relative cohomology
groups (of the associated classifying spaces). One can compute explicitly this complex via the formulae

Cicell.P IF /D
�L

rk.x/Dn F.x/; i D 0;L
rk.x/Dn�i

zHi�1.jNP>xj;F.x//; i > 0;

where N denotes the nerve, j � j denotes the geometric realisation, and zH� denotes the usual reduced
singular cohomology — see [Everitt and Turner 2015, Propositions 3, 4 and 5].

Note that the functors appearing in the definition of cellular cohomology are contravariant, and hence
defined on Pop. The constant functor can be seen both as a covariant and as a contravariant functor;
hence computations can be carried on in both cases. We now proceed with an example of calculation,
computing the cellular cohomology of a path poset, with respect to the contravariant constant functor.

Example 69 Consider the poset P and the graph G represented in Figure 14. The path poset P.G/ is iso-
morphic toP. For a fixed field K, consider the constant functor K on the category associated to the posetP.

We now compute the cellular cochain groups of the poset P. First, observe that the poset P is ranked with
rank function rk given by the distance from the minimum; this function is bounded with maximum value
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r D 2, which is achieved by the maximal elements. The corank function is defined to be jxj WD 2� rk.x/.
In degree 0, the cellular cochain complex is generated by the (evaluation of the constant) functor K at
the maxima, obtaining

C 0cell.P IK/ŠK2:

In order to analyse the higher degrees, we use [Everitt and Turner 2015, Proposition 3]

C ncell.P IK/Š
Y
jxjDn

Hn.P�x; P>xIK/;

with the convention that, Hn.P�x;∅I k/DHn.P�xI k/— see [loc cit, page 140] — and where H� denotes
functor cohomology. Then, for the elements x in P of corank 1, we get

H1.P�x; P>xIK/Š zH0.P>xIK/

by [loc cit, Proposition 4]. As P>x consists of a single point, we get zH0.P>xIK/ Š zH0.f�gIK/ Š 0
(see [loc cit, page 140]). Therefore, we have

C 1.P IK/Š 0:

We conclude the computation of the cellular cohomology groups by analysing C 2.P IK/, as there are
no elements of corank � 3. There is only a single element m of corank 2, given by the minimum of P,
and the geometric realisation of P>m consists of two intervals. By [loc cit, Propositions 3 and 4],

C 2cell.P IK/Š zH
1.P>mIK/Š 0:

Therefore, it follows that the cellular cohomology, in this case, is concentrated in degree 0, where its
dimension is 2.

Arguing as in Example 69, we have the analogue of Example 67:

Example 70 Consider the path poset associated to the digon digraph — see Figure 9. Then, P has a
unique element m of rank 0 and two elements of rank 1. Then,

C 0cell.P IK/ŠK2

generated by the elements of rank 1. The group C 1cell.P IK/, instead, is isomorphic to zH1.P>mIK/ŠK.
The differential acts by .x; y/ 7! x�y, giving H1cell.P IK/ŠK and 0 in other degrees. When passing
to arbitrary coefficients, as in Example 67, let Ai WD F.i/ and set f � WD F.0! 1/, g� WD F.0! 2/.
Then, the cellular cochain complex becomes

0! A1˚A2! A0! 0;

with unique differential .a; b/ 7! f �.a/�g�.b/.

Using a spectral sequences argument, one can prove that, for certain ranked and finite posets, cellular
cohomology groups compute the higher limits of (a contravariant functor) F. We first recall — see [Everitt
and Turner 2015, Definition 3.1] — that a ranked poset is cellular if, and only if, for every contravariant

Algebraic & Geometric Topology, Volume 24 (2024)



Multipath cohomology of directed graphs 4409

functor F on P, the relative functor cohomology groups Hi .Pn;Pn�1;F / are 0 for all i¤n. For example,
for X a regular CW–complex, the face poset P.X/op with reversed inclusion (hence, x � y if, and only
if, y � x) is cellular — see [Everitt and Turner 2015, Section 4.1]. By [loc cit, Theorem 1], when P is a
cellular poset and F WP!Ab is a contravariant functor, there are isomorphisms H�cell.P ;F /ŠH�.P ;F /
between cellular cohomology groups and the functor cohomology groups, showing that for a large class
of posets cellular (co)chain groups compute the higher (co)limits.

6.3 Comparisons on path posets

In this subsection we restrict to posets arising as path posets of digraphs. The idea of defining graph
homologies using the path poset is, to the best of the authors’ knowledge, due to Turner and Wagner, and
inspired this work. In [Turner and Wagner 2012], they make use of functor homology to define a graph
homology, as the functor homology groups of the (category associated to the) path poset. In the special
case F D FA;M , that is, the functor defined in (7) (or, better, a symmetrised version of it, see [loc. cit.]),
we get what we call the Turner–Wagner homology TW of G:

TW�.GIA;M/ WD H�.P.G/IFA;M /:

Here we point out a small technical issue; if the module M is different from A, we have to fix a base
vertex, and the theory provides a homology for based digraphs, ie graphs with a base vertex, exactly as in
our case — see Remark 45. As every category with an initial element, with respect to the constant functor,
has the homology of a point, we obtain the following:

Remark 71 We have TW0.GIR;R/ŠR and TWi .GIR;R/D 0 for i > 0.

An immediate consequence of the previous remark and of the examples in Section 4.2, along with
Example 67, is the following result.

Remark 72 The (co)homologies TW and H� are not isomorphic nor dual to each other.

In order to understand the precise relation between the multipath cohomology of a graph and the Turner–
Wagner homology, we use cellular cohomology as an intermediate theory. In the following, we aim to
show that, after some mild modifications of the path poset, all these theories agree. However, despite the
similarities, it is easy to see that these are different “on the nose”:

Example 73 Consider the path poset P1 of the digon graph — see Figure 3. Note that the associated
category is the pushout category 1 0! 2. As shown in Example 67, for an algebra A and the functor
FA;A W P !A described in (7), we have FA;A.0/D A˝A and FA;A.1/D FA;A.2/D A. The functor
homology groups are the homology groups of the complex

0! A˝A˚A˝A! A˝A˚A˚A! 0
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whose differential is given by

.a0˝ b0; a1˝ b1/ 7! .a0˝ b0C a1˝ b1;�a0b0;�a1b1/:

Note that, as the path poset has a minimum, the functor cohomology groups are all trivial in higher
degree, and isomorphic to A˝A in degree 0. The functor FA;A is not directly defined on Pop, so we
cannot directly compute the associated cellular cohomology groups. However, FA;A can be seen as a
contravariant functor on Pop, in which case the cellular cohomology groups can be computed. Observe
that the only nontrivial cellular cochain group in this case is C 0cell.P

op;FA;A/Š A˝A. Note also that
the cellular homology groups would be trivial because of the analogue of [Everitt and Turner 2015,
Theorem 1] in this context. When considering the multipath cohomology cochain complex, we get

0! A˝A! A˚A! 0;

with unique differential
a˝ b 7! .ab;�ba/:

To be concrete, whenADK we get that functor homology and cellular cohomology are both of dimension 1
concentrated in degree 0, whereas multipath cohomology is of dimension 0 concentrated in degree 1.

The previous example shows that the poset homology theories described in this section, when evaluated
at the path poset, are not the same on the nose. However, they become all equivalent after some mild
modification of the path poset, as we now shall explain.

Let G be a digraph and let P.G/op be the opposite category (with the same objects as P.G/ but reversed
arrows) of P.G/. Consider the category Q.G/ WD P.G/op n f∅g obtained from P.G/op by removing
the empty multipath — ie the terminal object in P.G/op. Note that FA;M is a functor on P.G/, and
hence a presheaf on P.G/op. Then, the cellular cochain groups Cicell.Q.G/IFA;M / and C iC1� .GIFA;M /
are isomorphic for all i � 0. Furthermore, this isomorphism is an isomorphism of chain complexes
C�cell.Q.G/IFA;M /Š C

��1
� .GIFA;M /. Therefore we obtain the following remark.

Remark 74 AlthoughP.G/ is not cellular in the sense of [Everitt and Turner 2015],Q.G/ is — see [loc cit,
Section 4.1]; thus the previous isomorphism of cochain complexes, together with [loc cit, Theorem 1],
provides isomorphisms

Hi�.GIA;M/Š Hi�1cell .Q.G/IFA;M /Š Hi�1.Q.G/IFA;M /

of cohomology groups between Hi
�.GIA;M/, the cellular cohomology Hi�1

cell .Q.G/IFA;M / and the
functor cohomology groups Hi�1.Q.G/IFA;M / for all i > 1.

In light of Remark 74, one can wonder if the graded module obtained by removing the minimum from
the path poset in the Turner–Wagner construction and multipath cohomology become related. However,
this is not generally the case, as shown by the next example. Before that, recall that the face poset of a
simplicial complex X is the poset on the set of simplices of X, ordered by containment. The augmented
face poset of X is its face poset together with a minimum element ∅ corresponding to the empty simplex.
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Example 75 The path poset P.G/ is the augmented face poset of a topological space X DX.G/— see
[Caputi et al. 2023, Section 6]. Note that the geometric realisation of an augmented face poset is always
contractible (since it is the cone on the geometric realisation of the face poset). In particular, the geometric
realisation B.P.G// is the cone over B.P.G/ n f∅g/. For ADR the base ring, the functor homology of
(the category associated to) P.G/ n f∅g with coefficients in FR;R agrees with the simplicial homology
of X ' B.P.G/ n f∅g/ with coefficients in R. On the other hand, it is not difficult to see — see [loc cit,
Theorem 6.8] — that multipath cohomology is simplicial, ie

zHn.X IR/Š HnC1� .GIR/;

where zH� denotes the reduced simplicial cohomology. Therefore, although the Turner–Wagner homology

TW�.GIFR;R/D H�.P.G/IFR;R/

is always trivial (as P.G/ is an augmented face poset), after removing the minimum element, the associated
functor homology Hi .P.G/nf∅gIFR;R/ is not. In fact, the functor homology Hi .P.G/nf∅gIFR;R/ and
the multipath cohomology groups HiC1� .GIR/ are related, for i � 2, by the standard universal coefficients
theorem. The induced short exact sequence

0! Ext1R.Hi�1.P.G/ n f∅gIFR;R//! HiC1� .GIR/! HomR.Hi .P.G/ n f∅gIFR;R//! 0

features an Ext functor, which is nontrivial in general. For instance, taking AD RD Z, the multipath
cohomology of the bipartite complete graph K5;5 has 3–torsion [Caputi et al. 2024a, Proposition 4.5].

The connection shown in the previous example between functor homology and multipath cohomology
is given by two facts; the first, that functor (co)homology of a category, for nice functors, agrees with
the usual (co)homology of the classifying space (with local coefficients as in [Quillen 1978, Section 7]),
and the second, that the classifying space of the opposite category is naturally homeomorphic to the
classifying space of the category itself. As shown in Remark 74, multipath cohomology and functor
cohomology agree (in degree i � 2) when we pass to the opposite category associated to the path poset.
Then, in the Turner–Wagner approach, which uses functor homology, one computes the higher colimits
of F, whereas multipath cohomology provides a way to compute the higher limits of F ı op; when F is a
coefficient system in the sense of Quillen, as in the case of constant functors, higher limits and colimits
are computed as usual cohomology on the classifying spaces; then, as the op functor does not change
the homotopy type of the classifying spaces, the assertion follows. Note that this does not provide a
precise relation for nonlocal coefficients (eg FA;M , A¤K). In particular, this reasoning does not provide
a precise relationship between the Turner–Wagner and multipath cohomologies.

Remark 76 All said above provides an alternative way to define multipath cohomology; ie after passing
to the path poset and removing the minimum, one can take the opposite associated category and compute
(equivalently) either the higher limits of FA;M or the associated cellular cohomology groups (as the
obtained poset is now cellular). However, functor and cellular cohomologies are not directly computable
from the definitions, whereas poset homology happens to be quite computable, also algorithmically. The
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approach has shown to be fruitful in computing the multipath cohomology of all linear graphs — see
[Caputi et al. 2023].

To conclude the comparisons, we point out that, in special cases, like the linear graph In and the polygonal
graph Pn, the difference between the multipath and Turner–Wagner homologies is controlled. This is also
due to the fact that both homologies provide roughly the same amount of information as the chromatic
homology — see [Everitt and Turner 2009; Turner and Wagner 2012] for relations between TW and the
chromatic homology. In the next subsection we recall the definition of the latter homology, and prove a
comparison result for the graphs In and Pn.

7 Comparison with chromatic homology

We now compare multipath cohomology with chromatic homology of unoriented graphs [Helme-Guizon
and Rong 2005; Przytycki 2010]. The latter can be seen as a special case of the construction in Section 3;
in light of this observation, we can interpret multipath cohomology as an extension of chromatic homology
to the directed setting.

In the first subsection, we briefly revise the construction of the chromatic homology (both in its original
version [Helme-Guizon and Rong 2005] and in Przytycki’s variant [2010]). We argue that the multipath
cohomology of a graph differs from either of these theories computed for the underlying unoriented graph.
This uses the fact that multipath cohomology is sensible to orientations. Nonetheless, in the special case
of coherently oriented polygonal graphs and linear graphs, we prove that the two (co)homology theories
contain the same amount of information — see Theorem 80. As a consequence, see Corollary 82, we
obtain that the multipath cohomology of the coherently oriented polygon recovers (a truncated version
of) the Hochschild homology of its coefficients. As an application of the functoriality, in the second
subsection we clarify the relationship between multipath cohomology and chromatic homology, providing
the long exact sequence relating multipath and chromatic cohomologies.

7.1 Chromatic homologies

In this subsection we review the construction of two graph homology theories. The first of these homologies
goes under the name of chromatic homology and was introduced in [Helme-Guizon and Rong 2005]. The
second homology is a variation of the chromatic homology, and it is due to Przytycki [2010].

Let G denote a unoriented graph with ordered edges and a base vertex v0. Let A be a commutative unital
R–algebra, and M be an .A;A/–bimodule. Assume that the A–action on M is symmetric — that is,
a �mDm � a for all m 2M and a 2 A. To each spanning subgraph H 2 SSG.G/ we associate the module

M.H/DM ˝
O
c 63v0

Ac ;

where c ranges among the connected components of H — ordered arbitrarily. If H� H0 then H[ e D H0 for
some edge e. We can define a map dH�H0 WM.H/!M.H0/ (see [Helme-Guizon and Rong 2005]). There
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are two cases to consider depending on the number of components merged by e:

(i) The edge e is incident to two distinct components of H. We have a natural identification of the
components of H and H0 that do not share vertices with e. Furthermore, precisely two distinct components,
say c1 and c2, of H are merged into a single component of H0, say c0. The map dH�H0 WM.H/!M.H0/ is
defined as the identity on all factors but those corresponding to c1 and c2, where it behaves as follows:

Ac1 ˝Ac2 ! Ac0 ; a˝ b 7! ab D ba;

or if c3�i for i 2 f1; 2g contains the marked vertex,

M ˝Aci ! Ac0 ; a˝ b 7! a � bI

(ii) The edge e is incident to a single component of H. There is a natural identification of all components
of H and H0, and the map dH�H0 WM.H/!M.H0/ is taken to be the corresponding identification of the
associated modules.

Similarly, Przytycki [2010] defines the map OdH�H0 WM.H/!M.H0/ as above, but setting it to be the zero
map instead of the identity in case (ii). The cochain complexes

.C �Chrom.GIA;M/; d�/ and . yC �Chrom.GIA;M/; Od�/

are defined as
C iChrom.GIA;M/D yC iChrom.GIA;M/D

M
H�G

#E.H/Di

M.H/;

and, for x 2M.H/,

d.x/D
X
H�H0

.�1/�.H�H0/dH�H0.x/ and Od.x/D
X
H�H0

.�1/�.H�H0/ OdH�H0.x/;

where � is defined as

(9) �.H� H[ e/D
�
0 if an even number of edges preceding e belong to H;
1 otherwise.

Remark 77 The chain complexes .C �Chrom.GIA;M/; d�/ and . yC �Chrom.GIA;M/; Od�/ do not depend on
the ordering of the edges up to isomorphism — see [Helme-Guizon and Rong 2005; Przytycki 2010].

Recall that In denotes the n–step graph in Figure 1, and Pn denotes the polygonal graph in Figure 2.

Remark 78 In the special case of the coherently oriented line graph In and of the polygon Pn, the cochain
complexes .C �Chrom.GIA;M/; d�/ and . yC �Chrom.GIA;M/; Od�/ can be extended, using the orientation of In
and of Pn, to the noncommutative context — see [Przytycki 2010, Remark 2.3 (ii)] — and this extension
is perfectly identical to our definition of �— see Section 4.1.

Observe that the chromatic homology theories can be recovered from the framework in Section 3.1.
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Remark 79 Consider an unoriented graph G and the poset P D SSG.G/� P.G/. Recall that P denotes
the category associated to P. Consider the covariant functor F WP!R–Mod defined by extending the
functor FA;M W P.G/! R–Mod, see (7), to the whole SSG.G/. This extension is defined as follows:
when the covering relation H� H0 is as in case (ii) above, F is either the identity or the 0–map, depending
whether we want to recover .C �Chrom.GIA;M/; d�/ or . yC �Chrom.GIA;M/; Od�/. These constructions do not
depend on signs by Corollary 36.

The following theorem establishes a first relation between multipath and chromatic (co)homologies.

Theorem 80 Let A be a unital R–algebra , and M an .A;A/–bimodule. Then , we have the following
isomorphisms of chain complexes (of R–modules):

.C ��.InIA;M/; d/Š . yC �Chrom.InIA;M/; Od/Š .C �Chrom.InIA;M/; d/;(10)

.C ��.PnIA;M/; d/˚ .MŒnC 1�; 0/Š . yC �Chrom.PnIA;M/; Od/;(11)

where .MŒnC 1�; 0/ is the cochain complex consisting of a copy of M in degree nC 1.

Proof By Remark 78, the cochain complexes .C �Chrom.GIA;M/; d�/ and . yC �Chrom.GIA;M/; Od�/ can be
defined for arbitrary unital R–algebras, using the orientation of the coherently oriented n–step graph In
or the polygon Pn. The proof follows directly from Remark 79 by noticing that SSG.In/ D P.In/
and SSG.Pn/ is the poset P.Pn/[ fPng obtained from the path poset P.Pn/ by adding the Pn as the
maximum.

Corollary 81 Let A be a unital R–algebra and R a principal ideal domain. Then , for all n 2N, we have
Hi�.InIA/D 0 for all i 2N n f0g, and

rankR.H0�.InIA//D
�

rankR.A/.rankR.A/� 1/n; n > 0;

rankR.A/; nD 0:

Proof By (10), the statement follows directly from [Przytycki 2010, Lemma 3.3].

For a unital R–algebra A and an .A;A/–bimodule M, denote by HH�.A;M/ the Hochschild homology
of A with coefficients in the bimodule M — see, for instance, [Loday 1992, Section 1.1.3] for the
definition. Let yH�Chrom.GIA;M/ denote the homology of the complex . yC �Chrom.GIA;M/; Od/. We conclude
the section showing that the multipath cohomology groups of the polygon agree with the Hochschild
homology of A with coefficients in the bimodule M :

Corollary 82 Let A be a flat unital R–algebra , and M an .A;A/–bimodule and let Pn be the polygon
(see Figure 2). Then , we have the following chain of isomorphisms of homology groups:

Hi�.PnIA;M/Š yHiChrom.PnIA;M/Š HHn�i .A;M/ for i D 1; : : : ; n:

Proof The result follows directly from [Przytycki 2010, Theorem 3.1] and (11).

Algebraic & Geometric Topology, Volume 24 (2024)



Multipath cohomology of directed graphs 4415

Note that, by [Turner and Wagner 2012, Theorem 1], we have TWi .PnIA;M/Š yHn�iChrom.PnIA;M/ for i
in the set f1; : : : ; ng. From which follows the isomorphism with the multipath cohomology in this case.

We conclude this section by remarking that in general the chromatic and the multipath homologies are
distinct also in the case where A is commutative.

Proposition 83 The cohomologies HChrom and H� are not isomorphic.

Proof The multipath homology of the noncoherent 3–step graph is different from the homology of I3.
Since the chromatic homology does not distinguish orientations, the statement follows.

7.2 Short exact sequences and chromatic homology

Here we apply the machinery developed in Section 5 to obtain a long exact sequence featuring both
multipath and chromatic homologies. This clarifies the relationship between the two homology theories.
As an application we recover the isomorphisms in the case of the linear graph and polygonal graph,
when A is a commutative R–algebra.

For an oriented graph G, let yC �Chrom.GIA/ be the chromatic cochain complex of the underlying unoriented
graph. From the results in the previous section, it follows immediately:

Proposition 84 Let G be an oriented graph , and let A be a commutative R–algebra. Then , we have the
following short exact sequence of complexes

0! zC�.GIA/! yCChrom.GIA/! C�.GIA/! 0;

where we set
zC�.GIA/ WD CFA;A.SSG.G/ nP.G//

�
� min
x2SSG.G/nP.G/

f`.x/g
�

and we extended FA;A.H� H[ e/ to be zero if the number of components of H and H[ e is the same.

Proof Fix a graph G and consider F W SSG.G/! A. Following the proof of Proposition 62 almost
verbatim, we obtain that if P is a downward closed subposet of SSG.G/, then we have the following short
exact sequence of chain complexes:

0! CFjSSG.G/nP .SSG.G/ nP /
�
� min
x2SSG.G/nP

f`.x/g
�
! CF .SSG.G//! CFjP .P /! 0;

where the sign assignments are induced by any sign assignment on SSG.G/. The statement now follows
by taking P D P.G/ and F D FA;A.

As a consequence we (partially) recover one of the main results of this paper:
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Corollary 85 Let A be a commutative unital R–algebra. Then , we have the following isomorphisms of
chain complexes (of R–modules):

(C ��.InIA/; d/Š . yC
�
Chrom.InIA/; Od/Š .C

�
Chrom.InIA/; d/;(12)

(C ��.PnIA/; d/˚ .AŒnC 1�; 0/Š . yC
�
Chrom.PnIA/; Od/;(13)

where .AŒnC 1�; 0/ indicates the cochain complex consisting of a copy of A in degree nC 1.

Proof It is sufficient to notice that the poset SSG.G/ nP.G/ is either empty (if GD In) or a single point
(if GD Pn). The corollary is an immediate consequence of Proposition 84.

8 Open questions

In this section we gather some open questions.

Question 86 (full functoriality) We have shown in Section 5 that multipath cohomology is a bifunctor
when restricting either to the category of rings or to the category of graphs with same number of vertices.
Is it possible to lift this result simultaneously to the full categories Digraph of directed graphs and R-Alg
of R–algebras? If not, what are the obstructions to this extension?

Question 87 (cyclic homology theories and extensions) One of the main properties of H�.�IA/ (for a
fixed A) is that it recovers (a truncation of) the Hochschild homology of A. To the best of the authors’
knowledge, it is still an open question by [Przytycki 2010] whether or not it is possible to recover, in a
similar fashion, also the cyclic homology groups of A— see [Loday 1992] for the definition. Moreover,
the construction in Section 3.1 can be generalised, by application of the nerve functor and a suitable
adaptation, to the realm of1–categories — see [Lurie 2009]. In particular, this generalisation should
hold for functors in the module categories over commutative ring spectra. A topological enhancement of
the cyclic homology theories is given by the so-called topological Hochschild homology (or topological
cyclic homology) — see [Nikolaus and Scholze 2018]. Do we have for topological Hochschild homology,
cyclic homology, negative homology, or periodic homology, a result similar to Corollary 82?

Question 88 (categorification of graph invariants) The chromatic homology is named after the chromatic
polynomial, which can be obtained as the graded Euler characteristic of the chromatic homology. In other
terms, we can say that the chromatic homology is a categorification of the chromatic polynomial. This
holds, of course, for a specific choice of the (commutative) algebra A (eg it must be graded or filtered,
and its graded dimension should be the chromatic polynomial of a vertex). The first question is: are
there natural choices of the algebra A such that the appropriate Euler characteristic of C ��.GIA/ is a
known invariant of the graph G? In general, what are the combinatorial properties of the graded Euler
characteristic of the multipath cohomology of a graph with coefficients in a graded algebra?
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Question 89 (relationship with Turner–Wagner theory) We showed that the chromatic homology and
the multipath cohomology, when both are defined (ie A commutative), fit into a long exact sequence. Does
there exist a long exact sequence, or a spectral sequence, featuring both the multipath and Turner–Wagner
homologies with general coefficients?

Question 90 (spectral sequences and applications) A very interesting and deep feature of Khovanov
homology is that it admits a spectral sequence which abuts to a very simple homology called Lee homology
[2005]. From this and similar spectral sequences one can extract numerical invariants with interesting
applications to low-dimensional topology and knot theory. More importantly, these spectral sequences
provide structural information on Khovanov homology. Chromatic homology mimics Khovanov homology.
Hence, it is not surprising to find similar spectral sequences and invariants in the context of chromatic
homology [Chmutov et al. 2008]. This spectral sequence has been used to prove structural properties of
chromatic homology. Are there similar spectral sequences for multipath cohomology? If yes, which kind
of information can be extracted from them?

Question 91 (persistent multipath cohomology) Persistent homology [Edelsbrunner et al. 2002; Zomoro-
dian and Carlsson 2005] is nowadays one of the main tools adopted in topological data analysis, with
applications in several domains. One usually starts with a fixed number of data points, joined by (weighted)
edges representing the connections between them. These edges are typically added gradually; that is,
we have a filtration of the resulting (unoriented) graph G. This filtration is a sequence G0 � � � � � Gn of
spanning subgraphs of G. Then, one uses the functorial properties of the classical homology to obtain
information in the form of persistent homology groups. Within this framework, one usually works with
unoriented graphs, but in concrete applications, graphs are often directed; it is also interesting to compare
the undirected versus the directed information (see [Caputi et al. 2021]). Multipath cohomology is a
cohomology theory of directed graphs and it is functorial with respect to morphisms of digraphs with the
same number of vertices. It is hence natural to define a persistent multipath cohomology for filtrations of
digraphs. Which information of the input data can multipath cohomology capture? How does it compare
with the analysis using unoriented graphs?

Appendix Proof of Lemma 39

Lemma 92 The function �e in (3) gives a sign assignment on P.G/.

Proof Consider a square H� H01; H
0
2 � H00 in P.G/. Then, there exist two edges e1 and e2 of G such that

H01 D H[ e1, H02 D H[ e2, and H00 D H02[ e1 D H01[ e2 (see Example 4 and Figure 15).

The proof is split in cases, according to the number of components of H which are merged by adding the
edges e1 and e2. First, adding both e1 and e2 to H decreases the number of connected components by at
most 2. Second, the result of the addition of e1 and e2 must still be a multipath — submultipath of H00 to
be precise. In particular, observe that cycles are not allowed. It follows that there are two cases:
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H

H01 D H[ e1

H02 D H[ e2

H00 D H02[ e1
D H01[ e2

Figure 15: A square in P.G/: four multipaths such that H� H01; H
0
2 � H00.

ci

cj

ck

e1 e2

(a)
ci

cj

ck

e1 e2

(a0)

ci

cj

ck

e1

e2

(b)
ci

cj

ck

e1

e2

(b0)

ci

cj

ck

e1

e2

(c)
ci

cj

ck

e1

e2

(c0)

Figure 16: A schematic description of the subcases of case (A). Note that, since the merge of the
components ci , cj , and ck must be a path, all possible orientations of e1 and e2 are precisely those
illustrated.

(A) Three connected components of H merge into a single connected component of H00.

(B) Four connected components of H merge into two connected components of H00.

All cases are divided into subcases depending on the indices of the components involved (to be more
precise, on the relative order of said indices), and on the orientations of the edges e1 and e2 — see
Figures 16 and 17. We now proceed with the core of the proof.

(A) Three connected components, ci , cj , and ck , of the multipath H are merged into a single component
of H00. Without loss of generality, up to a permutation of the labels of the components, we may assume
that i < j < k. Note that e1 and e2 cannot be incident to the same pair of components; otherwise H00

would contain a loop. We have six subcases in total — see Figure 16. Since the result of merging the
components ci , cj , and ck must be a unique simple path, the orientations of e1 and e2 must be coherent;
that is, the source of an edge has to be the target of the previous one in the resulting path, and the edges
e1 and e2 cannot have same sources or targets — eg if the source of e1 lies in ck , then the source of e2
cannot lie in ck . We report in Table 2 the result of the computation of the signs of �e in this case.

(B) Four connected components of H, say ci , cj , ck and ch, are pairwise merged to obtain exactly two
connected components of H00. Without loss of generality we may assume i < j < k < h. We have twelve
relevant cases, but we can reduce them to six; in fact, a change in the orientation of the edges induces a
change of the parity of the index. As a consequence, a simultaneous change in the orientations of both e1
and e2 affect our computation by a global sign. All six cases are shown in Figure 17 and the results are
summarised in Table 3.

It follows from (A) and (B) that �e is a sign assignment on P.G/, which concludes the proof.
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subcase �e.H; H01/ �e.H01; H
00 / �e.H; H02/ �e.H02; H

00 /

(a) jC1 k kC1 jC1

(a0 ) j k�1 k j

(b) kC1 j k j

(b0 ) k jC1 kC1 jC1

(c) jC1 k�1 k jC1

(c0 ) j k kC1 j

Table 2: Computations for all subcases of case (A).
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cj

ch

ck

e1
e2

(a)
ci
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ck

e1
e2

(b)
ci

cj
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ck

e1 e2

(c)
ci

cj

ch

ck

e1 e2

(d)
ci

cj

ch

ck

e1

e2

(e)
ci

cj

ch

ck

e1

e2

(f)

Figure 17: A schematic description of the subcases of case (B) up to a global change in the
orientations of e1 and e2.

subcase �e.H; H01/ �e.H01; H
00 / �e.H; H02/ �e.H02; H

00 /

(a) jC1 k kC1 jC1

(b) jC1 k�1 k jC1

(c) kC1 h hC1 kC1

(d) kC1 h�1 h kC1

(e) hC1 kC1 kC1 h

(f) hC1 k k h

Table 3: Computations for all relevant subcases of case (B).
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Strong topological rigidity of noncompact orientable surfaces

SUMANTA DAS

We show that every orientable infinite-type surface is properly rigid as a consequence of a more general
result. Namely, we prove that if a homotopy equivalence between any two noncompact orientable surfaces
is a proper map, then it is properly homotopic to a homeomorphism, provided the surfaces are neither
the plane nor the punctured plane. Thus all noncompact orientable surfaces, except the plane and the
punctured plane, are topologically rigid in a strong sense.

57K20; 55S37

1 Introduction

All manifolds will be assumed to be second countable and Hausdorff. A surface is a 2–dimensional
manifold with an empty boundary. All surfaces will be considered connected and orientable. We say
a surface is of infinite type if its fundamental group is not finitely generated; otherwise, we say it is of
finite type.

A fundamental question in topology is whether two closed n–manifolds that are homotopy equivalent to
each other are homeomorphic. This has a positive answer in dimension 2, as two closed surfaces with
isomorphic fundamental groups are homeomorphic. But the same doesn’t happen in other dimensions;
for example, there are homotopy equivalent lens spaces (a particular type of spherical 3–manifolds)
that are not homeomorphic. A closed topological n–manifold M is said to be topologically rigid if any
homotopy equivalence N !M with a closed topological n–manifold N as the source is homotopic to a
homeomorphism. The Borel conjecture (see Rosenberg [34, Conjecture (A Borel)]) asserts that every
closed aspherical (ie �k D 0 if k¤ 1) manifold is topologically rigid. In dimension 2, every closed surface
is topologically rigid. This is known as the Dehn–Nielsen–Baer theorem; see Dehn [12, Appendix].
The Borel conjecture is known to be true in other dimensions under some additional hypotheses; for
example, see Waldhausen [39, Theorem 6.1] and Gabai, Meyerhoff, and Thurston [21, Theorem 0.1(i)]
for dimension 3, and for high dimensions see Farrell and Jones [18, proof of Theorem 3.2].

Though noncompact manifolds are not rigid in the above sense, for example in McMillan [29, Theorem 2],
the author has constructed (generalizing a construction given by J H C Whitehead) uncountably many
contractible open subsets of R3 such that any two of them are not homeomorphic. Similarly, for
noncompact surfaces, we have several examples. In the case of finite-type surfaces we may consider the
once-punctured torus and thrice-punctured sphere, which are homotopy equivalent but nonhomeomorphic,
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as any homomorphism preserves the cardinality of the puncture set as well as the genus. On the other
hand, up to homotopy equivalence, there is precisely one infinite-type surface, but up to homeomorphism
there are 2@0–many infinite-type surfaces (see Proposition 3.1.11). We consider only noncompact surfaces
and discuss their topological rigidity in the proper category. Here proper category means the category of
spaces with proper maps (recall that a map from a space X to a space Y is called a proper map if the
inverse image of each compact subset of Y is a compact subset of X). We first define the analogs of
homotopy, homotopy equivalence, etc in the proper category.

If a homotopy H WX�Œ0; 1�!Y is a proper map, then we call H a proper homotopy. Two proper maps from
X to Y are said to be properly homotopic if there is a proper homotopy between them. We say that a proper
map f WX ! Y is a proper homotopy equivalence if there exists a proper map g W Y !X such that both
gıf and f ıg are properly homotopic to the identity maps (when such a g exists, g is a proper homotopy
inverse of f ). Two spaces X and Y are said to have the same proper homotopy type if there is a proper
homotopy equivalence between them. It is worth noting that homotopy through proper maps is a weaker
notion than proper homotopy. For example, considerH WC�Œ0; 1�!C given byH.z; t/ WD tz2�z. Being
a polynomial, each H.�; t / is proper. But H itself is not proper as H.n; 1=n/D 0 for all integers n� 1.

The analog of topological rigidity in the proper category is defined as follows: a noncompact topological
manifold M without boundary is said to be properly rigid if, whenever N is another boundaryless
topological manifold of the same dimension and h W N !M is a proper homotopy equivalence, h is
properly homotopic to a homeomorphism. The analog of the Borel conjecture in the proper category,
often called the proper Borel conjecture (see Chang and Weinberger [11, Conjecure 3.1]), asserts that
every noncompact aspherical topological manifold without boundary is properly rigid.

It is known that noncompact finite-type surfaces are properly rigid. Further, using the algebraic tools of
classification of noncompact surfaces [23, Theorem 4.1], Goldman showed that two noncompact surfaces
of the same proper homotopy type are homeomorphic; see [22, Corollary 11.1]. We show that infinite-type
surfaces are also properly rigid. In fact, we show the rigidity of all noncompact surfaces, except for the
plane and the punctured plane, under a weaker assumption, namely only assuming the existence of a
homotopy inverse, which a priori may or may not be proper. For brevity, define a weaker version of
proper homotopy equivalence:

Definition A homotopy equivalence is said to be a pseudoproper homotopy equivalence if it is proper.

Indeed, a proper homotopy equivalence is a pseudoproper homotopy equivalence, though not conversely:
a pseudoproper homotopy equivalence has an “ordinary” homotopy inverse but may not have a proper
homotopy inverse. For example, consider the ' and  below. Our main theorem is the following:

Theorem Let f W†0!† be a pseudoproper homotopy equivalence between two noncompact surfaces.
Then †0 is homeomorphic to †. If we further assume that † is homeomorphic to neither the plane
nor the punctured plane , then f is a proper homotopy equivalence , and there exists a homeomorphism
ghomeo W†!†0 as a proper homotopy inverse of f .
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The reason for the exclusion of the plane and the punctured plane from the hypothesis is almost immediate.
Consider ' WC 3 z 7! z2 2C and  W S1�R 3 .z; x/ 7! .z; jxj/ 2 S1�R. Both of these proper maps are
homotopy equivalences, but neither is a proper homotopy equivalence as the degree of a proper homotopy
equivalence is ˙1 (see Section 2.6), though deg.'/ D ˙2 (as ' is a twofold branched covering) and
deg. /D 0 (as  is not surjective; see Lemma 3.6.4.1).

In general, additional assumptions must be imposed on a pseudoproper homotopy equivalence to become
a proper homotopy equivalence. For example, using the binary symmetry of the Cantor tree TCantor,
we have a twofold branched covering fCantor W TCantor ! TCantor which is undoubtedly a pseudoproper
homotopy equivalence (trees are contractible) but not a proper homotopy equivalence (the induced map
on Ends.TCantor/ by fCantor is noninjective; see parts (1) and (3) of Proposition 2.3.1). Here is another
example: Let M be a connected noncompact contractible boundaryless manifold of dimension n � 2,
and let f WM !M be the composition of a proper map M ! Œ0;1/ (using partition of unity) and a
nonsurjective proper map Œ0;1/!M corresponding to an end of M (using compact exhaustion by
connected codimension 0–submanifolds; see Guilbault [24, Exercise 3.3.18]). Then f is a pseudoproper
homotopy equivalence (M is contractible) but not a proper homotopy equivalence (a proper homotopy
equivalence is a surjective map as its degree is ˙1; see Lemma 3.6.4.1).

Brown showed that a pseudoproper homotopy equivalence between two connected finite-dimensional
locally finite simplicial complexes is a proper homotopy equivalence if and only if it induces a homeomor-
phism on the spaces of ends and isomorphisms on all proper homotopy groups [7, Whitehead theorem].
Farrell, Taylor, and Wagoner [19, Corollary 4.10] showed that if f WM !N is a pseudoproper homotopy
equivalence between two simply connected noncompact boundaryless n–dimensional smooth manifolds,
where bothM andN both are simply connected at infinity, then f is a proper homotopy equivalence if and
only if deg.f /D˙1. Another interesting statement in this context is that a proper map f WX!Y between
two locally finite infinite connected 1–dimensional CW–complexes is a proper homotopy equivalence if
Ends.f / is a homeomorphism and f is an extension of a proper homotopy equivalence Xg! Yg (where
Xg (resp. Yg ) denotes the smallest connected subcomplex of X (resp. Y ) that contains all immersed
loops of X (resp. Y )); see Algom-Kfir and Bestvina [1, Corollary 3.7].

We conclude this section by citing a few more related results of two different flavors: when does a proper
homotopy equivalence exist, and if it does exist, does it determine the space up to homeomorphism.
Similar to Kerékjártó’s classification theorem (see Theorem 2.4.1), there exists a classification of graphs
up to proper homotopy type: two locally finite infinite connected 1–dimensional CW–complexes X
and Y have the same proper homotopy type if and only if rank.�1.X//D rank.�1.Y // and there exists
a homeomorphism ' W Ends.X/ ! Ends.Y / with '.Ends.Xg// D Ends.Yg/; see Ayala, Dominguez,
Márquez, and Quintero [3, Theorem 2.7].

As stated earlier, any two noncompact surfaces of the same proper homotopy type are homeomorphic.
Sometimes this also happens in other dimensions; for instance, a boundaryless topological manifold
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of dimension n� 3 with the same proper homotopy type as Rn is homeomorphic to Rn; see Edwards
[14, Theorem 1] for nD 3, Freedman [20, Corollary 1.2] for nD 4, and Siebenmann [36, Corollary 1.4]
for n � 5. In contrast, there are exotic pairs: two noncompact connected boundaryless manifolds N
and M of dimension n� 5 exist, where N is smoothable and M is a nonuniform arithmetic manifold,
such that M and N have the same proper homotopy type but M is not homeomorphic to N ; see Chang
and Weinberger [10, Theorem 2.6; 11, pages 137 and 138].

1.1 Main results

The analog of Farb and Margalit’s [17, first proof of Theorem 8.9] in the proper category is Theorem 2,
which follows almost directly from our main result Theorem 1. Indeed, Theorem 1 is more general.

Theorem 1 (strong topological rigidity) Let f W †0! † be a pseudoproper homotopy equivalence
between two noncompact surfaces. Suppose † is homeomorphic to neither R2 nor S1 �R. Then †0 is
homeomorphic to † and f is properly homotopic to a homeomorphism.

Theorem 2 (proper rigidity) If f W†0!† is a proper homotopy equivalence between two noncompact
surfaces , then †0 is homeomorphic to † and f is properly homotopic to a homeomorphism.

A theorem of Edmonds [13, Theorem 3.1] says that any �1–injective map of degree 1 between two closed
surfaces is homotopic to a homeomorphism. The analogous fact for noncompact surfaces is Theorem 3,
which classifies all �1–injective degree 1 maps between two noncompact surfaces and also follows almost
directly from Theorem 1.

Theorem 3 (classification of �1–injective degree 1 maps) Let † and †0 be any two noncompact
oriented surfaces. Suppose there exists a �1–injective proper map f W†0!† of degree˙1. Then † is
homeomorphic to †0 and f is properly homotopic to a homeomorphism.

Proofs of Theorems 1, 2, and 3 can be found in Section 4. A statement equivalent to Theorem 1 is claimed
by Brittenham [6, Proposition 2.1(b)] referencing his unpublished work [5], and where the proof of [5] is
claimed to be in the spirit of a result of Brown and Tucker [9].

1.2 Outline of the proof of Theorem 1

Let f W†0!† be a pseudoproper homotopy equivalence between two noncompact oriented surfaces.
Suppose † is homeomorphic to neither R2 nor S1 �R.

1.2.1 Decomposition and transversality Let C be a locally finite pairwise-disjoint collection of
smoothly embedded circles on † such that C decomposes † into bordered subsurfaces, and a comple-
mentary component of this decomposition is homeomorphic to the one-holed torus, the pair of pants, or
the punctured disk (see Theorem 3.1.5).
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Properly homotope f to make it smooth as well as transverse to C . Thus f �1.C/ is either empty or a
pairwise-disjoint finite collection of smoothly embedded circles on †0 for each component C of C ; see
Theorem 3.2.3.

1.2.2 Removing unnecessary circles Following the steps below, we properly homotope f further so
that for each component of C of C , either f �1.C/ is empty or f jf �1.C/! C is a homeomorphism.

(1) Notice that f �1.C / may have infinitely many disk-bounding components. But, in such a case,
an arbitrarily large disk in †0 bounded by a component of the locally finite collection f �1.C / is not
possible as †0 © R2 (see Lemma 3.3.1), ie there always exists an “outermost disk” bounded by some
component of f �1.C /. Now, properly homotope f to remove all disk bounding components of f �1.C /
upon considering all these outermost disks simultaneously; see Theorem 3.3.5.

(2) Thereafter, using �1–bijectivity of f , properly homotope f to map each (primitive) component of
f �1.C / onto a component of C homeomorphically; see Theorem 3.4.3.

(3) Since f has homotopy left inverse, any two components of f �1.C / cobound an annulus in †0 if and
only if their f –images are the same, ie an arbitrarily large annulus in †0 cobounded by two components
of f �1.C / is impossible. So, considering all these “outermost annuli” simultaneously, we complete the
goal, as stated in the beginning; see Theorem 3.5.3.

1.2.3 Showing f is a degree ˙1 map (see Theorem 3.6.3.1) To rule out the possibility that f �1.C/
is empty, where C is a component of C , we prove deg.f /D˙1. This is because deg.f / remains the
same after any proper homotopy of f , and a map of nonzero degree is surjective; see Lemmas 3.6.4.1
and 3.6.4.3. Our aim is to properly homotope f to obtain a closed disk D�† such that f jf �1.D/!D
becomes a homeomorphism, and thus we show deg.f /D˙1; see Theorem 2.6.1. The argument is based
on finding a smoothly embedded finite-type bordered surface S in † such that, for each component c
of @S , we have f �1.c/¤¿, even after any proper homotopy of f . Depending on the nature of S , we
consider two cases:

(1) If † is either an infinite-type surface or any Sg;0;p with high complexity (gCp � 4 or p � 6), then
using �1–surjectivity of f , we can choose S as a smoothly embedded pair of pants in † such that † nS

has at least two components and every component of † nS has a nonabelian fundamental group; see
Lemmas 3.6.1.2 and 3.6.1.4. Properly homotope f so that it becomes transverse to @S . Then remove
unnecessary components from the transverse preimage f �1.@S /. Thus after a proper homotopy, we may
assume f jf �1.c/! c is a homeomorphism for each component c of @S . Now, since f is �1–injective,
by the rigidity of the pair of pants (see Theorem 3.6.1.9), after a proper homotopy one can show that
f jf �1.S /! S is a homeomorphism; see Lemma 3.6.1.10. Therefore the required D can be any disk
in int.S /.

(2) If † is a finite-type surface, then we choose a smoothly embedded punctured disk S in † so
that the puncture of S is an end e 2 im.Ends.f // � Ends.†/. By Theorem 3.6.2.1, this means every
deleted neighborhood of e in † intersects im.f /, even after any proper homotopy of f . Now, properly
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homotope f so that it becomes transverse to @S . Then remove unnecessary components from the
transverse preimage f �1.@S /, ie after a proper homotopy we may assume f jf �1.@S / ! @S is a
homeomorphism (as†©S1�R, the fundamental group of†nS is nonabelian, and so �1–surjectivity of f
says f �1.@S /¤¿, even after any proper homotopy of f ). Since f is �1–injective, by the proper rigidity
of the punctured disk (see Theorem 3.6.2.4), after a proper homotopy, one can show that f jf �1.S /! S

is a homeomorphism; see Lemma 3.6.2.3. Therefore the required D can be any disk in int.S /.

1.2.4 Inverse decomposition By the last three parts, after a proper homotopy, removing unnecessary
components from the transverse preimage f �1.C /, we may assume that f jf �1.C/! C is a homeo-
morphism for each component C of C . Thus C and f �1.C / decompose † and †0, respectively, and
there is a shape-preserving bijective correspondence between these two collections of complementary
components (see Lemmas 3.6.1.10 and 3.6.2.3). On each complementary component, apply either the
rigidity of compact bordered surfaces (see Theorem 3.6.1.9) or the proper rigidity of the punctured disk
(see Theorem 3.6.2.4). Thus, we have a collection of boundary-relative proper homotopies such that by
pasting them, a proper homotopy from f to a homeomorphism †0!† can be constructed; see the proof
of Theorem 1 in Section 4.

2 Background

2.1 Conventions

A bordered surface (resp. surface) is a connected orientable 2–dimensional manifold with a nonempty
(resp. an empty) boundary. For integers g � 0, b � 0, and p � 0, denote the connected orientable
2–manifold of genus g with b boundary components by Sg;b , and let Sg;b;p be the 2–manifold after
removing p points from int.Sg;b/. Note that for a manifold M , we use int.M/ to denote the interior
of M . Sometimes S0;1, S0;2, S0;3, S1;2, and S0;1;1 will be called a disk, an annulus, a pair of pants, a
two-holed torus, and a punctured disk, respectively.

We say a connected 2–manifold with or without boundary is of infinite type if its fundamental group is
not finitely generated; otherwise, we say it is of finite type.

2.2 Simple closed curves on 2–manifolds

Definition 2.2.1 Let S be a connected orientable 2–dimensional manifold with or without boundary. A
circle (resp. smoothly embedded circle) on S is the image of an embedding (resp. a smooth embedding)
of S1 into S . We say a circle C on S is a trivial circle if there is an embedded disk D in S such that
@DD C, and we say a circle C on S is a primitive circle if it is not a trivial circle.

The following theorem justifies naming a nondisk bounding circle a primitive circle: a primitive circle
represents a primitive element of the fundamental group. Recall that an element g of a group G is
primitive if there does not exist any h 2G such that g D hk , where jkj> 1.
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Theorem 2.2.2 [15, Theorems 1.7. and 4.2] Let S be a connected orientable 2–dimensional manifold
with or without boundary. Let C be a primitive circle on S , and let f W S1 ,! S be an embedding with
f .S1/D C. Then Œf � 2 �1.S / is a primitive element. In particular , Œf � is a nontrivial element of �1.S /.

Recall that for a path-connected space X , there is a bijective correspondence between the set of all
conjugacy classes of �1.X;�/ and the set of all free homotopy classes of maps S1!X . The next theorem
says that two pairwise-disjoint freely homotopic primitive circles on a 2–manifold cobound an annulus.

Theorem 2.2.3 [15, Lemma 2.4] Let S be a connected orientable 2–dimensional manifold with or
without boundary. Let `0; `1 W S1 ,! S be two embeddings such that `0.S1/ is a smoothly embedded
submanifold of S and `0.S1/\ `1.S1/D¿. If `0 and `1 represent the same nontrivial conjugacy class
in �1.S ;�/, then there is an embedding L W S1 � Œ0; 1� ,! S such that L.�; 0/D `0 and L.�; 1/D `1.

2.3 Ends of spaces

LetX be a connected separable locally compact locally connected Hausdorff ANR (absolute neighborhood
retract) space. For example, X can be any connected topological manifold. We say X admits an efficient
exhaustion by compacta if there is a nested sequence K1 �K2 � � � � of compact connected subsets of X
such that

S
i Ki D X , Ki � int.KiC1/,

T
i .X nKi / D ¿, and the closure of each component of any

X nKi is noncompact. For the existence of efficient exhaustion ofX by compacta, see [24, Exercise 3.3.4].

Let Ends.X/ be the set of all sequences .V1; V2; : : : /, where Vi is a component ofXnKi and V1�V2�� � � .
Set X� WD X [Ends.X/ with the topology generated by the basis consisting of all open subsets of X ,
and all sets V �i , where

V
�
i WD Vi [f.V

0
1; V

0
2; : : : / 2 Ends.X/ W V 0i D Vig:

Then X� is separable, compact, and metrizable, so X is an open dense subset of X�; it is known as
the Freudenthal compactification of X (recall that we say a space Xc is a compactification of X if Xc

is compact Hausdorff space and X is a dense subset of Xc). The subspace Ends.X/ of X� is a totally
disconnected space; hence Ends.X/ is a closed subset of the Cantor set.

The Freudenthal compactification dominates any other compactification: If zX is a compactification of X
such that zX nX is totally disconnected, then there exists a map f WX�! zX extending IdX .

Also, the Freudenthal compactification is unique in the following sense: If X�� is a compactification of X
such that X�� nX is totally disconnected and X�� dominates any other compactification, then there exists
a homeomorphism X��!X� extending IdX ; see [22, Theorem 3.1]. Thus the definition of Ends.X/ is
independent of the choice of efficient exhaustion of X by compacta.

Now we consider a relationship between Ends and proper maps:
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Proposition 2.3.1 [24, Proposition 3.3.12] Let X and Y be two connected separable locally compact
locally connected Hausdorff ANRs. Then we have the following:

(1) Every proper map f W X ! Y induces a map Ends.f / W Ends.X/! Ends.Y / that can be used to
extend f WX ! Y to a map f � WX�! Y � between the Freudenthal compactifications.

(2) If two proper maps f0; f1 WX ! Y are properly homotopic , then Ends.f0/D Ends.f1/.

(3) If f WX ! Y is a proper homotopy equivalence , then Ends.f / W Ends.X/! Ends.Y / is a homeo-
morphism.

More about the ends of spaces and proper homotopy can be found in [31; 26].

2.4 Kerékjártó’s classification theorem and Ian Richards’ representation theorem

Let † be a noncompact surface with an efficient exhaustion fKig11 . Let e WD .V1; V2; : : : / 2 Ends.†/ be
an end, where Vi is a component of X nKi . We say e is a planar end if Vi is embeddable in R2 for some
positive integer i . An end is said to be nonplanar if it is not planar. Denote the subspace of Ends.†/
consisting of all planar (resp. nonplanar) ends by Endsp.†/ (resp. Endsnp.†/). Note that Endsp.†/ is an
open subset of Ends.†/. Define the genus of † as g.†/ WD supg.S/, where S is a compact bordered
subsurface of †. Therefore, the genus counts the number of handles of a surface, ie the number of
embedded copies of S1;1 in a surface, which may be any nonnegative integer or countably infinite.

Theorem 2.4.1 (Kerékjártó’s classification of noncompact surfaces [33, Theorem 1]) Let † and †0

be noncompact surfaces of genus g and g0, respectively. Then † is homeomorphic to †0 if and only if
g D g0 and there is a homeomorphism ' W Ends.†/! Ends.†0/ with '.Endsnp.†//D Endsnp.†

0/.

Theorem 2.4.2 (realization of ends and representation of a noncompact surface [33, Theorems 2 and 3])
Let Enp � E be two closed totally disconnected subsets of S1, and let G be an at most countable set such
that E ¤¿, and Enp ¤¿ if and only if G is infinite. Define D WD fz 2C W 0� jzj � 1g. Then there exists
a pairwise-disjoint collection fDi W i 2 G g of disks in int.D/ such that a point p 2D is an element of Enp

if and only if every neighborhood of p in D contains infinitely many elements of fDi W i 2 G g. Moreover ,
S WD .D n E / n

S
i2G int.Di / is a noncompact bordered surface , and

DS WD
.S � 0/t .S � 1/

.p; 0/� .p; 1/
for p 2 @S

is a genus-jG j noncompact surface with Ends.DS /Š E and Endsnp.DS /Š Enp.

Thus , given any noncompact surface †, in this procedure , if we assume Enp � E is homeomorphic to the
pair Endsnp.†/� Ends.†/, and jG j is equal to g.†/, then DS Š† by Theorem 2.4.1.

Remark 2.4.3 The classification of noncompact bordered surfaces is also possible: When the boundary
is compact, it follows from Theorem 2.4.1 with [38, Proposition A.3]. When each boundary component
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Figure 1: The inductive construction of any noncompact surface and its spine uses four compact
bordered surfaces: the disk, annulus, pair of pants, and torus with two holes.

is compact, this follows from [4] (based on the classification of their interiors) or [38, Theorem A.7]
(based on the classification of noncompact surfaces obtained from gluing a disk along each boundary
component). For arbitrary boundary, see [8, Theorem 2.2].

2.5 Goldman’s inductive procedure of constructing all noncompact surfaces

A noncompact surface †std is said to be in standard form if it is built up from four building blocks, S0;1,
S0;2, S0;3, and S1;2, in the following inductive manner: Start with S0;1. Suppose the i th step of the
induction has already been done. Let Ki be the compact bordered subsurface of †std after the i th step of
induction. In particular, K1Š S0;1. Now, to obtain KiC1 from Ki , consider one of the last three building
blocks, say S (homeomorphic to S0;2, S0;3, or S1;2); finally, suitably identify one boundary circle of S
with a boundary circle of Ki ; see Figure 1.

Theorem 2.5.1 [23, Section 2.6; 27, page 173] Let † be a noncompact surface. Then † is homeomor-
phic to a noncompact surface †std in standard form. Thus every noncompact surface is homeomorphic
to a noncompact surface constructed using an inductive procedure as above , though two noncompact
surfaces obtained from two different inductive procedures may be homeomorphic.
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Theorem 2.5.2 [23, Section 2.6. and Section 7.3] The graph in Figure 1 consisting of blue straight line
segments and red circles is a deformation retract of the surface †. Thus † is homotopy equivalent to the
wedge of at most countably many circles. In particular , �1.†/ is free.

Remark 2.5.3 An alternative proof of the last two sentences of Theorem 2.5.2 is [35, Lemma 3.2.2].

2.6 The degree of a proper map

We use singular cohomology with compact support to define the notion of the degree of a proper map.
Recall that for a topological manifoldX , the r th singular cohomology with compact supportH r

c .X; @X IZ/

is equal to the direct limit lim
��!

H r.X; @X [ .X nK/IZ/, where K is a compact subset of X and various
maps to define this direct system are inclusion induced maps. Hence, for a compact subset K of X , the
definition of the direct limit yields an obvious map H r.X; @X [ .X nK/IZ/! H r

c .X; @X IZ/. It is
worth noting that when X is a compact topological manifold, H r

c .X; @X IZ/DH
r.X; @X IZ/ for all r .

Let X and Y be two topological manifolds. If f W X ! Y is a proper map with f .@X/� @Y , then for
each r , f induces a map H r

c .f / WH
r
c .Y; @Y IZ/!H r

c .X; @X IZ/ such that H r
c becomes a functor in the

following sense: the induced map of the identity is the identity, and the induced map of a (well-defined)
composition of two proper maps (each of which sends boundary into boundary) is the composition of
their induced maps. Moreover, if H WX � Œ0; 1�! Y is a proper homotopy such that H.@X; t/� @Y for
each t 2 Œ0; 1�, then H r

c .H.�; 0//DH r
c .H.�; 1// for all r . For more details see [37, pages 320, 322,

323, 339, and 341].

Let M be a connected orientable topological n–manifold. Then Hn
c .M; @M IZ/ is an infinite cyclic

group; see [37, page 342]. If we choose an orientation of M (ie M is oriented), then there exists a unique
element ŒM � 2 Hn

c .M; @M IZ/ such that ŒM � generates Hn
c .M; @M IZ/, and for each x 2 M n @M ,

the unique generator of Hn.M;M n xIZ/, which comes from the chosen orientation of M , is sent to
ŒM � by the obvious isomorphism Hn.M;M n xIZ/!Hn

c .M; @M IZ/; see [16, proof of Lemma 2.1].
Thus if f W M ! N is a proper map between two connected oriented topological n–manifolds with
f .@M/� @N , the (compactly supported cohomological) degree of f is the unique integer deg.f / defined
by Hn

c .f /.ŒN �/D deg.f /ŒM �.

By the previous two paragraphs, we have the following:

(i) When manifolds are compact, the notion of compactly supported cohomological degree agrees
with the notion of the usual degree defined by singular cohomology.

(ii) The degree is proper homotopy invariant: if f; g WM !N are proper maps between two connected
oriented topological n–manifolds with f .@M/[g.@M/� @N such that there is a proper homotopy
H WM � Œ0; 1�!N with H.@M � Œ0; 1�/� @N from f to g, then deg.f /D deg.g/.

(iii) The degree is multiplicative: the degree of the (well-defined) composition of two proper maps
(each of which sends boundary into boundary) is the product of their degrees.
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Therefore the degree of a proper homotopy equivalence between two oriented connected boundaryless
n–manifolds is ˙1 due to .ii/ and .iii/ above. We use the following well-known characterizations of a
map of degree ˙1. In the below two theorems, “D is a disk in a smooth n–manifold X” means D is the
image of fz 2Rn W jzj � 1g under a smooth embedding fz 2Rn W jzj � 2g ,!X .

Theorem 2.6.1 [16, Lemma 2.1b] Let f WM !N be a proper map between two connected oriented
smooth manifolds of the same dimension such that f �1.@N /D @M . Suppose for a disk D in int.N /,
f �1.D/ is a disk in int.M/ such that f maps f �1.D/ homeomorphically onto D. Then deg.f /DC1
or �1 according to whether f jf �1.D/!D is orientation preserving or orientation reversing.

The following theorem is due to Hopf, and says that for a degree 1 map, we can achieve such a disk with
nice properties, as mentioned in Theorem 2.6.1, after a proper homotopy:

Theorem 2.6.2 [16, Theorems 3.1 and 4.1] Let f WM !N be a proper map between two connected
oriented smooth manifolds of the same dimension such that f �1.@N / � @M . Suppose deg.f /D˙1.
Then there is a proper map g WM !N with g.@M/� @N and a homotopy H WM � Œ0; 1�!N from f

to g with the following properties:

� There exists a compact subset K� int.M/ such that H.x; t/Df .x/ for all .x; t/2 .M nK/�Œ0; 1�.
In particular , H is a proper homotopy and H.@M; t/� @N for all t 2 Œ0; 1�.

� There exists a disk D � int.N / such that g�1.D/ is a disk in int.M/ and gjg�1.D/! D is a
homeomorphism.

The theorem below is due to Olum, and roughly says that when there is a degree 1 map, the domain is
more massive than the codomain.

Theorem 2.6.3 [16, Corollary 3.4] Let f W M ! N be a proper map between two connected ori-
ented topological manifolds of the same dimension such that f .@M/ � @N . If deg.f / D ˙1, then
�1.f / W �1.M/! �1.N / is surjective.

3 Ingredients for proving Theorem 1

3.1 Decomposition of a noncompact surface into pairs of pants and punctured disks

Every compact surface of genus g � 2 is the union (with pairwise-disjoint interiors) of .2g�2/–many
copies of the pair of pants, but the same thing doesn’t happen for noncompact surfaces. For example, the
thrice punctured sphere is not a union (with pairwise-disjoint interiors) of copies of the pair of pants; we
need copies of the punctured disk. The main aim of this section is to prove that every noncompact surface,
except the plane and the once punctured torus, decomposes into copies of the pair of pants and copies of
the punctured disk when we cut it along a collection of circles, where each circle of this collection has an
open neighborhood that does not intersect with any other circles of this collection.

First, we define some terminology:

Algebraic & Geometric Topology, Volume 24 (2024)



4434 Sumanta Das

Definition 3.1.1 Let X be a space, and let fX˛ W ˛ 2 I g be a collection of subsets of X . We say
fX˛ W ˛ 2 I g is a locally finite collection and write X˛ ! 1 if, for each compact subset K of X ,
X˛ \K D¿ for all but finitely many ˛ 2I .

Definition 3.1.2 Let A be a pairwise-disjoint collection of smoothly embedded circles on a surface †.
We say A is a locally finite curve system (in short, LFCS) on † if A is a locally finite collection.

Remark 3.1.3 Let A be an LFCS on a surface †. Notice that
S

A (ie the union of all elements of A / is
a closed subset of† as well as a smoothly embedded submanifold of† such that the set of all components
of
S

A is A . But to simplify notation, whenever needed we will think of A and
S

A as the same
without any harm.

Definition 3.1.4 Let A be an LFCS on a surface †. Suppose there exists an at most countable collection
f†ng of bordered subsurfaces of † such that

(1) each †n is a closed subset of †,

(2) int.†n/\ int.†m/D¿ if n¤m,

(3)
S
n†n D†, and

(4)
S
n @†n D

S
A .

In this case, we say A decomposes † into bordered subsurfaces, where complementary components are
f†ng. Also, we call each component of A a decomposition circle.

The following theorem asserts that any noncompact surface other than the plane has a decomposition,
where each complementary part is either a pair of pants, a one-holed torus, or a punctured disk. This
decomposition of the codomain of a pseudoproper homotopy equivalence will be used in all cases.

Theorem 3.1.5 Let † be a noncompact surface not homeomorphic to R2. Then there is an LFCS C

on † such that C decomposes † into bordered subsurfaces , and a complementary component of this
decomposition is homeomorphic to either S1;1 (used at most once), S0;3, or S0;1;1.

Proof It is enough to find a collection f†ng of bordered subsurfaces of † with the four properties, as
mentioned in Definition 3.1.4, so that each †n is homeomorphic to either S0;3, S1;1, or S0;1;1. For that,
consider an inductive construction of †; see Theorem 2.5.1. Now, a finite sequence of annuli, when added
to the compact bordered surface used just before it, can be ignored. Thus we may assume S0;3 or S1;2
is used after S0;1 without loss of generality because †©R2, and hence, pushing S0;1 into int.S0;3/ or
int.S1;2/, we end up with S0;2 (which can be ignored) or S1;1. We complete the proof by observing that
S1;2 can be decomposed into two copies of S0;3, and S0;1;1 is the union (with pairwise-disjoint interiors)
of countably many copies of S0;2.

Remark 3.1.6 A statement closely related to Theorem 3.1.5 is [2, Theorem 1.1], which says that “every
surface except for the sphere, the plane, and the torus is the union (with pairwise-disjoint interiors) of
copies of the pair of pants and copies of the punctured disk”. But due to Definition 3.1.4(4), if we want
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: : :

Figure 2: Top: decomposition of the Loch Ness monster into countably infinitely many copies of
the pair of pants. Bottom: decomposition of S3;0;1 into five copies of the pair of pants and a copy
of the punctured disk.

that any complementary component is homeomorphic to only either S0;3 or S0;1;1, then we also need to
assume that †© S1;0;1; see Figure 2 and Theorem 3.1.7.

Theorem 3.1.7 Let † be a noncompact surface that is not homeomorphic to either R2 or S1;0;1. Then
there is an LFCS C 0 on † such that C 0 decomposes † into bordered subsurfaces , and a complementary
component of this decomposition is homeomorphic to either S0;3 or S0;1;1.

Proof It is enough to find a collection f†ng of bordered subsurfaces of † with the four properties
of Definition 3.1.4 such that each †n is homeomorphic to either S0;3 or S0;1;1. For that, consider an
inductive construction of †; see Theorem 2.5.1. We will divide the whole proof into two cases, depending
on whether † has at least two ends.

At first, suppose the number of ends of † is at least two. Now, the definition of the space of ends tells us
that we need to use at least one pair of pants in the inductive construction of †. By Lemma 3.1.8, we
may assume that in this inductive construction, a pair of pants is used just after the disk. An argument
similar to before (see the proof of Theorem 3.1.5) concludes this case.

Next, consider the case when the number of ends of † is precisely one. That is, † can be either the Loch
Ness monster (the infinite-genus surface with one end) or Sg;0;1 with g � 2. The Loch Ness monster
decomposes into countably infinitely many copies of the pair of pants, and Sg;0;1 with g � 2 decomposes
into .2g�1/–many copies of the pair of pants and a copy of the punctured disk; see Figure 2.

To prove Theorem 3.1.7 we used Lemma 3.1.8, which says that in an inductive construction of a
noncompact surface, interchanging the positions of the compact bordered surfaces used in the first few
inductive steps doesn’t change the homeomorphism type; its proof is based on the observation that the
portions outside compact subsets determine the space of ends.
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Figure 3: Ir (resp. I 0r / denotes the r th step of I (resp. I 0). Here n0 D 9 and nD 4. Also, the
red-colored compact bordered surfaces are the portions of S , and the inductive construction of S

given by I 0 is inherited from the inductive construction of S given by I .

Lemma 3.1.8 Let † be a noncompact surface with some inductive construction I . Denote the compact
bordered subsurface of † after the i th step of I by Ki . Suppose

fB1; : : : ;Bn W each Bl is homeomorphic to S0;2; S0;3; or S1;2g

is a finite collection of compact bordered surfaces such that Bl is used to construct KilC1 from Kil for
each l D 1; : : : ; n. Then there exists a noncompact surface †0 with an inductive construction I 0 such that
†0 Š† and Bl is used to construct K 0

lC1
from K 0

l
for each l D 1; : : : ; n, where K 0i denotes the compact

bordered subsurface of † after the i th step of I 0.

Proof Let n0 be a positive integer such that Kn0
contains each Bl . Define S WD†n int.Kn0

/. Thus S is
a bordered subsurface of † with @S D @Kn0

. Now consider all copies of different building blocks used
up to the nth

0 step of I , and inside Kn0
interchange them so that B1; : : : ;Bn comes just after the initial

disk K1 one by one following the increasing order of their indices. Denote the result of this interchange
process by K 0n0

. So Kn0
ŠK 0n0

as g.Kn0
/D g.K 0n0

/ and @Kn0
Š @K 0n0

. Define a noncompact surface
†0 as †0 WDK 0n0

[@K0n0
�@S S . Therefore †nKn0

D int.S /D†0 nK 0n0
(notice that we are thinking of S

as a subset of †0 using the obvious embedding S ,!†0).

Choose an inductive construction I 0�n0
of K 0n0

such that the i th element of the ordered sequence
K1;B1; : : : ;Bl is used in the i th step of I 0�n0

. Then I gives a truncated inductive construction I jS on S

starting from the .n0C1/th step. Now I 0�n0
followed by I jS together gives an inductive construction I 0

of †0. Roughly it means I 0 is the same as the inductive construction of †, except for the first few steps.
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Denote the compact bordered subsurface of †0 after the i th step of I 0 by K 0i . To complete the proof, we
show †0 Š† using Theorem 2.4.1.

Consider the efficient exhaustion fKig (resp. fK 0ig) of † (resp. †0) by compacta to define Ends.†/ (resp.
Ends.†0/). Recall that the space of ends remains the same up to homeomorphism even if we choose a
different efficient exhaustion by compacta; see Section 2.3. By † nKn0

D int.S /D†0 nK 0n0
, for every

sequence .V1; V2; : : : /2Ends.†/, there exists a unique sequence .V 01; V
0
2; : : : /2Ends.†0/ such that Vi D

V 0i for all integers i � n0, and conversely. Thus there exists a homeomorphism ' W Ends.†/! Ends.†0/
with '.Endsnp.†//D Endsnp.†

0/. Also, † nKn0
D int.S /D†0 nK 0n0

and Kn0
ŠK 0n0

together imply
g.†/D g.†0/. Therefore †0 Š† by Theorem 2.4.1.

The spine construction of Goldman’s inductive procedure shows that every noncompact surface† (possibly
of infinite type) is the interior of a bordered surface: consider the graph G consisting of blue straight
line segments and red circles, as given in Figure 1. Any thickening [23, Definition 7.2] of G in † is the
interior of a bordered subsurface S of †. Now [23, Corollary 7.2. and Section 7.3] says that int.S /Š†.
When † is of finite type, we prove the same thing differently in the following theorem:

Theorem 3.1.9 A noncompact finite-type surface is the interior of a compact bordered surface. In partic-
ular , if a noncompact surface has infinite cyclic (resp. trivial ) fundamental group , then it is homeomorphic
to S1 �R (resp. R2).

Proof Let † be a finite-type noncompact surface. Consider an inductive construction of †; see
Theorem 2.5.1. Since �1.†/ is finitely generated, Theorem 2.5.2 says that † is homotopy equivalent toW2rCsS1, where in this inductive construction r 2N is the total number of copies of S1;2, and s 2N is
the total number of copies of S0;3; see Figure 1. Thus there is an integer n such that † nKn (where Kn
is the compact bordered subsurface of † after nth inductive step) is a finite collection of punctured disks.
Now g.†/D g.int.Kn//. Also, each end of † (resp. int.Kn/) is planar, and the total number of ends
of † (resp. int.Kn/) is the same as the number of components of @Kn. By Theorem 2.4.1, †Š int.Kn/.

If † is a noncompact surface with infinite-cyclic fundamental group, then any inductive construction of †
contains no copy of S1;2 but precisely one copy of S0;3, ie †Š S1 �R. Similarly, if † is a noncompact
surface with trivial fundamental group, then any inductive construction of † has no copy of S0;3 as well
as no copy of S1;2, ie †ŠR2.

The proposition below follows directly from Goldman’s inductive construction, so we quote it without
proof. It says that an infinite-type surface has a finite genus only if it has infinitely many ends. On the
other hand, Theorem 2.4.2 guarantees the existence of an infinite-type surface of infinite genus with
infinitely many ends.

Proposition 3.1.10 A noncompact surface is of a finite genus if and only if the total number of copies of
S1;2 used in any inductive construction of † is finite. Thus if an infinite-type surface has a finite genus , it
must have infinitely many ends.
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This section’s final fact (as promised in the introduction) says that the fundamental group alone can’t
detect the homeomorphism type of an infinite-type surface.

Proposition 3.1.11 Up to homotopy equivalence , there is exactly one infinite-type surface , but up to
homeomorphism , there are 2@0–many infinite-type surfaces.

Proof Any infinite-type surface is homotopy equivalent to the wedge of countably infinitely many circles;
see Theorem 2.5.2. Thus, any two infinite-type surfaces are homotopy equivalent.

Now, we prove that up to homeomorphism, there are 2@0–many infinite-type surfaces. Notice that
except for the first step, in each step of Goldman’s inductive procedure, we use S0;3, or S0;2, or S1;2.
Thus we have at most 3@0 D 2@0–many noncompact surfaces, up to homeomorphism. Therefore it is
enough to show that this upper bound is reachable. Let � be a nonempty closed subset of the Cantor
set. By Theorem 2.4.2, there exists an infinite-genus surface †� such that Ends.†� /D Endsnp.†� /Š � .
Therefore, if �1 and �2 are two nonhomeomorphic nonempty closed subsets of the Cantor set, then †�1

is
not homeomorphic to †�2

by Theorem 2.4.1. Now [32, Theorem 2] says that up to homeomorphism,
there are 2@0–many closed subsets of the Cantor set.

3.2 Transversality of a proper map with respect to all decomposition circles

In the previous section, the codomain of a pseudoproper homotopy equivalence has been decomposed
into finite-type bordered surfaces by a locally finite pairwise-disjoint collection of circles. This section
aims to properly homotope the pseudoproper homotopy equivalence to make it transverse to each
decomposition circle.

The theorem below follows from the theory developed in the appendix. We aim to use it to impose a
1–dimensional submanifold structure on the inverse image of each decomposition circle.

Theorem 3.2.1 Let f W†0!† be a proper map between noncompact surfaces , and let A be an LFCS
on †. Then f can be properly homotoped to make it smooth as well as transverse to the manifold A .

Proof Using Theorem A.1.1, after a proper homotopy, we may assume that f is a smooth proper map.
After that, using Theorem A.1.2, properly homotope f so that it becomes transverse to A .

Remark 3.2.2 Note that in Theorem 3.2.1, we have no control over those proper homotopies, which
make the proper map f smooth as well as transverse to A , ie after these proper homotopies, f �1.A /
can be empty, even if these proper homotopies start with a surjective proper map. A remedy for this is
to assume deg.f / ¤ 0. This is because the degree is invariant under proper homotopy, and a map of
nonzero degree is surjective; see Lemmas 3.6.4.1 and 3.6.4.3. If f is a proper homotopy equivalence,
then f has a proper homotopy inverse; hence deg.f /¤ 0 (see Section 2.6). But if f is a pseudoproper
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homotopy equivalence, then we don’t know (at least till this stage) whether f has a proper homotopy
inverse or not (though it has a homotopy inverse). Later in Section 3.6, using �1–bijectivity, we will show
that most pseudoproper homotopy equivalence is a map of degree ˙1.

The following theorem says that the transverse preimage of an LFCS under a proper map is an LFCS.

Theorem 3.2.3 Let f W†0!† be a smooth proper map between two noncompact surfaces , and let A be
an LFCS on † such that f S& A . Then for each component C of A , either f �1.C/ is empty or a pairwise-
disjoint finite collection of smoothly embedded circles on †0. Therefore f �1.A / is an LFCS on †0.

Proof By the definition of transversality, f S&A implies f S&C for each component C of A . Thus f �1.C/
is either empty or is a compact (since f is proper) 1–dimensional boundaryless smoothly embedded
submanifold of †0. By the classification of closed 1–dimensional manifolds, this completes the first part.

Next, if possible, let K 0 be a compact subset of †0 such that K 0 intersects infinitely many components
of f �1.A /. By the first part, this means the compact set f .K 0/ intersects infinitely many components
of A , which contradicts the fact that A is a locally finite collection.

3.3 Disk removal

As previously observed, after a proper homotopy, the number of components in the collection of transverse
preimages of all decomposition circles can be infinite, and many components (possibly infinitely many)
of this collection, may be trivial circles. Here our goal is to group all these trivial circles in terms of the
size of the disk bounded by a trivial circle and then remove all groups of trivial circles simultaneously by
a proper homotopy.

Our intended grouping requires a technical lemma, which asserts that on a nonsimply connected surface,
an LFCS consisting of concentric trivial circles doesn’t exist. Roughly, it means, on a nonsimply connected
surface, arbitrarily large disks bounded by components of an LFCS don’t exist.

Lemma 3.3.1 Let † be a surface , and let A WD fCi W i 2Ng be an LFCS on † such that for each i the
circle Ci bounds a disk Di �† with Ci � int.DiC1/. Then † is homeomorphic to R2.

Proof At first, notice that † must be noncompact as A is a locally finite pairwise-disjoint infinite
collection of circles. Using inductive construction (see Theorem 2.5.1), we have a sequence fSj W j 2Ng

of compact bordered subsurfaces of† such that
S
j Sj D† and Sj � int.SjC1/ for each j 2N. Consider

any p 2†. A j0 2N exists such that p 2Sj0
and Sj0

\.[iCi /¤¿. Since A is a locally finite collection,
only finitely many components of A intersect the compact set Sj0

. Let Ci1 ; : : : ; Cil be the only components
of A intersecting Sj0

, where i1 < � � � < il . Pick an integer i0 > il . Then Ci0 \ Sj0
D ¿. Now, since

Cil � int.Di0/, Sj0
is connected, and † is locally Euclidean, we can say that Sj0

� int.Di0/. Thus every
point x 2† has an open neighborhood Ux in† such that Ux �Di for some i 2N. Therefore every loop on
† is contained in a disk Di for some large i 2N, ie† is simply connected. By Theorem 3.1.9, †ŠR2.
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The following lemma is the primary tool for showing that a homotopy is proper. It tells how a proper
map can be properly homotoped so that it changes on infinitely many pairwise-disjoint compact sets.

Lemma 3.3.2 Let f W†0!† be a proper map between two noncompact surfaces , and let f†0n W n 2Ng

be a pairwise-disjoint collection of compact bordered subsurfaces of †0. For each n 2 N, suppose
Hn W†

0
n� Œ0; 1�!† is a homotopy relative to @†0n such that Hn.�; 0/D f j†0n and im.Hn/!1. Then

H W†0 � Œ0; 1�!† defined by

H.p; t/ WD
�
Hn.p; t/ if p 2†0n and t 2 Œ0; 1�;
f .p/ if p 2†0 n

�S
n2N †

0
n

�
and t 2 Œ0; 1�;

is a proper map.

Proof Let K be a compact subset of†. By continuity of H, H�1.K/ is closed in†0. Since im.Hn/!1,
there exists n0 2N such that im.Hl/\KD¿ for all integers l � n0C1. Now, f �1.K/ is compact as f
is proper. Also, the domain of each Hn is compact. Hence, the closed subset H�1.K/ of †0 is contained
in the compact set f �1.K/[

Sn0

lD1
H�1n .K/.

To remove trivial components from the transverse preimage of an LFCS with infinitely many components,
we need to impose some conditions on this LFCS. One such preferred LFCS is given in Theorem 3.1.5,
but we will require other kinds of LFCS on the codomain, so here is the list of different preferred LFCS:

Definition 3.3.3 Let † be a noncompact surface such that †©R2. Suppose A is a given LFCS on †.
We say A is a preferred LFCS on † if either

(i) A is a finite collection of primitive circles on †, or

(ii) A decomposes† into bordered subsurfaces, and a complementary component of this decomposition
is homeomorphic to S1;1, S0;3, S0;2, or S0;1;1.

Remark 3.3.4 The only use of case (i) of Definition 3.3.3 is in Section 3.6, where we consider the
process of removing unnecessary circles from the transverse preimage of the boundary of an essential
pair of pants or an essential punctured disk. It is worth noting that by a finite LFCS, one can’t decompose
an infinite-type surface into finite-type bordered surfaces.

In the theorem below, we construct a proper homotopy which removes all trivial components keeping a
neighborhood of each primitive component stationary from the transverse preimage of a preferred LFCS.
Recall that a homotopyH WX�Œ0; 1�!Y is said to be stationary on a subset A ofX ifH.a; t/DH.a; 0/
for all .a; t/ 2 A� Œ0; 1�.

Theorem 3.3.5 Let f W †0 ! † be a smooth proper map between two noncompact surfaces , where
†0©R2©†, and let A be a preferred LFCS on † such that f S&A . Then we can properly homotope f
to remove all trivial components of the LFCS f �1.A / such that each primitive component of f �1.A /
has an open neighborhood on which this proper homotopy is stationary.
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Proof Since †0 ©R2 and f �1.A / is an LFCS (see Theorem 3.2.3), by Lemma 3.3.1 there don’t exist
infinitely many components C01; C

0
2; : : : of f �1.A / bounding the disks D01;D

0
2; : : : , respectively, such

that C0n is contained in the interior of D0nC1 for each n. Thus, if f �1.A / has a trivial component, we can
introduce the notion of an outermost disk bounded by a component of f �1.A / in the following way:
A disk D0 �†0 bounded by a component of f �1.A / is called an outermost disk if, given another disk
D00 �† bounded by a component of f �1.A /, then either D00 � D0 or D0\D00 D¿.

Let fD0ng be the pairwise-disjoint collection (which may be an infinite collection) of all outermost disks.
Assume Cn represents that component of A for which f .@D0n/ � Cn. Note Cn may equal to Cm even
if m¤ n.

For each integer n, we will construct a compact bordered subsurface Zn with f .D0n/ � Zn such that
Zn!1. Roughly, Zn will be obtained from taking the union of all those complementary components
of † (if a punctured disk appears, truncate it) which are hit by f .D0n/.

Fix an integer n. Let X 0n;1; : : : ;X
0
n;kn

be the all connected components of D0n nf �1.A /. By continuity
of f , for each X 0

n;l
, there exists a complementary component Yn;l of † decomposed by A such that

f .X 0
n;l
/� Yn;l and @X 0

n;l
� f �1.@Yn;l/; see Figure 4. For each l , define a compact bordered subsurface

Zn;l of † as follows: If Yn;l is homeomorphic to S1;1, S0;3, or S0;2; define Zn;l WD Yn;l . On the other
hand, if Yn;l is homeomorphic to S0;1;1, then let Zn;l be an annulus in Yn;l such that @Zn;l\@Yn;lD@Yn;l
and f .X 0

n;l
/� Zn;l . Finally, define Zn WD Zn;1[ � � � [Zn;kn

.

Now, we show Zn ! 1, so consider a compact subset K of †. Let S1; : : : ;Sm be a collection
of complementary components of † decomposed by A such that K � int

�Sm
lD1 Sl

�
. Define S WDSm

lD1 Sl . Thus, for an integer n, f .D0n/\ S ¤ ¿ if and only if D0n contains at least one component
of
Sm
lD1 f

�1.@Sl/. This is due to the construction of each Zn; see Figure 4. For each component C
of A , Theorem 3.2.3 says that f �1.C/ has only finitely many components. So D0n doesn’t contain any
component of

Sm
lD1 f

�1.@Sl/ for all sufficiently large n, ie f .D0n/\S D¿ for all sufficiently large n.
Since K� int.S / and each Zn is obtained from taking the union of all those complementary components
of † (if a punctured disk appears, truncate it) which are hit by f .D0n/, we can say that Zn\KD¿ for
all sufficiently large n. Therefore Zn!1 as K is an arbitrary compact subset of †.

For each n, adding a small external collar to one of the boundary components of Zn (if needed), we can
construct a compact bordered surface †n with Cn � int.†n/; f .D0n/ � †n such that f†ng is a locally
finite collection, ie †n!1; see Figure 4.

For each n, write C0n WD @D0n. Thus f .C0n/ � Cn. Since Cn � int.†n/, using Theorem A.2.1, choose
a one-sided tubular neighborhood Cn � Œ0; "n� of Cn in † with Cn � 0 � Cn such that f S& .Cn � tn/
for each tn 2 Œ0; "n� and Cn � Œ0; "n� � †n. Without loss of generality, we may further assume that
f .x0/ 2 Cn � Œ0; "n� for each x0 2†0 nD0n sufficiently near to C0n. Next, since f �1.A / is an LFCS, for
each n, Theorem A.2.3 gives a one-sided compact tubular neighborhood U 0n of C0n such that U 0n\D0n D
C0nDU 0n\f �1.A /, f .U 0n/� Cn�Œ0; "n� for each n, and U 0n\U 0mD¿ form¤n. Finally, Theorem A.2.5
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C"n;n

@D0
ın;n
D C0

ın;n

Cn

†n

D0
ın;n

f

Cın;n

Figure 4: Each component of D0n nf �1.A / maps into a component of † nA . This fact, together
with Theorem A.2.5, provides†n. A black circle denotes a component of either A or a component
of f �1.A /.

gives ın 2 .0; "n/ and a component C0
ın;n

of f �1.Cın;n/ such that C0
ın;n

bounds a disk D0
ın;n

in †0 with
.U 0n[D0n/�D0

ın;n
� int.D0

ın;n
/�D0n (equivalently, U 0n contains the annulus cobounded by C0

ın;n
and C0n)

and f .D0
ın;n
n int.D0n// � Cn � Œ0; "n�. Thus D0

ın;n
\ f �1.A / D D0n \ f �1.A /, f .D0ın;n

/ � †n for
each n, and D0

ın;n
\D0

ım;m
D¿ when m¤ n.

Since Cın;n cobounds an annulus with the primitive circle Cn, the inclusion Cın;n ,!†n is �1–injective
(see Theorem 2.2.2). Also, †n is homotopy equivalent to

W
finiteS

1, which implies that the universal cover
of †n is contractible, and thus �2.†n/D 0. Therefore, exactness of

� � � ! �2.†n/! �2.†n; Cın;n/! �1.Cın;n/! �1.†n/! � � �

gives �2.†n; Cın;n/ D 0, ie we have a homotopy Hn W D0ın;n
� Œ0; 1� ! †n relative to C0

ın;n
from

f j.D0
ın;n

; C0
ın;n

/ ! .†n; Cın;n/ to a map D0
ın;n
! Cın;n for each n; see [25, Lemma 4.6]. Now, to

conclude, apply Lemma 3.3.2 on fHng.
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Remark 3.3.6 In Theorem 3.3.5, the number of components of A can be infinite; thus the number of
trivial components of f �1.A / can be infinite. That’s why we have removed all trivial components of
f �1.A / by a single proper homotopy upon considering all outermost disks simultaneously. This process
is in contrast to the finite-type surface theory, where the number of decomposition circles is finite, and
therefore all trivial circles in the collection of transverse preimages of all decomposition circles can be
removed one by one, considering the notion of an innermost disk.

3.4 Homotope a degree 1 map between circles to a homeomorphism

Previously, we have removed all trivial components keeping a neighborhood of each primitive component
stationary from the transverse preimage f �1.A / of a preferred LFCS A . In this section, we properly
homotope our pseudoproper homotopy equivalence f W†0!† to send each component C0 of f �1.A /
homeomorphically onto a component C of A so that the restriction of f to a small one-sided tubular
neighborhood C0 � Œ1; 2� of C0 (on either side of C0) can be described by the following homeomorphism:

C0 � Œ1; 2� 3 .z; t/ 7! .f .z/; t/ 2 C � Œ1; 2�:

First, we fix some notation. Define @" WD S1 � " for " 2R and I WD Œ0; 1�. Let p W S1 �R! S1 be the
projection. The following lemma roughly says that a self-map of S1� Œ0; 2� can be homotoped rel S1� 0

to map S1 � Œ1; 2� into itself by the product � � IdŒ1;2�, where � is a self-map of S1.

Lemma 3.4.1 Let ˆ be a self-map of A WD S1 � Œ0; 2� such that ˆ�1.@b/D @b for each b 2 f0; 2g. If
we are given a map '2 W @2! @2 and a homotopy h.2/ W @2 � I! @2 from ˆj@2! @2 to '2, then ˆ can
be homotoped relative to @0 to map S1 � Œ0; 1� into S1 � Œ0; 1� and to satisfy ˆ.�; r/D .p ı'2.�; 2/; r/
for each r 2 Œ1; 2�.

Remark 3.4.2 In Lemma 3.4.1, up to homotopy, '2 is either a constant map or a covering map.

Proof Homotope ˆ relative to @0[@2 so that ˆ.S1� Œ0; 1�/� S1� Œ0; 1� and ˆ.z; r/D .p ıˆ.z; 2/; r/
for all .z; r/ 2 S1 � Œ1; 2�. For each r 2 Œ1; 2�, h.2/ provides a homotopy h.r/ W @r � I ! @r . Let
H W .@0 [ @1/� I ! @0 [ @1 be the homotopy defined by H j@1 � I D h.1/ and H.�; t /j@0 Dˆj@0 for
any t 2 Œ0; 1�. The homotopy extension theorem gives a homotopy zH W S1 � Œ0; 1�� I! S1 � Œ0; 1� such
that zH j.@0[ @1/� I DH . Finally, paste zH with the collection h.r/; 1� r � 2.

The following theorem is the simple modification (in the proper category) of the analogous theorem for
closed surfaces:

Theorem 3.4.3 Let f W†0!† be a smooth pseudoproper homotopy equivalence between two noncom-
pact surfaces where †0 ©R2 ©†, and let A be a preferred LFCS on † such that f S& A . Then f can
be properly homotoped to remove all trivial components of f �1.A / as well as to map each primitive
component of f �1.A / homeomorphically onto a component of A . Moreover , after this proper homotopy ,
near each component of f �1.A /, the map f can be described as follows:
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Let C0p (resp. C) be a component of f �1.A / (resp. A ) such that f jC0p! C is a homeomorphism. Then
C0p (resp. C) has two one-sided tubular neighborhoods M0 and N 0 (resp. M and N ) with the specific
identifications .M0; C0p/Š .C0p � Œ1; 2�; C0p � 2/Š .N 0; C0p/ (resp. .M; C/Š .C � Œ1; 2�; C � 2/Š .N ; C/)
such that the following hold :

� M0[N 0 is a (two-sided ) tubular neighborhood of C0p,

� f jM0!M and f jN 0!N are homeomorphisms given by C0p�Œ1;2�3.z; t/ 7!.f .z/; t/2C�Œ1;2�.

Remark 3.4.4 In Theorem 3.4.3, though M0[N 0 is a (two-sided) tubular neighborhood of C0p, both M
and N may lie on the same side of C, ie M[N may not be a two-sided tubular neighborhood of C.

Proof Let fC0png be the collection of all primitive components of f �1.A /. Assume Cn represents that
component of A for which f .C0pn/� Cn. Note Cn may equal to Cm even if m¤ n.

Claim 3.4.4.1 There are one-sided compact tubular neighborhoods U 0n;V 0n.�†0/ of C0pn, and there are
one-sided compact tubular neighborhoods Un;Vn.�†/ of Cn such that after defining T 0n WD U 0n[V 0n, the
following hold :

(1) zA WD A [f.@Un[ @Vn/ n Cngn is an LFCS and f S& zA ,

(2) @U 0nnC0pn (resp. @V 0nnC0pn) is the only component of f �1.@UnnCn/\U 0n (resp. f �1.@VnnCn/\V 0n)
that cobounds an annulus with C0pn (see Figure 5),

U 0n Š S1 � Œ0; 2� Un Š S1 � Œ0; 2�

Mn Š S1 � Œ1; 2�M0
n Š S1 � Œ1; 2�

f

Hn.�; 1/

C0pn Cn

Figure 5: Top: description of f jU 0n ! Un using Theorem A.2.5. Bottom: after removing all
trivial components of f �1.@Un n Cn/ from U 0n and then applying Lemma 3.4.1 to f jU 0n! Un, we
obtain Hn.�; 1/jU 0n! Un.
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(3) each point of int.U 0n/ (resp. int.V 0n/) that is sufficiently near to C0pn is mapped into int.Un/
(resp. int.Vn/),

(4) T 0n is a two-sided tubular neighborhood of C0pn with f �1.A /\ T 0n D C0pn, and

(5) T 0n\ T 0m D¿ if m¤ n, and .Un[Vn/!1.

Proof For any positive integer n0, Theorem 3.2.3 says that the set fm 2N W Cm D Cn0
g is finite. Also,

A is locally finite. Thus fCn W n 2Ng is locally finite. So, for each n, there exists a two-sided tubular
neighborhood Cn � Œ�"n; "n� of Cn with Cn � 0 � Cn such that fCn � Œ�"n; "n� W n 2 Ng is a locally
finite collection. Further, for each n 2 N, we may assume that f S& .Cn � tn/ whenever tn 2 Œ�"n; "n�
by Theorem A.2.1.

Since f �1.A / is a locally finite collection, for each n there are one-sided compact tubular neighborhoods
U 0n and V 0n of C0pn in †0 such that after defining T 0n WD U 0n [ V 0n, the following hold: T 0n is a two-sided
tubular neighborhood of C0pn, f �1.A / \ T 0n D C0pn, and T 0n \ T 0m D ¿ if m ¤ n. Moreover, using
Theorem A.2.3, f .T 0n/� Cn � Œ�"n; "n� can also be assumed for each n.

Next, by Theorem A.2.5, we may further assume @U 0n n C0pn (resp. @V 0n n C0pn) is a component of
f �1.Cn � xn/ (resp. f �1.Cn � yn/) for some xn; yn 2 .�"n; 0/ [ .0; "n/ such that after defining
Un (resp. Vn) as the annulus in Cn � Œ�"n; "n� cobounded by Cn � 0 and Cn � xn (resp. Cn � yn),
Claim 3.4.4.1.2/–.3/ hold. Finally Cn � Œ�"n; "n�!1 implies .Un[Vn/!1.

Using Theorem 3.3.5, keeping stationary a neighborhood of each primitive component of f �1. zA /,
we can properly homotope f to remove all trivial components from f �1. zA /. So, after this proper
homotopy, Claim 3.4.4.1.2/–.3/ imply that f .U 0n/ � Un, f �1.@Un/ \ U 0n D @U 0n, f .V 0n/ � Vn, and
f �1.@Vn/\V 0n D @V 0n. Notice the abuse of notation: the initial and final maps of this proper homotopy
both are denoted by f .

Now, let hn WC0pn�Œ0; 1�!Cn be a homotopy from f jC0pn!Cn such that hn.�; 1/ is either a constant map
or a covering map between two circles. Applying Lemma 3.4.1 on f jU 0n! Un and f jV 0n! Vn separately
upon considering hn, a homotopy Hn W T 0n� Œ0; 1�! Un[Vn relative to @T 0n exists such that Hn.�; 0/D
f jT 0n, .Hn.�; 1//�1.Cn/D C0pn, and Hn.�; 1/jC0pn! Cn is the same as hn.�; 1/; see Figure 5.

Next, Claim 3.4.4.1.5/ tells us that we can apply Lemma 3.3.2 on fHng to obtain a proper homotopy
H W †0 � Œ0; 1�! † starting from f . Next, being an isomorphism, �1.f / D �1.H.�; 1// preserves
primitiveness, ie hn.�; 1/ D H.�; 1/jC0pn ! Cn must be a homeomorphism. Thus H is our ultimate
required homotopy.

Finally, we need to describe f near each component of f �1.A / after the proper homotopy H. Abusing
notation, the final map of H will be denoted by f . Since Lemma 3.4.1 is being used, we have M0n�U 0n and
Mn�Un with the identifications .M0n; C0pn/Š .C0pn�Œ1; 2�; C0pn�2/ and .Mn; Cn/Š .Cn�Œ1; 2�; Cn�2/
such that after the proper homotopy H W†0 � Œ0; 1�!†, the map f sends C0pn � r onto Cn � r using the
homeomorphism f jC0pn! Cn for all r 2 Œ1; 2�; see Figure 5. The reasoning is similar for f jV 0n! Vn.
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The following proposition, which we don’t need to use anywhere, tells what happens if we drop the phrase
“homotopy equivalence” in the statement of Theorem 3.4.3. Its proof is almost the same.

Proposition 3.4.5 Let f W†0!† be a smooth proper map between two noncompact surfaces , where
†0©R2©†, and let A be a preferred LFCS on† such that f S&A . Then f can be properly homotoped
to remove all trivial components of f �1.A / as well as to map each primitive component of f �1.A / into
a component of A so that for any component C of A and any primitive component C0p of f �1.C/, after
this proper homotopy, f jC0p! C is either a constant map or a covering map.

3.5 Annulus removal

In the previous two sections, after removing all trivial components from the transverse preimage of
a decomposition circle, the remaining primitive circles have been mapped homeomorphically to that
decomposition circle. This section aims to remove all these primitive circles except one from the inverse
image of each decomposition circle using the following three steps: annulus bounding, then annulus
compression, and finally annulus pushing.

We start with annulus bounding. Consider the collection of inverse images of all decomposition circles.
The following lemma says that any two circles in this collection cobound an annulus in the domain if and
only if their images are the same. In other words, in the domain, by pasting all small annuli, we get the
outermost annulus corresponding to a decomposition circle.

Lemma 3.5.1 Let f W †0 ! † be a homotopy equivalence between two noncompact surfaces , and
let A 0 and A be two LFCS on †0 and †, respectively, such that f maps each component of A 0

homeomorphically onto a component of A . Suppose each component of A is primitive , and any two
distinct components of A don’t cobound an annulus in †. Let C00 and C01 be two distinct components
of A 0. Then C00 and C01 cobound an annulus in †0 if and only if f .C00/D f .C

0
1/.

Proof To prove the only if part, let ˆ W S1 � Œ0; 1� ,!†0 be an embedding such that ˆ.S1; k/D C0
k

for
k D 0; 1. Note that f maps each component of A 0 homeomorphically onto a component of A , and each
component of A is a primitive circle on †. Thus the embeddings f ˆ.�; 0/; f ˆ.�; 1/ W S1 ,! † are
freely homotopic, and hence f ˆ.�; 0/; f ˆ.�; 1/ WS1 ,!† represent the same nontrivial conjugacy class
in �1.†;�/. Since any two distinct components of A don’t cobound an annulus in †, by Theorem 2.2.3,
f .C00/D f .C

0
1/.

To prove the if part, let g W †! †0 be a homotopy inverse of f , and let C be the component of A

defined by C WD f .C00/ D f .C
0
1/. Now, f jC0

k
! f .C0

k
/ is a homeomorphism for k D 0; 1. Thus, for a

homeomorphism j W S1 Š�! C, there are homeomorphisms `0 W S1 Š�! C00 and `1 W S1 Š�! C01 such that
f `0D j D f `1. Since `0' gf `0D gj D gf `1' `1, applying Theorem 2.2.3 to `0; `1, we are done.

The following theorem, which will be used to compress each annulus bounded by two primitive circles of
the domain, roughly says that most homotopies of a circle embedded in a surface are trivial:
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Theorem 3.5.2 [35, Lemma 4.9.15] Let S be a compact bordered surface other than the disk , and let ˆ
be a map from A WD S1� Œ0; 1� to S such that ˆ.int.A//� int.S / and there is a boundary component C

of S for which ˆ.�; 0/; ˆ.�; 1/ W S1 Š�! C are the same homeomorphisms. Then ˆ can be homotoped
relative to @A to map A onto C .

The following theorem considers the last two steps — annulus compressing and annulus pushing. At first,
by a proper homotopy, each outermost annulus will be mapped onto its decomposition circle; after that, by
another proper homotopy, each outermost annulus will be pushed into a one-sided tubular neighborhood
of one of its boundary components.

Theorem 3.5.3 Let f W†0!† be a smooth pseudoproper homotopy equivalence between two noncom-
pact surfaces , where †0 ©R2 ©†, and let A be a preferred LFCS on † such that f S& A . Suppose any
two distinct components of A don’t cobound an annulus in †. In that case , f can be properly homotoped
to a proper map g such that for each component C of A , either g�1.C/ is empty or g�1.C/ is a component
of f �1.A / that is mapped homeomorphically onto C by g.

Proof Using Theorem 3.4.3, we may assume each component of f �1.A / is primitive and also mapped
homeomorphically onto a component of A . So for simplicity, we may drop the subscript p to indicate a
primitive component of f �1.A /. Let fCng be the pairwise disjoint collection of all those components
of A such that for each n, f �1.Cn/ has more than one component. By Lemma 3.5.1, for each n,
an annulus A0n (say the nth outermost annulus) exists with the following properties: @A0n � f �1.Cn/,
and A0n is not contained in the interior of an annulus bounded by any two components of f �1.A /.
Thus A0n \ f �1.A / D f �1.Cn/ and A0n \ A0m D ¿ for m ¤ n. Now, using Theorem 2.2.3, find a
parametrization �n WS1�Œ0; kn� Š�!A0n for some integer kn� 1 such that �n.S1�f0; : : : ; kng/Df �1.Cn/
and f �n.�; l/ W S1 Š�! Cn represents the same homeomorphism of Cn for each l D 0; : : : ; kn.

Claim 3.5.3.1 The proper map f W†0!† can be properly homotoped relative to †0 n
S
n int.A0n/ so

that f .A0n/D Cn for each n.

Proof For each integer n, we will construct a compact bordered subsurface†n of†with f .A0n/� int.†n/
such that †n!1. Roughly, †n will be obtained from taking the union of all those complementary
components of † (if a punctured disk appears, truncate it) which are hit by f .A0n/.

Using continuity of f j†0 nf �1.A /!† nA , we can say that f .A0n/� Xn[Yn, where Xn and Yn are
complementary components of † decomposed by A such that Cn � @Xn\ @Yn.

(1) We define †n as †n WD Xn[Yn if Xn Š S0;3 Š Yn, Xn Š S1;1 and Yn Š S0;3, or Yn Š S1;1 and
Xn Š S0;3; see Figure 6.

(2) If XnŠS0;1;1ŠYn (in this case† is homeomorphic to the punctured plane), then using compactness
of f .A0n/, let †n be an annulus in Xn[Yn such that f .A0n/� int.†n/.
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A0nA0m

†n

Cn

†m

Cm

f

Figure 6: Illustration of parts (1) and (3) of the definition of†n given in the proof of Claim 3.5.3.1.
Only black circles denote a component of either A or a component of f �1.A /.

(3) If Xn Š S0;1;1 and Yn is homeomorphic to either S0;3 or S1;1, then using compactness of f .A0n/,
find an annulus An in Xn such that f .A0n/� int.An[Yn/. Define †n WDAn[Yn; see Figure 6.

(4) If Yn Š S0;1;1 and Xn is homeomorphic to either S0;3 or S1;1, define †n similarly to .3/.

Thus f .A0n/ � int.†n/ for each n. Now we show †n ! 1, so consider a compact subset K of †.
Let S1; : : : ;Sm be a collection of complementary components of † decomposed by A such that K �
int
�Sm

lD1 Sl
�
. Define S WD

Sm
lD1 Sl . Notice that for an integer n, f .A0n/\S ¤¿ if and only if Cn is

a component of
Sm
lD1 @Sl . This is due to the construction of each †n; see Figure 6. Since Cn!1

and
Sm
lD1 @Sl is compact, f .A0n/\S D¿ for all sufficiently large n. Now, K � int.S / and each †n is

obtained from taking the union of all those complementary components of † (if a punctured disk appears,
truncate it) which are hit by f .A0n/. Thus †n\KD¿ for all sufficiently large n. Therefore, †n!1,
as K is an arbitrary compact subset of †.

Next, for each l 2 f1; : : : ; kng, applying Theorem 3.5.2 to each f �njS1 � Œl � 1; l�! Zn where Zn can
be either †n \Xn or †n \ Yn, we have a homotopy Hn W A0n � Œ0; 1�! †n relative to @A0n such that
Hn.�; 0/D f jA0n and Hn.A0n; 1/D Cn. Finally, apply Lemma 3.3.2 on fHng.

Consider Figure 7, where M0n˛ and Mn are provided by Theorem 3.4.3 so that after defining A0"n as
A0n[M0n˛,

.A0"n;M
0
n˛;A

0
n/Š .S

1
� Œ1; 3�;S1 � Œ1; 2�;S1 � Œ2; 3�/ and .Mn; Cn/Š .S1 � Œ1; 2�;S1 � 2/;

Algebraic & Geometric Topology, Volume 24 (2024)



Strong topological rigidity of noncompact orientable surfaces 4449

A0n Š S1 � Œ2; 3�M0
n˛ Š S1 � Œ1; 2�

C0n˛ C0
nˇ

M0
n˛ [A0n DA0"n Š S1 � Œ1; 3�

f

Cn Cn

Hn.�; 1/

S1 � Œ1; 2�ŠMn Mn Š S1 � Œ1; 2�

Figure 7: The description of f jA0"n!Mn (resp. Hn.�; 1/ WA0"n!Mn) using Theorem 3.4.3
and Claim 3.5.3.1 (resp. Lemma 3.5.4). Only black circles denote a component of either A or a
component of f �1.A /.

resulting in the following description of f : if � W S1! S1 describes the homeomorphism f jC0n˛! Cn
under the above identification, then f .z; t/ D .�.z/; t/ for z 2 S1 � Œ1; 2� and f .z; t/ 2 S1 � 2 for
.z; t/ 2 S1 � Œ2; 3�. Consider Claim 3.5.3.1 to see why f .S1 � Œ2; 3�/D S1 � 2.

Now, use Lemma 3.5.4 to construct a homotopy Hn W A0"n � Œ0; 1� ! Mn relative to @A0"n from
f jA0"n ! Mn to the map Hn.�; 1/ so that .Hn.�; 1//�1.Cn/ D C0

nˇ
and Hn.�; 1/jC0nˇ ! Cn is a

homeomorphism.

Notice that we are using the setup of the proof of Theorem 3.4.3. By Claim 3.4.4.1(4)–(5), A0"n\f �1.A /D
f �1.Cn/, A0"n \A0"m D¿ if m¤ n, and Mn!1. Now consider Lemma 3.3.2 with fHng to obtain
the desired homotopy.

We prove the annulus-pushing lemma used in the proof of the previous theorem:

Lemma 3.5.4 Any map ' WS1�Œ1; 3�!S1�Œ1; 2� which sends S1�r into S1�r for 1� r � 2 and sends
S1� r into S1�2 for 2� r � 3 can be homotoped relative to S1�f1; 3g to satisfy '�1.S1�2/D S1�3.

Proof Let '1 W S1 � Œ1; 3� ! S1 and '2 W S1 � Œ1; 3� ! Œ1; 2� be the components of '. Consider a
homeomorphism ` W Œ1; 3�! Œ1; 2� with `.1/D 1 and `.3/D 2. Now H W S1� Œ1; 3�� Œ0; 1�! S1� Œ1; 2�

defined by

H..z; s/; t/ WD .'1.z; s/; .1� t /'2.z; s/C t`.s// for .z; s/ 2 S1 � Œ1; 3� and t 2 Œ0; 1�

is our required homotopy.

Algebraic & Geometric Topology, Volume 24 (2024)



4450 Sumanta Das

Remark 3.5.5 In Theorem 3.5.3, the number of components of A can be infinite; thus, the number of
outermost annuli (one outermost annulus for each component of A , if any) can be infinite. That’s why we
have removed all outermost annuli simultaneously by a single proper homotopy, not one by one. Also, to
prove the topological rigidity of closed surfaces, one may ignore the annulus removal process considering
induction on the genus; see [13, Theorem 3.1] or [35, Theorems 4.6.2 and 4.6.3]. But, since the genus of
a noncompact surface can be infinite, we can’t ignore the annulus removal process here.

3.6 Is pseudoproper homotopy equivalence a map of degree ˙1?

Let f W†0!† be a pseudoproper homotopy equivalence between two noncompact oriented surfaces,
where surfaces are homeomorphic to neither the plane nor the punctured plane. Our aim in this section is to
properly homotope f to obtain a closed disk D�† so that f jf �1.D/!D becomes a homeomorphism,
and thus show deg.f /D˙1; see Theorem 2.6.1. Having got this and then using Lemma 3.6.4.1, it can
be said that f is surjective, which further implies that after a proper homotopy for removing unnecessary
components from the transverse preimage of a decomposition circle C, a single circle will still be left that
can be mapped onto C homeomorphically; see Theorem 3.6.4.4.

The argument for finding such a disk D is based on finding a finite-type bordered surface S in † such
that for each component C of @S , we have f �1.C/¤¿, even after any proper homotopy of f . Once
we get S , after a proper homotopy, we may assume that f jf �1.@S /! @S is a homeomorphism; see
Theorem 3.5.3. Now, since f is �1–injective, by the topological rigidity of the pair of pants together with
the proper rigidity of the punctured disk, after a proper homotopy, one can show that f jf �1.S /! S is
a homeomorphism. Therefore the required D can be any disk in int.S /.

Now, to find such an S , we consider two cases: If † is either an infinite-type surface or any Sg;0;p with
high complexity (to us, high complexity always means gCp�4 or p�6), then using �1–surjectivity of f ,
we can choose S as a pair of pants in † so that † nS has at least two components and every component
of † nS has a nonabelian fundamental group. On the other hand, if † is a finite-type surface, then we
choose a punctured disk in † as S so that the puncture of S is an end e 2 im.Ends.f //� Ends.†/.

We can recall our earlier two examples to show that the plane and the punctured plane are the only
surfaces for which our theory fails: consider the pseudoproper homotopy equivalences ' WC 3 z 7! z2 2C

and  W S1 �R 3 .z; x/ 7! .z; jxj/ 2 S1 �R. The local homeomorphism ' is a map of deg D ˙2 by
[16, Lemma 2.1b] (note that for any local homeomorphism p WX ! Y between two manifolds, where Y
is orientable, an orientation of Y can be pulled back to induce an orientation on X so that p becomes an
orientation-preserving map). On the other hand, deg. /D 0 as  is not surjective; see Lemma 3.6.4.1.

3.6.1 Essential pairs of pants and the degree of a pseudoproper homotopy equivalence

Definition 3.6.1.1 A smoothly embedded pair of pants P in a surface † is said to be an essential pair
of pants of † if † nP has at least two components and every component of † nP has a nonabelian
fundamental group.
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: : :

: : :

P

P

Figure 8: Finding an essential pair of pants P in each of S2;0;1 and the Loch Ness monster by
decomposing a two-holed torus into two copies of the pair of pants.

Finding an essential pair of pants in a noncompact surface will be divided into two cases: when the genus
is at least two and when the space of ends has at least six elements.

Definition 3.6.1 Let P be a smoothly embedded copy of the pair of pants in a two-holed torus S (S
is a copy of S1;2). We say P is obtained from decomposing S into two copies of the pair of pants if
there exists another smoothly embedded copy zP of the pair of pants in S such that P [ zP D S and
P \ zP D @P \@ zP is the union of two smoothly embedded disjoint circles in the interior of S (@P shares
exactly two of its components with @ zP).

The following lemma says that every noncompact surface with a genus of at least two has an essential
pair of pants with some additional properties:

Lemma 3.6.1.2 Let † be a noncompact surface of genus at least two. Then † has an essential pair of
pants P with the following additional properties: † contains a smoothly embedded copy S of S1;2 such
that † n S has precisely two components and each component of † n S has a nonabelian fundamental
group , and P is a smoothly embedded copy of the pair of pants in S obtained by decomposing S into two
copies of the pair of pants.

Proof Consider an inductive construction of †; see Theorem 2.5.1. Since g.†/ � 2, at least two
smoothly embedded copies of S1;2 are used in this inductive construction. By Lemma 3.1.8, without
loss of generality, we may assume that two smoothly embedded copies of S1;2 are used successively just
after the initial disk; see Figure 8. Among these two copies of S1;2, breaking the last one (that copy of
S1;2 which we just used to construct K3 from K2) into two copies of the pair of pants, as illustrated in
Figure 8, we get the required essential pair of pants.

Lemma 3.6.1.3 Let f W†0!† be a �1–surjective map between two noncompact surfaces , where †
has genus at least two. Consider an essential pair of pants P in † given by Lemma 3.6.1.2. Then
f �1.int P/¤¿ and f �1.c/¤¿ for each component c of @P .

Proof Let S be a smoothly embedded copy of S1;2 in † such that P is obtained from decomposing S
into two copies of the pair of pants. If possible, let f �1.int P/¤¿. By continuity of f , the image of f
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is contained in precisely one of the two components of †n int.P/. But each component of †n int.P/ has
a nonabelian fundamental group, ie �1.f / W �1.†0/! �1.†/ is not surjective, a contradiction. Therefore
f �1.int P/ must be nonempty.

To prove the second part, let c1, c2, and c3 denote all three components of P such that both † n c1 and
† n .c2 [ c2/ are disconnected, but neither † n c2 nor † n c3 is disconnected. In Figure 8, c2 and c3
are blue circles, and c1 is black. Notice that we have a smoothly embedded primitive circle C � int.S/
(in Figure 8, each red circle denotes C) so that for each k D 2; 3, ck \ C is a single point, where ck
intersects C transversally. Therefore, for each k D 2; 3, using the bigon criterion [17, Proposition 1.7],
any loop belonging to class ŒC� 2 �1.†/ must intersect ck . That is, if f �1.c2/ or f �1.c3/ were empty,
then ŒC� would not belong to the image of �1.f / W �1.†0/! �1.†/. But f is �1–surjective. Thus
f �1.c2/¤¿¤ f �1.c3/. On the other hand, †n c1 has precisely two components, and each component
of † n c1 has a nonabelian fundamental group, ie by continuity and �1–surjectivity of f , we can say
that f �1.c1/¤¿.

Now we consider the second case of finding an essential pair of pants in a noncompact surface, namely
when the space of ends has at least six elements:

Lemma 3.6.1.4 Let † be a noncompact surface with at least six ends. Then † has an essential pair of
pants P such that † nP has precisely three components and each component of † nP has a nonabelian
fundamental group.

Proof Consider an inductive construction of †; see Theorem 2.5.1. Since jEnds.†/j � 6, at least five
smoothly embedded copies of S0;3 are used in this inductive construction. By Lemma 3.1.8, without loss
of generality, we may assume that five smoothly embedded copies of S0;3 are used successively just after
the initial disk. Let P be the copy that shares all three boundary components with three other copies of
this sequence of five copies of S0;3; see Figure 9. Thus † nP has precisely three components, and each
component of † nP has a nonabelian fundamental group.

In Figure 9, inductive constructions (up to a sufficient number of steps) of two surfaces have been given:
the surface at the top contains a copy of fz 2C W jzj � 1; z …N � 0g, and the bottom is the Cantor tree
surface (the planar surface whose space of ends is homeomorphic to the Cantor set). In each surface, an
essential pair of pants P is contained in the shaded compact bordered subsurface.

We can prove the following lemma by a similar argument as in the proof of Lemma 3.6.1.3:

Lemma 3.6.1.5 Let f W †0 ! † be a �1–surjective proper map between two noncompact surfaces ,
where † has at least six ends. Consider an essential pair of pants P in † given by Lemma 3.6.1.4. Then
f �1.int P/¤¿ and f �1.c/¤¿ for each component c of @P .

The following theorem completes the whole process of finding an essential pair of pants, which will be
used to find the degree of a pseudoproper homotopy equivalence:
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Figure 9: Finding an essential pair of pants P in a noncompact surface with at least six ends.

Theorem 3.6.1.6 Let f W †0! † be a �1–surjective proper map between two noncompact surfaces.
Suppose † is either an infinite-type surface or a finite-type surface Sg;0;p with high complexity (ie
g C p � 4 or p � 6). Then † contains an essential pair of pants P such that f �1.int P/ ¤ ¿ and
f �1.c/¤¿ for each component c of @P .

Proof If an infinite-type surface has a finite genus, then it must have infinitely many ends; see
Proposition 3.1.10. Thus using Lemmas 3.6.1.2, 3.6.1.3, 3.6.1.4, and 3.6.1.5, the proof is complete
in all cases, except when † is homeomorphic to S1;0;3, S1;0;4, or S1;0;5. We consider the case when
†Š S1;0;3; the other cases are similar.

Define an inductive construction of S1;0;3 by starting with a copy of S0;1, consecutively adding two
copies of S0;3, then a copy of S1;2, and finally three sequences of annuli to obtain three planar ends; see
Figure 1. Therefore, in this inductive construction, K4 is obtained from K3, adding a copy S of S1;2. Let
P be a smoothly embedded copy of the pair of pants in S such that P is obtained from decomposing
S into two copies of the pair of pants and P \K3 ¤ ¿. Now, an argument similar to that given in
Lemma 3.6.1.3 completes the proof.
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At this stage, we need a couple of lemmas. The first one, Lemma 3.6.1.7, is well known; its proof has
been given for reader convenience.

Lemma 3.6.1.7 Let † be a surface , and let S be a smoothly embedded bordered subsurface of †. Then
the inclusion-induced map �1.S /! �1.†/ is injective if either of the following is satisfied :

(1) @S is a separating primitive circle on † and S is one of the two sides of @S in †.

(2) S is compact and each component of @S is a primitive circle on †.

Proof (1) Since �1.†/Š �1.S /��1.@S / �1.† n int S / by the Seifert–Van Kampen theorem and the
inclusions @S ,! S ; † n int.S / are �1–injective, we are done.

(2) It is enough to construct a sequence †D S0 � S1 � � � � � Sn D S of subsurfaces of †, where n is
the number of components of @S , such that for each k D 1; : : : ; n, the following hold:

(i) Sk is a bordered subsurface of Sk�1 and the inclusion map Sk ,! Sk�1 is �1–injective.

(ii) @Sk n @Sk�1 is either a component of @Sk or union of two components of @Sk . In either case,
@Sk n @Sk�1 shares only one component with @S .

We construct this sequence inductively as follows: To construct Sk from Sk�1, pick a component c of
@S n@Sk�1. If c separates Sk�1, define Sk as that side of c in Sk�1 which contains S ; then consider an
argument similar to the proof of Lemma 3.6.1.7(1). If c doesn’t separate Sk�1, pick a smoothly embedded
annulus A � int.Sk�1/ such that A \ S D c. Define Sk WD Sk�1 n int.A/. Now, Sk�1 is obtained
from Sk identifying c with @A n c by an orientation-reversing diffeomorphism ' W c! @A n c. By the
HNN–Seifert–Van Kampen theorem, �1.Sk�1/Š �1.Sk/��1.'/, where the map �1.Sk/! �1.Sk�1/

(which is inclusion induced) is injective due to Britton’s lemma.

The following lemma roughly says that the degree of a map between two compact bordered surfaces can
be determined from the degree of its restriction on the boundaries:

Lemma 3.6.1.8 Let ' W Sg1;b1
! Sg2;b2

be a map between two compact bordered surfaces such that
'j@Sg1;b1

,! @Sg2;b2
is an embedding. Then '.@Sg1;b1

/D @Sg2;b2
and deg.'/D˙1.

Proof Notice that ' maps each component of @Sg1;b1
homeomorphically onto a component of @Sg2;b2

,
and any two distinct components of @Sg1;b1

have distinct '–images. Now, naturality of homology long
exact sequences of .Sg1;b1

; @Sg1;b1
/ and .Sg2;b2

; @Sg2;b2
/ give the following commutative diagram:

H2.Sg1;b1
; @Sg1;b1

/Š Z
Lb1 ZŠH1.@Sg1;b1

/

H2.Sg2;b2
; @Sg2;b2

/Š Z
Lb2 ZŠH1.@Sg2;b2

/

�deg.'/

1 7!
Lb1 1

Lb1 1 7!
Lb1 .˙1/˚

Lb2�b1 0

1 7!
Lb2 1

The horizontal maps are the connecting homomorphisms for homology long exact sequences; for their
description see [25, Exercise 31 of Section 3.3]. Commutativity of this diagram gives b2D b1 (the integer
deg.'/ can’t be simultaneously 0 and ˙1), and thus deg.'/D˙1.
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The proof of Theorem 3.6.1.9 can be found in [35, Theorem 4.6.2]. It also follows from the much more
general result [13, Theorem 3.1]. Since compact bordered surfaces are aspherical, an application of the
Whitehead theorem says that the assumption “' W S 0! S is a homotopy equivalence” in Theorem 3.6.1.9
is equivalent to the assumption “�1.'/ is an isomorphism”.

Theorem 3.6.1.9 (rigidity of compact bordered surfaces) Let ' W S 0! S be a homotopy equivalence
between two compact bordered surfaces such that '�1.@S /D @S 0. If 'j@S 0! @S is a homeomorphism ,
then ' is homotopic to a homeomorphism relative to @S 0.

The following lemma gives some sufficient conditions that ensure the preimage of a compact bordered
subsurface under a proper map becomes a compact bordered subsurface of the same homeomorphism
type. Its usage is twofold: firstly, in Theorem 3.6.1.11, to find the degree of a pseudoproper homotopy
equivalence, and secondly in the proof of Theorem 1.

Lemma 3.6.1.10 Let f W †0 ! † be a �1–injective proper map between two noncompact oriented
surfaces , and let S be a smoothly embedded compact bordered subsurface of † with f �1.int S /¤¿.
Suppose f �1.@S / is a pairwise-disjoint collection of smoothly embedded primitive circles on †0 such
that f sends f �1.@S / homeomorphically onto @S . Then f �1.S / is a copy of S in †0 with @f �1.S /D
f �1.@S /, and deg.f /D˙1.

Proof Since f �1.int S / ¤ ¿ and f is proper, the continuity of f j†0 n f �1.@S /! † n @S tells us
that †0 nf �1.@S / is disconnected. Let S 0 �†0 be a bordered subsurface obtained as a complementary
component of the decomposition of †0 by f �1.@S / such that f .S 0/ � S . That is, S 0 is the closure
of one of the components of †0 n f �1.@S / and S 0 is contained in the compact set f �1.S /. So S 0

is a compact bordered subsurface of †0, and each component of @S 0 is a component of f �1.@S /. In
the following few lines, we will show that each component of f �1.@S / is also a component of @S 0.
Since f jf �1.@S /! @S is a homeomorphism, we can say that f j@S 0 ,! @S is an embedding. Now,
by Lemma 3.6.1.8, @S 0 D f �1.@S / and deg.f jS 0! S /D˙1. Next, by Theorem 2.6.3, f jS 0! S

is �1–surjective. Since the inclusion S 0 ,! †0 and f are �1–injective, f jS 0 ! S is also so; see
Lemma 3.6.1.7(2). Thus f jS 0! S is �1–bijective, and so Theorem 3.6.1.9 tells that S 0 Š S . Finally,
if S 00 is another bordered subsurface obtained as a complementary component of decomposition of †0

by f �1.@S / with f .S 00/� S , then similarly, S 00 Š S . Since f jf �1.@S /! @S is a homeomorphism
and †0 is connected, S 00 D S 0 (otherwise †0 would be the compact surface S 0[@S 0D@S 00 S

00). Therefore
f �1.S /D S 0 Š S , and thus the proof of the first part is completed.

Now we will prove that deg.f /D˙1. Since deg.f / remains invariant after any proper homotopy of f ,
we can properly homotope f as we want. So apply Theorem 3.6.1.9 to f jS 0! S . Thus f W†0!† can
be properly homotoped relative to †0 n int.S 0/ to map S 0 D f �1.S / homeomorphically onto S . Then
by Theorem 2.6.1, deg.f /D˙1.
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We are now ready to prove that a pseudoproper homotopy equivalence is a map of degree ˙1 if the
codomain contains an essential pair of pants.

Theorem 3.6.1.11 Let f W†0!† be a pseudoproper homotopy equivalence between two noncompact
oriented surfaces , where † is either an infinite-type surface or a finite-type noncompact surface Sg;0;p
with high complexity (to us , high complexity means gCp � 4 or p � 6). Then deg.f /D˙1.

Proof Since deg.f / remains invariant after any proper homotopy of f , we can properly homotope f
as we want. Theorem 3.6.1.6 gives an essential pair of pants P in † such that f �1.int.P//¤ ¿ and
f �1.c/¤¿ for each component c of @P , even after any proper homotopy of f . Using Theorem 3.2.1
and then Theorem 3.5.3, after a proper homotopy, we may assume that f �1.int P/¤¿ and f �1.@P/ is
a pairwise-disjoint collection of three smoothly embedded circles on † such that f jf �1.@P/! @P is a
homeomorphism.

Now, if possible, let c0 be a component of f �1.@P/ such that there is an embedding i 0 WD2 ,!†0 with
c0 D i 0.S1/. Then the embedding f ı i 0jS1 ,!† is nullhomotopic and c WD f ı i 0.S1/ is a component
of @P . But P is an essential pair of pants in †, and so each component of @P is a primitive circle
on †. Theorem 2.2.2 tells us we have reached a contradiction. Hence each component of f �1.@P/ is a
primitive circle on †0. Finally, applying Lemma 3.6.1.10, we complete the proof.

3.6.2 An essential punctured disk of a proper map and the degree of a pseudoproper homotopy
equivalence We first build up notation for Section 3.6.2. Let † be a noncompact surface. Since Ends.†/
is independent of the choice of efficient exhaustion of † by compacta, we will use Goldman’s inductive
construction to define Ends.†/; see Section 2.3. So consider an inductive construction of †. For each
i � 1, define Ki to be the compact bordered subsurface of † after the i th step of the induction. Then
fKig

1
iD1 is an efficient exhaustion of † by compacta. Also, notice that int.K1/ � int.K2/ � � � � is an

increasing sequence of open subsets of † such that
S1
iD1 int.Ki /D†, and thus every compact subset of

† is contained in some int.Ki /.

Suppose †0 is another noncompact surface and f W†0!† is a proper map. Let .V1; V2; : : : / be an end
of †, ie Vi is a component of † nKi and V1 � V2 � � � � . With this setup, we are now ready to state a
lemma that is more or less related to Proposition 2.3.1:

Theorem 3.6.2.1 Assume that f �1.Vi / ¤ ¿ for each i � 1. Then for every proper map g W †0! †

which is properly homotopic to f , we have g�1.Vi /¤¿ for each i � 1.

Proof Let g W†0!† be a proper map and let H W†0 � Œ0; 1�!† be a proper homotopy from f to g.
Notice that Vi !1: if X is a compact subset of †, then X � int.Ki0/ for some positive integer i0, ie
X \ Vi D ¿ for all i � i0. Therefore f �1.Vi /!1: if X 0 is a compact subset of †0, then f .X 0/ is
compact, so f .X 0/\Vi D¿ for all but finitely many i , ie X 0\f �1.Vi /D¿ for all but finitely many i .
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Let n be any positive integer. Consider the compact subset p.H�1.Kn// of †0, where p W†0� Œ0; 1�!†0

is the projection. Since f �1.Vi /!1, we have an integer in>n such that f �1.Vin/�†
0np.H�1.Kn//.

Now consider any xin 2f
�1.Vin/. Then H.xin�Œ0; 1�/�†nKn, that is, the connected set H.xin�Œ0; 1�/

is contained in one of the components of † n Kn. But H.xin ; 0/ D f .xin/ 2 Vin � Vn, meaning
H.xin � Œ0; 1�/� Vn. In particular, this means g.xin/DH.xin ; 1/ 2 Vn. Since n is an arbitrary positive
integer, we are done.

Definition 3.6.2.2 Let e D .V1; V2; : : : / be an end of † such that for some nonnegative integer ie,
V i Š S0;1;1 for all i � ie (e is an isolated planar end of †). If f �1.Vi /¤¿ for all i � 1, then for each
integer i � ie, we say V i is an essential punctured disk of f .

Theorem 3.6.2.1 says that the notion of an essential punctured disk is invariant under proper homotopy.
In Theorem 3.6.2.6, we show that, after a proper homotopy, the preimage of the boundary of an essential
punctured disk under a pseudoproper homotopy equivalence bounds a planar end of the domain. Before
proving this, we need the following lemma, which gives some sufficient conditions so that the preimage
of a punctured disk in the codomain under a proper map becomes a punctured disk in the domain.

Lemma 3.6.2.3 Let f W†0!† be a �1–injective proper map between two noncompact oriented surfaces ,
and let C be a smoothly embedded separating circle on † such that one of the two sides of C in † is a
punctured disk D�. Also , let †0 be homeomorphic to neither S1 �R nor R2. If f �1.C/ is a smoothly
embedded primitive circle on †0 such that f jf �1.C/! C is a homeomorphism and f �1.intD�/¤¿,
then f �1.D�/ is a copy of the punctured disk in †0 with @f �1.D�/D f �1.C/ and deg.f /D˙1.

Proof Notice that †0©R2;S1�R, ie �1.†0/ is nonabelian by Theorem 3.1.9. Since f �1.intD�/¤¿
and �1.f /.�1.†0// is nonabelian, by continuity of f j†0 nf �1.C/!†nC we can say that †0 nf �1.C/
is disconnected. Let S 0 be a side of f �1.C/ in †0 for which f .S 0/� D�. Since f is �1–injective, by
Lemma 3.6.1.7.1/, f jS 0! D� is also so. Thus �1.S 0/ is a subgroup of Z. Now, int.S 0/ is homotopy
equivalent to S 0 and bounded by the primitive circle f �1.C/ on †0; so, using Theorem 3.1.9, S 0Š S0;1;1.
Next, if S 00 is another side of f �1.C/ in †0 for which f .S 00/ � D�, then similarly, S 00 Š S0;1;1.
Since f jf �1.C/! C is a homeomorphism and †0 is connected, S 00 D S 0; otherwise, †0 would be
S 0[f �1.C/S

00ŠS1�R. Therefore f �1.D�/DS 0ŠD�, and thus the proof of the first part is completed.

Since deg.f / remains invariant after any proper homotopy of f , we can properly homotope f as we
want. So apply Theorem 3.6.2.4 to f jS 0!D�. Thus f W†0!† can be properly homotoped relative to
†0nint.S 0/ to map S 0Df �1.D�/ homeomorphically onto D�. Now, by Theorem 2.6.1, deg.f /D˙1.

We prove a well-known theorem used in the previous lemma:

Theorem 3.6.2.4 (proper rigidity of the punctured disk) Let D� be a punctured disk and let ' WD�!D�

be a proper map such that '�1.@D�/D@D� and 'j@D�!@D� is a homeomorphism. Then ' is properly
homotopic to a homeomorphism D�!D� relative to the boundary @D�.
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Proof Without loss of generality we may assume D�Dfz2C W0< jzj�1g. Define H WD��Œ0;1�!D� by

H.z; t/ WD
�
.1� t /'.z=.1� t // if 0 < jzj � 1� t;
jzj'.z=jzj/ if 1� t < jzj � 1:

Notice that ' 'H.�; 1/ relative to @D�, and H.�; 1/ WD�!D� is a homeomorphism.

Now we prove H is a proper map, so let f.zn; tn/g be a sequence in D�� Œ0; 1� with zn! 0. We need to
show that H.zn; tn/! 0. Define A WD fn 2N W 1� tn < jznjg and B WD fn 2N W jznj � 1� tng. Then
N D A [B. Therefore it is enough to show fH.zn; tn/ W n 2 A g ! 0 (resp. fH.zn; tn/ W n 2Bg ! 0)
whenever A (resp. B) is infinite.

If A is infinite, then fH.zn; tn/ W n 2A g! 0, since jH.zn; tn/j D jznj � j'.zn=jznj/j � jznj for all n 2A .

Next, assume B is infinite. We will prove that fH.zn; tn/ W n 2 Bg ! 0, so consider any " > 0. We
need to show jH.zn; tn/j< " for all but finitely many n 2B. Let B0" WD fn 2B W 1� tn < "g. Therefore
jH.zn; tn/j D .1� tn/j'.zn=.1� tn//j � .1� tn/ < " for all n 2 B0". Also, if B nB0" is infinite, then
fzn=.1� tn/ W n 2B nB0"g ! 0, which implies f'.zn=.1� tn// W n 2B nB0"g ! 0 (as ' is proper), and
thus jH.zn; tn/j � j'.zn=.1� tn//j < " for all but finitely many n 2 B nB0". The previous two lines
together imply that jH.zn; tn/j< " for all but finitely many n 2B.

Remark 3.6.2.5 Theorem 3.6.2.4 is obtained from a straightforward modification of the Alexander trick
[17, Lemma 2.1].

Theorem 3.6.2.6 Let f W†0!† be a pseudoproper homotopy equivalence between two noncompact
oriented surfaces. Suppose �1.†/ is a finitely generated nonabelian group (equivalently †Š Sg;0;p for
some .g; p/¤ .0; 1/; .0; 2/). Then deg.f /D˙1.

Proof Since deg.f / remains invariant after any proper homotopy of f , we can properly homotope f as
we want. The fact that † is a finite-type noncompact surface implies each end of † is an isolated planar
end, that is, for every e D .V1; V2; : : : / 2 Ends.†/, we have an integer ie such that V i is homeomorphic
to the punctured disk for each i � ie . Next, since f is proper there exists E D .W1;W2; : : : / 2 Ends.†/
such that f �1.Wi /¤¿ for each i � 1. Notice that W iE is an essential punctured disk and CiE WD @W iE

is a smoothly embedded separating circle on †. Also, CiE is a primitive circle on † as CiE bounds the
punctured disk W iE on †©R2.

We aim to use Lemma 3.6.2.3, but some observations are needed before that. Let g W†0!† be a proper
map such that g is properly homotopic to f (note that f is properly homotopic to itself, ie g can be f ).
If possible, assume g�1.CiE /D ¿. Then continuity of g implies g.†0/ is contained in one of the two
components of †nCiE . By Theorem 3.6.2.1, g.†0/ must be contained in WiE . But then �1.f /D�1.g/ is
nonsurjective as �1.†nWiE /D�1.†/ is nonabelian. Therefore g�1.CiE /¤¿. Also, by Theorem 3.6.2.1,
g�1.Wi /¤¿ for each i � 1, and thus g�1.WiE /¤¿.
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We are ready to apply Lemma 3.6.2.3 after the observation given in the previous paragraph. At first, notice
that †0 is homeomorphic to neither the plane nor the punctured plane as �1.†0/D �1.†/ is nonabelian.
After a proper homotopy of f , we may assume that f S& CiE ; see Theorem 3.2.1. By the previous
paragraph, f �1.CiE / is a pairwise-disjoint nonempty collection of finitely many smoothly embedded
circles on †0. By Theorem 3.5.3 and the previous paragraph, after a proper homotopy of f , we may
further assume that C0iE WD f

�1.CiE / is a (single) smoothly embedded circle on †0 and f jC0iE ! CiE is a
homeomorphism. The previous paragraph also tells that after all these proper homotopies, f �1.WiE /

remains nonempty.

We show that C0iE is a primitive circle on †0. On the contrary, let there be an embedding i 0 W D2 ,! †0

with C0iE D i
0.S1/. Then the embedding f ı i 0jS1 ,!† is nullhomotopic and CiE D f ı i 0.S1/. But CiE is

a primitive circle on †. Now, Theorem 2.2.2 tells us we have reached a contradiction. Finally, applying
Lemma 3.6.2.3, we can say that deg.f /D˙1.

3.6.3 Most pseudoproper homotopy equivalences between noncompact surfaces are of degree ˙1

Theorem 3.6.3.1 Let f W†0!† be a pseudoproper homotopy equivalence between two noncompact
oriented surfaces. If †© S1 �R;R2 (equivalently †0 © S1 �R;R2), then deg.f /D˙1.

Proof Combining Theorems 3.6.1.11 and 3.6.2.6, we complete the proof.

The following proposition, which we don’t need to use anywhere, says that if either of the integers 1
or �1 appears as the degree of a pseudoproper homotopy equivalence between two noncompact oriented
surfaces, then the other also appears.

Proposition 3.6.3.2 Let f W†0!† be a pseudoproper homotopy equivalence between two noncompact
oriented surfaces. Then there exists another pseudoproper homotopy equivalence Nf W†0!† such that
deg. Nf /D� deg.f /.

Proof Write † as the double of a bordered surface S ; see Theorem 2.4.2. Define a homeomorphism
' W †! † by sending Œp; t � 2 † to Œp; 1� t � 2 † for all .p; t/ 2 S � f0; 1g. Then ' is an orientation-
reversing homeomorphism. Therefore the degree of Nf WD ' ıf is �deg.f / as the degree is multiplicative;
see Section 2.6.

3.6.4 An application of the nonvanishing degree of a pseudoproper homotopy equivalence Consider
a nonsurjective map ' WM ! N between two closed oriented connected n–manifolds. Then for any
p 2N n im.'/, the map Hn.'/ factors through the inclusion-induced zero map Hn.N /Š Z! 0Š

Hn.N np/ (recall that the top integral singular cohomology of any connected noncompact boundaryless
manifold is zero), ie deg.'/D 0. The lemma below generalizes this phenomenon in the proper category:

Lemma 3.6.4.1 Let ˆ WM !N be a proper map between two connected oriented boundaryless smooth
k–dimensional manifolds. If deg.ˆ/¤ 0, then ˆ is surjective.
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Proof Being a proper map between two manifolds, ˆ is a closed map; see [30]. Now, if possible, letˆ be
nonsurjective. Therefore N nˆ.M/ is a nonempty open subset of N . Pick a point y 2N nˆ.M/. Since
N is locally Euclidean, there is a smoothly embedded closed ball B �N such that B �N nˆ.M/. Notice
that N n int.B/ is a smoothly embedded codimension-zero submanifold of N with @.N n int.B//D @B .
By Poincaré duality (see [25, Exercise 35 of Section 3.3]), Hk

c .N n int.B/IZ/ŠH0.N n int.B/; @BIZ/.
Also, H0.N n int.B/; @BIZ/D 0 as N is path connected; see [25, Exercise 16(a) of Section 2.1]. Now,
ˆ WM !N can be thought as the composition M ˆ�

��!N n int.B/ i,!N , where i is the inclusion map
and ˆ�.m/ WDˆ.m/ for all m 2M . Certainly, ˆ� and i are both proper maps. Therefore Hk

c .ˆ/ is the
composition

Hk
c .N IZ/

Hk
c .i/
����!Hk

c .N n int.B/IZ/D 0
Hk

c .ˆ
�/

�����!Hk
c .M IZ/;

ie Hk
c .ˆ/D 0, which contradicts deg.ˆ/¤ 0. Thus ˆ must be a surjective map.

The above lemma, together with Theorem 3.6.3.1, gives the following corollary:

Corollary 3.6.4.2 A pseudoproper homotopy equivalence between two noncompact surfaces is a surjec-
tive map , provided the surfaces are homeomorphic to neither the plane nor the punctured plane.

The following lemma tells that one way to achieve the surjectivity throughout a proper homotopy is to
assume that the initial map of this proper homotopy is a map of nonzero degree. Note that any proper map
f WX ! Y is properly homotopic to itself due to the proper homotopy X � Œ0; 1� 3 .x; t/ 7! f .x/ 2 Y .

Lemma 3.6.4.3 Let ˆ WM ! N be a proper map of nonzero degree between two connected oriented
boundaryless smooth k–dimensional manifolds , and let ‰ WM ! N be a proper map such that ‰ is
properly homotopic to ˆ. Then ‰ is a surjective map.

Proof Since ‰ is properly homotopic to ˆ, deg.‰/D deg.ˆ/¤ 0; see Section 2.6. Now, to conclude,
consider Lemma 3.6.4.1.

Here is the main application of the nonvanishing degree of a pseudoproper homotopy equivalence:

Theorem 3.6.4.4 Let f W †0 ! † be a smooth pseudoproper homotopy equivalence between two
noncompact surfaces , where S1 �R©†©R2, and let A be a preferred LFCS on † such that f S& A .
Suppose any two distinct components of A don’t cobound an annulus in †. In that case , f can be
properly homotoped to a proper map g such that for each component C of A , g�1.C/ is a component of
f �1.A / that is mapped homeomorphically onto C by g.

Proof Theorem 3.5.3 gives a proper map g W†0!† such that g is properly homotopic to f , and for
each component C of A , if g�1.C/¤¿, then g�1.C/ is a component of f �1.A / such that gjg�1.C/! C
is a homeomorphism. But deg.f /D˙1 by Theorem 3.6.3.1. Thus the map g is surjective since it is
properly homotopic to the nonzero degree map f ; see Lemma 3.6.4.3. So, for each component C of A ,
g�1.C/ is a component of f �1.A / such that gjg�1.C/! C is a homeomorphism.
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Remark 3.6.4.5 For closed surfaces, the analog of Theorem 3.6.4.4 can be stated far before, in the
“annulus removal” section, as every homotopy equivalence between two closed manifolds has a homotopy
inverse, so is a map of degree ˙1, and hence is surjective. But, before Section 3.6, we didn’t know the
degree of a pseudoproper homotopy equivalence; even at this stage, we don’t know whether a pseudoproper
homotopy equivalence has a proper homotopy inverse or not.

4 Finishing the proofs of Theorems 1, 2 and 3

Proof of Theorem 1 Consider an LFCS C on † provided by Theorem 3.1.5. Using Theorem 3.2.1,
assume f is smooth as well as f S& C . Thus f �1.C / is a nonempty LFCS on †0; see Corollary 3.6.4.2
and Theorem 3.2.3. By Theorem 3.6.4.4, f can be properly homotoped to a proper map g such that for
each component C of C , g�1.C/ is a component of f �1.C / that is mapped homeomorphically onto C
by g. Thus g�1.C / decomposes†0 into bordered subsurfaces and each component of†nC has nonempty
preimage; see Corollary 3.6.4.2. Let S � † be a bordered subsurface obtained as a complementary
component of the decomposition of † by C . Now, S Š g�1.S / by Lemmas 3.6.1.10 (see its proof
also) and 3.6.2.3. Since g sends int.g�1.S // onto int.S / and @g�1.S / homeomorphically onto @S , we
can properly homotope gjg�1.S /! S relative to @g�1.S / to a homeomorphism g�1.S /! S ; see
Theorems 3.6.1.9 and 3.6.2.4. Finally, vary S over different complementary components of† decomposed
by C to collect these boundary-relative proper homotopies and then paste them to get a proper homotopy
from g to a homeomorphism †0!†. Since g is properly homotopic to f , we are done.

The proof of Theorem 1 shows that we are using the nonzero degree assumption of the pseudoproper
homotopy equivalence (which is given by Theorem 3.6.3.1) to ensure surjectivity after each proper
homotopy. Thus, by a similar argument, we can prove Theorem 4.1.

Theorem 4.1 Let f W †0 ! † be a pseudoproper homotopy equivalence between two noncompact
oriented surfaces. Suppose † is not homeomorphic to R2 and deg.f /¤ 0. Then †0 is homeomorphic to
† and f is properly homotopic to a homeomorphism.

Theorem 4.2 Let f W R2 ! R2 be a proper map of degree ˙1. Then f is properly homotopic to a
homeomorphism R2!R2.

Proof By Theorem 2.6.2, f can be properly homotoped to get smoothly embedded closed disks
D;D0�R2 such that D0D f �1.D/ and f jD0!D is a homeomorphism. Using the Jordan–Schönflies
theorem, f jR2 nD0 ! R2 nD resembles a map between two punctured disks, on which we apply
Theorem 3.6.2.4.

Proof of Theorem 3 Since deg.f /D˙1, by Theorem 2.6.3, �1.f / is surjective. Thus �1.f / is bijective.
Both †0 and † are homotopy equivalent to

W
I S1 for some index set I with jI j � @0, ie �k.†0/D 0D

�k.†/ for all k � 2. So, by the Whitehead theorem, f is a homotopy equivalence (note that each surface

Algebraic & Geometric Topology, Volume 24 (2024)



4462 Sumanta Das

has a CW–complex structure due to its C1–smooth structure). Now, a simply connected noncompact
surface is homeomorphic to R2; see Theorem 3.1.9. So, combining Theorems 4.1 and 4.2, we are done.

Proof of Theorem 2 A proper homotopy equivalence is a �1–injective map of degree ˙1. Now apply
Theorem 3.

The following proposition is an application of Theorem 1:

Proposition 4.3 Let † be a noncompact surface such that S1 �R©†© R2. Suppose f; g W†!†

are two pseudoproper homotopy equivalences. If f is homotopic to g, then f is properly homotopic to g.

Proof By applying Theorem 1 up to proper homotopy, we may assume both f and g are homeomorphisms
without loss of generality. Since S1�R©†©R2 and f �1g is homotopic to Id†, by [15, Theorem 6.4],
there exists a level-preserving homeomorphism H W†� Œ0; 1�!†� Œ0; 1� which agrees with f �1g on
†� 0 and with Id† on †� 1. The fact that the projection †� Œ0; 1�! † is proper implies f �1g is
properly homotopic to Id†, so we are done.

Appendix

A.1 Approximation and transversality in the proper category

Throughout Section A.1, M and N will denote two smooth boundaryless manifolds, possibly noncompact.
Let F WN !M be a smooth map, and let X be a smoothly embedded boundaryless submanifold of M .
We say F is transverse toX , and write F S&X , if for every p 2F�1.X/ we have TF.p/XCdFp.TpN/D
TF.p/M . If F is transverse toX and F.N/\X ¤∅, then F�1.X/ is a smoothly embedded boundaryless
submanifold of N such that dim.N /� dim.F�1.X//D dim.M/� dim.X/; see [28, Theorem 6.30(a)].

The Whitney approximation theorem [28, Theorem 6.26] says that any continuous map N ! M is
homotopic to a smooth map. The transversality homotopy theorem [28, Theorem 6.36] says that for
any smooth map F WN !M and for any smoothly embedded boundaryless submanifold X of M , the
smooth map F can be homotoped to another smooth map zF WN !M such that zF S&X . We modify these
two theorems in the proper category. Our interest is in the properness of homotopies; the extra stuff not
related to properness is in [28, Theorems 6.26 and 6.36].

Theorem A.1.1 (proper Whitney approximation theorem) Let f WN !M be a continuous proper map.
Then f is properly homotopic to a smooth proper map.

Theorem A.1.2 (proper transversality homotopy theorem) Let f WN !M be a smooth proper map ,
and let X be a smoothly embedded boundaryless submanifold of M . Then f is properly homotopic to a
smooth proper map g WN !M which is transverse to X .
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We start by summarizing key facts in and around the tubular neighborhood theorem. Let M ,!Rl be a
smooth proper embedding; see [28, Theorems 6.15]. For each x 2M , define the normal space NxM
to M at x as NxM WD fv 2 Rl W v ? TxM g. Then NM WD f.x; v/ 2 Rl �Rl W x 2M; v ? TxM g is a
smoothly embedded l–dimensional submanifold of Rl �Rl and � W NM 3 .x; v/ 7! x 2M is vector
bundle of rank l � dim.M/, called the normal bundle of M in Rl ; see [28, Corollary 10.36].

Consider the smooth map E W NM 3 .x; v/ 7! xC v 2 Rl . One can show that dE.x;0/ is bijective for
each x 2M . Thus, for each x 2M , we have ı > 0 such that E maps

Vı.x/ WD f.x
0; v0/ 2NM W jx� x0j< ı; jv0j< ıg

diffeomorphically onto an open neighborhood of x in Rl . Now, the map � WM ! .0; 1� defined by

�.x/ WD supfı � 1 WE maps Vı.x/ diffeomorphically onto an open neighborhood of x in Rlg

is continuous. Further, V WD
˚
.x; v/ 2 NM W jvj < 1

2
�.x/

	
is an open subset of NM and E maps V

diffeomorphically onto an open subset U of Rl with M � U , ie U is a tubular neighborhood of M
in Rl ; see [28, Theorem 6.24]. Note that the map r W U ! M defined by r WD � ı .EjV ! U/�1

is a retraction and submersion; see [28, Proposition 6.25]. Denote fy 2 Rl W jy � xj < "g by B".x/.
By an argument similar to showing the continuity of �, one can prove that ı WM ! .0; 1�, defined by
ı.x/ WD supf"� 1 W B".x/� U g for any x 2M , is also continuous.

With this setup, we are now ready to state a crucial lemma, which in particular says that if two points
are at most unit distance apart, then the distance between their images under the tubular neighborhood
retraction can be at most 2.

Lemma A.1.3 Let " > 0. If y; y0 2 U with jy �y0j< ", then jr.y/� r.y0/j � "C 1.

Proof Notice jr.y/� r.y0/j � jy �y0j � jy � r.y/jC jy0� r.y0/j � 1
2
� ı r.y/C 1

2
� ı r.y0/.

Consider another smooth proper embedding N ,! Rk for the proof of the following three facts. The
following lemma says that a homotopy lying in a �–neighborhood (where � is a fixed positive number)
of a proper map is a proper homotopy:

Lemma A.1.4 Let h WN !M be a continuous proper map , and let H WN � Œ0; 1�!M be a homotopy.
If there exists a constant � such that jH.p; t/� h.p/j � � for each .p; t/ 2N � Œ0; 1�, then H is proper.

Proof Note that the embeddings M ,! Rl and N ,! Rk are closed maps as they are proper maps;
see [30]. Consider the induced metric dM on M inherited from Rl , ie dM .m;m0/ D jm�m0j for all
m;m0 2 M . Also, we have the induced metric dN�Œ0;1� on N � Œ0; 1� inherited from Rk � Œ0; 1�, ie
dN�Œ0;1�..n; t/; .n

0; t 0//D jn�n0jC jt � t 0j for all .n; t/; .n0; t 0/ 2N � Œ0; 1�. Thus a subset of N � Œ0; 1�
(resp. M ) is compact if and only if it is closed and bounded in N � Œ0; 1� (resp. M ).
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Let C be a compact subset of M . Continuity of H implies H�1.C / is closed in N � Œ0; 1�. Also, if there
were an unbounded sequence f.ni ; ti /g �H�1.C /, then fnig, and hence fh.ni /g, would be unbounded
(as h is proper); thus the unbounded set fh.ni /g would be inside the �–neighborhood of the bounded
set C , a contradiction. Therefore H�1.C / is closed and bounded in N � Œ0; 1�, and hence H�1.C / is
compact. Since C is an arbitrary compact subset of M , we are done.

Now we are ready to prove the analogs of the Whitney approximation theorem and transversality homotopy
theorem in the proper category:

Proof of Theorem A.1.1 The Whitney approximation theorem gives a smooth function Qf WN !Rl such
that j Qf .y/�f .y/j< ı.f .y// for each y 2N ; see [28, Theorem 6.21]. Now define H WN � Œ0; 1�!M

as H.p; t/ WD r..1� t /f .p/C t Qf .p// for all .p; t/ 2N � Œ0; 1�. If .p; t/ 2N � Œ0; 1�, then

j.1� t /f .p/C t Qf .p/�f .p/j � t j Qf .p/�f .p/j � 1:

Therefore, for all .p; t/ 2 N � Œ0; 1�, we have that jH.p; t/ � f .p/j D jH.p; t/ � r ı f .p/j � 2 by
Lemma A.1.3. Now Lemma A.1.4 tells us that H is proper. Therefore H.�; 1/D r ı Qf is a smooth proper
map that is properly homotopic to f (recall that r is a smooth retraction).

Proof of Theorem A.1.2 The Whitney approximation theorem gives a smooth function e WN ! .0;1/

with 0 < e < ı ı f ; see [28, Corollary 6.22]. Let Bl WD fs 2 Rl W jsj < 1g. Define F W N �Bl !M as
F.p; s/ WD r.f .p/C e.p/s/ for any .p; s/ 2 N �Bl . If p 2 N , the restriction of F to fpg �Bl is the
composition of the local diffeomorphism s 7! f .p/C e.p/s with the smooth submersion r , so F is a
smooth submersion and hence transverse to X .

By the parametric transversality theorem [28, Theorem 6.35], F.�; s0/ is transverse to X for some
s0 2 Bl . Now define H WN � Œ0; 1�!M as H.p; t/ WD r.f .p/C te.p/s0/ for all .p; t/ 2N � Œ0; 1�. If
.p; t/ 2N � Œ0; 1�, then

j.f .p/C te.p/s0/�f .p/j � te.p/js0j< ı.f .p//� 1:

Therefore jH.p; t/ � f .p/j D jH.p; t/ � r ı f .p/j � 2 for all .p; t/ 2 N � Œ0; 1� by Lemma A.1.3.
Lemma A.1.4 tells that H is proper. Define g WD H.�; 1/, ie g D r.f .�/C e.�/s0/ D F.�; s0/ is
properly homotopic to f (recall that r is a smooth retraction) as well as transverse to X .

A.2 Transversality of a proper map between two surfaces with respect to a circle

Here is some notation that will be used throughout Section A.2. Let f W†0!† be a smooth proper map
between two surfaces, and let C be a smoothly embedded circle on† such that f is transverse to C. Also, let
' W C� Œ�1; 1� ,!† be a smooth embedding with '.C; 0/D C, that is, im.'/ is a two-sided (trivial) tubular
neighborhood of C. We call each of '.C � Œ�1; 0�/ and '.C � Œ0; 1�/ a one-sided tubular neighborhood
of C (in short, a side of C). By scaling, we may replace Œ�1; 0� and Œ0; 1� with other closed intervals.

The following theorem says that f is transverse to all circles which are parallel to and sufficiently near C.
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Theorem A.2.1 There exists "0 2 .0; 1/ such that f is transverse to C" WD '.C; "/ for each " 2 Œ�"0; "0�.
Thus for any " 2 Œ�"0; "0�, f �1.C"/ is either empty or a pairwise-disjoint collection of finitely many
smoothly embedded circles on †0.

First we need a lemma:

Lemma A.2.2 Let g WR2!R2 be a smooth map and xn!x in R2 with rn WD jg.xn/j!1. Write Sr WD
fz 2R2 W jzj D rg and assume im.dgxn

/D Tg.xn/.Srn
/ for all n. If dgx ¤ 0, then im.dgx/D Tg.x/.S1/.

Proof The derivative map dg WR2! L.R2;R2/ is continuous so dgxn
! dgx , and this convergence

can be thought as convergence of .2�2/–matrices. In particular, if i ; j 2R2 are two perpendicular unit
vectors, then dgxn

.i /! dgx.i / and dgxn
.j /! dgx.j /.

Recall that the tangent space at any point of a circle is the vector space of all points perpendicular to
this point. So hdgxn

.i /; g.xn/i D 0D hdgxn
.j /; g.xn/i by hypothesis, and now hdgx.i /; g.x/i D 0D

hdgx.j /; g.x/i by the convergence of the inner product. Hence im.dgx/� Tg.x/.S1/. Since dgx ¤ 0
and dimTg.x/.S1/D 1, we are done.

Proof of Theorem A.2.1 Suppose not. So, a sequence "n! 0 and points xn 2 f �1.C"n
/ exist such that

im.dfxn
/C Tf .xn/C"n

¤ Tf .xn/† for all n. Hence im.dfxn
/ � Tf .xn/C"n

as Tf .xn/C"n
˚Nf .xn/C"n

D

Tf .xn/† for all n. Now, fxng is contained in the compact set f �1.im.'// (recall that f is a proper map),
ie passing to subsequence, if needed, assume xn! x 2 f �1.C/.

The continuity of the derivative map says dfxn
! dfx . After discarding the first few terms, we may

assume dfxn
¤ 0 for all n (otherwise dfx D 0, which would mean Tf .x/CC im.dfx/D Tf .x/C wouldn’t

be equal to Tf .x/† and so f wouldn’t be transverse to C). So im.dfxn
/DTf .xn/.C"n

/ for all n (a nonzero
vector subspace of a 1–dimensional vector space is equal to the whole space).

Now, restricting f to a coordinate ball containing x and then postcomposing with '�1, we can consider
Lemma A.2.2, which gives im.dfx/D Tf .x/.C/, a contradiction to the assumption f S& C.

The previous theorem guarantees transversality near C. In the rest of Section A.2, we aim to prove that
every small one-sided tubular neighborhood of a component of f �1.C/ maps into a small one-sided
tubular neighborhood of C.

We first fix some notation. Let C0 be a component of f �1.C/. Also, consider an "0 2 .0; 1/ such that
f S& C" for every " 2 Œ�"0; "0�; see Theorem A.2.1.

Theorem A.2.3 Let " 2 .0; "0�, and let T 0 be a two-sided compact tubular neighborhood of C0 in †0.
Then there exist two one-sided compact tubular neighborhoods U 0

l
and U 0r of C0 in †0 such that U 0

l
[U 0r is

a two-sided tubular neighborhood of C0 with U 0
l
[U 0r � T 0, and for each s 2 fl; rg the following hold :

f �1.C/\U 0s D C0, and either f .U 0s/� '.C � Œ0; "�/ or f .U 0s/� '.C � Œ�"; 0�/.
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Proof By Theorem A.2.1, f �1.C�"/[ f �1.C/[ f �1.C"/ is a pairwise-disjoint collection of finitely
many smoothly embedded circles on †0. Now, consider two one-sided compact tubular neighborhoods U 0

l

and U 0r of C0 in †0 such that U 0
l
[U 0r is a two-sided tubular neighborhood of C0 with U 0

l
[U 0r � T 0, and for

each s 2 fl; rg the following hold: f �1.C/\U 0s D C0, and U 0s \f �1.C"/D¿D U 0s \f �1.C�"/.

Now fix s 2 fl; rg. Since U 0s n C0 is connected and f is continuous, f .U 0s n C0/ is contained in one
of the components of † n .C�" [ C [ C"/. But f .C0/ � C implies either f .U 0s/ � '.C � Œ0; "�/ or
f .U 0s/� '.C � Œ�"; 0�/.

Remark A.2.4 In Theorem A.2.3, it is possible that f .U 0
l
[U 0r/ is contained in either '.C � Œ0; "�/ or

'.C � Œ�"; 0�/, ie f may map both sides of C0 into one of the two sides of C.

Consider the one-sided compact tubular neighborhoods U 0
l

and U 0r of C0 in †0 given by Theorem A.2.3.
Notice that for some s 2 fl; rg, it is possible that f ..@U 0s/ n C0/ª '.C � t / for any t 2 Œ�"; "�. A remedy
for this is given in the following theorem:

Theorem A.2.5 Let " 2 .0; "0�, and let U 0 be a one-sided compact tubular neighborhood of C0 such that
f �1.C/\U 0 D C0 and f .U 0/� '.C � Œ0; "�/. Then there is a ı 2 .0; "/ and a component C0

ı
of f �1.Cı/

such that the following hold :

(1) C0
ı

together with C0 cobound an annulus A0 � U 0 such that any other component of f �1.Cı/ in
int.A0/, if any, bounds a disk inside A0.

(2) The map f sends A0 into '.C � Œ0; "�/. Also , after removing the interiors of all disks bounded by
components of f �1.Cı/ from A0, we can send it to '.C � Œ0; ı�/ by f .

Proof of Theorem A.2.5(1) Choose a ı 2 .0; "/ such that '.C � Œ0; ı�/\f ..@U 0/ n C0/D¿. Note that
such a ı exists; otherwise, using the compactness of .@U 0/nC0, we would have a sequence fx0ng� .@U 0/nC0

converging to some x0 2 .@U 0/ n C0 such that f .x0n/ 2 '.C � Œ0; 1=n�/, ie f .x0/ would belong to C, a
contradiction to the assumption f �1.C/\U 0 D C0. Define an open set W 0 by

W 0 WD int.U 0/\f �1.'.C � .0; ı///:

Notice that no sequence in W 0 converges to some point of .@U 0/ n C0. Otherwise, if we assume
W 0n 3 w0n ! x0 2 .@U 0/ n C0, then '.C � .0; ı// 3 f .w0n/ ! f .x0/. Since '.C � Œ0; ı�/ is a closed
set containing the sequence ff .w0n/g, we can say that f .x0/ 2 f ..@U 0/ n C0/\ '.C � Œ0; ı�/, which is
impossible by our choice of ı.

So W 0�U 0 (as U 0 is compact) but ..@U 0/nC0/\W 0D¿. In particular, @W 0�U 0 but ..@U 0/nC0/\@W 0D¿.

Claim A.2.5.1 We have @W 0� C0[f �1.Cı/. Thus @W 0 is contained in a finite union of pairwise-disjoint
circles.

Algebraic & Geometric Topology, Volume 24 (2024)
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Proof of Claim A.2.5.1 Let y0 2 @W 0 and consider a sequence fy0ng � W 0 converging to y0. Then
'.C � .0; ı// 3 f .y0n/! f .y0/ 2 '.C � Œ0; ı�/. If f .y0/ 2 '.C � f0; ıg/ D C [ Cı , then we are done
since f �1.C/ \ U 0 D C0. On the other hand, if f .y0/ 2 '.C � .0; ı//, then the definition of W 0 and
W 0\@W 0D¿ (as W 0 is open) together imply y0 2U 0n int.U 0/D @U 0, ie y0 2 C0 as ..@U 0/nC0/\@W 0D¿.
Since y0 2 @W 0 is arbitrary, we are done.

The definition of W 0 tells us that each point of int.U 0/ that is sufficiently near to C0 must belong to W 0.
Now, using Claim A.2.5.1, we can say that there is at least one component of f �1.Cı/ which cobounds
an annulus with C0 inside U 0. Of all the C0–parallel components of f �1.Cı/, we consider the closest to C0

as C0
ı
.

Proof of Theorem A.2.5(2) Certainly f .A0/ � f .U 0/ � '.C � Œ0; "�/. The rest follows, once we
observe that, removing the interiors of all disks bounded by components of f �1.Cı/ from A0, A0 remains
connected, so by continuity of f j†0 nf �1.C [ Cı/!† n .C [ Cı/ it maps into '.C � .0; ı//.
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Combinatorial proof of Maslov index formula in Heegaard Floer theory

ROMAN KRUTOWSKI

We prove Lipshitz’s Maslov index formula in Heegaard Floer homology via the combinatorics of Heegaard
diagrams.

57K18; 57K31

1 Introduction

Peter Ozsváth and Zoltán Szabó [2004b; 2004c] introduced Heegaard Floer homology, a collection of
invariants for closed oriented 3–manifolds. Since then, Heegaard Floer homology has emerged as an
extremely powerful invariant, producing strong results in low-dimensional topology (see [Ghiggini 2008;
Ni 2009a; 2009b; Ozsváth and Szabó 2004a; 2004b; 2004c; 2006]). All of the numerous versions of
Heegaard Floer homology involve counting the number of points in the unparametrized moduli space of
J–holomorphic disks of a certain Maslov index joining some intersection points of two half-dimensional
tori in a certain symmetric product of a surface.

The most notable advantage of Heegaard Floer homology when compared to other types of Floer homology
is its combinatorial nature which allows computation of these invariants in various cases. One of the
ingredients is the combinatorial formula for the Maslov index �.'/ of a Whitney disk ', which is the
Fredholm index of some differential operator, or alternatively, a homology class of a certain loop in the
Lagrangian Grassmannian. Jacob Rasmussen [2003] gave a formula that relates the intersection number
of the disk with the fat diagonal in the symmetric product, with its Maslov index. Later on, Robert
Lipshitz [2006], in a paper devoted to the cylindrical reformulation of the whole theory, gave a purely
combinatorial formula for the Maslov index of these disks.

The proof of this formula in [Lipshitz 2006] is based on an elegant geometric approach. In this paper, we
provide a combinatorial proof of this formula which is inspired by the proof of the index formula for
Maslov n–gons due to Sucharit Sarkar [2011].

Let .†;˛;ˇ/ be a Heegaard diagram. Any Whitney disk ' 2 �2.x;y/ connecting x;y 2 Symg.†/ has a
shadow D.'/ (see Definition 2.1), a certain 2–chain in † with boundary satisfying @.@D.'/\˛/Dy�x

and @.@D.'/\ˇ/D x�y . We denote the set of such 2–chains by D.x;y/ and call them domains. We
denote by D the set of all domains in all Heegaard diagrams (see Section 2 for details).
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In this paper, we assume that ˛ curves intersect ˇ curves perpendicularly with respect to some metric
on †. Among the domains, there are two special types that serve us as building blocks. Bigons and
rectangles are 2–sided and 4–sided domains, respectively, which are homeomorphic to disks with all
angles equal to 90ı and which do not contain any x– and y–coordinates in the interior.

Given two domains D 2D.x;y/ and D0 2D.y ; z/ the composition of these domains D �D0 is a domain
DCD0 2 D.x; z/.

In this paper any map x� W D! Z will be called an index. An index x� is said to be additive if for any
Heegaard diagram and any two of its domains D 2 D.x;y/ and D0 2 D.y ; z/,

x�.D �D0/D x�.D/C x�.D0/:

In Section 2 we introduce two types of transformations of any Heegaard diagram .†;˛;ˇ/ which assign
to each of its domain D a new domain D0 in the new Heegaard diagram. These transformations are called
finger moves and empty stabilizations. An index x� is said to be stable if for any such transformation
x�.D/D x�.D0/.

Define the combinatorial index z� of a domain D 2 D.x;y/ via the formula due to Lipshitz [2006],

(1) z�.D/ WD z�x.D/C z�y.D/C e.D/;

where z�x.D/ is a point measure of D at x and e.D/ is the Euler measure of D (see Section 2.1).

We are now ready to formulate our main results.

Theorem 1.1 There exists a unique index x� W D! Z satisfying the following axioms:

(1) x� is additive;

(2) x� is stable;

(3) x�.B/D 1 for any bigon B 2 D;

(4) x�.R/D 1 for any rectangle R 2 D.

Moreover , this index agrees with the combinatorial index z�.

Theorem 1.2 Let .†;˛;ˇ/ be a Heegaard diagram and ' be a Whitney disk connecting two generators
of the corresponding Heegaard Floer chain complex. Then

�.'/D z�.D.'//;

where �.'/ is the Maslov index of '.

Acknowledgements I would like to thank Sucharit Sarkar for his guidance and encouragement, Ko
Honda for helpful conversations and suggestions, and Gleb Terentiuk for valuable comments. I thank
Vinicius Canto Costa for pointing out some minor errors in a previous version. I thank the referee for
numerous helpful comments and corrections.
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2 Notations and preliminary results

2.1 Heegaard Floer theory preliminaries

To start, recall the definition of a Heegaard diagram. Let † be an oriented closed Riemannian surface
(ie there is a fixed Riemannian metric) and ˛ D f˛1; : : : ; ˛gg and ˇ D fˇ1; : : : ; ˇgg be two sets of
nonintersecting oriented1 simple closed curves such that both ˛ and ˇ generate half-dimensional subspaces
of H1.†/ (in particular this means that g is not smaller than the genus g.†/ of the surface). The last part
is equivalent to assuming that the complement of ˛ consists of g�g.†/C1 components (the same holds
for ˇ/. We also assume that the ˛ and ˇ curves intersect perpendicularly. We call by regions closures of
connected components of † n .˛[ˇ/. The collection .†;˛;ˇ/ is usually called an unpointed Heegaard
diagram, but in the text we refer to it simply as a Heegaard diagram. We need not assume these diagrams
to be pointed, because it is not relevant for the Maslov index calculations.

The Heegaard Floer homology chain complex of a diagram .†;˛;ˇ/ is generated by g–tuples of points
of the form x D fx1; : : : ;xgg where xi 2 ˛i \ˇ�.i/ and � 2 Sg is arbitrary. We may regard x as a point
in Symg.†/ which belongs to T˛\Tˇ where T˛ D ˛1 �˛2 � � � � �˛g and Tˇ D ˇ1 �ˇ2 � � � � �ˇg.

Let us consider the unit disk D2 in C with the usual orientation. Let s1 � @D
2 be the portion of the

oriented boundary that connects i to �i and let s2 � @D
2 be the remaining portion of the boundary

connecting �i to i . The differentials and chain maps are signed counts of J–holomorphic maps

u WD2
n fi;�ig ! Symg.†/

representing Whitney disks in �2.x;y/. Here a Whitney disk is a homotopy type of maps from D2

to Symg.†/ such that s1 is mapped to T˛, s2 is mapped to Tˇ , and i and �i are sent to x and y ,
respectively.

Let D be a 2–chain obtained as a sum of regions of a Heegaard diagram .†;˛;ˇ/ with integer coefficients,
D D

P
R a.R/R where a.R/ 2 Z. Such a 2–chain D is called a domain if there exist two generators

x and y such that @.@Dj˛/ WD @.@D \ ˛/ D y � x (here we regard x and y as 0–chains in †) and
@.@Djˇ/ D x � y . We say that D connects x and y and denote the set of these domains by D.x;y/.
We also denote by D the set of all pairs of ..†;˛;ˇ/;D/, where the first element in the pair is some
Heegaard diagram and the second is some domain in this Heegaard diagram.

Definition 2.1 Given a Whitney disk ' 2 �2.x;y/ we associate a domain D.'/ 2 D.x;y/ called the
shadow of ' as follows: to a region R we assign the number nR.'/ which is equal to the intersection
number ' �Zr , where Zr D frg �Symg�1.†/ for some r in the interior of R (note that ' �Zr does not
depend on a choice of r ); then set

D.'/D
X
R

nR.'/R 2 D.x;y/:

1This is nonstandard but useful to assume for the entirety of the paper.
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˛1 ˇ1 ˛2 ˇ2



˛1 ˇ1 ˛2 ˇ2

Figure 1: Finger move.

Let us recall the definition of the Maslov index of a Whitney disk ' 2 �2.x;y/ where x and y are some
generators of the chain complex associated with a given Heegaard diagram .†;˛;ˇ/. The generators
x and y are regarded as points belonging to T˛ \ Tˇ � Symg.†/. Let Grg be a space of totally real
g–dimensional subspaces of Cg. Since ' is regarded as a map from D2 nfi;�igD Œ0; 1��R to Symg.†/

we take the pullback of T Symg.†/ to D2 which is a trivial bundle Cg. One may then identify pullbacks
of Tx.T˛/ and Tx.Tˇ/ with two points Vx;˛;Vx;ˇ 2 Grg. We pick a “short” path x between Vx;˛

and Vx;ˇ in Grg and also construct in the same fashion a path y for y (by “short” we mean a path
in P�.Grg/ in Seidel’s terminology [2008, Section 11]). The map from 0�R to T˛ assigns a path 0

in Grg by considering pullback of T .T˛/� T Symg.†/ applying the trivialization of '�.T Symg.†//

once again. Analogously, we get a path 1. Finally, the Maslov index �.'/ is equal to a composition of
all these four paths

�.'/D Œx ı 0 ı y ı 1� 2H1.Grg/D Z:

We also introduce the combinatorial index of any domain D 2D.x;y/. For xi 2 x define z�xi
.D/ as the

average of the coefficients of D in the 4 regions to which xi belongs. Then the point measure of D at x

is z�x.D/D
Pg

iD1
z�xi

.D/. For a 2–chain D the Euler measure D is 1
2�

of the integral of the curvature
of the metric of † over D. It is equal to the 2–cochain that assigns 1

2
.2� n/ to a 2n–gon region. For a

domain D 2 D.x;y/ we assign its combinatorial index by

z�.D/D z�x.D/C z�y.D/C e.D/:

2.2 Transformations of Heegaard diagrams

We introduce two types of transformations on a given Heegaard diagram .†;˛;ˇ/ that are used in this
paper.

Definition 2.2 Let  be an oriented path in † which is transverse to ˛ and ˇ and is disjoint from ˛\ˇ;
see Figure 1. Also, assume the endpoints p0 and p1 of  do not belong to ˛[ ˇ . Let U be a small
neighborhood of  . Let  be an isotopy of † supported on U which moves ˛ curves in the direction of
 as given in Figure 1. The finger move on the ˛ curves along the curve  is a restriction  j˛; this does
not move the ˇ curves. Analogously we define the finger move on the ˇ curves.

Algebraic & Geometric Topology, Volume 24 (2024)
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a b c

R1 R2 R3

a

R01 b

R02

b

R04

aC c � bR05 c

R03

Figure 2: Image of a domain.

A transition from a Heegaard diagram .†;˛;ˇ/ to the diagram .†; .˛/;ˇ/ will be called by performing
a finger move on ˛ along  . Finger moves were introduced in [Sarkar and Wang 2010].

Definition 2.3 Given a domain D, its image D0 D  .D/ under a finger move  is defined as follows.
First decompose a finger move  into a sequence  D  1 ı � � � ı m of finger moves where under any
 i only two new points of intersection between ˛ and ˇ appear (see Figure 2). Let R1, R2 and R3 be
regions at which  1 ı � � � ı i�1.D/ has coefficients a, b and c, respectively, and let the finger move
 i be as shown in the picture. Then for new regions R0

1
, R0

2
, R0

3
, R0

4
and R0

5
shown in Figure 2 the

coefficients are a, b, c, b and aC c � b as shown. Repeating this procedure gives us  .D/.

Definition 2.4 Let D be a domain of a Heegaard diagram .†;˛;ˇ/. We call an empty stabilization
of this Heegaard diagram with respect to D a stabilization which is obtained by taking the connected
sum with the standard genus 1 Heegaard diagram for S3 where the attaching disk belongs to a region of
.†;˛;ˇ/ and the coefficient of D is equal to 0. The new Heegaard diagram .†0;˛0;ˇ 0/ is also called
an empty stabilization of .†;˛;ˇ/. The image of D under an empty stabilization is D itself in the new
diagram.

If we are given a Whitney disk ' 2 �2.x;y/ we may define its image '0 under a finger move on ˛ by
isotoping ' in accordance with the induced isotopy of T˛ inside Symg.†/. Analogously, one defines the
image of ' under a finger move on ˇ .

We say that the stabilization is empty with respect to a Whitney disk ' if it is empty with respect to D.'/.
For the empty stabilization with respect to ' the image of ' is just ' � z where z is the intersection point
of added ˛gC1 and ˇgC1.

We will extensively use the invariance of the Maslov index and of z� under these two types of transforma-
tions of a Heegaard diagram which is shown in the lemma below.

Lemma 2.5 Let D 2 D.x;y/ be a domain in a Heegaard diagram .†;˛;ˇ/ and let ' 2 �2.x;y/ be
a Whitney disk. Let D0 be the image of D under a finger move or an empty stabilization with respect
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to D. Let '0 be the image of ' under a finger move or an empty stabilization with respect to '. Then
�.'/D �.'0/ and z�.D/D z�.D0/.

Proof First, consider the case when this transformation is an empty stabilization with respect to D

(or '/. Let ˛gC1 and ˇgC1 be two new curves of .†;˛0;ˇ 0/ and z be their point of intersection. We
have x0 D x [ fzg, y 0 D y [ fzg and D0 D D 2 D.x0;y 0/ (or '0 2 �2.x

0;y 0//. First, z�.D/D z�.D0/,
because z�z.D

0/D 0. As for the Maslov index, notice that paths 0 and 1 in Grg rise to paths  0
0

and
 0

1
in GrgC1 obtained by taking direct sum with one-dimensional real subspaces of R2.gC1/ D CgC1

corresponding to Tz˛gC1 and TzˇgC1 respectively. Hence �.'/D �.'0/.

If the transformation is a finger move then the Maslov indices are equal because finger move keeps ˛
and ˇ unchanged near x and y . Hence, inspecting the definition of Maslov indices we see that only the
paths in Grg coming from the boundary @D2 differ, and they are isotopic to the initial ones, so the class
in H1.Grg/ does not change. Finally, z�.D/D z�.D0/ is immediate from the formula (see also [Sarkar
2011, Theorem 3.4]).

2.3 Additivity of indices

Our strategy for proving Lipshitz’s formula is based on decomposing any domain into the composition of
trivial pieces: bigons and rectangles. To apply this decomposition we need the additivity of the Maslov
index � and of the combinatorial index z� under the composition of domains. It is generally known that
the Maslov index � is additive. It was shown in more generality in [Sarkar 2011, Theorem 3.3] that z� is
additive and here we repeat the proof in our terms.

Definition 2.6 Let 1 and 2 be oriented 1–chains in † supported on ˛[ˇ and intersecting transversely.
Denote by 1 � 2 the intersection number of these 1–chains, which is equal to the signed count of
intersection points where the sign is defined by comparing the orientation of † and the orientation coming
from 1 and 2. A contribution to the intersection number at an endpoint is given by a fraction ˙1

2
or

˙
1
4

as in [Sarkar 2011, Section 2].

Lemma 2.7 Let D 2 D.x;y/ and D0 be any other 2–chain in the Heegaard diagram .†;˛;ˇ/. Then
z�y.D

0/� z�x.D
0/D @Dj˛ � @D

0jˇ D @D
0j˛ � @Djˇ .

Proof Given orientations on ˛ at each intersection point p between ˛ and ˇ we give numbers to regions
from I to IV . Namely, quadrants I and II are in the upper half of ˇ (the half in the positive direction of ˛)
and quadrant I is the one for which the orientation induced from † is opposite to the orientation of ˛
at p. Quadrants III and IV are defined following II in the counterclockwise order on †.

Let us pick a point p in the first quadrant near the point xi 2 x lying on some ˛k and travel parallel
to @Dj˛k

until we reach a first quadrant near yj 2 y where @.@Dj˛k
/D yj � xi . Then let us track the

coefficient of D0 at each point along this path. Each time we change the region passing through ˇ this
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coefficient changes by the intersection number of this small portion of our path with @D0jˇ . Hence, the
difference between the coefficients is equal to @Dj˛k

� @D0jˇ .

Now, by taking such paths for all points in x and all 4 quadrants for each of these points and then
averaging we get z�y.D

0/� z�x.D
0/D @Dj˛ � @D

0jˇ .

Corollary 2.8 Let D 2 D.x;y/ and D0 2 D.y ; z/. Then z�.D �D0/D z�.D/C z�.D0/.

Proof First, we easily see that

z�.D �D0/� z�.D/� z�.D0/D z�x.D
0/C z�z.D/� z�y.D

0/� z�y.D/:

Second, applying Lemma 2.7 we get z�y.D
0/�z�x.D

0/D@Dj˛�@D
0jˇ and z�z.D/�z�y.D/D@Dj˛�@D

0jˇ .

Hence,
z�.D �D0/� z�.D/� z�.D0/D 0:

3 Main theorem

Theorem 3.1 For a given domain D in a Heegaard diagram .†;˛;ˇ/ there is a sequence of finger moves
and empty stabilizations such that in the new Heegaard diagram the image of D can be represented as a
composition of bigons , rectangles and their negatives.

Before proving this theorem we show how Theorems 1.1 and 1.2 follow from Theorem 3.1.

Proof of Theorem 1.1 Let D 2 D.x;y/. Apply Theorem 3.1 to obtain the image D0 of D and the
decomposition D0 D D1 � � � � � Dk of D0 in the new Heegaard diagram. Here each Di is either a
bigon, a rectangle, or the negative of a bigon or a rectangle. Since x� is additive we may compute
x�.D0/D x�.D1/C � � �C x�.Dk/. For each Di the value x�.Di/ can be easily inferred from the 4 axioms.

The fact that x� coincides with z� then follows since z�.R/D z�.B/D 1 by direct computation, and z� is
additive by Lemma 2.7 and stable by Lemma 2.5.

Proof of Theorem 1.2 We are given a Whitney disk ' 2 �2.x;y/ and we may assume that g.†/ > 1

by applying an empty stabilization if necessary. By Theorem 3.1 there is a transformation of the given
Heegaard diagram such that there is a decomposition D.'0/DD1 � � � � �Dk , where '0 is an image of '
under this transformation; equivalently 0DD.'0/� .�D1/� � � �� .�Dk/. Since each Di is either a bigon
or a rectangle (possibly negative) there exists a corresponding Whitney disk 'i such that D.'i/D�Di .
Then '0 �'1 � � � � �'k 2 �2.x;x/ and, moreover, D.'0 �'1 � � � � �'k/D 0. From [Ozsváth and Szabó
2004b, Proposition 2.15] it now follows that '0�'1�� � ��'k D 02 �2.x;x/, so �.'0�'1�� � ��'k/D 0.
Hence, �.'0/D�.�.'1/C � � �C�.'k//.
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a

D

a b

c
D

B1

B2

Figure 3: 270ı angle.

It now suffices to show that �.B/ D z�.B/ D 1 and �.R/ D z�.R/ D 1 for any bigon B and any
rectangle R. For a bigon �.B/D 1 since it agrees with the dimension of the (regular) moduli space of
biholomorphisms from B to the strip Œ0; 1��R. The fact that �.R/D 1 is shown in [Ozsváth and Szabó
2004b, Section 8.4].

Now we prove the main theorem.

Proof of Theorem 3.1 In the proof we abuse notation and denote the image of a domain D under any
empty stabilization or a finger move by same letter D.

We break our proof into several steps starting with a general domain in Step 1 and simplifying it gradually
by transformations of Heegaard diagrams. Before we start dealing with general domains we need additional
preparation which we perform at Step 0.

Step 0: quadrilaterals Before considering the most general domains we need to take care of another
type of a “building block”. Namely, let D be an embedded domain with nonnegative coefficients which is
homeomorphic to a disk and has a boundary consisting of four sides. We would call such D a quadrilateral.
If all angles of D are 90ı then it is already a rectangle. Otherwise, an angle at one of its vertices a is 270ı.
Consider a finger move shown in Figure 3 which creates two bigons B1 2 �2.a; b/ and B2 2 �2.b; c/.
Then D � .�B1/ is a quadrilateral with one more 90ı angle than D. Proceeding in the same fashion we
decompose D into a rectangle and several bigons with possibly some x– or y–coordinates in the interiors.
We refer the reader to Step 5 for the treatment of these inner points.

Henceforth, in the following steps it is enough to decompose any domain into quadrilaterals and bigons
with arbitrary angles.

Step 1: making the boundary embedded First, we show that after several finger moves we may
compose D with some bigons (or their negatives) and obtain a domain D0 with embedded boundary.

Assume without loss of generality that @.@Dj˛1
/D y1�x1 with respect to the chosen orientation on ˛1.

Here x1 lies on ˇ1 and y1 lies on ˇ2 (where ˇ2 may be equal to ˇ1). We may assume that the positively
oriented embedded arc from x1 to y1 in ˛1 is covered k C 1 times by @D and the positively oriented
embedded arc from y1 to x1 is covered k times. For now assume k > 0.
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ˇ1

a

x1

˛1

by1

ˇ2
ˇ1

˛1

B
y1

ˇ2

z

Figure 4: Making the boundary embedded.

Since the ˛ and ˇ curves are oriented, for any region we may distinguish whether it lies to the left of a
given ˛ or ˇ curve. Let a be a point very close to x1 on ˇ1 to the left of ˛1 (see Figure 4). Also let b be
a point on ˛1 near y1 not belonging to the positive arc from x1 to y1. Let  be (a slight extension of) a
curve starting at a and parallel to ˛1 until it hits ˇ2 and then we connect it with b. We make a finger move
on ˇ curves along the curve  creating new points of intersection of ˇ curves intersecting  (including
ˇ1 and ˇ2) with ˛1. Let z be the new intersection point of ˇ1 and ˛1 which is the closest to x1 on ˇ1.

As a result, we created a bigon B connecting x1 to z. Then

D0 D .�B/�D 2 D.fz;x2; : : : ;xgg; fy1;y2; : : : ;ygg/:

Note that in @D0 the arc from z to y1 is covered k times and the arc from y1 to z is covered k � 1 times.
Additionally, we notice that @D0jˇ only changed by replacing x1 with z which may be assumed to be
very close to x1 on ˇ1 and hence the number of times @D0

ˇ
covers z doesn’t differ from that of x1 for the

former D. Hence performing isotopies as above only changes the geometry of the ˛1–portion of @D.

In the case k < 0 we would draw  parallel to the negative embedded arc from x1 to y1 and proceed
analogously. Repeating this procedure we first make sure that @D\˛ is embedded and then we repeat it
for ˇ and end up with a domain having an embedded boundary.

Step 2: making the boundary connected Assume the boundary of a domain D consists of more
than one closed curve as shown in Figure 5. Suppose @D\ .˛1\ˇ1/D y1, @D\ .ˇ1\˛2/D x2 and
@.@Dj˛2

/D y2�x2. Let us pick a point on ˛1 close to y1 and let  be an arc connecting it to a point on
the restriction of some other component of @D to ˇ such that int. / does not intersect @D. We denote by
ˇ0

1
the curve to which the endpoint of  belongs and @.@Djˇ0

1
/D x0

2
�y0

1
while @.@Dj˛0

1
/D y0

1
�x0

1
. We

also can make sure that  intersects ˇ0
1

at a point near y0
1
.

Let us decompose  D 123 where 1 and 3 are small portions near the ends and 2 is the remaining
portion in the middle. We draw a curve  0

1
connecting a point near y1 on ˇ1 with some point near the end

of 1 such that  0
1

does not intersect 1. Starting at the end of  0
1
, we draw a curve  0

2
parallel to 2. Then
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ˇ0
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 0
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˛2
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a

b

c d
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˛1

˛0
1

ˇ1

ˇ0
1

y1

D0

y0
1

x0
1

x2

˛2

y2

Figure 5: Making the boundary connected.

we connect the end of  0
2

by a curve  0
3

parallel to ˇ0
1

with a point on ˛0
1

near y0
1
. We set  0 D  0

1
 0

2
 0

3
.

In short,  0 is a parallel copy of  on the complement of neighborhoods of points y1 and y0
1
.

Now we make a finger move on ˛ curves along  and we also make a finger move on ˇ curves along  0.
Denote the new points of intersection between ˛1 and ˇ0

1
by a and b, and analogously denote the points

of intersection between ˇ1 and ˛0
1

by c and d .

Denote the new quadrilateral by D0 2 D.fb; cg; fy1;y
0
1
g/ and the two new bigons by B1 2 D.fag; fbg/

and B2 2 D.fcg; fdg/.

Then consider

D � .�D0/�B1 �B2 2 D.x; fa;y02; : : : ; d;y2; : : :g/

whose boundary is embedded and contains one fewer component than D. From here we may proceed
inductively on the number of boundary components.

Step 3: reducing to a quadrangle or a bigon boundary Let D be a domain. Applying Steps 1 and 2,
we assume that @D is embedded and connected.

Let the boundary of a domain D be 2n–sided, ie of the form x1y1x2y2x3 � � �yn with n> 2 where xiyi

is an arc on ˛ and yixiC1 is an arc on ˇ . Assume that the first 4 sides lie on ˛1, ˇ1, ˛2 and ˇ2 (see
Figure 6). Let us pick a point y0

1
on x1y1 near y1 and a point y0

2
on ˇ2 near y2. Let  be an arc

connecting y0
1

and y0
2

such that int. /\ @D D∅ and the arcs  , y1y0
1
, y1x2, x2y2 and y2y0

2
bound an

embedded disk. We make a finger move on ˛ curves along  and denote by a and b two new points of
intersection between ˛1 and ˇ2. Notice that we created two new domains: a bigon B 2D.fag; fbg/ and a
quadrilateral D0 2 D.fx2; bg; fy1;y2g/.

Algebraic & Geometric Topology, Volume 24 (2024)



Combinatorial proof of Maslov index formula in Heegaard Floer theory 4481

x1

˛1

y1

y0
1



y0
2

ˇ1

x2

˛2

y2

ˇ2 x1

˛1

y1 ˇ1

x2

˛2

y2

ˇ2

D0
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Figure 6: Decreasing the number of sides.

We may replace D with a domain

D � .�D0/�B 2 �2.fx1;x2; : : : ;xng; fa;x2;y3; : : : ;yng/;

which has an embedded and connected boundary with 2n� 2 sides.

Step 4a: 4–sided boundary Given two domains which have the same 4–sided curve as the boundary,
their difference is an element in H2.†/ which is generated by Œ†�. We will prove in Claim 3.2 that † can
be decomposed into bigons and rectangles after some finger moves and empty stabilizations. Therefore
we may add kŒ†� to a given domain D to ensure that we get a domain represented by an embedded
2–chain. This domain, which we also call D, is isotopic to a disk with m handles.

We will now show how to decompose this handlebody D into bigons and quadrilaterals.

We depict handles as pairs of circles with opposite orientations and one of the handles is drawn in Figure 7.
We now draw two “palm trees” as in the picture by making two finger moves on ˛ curves and we assume
that the other m� 1 handles are in the white region “between” two palm trees. Let the 8 new points of
intersection between the ˛ and ˇ curves be labeled as in Figure 7.

We now have 4 new bigons B11, B12, B21 and B22, and 2 new quadrilaterals Rx and Ry . Then the
domain D � .�Rx/� .�Ry/�B11 �B12 �B21 �B22 2D.fz0

1
; z0

2
g; fw0

1
; w0

2
g/ has 4–sided boundary and

m� 1 handles and from here proceed inductively on the number of handles.

Step 4b: 2–sided boundary Here we reduce this case to the 4–sided boundary case treated in Step 4a.

As in the 4–sided boundary case, we may assume D to be an embedded 2–chain represented by a
handlebody as shown in Figure 8. By the method of Step 0 we may assume that both angles are 90ı.

We may assume that g > 2 by applying an empty stabilization with respect to D if necessary. Let
D 2D.fx; z1; : : : ; zg�1g; fy; z1; : : : ; zg�1g/. We may suppose z1 2˛2\ˇ2 lies outside of D by applying
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w02

w01
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x1
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x2

B11

z2

z02

z01

z1
B21

y1

Figure 7: 4–sided boundary.

an empty stabilization with respect to a given D. Let  be an arc connecting the point z1 with some point
a on the boundary of D such that  intersects D once at the point a. We may assume a to be somewhere
on ˇ1. We also alter the path  slightly so that it starts at some point on ˛2 and ˇ2 is to its left near this
endpoint.

Now draw  0 almost parallel to  so that one of its endpoints is on ˇ2 near z1. When  0 reaches a
neighborhood of a we extend it parallel to �ˇ2 until it hits ˛1 at some point outside of D near y.

We make a finger move on ˛ along  and a finger move on ˇ along  0 creating points b 2 ˛2\ˇ1 and
c 2 ˇ2\˛1. There is now a new quadrilateral R 2 D.fy; z1; z2; : : : ; zg�1g; fb; c; : : : ; zg�1g/.

Therefore, we may replace D with D�R2D.fx; z1; z2; : : : ; zg�1g; fb; c; : : : ; zg�1g/ reducing to Step 4a
since it has connected and embedded 4–sided boundary.

x

y

a



 0

z1

x

y



 0

z1

Figure 8: 2–sided boundary.
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Figure 9: Inner points.

Step 5: inner points By now we have represented the initial D as a composition of domains that
geometrically look like bigons and rectangles, but some of the rectangles may contain some points from
generators inside of them. Namely, let R2D.x;y/ where xDfx1;x2; a1; : : : ; ak ; bkC1; : : : ; bg�2g and
y D fy1;y2; a1; : : : ; ak ; bkC1; : : : ; bg�2g where the ai lie inside of R and the bj lie outside of R.

Let a1 2 ˛3 \ ˇ3. We make finger moves on ˛3 and ˇ3, creating 2 points of intersection between ˛3

and ˇ1; ˇ2, and 2 points of intersection between ˇ3 and ˛1; ˛2 (actually, we created twice as many points,
but we stress our attention on these 4). We call these points p1, p2, q1 and q2, respectively. This is
illustrated in Figure 9.

Then we may see that RDR0 �R00 �R000 where

R0 2 D.x; fq1;x2;p2; a2; : : : ; ak ; bkC1; : : : ; bgg/;

R00 2 D.fq1;x2;p2; a2; : : : ; ak ; bkC1; : : : ; bgg; fq1;y2;p1; : : : ; ak ; bkC1; : : : ; bgg/;

R000 2 D.fq1;x2;p1; a2; : : : ; ak ; bkC1; : : : ; bgg;y/:

Each of these 3 rectangles has fewer points from generators inside than R and we may proceed by
induction on the number of points.

This completes the proof of Theorem 3.1, assuming Claim 3.2 below.

Claim 3.2 The surface † 2 D.x;x/ for x D fx1; : : : ;xgg is a domain that can be decomposed into
bigons and rectangles after applying a sequence of finger moves.

Proof Let us assume g > 1. We may apply a diffeomorphism ' to the Heegaard diagram .†;˛;ˇ/ such
that the image of x is a collection x0 such that all x0i are located in some small disk region and x0

1
and

x0
2

are on the boundary of the convex hull of x0. Let us denote by .†;˛0;ˇ 0/ the image of the initial
diagram under ', ie ˛0D '.˛/ and ˇ 0D '.ˇ/. We may assume that x0

1
2 ˛0

1
\ˇ0

2
and x0

2
2 ˛0

2
\ˇ0

1
. Then

we make finger moves on ˛0
1
; ˛0

2
and on ˇ0

1
; ˇ0

2
as in Figure 10, creating a rectangle R with boundary
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x0
2

y0
2
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y0
1
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Figure 10: Claim 3.2.

x0
1
y0

1
x0

2
y0

2
such that all other points of x0 are inside of R. Then †�.�R/ connects x0 to fy0

1
;y0

2
; : : : ;x0gg

and it is a region with quadrangle boundary and g handles. Now we may proceed as in Step 4a of the
proof of the theorem.

Let g D 1. We can make a finger move on ˛1 which creates a bigon B connecting given point x to some
point x0. Then .�B/�† 2 D.fx0g; fxg/. Now we make a stabilization inside B and can proceed as in
the proof of Step 4b.
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The H F2–homology of C2–equivariant Eilenberg–Mac Lane spaces

SARAH PETERSEN

We extend Ravenel–Wilson Hopf ring techniques to C2–equivariant homotopy theory. Our main appli-
cation and motivation is a computation of the RO.C2/–graded homology of C2–equivariant Eilenberg–
Mac Lane spaces. The result we obtain for C2–equivariant Eilenberg–Mac Lane spaces associated to
the constant Mackey functor F2 gives a C2–equivariant analogue of the classical computation due to
Serre. We also investigate a twisted bar spectral sequence computing the homology of these equivariant
Eilenberg–Mac Lane spaces and suggest the existence of another twisted bar spectral sequence with
E2–page given in terms of a twisted Tor functor.
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1 Introduction

Computations of invariants in equivariant homotopy theory have powerful applications contributing to
solutions of outstanding classification problems in geometry, topology, and algebra. A primary example
is Hill, Hopkins, and Ravenel’s solution [Hill et al. 2016] to the Kervaire invariant one problem, which
used computations in equivariant homotopy theory to answer the question of when a framed .4kC2/–
dimensional manifold can be surgically converted into a sphere. Despite the success of numerous
applications, many equivariant computations remain difficult to access due to their rich structure. This
is especially true for (unstable) equivariant spaces, for which many computations have not yet been
completed, despite their analogous nonequivariant results being well known.
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This paper extends Ravenel–Wilson Hopf ring techniques [Ravenel and Wilson 1977; 1980; Wilson
1982] to C2–equivariant homotopy theory. Our main application and motivation is a computation of
the RO.C2/–graded homology of C2–equivariant Eilenberg–Mac Lane spaces. The result, stated over
the course of Theorems 5.6, 6.6, and 6.7, is a C2–equivariant analogue of the classical cohomology
computation completed by Serre [1953].

Nonequivariantly, Serre applied the Borel theorem (see, for instance [Mosher and Tangora 1968, page 88,
Theorem 1]) to the path space fibration

K.Fp; n/'�K.Fp; nC 1/! P .K.Fp; nC 1//!K.Fp; nC 1/;

to calculate the cohomology of K.Fp; nC 1/ given H�K.Fp; n/. In C2–equivariant homotopy theory,
the constant Mackey functor F2 is the analogue of the group F2 and the Eilenberg–Mac Lane spaces
KV DK.F2;V / are graded on the real representations V of the group C2 rather than on the integers.
Since the group C2 has two irreducible real representations, the trivial representation and the sign
representation � , the analogous equivariant computation would require computing the cohomology of
KVC� from H?KV in addition to H?KVC1 from H?KV . This would necessitate having a so called
signed or twisted version of the Borel theorem. However, no such theorem is known to exist, making it
difficult to study the cohomology of the spaces KVC� with these techniques. We call KVC� a signed
delooping of KV since the space of signed loops ��KVC� 'KV .

While direct extension of Serre’s original argument does not allow for the computation of the cohomology
of signed deloopings, it has been successfully applied to study trivial representation deloopings of K� ,
whose cohomology is known [Hu and Kriz 2001]. This approach is described in Ugur Yigit’s thesis
[2019], where it is noted that the RO.C2/–graded cohomology of all C2–equivariant Eilenberg–Mac Lane
spaces K�C� can be computed using this method. Throughout, we use � to denote integer grading and
reserve ? to denote grading by finite-dimensional real representations.

A major reason to study Ravenel–Wilson Hopf ring techniques in C2–equivariant homotopy theory is that
they provide a way to study �–deloopings. These techniques, which investigate multiplicative structures
coming from H–space maps on spaces having a graded multiplication, lend additional structure that can
be exploited to complete computations.

An important tool in classical applications of Ravenel–Wilson Hopf ring techniques is the bar construc-
tion B. This construction plays a significant role in computation because B is a trivial representation
delooping functor with BKV 'KVC1. In the C2–equivariant world, there is a twisted bar construction B�,
which is a sign representation delooping functor with B�KV ' KVC� [Liu 2020]. We use these
two constructions to explicitly model multiplicative structures on the spaces KV at the point set level
(Theorem 5.4), directly extending work by Ravenel and Wilson [1980]. We also describe our approach to
using this structure to investigate signed and trivial representation deloopings in Section 5.

Whereas Ravenel and Wilson use a collapsing integer-graded bar spectral sequence to compute by
induction on n the homology of classical nonequivariant Eilenberg–Mac Lane spaces [Wilson 1982], we
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deduce many of our equivariant computations from nonequivariant ones using a computational method
introduced by Behrens and Wilson [2018, Lemma 2.8]. Starting with the RO.C2/–graded homology
of K� , we use the graded multiplication on the spaces KV coming from the genuine equivariant ring
structure on HF2, to produce elements of the RO.C2/–graded homology of K�� . We then use the point
set level understanding of multiplicative structures on the spaces K�� developed in Theorem 5.4 to verify
that these elements in fact form a free basis for the homology.

Once we have computed H?K�� (Theorem 5.6), we use Hopf ring structures in RO.C2/–graded bar
spectral sequences to compute H?Ki�Cj (Theorem 6.6) by induction on j . In the case where i D 1, that is
for the spaces K�C�, we name all homology generators in terms of the Hopf ring structure (Theorem 6.7).
The task of naming homology generators for the spaces KV , where � C 1� V , increases in complexity
as the number of sign representations increases. We illustrative this phenomenon in Section 6.

Knowing the RO.C2/–graded homology of the C2–equivariant Eilenberg–Mac Lane spaces KV , we
turn to investigating the RO.C2/–graded twisted bar spectral sequence. Much like the classical integer
graded bar spectral sequence, the RO.C2/–graded twisted bar spectral sequence arises from a filtered
complex. However, computations with this twisted spectral sequence are more complicated than in
the classical case. For example, in contrast to the classical case where the integer-graded bar spectral
sequence computing the nonequivariant mod p homology of the classical Eilenberg–Mac Lane spaces
K� DK.Fp;�/ collapses on the E2–page [Wilson 1982], we find there are arbitrarily long equivariant
degree shifting differentials, similar to those observed in Kronholm’s study [2010] of the cellular spectral
sequence, in the RO.C2/–graded twisted bar spectral sequences computing the homology of the signed
representation spaces Kn� , where n� 2.

While the RO.C2/–graded twisted bar spectral sequence is quite complicated in general, the differentials
and extensions appear to arise in an extremely structured way, governed by a norm structure. We use
our knowledge of H?K�� and the E1–page to deduce information about the RO.C2/–graded twisted
bar spectral sequences computing the homology of K�� . This allows us to write down conjectures
concerning many of the differentials in Section 6. Our equivariant computations show that, unlike in the
nonequivariant integer graded situation, the RO.C2/–graded twisted bar spectral sequences computing
H?Kn� , where n� 2, have a rich structure quite distinct from the collapsing bar spectral sequence in the
classical nonequivariant case [Wilson 1982]. Differences between integer graded and RO.C2/–graded
bar and twisted bar spectral sequences are discussed in Section 6.

In parallel with calculating the homology of a space, the corresponding computational tools are worth
investigating in a purely algebraic setting. This study of the homological algebra involved produces tools
which can also be applied in settings outside of topology. One example of this are Tor functors, the derived
functors of the tensor product of modules over a ring. Besides playing a central role within algebraic
topology theorems such as the Künneth theorem and coefficient theorem, Tor functors can also be used to
calculate the homology of groups, Lie algebras, and associative algebras. Within the context of the classical
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Ravenel–Wilson Hopf ring method, the identification of the E2–page of the bar spectral sequence with
Tor allows for the computations TorEŒx�.Fp;Fp/' �Œsx� and TorT Œx�.Fp;Fp/'EŒsx�˝�Œ�x�, where
sx is the suspension of x, �x is the transpotent, and T Œx� is the truncated polynomial ring Fp Œx�=.x

p/,
to be used inductively in the calculations of the mod p homology of Eilenberg–Mac Lane spaces [Wilson
1982] and the Morava K–theory of Eilenberg–Mac Lane spaces [Ravenel and Wilson 1980].

In the C2–equivariant setting, the RO.C2/–graded homology of each signed delooping, KVC� , of an
equivariant Eilenberg–Mac Lane space, KV , also independently arises as the result of a C2–equivariant
twisted Tor computation. Thus under favorable circumstances, we believe it should be possible to
formulate a twisted bar spectral sequence with E2–page a twisted Tor functor arising as a derived functor
of the twisted product of HF2–modules and use this to compute the E2–page. However, we have not yet
constructed such a spectral sequence.

Additionally, twisted Tor calculations are not yet well understood, with a complete lack of known examples.
Theorems 5.6, 6.6, and 6.7 provide a countably infinite number of initial examples, which in turn lend
insight on how such calculations might proceed in general. We discuss how the homology H?KVC�

arises as a result of twisted Tor and give evidence for TorEŒx�
tw .H?;H?/' EŒ�x�˝�ŒNC2

e .x/�, where
�x is the signed suspension of x and NC2

e is the norm, under favorable circumstances in Section 7.

1.1 Statement of theorems

We state our main results. Recall that HF2 has distinguished elements a 2HF2f��g and u 2HF2f1��g.

To describe our answer for H?K�� , we need notation for H?K� . Let

e� 2H�K� ; N̨ i 2H�iK� .i � 0/:

Then the homology, H?K� , is exterior on generators

e� ; N̨.i/ D N̨2i .i � 0/

with coproduct
 .e� /D 1˝ e� C e� ˝ 1C a.e� ˝ e� /;

 . N̨n/D

nX
iD0

N̨n�i ˝ N̨ i C

n�1X
iD0

u.e� N̨n�1�i ˝ e� N̨ i/:

For finite sequences

J D .j� ; j0; j1; : : :/; jk � 0;

define

.e� N̨ /
J
D eıj�� ı N̨

ıj0

.0/
ı N̨
ıj1

.1/
ı � � �

where the ı–product comes from the pairing ıWKV ^KW !KVCW .
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Theorem 5.6 Then
H?K�� Š˝J EŒ.e� N̨ /

J �

as an algebra , where the tensor product is over all J and the coproduct follows by Hopf ring properties
from the N̨ ’s.

Interestingly, this answer mirrors the classical nonequivariant answer at the prime 2 [Ravenel and Wilson
1980].

From there, we use the RO.C2/–graded bar spectral sequence to compute H?Ki�Cj be induction on j ,
starting with H?Ki� . We show:

Theorem 6.6 The RO.C2/–graded homology of KV , where � C 1� V, is exterior on generators given
by the cycles on the E2–page of the RO.C2/–graded spectral sequence computing H?BKV�1.

For the spaces K�C�, we name all homology generators in terms of the Hopf ring structure. To describe
these rings, we need notation for H?K1, H?K2, and H?K�. Let

e1 2H1K1; ˛i 2H2iK1; ˇi 2H2iCP1; i � 0:

This gives generators
e1; ˛.i/ D p̨i ; ˇ.i/ D p̌i

of H?K1 and H?K2 with coproducts

 .˛n/D

nX
iD0

˛n�i ˝˛i ;  .ˇn/D

nX
iD0

ˇn�i ˝ˇi :

Also let
Ň
i 2H�iK.Z; �/ .i � 0/:

This gives additional generators,
Ň
.i/ D

Ň
2i .i � 0/

of H?K� with coproduct

 . Ňn/D

nX
iD0

Ň
n�i ˝

Ň
i :

Then for finite sequences

I D .i1; i2; : : : ; ik/; 0� i1 < i2 < � � � ;

W D .w1; w2; : : : ; wq/; 0� w1 <w2 < � � � ;

J D .j�1; j0; j1; : : : ; j`/; where j�1 2 f0; 1g and all other jn � 0;

Y D .y�1;y0;y1; : : : ;yr /; where y�1 2 f0; 1g and all other yn � 0;
define

.e1˛ˇ/
I;J
D e
ıj�1

1
ı˛.i1/ ı˛.i2/ ı � � � ı˛.ik/ ıˇ

ıj0

.0/
ıˇ
ıj1

.1/
ı � � � ıˇ

ıj`
.`/
;

.e1˛ˇ/
W ;Y
D e
ıy�1

1
ı˛.w1/ ı˛.w2/ ı � � � ı˛.wq/ ıˇ

ıy0

.0/
ıˇ
ıy1

.1/
ı � � � ıˇ

ıjr

.r/
;

jI j D k; jW j D q kJk D†jn; kY k D†yn:
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Theorem 6.7 We have

H?K�Ci ŠEŒ.e1˛ˇ/
I;J
ı N̨.m/; .e1˛ˇ/

W ;Y
ı Ň.t/�

where m> ik and m� `, t >wq and t � yr , jI jC2kJkD i and jW jC2kY kD i�1, and the coproduct
follows by Hopf ring properties from the ˛.i/’s , ˇ.i/’s , N̨.i/’s , and Ň.i/’s.

We observe that this equivariant answer mirrors the classical nonequivariant answer for odd primes
[Ravenel and Wilson 1980]. For the reader’s convenience, we explicitly write some low-dimensional
instances of the theorem. In particular,

H?K� ŠEŒe1 ı N̨.i/; ˛.i1/ ı N̨.i2/;
Ň
.i/�

and

H?K�C2 ŠEŒe1 ı˛.i1/ ı N̨.i2/; ˛.i1/ ı˛.i2/ ı N̨.i3/; e1 ı
Ň
.i1/; ˇ.j1/ ı N̨.j2/; ˛.i1/ ı

Ň
.i2/�

where i1 < i2, j1 � j2; and the coproduct follows by Hopf ring properties from the ˛.i/’s, ˇ.i/’s, N̨.i/’s,
and Ň.i/’s.

Having computed the homology of the C2–equivariant Eilenberg–Mac Lane spaces KV , we turn to using
the results to investigate the twisted bar spectral sequence arising from the twisted bar construction.
Unlike the nonequivariant bar spectral sequence, the twisted bar spectral sequence E2 page lacks an
explicit homological description. This makes computations difficult in general. However, for the spaces
B�F2 'K� 'RP1tw , B�S1 'K.Z; �/'CP1tw , and B�S� 'K.Z; 2�/, there is a gap in the spectral
sequence forcing all differentials dr for r > 1 to be zero. Further for these spaces, if there were a nonzero
d1 differential, we would end up killing a known generator of the underlying nonequivariant integer
graded homology and arrive at a contradiction. Thus we can calculate the additive RO.C2/–graded
homology of these spaces completely. The multiplicative structure can also be deduced from the twisted
bar spectral sequence.

Example 6.10 We have

H?RP1tw DEŒe� ; N̨.0/; N̨.1/; : : :�DEŒe� �˝�Œ N̨.0/�; je� j D �; j N̨.i/j D �2i ;

H?CP1tw DEŒ Ň.0/; Ň.1/; : : :�D �Œe�� where j Ň.i/j D �2i :

Theorem 6.11 We have

H?K.Z; 2�/DEŒe2� �˝�Œ Nx.0/� where je2� j D 2�; j Nx.0/j D 2�:

Remark 1.1 The spaces B�F2'K� 'RP1tw and B�S1'K.Z; �/'CP1tw have well-known models
arising as colimits of C2–equivariant Grassmanian manifolds. In particular, if RiCj� is the real C2–
representation composed of a direct sum of i copies of the trivial representation and j copies of the sign
representation, and the complex C2–representation CiCj� is defined similarly, then RP1tw is the colimit
of the natural cellular inclusions

� � � ,! P .R1C� / ,! P .R2C� / ,! P .R2C2� / ,! � � �
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and CP1tw is the colimit of the natural cellular inclusions

� � � ,! P .C1C� / ,! P .C2C� / ,! P .C2C2� / ,! � � � :

In contrast, the space B�S� 'K.Z; 2�/ remains more mysterious. The author does not know of any
models for this space besides applying the twisted bar construction to S� .

In forthcoming work, we will use the homology of H?KV to deduce differentials in the twisted bar
spectral sequence. The beginning stages of this work are described in Section 6.

1.2 Paper structure

This paper has two primary aims: extending Ravenel–Wilson Hopf ring techniques [Ravenel and Wilson
1977; 1980; Wilson 1982] to C2–equivariant homotopy theory, and computing the RO.C2/–graded
homology of C2–equivariant Eilenberg–Mac Lane spaces associated to the constant Mackey functor F2.
These topics are investigated in several sections.

The first section consists of an introduction providing context for the main results, a description of the
paper structure, and a list of notational conventions.

The second section recalls classical Ravenel–Wilson Hopf ring methods.

The third section recollects material from equivariant homotopy theory necessary for understanding our
proof and computations.

The fourth section details the bar and twisted bar constructions, which are trivial and sign representation
delooping functors respectively.

The fifth section applies the preliminaries of the previous sections to study multiplicative structures on
C2–equivariant Eilenberg–Mac Lane spaces. This section contains some primary extensions of Ravenel–
Wilson Hopf ring methods to C2–equivariant homotopy theory (Theorem 5.4). It also contains our
calculation of the RO.C2/–graded homology of many C2–equivariant Eilenberg–Mac Lane spaces KV

associated to the constant Mackey functor F2 (Theorems 5.6, 6.6, and 6.7).

The sixth section details a number of computations and observations regarding the RO.C2/–graded bar
and twisted bar spectral sequences. The examples we provide should be a useful stepping stone towards
further computations.

The seventh section describes a few questions of immediate interest given the results of this paper.

1.3 Notational conventions
� The asterisk � denotes integer grading.

� The star ? denotes representation grading.

Algebraic & Geometric Topology, Volume 24 (2024)
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� By the classical or nonequivariant Eilenberg–Mac Lane space Kn, we mean the classical nonequiv-
ariant Eilenberg–Mac Lane space Kn DK.Fp; n/, where p is prime.

� C2 is the cyclic group of order two with C2 D h i.

� � denotes the one-dimensional sign representation of C2.

� � is the regular representation of C2.

� SV is the one-point compactification of a finite-dimensional real representation V where the point
at infinity is given a trivial group action and taken as the base point.

� †V .�/D SV ^�.

� �V .�/ is the space of continuous based maps Map�.S
V ;�/ where the group action is given by

conjugation.

� S is the category of spectra.

� SG is the category of G–spectra indexed on a complete universe.

Acknowledgements
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2 Classical Ravenel–Wilson Hopf ring methods

Classically, one place Hopf rings arise in homotopy theory is in the study of �–spectra. Consider an
�–spectrum

G D fGkg

and a multiplicative homology theory E�.�/ with a Künneth isomorphism for the spaces Gk . The
�–spectrum G represents a generalized cohomology theory with

G�X ' ŒX;G��:

Since GkX is an abelian group, Gk must be a homotopy commutative H–space (in fact Gk is an infinite
loop space). This H–space structure

�WGk �Gk !Gk

gives rise to a product in homology

�WE�Gk ˝E�Gk ŠE�.Gk �Gk/!E�Gk

and the Künneth isomorphism implies the homology is in fact a Hopf algebra.
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If G is a ring spectrum, then G�X is a graded ring and the graded abelian group object G� becomes a
graded ring object in the homotopy category. The multiplication

GkX �GnX !GkCnX

has a corresponding multiplication in G�,

ıWGk �Gn!GkCn;

and applying E�.�/ we have
ıWE�Gk ˝E� E�Gn!E�GkCn

turning E�G into a graded ring object in the category of coalgebras.

As a ring, E�G has a distributive law,

.2.1/ x ı .y � z/D
X
˙.x0 ıy/� .x00 ı z/ where  .x/D

X
x0˝x00;

coming from the distributive law in G�X .

Ravenel and Wilson pursued the idea that these two products could be used to construct many elements in
homology from just a few. They successfully applied this approach to compute the Hopf ring for complex
cobordism [Ravenel and Wilson 1977], the Morava K–theory of nonequivariant Eilenberg–Mac Lane
spaces [Ravenel and Wilson 1980], and the mod p homology of classical Eilenberg–Mac Lane spaces
[Wilson 1982].

In the case of classical Eilenberg–Mac Lane spaces, the Eilenberg–Mac Lane spectrum

HFp D fK.Fp; n/g D fKng

is a ring spectrum with �KnC1 'Kn. Further, H�.�/ WDH�.�IFp/, ordinary homology with mod p
coefficients, has a Künneth isomorphism and thus the homology H�K� has the structure of a Hopf ring.

A key computational insight of Ravenel and Wilson was that the bar spectral sequence

E2
�;� ' TorE�Gk

�;� .E�;E�/)E�GkC1

is in fact a spectral sequence of Hopf algebras. The additional structure of the ı multiplication in the bar
spectral sequence meant that they could inductively deduce the homology of Eilenberg–Mac Lane spaces
using standard homological algebra. Starting with elements in H�K1 and H�CP1 and identifying circle
products in the bar spectral sequence, Ravenel and Wilson computed the Hopf ring associated to the
mod p Eilenberg–Mac Lane spectrum [Wilson 1982].

To describe their answer, let

e1 2H1K1; ˛i 2H2iK1; ˇi 2H2iCP1; i � 0:

The generators are
e1; ˛.i/ D p̨i ; ˇ.i/ D p̌i

Algebraic & Geometric Topology, Volume 24 (2024)
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with coproduct

 .˛n/D

nX
iD0

˛n�i ˝˛i ;  .ˇn/D

nX
iD0

ˇn�i ˝ˇi :

For finite sequences,
I D .i1; i2; : : :/; 0� i1 < i2 < � � � ;

J D .j0; j1; : : :/; jk � 0;

define
˛I D ˛.i1/ ı˛.i2/ ı � � � ; ˇJ

D ˇ
ıj0

.0/
ıˇ
ıj1

.1/
ı � � � ;

and let T .x/ denote the truncated polynomial algebra Fp Œx�=.x
p/.

Theorem A (Ravenel and Wilson [Wilson 1982]) We have

H�K� '˝I;J E.e1 ı˛I ıˇ
J /˝I;J T .˛I ıˇ

J /

as an algebra where the tensor product is over all I and J and the coproduct follows by Hopf ring
properties from the ˛’s and ˇ’s.

When the prime p D 2, there are additional relations e1 ı e1 D ˇ.0/ and ˛.i�1/ ı ˛.i�1/ D ˇ.i/. In this
case, the theorem can be stated using only circle products of generators of RP1.

For finite sequences
I D .i.�1/; i0; i1; i2; : : :/; ik � 0;

define
.e1˛/

I
D e
ıi.�1/

1
ı˛
ıi0

.0/
ı˛
ıi1

.1/
ı � � � :

Theorem B (Ravenel and Wilson [Wilson 1982]) Then

H�Kn Š˝I EŒ.e1˛/
I �;

where
P

ik D n, and considering all spaces at once ,

H�K� '˝I EŒ.e1˛/
I �

as an algebra where the tensor product is over all I and the coproduct follows by Hopf ring properties
from the ˛’s.

Ravenel and Wilson also show that homology suspending ˇ.i/ to define

�i 2H2.pi�1/H;

and ˛.i/ to define
�i 2H2pi�1H:

Theorem A then implies that stably,

H�H 'EŒ�0; �1; : : :�˝P Œ�1; �2; : : :�:
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3 Equivariant preliminaries

We set notation and recall equivariant foundations. Throughout, the group G D C2.

Given an orthogonal real G–representation V , SV denotes the representation sphere given by the one-point
compactification of V . For a p–dimensional real C2–representation V , we write

V ŠR.p�q;0/
˚R.q;q/

where R.1;0/ is the trivial 1–dimensional real representation of C2 and R.1;1/ is the sign representation.
We allow p and q to be integers, so V may be a virtual representation. The integer p is called the
topological dimension while q is the weight or twisted dimension of V ŠR.p;q/.

The V th graded component of the ordinary RO.C2/–graded Bredon equivariant homology of a C2–space
X with coefficients in the constant Mackey functor F2 is denoted H

C2

V
.X IF2/ D Hp;q.X IF2/. To

consider all representations at once we write H?.X /, and when working nonequivariantly H�.X
e/

denotes the singular homology of the underlying topological space with F2 coefficients.

It is often convenient to plot the bigraded homology in the plane. Our plots have topological dimension p

on the horizontal axis and weight q on the vertical axis.

The homology of a point with coefficients in the constant Mackey functor F2, is the bigraded ring

H?.pt;F2/D F2Œa;u�˚
F2Œa;u�

.a1;u1/
f�g

where jaj D �� , juj D 1� � , and j� j D 2� � 2. A bigraded plot of H?.pt;F2/ appears in Figure 1. The
image on the left is more detailed with each lattice point within the two cones representing a copy of F2.
The image on the right is a more succinct representation and appears in figures illustrating our spectral
sequence computations.

The genuine equivariant Eilenberg–Mac Lane spectrum representing H?.�/ is HF2, the Eilenberg–
Mac Lane spectrum for the C2 constant Mackey functor F2. It has underlying nonequivariant spec-
trum HF2. We denote the spaces of HF2 by

HF2 D fK.F2;V /gVŠk�Cl D fKV gVŠk�Cl :

p

q

ua

�

p

q

Figure 1: H?.pt;F2/ with axis gradings determined by V 'Rp�q˚Rq� .
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Analogously to the nonequivariant case, HF2 is characterized up to C2–equivariant homotopy by
H V .X IF2/D ŒX;KV � naturally for all C2–spaces X.

We recall a computational lemma due to Behrens and Wilson [2018], which allows us to check whether a
set of elements in the RO.C2/–homology in fact forms a free basis for H?.X /, greatly simplifying our
computations. To state this lemma, we first define two homomorphisms, ˆe and ˆC2 . Let Ca be the
cofiber of the Euler class a 2 �

C2
��S given geometrically by the inclusion

S0 ,! S� :

Applying �C2

V
to the map

H ^X !H ^X ^Ca;

we get a homomorphism
ˆe
WHV .X /!HjV j.X

e/:

Taking geometric fixed points of a map
SV
!H ^X

gives a map
SV C2

!HˆC2 ^XˆC2 :

Using the equivalence Hˆ
� X 'H�.X

ˆC2/Œa�1u� coming from HˆC2 '
W

i�0†
iHF2 and passing to

the quotient by the ideal generated by a�1u gives the homomorphism

ˆC2 WHV .X /!H
jV C2 j

.XˆC2/:

Lemma 3.1 [Behrens and Wilson 2018] Suppose X 2 SpC2 and fbig is a set of elements of H?.X /

such that

(1) fˆe.bi/g is a basis of H�.X
e/ and

(2) fˆC2.bi/g is a basis of H�.X
ˆC2/.

Then H?.X / is free over H? and fbig is a basis.

We use the following notation for H?K� .

Theorem 3.2 [Hu and Kriz 2001] H?.RP1tw /DH?.pt/Œ˛; ˇ�=.˛2D a˛Cuˇ/ where j˛j D � , jˇj D �,
jaj D � , and juj D � � 1.

Since this cohomology is free, the homology H?K� immediately follows. In our notation we have
elements

e� 2H�K� ; N̨ i 2H�iK� .i � 0/:

The generators are
e� ; N̨.i/ D N̨2i .i � 0/
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with coproduct
 .e� /D 1˝ e� C e� ˝ 1C a.e� ˝ e� /;

 . N̨n/D

nX
iD0

N̨n�i ˝ N̨ i C

n�1X
iD0

u.e� N̨n�1�i ˝ e� N̨ i/;

and ring structure H?K� ' EŒe� ; N̨.i/� which can be deduced from the twisted bar spectral sequence
computing H?B�F2 ŠH?RP1tw .

We also require notation for H?K.Z; �/. This can be deduced by applying the RO.C2/–graded bar
spectral sequence to S� . Let

Ň
i 2H�iK.Z; �/ .i � 0/:

The generators are
Ň
.i/ D

Ň
2i .i � 0/

with coproduct

 . Ňn/D

nX
iD0

Ň
n�i ˝

Ň
i

and ring structure
H?K.Z; �/'EŒˇ.i/�:

3.1 The fixed point spaces of C2–equivariant Eilenberg–Mac Lane spaces

It is useful to understand the C2 fixed points of the C2–equivariant Eilenberg–Mac Lane spaces KV in
applications of the Behrens–Wilson computational lemma. We state a relevant proposition due to Caruso.

Proposition 3.3 [Caruso 1999] Let G D Cp and V be an n–dimensional fixed point free virtual
representation of G with n> 0 and m an integer. Then

K.Fp;mCV /Cp 'K.Fp;m/� � � � �K.Fp;mC n/:

3.2 Notation for the underlying nonequivariant homology of K
C2

V

To use the Behrens–Wilson lemma, we also need to understand the homology of the fixed point spaces.
Applying Theorem B to the nonequivariant homology of .Kn� /

C2 gives

H�.K
C2
n� /'EŒe0; a.i1/; a.i1/ ı a.i2/; : : : ; a.i1/ ı � � � ı a.in/�

where 0� i1 � i2 � � � � � in, je0j D 0, and ja.i/j D 2i .

4 Bar and twisted bar constructions

A first task in implementing the Ravenel–Wilson Hopf ring approach is to generalize the bar spectral
sequence to the C2–equivariant case. In the classical story, the bar spectral sequence is used to inductively
compute the homology of Kn ' BKn�1 from H�Kn�1. In the C2–equivariant setting, our spaces KV

are bigraded on the trivial and sign representations of C2. Due to this new grading, we should now
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additionally compute the homology of KVC� inductively from H?KV . In order to do so, we need a
good model of �–delooping. We begin by reviewing the classical bar construction which is a trivial
representation delooping functor.

Construction 4.1 (Classical bar construction) For a topological monoid A, the pointed space BA is
defined as a quotient

BAD
a

n

�n
�A�n=�

where the relation � is generated by

(1) .t1; : : : tn; a1; : : : ; an/� .t1; : : : ; Oti ; : : : ; tn; a1; : : : ; Oai ; .aiaiC1/; : : : ; an/ if ti D tiC1 or ai D �;

(2) for i D n, delete the last coordinate if tn D 1 or an D �; for i D 0, delete the first coordinate if
t0 D�1 or a0 D �; and �n denotes the topological simplex

�n
D f.t1; t2; : : : ; tn/ 2Rn

j �1� t1 � � � � � tn � 1g:

Remark 4.2 We use the slightly nonstandard topological n–simplex

�n
D f.t1; t2; : : : ; tn/ 2Rn

j �1� t1 � � � � � tn � 1g

so that when we introduce a C2 action, the simplex rotates around the origin. This makes writing
down a model for the H–space structure on the C2–equivariant Eilenberg–Mac Lane spaces KV more
straightforward.

Given a commutative monoid A, we observe that BA is also a commutative monoid via the pairing

�W BX �BX ! BX

defined by

.t1; : : : ; tn;x0; : : : ;xn/�� .tnC1; : : : ; tnCm;xnC1; : : : ;xnCm/D .t�.1/; : : : ; t�.nCk/;x�.1/; : : : ;x�.nCm//;

where � is any element of the symmetric group on nC k letters such that t�.i/ � t�.iC1/. This pairing
was first described by Milgram [1967].

Definition 4.3 [Liu 2020] A C2–space A is a twisted monoid if it is a topological monoid in the
nonequivariant sense with the product satisfying  .xy/D  .y/ .x/ where C2 ' h i.

Construction 4.4 [Liu 2020] For any twisted monoid A, construct B��A in the same way as the
nonequivariant bar construction , that is such that B�n AD�n �An. However , define a C2–action on An

by
 .a1; a2; : : : ; an/D .an; an�1; : : : ; a1/:

Then the C2–actions commute with the face and degeneracy maps as  ısiD sn�iı and  ıdiDdn�iı .
Further , define the C2–action on each

�n
D f.t1; t2; : : : ; tn/ 2RtC1

j �1� t1 � � � � � tn � 1g:
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by  .t1; t2; : : : ; tn/D .�tn;�tn�1; : : : ;�t1//. Then define B�A to be the geometric realizationa
�n
�An=� :

Example 4.5 The space B�K0 'RP1tw is the space of lines through a direct sum of an infinite number
of copies of the C2–regular representation �.

We can inductively define an H–space pairing on BlBk�F2, similar to the one given by Milgram in the
nonequivariant case. Define a mapping

�� W B
�X �B�X ! B�X

by

.t0; : : : ; tn;x0; : : : ;xn/�� .tnC1; : : : ; tnCm; xnC1; : : : ;xnCm/D .t�.1/; : : : ; t�.nCk/;x�.1/; : : : ;x�.nCm//;

where � is any element of the symmetric group on nCk letters such that t�.i/ � t�.iC1/. Then �� is well
defined, continuous, and C2–equivariant. Going forward, we suppress the � notation in �� , using only �
to denote the H–space pairing. The relevant C2–action is deduced from context.

Definition 4.6 A G–space X is said to be G–connected if X H is connected for each subgroup H of G.

Proposition 4.7 [Liu 2020] For any commutative monoid A in the category of based C2–spaces , the
V –degree bar construction BVA is defined by applying the ordinary bar construction l times and the
twisted bar construction m times for V D l Cm� . There exists a natural map A!�VBVA. When A is
C2–connected , this map is a C2–equivalence.

5 Multiplicative structures on C2–equivariant Eilenberg–Mac Lane spaces

We describe multiplicative structures on C2–equivariant Eilenberg–Mac Lane spaces, extending Ravenel
and Wilson’s description of similar structures on classical nonequivariant Eilenberg–Mac Lane spaces.
We use our understanding of these structures to compute the RO.C2/–graded homology of many C2–
equivariant Eilenberg–Mac Lane spaces KV associated to the constant Mackey functor F2. In particular,
we compute the RO.C2/–graded homology of all C2–equivariant Eilenberg–Mac Lane spaces K��

and K�C�.

5.1 Multiplicative structures on KV

The RO.C2/–graded cup product is induced by a map

.5.1/ ı D ıV;W WKV ^KW !KVCW :

We will construct ıV;W explicitly within the framework of trivial and �–representation delooping given
by B and B� . We will also discuss how ıV;W descends to a product on the fixed points.
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Given a real C2 representation V Š lCk� , the Eilenberg–Mac Lane space KV is a V –fold delooping of
F2 and therefore can be constructed iteratively by taking BlBk�F2 where l and k are nonnegative integers.
The following construction extends exposition by Ravenel and Wilson [1980] in their computation of the
Morava K–theory of Eilenberg–Mac Lane spaces.

We construct the map (5.1) inductively on V . Assuming ıV;W has been defined, we define ıVC1;W and
ıVC�;W by replacing KVC1;KVCWC1 and KVC� ;KVCWC� with their bar and twisted bar construc-
tions respectively. In both cases this is denoted as follows; there is a notationally suppressed C2–action
each case:

.5.2/
�a

n

�n
�Kn

V =�

�
^KW !

�a
n

�n
�KVCW =�

�
:

Let t 2�n, x D .x0; : : : ;xn/ 2KV , and y 2KW . The image of xi ^y 2KV ^KW under the map (5.1)
is denoted xi ıy. We use the notation x ıy to mean .x0 ıy; : : : ;xn ıy/. Define (5.2) by

.5.3/ f.t;x/g ıy D f.t;x ıy/g:

Theorem 5.4 The above construction is well defined and gives the cup product pairings

ıWKVC1 ^KW !KVCWC1; ıWKVC� ^KW !KVCWC� :

Lemma 5.5 The map ıWK0 �KV !KV is given by .q/ ıx D x�q where q 2 F2.

Proof This map multiplies �C2

V
KV 'F2 by q which is what ı should do restricted to .q/�KV 'KV .

Proof of Theorem 5.4 We must show the map (5.2) defined by (5.3) is well defined and in fact gives the
cup product pairings ıWKVC1 ^KW !KVCWC1 and ıWKVC� ^KW !KVCWC� . Our proof is a
direct extension of the nonequivariant argument of Ravenel and Wilson [1980]. We prove our result by
induction on i in the � direction noting that the result also holds and is similar in the trivial representation
direction (that is we assume the statement holds for V , and show it for V C � ). Assume we have proved
Theorem 5.4 for KV ^KW !KVCW with Lemma 5.5 beginning the induction. We need our construction
to satisfy

.z1 � z2/ ıy D .z1 ıy/� .z2 ıy/:

For i D 0, zi D qi 2 F2 DK0. So,

.q1 � q2/ ıy D .q1C q2/ ıy D yq1Cq2 D y�q1 �y�q2 D .q1 ıy/� .q2 ıy/:

For i > 0,
Œz1 � z2� ıy D Œ.t;x/� .tnC1; : : : ; tnCk IxnC1; : : : ;xnCk/� ıy

D .t�.1/;:::;t�.nCk/Ix�.1/;:::;x�.nCk/
/ ıy

D .t�.1/; : : : ; t�.nCk/Ix�.1/ ıy; : : : ;x�.nCk/ ıy/

D .t Ix ıy//� .tnC1; : : : ; tnCk IxnC1 ıy; : : : ;xnCk ıy/

D .z1 ıy/� .z2 ıy/;
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where the second line is due to the definition of �, the third is due to the induction hypothesis and (5.3),
and the fourth is due to the definition of �.

We must show (5.3) gives well-defined maps KVC1^KW !KVCWC1 and KVC� ^KW !KVCWC� .
The relations in the (twisted) bar construction make this the case. We show the main case, leaving the
others to the reader. Assume 0� q < n with tq D tqC1 or xq D �. Then

.t;x/ ıy D .t;x ıy/

� .t1; : : : ; Otq; : : : ; tnIx1 ıy; : : : ; .xq ıy/� .xqC1 ıy/; : : : ;xn ıy/

D .t1; : : : ; Otq; : : : ; tnIx1 ıy; : : : ; .xq �xqC1/ ıy; : : : ;xn ıy/

D .t1; : : : ; Otq; : : : ; tnIx1; : : : ;xq �xqC1; : : : ;xn/ ıy;

which is the necessary relation. That this map factors through the smash product is straightforward to
verify using induction.

The remaining task is to show that this is the cup product pairing map. This follows by induction from
the observation that ı commutes with (signed) suspension on the first factor since B1KV ' S1 ^KV

and B�
1

KV ' S� ^KV , and following diagrams commute:

S1 ^KV ^KW S1 ^KVCW S� ^KV ^KW S� ^KVCW

KVC1 ^KW KVCWC1 KVC� ^KW KVCWC�

5.2 Multiplicative structures on K
C2

V

We turn to understanding the ı–product on the fixed points of the spaces KV . Notice .B�A/C2 consists
of points of the form

.t1; : : : ; tn; 0;�tn; : : : ;�t1; a1; : : : ; an; a;  .an/; : : : ;  .a1// 2 .B
�A/Œ2nC1�

where a 2AC2 since for

.t1; : : : ; tm;�tm; : : : ;�t1; a1; : : : ; am;  .am/; : : : ;  .a1// 2 .B
�A/Œ2n�;

there is a degeneracy map inducing an equivalence to

.t1; : : : ; tn; 0;�tn; : : : ;�t1; a1; : : : ; an;�;  .an/; : : : ;  .a1// 2 .B
�A/Œ2nC1�:

Taking the fixed points in the construction of map (5.2) we recover the classical nonequivariant ı product
on the fixed point spaces.

5.3 Circle product generators for H?Kn�

Recall that HF2 has generators a 2HF2f��g and u 2HF2f1��g. To describe our answer, we recall our
notation for H?K� . Let

e� 2H�K� ; N̨ i 2H�iK� .i � 0/:
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The homology, H?K� , is exterior on generators

e� ; N̨.i/ D N̨2i .i � 0/;

with coproduct
 .e� /D 1˝ e� C e� ˝ 1C a.e� ˝ e� /;

 . N̨n/D

nX
iD0

N̨n�i ˝ N̨ i C

n�1X
iD0

u.e� N̨n�1�i ˝ e� N̨ i/:

For finite sequences
J D .j� ; j0; j1; : : :/; jk � 0;

define
.e� N̨ /

J
D eıj�� ı N̨

ıj0

.0/
ı N̨
ıj1

.1/
ı � � � ;

where the ı product comes from the pairing ıWKV ^KW !KVCW .

Theorem 5.6 Then
H?K�� Š˝J EŒ.e� N̨ /

J �

as an algebra , where the tensor product is over all J and the coproduct follows by Hopf ring properties
from the N̨ ’s.

Proof For finite sequences
J D .j� ; j0; j1; : : :/; jk � 0;

define kJk D
P

jk (including the � subscript) and

.e� N̨ /
J
D eıj�� ı N̨

ıj0

.0/
ı N̨
ıj1

.1/
ı � � � :

Consider elements .e� N̨ /J with kJk D n in the homology of B�K.n�1/� .

To show these elements in fact form a free basis for the homology, we show that they satisfy the conditions
of the Behrens–Wilson computational lemma. The map to the underlying homology, H?Kn� !H�Kn,
the underlying homology of H?Kn� , is given by

.e� N̨ /
J
7! .e1˛/

J :

The map on fixed points H?Kn� !H�K
C2
n� is given by

.e� N̨ /
J
7! e

ıj�
0
ı a
ıj0

.0/
ı a
ıj1

.1/
ı � � � :

Thus these elements from a free basis for H?Kn� .

We deduce the multiplicative ring structure using a Hopf ring argument due to Ravenel and Wilson
[Wilson 1982]. Each .e� N̨ /J can be written as e

ıj�
� ı N̨

ıj0

.0/
ı N̨
ıj1

.1/
ı � � � ı N̨

ıjn

.n/
where n is some nonnegative

integer or nD � . By the distributive law (2.1),

.e� N̨ /
J
� .e� N̨ /

J
D eıj�� ı N̨

ıj0

.0/
ı N̨
ıj1

.1/
ı � � � ı . N̨.n/ � N̨.n//D 0:
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The coproduct is induced by the map K� � � � � �K� !Kn� which is a map of coalgebras on H?.

Remark 5.7 Note that eık
0
D e0 for k > 0 by Lemma 5.5.

6 Bar and twisted bar spectral sequence computations

The first half of this section focuses on the RO.C2/–graded bar spectral sequence. We describe the
d1–differentials, the Tor term coinciding with the E2–page, and Hopf ring structure present in the spectral
sequences computing H?KV when � C 1� V .

In the second half of this section, we study the analogous twisted spectral sequence giving evidence of
arbitrarily long equivariant degree shifting differentials appearing computations of the RO.C2/–graded
homology of the spaces K�� . We describe how these differentials appear to arise in a structured way
involving the norm.

6.1 The RO.C2/–graded bar spectral sequence

The RO.C2/–graded bar spectral sequences arises via a filtered complex in the same way as the ordinary
integer graded version. The bar construction B on a topological monoid A, is filtered by

BŒt �A'
a

t�n�0

�n
�An=�� BA

with associated graded pieces
.BŒt �A=BŒt�1�/A' S t

^A^t :

Applying H?.�/ to these filtered spaces gives the RO.C2/–graded bar spectral sequence with E1–page

E1
t;? DH?.S

t /˝H?.A/
˝t ;

computing H?.BA/. This RO.C2/–graded bar spectral sequence has

E2
�;? ' TorH?KV

�;? .HF2?;HF2?/)H?BKV ŠH?KVC1

and behaves similarly to the integer graded version in many examples. In particular, the spectral se-
quences computing the RO.C2/–graded homology of BS1 'CP1, BS� 'CP1tw , and BK0 'RP1

(Example 6.1) collapse for degree reasons.

Example 6.1 We have

H?CP1 DEŒˇ.0/; ˇ.1/; : : :�D �Œe2� where jˇ.i/j D 2iC1;

H?CP1tw DEŒ Ň.0/; Ň.1/; : : :�D �Œe�� where j Ň.i/j D �2i ;

H?RP1 DEŒe1; ˛.0/; ˛.1/; : : :� where je1j D 1 and j˛.i/j D 2iC1:

Remark 6.2 The relations e1 ı e1 D e2 D ˇ1 D ˇ.0/ and e1 ı e� D e� D Ň1 D Ň.0/ in RO.C2/–graded
homology are analogous to the classical relation e1 ı e1 D ˇ1 D ˇ.0/ in nonequivariant integer graded
homology (see [Wilson 1982, Proof of 8.5]).
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Figure 2: Example: a d1–differential in the RO.C2/–graded bar spectral sequence.

6.2 The RO.C2/–graded bar spectral sequence: d1–differentials

The classical bar construction does not introduce any group action; hence the d1–differentials in the
RO.C2/–graded bar spectral sequence behave in almost the same as those in the underlying integer-graded
spectral sequence. The difference is that the cycles supporting d1–differentials in the RO.C2/–graded
spectral sequence are representation degree shifted copies of the RO.C2/–graded homology of the point
and their targets are the same. This is in contrast with the integer-graded case where the differentials
are maps of nongraded rings. For example, all d1 differentials in the RO.C2/–graded case look and
behave like those shown in Figure 2, where the bigraded homology is plotted and the filtration degree is
suppressed. We follow this convention for all remaining figures.

In greater specificity, Figure 3 shows a d1 differential in the RO.C2/–graded bar spectral sequence

E2
�;? ' TorH?K�

�;? .HF2?;HF2?/)H?BK� ŠH?K�C1

p

q

�1

0

1

2

3

4

5

6

7

8

�1 1 2 3 4 5 6 7 8

Œxy�

Œx j y�

d1

Figure 3: A more detailed picture of a d1–differential in the RO.C2/–graded bar spectral sequence.
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computing the RO.C2/–graded homology of K�. In the figure, x WD e� with jxj D � and y WD N̨.0/ with
jyj D �. The two double cones shown are supported by the bar representatives Œxy� and Œx j y�. The
d1–differential maps from the unit of the infinite-dimensional graded ring HF2? supported by Œx j y� onto
the unit of the RO.C2/–graded homology of a point supported by the bar representative Œxy�. Figure 3
depicts that this map of units in fact induces a map of graded rings surjecting onto the copy of the
RO.C2/–graded homology of a point supported by Œxy�.

6.3 Hopf ring structure in the RO.C2/–graded bar spectral sequence and H?KV , where
� C 1� V

In Theorem 5.6, we computed H?Kn� , showing that it is free over H?. To compute H?KV for real
representations V Š iCj� , we consider ı–product structure in the RO.C2/–graded bar spectral sequence

E2
�;� ' TorH?KV

�;� .H?;H?/)H?KVC1;

and observe that theorems of Thomason and Wilson extend directly from the nonequivariant integer
graded setting to the C2–equivariant RO.C2/–graded setting. In Theorem 6.4, we need an additional
flatness hypothesis to account for H?.X IF2/ not necessarily being flat, unlike H�.X IF2/.

Theorem 6.3 [Thomason and Wilson 1980] The ı product factors as

BtKV �KW BtKVCW

ıW BKV �KW BKVCW

� �

and the map
.BtKV =Bt�1KV /�KW .BtKVCW =Bt�1KVCW /

S t ^K^t
V
�KW S t ^K^t

VCW

' '

is described inductively as .k1; : : : ; kt / ı k D .k1 ı k; : : : ; kt ı k/.

Theorem 6.4 [Thomason and Wilson 1980] Let Er
�;?.E?KV /)E?KVC1 be the bar spectral sequence

and suppose Er is H?–flat for all i � r . Compatible with

ıWE?KVC1˝H?
E?KW !E?KVCWC1;

there is a pairing

.6.5/ Er
t;?.E?KV /˝H?

E?KW !Er
t;?.E?KVCW /

where dr .x/ ıy D dr .x ıy/. When r D 1 this pairing is given by

.k1j � � � jkt / ı k D
X
˙.k1 ı k 0jk2 ı k 00j � � � jks ı k.t//

where k!
P

k 0˝ k 00˝ � � �˝ k.t/ is the iterated reduced coproduct.
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Theorem 6.6 The RO.C2/–graded homology of KV , where � C 1� V , is exterior on generators given
by the cycles on the E2–page of the RO.C2/–graded bar spectral sequence.

Proof Let Er
�;?.E?KV /) E?KVC1 be the bar spectral sequence and � W KV ! KV �KV be the

diagonal map. If Er is H?–flat for all i � r , then there is a natural transformation

� WEr .X /˝Er .Y /!Er .X �Y /

and the coalgebra structure on Er is given by ��1��.

Suppose Er
�;? where r > 2 is the first page after the E2

�;?–page with a nonzero differential. Then
Er
�;? DE2

�;? Š TorH?KV
�;� .H?;H?/ which is a coalgebra, so � is an isomorphism and the differentials

dr satisfy the Leibniz and co-Leibniz rules.

Consider the shortest nonzero differential dr in lowest topological degree. If such a differential exists, it
must map from an algebra indecomposable to a coalgebra primitive. To see this, we recount a classical
Hopf ring argument, which also appears in [Ravenel and Wilson 1980] and [Angeltveit and Rognes 2005].
Suppose dr .xy/¤ 0 and xy is in lowest topological degree. Then

dr .xy/D dr .x/y˙xdr .y/

so dr .x/ or dr .y/ are nonzero, contradicting that xy is in lowest topological degree. Dually, if dr .z/ is
not a coalgebra primitive, then

 .z/D zj1C 1jzC†z0i jz
00
i

and the co-Leibniz formula
 ı dr D .dr j1˙ 1jdr / 

implies dr .z
0
i/ or dr .z

00
i / is nonzero, contradicting that z is in lowest topological degree.

There are no coalgebra primitives on E2
�;? DEr

�;? due to the coproduct structure on H?K� . Thus there
are no nontrivial differentials and the spectral sequence collapses.

Let x be a cycle on E2
�;?. To show there are no extension problems, we only need to show

x �x D 0:

The multiplication by 2 map 2 WKV !KV , which factors as the composition

KV
�
�!KV �KV

�
�!KV ;

is homotopically trivial so
0D 2? WH?KV !H?KV :

Consider the coproduct structure on H?K�� and E2
�;?. There is a cycle y on E2

�;?, with the symmetric
term of the coproduct  .y/ equal to x˝x. This means there is y such that 2?y D x �x, so x �x D 0 as
desired.

Algebraic & Geometric Topology, Volume 24 (2024)



The HF2–homology of C2–equivariant Eilenberg–Mac Lane spaces 4509

6.4 Circle product names for the generators of H?K�Ci

We give names to the generators of H?K�Ci and indicate how the bookkeeping becomes increasingly
complicated as the number of sign representations in V where 1C � � V increases (Example 6.8).

To write these answers, we recall our notation for H?K�. Let

Ň
i 2H�iK.Z; �/ .i � 0/:

This gives additional generators,
Ň
.i/ D

Ň
2i .i � 0/;

of H?K� with coproduct

 . Ňn/D

nX
iD0

Ň
n�i ˝

Ň
i :

Then for finite sequences

I D .i1; i2; : : : ; ik/; 0� i1 < i2 < � � � ;

W D .w1; w2; : : : ; wq/; 0� w1 <w2 < � � � ;

J D .j�1; j0; j1; : : : ; j`/; where j�1 2 f0; 1g and all other jn � 0;

Y D .y�1;y0;y1; : : : ;yr /; where y�1 2 f0; 1g and all other yn � 0;

define
.e1˛ˇ/

I;J
D e
ıj�1

1
ı˛.i1/ ı˛.i2/ ı � � � ı˛.ik/ ıˇ

ıj0

.0/
ıˇ
ıj1

.1/
ı � � � ıˇ

ıj`
.`/
;

.e1˛ˇ/
W ;Y
D e
ıy�1

1
ı˛.w1/ ı˛.w2/ ı � � � ı˛.wq/ ıˇ

ıy0

.0/
ıˇ
ıy1

.1/
ı � � � ıˇ

ıjr

.r/
;

jI j D k; jW j D q; kJk D†jn; kY k D†yn:

Then:

Theorem 6.7 We have

H?K�Ci ŠEŒ.e1˛ˇ/
I;J
ı N̨.m/; .e1˛ˇ/

W ;Y
ı Ň.t/�

where m> ik and m� l , t >wq and t � yr , jI jC2kJkD i and jW jC2kY kD i�1, and the coproduct
follows by Hopf ring properties from the ˛.i/’s , ˇ.i/’s , N̨.i/’s and Ň.i/’s.

We offer a proof distinct from that of Theorem 6.6.

Proof Apply the Behrens–Wilson lemma to the generators .e1˛ˇ/
I;J ı N̨.m/ and .e1˛ˇ/

W ;Y ı Ň.t/

defined in the theorem. The map to the underlying homology is clear as the generators have no a–torsion.
On fixed points,

.e1˛ˇ/
I;J
ı N̨.m/ 7! .e1˛ˇ/

I;J
ı a.m/; .e1˛ˇ/

W ;Y
ı Ň.t/ 7! .e1˛ˇ/

W ;Y
ı a.t/;

giving a basis for K
C2

�Ci ' KiC1 �Ki where the a.i/ are notation for the underlying nonequivariant
homology of K� (see Section 3.2). The multiplicative and comultiplicative structures are deduced
similarly to Theorem 5.6.
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Example 6.8 Consider the RO.C2/–graded bar spectral sequence

E2
�;? ' TorH?K2�

�;? .HF2?;HF2?/)H?BK2� ŠH?K2�C1:

The indecomposable cycles on the E2–page are

Œe� ı e� �; Œe� ı N̨.i/�; Œ N̨.j1/ ı N̨.j2/�;

�.k/.e� ı e� /; �.k/.e� ı N̨.i//; �.k/. N̨.j1/ ı N̨.j2//;

where �.k/.x/ is notation for the bar representative

Œxj � � � jx�„ ƒ‚ …
2i copies

:

Since trivial representation suspension is ımultiplication with e1, we can identify Œe� ıe� � with e1ıe� ıe� ,
Œe� ı N̨.i/� with e1 ı e� ı N̨.i/, and Œ N̨.j1/ ı N̨.j2/� with e1 ı N̨.j1/ ı N̨.j2/. Using the bar spectral sequence
pairing (6.5) compatible with

ıWH?.BK� /˝H?
H?.K� /!H?.BK2� /;

we can identify �.k/.e� ı N̨.i// with Ň.j1C1/ ı N̨.j2C1/, and using the bar spectral sequence pairing (6.5)
compatible with

ıWH?.BK0/˝H?
H?.K2� /!H?.BK2� /;

we can identify �.k/. N̨.j1/ ı N̨.j2// with ˛.i1/ ı N̨.i2/ ı N̨.j3/. By Theorem 6.6, the �.k/.e� ı e� / are also
permanent cycles. However, degree reasons make it impossible to identify them in terms of circle products
(there are too many sign representations) and thus we have a new family of generators which are not
circle products of elements in K1, K� , K�, or K2� .

Corollary 6.9 We have

H?K2�C1ŠEŒe1ıe�ıe� ; e1ıe�ı N̨.i/; e1ı N̨.j1/ı N̨.j2/;
Ň
.j1C1/ı N̨.j2C1/; ˛.i1/ı N̨.i2/ı N̨.j3/; �

.k/.e�ıe� /�

as an algebra , where the coproduct follows by Hopf ring properties from the ˛.i/’s , ˇ.i/’s , N̨.i/’s , Ň.i/’s ,
and coproduct structure on TorHK2�

�;? .HF2?;HF2?/.

As the number of sign representations in V where 1C� �V increases, the number of additional generators
grows, making bookkeeping and identifying homology generators in terms of the bar spectral sequence
pairing (6.5) an increasingly complicated task.

6.5 The RO.C2/–graded twisted bar spectral sequence

We now turn to the twisted analogue of the RO.C2/–graded bar spectral sequence. Similar to the classical
case, the twisted bar construction B�A is filtered by

.B�A/Œt � '
a

t�n�0

�n
�An=�� B�A
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with associated graded pieces

.B�A/Œt �=.B�A/Œt�1�
' Sdt=2e�Cbt=2c ^A^t;

where the C2–action on At is given by  .a1 ^ � � � ^ an/D .an ^ � � � ^ a1/. Applying H?.�/ to these
filtered spaces gives the twisted bar spectral sequence

E1
t;? D

zH?.S
dt=2e�Cbt=2c

^At /)H?B�A;

with differentials
dr WE

r
t;?!Er

t�r;?�1;

computing H?.B
�A/.

In general, this spectral sequence lacks an explicit E2–page and can be difficult to compute. We give some
readily computable examples which collapse on the E1–page and then turn to analyzing the structure of the
twisted bar spectral sequence in examples computing the RO.C2/–graded homology of C2–equivariant
Eilenberg–Mac Lane spaces.

Example 6.10 The RO.C2/–graded twisted bar spectral sequences computing the homology of

B�F2 'K.F2; �/'RP1tw ; B�S1
'K.Z; �/'CP1tw

collapse on the E1–page. As rings,

H?RP1tw DEŒe� ; N̨.0/; N̨.1/; : : :�DEŒe� �˝�Œ N̨.0/�; je� j D �; j N̨.i/j D �2i ;

H?CP1tw DEŒ Ň.0/; Ň.1/; : : :�D �Œe�� where j Ň.i/j D �2i :

We write the proof for H?RP1tw as the computation for H?CP1tw is similar.

Proof We first prove the additive statement that H?RP1tw is a free H?–module with a single generator in
each degree

˙
n
2

�
�C

�
n
2

˘
. We then show H?RP1 has ring structure EŒe� ; N̨.0/; N̨.1/; : : :�DEŒe� �˝�Œ N̨.0/�

where je� j D � and j N̨.i/j D 2i�: We start with the twisted bar spectral sequence

E1
t;? D

zH?.S
dt=2e�Cbt=2c

^F t
2/)H?B�F2:

Specifically,

E1
t;? Š

zH?..B
�
t F2=B

�
t�1/F2/

Š zH?.S
dt=2e�Cbt=2c

^F^t
2 / .by definition/

Š zH?.S
dt=2e�Cbt=2c/˝ zH?.N

C2
e .F^bt=2c

2
^F�2// .freeness & properties of NC2

e /

Š zH?.S
dt=2e�Cbt=2c/˝ zH?.F2/

^t .homology of norm of underlying free space/

where in the last step, since the homology of F2 splits as the homology of induced representation spheres,
the homology of the norm is the norm of the homology of the underlying space [Hill 2022].

Because the filtration degree t corresponds to the topological degree p and differentials dr shift topological
degree down by one, there are no nonzero dr for r > 1. There can be no nonzero d1 because if there
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p

q

2

1

Figure 4: The E1–page of the twisted bar spectral sequence computing H?K� .

were, on passing to the nonequivariant homology of the underlying space, H�RP1, we would be killing
a known generator which is a contradiction. Hence the homology is free with a single generator in each
degree

˙
n
2

�
� C

�
n
2

˘
. This E1–page is depicted in Figure 4.

We deduce the multiplicative structure. There is no element in degree 2� so e� must be exterior. The
remaining exterior structure can also be deduced without appealing to Hopf rings. The multiplication by
2 map 2 WK� !K� , which factors as the composition

K�
�
�!K� �K�

�
�!K�

is homotopically trivial, so
0D 2? WH?K� !H?K� :

Since 2?. N̨.iC1//D N̨.i/ � N̨.i/, this proves the exterior multiplication.

Theorem 6.11 The RO.C2/–graded twisted bar spectral sequence computing the homology of

B�S� 'K.Z; 2�/

collapses on the E1–page. As a ring ,

H?K.Z; 2�/DEŒe2� �˝�Œ Nx.0/� where je2� j D 2�; j Nx.0/j D 2�:

The proof of Theorem 6.11 is analogous to the computation of H?RP1tw given in Example 6.10.

6.6 Higher differentials in the RO.C2/–graded twisted bar spectral sequence

In this section, we use our understanding of H?K�� to analyze the structure of the twisted bar spectral
sequence and find evidence of arbitrarily long equivariant degree shifting differentials.

Consider the RO.C2/–graded twisted bar spectral sequence

E1
t;? D

zH?.S
dt=2e�Cbt=2c

^K^t
� /)H?B�K�
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8

�3�2�1 1 2 3 4 5 6 7 8 9 10 11 12

Œz1� Œz2jz2�

Œz1jz2jz2jz1�

Figure 5: Twisted bar representatives fixed under the C2–action support full double cones.

computing H?K2� . There are two basic building blocks in this spectral sequence. Twisted bar represen-
tatives Œz1 j � � � j zn�, where zi 2H?K� , that are fixed under the C2–action of the twisted bar construction
and those that possess nontrivial C2–action. The twisted bar representatives which are fixed support a full
double cone, that is an RO.C2/–graded representation degree shifted copy of the homology of the point.
An example where jz1j D � and jz2j D � is shown in Figure 5. Let  denote the generator of C2. The
remaining twisted bar representatives come in pairs Œz1 j � � � j zn� and  � Œz1 j � � � j zn�. Each pair gives a
copy of C2C and we choose a single twisted bar representative to represent each copy. In the twisted
bar spectral sequence, the representatives Œz1 j � � � j zn� with nontrivial C2–action support shifted degree
copies of H?C2C as depicted in Figure 6.

p

q

�1

0

1

2

3

4

5

6

7

8

�3�2�1 1 2 3 4 5 6 7 8 9 10 11 12

Œz1jz2� Œz1jz2jz1z2�

Œz2jz1jz1z2�

Figure 6: Twisted bar representatives with nontrivial C2 action support copies of H?C2C.
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Œxjyjxy�

Œyjxjxy�

d1

Œxjyjyjx�

d1

d2

Figure 7: Differentials in the twisted bar spectral sequence computing H?K2� .

A portion of the twisted bar spectral sequence computing H?K2� appears in Figure 7, where x represents
e� and y represents N̨.0/. To compute the d1–differential in this spectral sequence, consider the cofiber
sequence

S0 a
�! S� ! Ca'†C2C:

This induces a long exact sequence in homology involving

H?S0 �a
�!H?S� !H?.C2C/;

as shown in Figure 8. The map
H?.C2C/!H?.S

��1/

is the map depicted in Figure 9.

p

q

�1

0

1

2

3

�1 1 2 3 4

H?S0

p

q

�1

0

1

2

3

�1 1 2 3 4

H?S�

p

q

�1

0

1

2

3

�1 1 2 3 4

H?.C2C/Š F2Œu
˙�f�1g

Figure 8: Computing a d1–differential in the twisted bar spectral sequence.
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H?S��1

hidden
extension

Figure 9: RO.C2/–graded twisted bar spectral sequence d1–differential with hidden extension.

We have shown that the d1–differentials marked in green in Figure 7 both exist and have the behavior of
the map in Figure 8. We also know from Theorem 5.6 that

H?K2� ŠEŒe2� ; N̨.j1/ ı N̨.j2/�

where j1 � j2.

Since the RO.C2/–graded homology of K2� is free over the RO.C2/–graded homology of a point, all
copies of H?C2C appearing on the E1–page must either be killed off or used in shifting the representation
degree of the RO.C2/–graded homology of a point, similar to the equivariant degree shifting differential
d1 and hidden extension of Figure 9.

We also know the underlying integer-graded homology of K2, and have both the forgetful map

H?K2� !H2K2

and the fixed point map

H?K2� !H�.K2� /
C2 ŠH�.K2 �K1 �K0/:

Given that H?K2� is free and in the underlying nonequivariant case Œxy j xy� is killed by a d1 differential
(all generators of H?K2� have nontrivial underlying homology), the entire double cone supported by the
twisted bar representative Œxy j xy� must be hit by a differential.

There is a d1–differential and hidden extension shifting the double cone supported by Œxy j xy� up
by representation degree � so that by the E2–page the double cone is in fact in representation degree
�.jxjC jyj/C�C� D �.�C�/C�C� D 4�C� . We hypothesize there is a d2–differential induced by
a d1–differential supported by Œx j y j y j x�. We notice that Œx j y j y j x� is a norm of Œxy j xy�. We expect
such norms play an important role in governing the structure of all the higher nontrivial differentials.

As one goes farther along in the spectral sequence, considering cycles supported by twisted bar repre-
sentatives such as Œxy j xy j xy� and Œxyz j xyz�, which must all be killed off in order to recover the
correct underlying homology, we see that arbitrarily long equivariant degree shifting differentials are
required in order to arrive at the answer given by Theorem 5.6. We conjecture all such cycles are killed
by differentials induced by a norm structure on the twisted bar spectral sequence.
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7 Related questions

We describe a few questions of immediate interest given the results of this paper.

7.1 Twisted Tor and the RO.C2/–graded twisted bar spectral sequence

In the C2–equivariant setting, the RO.C2/–graded homology of each signed delooping, KVC� , of an
equivariant Eilenberg–Mac Lane space, KV , also independently arises as the result of a C2–equivariant
twisted Tor computation. This can be seen by taking the model of �–delooping defined in [Hill 2022]. In
this model, A is an E�–algebra and

B� .A/D B.A;Map.C2;A/;Map.C2;�//;

where the action of Map.C2;A/ on A is via the E�–structure [Hill 2022, Definition 5.10]. In the case that
A has R–free homology, Hill [2022, Theorem 5.11] constructs yet another twisted bar spectral sequence
with E2–page

E
s;?

2
D TorN

C2
e .i�e R�.i

�
e A//

�s .R?.Map.C2;X //;R?.A//)R?�s.B
� .A//:

Computations with this spectral sequence are complicated and the literature lacks substantial examples.
However, it does have a twisted Tor functor as its E2–page and thus it would be interesting to compare
with our computations.

One notable feature of the nonequivariant computation of H�K.Fp;�/ is that the integer graded bar
spectral sequences collapse on the E2–page [Wilson 1982]. In contrast, we saw that the RO.C2/–graded
twisted bar spectral sequences computing H?K�� have arbitrarily long differentials in Section 6.6. Thus
under favorable circumstances, we hope to formulate a twisted bar spectral sequence with E2–page a
twisted Tor functor arising as a derived functor of the twisted product of HF2–modules, which collapses
in the relevant cases of H?K�� .

Given our computation of H?K�� , such a twisted Tor over an exterior algebra should have the property
that

TorEŒx�
tw ŠEŒ�x�˝�ŒNC2

e x�:

7.2 Global Hopf rings

In their work computing the integer graded homology of classical nonequivariant Eilenberg–Mac Lane
spaces, Ravenel and Wilson obtain a global statement. Specifically:

Theorem C (Ravenel and Wilson [Wilson 1982]) H�K� is the free Hopf ring on H�K0 D H�ŒFp �,
H�K1, and H�CP1 �H�K2 subject to the relation e1 ı e1 D ˇ1.

It is natural to ask if a similar statement be obtained in the C2–equivariant case, and in that case, what
specifically, is the global structure of the Hopf rings that do arise. One may also ask how the Hopf rings
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here relate to Hill and Hopkins’ work [2018] extending Ravenel and Wilson’s construction of a universal
Hopf ring over M U � to C2–equivariant homotopy theory.

7.3 Stabilizing to the C2–dual Steenrod algebra

Besides understanding a global version of the unstable story, it also remains to fully understand how the
unstable answer for H?KV stabilizes to give the C2–equivariant dual Steenrod algebra,

AC2
? DHF2Œ�0; �1; : : : ; �1; �2; : : :�=.�

2
i D .uC a�0/�iC1C a�iC1/:

By Hu and Kriz’s construction [2001] of the C2–equivariant dual Steenrod algebra, we should homology
suspend Ň.i/ to define

�i 2H.2i�1/�H

and N̨.i/ to define
�i 2H2i���H:

However, it is not at all clear what an arbitrary element in H?KV should stabilize to in the C2–equivariant
dual Steenrod algebra. Additionally, there is the interesting problem of understanding how the stable
relation �2

i D .uC a�0/�iC1C a�iC1 arises unstably. We look forward to studying these questions in
forthcoming work.
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Simple balanced three-manifolds, Heegaard Floer homology
and the Andrews–Curtis conjecture
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The first author introduced a notion of equivalence on a family of 3–manifolds with boundary, called
(simple) balanced 3–manifolds in an earlier paper and discussed the analogy between the Andrews–
Curtis equivalence for group presentations and the aforementioned notion of equivalence. Motivated
by the Andrews–Curtis conjecture, we use tools from Heegaard Floer theory to prove that there are
simple balanced 3–manifolds which are not in the trivial equivalence class (ie the equivalence class of
S2 � Œ�1; 1�).
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1 Introduction

Suppose that R D fb1; : : : ; bmg is a finite subset of the free group F.X/ generated by the finite set
X D fa1; : : : ; ang. We denote by .X jR/ the quotient G of F.X/ by the normal subgroup generated
by R. The pair .X;R/ is then called a presentation of G with generators X and relators R, which is
balanced if jX j D jRj. An extended Andrews–Curtis transformation (EAC transformation for short) on
.X;R/ is defined as one of the following transformations, or its inverse, which of course results in another
presentation of G [Wright 1975] (see also [Hog-Angeloni and Metzler 1993]):

(1) Composition Replace b 2R with bb0 for some b0 ¤ b in R.

(2) Inversion Replace b 2R with b�1.

© 2024 MSP (Mathematical Sciences Publishers). Distributed under the Creative Commons Attribution License 4.0 (CC BY).
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4520 Neda Bagherifard and Eaman Eftekhary

(3) Cancellation Replace b D b0aa�1b00 2R with b0b00, where a 2X or a�1 2X .

(4) Stabilization Add a new element a to both X and R.

(5) Replacement Replace a0a or a0a�1 for a0 in all the relators for some a¤ a0 in X .

Stable Andrews–Curtis transformations (or SAC transformations) consist of the first 4 transformations and
their inverses. The presentations P 0 D .X 0; R0/ and P D .X;R/ are called EAC equivalent (resp. SAC
equivalent) if P 0 is obtained from P by a finite sequence of EAC transformations (resp. SAC trans-
formations). For the trivial group, the SAC equivalence class of a presentation is the same as its EAC
equivalence class [Wright 1975]. The stable Andrews–Curtis conjecture (or SAC conjecture) states that
every balanced presentation of the trivial group is SAC equivalent to the trivial presentation, ie .a; a/
(see [Andrews and Curtis 1965]). Most experts expect that the SAC conjecture is not true and there
are potential counterexamples [Brown 1984; Burns and Macedońska 1993; Miller and Schupp 1999;
Myasnikov et al. 2002]. One of the simplest potential counterexamples for the SAC conjecture is given
by P0 D .X0; R0/, where

(1) X0 D fx; yg and R0 D fr D x
�1y2xy�3; s D y�1x2yx�3g

(see [Myasnikov et al. 2002]). The group presentation P0 is considered in this paper in correspondence
with a notion of equivalence for balanced 3–manifolds, as explained below.

A compact oriented 3–manifold N with boundary is called balanced if each component of N has two
boundary components of the same genus. Let @˙N denote boundary components of N where the
orientation of @CN (resp. @�N ) matches with (resp. is the opposite of) the orientation inherited as
the boundary of N . Let �˙ W @˙N ! N denote the inclusion maps and H˙ denote the normalizer of
�˙� .�1.@

˙N// in �1.N /. A balanced 3–manifold is called simple if for each connected component N
of it as above, both quotient groups �1.N /=H˙ are trivial. Associated with each Heegaard diagram
HD .†;˛;ˇ/ of N , there are two balanced presentations P˛.H/ and Pˇ .H/ for the latter quotient groups
where for P˛.H/ (resp. Pˇ .H/) the generators are in correspondence with the ˛ (resp. ˇ) and the relators
are in correspondence with the ˇ (resp. ˛) (see [Bagherifard 2021]). Let p˛.N / and pˇ .N / denote the
EAC equivalence classes of the presentations P˛.H/ and Pˇ .H/, respectively. Note that these EAC
equivalence classes are independent of the choice of the Heegaard diagram H for N . Similarly, we may
define p˛.N / and pˇ .N / for a balanced 3–manifold N which is not connected. If N is a simple balanced
3–manifold, p˛.N / and pˇ .N / are both EAC equivalence classes of presentations for the trivial group.

A notion of equivalence in the family of balanced 3–manifolds was introduced in [Bagherifard 2021]. We
say that a balanced 3–manifold N simplifies to another balanced 3–manifold N 0 if there is an embedded
cylinder C � S1 � Œ�1; 1� in N , with @˙C � S1 � f˙1g � @˙N , such that N 0 is obtained by cutting
N along C and gluing two copies of D2 � Œ�1; 1� to the resulting boundary cylinders in N nC . We
then write N C

�!N 0. We say that a balanced 3–manifold N admits a simplifier if there is a sequence of
simplifications

N DNn
Cn
�!Nn�1

Cn�1
��! � � �

C2
�!N1

C1
�!N0

Algebraic & Geometric Topology, Volume 24 (2024)
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such that N0 is a disjoint union of copies of S2 � Œ�1; 1�. The inverse of a simplification is called an
antisimplification. Two balanced 3–manifolds are called equivalent if they may be changed to one another
by a finite sequence of simplifications, antisimplifications and homeomorphisms. The equivalence of
the balanced 3–manifolds N and N 0 implies that p˛.N /D p˛.N

0/ and pˇ .N /D pˇ .N
0/. Therefore, a

pair of well-defined EAC equivalence classes (of group presentations) are assigned to each equivalence
class of balanced 3–manifolds and in this sense, the equivalence notion between balanced 3–manifolds is
weaker than the EAC equivalence for group presentations. In the family of simple balanced 3–manifolds,
both EAC equivalence classes are presentations of the trivial group. Motivated by the SAC conjecture, it
is thus natural to ask if there is a simple balanced 3–manifold N which is not equivalent to the trivial
simple balanced 3–manifold S2 � Œ�1; 1�. In this paper, we combine the main result of [Bagherifard
2021] with tools from Heegaard Floer theory (see [Ozsváth and Szabó 2004c]) to prove the following
theorem.

Theorem 1.1 There is a simple balanced 3–manifold N with

p˛.N /D pˇ .N /D P0 D Œ.X0; R0/�;

where P0 is given in (1), which is not equivalent to S2 � I .

As mentioned above, besides Heegaard Floer theory, the main tool used in proving Theorem 1.1 is a
fundamental result about the equivalence class of the simple balanced 3–manifold S2 � Œ�1; 1�, which is
proved in [Bagherifard 2021] and may be stated as follows.

Theorem 1.2 [Bagherifard 2021, Theorem 1.6] Every balanced 3–manifold N which is equivalent to
S2 � I admits a simplifier.

The group presentation P0 of (1) is realized by the Heegaard diagram

HD .†; N̨ D f˛1; ˛2g; Ň D fˇ1; ˇ2g/;

illustrated in Figure 1. In fact, the Heegaard diagram H determines a simple balanced 3–manifold N with
p˛.N /D pˇ .N /D ŒP0�. If N is equivalent to S2 � I , Theorem 1.2 implies that N admits a simplifier.
We have @N D @CN q�@�N where @˙N are surfaces of genus 1. If N admits a simplifier, there is
a nontrivial cylinder C in N such that @˙C in @˙N are essential curves. Let f W @CN ! @�N be the
homeomorphism from @CN to @�N which makes the following diagram commutative:

H1.@
CN;Z/ H1.@

�N;Z/

H1.N;Z/

f�

�
C
� ���

This criteria determines f up to isotopy. Since @CC is homologous to @�C , we may further assume that
f maps @CC to @�C . Let Nf denote the closed 3–manifold obtained from N by identifying @CN with

Algebraic & Geometric Topology, Volume 24 (2024)
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ˇ2

˛1 ˛2

ˇ1

Figure 1: The Heegaard surface is a surface of genus three which is obtained by identifying the
boundaries of disks with the same color. The curves are oriented in a way that the balanced
presentation associated with this Heegaard diagram is P0.

@�N using f . Let C denote the torus in M which is obtained from C by identifying @CC with @�C .
Thus C and @CN �f @�N represent linearly independent homology classes in H2.Nf ;Z/DZ˚Z˚Z

with zero Thurston seminorm. Recall that the Thurston seminorm of a closed 3–manifold M is defined
on H2.M;Z/ by

‚ WH2.M;Z/! Z�0; ‚.�/ WDminf�C.†/ j† ,!M and Œ†�D �g;

where the minimum is taken over all compact oriented surfaces †Dqi†i embedded in M and repre-
senting the homology class � , while �C.†/ is defined by

P
g.†i />0

.2g.†i /� 2/ (see [Thurston 1986]).
Heegaard Floer homology groups with twisted coefficients detect the Thurston seminorm. More precisely,
for a closed 3–manifold M , let bHF .M/ denote the Heegaard Floer homology group of M with twisted
coefficients, which is a Z=2Z–graded Z2ŒH 1.M;Z/�–module defined in [Ozsváth and Szabó 2004c].
There is a decomposition of this group by Spinc structures,

bHF .M/D
M

s2Spinc.M/

bHF .M; s/:

Theorem 1.3 [Ozsváth and Szabó 2004a, Theorem 1.1] For a closed 3–manifoldM and � 2H2.M;Z/,

‚.�/D max
fs2Spinc.M/jcHF .M;s/¤0g jhc1.s/; �ij:

Let us consider the case where M DNf is given as above. Extend Œ@CN� to a basis for H2.Nf ;Z/ŠZ3

and consider a corresponding identification of Spinc.M/ with Z3 (by evaluation of the first Chern class
of the Spinc structures over the generators of the homology group H2.M;Z/Š Z3). In order to prove
Theorem 1.1, we show that there are two linearly independent Spinc structures s1 and s2, with the property
that

hc1.si /; Œ@
CN�i D 0 and bHF .M; si /¤ 0 for i D 1; 2:

Algebraic & Geometric Topology, Volume 24 (2024)
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Since ‚.ŒC �/D 0, we thus have ŒC �D �Œ@CN�, for some integer �, which contradicts our assumption.
This shows that N does not have a simplifier and is thus not equivalent to S2 � I .

A remark about the above argument may be appropriate here. Let us assume that N1 and N2 are balanced
3–manifolds and that N1 simplifies to N2, ie N1

C
�! N2. For k D 1; 2, let Mk denote the closed 3–

manifold obtained by taking two copies N 1
k

and N 2
k

of Nk , identifying @CN 1
k

with @CN 2
k

and identifying
@�N 1

k
with @�N 2

k
. Then the cylinder C gives the torus T �M1, while M2 is obtained by cutting M1

along T and gluing two solid tori to the resulting boundary components. Theorem 1.3 is then helpful in
detecting T . Nevertheless, the equivalence of N1 and N2 is yet not well translated to Heegaard Floer
theory, eg to a practical correspondence between bHF .M1/ and bHF .M2/. If T is 2–sided, the problem
is studied in [Eftekhary 2015; 2018], and a relatively powerful machinery is developed in [Hanselman
et al. 2024]. For nonseparating T , it is interesting to develop such a correspondence.

About the proof In Section 2, we construct a Heegaard diagram H for the closed manifold M from H,
following the approach of [Lekili 2013]. The number of generators for the Heegaard diagram H is 7936,
and it is thus not feasible to find the Spinc structures s1 and s2 and compute the groups bHF .M; si /without
computational assistance (from computers). We prove a simple lemma from linear algebra in Section 3, in
the spirit of the general discussion in [Eftekhary 2015, Section 2]. The lemma is used, in combination with
a computer program, to obtain a shortlist of potential Spinc structures s with bHF .M; s/¤ 0 (although
obtaining the shortlist is not an official part of our argument). Among the potential candidates, two
specific Spinc structures s1 and s2 are considered in Sections 5 and 6. The chain complexes associated
with these Spinc structures are 8–dimensional and 72–dimensional, respectively. The homology groups
of the chain complexes bCF .M; si / (for i D 1; 2) are studied using the lemma proved in Section 3, a
series of computer assisted computations and explicit computations of the contribution of moduli spaces
associated with certain classes of Whitney disks. Since the Heegaard diagram is not nice (in the sense of
[Sarkar and Wang 2010]), such explicit computations are necessary and appear in Section 4.

Acknowledgements This work was done while the first author was a visitor at Institute for Research in
Fundamental Sciences (IPM). The first author would like to thank IPM for its hospitality.

2 A Heegaard diagram for the mapping torus

In this section, we obtain a Heegaard diagram for M D Nf , using the construction of [Lekili 2013].
Let us assume that the diagram H is obtained from a Morse function h W N ! Œ�1; 1�. Then h gives a
circle-valued Morse function Nh WM ! S1 with two critical points x1 and x2 of index 1 and two critical
points y1 and y2 of index 2, such that

N u
x1
.h/\†D ˛1; N u

x2
.h/\†D ˛2; N s

y1
.h/\†D ˇ1; N s

y2
.h/\†D ˇ2;

Nh�1.1/D @CN �f @
�N D†min; Nh�1.�1/D N†D†max:

Algebraic & Geometric Topology, Volume 24 (2024)
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ˇ1

ˇ2

ˇ3

˛4

˛1 ˛2

˛5
ˇ5

ˇ4
˛3

Figure 2: A weakly admissible Heegaard diagram of Nf with 21392 generators.

Here N s
x and N u

x denote the stable and unstable manifold of x 2N with respect to the flow of a gradient-
like vector field for h. Following [Lekili 2013], let p1 and p2 be disjoint points in N† n˛[ˇ and 1 and
2 denote two gradient flow lines disjoint from N u

xi
and N s

yi
such that

i \ N†D fpig and i \ @
CN D f Npig for i D 1; 2:

Furthermore, 1 (resp. 2) is mapped onto the northern (resp. southern) semicircle of S1. Let N.i /,
for i D 1; 2, denote the normal neighborhood of i that intersects N† and @CN in the small disks Dpi

and D Npi
, respectively. By removing Dıpi

and Dı
Npi

and gluing @Dpi
to @D Npi

along @N.i / we obtain
the Heegaard surface †. Let ˛5 D @D Np1

and ˇ5 D @D Np2
. Let ˛03 and ˛04 (resp. ˇ03 and ˇ04) be disjoint

arcs in @CN such that @˛03 and @˛04 are disjoint points on ˇ5 and @ˇ03 and @ˇ04 are disjoint points on ˛5,
while j˛03\ˇ

0
4j D j˛

0
4\ˇ

0
3j D 1 and j˛03\ˇ

0
3j D j˛

0
4\ˇ

0
4j D 0. Flowing the arcs ˇ03 and ˇ04 through the

gradient flow of Nh above the northern semicircle, we obtain disjoint arcs ˇ003 and ˇ004 in †n@CN which are
disjoint from ˇ1 and ˇ2. Similarly, flowing the arcs ˛03 and ˛04, we obtain ˛003 and ˛004 which are disjoint
from ˛1 and ˛2. This determines the sets of ˛ and ˇ curves,

˛D f˛1; ˛2; ˛3 D ˛
0
3[˛

00
3 ; ˛4 D ˛

0
4[˛

00
4 ; ˛5g; ˇ D fˇ1; ˇ2; ˇ3 D ˇ

0
3[ˇ

00
3 ; ˇ4 D ˇ

0
4[ˇ

00
4 ; ˇ5g:

Having fixed a marked point z, finger-move isotopies may be used to make .†;˛;ˇ; z/ weakly admissible.
If we apply the procedure to the Heegaard diagram of Figure 1, we arrive at the admissible Heegaard
diagram illustrated in Figure 2 with 21392 generators. Handle-slides of ˛4 over ˛3 (10 times) and
isotopies on ˛3 give an alternative (more suitable) weakly admissible Heegaard diagram H with 7936
generators, as illustrated in Figure 3. We use xi;j;k to label the intersection point of ˛i and ǰ which is
labeled k in the diagram of Figure 3.
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ˇ3 ˇ4

ˇ5

˛1

˛2
˛3

˛5

˛4

12

2

2

1

12

2

3

4

2

3

4
5
5

2
1

1
1
2

1

1

ˇ1

11 1 2 2 21 2 3 4 5

1

1

1

2 2

11

2

1

10

2

2

1

2

4 3
12

12

z

D34

D15

D30

D12

D2

D1

D28

D20

D29

D19

D24

D31

D13

D33

D25

D23

D0

D48

D21

D22

D17

D35

D3

D26

D4

D37

D36

D38

D51D50

D49

D18

D14

ˇ2

D54

D55

D53

D52

D56

D58

D59

D60

D61

D62

D63

D64

D65

D66

D67

D57

3

5

2

4

6

8
9

7

1

D27

D68

D69

D16

Figure 3: A weakly admissible Heegaard diagram for M with 7936 generators. The connected
components of†n˛[ˇ are labeledDi , for i D 0; : : : ; 67. The periodic domains are generated by
P1D�D52C

P57
iD53DiC

P
i2I1

Di , P2D�D49C
P
i2I2

DiC
P
i2I1

Di and a third periodic
domain P3, where Di is colored gray for i 2 I1 and green for i 2 I2. We have @b.P1/D �ˇ5
and @b.P2/Dˇ3. The periodic domain P3 may be chosen so that @b.P3/Dˇ4C2ˇ3�3ˇ1C2ˇ2.

The set of periodic domains for H is generated by three domains P1, P2 and P3. The first two generators
are shown in Figure 3. The periodic domains P1 and P2 are of the form

P1 D�D52C

57X
iD53

Di C
X
i2I1

Di ; P2 D�D49C
X
i2I2

Di C
X
i2I1

Di ;
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where the domains Di with i in I1 and I2 are colored gray and green in Figure 3, respectively. If @bP
denote the ˇ–boundary of a periodic domain P , we then have @b.P1/D�ˇ5 and @b.P2/D ˇ3. We may
choose the third generator P3 of the space of periodic domains so that @b.P3/Dˇ4C2ˇ3�3ˇ1C2ˇ2. Let
H.Pi / 2H2.M;Z/ denote the homology classes associated with the periodic domains Pi for i D 1; 2; 3,
which form a basis for H2.M;Z/ (see [Ozsváth and Szabó 2004c, Proposition 2.15]). Correspondingly,
we obtain a bijection

c W Spinc.M/! Z˚Z˚Z; c.s/ WD 1
2

�
hc1.s/;H.P1/i; hc1.s/;H.P2/i; hc1.s/;H.P3/i

�
;

which gives an identification of Spinc.M/ with Z3. To compute sz W T˛\Tˇ! Spinc.M/D Z3 under
this identification, define srz W T˛\Tˇ! Z3 by setting srz.x0/D .0; 0; 0/ for

x0 D .x
0
i /
5
iD1 D .x1;1;1; x2;2;1; x3;4;1; x4;5;1; x5;3;2/:

Let .y0i /
5
iD1 denote a permutation of .x0i /

5
iD1 such that y0i 2 ˇi . Fix a connected path 0 on ˛[ˇ in the

diagram such that for each ˛ 2 ˛ and ˇ 2 ˇ, 0\˛ and 0\ˇ are connected and x0i 2 0 for 1� i � 5
(the yellow path in Figure 3 satisfies these properties). Fix

x D .xi /
5
iD1 D .yi /

5
iD1 2 T˛\Tˇ with xi 2 ˛i and yi 2 ˇi ;

ie .yi /i is just a permutation of .xi /i . Let �.x0; x/ denote the closed 1–cycle in † obtained by connecting
yi to y0i through ˇi , connecting y0i to x0i through 0, and connecting x0i to xi through ˛i for i D 1; : : : ; 5.
Note that for j D 1; 2; 3, the evaluation hPDŒ�.x0; x/�;H.Pj /i is the algebraic intersection number of
�.x0; x/ with @bPj . Therefore, if we set

srz.x/ WD
�
�h�.x0; x/; ˇ5i; h�.x0; x/; ˇ3i; h�.x0; x/; ˇ4C 2ˇ3� 3ˇ1C 2ˇ2i

�
;

there is a fixed triple .a; b; c/D .0;�1;�4/ 2Z3 such that sz D srz.x/C .a; b; c/. In the definition of srz ,
note that the intersection numbers take place over the Heegaard surface. The map srz is used instead of sz
for the purposes of this paper.

3 Simplifying computations using algorithmic calculations

All our computations are performed with coefficients in Z2ŒH 1.M;Z/�. In the discussions of this section,
we have the diagram HD .†;˛;ˇ; z/ from Figure 3 in mind. Nevertheless, the strategy works for many
of the chain complexes associated with sutured manifold diagrams in the sense of [Juhász 2006], or
even [Alishahi and Eftekhary 2015]. Since there is a large number of generators associated with H, we
break the computation of bHF .M/ into a computer-assisted part and a human part using the following
observation.

Let z2 � z1 denote two sets of marked points containing z. Most of the time, we take z2 D fzg. If z1 is
sufficiently large that it contains a marked point in each one of the periodic domains, we may choose
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a decomposition bCF .†;˛;ˇ; z1/D A˚B˚H such that the differentials dz1
and dz2

D dz1
C d 0 are

determined by the matrices

(2) dz1
D

0@0 0 0

I 0 0

0 0 0

1A and d 0 D

0@f h m

k g n

p q l

1A :
Lemma 3.1 Suppose that , with the above notation in place , I C k is invertible. Then

H�.bCF .†;˛;ˇ; z2//DH�.H; l Cp.I C k/�1n/:

Proof The proof follows from two base changes. The first base change is given by0@I C k .I C k/f .I C k/�1 0

0 I 0

0 0 I

1A0@ f h m

I C k g n

p q l

1A0@.I C k/�1 f .I C k/�1 0

0 I 0

0 0 I

1A
D

0@ 0 � m0

I � n

p.I C k/�1 � l

1AD
0@0 m0A m0

I nA n

A lA l

1A ;
where AD p.I C k/�1 and the last equality follows from d2z2

D 0. The second base change is0@I 0 0

0 I 0

0 A I

1A0@0 m0A m0

I nA n

A lA l

1A0@I 0 0

0 I 0

0 A I

1AD
0@0 0 m0

I 0 n

0 0 l CAn

1A :
In applications of Lemma 3.1, we choose an area assignment A for the regions in † n˛[ˇ such that
A.Pi /D 0 for i D 1; 2; 3. Moreover, z1, z2 and A are chosen so that the regions not touched by z1 have
very small areas and the regions containing marked points from z1 n z2 have very large areas. Under
these assumptions, in each Spinc class s, A descends to an energy filtration on bCF .†;˛;ˇ; z2; s/ (see
[Ozsváth and Szabó 2004c]). We may further assume that

AD ha1; : : : ; ari; B D hb1; : : : ; bri; with A.a1/ <A.a2/ < � � �<A.ar/;

while the differential dz1
is given by sending ai to bi . With respect to the energy filtration, A.ai /�A.bi /

is then a small positive number and k is a lower triangular matrix with zeros on the diagonal. Therefore,
I C k is an invertible matrix with .I C k/�1 D

P1
iD0 k

i . This allows us to use Lemma 3.1. Of course,
the use of Lemma 3.1 is not restricted to the aforementioned situation.

In our search for the Spinc classes s with the property that bHF .M; s/ ¤ 0, we may first restrict our
attention to the Spinc classes which satisfy hc1.s/;H.P1/i D 0, since P1 corresponds to @CN and is
represented by an embedded surface of genus 1. We may then enlarge the set z2 D fzg of punctures in
the Heegaard diagram to a bigger set z1, so that .†;˛;ˇ; z1/ is nice, while the criteria discussed in the
previous two paragraphs is satisfied. If the group

bHF .†;˛;ˇ; z1; s/
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sr

t

t 0
x1
x2

xn

ˇ1

˛1x1
xn

Dk;l;n DD.�k;l;n/

xnC1

s0 r 0
u0

u

z2 z1

z3

Figure 4: Part of a Heegaard diagram which illustrates the domain associated with the disk �k;1;n
is illustrated (left). The red curves are the ˛ curves and the blue curves are the ˇ curves. A
Heegaard diagram of genus 3 containing the domain D1;1;n is illustrated on the right. The domain
of the Whitney disk  2 �2.Rn; Un/ is shaded.

is trivial, it follows that bHF .M; s/ is also trivial. Trying different sets z1 of marked points allows us to
exclude many of the Spinc classes s from the Thurston polytope, consisting of Spinc structures t with
bHF .M; t/¤ 0. Among the remaining Spinc classes, we combine Lemma 3.1, computer assisted compu-
tations and the study of certain classes of Whitney disks (from next section) to show that bHF .M; si /¤ 0
for i D 1; 2, where s1 and s2 are the classes of generators x1 and x2 of bCF .H/ with

srz.x1/D .0; 1; 7/ and srz.x2/D .0;�1;�8/;

respectively. As we will see in Sections 5 and 6, there are 8 generators x1 and 72 generators x2 of the
above type.

4 Nonpolygonal disks with holomorphic representatives

In this section, we study the moduli spaces associated with three classes of Whitney disks with nonpolyg-
onal domains, which will be encountered in Section 6. First, let Dk;l;n DD.�k;l;n/ denote the genus
zero domain of a Whitney disk �k;l;n, with two boundary components having 2k–edges and 2l–edges,
respectively. The edges on each boundary component consist of alternating arcs from distinct ˛ and
ˇ curves. For such a disk to have Maslov index 1, it is necessary that all the 2.k C l/ angles on the
boundary are acute angles, except for precisely one of them. We further assume that the obtuse angle is
on the boundary component with 2l edges, where ˛1 and ˇ1 meet at xn and enter the interior of Dk;l;n,
and intersect each other at xn�1; : : : ; x1 in Dı

k;l;n
. There is some extra freedom in choosing the domain

Dk;l;n (up to isotopy of the curves) which corresponds to the edges where ˛1 and ˇ1 exit Dk;l;n and are
dropped from the notation (see Figure 4, left).
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Lemma 4.1 Let �k;l;n be a disk with a domain as described above. Then # yM.�k;l;n/D 1.

Proof First, consider the case k D l D 1. Consider the triply punctured Heegaard diagram

H1 DHn
1 D .†1;˛1 D f˛1; ˛2; ˛3g;ˇ1 D fˇ1; ˇ2; ˇ3g; z1; z2; z3/

illustrated in Figure 4, right. Here †1 is a surface of genus three and the sutured manifold determined by
H1 is the same as the sutured manifold determined by a Heegaard diagram

.T D S1 �S1; ˛; ˇ D fbg �S1; z1; z2; z3/;

where ˛ is homotopically trivial and cuts ˇ twice, one of the punctures is located in one of the two bigons
in T �˛�ˇ, and two of the punctures are located in the cylindrical component of T �˛�ˇ. Therefore,
the Heegaard Floer group associated with H1 is trivial. With the notation of Figure 4, the generators in
T˛\Tˇ are

Ri D .xi ; r; r
0/; Si D .xi ; r; s

0/; Ti D .xi ; s; r
0/; Ui D .xi ; s; s

0/ i D 1; : : : ; nC 1;

V D .t; t 0; r 0/; W D .t; t 0; s0/; X D .u; r; u0/; Y D .u; s; u0/:

Most Whitney disks with positive domain and index 1 which contribute to the differential are of the form
�1;1;k for some k D 1; : : : ; n. In fact, there are Whitney disks

 1k 2 �2.Uk; SkC1/;  2k 2 �2.Tk; RkC1/;  3nC1�k 2 �2.RkC1; Sk/;  4nC1�k 2 �2.TkC1; Uk/

for k D 1; : : : ; n, where each  i
k

is of type �1;1;k . Other than these classes, there are also disks

 10 2 �2.V;R1/;  20 2 �2.W; S1/;  30 2 �2.X; SnC1/;  40 2 �2.Y; UnC1/;

with Maslov index one, and the domain of every one of them is a rectangle. Therefore, # yM. i0/D 1 for
i D 1; : : : ; 4. Moreover, there are disks � 2�2.T1; W / and �0 2�2.TnC1; X/ with domains of type �1;2;n.
If we set

mD # yM.�/; m0 D # yM.�0/; mik D # yM. ik/ for i D 1; : : : ; 4 and k D 0; : : : ; n;

it follows that mi0 D mi1 D 1 (see [Ozsváth and Szabó 2004b, Lemma 3.4; Sarkar and Wang 2010,
Theorem 3.4]) and that the differential of the chain complex is given by

Tk RkC1 T1 R2 TnC1 X Y V

Uk�1 Sk W S1 Un SnC1 UnC1 R1

m2
k

m4
nC2�k m3

nC1�k

1

m m3
n

m0

1 1 1 1

m1
k�1

1 m1
n

for k D 2; : : : ; n. Therefore, we conclude that mDm3n, m0 Dm1n and

(3) m2k �m
3
nC1�k Dm

4
nC2�k �m

1
k�1 for k D 2; : : : ; n:
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Figure 5: A Heegaard surface of genus kC 3.The colored region denotes the domain associated
with  , which degenerates in two ways as �1;1;n �� and �0 ��k;1;n, where D.�0/ is the region
colored green and D.�1;1;n/ is the union of regions colored yellow.

For nD 2 and k D 2, (3) implies m22 Dm
4
2. Moreover, since the homology is trivial, m22 Dm

4
2 D 1. This

proves the claim for �1;1;2. Having established the proof for �1;1;j with j D 1; : : : ; n� 1 (where n > 2),
equation (3) for k D 2 implies that m4n D 1, proving the claim for �1;1;n.

Next, we consider the case l D 1 while k is arbitrary. Let

H2 D .†2;˛2 D f˛0; ˛1; : : : ; ˛kC1g;ˇ2 D fˇ0; ˇ1; : : : ; ˇkC1g; z/

be the Heegaard diagram shown in Figure 5. Here †2 is a surface of genus kC 3. With the notation of
Figure 5 in place and refreshing the notation set for the case k D l D 1, the generators in T˛\Tˇ are

W D .v; r; u2; : : : ; uk; r
0/; V D .s; tk; u2; : : : ; ut�1; s

0; tt ; : : : ; tk�1; r
0/;

Ri D .u
0
1; r; u2; : : : ; uk; xi /; Si D .t

0
1; r; u2; : : : ; uk; xi /;

Ti D .s; tk; t1; : : : ; tk�1; xi /; Ui D .s; u1; u2; : : : ; uk; xi /;

where i belongs to f1; : : : ; nC 1g. Consider the Whitney disks

�1;1;n 2 �2.Rn; SnC1/; � 2 �2.SnC1; TnC1/; �0 2 �2.Rn; Un/; �k;1;n 2 �2.Un; TnC1/

such that D.�0/ is the green domain, D.�1;1;n/ is the union of yellow domains, D.�/ is the union of
gray and green domains and D.�k;1;n/ is the union of gray and yellow domains. Then

 D �1;1;n �� D �
0
��k;1;n
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Figure 6: A Heegaard surface of genus 6. The colored regions denote the domain associated with
a Whitney disk  of index 2 which degenerates in two ways.

has index 2, while these are the only degenerations of  as a juxtaposition of two positive Whitney disks
of Maslov index 1. This implies

# yM.�k;1;n/D # yM.�k;1;n/ � # yM.�0/D # yM.�1;1;n/ � # yM.�/D # yM.�1;1;n/D 1;

completing the proof for the case where l D 1, while k and n are arbitrary. Similarly, the argument above
may be used to conclude # yM.�k;l;n/D 1 for arbitrary values of k, l and n.

LetD.�n;m/ denote the genus zero domain of a Whitney disk �n;m which has three boundary components,
each consisting of 2 edges on ˛i and ˇi for i D 1; 2; 3. Let ˛3 have n intersection points fx1; : : : ; xng
with ˇ3 and ˛2 have m intersection points fy1; : : : ; ymg with ˇ2 in D.�n;m/. The union of the yellow
regions and the gray regions in Figure 6 illustrates the domain of such a disk. We assume that all the
corners of the boundary edges in D.�n;m/ are acute except for two, where ˛2 intersects ˇ2 in an obtuse
angle in ym�1 and ˛3 intersects ˇ3 in an obtuse angle in xn�1 (see Figure 6).

Lemma 4.2 If the domain of �n;m is as described above , then # yM.�n;m/D 1.

Proof Consider the Heegaard diagram

H3 D .†;˛D f˛1; ˛2; ˛3; ˛4g;ˇ D fˇ1; ˇ2; ˇ3; ˇ4g; z/

which is illustrated in Figure 6. Here † is a surface of genus six which is obtained by attaching six
one-handles such that each one connects the boundary circles of disks with the same color. There are
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Figure 7: Left: a Heegaard diagram with three marked points and a Heegaard surface of genus
one. Right: the differential associated with this diagram.

4nmC 3mC 2nC 2 intersection points in T˛ \ Tˇ. With the notation of Figure 6 in place, these
intersection points are

P D .t4; u1; r3; s/; QD .t4; u3; r1; s/; Ri D .t1; u3; xi ; s/; Si D .t3; u1; xi ; s/;

Ti;j D .t2; u1; xi ; yj /; Ui;j D .t5; u1; xi ; yj /; Vi;j D .t1; u2; xi ; yj /; Wi;j D .t1; u4; xi ; yj /;

Xj D .t4; u2; r1; yj /; Yj D .t4; u4; r1; yj /; Zj D .t4; u1; r2; yj /;

for i D 1; : : : ; n and j D 1; : : : ; m. Consider the Whitney disks of index 1

�1;1;m�1 2 �2.Vn�1;m�1; Wn�1;m/; �2;1;n�1 2 �2.Wn�1;m; Un;m/;

� 2 �2.Vn�1;m�1; Tn�1;m�1/; �n;m 2 �2.Tn�1;m�1; Un;m/:

Here, the domains D.�1;1;m�1/ is the union of the regions colored yellow, D.�/ is the union of the
regions colored green,D.�2;1;n�1/ is the union of the regions colored gray and green, and D.�n;m/ is
the union of the regions colored yellow and gray in Figure 6. Then

 D �1;1;m�1 ��2;1;n�1 D � ��n;m;

determined by D. / which is the union of all colored regions, is a Whitney disk of Maslov index 2 in
�2.Vn�1;m�1; Un;m/. The disk  degenerates as the juxtaposition of two disks of Maslov index 1 only
in the above two ways. Therefore, we conclude that

# yM.�n;m/D # yM.�n;m/ � # yM.�/D # yM.�1;1;m�1/ � # yM.�2;1;n�1/D 1:

The last equality, which follows from Lemma 4.1, completes the proof of the lemma.

For � 2 �2.x; y/, let D.�/ be a surface of genus one with one boundary component consisting of 2 edges
that contains a unique intersection point u in the interior which belongs to both x and y (see Figure 7).
The gray domains on the left illustrate D.�/.

Lemma 4.3 Let � be a disk with a domain as described above. Then # yM.�/D 1.

Algebraic & Geometric Topology, Volume 24 (2024)



Simple balanced three-manifolds, Heegaard Floer homology and the Andrews–Curtis conjecture 4533

Proof Consider the triply punctured Heegaard diagram

H4 D .†;˛D f˛1; ˛2g;ˇ D fˇ1; ˇ2g; zD fz1; z2; z3g/

of genus 1 which is illustrated in Figure 7, left. With the notation of Figure 7 in place, there are 6
intersection points in T˛\Tˇ, which may be listed as

R1 D .x; u/; R2 D .y; u/; S1 D .t; v/; S2 D .t; w/; T1 D .s; v/; T2 D .s; w/:

The differential is shown in Figure 7, right. A black arrow which connects a generator X to a generator Y
denotes that there is a disk from X to Y with a unique holomorphic representative. The arrow in purple
denotes the disk with the domain D.�/. By doing an isotopy which removes the two intersection points
of ˇ2 with ˛1 and then doing a destabilization which removes ˛2 and ˇ2, we obtain the standard genus
zero Heegaard diagram for the closed three manifold S1 �S2. Therefore the Heegaard Floer homology
group associated with H is Z22. This proves that # yM.�/D 1.

5 The first nontrivial Heegaard–Floer group

Let us assume that s1 corresponds to the triple .0; 1; 7/. The chain complex bCF .M; s1/ is then generated
by the following 8 generators:

1 D fx1;1;2; x2;2;5; x3;3;1; x4;5;2; x5;4;2g; 2 D fx1;1;2; x2;2;5; x3;3;2; x4;5;2; x5;4;2g;

3 D fx1;1;2; x2;4;2; x3;2;1; x4;5;2; x5;3;2g; 4 D fx1;1;3; x2;4;2; x3;2;2; x4;5;2; x5;3;2g;

5 D fx1;2;1; x2;1;2; x3;5;1; x4;3;1; x5;4;2g; 6 D fx1;2;1; x2;4;2; x3;5;1; x4;1;2; x5;3;2g;

7 D fx1;3;1; x2;1;2; x3;2;1; x4;5;2; x5;4;2g; 8 D fx1;4;2; x2;1;2; x3;2;2; x4;5;2; x5;3;2g:

Let z1 consist of marked points in all domains except for D12, D13, D30 and D49. The differentials
for the Heegaard diagram .†;˛;ˇ; z1/ along with the domains of the connecting disks are shown in
Figure 8, left. In this figure, a black arrow from a generator x to a generator y indicates that there is a
disk from x to y with a unique holomorphic representative. In fact, the domains associated with all the

2

1

3

6

8

4 5 7

 1  2  3

2

1

3 5

6 7

8

4

D. 1/DD49
D. 2/DD12CD30
D. 3/DD13

Figure 8: Left: the differential for .†;˛;ˇ; z1/. Right: the differential for .†;˛;ˇ; z/; the
contributions from the disks �i for i D 1; : : : ; 5, the disks �i �P1 for i D 1; : : : ; 4 and the disks
�i CP1 for i D 1; 2; 5 are denoted with green, red and blue arrows, respectively.
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disks are polygons. The group H�.bCF .†;˛;ˇ; z1/; s1/ is thus isomorphic to .Z2ŒH 1.M IZ/�/2 and is
generated by C D

˚
5 ; 7

	
. To compute bHF .M; s1/, we need to determine the matrices l , n, p and k

in Lemma 3.1. Define the disks � 2 �2
�

3 ; 7
�

and

�1 2 �2
�

5 ; 7
�
; �2 2 �2

�
5 ; 6

�
; �3 2 �2

�
2 ; 7

�
; �4 2 �2

�
2 ; 6

�
; �5 2 �2

�
5 ; 1

�
of Maslov index 1 by specifying their domains. If I D f4; 16; 18; 26; 34; 36; 38; 51; 52g and D is the
formal sum

P
i2I Di , we have

D.�/DD0; D.�1/D†�fD12CD14CD30g;

D.�2/D†�fD0CD14g; D.�3/D†� .DCD12CD14CD30/;

D.�4/D†� .DCD0CD14/; D.�5/DDCD49:

Then all the disks of index 1 and positive domain between the generators of this complex are the disks  i
for i D 1; 2; 3, the disk �, the disks �i for i D 1; : : : ; 5, the disks �i �P1 for i D 1; : : : ; 4 and the disks
�i CP1 for i D 1; 2; 5; see Figure 8, right. Let

bi D # yM.�i / for i D 1; : : : ; 5; ci D # yM.�i �P1/ for i D 1; : : : ; 4;

di D # yM.�i CP1/ for i D 1; 2; c5 D # yM.�5CP1/:

Setting K D b4 C c4e
�P1 , N1 D b5 C c5e

P1 , N2 D b2 C c2e
�P1 C d2e

P1 , P D b3 C c3e
�P1 and

LD b1C c1e
�P1 C d1e

P1 , it then follows that

k D

0@ 0 0 0

K 0 0

0 0 0

1A ; nD

0@N1 0N2 0

0 0

1A ; p D

�
0 0 0

P 1 0

�
; l D

�
0 0

L 0

�

D) l Cp.I C k/�1nD

�
0 0

LCN1.P CK/CN2 0

�
:

Note that in this matrix,

(4) ?D LCN1.P CK/CN2

D .b1C b2C b5b3C b5b4C c5c3C c5c4/C .c1C c2C b5c3C b5c4/e
�P1

C .d1C d2C c5b3C c5b4/e
P1 :

The computation of bHF .M; s1/ is thus reduced to a computation of ?. Consider the disks

�1 2 �2
�

7 ; 5
�
; �2 2 �2

�
6 ; 5

�
; �3 2 �2

�
7 ; 2

�
;

�4 2 �2
�

6 ; 2
�
; �5 2 �2

�
1 ; 5

�
; �6 2 �2

�
1 ; 2

�
;

which correspond to the domains

D.�i /D†�D.�i / for i D 1; : : : ; 5; D.�6/D†�D. 1/:

The domains of �1 and �2 are polygons. Then all the positive disks � of index 1 in �2. 1 ; x/, �2.x; 5 /
and �2.x; 2 /, with x a generator of bCF .M; s1/ and with nz.�/ > 0, are � D �i for i D 1; : : : ; 6,
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�D �i CP1 for i D 3; 4; 6, and �D �i �P1 for i D 5; 6. Let

b0i D # yM.�i / for i D 3; : : : ; 6; c0i D # yM.�i CP1/ for i D 3; 4;

c0i D # yM.�i �P1/ for i D 5; 6; d 06 D # yM.�6CP1/:

Consider the Whitney disk classes of index 2,

�1; �
0
1; �
00
1 2 �2

�
5 ; 5

�
; �2; �

0
2; �
00
2 2 �2

�
1 ; 1

�
; �3; �

0
3; �
00
3 2 �2

�
2 ; 2

�
;

which correspond to the periodic domains

D.�i /D†; D.�0i /D†�P1; D.�00i /D†CP1 for i D 1; 2; 3:

The possible degenerations of �1, �01 and �001 to positive disks of Maslov index 1 are

�1 D �j ��j D .�5CP1/� .�5�P1/ for j D 1; 2; 5;

�01 D .�i �P1/��i D �5 � .�5�P1/ for i D 1; 2;

�001 D .�i CP1/��i D .�5CP1/��5 for i D 1; 2:

Therefore,

(5) b1C b2C b
0
5b5C c

0
5c5 D 0; c1C c2C c

0
5b5 D 0; d1C d2C b

0
5c5 D 0:

The possible degenerations of �2, �02 and �002 into positive disks of Maslov index 1 are

�2 D �6 � 1 D �5 ��5 D .�5�P1/� .�5CP1/;

�02 D .�6�P1/� 1 D .�5�P1/��5;

�002 D .�6CP1/� 1 D �5 � .�5CP1/:

Therefore,

(6) b06C b
0
5b5C c

0
5c5 D 0; c06C c

0
5b5 D 0; d 06C b

0
5c5 D 0:

Similarly, the possible degeneration of �3; �03 and �003 into positive disks of Maslov index 1 are

�3 D �i ��i D .�i �P1/� .�i CP1/D  1 ��6;

�03 D .�i �P1/��i D  1 � .�6�P1/;

�003 D �i � .�i CP1/D  1 � .�6CP1/

for i D 3; 4. Therefore,

(7) b03b3C b
0
4b4C c

0
3c3C c

0
4c4C b

0
6 D 0; b03c3C b

0
4c4C c

0
6 D 0; c03b3C c

0
4b4C d

0
6 D 0:

Let z01 contain a marked point in all the regions of †�˛�ˇ except for those appearing in D.�3/, D.�4/,
D.�5/ and D13, and let @1 denote the corresponding differential. Note that P1, P2 and P3�† may still
be considered as a basis for the space of periodic domains. Therefore, the diagram remains admissible for
this choice of marked points. Then

(8) @21 3 D .b03C b
0
4/ 2 and @21 7 D .b5C b03/ 1 D) b03 D b

0
4 D b5:
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Similarly, let z02 contain a marked point in all the regions of †�˛� ˇ except for those appearing in
D.�3CP1/, D.�4CP1/, D.�5CP1/ and D13, and let @2 denote the corresponding differential. Then

(9) @22 3 D .c03C c
0
4/ 2 and @22 7 D .c5C c03/ 1 D) c03 D c

0
4 D c5:

If follows from (4)–(9) that the matrix l Cp.I C k/�1nD 0. Thus bHF .M; s1/¤ 0.

6 The second nontrivial Heegaard–Floer group

Let s2 be the Spinc class which corresponds to .0;�1;�8/. The chain complex bCF .M; s2/ is bigger, in
comparison with bCF .M; s1/, and is generated by the following 72 generators:

1 D fx1;1;2; x2;2;4; x3;4;1; x4;5;1; x5;3;2g; 2 D fx1;1;3; x2;2;5; x3;4;1; x4;5;1; x5;3;2g;

3 D fx1;1;2; x2;2;5; x3;5;1; x4;3;1; x5;4;1g; 4 D fx1;1;2; x2;3;2; x3;2;2; x4;5;1; x5;4;1g;

5 D fx1;1;2; x2;3;2; x3;5;2; x4;2;1; x5;4;1g; 6 D fx1;1;2; x2;4;1; x3;2;2; x4;5;1; x5;3;1g;

7 D fx1;1;2; x2;4;1; x3;5;2; x4;2;1; x5;3;1g; 8 D fx1;1;3; x2;4;1; x3;5;1; x4;2;1; x5;3;2g;

9 D fx1;2;2; x2;3;2; x3;1;1; x4;5;1; x5;4;2g; 10 D fx1;2;2; x2;4;2; x3;1;1; x4;5;1; x5;3;1g;

11 D fx1;3;1; x2;1;1; x3;2;1; x4;4;7; x5;5;1g; 12 D fx1;3;1; x2;1;1; x3;2;1; x4;4;7; x5;5;2g;

13 D fx1;3;1; x2;1;1; x3;2;2; x4;4;5; x5;5;1g; 14 D fx1;3;1; x2;1;1; x3;2;2; x4;4;5; x5;5;2g;

15 D fx1;3;1; x2;1;1; x3;2;3; x4;4;10; x5;5;1g; 16 D fx1;3;1; x2;1;1; x3;2;3; x4;4;10; x5;5;2g;

17 D fx1;3;1; x2;1;1; x3;2;4; x4;4;10; x5;5;1g; 18 D fx1;3;1; x2;1;1; x3;2;4; x4;4;10; x5;5;2g;

19 D fx1;3;2; x2;1;1; x3;2;1; x4;4;10; x5;5;1g; 20 D fx1;3;2; x2;1;1; x3;2;1; x4;4;10; x5;5;2g;

21 D fx1;3;2; x2;1;1; x3;2;2; x4;4;8; x5;5;1g; 22 D fx1;3;2; x2;1;1; x3;2;2; x4;4;8; x5;5;2g;

23 D fx1;3;1; x2;2;3; x3;1;2; x4;5;1; x5;4;2g; 24 D fx1;3;2; x2;2;3; x3;1;1; x4;5;1; x5;4;2g;

25 D fx1;3;1; x2;2;1; x3;1;1; x4;4;7; x5;5;1g; 26 D fx1;3;1; x2;2;1; x3;1;1; x4;4;7; x5;5;2g;

27 D fx1;3;1; x2;2;1; x3;1;2; x4;4;10; x5;5;1g; 28 D fx1;3;1; x2;2;1; x3;1;2; x4;4;10; x5;5;2g;

29 D fx1;3;1; x2;2;2; x3;1;1; x4;4;10; x5;5;1g; 30 D fx1;3;1; x2;2;2; x3;1;1; x4;4;10; x5;5;2g;

31 D fx1;3;1; x2;2;3; x3;1;1; x4;4;8; x5;5;1g; 32 D fx1;3;1; x2;2;3; x3;1;1; x4;4;8; x5;5;2g;

33 D fx1;3;1; x2;2;4; x3;1;1; x4;4;6; x5;5;1g; 34 D fx1;3;1; x2;2;4; x3;1;1; x4;4;6; x5;5;2g;

35 D fx1;3;1; x2;2;4; x3;1;2; x4;4;9; x5;5;1g; 36 D fx1;3;1; x2;2;4; x3;1;2; x4;4;9; x5;5;2g;

37 D fx1;3;1; x2;2;5; x3;1;1; x4;4;4; x5;5;1g; 38 D fx1;3;1; x2;2;5; x3;1;1; x4;4;4; x5;5;2g;

39 D fx1;3;1; x2;2;5; x3;1;2; x4;4;7; x5;5;1g; 40 D fx1;3;1; x2;2;5; x3;1;2; x4;4;7; x5;5;2g;

41 D fx1;3;2; x2;2;1; x3;1;1; x4;4;10; x5;5;1g; 42 D fx1;3;2; x2;2;1; x3;1;1; x4;4;10; x5;5;2g;
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43 D fx1;3;2; x2;2;4; x3;1;1; x4;4;9; x5;5;1g; 44 D fx1;3;2; x2;2;4; x3;1;1; x4;4;9; x5;5;2g;

45 D fx1;3;2; x2;2;5; x3;1;1; x4;4;7; x5;5;1g; 46 D fx1;3;2; x2;2;5; x3;1;1; x4;4;7; x5;5;2g;

47 D fx1;3;2; x2;2;5; x3;1;2; x4;4;10; x5;5;1g; 48 D fx1;3;2; x2;2;5; x3;1;2; x4;4;10; x5;5;2g;

49 D fx1;3;1; x2;2;3; x3;4;2; x4;1;1; x5;5;1g; 50 D fx1;3;1; x2;2;3; x3;4;2; x4;1;1; x5;5;2g;

51 D fx1;3;1; x2;2;3; x3;5;2; x4;1;1; x5;4;2g; 52 D fx1;3;1; x2;2;5; x3;5;1; x4;1;2; x5;4;1g;

53 D fx1;3;2; x2;2;4; x3;5;1; x4;1;1; x5;4;2g; 54 D fx1;4;1; x2;1;2; x3;2;2; x4;5;1; x5;3;1g;

55 D fx1;4;3; x2;1;1; x3;2;1; x4;5;1; x5;3;2g; 56 D fx1;4;4; x2;1;1; x3;2;2; x4;5;1; x5;3;2g;

57 D fx1;4;1; x2;1;2; x3;5;2; x4;2;1; x5;3;1g; 58 D fx1;4;2; x2;1;1; x3;5;1; x4;2;2; x5;3;2g;

59 D fx1;4;4; x2;1;1; x3;5;1; x4;2;1; x5;3;1g; 60 D fx1;4;4; x2;1;1; x3;5;2; x4;2;1; x5;3;2g;

61 D fx1;4;2; x2;2;3; x3;1;1; x4;5;1; x5;3;1g; 62 D fx1;4;2; x2;2;4; x3;1;2; x4;5;1; x5;3;2g;

63 D fx1;4;3; x2;2;1; x3;1;1; x4;5;1; x5;3;2g; 64 D fx1;4;3; x2;2;4; x3;1;1; x4;5;1; x5;3;1g;

65 D fx1;4;3; x2;2;5; x3;1;2; x4;5;1; x5;3;2g; 66 D fx1;4;4; x2;2;5; x3;1;1; x4;5;1; x5;3;1g;

67 D fx1;4;1; x2;2;5; x3;5;1; x4;1;2; x5;3;2g; 68 D fx1;4;2; x2;2;1; x3;5;1; x4;1;1; x5;3;2g;

69 D fx1;4;2; x2;2;4; x3;5;1; x4;1;1; x5;3;1g; 70 D fx1;4;2; x2;2;4; x3;5;2; x4;1;1; x5;3;2g;

71 D fx1;4;3; x2;2;5; x3;5;1; x4;1;1; x5;3;1g; 72 D fx1;4;3; x2;2;5; x3;5;2; x4;1;1; x5;3;2g;

Let z1 consist of a marked point in all regions of the Heegaard diagram except for Di with

i D 4; 16; 17; 21; 22; 23; 25; 26; 27; 36; 37; 38; 58; 59; 60; 61; 62; 63; 64; 68:

A neighborhood of these latter domains is illustrated in Figure 9, where the aforementioned domains are
colored green.

The differential corresponding to the Heegaard diagram .†;˛;ˇ; z1/ is illustrated in Figure 10. In
fact, most of the positive Whitney disks of Maslov index 1 for .†;˛;ˇ; z1/, which connect two of the
aforementioned 72 generators, have polygonal domains, and their contribution to the differential is thus
equal to 1. There are precisely 12 disks �i for i D 1; : : : ; 7, and �0j for j D 1; 2; 5; 6; 7, with nonpolygonal
domains, where we have

�1 2 �2
�

21 ; 45
�
; �01 2 �2

�
22 ; 46

�
; �2 2 �2

�
13 ; 37

�
; �02 2 �2

�
14 ; 38

�
;

�3 2 �2
�

3 ; 1
�
; �4 2 �2

�
71 ; 64

�
; �5 2 �2

�
47 ; 43

�
; �05 2 �2

�
48 ; 44

�
;

�6 2 �2
�

39 ; 33
�
; �06 2 �2

�
40 ; 34

�
; �7 2 �2

�
35 ; 31

�
; �07 2 �2

�
36 ; 32

�
:

The domains associated with these disks are

D.�1/DD.�
0
1/DD4CD16CD58CD59CD60CD61; D.�2/DD.�

0
2/DD.�1/CD62CD63CD64;
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D22 D21 D17

D37
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D25

D38

2

2
112

1 2

˛4
˛3

˛1

˛2

˛5

ˇ3

2

2

101 4
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2 3
2

4

1

1
5
4

1

1

1

1 1 1 12

2

1 1 1

1 1 2
2

2

2

ˇ1

2
1

2

B

A

D36 D4

D23D33

D58

D59�D64

D16

D27

D68

Figure 9: Part of the Heegaard diagram, where the marked points z1 are in the domains other than
those in green.

D.�3/DD4CD17CD21CD22CD23CD26CD36; D.�4/DD4CD17;

D.�5/DD.�
0
5/DD4CD16CD17CD27CD58CD59; D.�6/DD.�

0
6/DD.�5/CD60CD61CD62;

D.�7/DD.�
0
7/DD.�5/CD60:

By Lemma 4.1, # yM.�i / D # yM.�0j / D 1, for i D 1; : : : ; 4 and j D 1; 2. Moreover, by Lemma 4.2,
# yM.�i / D # yM.�0i / D 1 for i D 5; 6; 7. Thus, the differential is as illustrated in Figure 10, and
H�.bCF .†;˛;ˇ; z1// is generated by

C D
˚
C1 D 49 ; C2 D 50 ; C3 D 53 ; C4 D 69

	
:

To compute bHF .M; s2/, we need to determine the matrices l , n, p and k in Lemma 3.1. All possible
positive disks with Maslov index 1 between the generators in C are

 01;  1 2 �2
�

49 ; 50
�
;  02;  2 2 �2

�
53 ; 69

�
;

 3 2 �2
�

49 ; 53
�
;  4 2 �2

�
50 ; 69

�
:
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20
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43
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44
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67

54

57 60

56

2322

49 50

53 69

Figure 10: The differential corresponding to the diagram .†;˛;ˇ; z1/.

For i D 1; 2, the domain associated with  0i is a polygon. The domain associated with  1 is shown in
Figure 11 as the union of yellow, blue and pink regions. By Lemma 4.3, # yM. 1/D 1. The domain asso-
ciated with  3 is shown in Figure 11 as the union of blue, brown and pink regions. Setting V D # yM. 3/,
we find

l D

0BB@
0 0 0 0

1C eP1 0 0 0

V 0 0 0

0 � � 0

1CCA :
Let A and B denote the chain complexes generated by all the generators colored in light green and
yellow in Figure 10, respectively. Denote the generators of A and B by Ai and Bi , respectively. We may
choose the labeling of the aforementioned generators of A and B such that k is a lower triangular matrix.
Therefore,

p.I C k/�1nD pnCpknCpk2nC � � � :

For j � 0, since the coefficients are in Z2, each nonzero entry in pkjn is of the form

.pkjn/wv D
X

r1;:::;rjC1

pwr1
kr1r2

� � � krj rjC1
nrjC1v;

and implies the existence of positive disks �t of Maslov index 1 for t D 1; : : : ; j C 1, where

�1 2 �2.Cv; BrjC1
/; �jC2 2 �2.Ar1

; Cw/; �t 2 �2.Art
; Brt�1

/ t D 2; : : : ; j C 1:

and # yM.�t /D 1. In particular, D.�t / > 0 for all t and

(10) D.�t /�

jC2X
tD1

D.�t /D

jC1X
tD1

D.�0t /CD.�/˙D.P1/; �.�t /D 1; D.�t / > 0;

for some positive Whitney disks �0t 2 �2.Art
; Brt

/ and � 2 �2.Cv; Cw/ of Maslov index 1. Potentially,
there are only two such sequences satisfying (10), which are shown in Figure 12. Here  5 2�2

�
49 ; 51

�
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ˇ5
ˇ2ˇ4

2

131

2

2

2
112

1 2

˛4
˛3

˛1

˛2

˛5

ˇ3

2

2

101 4

2 2

2 3
2

4

1

1
5
4

1

1

1

1 1 1 12

2

1 1 1

1 1 2
2

2

2

ˇ1

2
1

2

D. 3/

Figure 11: If I1, I2, I3, I4 and I5 denote the set of indices of domains colored yellow, blue,
pink, gray and brown respectively, the domains associated with  1,  3 and  6 are given by
D. 1/D

P
i2I1[I2[I3

Di , D. 3/D
P
i2I2[I3[I5

Di and D. 6/D
P
i2I2[I4[I5

Di .

is a disk with a polygonal domain. The domain associated with the disk  6 2 �2
�

23 ; 53
�

is shown in
Figure 11 as the union of gray, brown and blue regions.

Lemma 6.1 With the above notation in place , we have # yM. 3/D # yM. 6/.

Proof The domains associated with  3 and  6 are extended in two ways in Figure 13. The domains
D�i for � D a; b; c; d denote the components of the regions colored pink, gray, yellow and green,

23

51

49

53

62

70

50

69

 5 6

Figure 12: Potential sequences corresponding to nonzero summands pwr1kr1r2 � � � krj rjC1
nrjC1v

in .pkjn/wv .
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D. 6/

D. 3/ ˇ4

˛3

˛3

˛5

ˇ5˛1

ˇ2

ˇ3

(i) (a) (b)

(ii) (c) (d)

ˇ5

ˇ1

˛4

˛2

˛1

ˇ2

˛2

Da1

Da2

Da3 Da5

Da4

Da6 Da7 Da8

Db1

Db2

Db4

Db3

Dc1 Dc2

Dc3 Dc5

Dc4

Dc6 Dc7 Dc8

Dd1 Dd2

Dd4

Dd3

Figure 13: Domains associated with disks �a, �b , �c and �d , in (a), (b), (c) and (d), respectively.

respectively. They determine the domains of Whitney disks �a, �b , �c and �d , respectively, with domains
D.��/D

P
i D
�

i . Note that for � D a; c the values of i are in f1; : : : ; 8g, while for � D b; d the values of
i are in f1; : : : ; 4g. The possible degenerations for the disks �a, �b , �c and �d are given by

�� D �
�

1 � �
�

1 D �
�

2 ��
�

2 D �
�

3 ��
�

3; � D a; c;

�� D �
�

1 � �
�

1 D �
�

2 ��
�

2 D �
�

3 � �
�

3; � D b; d;

where the corresponding domains are given by

D.��1/D

5X
jD1

D�j ; D.��2/DD
�

1C

8X
jD3

D�j ; D.��3/DD
�

1CD
�

2CD
�

3CD
�

6;

D.�?1 /DD
?
1 CD

?
2 CD

?
3 ; D.�?2 /DD

?
1 CD

?
3 CD

?
4 ; D.�?3 /DD

?
1 CD

?
2 CD

?
4 ;

D.��3/DD
�

4CD
�

5CD
�

7CD
�

8;

for �D a; c and ?D b; d , while the domains associated with �aj , �cj , �bi and �di are polygons for j D 1; 2
and i D 1; 2; 3. By Lemma 4.1, we also have # yM.��3/D 1, � D a; c. Therefore,

(11)
3X
iD1

# yM.��i /D 0 for � D a; b; c; d:
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On the other hand,

D.�a1 /DD. 3/; D.�c1/DD. 6/; D.�a2 /DD.�
c
2/; D.�b2 /DD.�

d
2 /;

D.�a3 /DD.�
b
1 /; D.�c3/DD.�

d
1 /; D.�b3 /DD.�

d
3 /:

Thus by (11), we have V D # yM. 3/D # yM. 6/.

Having established Lemma 6.1, we conclude that

p.I C k/�1nD

0BB@
0 0 0 0

0 � � �

V � � �

0 � � �

1CCA D) l Cp.I C k/�1nD

0BB@
0 0 0 0

1C eP1 � � �

0 � � �

0 � � �

1CCA :
This means that 49 survives in bHF .M; s2/, and the latter group is thus nontrivial.
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Morse elements in Garside groups are strongly contracting

MATTHIEU CALVEZ

BERT WIEST

We prove that in the Cayley graph of any braid group modulo its center Bn=Z.Bn/, equipped with
Garside’s generating set, the axes of all pseudo-Anosov braids are strongly contracting. More generally,
we consider a Garside group G of finite type with cyclic center. We prove that in the Cayley graph of
G=Z.G/, equipped with the Garside generators, the axis of any Morse element is strongly contracting.
As a consequence, we prove that Morse elements act loxodromically on the additional length graph of G.

20F36; 20F65

1 Introduction

For a finitely generated group G, equipped with some fixed finite generating set, and an element g 2G

of infinite order, one can study the axis axis.g/D hgi, seen as a set of vertices in the Cayley graph �.G/.
There are many different ways of formalizing the idea that this axis might “look like a geodesic in a
hyperbolic space”.

A particularly weak notion is that hgi is quasi-isometrically embedded in G. A particularly strong condition
is that the axis is strongly contracting, which is equivalent to being strongly constricting [Arzhantseva et al.
2015]. There are many intermediate notions — for instance the axis could be hyperbolically embedded
[Dahmani et al. 2017; Osin 2016; 2018], it could be rank one [Hamenstädt 2009; Sisto 2018], it could
be Morse [Dahmani et al. 2017; Sisto 2016], it could be contracting in the sense of [Abbott et al. 2021;
Arzhantseva et al. 2015], it could have various other contraction and divergence properties [Arzhantseva
et al. 2017], or constriction properties [Arzhantseva et al. 2015].

In this paper we will be interested in two of these properties, namely the Morse property and the strong
contraction property. Precise definitions can be found in Sections 3 and 5.

An element g (or its axis in the Cayley graph �.G/) is said to be Morse if this axis is quasi-isometrically
embedded in �.G/, and if for each pair of constants .K;L/, there exists a constant M

.K ;L/
g such that

every .K;L/–quasigeodesic between two points of the axis travels in an M
.K ;L/
g –neighborhood of the

axis. A remarkable example of the Morse property is the result of Behrstock [2006] that pseudo-Anosov
elements in mapping class groups are Morse — see also [Sisto 2016; Dahmani et al. 2017]. (In fact,
[Duchin and Rafi 2009, Theorem 4.2] implies that their axes satisfy the stronger condition of being
contracting.)

© 2024 The Authors, under license to MSP (Mathematical Sciences Publishers). Distributed under the Creative Commons
Attribution License 4.0 (CC BY). Open Access made possible by subscribing institutions via Subscribe to Open.
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Saying that the axis of an element g (or indeed any other subset A of the Cayley graph �.G/) has the
strong contraction property means, roughly speaking, that there is a constant C such that taking any ball
in �.G/ disjoint from A, and projecting this ball to A via a closest-point projection, yields a subset of A

of diameter at most C .

One first crucial observation about these two properties is that the Morse property is invariant under
quasi-isometry (eg when looking at the axis of an element in the Cayley graphs of G with respect to two
different generating sets), whereas the strong contraction/constriction property is not. One reason for the
failure of quasi-isometry invariance is that these strong properties make reference to actual distances and
geodesics, not to quasigeodesics.

There is one well-known family of groups with a very natural family of geodesics between any pair of
points in the Cayley graphs, namely the Garside groups. The notions of Garside theory needed in this
paper will be recalled in Section 2. We will be interested specifically in �–pure Garside groups of finite
type.

A Garside group of finite type G is generated by a finite lattice D with a top element called �. Garside
groups are bi-automatic — in particular, every element g 2G is represented by a unique word in a certain
normal form, with letters in D˙1; these normal form words represent geodesics in the Cayley graph of G

with respect to D. We will also require that our Garside groups are �–pure, or equivalently Zappa–Szép
indecomposable — this condition means in particular that the center of G is infinite cyclic and is generated
by some power �e.

The most famous examples of Garside groups of finite type are the braid groups, and more generally the
Artin–Tits groups of spherical type [Brieskorn and Saito 1972; Charney 1992; Deligne 1972]. (In this
setting, the �–pureness condition is equivalent to the defining Coxeter graph being connected.)

Since the infinite subgroup h�ei of G is central, there cannot be any elements whose axes in the Cayley
graph �.G;D/ are Morse or strongly contracting. Instead, we will study the axes of elements in the
Cayley graph of G modulo its center. We will let � D �.G=Z.G/; D/ and we will say that an element
of a Garside group G is Morse if its axis in � is Morse.

Actually, for our proof it will be technically convenient not to work with the model space � D
�.G;D/=h�ei, but with the following quasi-isometric variation. We define X to be the quotient of
the Cayley graph �.G;D/ under the right h�i–action: XD �.G;D/=h�i. We note that this graph X is
the 1–skeleton of the simplicial complex previously considered in [Bestvina 1999; Charney et al. 2004].
The graph X was also studied in [Dehornoy et al. 2015, VIII.3.2], under the name G0, and in [Calvez and
Wiest 2017a; 2017b].

Our main result is as follows (see Theorem 5.5 for a precise version):
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Theorem 1.1 Suppose G is a �–pure Garside group of finite type. Suppose g is an element of G whose
axis in X (or , equivalently , in �) is Morse. Then this axis is strongly contracting , both as a subset of X

and as a subset of � .

Corollary 1.2 Consider the braid group Bn, equipped with the generating set Dclassical or Ddual coming
from its classical or dual Garside structure. Then in the Cayley graphs �.Bn=Z.Bn/;Dclassical/ and
�.Bn=Z.Bn/;Ddual/, the axis of any pseudo-Anosov braid is strongly contracting.

Remark 1.3 Here is some context for these results:

(i) Rafi and Verberne [2021] have constructed a pseudo-Anosov element of the mapping class group of
the five-punctured sphere (which contains B4=h�

2i as a subgroup of index 5), and a generating set for
this mapping class group, such that the axis of this pseudo-Anosov element in the corresponding Cayley
graph is not strongly contracting. Our Corollary 1.2 supports the idea that examples such as that of [Rafi
and Verberne 2021] can only exist under a pathological choice of generating set.

(ii) Let S be a surface of finite type, and T.S/ its Teichmüller space, equipped with the Teichmüller
metric and the Mod.S/–action. Minsky [1996] proved that the axis of every pseudo-Anosov element of
Mod.S/ has the strong contraction property in T.S/.

(iii) There is a hierarchy of contraction properties: strongly contracting implies contracting which in turn
implies sublinearly contracting, which is equivalent to being Morse [Arzhantseva et al. 2017]; neither of
the implications is an equivalence [Brady and Tran 2022; Rafi and Verberne 2021]. However, under a
CAT(0)–hypothesis there is a strong converse: Morse geodesics in CAT(0)–spaces are strongly contracting
[Cashen 2020; Sultan 2014] (as are axes of hyperbolic isometries not bounding a half-flat [Bestvina and
Fujiwara 2009, Theorem 5.4]). Thus Theorem 1.1 is an indicator that Garside groups have CAT(0)–like
behavior; this gives further evidence that the answer to the following question may be affirmative.

Question 1.4 Are all Garside groups CAT(0)? (Note that it is not even known whether all braid groups
are CAT(0) [Brady and McCammond 2010; Haettel et al. 2016; Jeong 2023].)

Our Theorem 1.1 begs the question which elements of well-known Garside groups are Morse. For
braid groups, we know the answer from [Behrstock 2006]: it’s the pseudo-Anosov elements. For other
irreducible Artin–Tits groups of spherical type, however, the question is open. The authors [Calvez and
Wiest 2017b] hand-constructed some elements in each such group whose axes are strongly contracting,
and in particular Morse. We believe, however, that all plausible candidates for being Morse really are
Morse:

Conjecture 1.5 An element a of an irreducible Artin–Tits groups of spherical type A is Morse if and
only if its image in A=Z.A/ has virtually cyclic centralizer.

An application of our results (indeed, the authors’ original motivation for this research) concerns the
additional length graph CAL.G/ [Calvez and Wiest 2017a; 2017b; 2021]. To any Garside group G

Algebraic & Geometric Topology, Volume 24 (2024)
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one can associate a ı–hyperbolic graph CAL.G/ whose relation to G is loosely analogous to the curve
graph’s relation to the mapping class group. Indeed, if Bn is the n–strand braid group, then CAL.Bn/ is
conjectured to be quasi-isometric to the curve graph of the .nC1/–punctured sphere.

Using Theorem 1.1 we can prove (see Theorem 6.5 and Corollary 6.7)

Proposition 1.6 Suppose G is a �–pure Garside group of finite type. If g is a Morse element of G, then
the action of g on CAL.G/ is loxodromic and weakly properly discontinuous. In particular , if G contains
a Morse element then CAL.G/ has infinite diameter.

The plan of this paper is as follows. In Section 2 we review some, mostly standard, elements from Garside
theory which we will need. In Section 3 we recall the definition of the Morse property and prove a
first contraction property for the axes of Morse elements in Garside groups. In Section 4 we define, in
a Garside-theoretical fashion, a projection to the axis of any element satisfying a Garside-theoretical
rigidity condition. For elements satisfying both the rigidity and the Morse condition, we strengthen
our previous contraction result, and deduce that our projection is uniformly close to any closest-point
projection. Section 5 contains a precise definition of the strong contraction property and the proof of
Theorem 1.1. In Section 6 we present the applications of the main result to the additional length graph.

2 Garside groups

The notion of a Garside group stems from Garside’s approach to solving the conjugacy problem in the
braid groups [Garside 1969]. Soon generalized to Artin–Tits groups of spherical type [Brieskorn and Saito
1972; Deligne 1972], this approach was first axiomatized in [Dehornoy 2002; Dehornoy and Paris 1999]
and thoroughly studied over the first decade of the 2000s. The book [Dehornoy et al. 2015] provides a
comprehensive account of what is now called “Garside theory”.

Definition 2.1 Let G be a group; G is a Garside group with Garside structure .GC; �/ if GC is a
submonoid of G such that GC\GC

�1
D f1g and there exists an element � 2 GC with the following

properties:

(1) The partial order relations 4 and < on G defined by
� x 4 y (x is a prefix of y) if and only if x�1y 2GC,
� x < y (y is a suffix of x) if and only if xy�1 2GC

are lattice orders on G; that is, all x;y 2G admit a unique greatest common prefix x^y, a unique
greatest common suffix x ^� y, a unique least common right multiple x _ y and a unique least
common left multiple x _� y.

(2) The set DD fx 2GC j x 4�g D fx 2GC j�< xg generates GC as a monoid and G as a group.

(3) For all x 2GC n f1g,

kxk D supfk j 9 a1; : : : ; ak 2GC n f1g such that x D a1 � � � akg<1:
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The elements of GC are called positive, � is the Garside element and the elements of D are called simple.
The elements x of GC such that kxk D 1 are called atoms and they form a subset of D.

Given a simple element s, its right-complement @.s/ is defined by @.s/D s�1� and its left-complement
is defined by @�1.s/D�s�1; both @.s/ and @�1.s/ belong to D. Conjugation by � will be denoted by �
(that is, for g 2G, �.g/D��1g�); notice that for every simple element s, @2.s/D @.@.s//D �.s/.

We shall make the additional assumption that G is of finite type, ie that the set of simple elements D is
finite. In this case, it follows that � has finite order, and we will denote this order by e. The element �e

is then central in G. We shall further assume that G is �–pure. This property was defined in [Picantin
2001], and shown in [Gebhardt and Tawn 2016, Theorem 39] to be equivalent to indecomposability as a
Zappa–Szép product. All the reader needs to know about �–pure Garside groups of finite type is that
their center is cyclic, generated by �e , ie Z.G/D h�ei [Picantin 2001]. For instance, Artin–Tits groups
of spherical type are Garside groups, and they are �–pure if and only if the defining Coxeter graph is
connected [Picantin 2001, Proposition 4.7].

Notation 2.2 Throughout this paper, G denotes a �–pure Garside group of finite type. We denote by e

the positive integer such that Z.G/D h�ei. When we talk about Cayley graphs, it is always understood
that the generating set is obtained from the set of simple elements D. We will use the notation � for the
Cayley graph �.G;D/. Also, we define � D �.G=Z.G//, the Cayley graph of G modulo its center, with
respect to the generators which are the images of D in G=Z.G/. The corresponding graph metrics will
be denoted by d� and d� respectively.

To each element of G we associate three integer numbers as follows.

Definition 2.3 [El-Rifai and Morton 1994, Section 1] Let g 2 G. The infimum of g is defined by
inf.g/Dmaxfr 2 Z j�r 4 gg, the supremum of g is defined by sup.g/Dminfs 2 Z j g 4�sg and the
canonical length of g is defined by `.g/D sup.g/� inf.g/.

It is well known that each element of G can be written uniquely as an irreducible fraction involving
elements of GC— the letters D and N in the following stand for “denominator” and “numerator”
respectively.

Lemma 2.4 [Charney 1999, Lemma 4.4] Let g 2G.

(i) Left-fraction There is a unique pair of positive elements .Dl.g/;Nl.g// such that

Dl.g/^Nl.g/D 1 and g DDl.g/
�1Nl.g/:

In particular , if c is any positive element such that cg is positive , then c < Dl.g/.

(ii) Right-fraction There is a unique pair of positive elements .Dr .g/;Nr .g// such that

Dr .g/^
� Nr .g/D 1 and g DNr .g/Dr .g/

�1:

In particular , if c is any positive element such that gc is positive , then Dr .g/4 c.
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(iii) We have the equalities

inf.Dl.g//D inf.Dr .g//; sup.Dl.g//D sup.Dr .g//;

inf.Nl.g//D inf.Nr .g//; sup.Nl.g//D sup.Nr .g//:

Moreover, every element of G can be decomposed as follows. Recall that a pair of simple elements
.s; t/ 2 D2 is left-weighted if @.s/^ t D 1 and right-weighted if @�1.t/^� s D 1.

Proposition 2.5 [Adyan 1984; Dehornoy 2002, Section 3] Let g 2G. Let p D inf.g/ and r D `.g/.

(i) There exists a unique decomposition g D�ps1 � � � sr , where s1; : : : ; sr 2 D n f1; �g and for every
1 6 i 6 r � 1, .si ; siC1/ is left-weighted.

(ii) Similarly, there exists a unique decomposition g D s0r � � � s
0
1
�p, where s0

1
; : : : ; s0r 2 D n f1; �g and

for every 1 6 i 6 r � 1, .s0
iC1

; s0i/ is right-weighted.

These decompositions are called left normal form and right normal form of g, respectively.

Considering the latter normal forms together with the fractional decompositions of Lemma 2.4 yields a
slightly different notion of normal form.

Definition 2.6 [Dehornoy 2002, Proposition 3.9] Let g 2 G. If inf.g/ < 0< sup.g/ and Dl.g/ D

a1 � � � ar and Nl.g/ D b1 � � � bs are left normal forms, then the left mixed normal form of g is the
representation g D a�1

r � � � a
�1
1

b1 � � � bs; similarly, the right mixed normal form is the representation
g D b0s � � � b

0
1
a0�1

1
� � � a0�1

r , where a0r � � � a
0
1

and b0s � � � b
0
1

are the respective right normal forms of Dr .g/

and Nr .g/. If inf.g/ > 0, then the left (resp. right) mixed normal form of g coincides with the left
(resp. right) normal form of g given by Proposition 2.5. If sup.g/6 0, then the left (resp. right) mixed
normal form of g is the formal inverse of the left (resp. right) normal form of g�1 given by Proposition 2.5.

These mixed normal forms have an important geometric meaning:

Lemma 2.7 [Charney and Meier 2004, Lemma 3.1] In � , the Cayley graph of G with respect to D,
mixed normal forms are geodesics.

Finally, we shall need one more Garside-theoretical definition:

Definition 2.8 Let x 2 G with right normal form x D xr � � �x1�
p. We say that x is right-rigid if its

preferred simple suffix p�.x/ WD �p.x1/^
� @�1.xr / is trivial. In particular, if inf.x/D 0, then for k > 1,

the right normal form of xk consists of the concatenation of k copies of the right normal form of x.

Our aim is, of course, to study the geometry of G modulo its center Z.G/ D h�ei. However, it is
technically far more convenient not to study the Cayley graph � D �.G=Z.G// directly, but a very
closely related graph, which we will denote by X. This graph X is the 1–skeleton of “Bestvina’s normal
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form complex” considered in [Bestvina 1999; Charney et al. 2004], and it has been described previously
in [Calvez and Wiest 2017a; Dehornoy et al. 2015, Chapter VIII, Section 3.2]. We recall the definition:

Notation 2.9 We denote by X the quotient of � D �.G/ by the right-action of h�i,

XD �.G;D/=h�i:

� The vertices of X are the left-cosets of G modulo h�i, fgh�i j g 2 Gg. Each vertex gh�i of
X possesses a unique distinguished representative g, which is by definition the representative
satisfying inf.g/D 0: given g 2G, we have gD g�� inf.g/. We denote by � the vertex h�i, whose
distinguished representative is the trivial element of G.

� Two vertices gh�i and hh�i of X are connected by an edge if there is a proper simple element
s 2 D such that gs 2 hh�i; this is equivalent to the existence of a proper simple element t such
that ht 2 gh�i.

The following provides more precise information about adjacent vertices of X:

Lemma 2.10 [Bestvina 1999, Lemma 3.4] Suppose that gh�i and hh�i are adjacent vertices of X.
Then there exists a proper simple element s 2 D n f1; �g such that one of the following holds:

� gs D h (and in this case we have h @s D g�), or

� hs D g (and in this case we have g @s D h�).

Notation 2.11 We denote by dX the graph metric on the graph X; for g; h 2 G, we sometimes write
dX.g; h/ for dX.gh�i; hh�i/. Note that the groups G and G=Z.G/ act isometrically by left-translations
on X by g � .g0h�i/D .gg0/h�i.

The spaces X and � are very closely related:

Proposition 2.12 There is an isometric embedding � W X ,! � with
�

1
2
e
˘

–dense image (ie every vertex
of � is at distance at most

�
1
2
e
˘

from a vertex belonging to �.X/). In particular , � is a quasi-isometry.

Proof If g; h 2 G represent adjacent vertices of X, then we know from Lemma 2.10 that g and h

represent adjacent vertices in the Cayley graph � of G, and thus also in the Cayley graph � of G=h�ei.
This means that the map

� W fvertices of Xg ,! fvertices of �g; gh�i 7! gh�e
i

sends adjacent vertices to adjacent vertices, and thus induces a well-defined and 1–Lipschitz map of
graphs � W X ,! � .

In the other direction, there is a natural projection map

p W fvertices of �g ! fvertices of Xg; gh�e
i 7! gh�i;

Algebraic & Geometric Topology, Volume 24 (2024)



4552 Matthieu Calvez and Bert Wiest

which induces a well-defined map of graphs p W �! X. Both � and p are 1–Lipschitz, and p ı �D idX.
This implies that � is an isometric embedding.

Now we look at the opposite composition

� ıp W �! �; gh�e
i 7! gh�e

i:

We observe that d�.gh�
ei;gh�ei/ <

�
1
2
e
˘
, which means that � ıp is at distance

�
1
2
e
˘

from id� ; thus
the image of � is

�
1
2
e
˘

–dense.

We now recall from [Calvez and Wiest 2017a] the notion of a preferred path between two vertices in X.

Definition 2.13 Given any vertex gh�i of X, let s1 � � � sr be the left normal form of g; the preferred
path between � and gh�i is the path

�; s1h�i; : : : ; .s1 � � � sr /h�i D gh�i:

Then, for g; h 2 G, we denote by A.g; h/ the g–left translate of the preferred path between � and
g�1hh�i— so A.g; h/ is a path in X with starting point gh�i and end point hh�i.

Remark 2.14 If g0 2 gh�i and h0 2 hh�i, then the paths A.g; h/ and A.g0; h0/ coincide, so we have a
preferred path A.gh�i; hh�i/ between any pair of points gh�i; hh�i in X.

Here is a proof of this coincidence of the two paths: Suppose the left normal form of g�1h is s1 � � � sn.
Then by definition, the i th vertex on the path A.g; h/ in X is represented by g � s1 � � � si . Let us calculate,
for comparison, the i th vertex on the path A.g�k ; h�`/. We have

.g�k/�1h�` D��k
�g�1hD �k.g�1h/D �k.s1/ � � � �

k.sn/:

The i th vertex of the g�k–translate of A.�; .g�k/�1h�`/ is thus represented by

g�k
� �k.s1/ � � � �

k.si/D g � s1 � � � si ��
k ;

which represents the same point of X.

We record some basic properties of the preferred paths (recall that for g; h 2 G, g ^ h is the unique
greatest common prefix of g and h):

Proposition 2.15 (i) Let g; h 2G; let p D g^h. The preferred path A.g; h/ is the concatenation of
the preferred paths A.g;p/ and A.p; h/.

(ii) Preferred paths are symmetric: for all g; h 2G, A.g; h/ is the reverse of A.h;g/.

(iii) Preferred paths are preserved by left-translation: for all g; h; k 2G, A.kg; kh/D kA.g; h/.

(iv) Preferred paths are geodesics in X and for all g; h 2G, dX.g; h/D d�.g; h/.

(v) Balls in X are convex: if g; h 2G and kh�i 2A.g; h/, then

dX.�; kh�i/6 max.dX.�;gh�i/; dX.�; hh�i//:
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Proof Parts (i) and (ii) correspond to [Calvez and Wiest 2017a, Lemma 4] and [Calvez and Wiest 2017a,
Lemma 5], respectively. For (iii), write the left normal form of g�1h as z1 � � � zr , so that A.g; h/ is by
definition the path

gh�i D gh�i;gz1h�i; : : : ;gz1 � � � zr h�i D hh�i:

Note that kg D kg�j (with j D inf.g/ � inf.kg/); therefore the left normal form of .kg/�1kh is

�j .z1/ � � � �
j .zr /. So by definition, A.kg; kh/ is the path

kgh�i D kgh�i; kg�j .z1/h�i; : : : ; kg�j .z1 � � � zr /h�i;

but for all 1 6 i 6 r , we have

kg�j .z1 � � � zi/D kg�j��j z1 � � � zi�
j
D kgz1 � � � zi�

j :

Thus A.kg; kh/ is the path
kgh�i; kgz1h�i; : : : ; kgz1 � � � zr h�i;

the k–left translate of A.g; h/, as claimed.

To see (iv), recall first that mixed normal forms are geodesics in � (Lemma 2.7). Let g; h 2 G. It is
shown in the proof of [Calvez and Wiest 2017a, Lemma 4] that the path A.g; h/ in X has the exact length
of the mixed normal form of g�1h, say r . Suppose that there was a shorter path in X between gh�i

and hh�i, that is a sequence of vertices gh�i D g0h�i;g1h�i; : : : ;gkh�i D hh�i, with k < r . Then
by Lemma 2.10 there are simple elements s1; : : : ; sk such that for 1 6 i 6 k, we have gi D gi�1si or
gi D gi�1s�1

i ; setting ti to be si or s�1
i accordingly, we obtain that h D gk D g0t1 � � � tk D gt1 � � � tk ,

where each ti is either a simple element or the inverse of a simple element. This contradicts the fact that
mixed normal forms are geodesics in � .

Now, let us prove (v). In view of (iv), the distances involved are the respective lengths of the left normal
forms of k, g and h. Let pD g^h; write gDpa and hDpb (with a; b 2GC), and let aD a1 � � � ar and
b D b1 � � � bs be the respective left normal forms. By the proof of [Calvez and Wiest 2017a, Lemma 4],
the distinguished representatives of the vertices along the path A.g; h/ are (in this order)

g D pa1 � � � ar ; : : : ;pa1;p;pb1; : : : ;pb1 � � � bs D h:

Any of these is a prefix of g or h; thus its left normal form is at most as long as that of g or h and the
claim is proved.

Lemma 2.16 (fellow traveler property) Suppose that g;g0; h; h0 2G are such that dX.g;g
0/D 1 and

dX.h; h
0/ D 1. Then the set of vertices along the path A.g; h/ and the set of vertices along the path

A.g; h0/ in X are at Hausdorff distance 1. Also , the analogous statement holds for the paths A.g; h/ and
A.g0; h/.

Proof By symmetry of preferred paths (Proposition 2.15(ii)), the second statement follows from the first.
After a left translation, we may assume gD 1, so we must show the claim for A.�; hh�i/ and A.�; h0h�i/.
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z0
2

z0
1
D s1

z1

t1 s2 t2 s3

z0
3

s D srC1sr tr
tr�1

sr�1

z2 zr�1 zr

z0r z0
rC1

h1

hs

Figure 1: The normal form paths of h (in blue) and of hs (in red) stay at Hausdorff distance 1 in
the Cayley graph of G.

We may assume from the hypothesis (and Lemma 2.10) that there exists a simple element s such that
hs D h0. Let z1 � � � zr be the left normal form of h. The vertices along A.�; hh�i/ are z1 � � � zih�i, for
0 6 i 6 r .

Now, the left normal form of h0D hs may be obtained, for instance, from the algorithm given in [Gebhardt
and González-Meneses 2010, Proposition 1.2], which is illustrated in Figure 1. It goes as follows. Set
srC1 D s; for i D r; : : : ; 1, define recursively the simple elements ti D @.zi/ ^ siC1, si D zi ti and
z0

iC1
D t�1

i siC1. Finally define z0
1
D s1. Then z0

1
� � � z0r z0

rC1
(or z0

1
� � � z0r , if z0

rC1
D 1) is the left normal

form of h.

We then see that for iD1; : : : ; r , we have z0
1
� � � z0iDz1 � � � zi ti ; hence the .iC1/st vertex along A.�; h0h�i/

is at distance 1 from the .iC1/st vertex along A.�; hh�i/.

Lemma 2.17 (concatenation of normal form paths) Let g; h; k 2G be such that g 4 h 4 k. Then:

(i) The concatenation of the paths A.g; h/ and A.h; k/ is a .2; 0/–quasigeodesic connecting gh�i

to kh�i.

(ii) Suppose in addition that the paths A.g; h/ and A.g; k/ have the same length ; then the concatenation
of A.h; k/ and A.k;g/ is a .2; 0/–quasigeodesic connecting hh�i to gh�i.

Proof Let aD g�1h, bD h�1k and c D g�1k. Under our hypothesis, inf.a/D inf.b/D inf.c/D 0 and
c D ab. Denote by aD a1 � � � ar and b D b1 � � � bs the respective left normal forms.

(i) Denote by ˛ the concatenation of paths under consideration. Let ph�i be the k th vertex on A.g; h/,
for some 1 6 k 6 r ; let qh�i be the .lC1/st vertex on A.h; k/, for some 1 6 l 6 s. The distance
dX.p; q/ is the length of A.p; q/, that is sup.p�1q/D sup.ak � � � ar b1 � � � bl/. As the subwords ak � � � ar

and b1 � � � bl are in left normal form, we obtain dX.p; q/> maxfr � kC 1; lg. Note that the portion of ˛
between ph�i and qh�i has length r � kC 1C l . We then obtain

1
2
.r � kC 1C l/6 maxfr � kC 1; lg6 dX.p; q/6 r � kC 1C l 6 2.r � kC 1C l/I

hence ˛ is a .2; 0/–quasigeodesic.

(ii) The extra hypothesis is saying that sup.a/ D sup.c/. Consider the vertices g0h�i D h�1gh�i,
h0h�i D h�1hh�i D � and k 0h�i D h�1kh�i; our goal is to show that the concatenation of A.h0; k 0/
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and A.k 0;g0/ is a .2; 0/–quasigeodesic connecting h0h�i to g0h�i. Let us compute the respective
distinguished representatives: we have h0 D 1, k 0 D b and

g0 D h�1g D a�1
D a�1�sup.a/:

Moreover, a�1�sup.a/ D b.c�1�sup.a//D b.c�1�sup.c// and c�1�sup.c/ is positive, so b 4 g0. We thus
have h0 4 k 0 4 g0 and we are in a position to apply Lemma 2.17(i) to obtain the desired claim.

3 Morse elements in Garside groups

In this section we will define Morse elements in Garside groups, and prove some preliminary results on
them. First, we set some notation and we recall the definition. We recall that throughout, G denotes a
�–pure Garside group of finite type.

Notation 3.1 Let g 2G.

� The axis of g in X is the set of vertices fgt h�i j t 2 Zg.

� The axis of g in � is the set of vertices fgt h�i j t 2 Zg.

Remark 3.2 We caution the reader that two elements g and g� may have completely different axes in
G=Z.G/, and thus in X. For instance in braid groups, it may very well happen that some element g is
pseudo-Anosov while g� is reducible.

Definition 3.3 (a) Let .X; d/ be a metric space, and let  W Z! X be a map. We say that  (or
equivalently its image) is Morse if
(i)  is a quasi-isometric embedding, and

(ii) for every pair .ƒ;K/ with ƒ> 1 and K > 0, there is a number M .ƒ;K / (the Morse constant)
such that every .ƒ;K/–quasigeodesic in X connecting two points,  .i/ and  .j / (for i; j 2Z),
of the image of  remains in the M .ƒ;K /–neighborhood of the image of  in X .

(b) Let H be a group generated by a finite set S . An infinite order element h 2H is Morse if the map
 WZ! Cay.H;S/, t 7! ht , is Morse in the sense of (a). In this situation, given ƒ� 1 and K � 0

we denote by M
.ƒ;K /

h
the associated Morse constant.

Notation 3.4 Since many quasigeodesics in this paper will be .2; 0/–quasigeodesics, we will use the
simplified notation Mh DM

.2;0/

h
.

Since a �–pure Garside group of finite type has an infinite-cyclic center, it cannot contain any Morse
elements. We adapt the definition as follows, keeping in mind Proposition 2.12 which says that the
projection �! X, gh�ei 7! gh�i, is a quasi-isometry and the fact that the Morse property is invariant
under quasi-isometry.
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Definition 3.5 We say that an element g of a �–pure Garside group of finite type G is Morse if any of
the following equivalent condition holds:

(i) the image of g in G=Z.G/ is Morse in the sense of Definition 3.3(b);

(ii) the axis of g in � is Morse in the sense of Definition 3.3(a);

(iii) the axis of g in X is Morse in the sense of Definition 3.3(a).

Example 3.6 Pseudo-Anosov braids are Morse; indeed, their projections to the group Bn=Z.Bn/,
which is a finite-index subgroup of the mapping class group of an .nC1/–times punctured sphere, are
pseudo-Anosov mapping classes in this group. By [Behrstock 2006], these are Morse.

The following is a key technical result; recall that the notion of right-rigidity is introduced in Definition 2.8.

Proposition 3.7 Every Morse element of G has a power which is conjugate to a right-rigid element.
Moreover , this right-rigid element can be required to be of the form �e�mx, with m 2 Z, inf.x/D 0, and
x right-rigid.

In order to prepare the proof of Proposition 3.7, we need the following lemma. It is well known to experts
(see eg [Tran 2019, Corollary 4.16]), but for the sake of completeness we will give an elementary proof.

Lemma 3.8 Let H be a group generated by a finite set S . If h 2H is a Morse element in the sense of
Definition 3.3(b ), then hhi has finite index in the centralizer Z.h/ in H .

Proof Denote by d the word distance associated to S in H . Let A > 1 and B > 0 such that t 7! ht is an
.A;B/–quasi-isometric embedding of Z in Cay.H;S/. Let M DM

.4A;B/

h
.

We claim that if zhD hz, then d.z; hhi/6 M . Granted this claim, we then see that for all z 2Z.h/, there
is some m 2 Z such that d.z; hm/ D d.1; z�1hm/ 6 M , that is the coset z�1hhi has a representative
of word length at most M . It follows that each coset of Z.h/ modulo hhi has a representative of word
length at most M , so there are only finitely many cosets.

To prove the claim, assume on the contrary that d.z; hhi/DK>M , for some z 2Z.h/. Let r be such that
d.z; hr /DK; up to replacing z by h�r z, we may assume that K D d.z; hhi/D d.z; 1/. Choose N big
enough that dDd.h�N ; hN />4K. Then we piecewise define a map  W f0; : : : ; 2KC2N g!Cay.H;S/
as follows:

� For 0 6 t 6 K,  .t/D 1.t/ follows a geodesic from h�N to zh�N .

� For K 6 t 6 KC 2N ,  .t/D 2.t/D zht�K�N .

� For KC 2N 6 t 6 2KC 2N ,  .t/D 3.t/ follows a geodesic from zhN to hN .

To conclude, we shall observe that  defines a .4A;B/–quasigeodesic with endpoints h�N and hN on
the axis of h, hence contradicting the hypothesis that h is Morse (as the vertex z D  .KCN / does not
lie in the M –neighborhood of hhn; n 2 Zi).
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Let 0 6 s; t 6 2KC 2N . The upper bound d. .s/;  .t//6 Ajs� t jCB follows immediately from the
fact that  is a juxtaposition of geodesics and an .A;B/–quasigeodesic. To obtain the lower bound, we
consider two cases.

First, let 0 6 s 6 K and K 6 t 6 KC 2N (the situation is symmetric for KC 2N 6 s 6 2KC 2N ).
Because zh�N D  .K/ realizes the minimum possible distance between h�N and fzhn; n 2Zg, we have
d. .s/;  .t//> d. .s/;  .K//. Then we have

d. .s/;  .K//C d. .K/;  .t//6 2d. .s/;  .K//C d. .s/;  .t//6 3d. .s/;  .t//

and the lower bound d. .s/;  .t//> 1
3A
js� t j � 1

3
B follows.

Second, let 0 6 s 6 K and KC 2N 6 t 6 2KC 2N . By our choice of N , we have

d. .s/;  .t//> 1
2
d > 1

4
d CK > 1

4
d C 1

2
K > 1

4
d C 1

4
d. .s/; zh�N /C 1

4
d. .t/; zhN /

and we obtain the lower bound d. .s/;  .t//> 1
4A
jt � sj � 1

4
B.

Proof of Proposition 3.7 For the proof of the first sentence, we recall the following result, proven
(although not stated in this form) in [Birman et al. 2007, Theorem 3.23 and Corollary 3.24]: Suppose that
a certain element of a Garside group is not a root of a central element (infinite order condition), and that
every element commuting with it has a common power with it, up to multiplication by a central power
of � (small centralizer condition). Then the element has a power which is conjugate to a right-rigid
element. This result from [Birman et al. 2007] implies the first sentence, because any Morse element
satisfies the infinite order condition, and it satisfies the small centralizer condition by Lemma 3.8.

For the proof of the second sentence, we simply remark that for a rigid element g and an integer k,

inf.gk/D k � inf.g/:

Thus by taking a further power, we can achieve that the infimum of the rigid conjugate is a multiple
of e.

Remark 3.9 There is an alternative proof of Proposition 3.7, which does not use Lemma 3.8 or the
paper [Birman et al. 2007], but which is rather reminiscent of the “pumping lemma” [Epstein et al. 1992,
Theorem 1.2.13]. The idea is that the right normal form of gn has to stay close to the axis of the Morse
element g. Now right normal forms belong to a language recognized by a finite state automaton; thus
for large enough n, this right normal form has a middle segment with periodic behavior. This periodic
segment is a right-rigid conjugate of a power of g. We leave the details as an exercise.

Notation 3.10 From here on, all diagrams in this paper will take place in X (not in the Cayley graph
�.G/ or in � D �.G=Z.G//). Also, in the diagrams, we simplify the notation, labeling a vertex g if it is
represented by a group element g — strictly speaking, it should be labeled gh�i.
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1 x x2 g D xi
axis.x/

6 Mx
6 2Mx

f

h

Figure 2: The statement of Proposition 3.11. Here the segment from � to f h�i, with f Dh^�`i ,
has the same length as the segment from � to gh�i, namely `i .

Proposition 3.11 (preferred paths stay close to the axis) Suppose x is a Morse element of G satisfying
inf.xk/D 0 for every positive integer k. For i 2N, define `i D `.x

i/. Let h 2G and suppose that there
exists an integer i > 0 such that xi 4 h. Consider the initial segment of the path A.1; h/ in X of length `i

(the same length as xi). Then this segment stays within distance Mx from the axis of x:

if 0 6 k 6 `i then dX..h^�
k/h�i; axis.x//6 Mx :

Moreover ,
dX..h^�

`i /h�i;xi
h�i/6 2Mx :

Proof Let f D h^�`i and g D xi . Of course, f D f , and our first hypothesis on x says that g D g.
Because xi 4 h, we have 1 4 g 4 f and by construction of f , the paths A.1; f / and A.1;g/ have
the same length. By Lemma 2.17(ii), the concatenation of paths A.1; f /, followed by A.f;g/ is a
.2; 0/–quasigeodesic. This yields the first statement, recalling that Mx DM

.2;0/
x is the Morse constant.

For the second statement, we notice that in particular, the vertex f h�i is at distance at most Mx from
some point xkh�i on the axis. By the triangle inequality,

`i �Mx 6 dX.�;x
k
h�i/6 `i CMx;

and therefore xkh�i lies in an Mx–neighborhood of gh�i. We conclude that

dX.f h�i;gh�i/6 dX.f h�i;x
k
h�i/C dX.x

k
h�i;gh�i/6 2Mx :

4 Projection to the axis

In this section, we will define, in Garside-theoretical terms, a projection from X to the axis of any
element x of G, provided that inf.x/D 0 and that x satisfies the additional hypothesis of being right-
rigid (Definition 2.8). If, moreover, x is Morse, then this projection satisfies a contraction property
(Proposition 4.8) which extends Proposition 3.11. This will be sufficient for deducing that our projection
coincides, up to a bounded error, with any closest point projection (Corollary 4.9).
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Remark 4.1 We remark that the occurrence of the condition of right-rigidity in our context is quite
surprising, as this is a condition on the right normal form of x, whereas otherwise, we are generally using
left normal forms throughout this paper.

Lemma 4.2 Let x 2 G n f1Gg be such that inf.xk/ D 0 for all k 2 N. Let h 2 G. Then the set
fk 2 Z j x 64 xkhg is nonempty and bounded above.

In other words, we are claiming that there are indices k with x 64 xkh, but if k is sufficiently large then
x 4 xkh.

Proof We will study the bi-infinite sequence .inf.xkh//k2Z. This sequence is nondecreasing: indeed, by
[El-Rifai and Morton 1994, Section 1], for any group elements g and h, we have inf.g �h/> inf.g/Cinf.h/;
in particular, inf.xkC1h/> inf.x/C inf.xkh/> inf.xkh/.

The same argument yields the inequality inf.xk/> inf.xkh/C inf.h�1/D inf.xkh/� sup.h/, which we
will be using in the equivalent form

inf.xkh/6 inf.xk/C sup.h/:

Let us now prove that the set fk 2 Z j x 64 xkhg is nonempty. The preceding inequality implies that
limk!�1 inf.xkh/D�1, and in particular that there exists some index k with inf.xk�1h/ < inf.xkh/.

Now if an index k has the property that x 4 xkh then inf.x�1x�kh/D 0. However,

x�1x�khD x�1
�x�kh ��� inf.x�kh/

D x�k�1h ��� inf.x�kh/

and thus
inf.x�k�1h/D inf.x�1x�kh/C inf.x�kh/D inf.x�kh/:

As seen above, this cannot be true for all indices k, so there must exist an index k with x 64 xkh.

We now turn to the proof that, by contrast, x 4 xkh for sufficiently large values of k. In fact, we will
prove the stronger result that there exists k0 2N such that for k > k0, xk�k0 4 xkh.

We look at positive indices k, for which, we recall, inf.xk/D 0. As seen above, we have

inf.xkh/6 inf.xk/C sup.h/D sup.h/ for k > 0:

Thus the increasing integer sequence .inf.xkh//k2N is bounded above by sup.h/, and hence it is eventually
constant: there exist k0 2N and n0 2Z, with n0 6 sup.h/, such that for all k > k0, inf.xkh/D n0. Now,
for k > k0,

xkhD xkh��n0 D xk�k0xk0h��n0 D xk�k0xk0h

which finishes the proof.

Definition 4.3 (Garside-theoretical projection to the axis of x) Let x 2G be such that inf.xk/D 0 for
all k 2N.

Algebraic & Geometric Topology, Volume 24 (2024)



4560 Matthieu Calvez and Bert Wiest

(a) Let h 2G. We define the integer

�.h/D�maxfk 2 Z;x 64 xkhg

and we note that for any t 2 Z, �.h�t /D �.h/.

(b) We define a map � WG!G as follows: for any h 2G, we set �.h/D x�.h/. For any t 2Z, we have
�.h�t /D �.h/ so we can define the Garside-theoretical projection to the axis of x to be the map (which
we denote by the same letter)

� W X! X; hh�i 7! x�.h/h�i:

From now on, for the rest of the paper, we make the stronger hypothesis that x satisfies inf.x/D 0 and is
right-rigid (see Definition 2.8). This implies in particular that inf.xk/D 0 for all k 2N.

Lemma 4.4 Let x 2 G with inf.x/ D 0 be a right-rigid element. Let h 2 G. The following are
equivalent :

(i) x 4 h;

(ii) for all k > 0, xkC1 4 xkh.

Proof Only (i) D) (ii) needs a proof. Suppose that x 4 h, and let k > 0. We claim that xkhD xkh (ie
that inf.xkh/D 0). In order to prove this claim, we write hD xa with a positive. Since x is right-rigid,
the condition inf.xa/D 0 implies inf.xkC1a/D 0 (see [Calvez and Wiest 2017b, Lemma 1]). This means
that inf.xkh/D 0, proving the claim. Now (ii) is an immediate consequence.

When x is right-rigid, Lemma 4.4 yields a clean interpretation of the Garside-theoretical projection to the
axis of x (see Figure 3):

Lemma 4.5 Let x 2G with inf.x/D 0 be a right-rigid element. Let h 2G. For m 2 Z, the following
conditions are equivalent :

(i) mD��.h/;

(ii) (a) x 64 xmh, and
(b) x 4 xmC1h;

(iii) for every k > 0,
(a) xkC1 64 xmCkh, and
(b) xk 4 xmCkh.

In particular , whenever �.h/ > 0, we have x�.h/ 4 h. Also , for every k 2 Z, �.xk/D k.

Proof Implications (i) D) (ii) and (iii) D) (i) are clear by definition of �. Assume (ii); this yields
immediately statement (iii) for k D 0. Suppose k > 0. For (iii)(a), suppose on the contrary that

Algebraic & Geometric Topology, Volume 24 (2024)



Morse elements in Garside groups are strongly contracting 4561

x x

x�.h/�k x�.h/�1 �.h/D x�.h/
axis.x/

xk 4 x��.h/Ckh

xkC1 64
x 4 x��.h/C1h

x2 64

x 64 x��.h/h

h

Figure 3: The definition of the projection � from X to the axis, for h 2 G, and its properties
(supposing that x is right-rigid).

xkC1 4 xmCkh. Then xmCkhD xkC1a for some positive a and xmhD xa, contradicting (ii)(a). For
(iii)(b), we use the hypothesis (ii)(b) that x 4 xmC1h; the conclusion then follows immediately from
Lemma 4.4.

Lemma 4.6 Let x 2G with inf.x/D 0 be a right-rigid element. Let z 2G with inf.z/D 0, and let s be
a simple element. Suppose that x 64 z. Then x2 64 zs.

Proof Let xr � � �x2x1 be the right normal form of x. Assume, contrary to the claim, that x�2zs is
positive. Then by Lemma 2.4(ii), Dr .x

�2z/ 4 s. We deduce (Lemma 2.4(iii)) that Dl.x
�2z/ is also

simple. On the other hand, by Lemma 2.4(i), x2 < Dl.x
�2z/ and, as x is right-rigid, x1 < Dl.x

�2z/. It
then follows that xxr � � �x2 4 x2Dl.x

�2z/�1 4 z, a contradiction.

Proposition 4.7 (� is `.x/–Lipschitz) Let x 2G be a right-rigid element with inf.x/D 0 and canonical
length `D `.x/. If g; h 2G satisfy dX.g; h/D 1, then j�.g/��.h/j6 1 and dX.�.g/; �.h//6 `.

Proof Let kg D ��.g/ and kh D ��.h/. Apply Lemma 2.10 to the adjacent vertices xkg gh�i and
xkg hh�i: for some simple element s, either .xkg g/s D xkg h or .xkg h/s D xkg g holds. Let us consider
the first case. By definition of kg, x 64 xkg g and by Lemma 4.6, x2 64 .xkg g/sD xkg h. From Lemma 4.4,
we deduce that x 64 xkg�1h. This means that kg � 1 6 kh. In the second case, we obtain that x 64 xkg h,
whence kg 6 kh. A similar reasoning applied to the adjacent vertices xkhgh�i and xkhhh�i shows
that either kh � 1 6 kg or kh 6 kg. In either case, we obtain the desired claim for �.g/ D �kg and
�.h/D�kh.

Finally, the inequality dX.�.g/; �.h//6 ` is an immediate consequence.

Let us now combine the rigidity and the Morse hypothesis on x:

Proposition 4.8 Let x 2G be a right-rigid Morse element with inf.x/D 0 and canonical length `. Let
� be the Garside-theoretical projection to axis.x/. Then there exists a D 2N such that for any h 2G and
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xi1

i1 < �.h/

�.h/D x�.h/ xi2

i2 > �.h/

axis.x/
6 D 6 D

h

Figure 4: The statement of Proposition 4.8.

for any i 2 Z, the preferred geodesic A.xi ; h/ in X passes at distance at most D from �.hh�i/: there
exists some h0 2G with h0h�i belonging to A.xi ; h/ such that

dX.h
0; �.h//6 D:

Specifically, we can take D D .`C 1/ �Mx .

Proof We treat the cases i < �.h/ and i > �.h/ separately.

If i < �.h/, then after the action of x�i , we can assume without loss of generality that i D 0. Noting that
x�.h/ 4 h, we are then precisely in the situation of Proposition 3.11. Note that by the rigidity hypothesis,
`.x�.h//D �.h/ � `. Thus, if we define h0 D h^��.h/�`, we have

dX.h
0; �.h//6 2 �Mx :

If i > �.h/, then this time we will assume, again without loss of generality (after the action of x��.h/C1),
that �.h/D 1. Thus �.h/D x and x 4 h but x2 64 h (Lemma 4.5).

Let h0 D xi ^h and note that h0 D h0. We know from Proposition 2.15(i) that the vertex h0h�i lies on the
preferred geodesic A.h;xi/, and our aim now is to bound its distance from �.hh�i/.

We make two observations about the vertex h0h�i. The first observation is that it lies in the Mx–
neighborhood of axis.x/, where we recall that Mx is the Morse constant for .2; 0/–quasigeodesics with
endpoints on axis.x/. This follows from Lemma 2.17(i) and the fact that x 4h04xi . (For later reference —
see Remark 5.6 — we observe that we even have x 4 h0 4 xi ^�sup.h0/.)

The second observation about the vertex h0h�i is that it has the same projection to the axis as hh�i,

�.h0/D �.h/:

Here is a proof of this fact. We have to prove that �.xi ^ h/D �.h/D 1. By Lemma 4.5, it suffices to
prove that

x 4 xi
^ h but x2

64 xi
^ h:
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axis.x/

6 D
h0

h

�.h/D Garside-theoretic
projection

xk D closest-point
projection

Figure 5: The projection � is uniformly close to any closest-point projection.

Keeping in mind the hypothesis that i > 2, this follows immediately from the analogous condition on h.
This completes the proof of the second observation about h0h�i.

By the first observation, there exists an integer k with

dX.h
0;xk/6 Mx :

Since the projection � is `–Lipschitz (Proposition 4.7), we have

dX.�.h
0/;xk/D dX.�.h

0/; �.xk//6 ` �Mx :

Applying the triangle-inequality we obtain

dX.h
0; �.h0//6 ` �MxCMx D .`C 1/ �Mx :

Also, by the second observation above we have �.h0/D �.h/, so

dX.h
0; �.h//6 .`C 1/ �Mx :

The proof of Proposition 4.8 is complete, with

D Dmax.2 �Mx; .`C 1/ �Mx/D .`C 1/ �Mx :

We deduce that � is uniformly close to the closest point projection:

Corollary 4.9 Let x2G with inf.x/D0 be a right-rigid Morse element , and � be the Garside-theoretical
projection to axis.x/. Let h 2G and let xkh�i be any point of the axis such that

dX.h;x
k/Dmin

i2Z
dX.h;x

i/:

Then
dX.�.h/;x

k/6 2D;

where D is the constant promised by Proposition 4.8.
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Proof By Proposition 4.8, there is a point h0h�i on the geodesic A.h;xk/ such that dX.�.h/; h
0/6 D.

Since xkh�i is a point on the axis as close as possible to hh�i, we must have

dX.x
k ; h0/6 dX.�.h/; h

0/6 D:

By the triangle inequality, we conclude

dX.�.h/;x
k/6 2D:

5 The strong contraction property

In this section we recall the definition of the strong contraction property and the strong constriction
property. Then we prove the main result of this paper: in a �–pure Garside group of finite type G, the
axis of any Morse element is strongly contracting.

The following two definitions and a proof of their equivalence can be found in [Arzhantseva et al. 2015].

Definition 5.1 Let .X; d/ be a metric space and let A be any subset of X . A map � W X ! A is
C –strongly contracting for C > 0 if the following hold:

(i) � is coarsely equivalent to idA on A: for every a 2A, d.�.a/; a/6 C ;

(ii) for all x 2X , d.x; �.x//� d.x;A/6 C ;

(iii) for all u; v 2X , d.u; v/ < d.v;A/�C implies that d.�.u/; �.v//6 C (ie if a ball in X is disjoint
from a C –neighborhood of A, then its image under � is contained in a ball of radius C ).

The map � is strongly contracting if there exists a nonnegative integer C such that � is C –strongly
contracting. The subset A�X is strongly contracting if there exists a strongly contracting map X !A.

Note [Arzhantseva et al. 2015, Lemma 2.8] that a strongly contracting map � WX !A satisfies in fact
a strengthened version of clause (ii) in Definition 5.1; namely, � is coarsely a closest point-projection
to A, meaning that for all x 2X , there exists an a 2A with d.x;A/D d.x; a/ such that d.�.x/; a/ is
uniformly bounded.

As proven in [Arzhantseva et al. 2015, Proposition 2.9], a map � is strongly contracting if and only if it is
strongly constricting; this alternative characterization will be useful in Lemma 5.3 and Section 6:

Definition 5.2 Let .X; d/ be a metric space and let A be any subset of X . A map � W X ! A is
C –strongly constricting for C > 0 if the following hold:

(i) � is coarsely equivalent to idA on A: for every a 2A, d.�.a/; a/6 C ;

(ii) for every geodesic  in X with endpoints x0 and x1, if d.�.x0/; �.x1//>C , then d.�.xi/;  /<C

for i D 0; 1.

The map � is strongly constricting if there exists a nonnegative integer C such that � is C –strongly
constricting.
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Lemma 5.3 Let .X; d/ be a metric space and let A be a subset of X . Let � W X ! A be a strongly
contracting map.

(i) Suppose that B� X is another subset of X with dHausdorff.A;B/ <1. Then there is a strongly
contracting map �0 WX !B.

(ii) Let .X 0; d 0/ be another metric space. Suppose there is an isometric and quasisurjective embedding
� WX ,!X 0. Then there is a strongly contracting map �0 WX 0! �.A/.

Proof For (i), let ı D dHausdorff.A;B/. We construct �0 by choosing, for any x 2X , a point b 2B with
d.b; �.x//6 ı, and declaring that �0.x/D b. Thus � and �0 are ı–coarsely equivalent. Now it is an easy
exercise to show that if � is C –strongly constricting then �0 is .CC2ı/–strongly constricting.

For (ii), let " be such that the "–neighborhood of �.X / in X 0 is all of X 0. We define �0 by choosing, for
every x0 2X 0, a point x 2X with d 0.�.x/;x0/6 ", and declaring that �0.x0/D �.�.x//. We have to prove
that �0 is strongly contracting. More precisely, supposing that � WX !A is C –strongly contracting, our
aim is to prove that �0 is .CC3�/–strongly contracting. We shall prove only part (iii) of Definition 5.1;
the other two clauses can be checked easily.

For any point v0 2X 0, consider the ball B0 centered in v0 and of radius d 0.v0;A/�C � 3". If we choose
a point of �.X / at distance at most " from each point of B0, we obtain a subset of X which is contained
in a ball in X centered at some point v (with d 0.�.v/; v0/ 6 ") and of radius d 0.v0;A/�C � ". Since
d 0.v0;A/�C � "6 d.v;A/�C , the projection �0.B0/ is contained in �.�.B//, where B is the ball in X

centered in v and of radius d.v;A/�C . By hypothesis, diam.�.B//6 C < C C 3", which is what we
wanted to prove.

Proposition 5.4 Let G be a �–pure Garside group of finite type. Let x 2 G with inf.x/ D 0 be a
right-rigid Morse element. The Garside-theoretical projection � to axis.x/ is 5D–strongly contracting ,
where D is the constant promised by Proposition 4.8.

Proof The first and second conditions of Definition 5.1 follow respectively from the last statement of
Lemma 4.5 and Corollary 4.9, which asserts the stronger condition that � is coarsely a closest-point projec-
tion. Let us prove that condition (iii) is satisfied. Let h;g 2G be such that dX.h;g/6 dX.hh�i; axis.x//
(that is, gh�i lies in a ball in X centered at hh�i and disjoint from the axis of x).

Let us write r� D dX.h; �.h//. Now,

dX.h;g/6 dX.hh�i; axis.x//6 r�:

By Proposition 4.8, the preferred geodesic A.g; �.h// contains a point g0h�i at distance at most D

from �.gh�i/. By Proposition 2.15(v) (convexity of balls), we have dX.h;g
0/6 r�.

Let us now study the preferred geodesic A.h;g0/. We have just seen that it is of length at most r�.
Moreover, by Lemma 2.16, it is at Hausdorff distance at most D from A.h; �.g//, which in turn passes
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A.g; �.h//
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axis.x/
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Figure 6: The proof of Proposition 5.4.

at distance at most D from �.hh�i/ (by Proposition 4.8 again). Thus A.h;g0/ contains a point h0h�i at
distance at most 2D from �.hh�i/.

Now dX.h
0; h/> r�� 2D by the triangle inequality. Therefore,

dX.g
0; h0/D dX.g

0; h/� dX.h
0; h/6 2D;

and we obtain the desired conclusion

dX.�.g/; �.h//6 dX.�.g/;g
0/C dX.g

0; h0/C dX.h
0; �.h//6 DC 2DC 2D D 5D:

The following is the main result of this paper:

Theorem 5.5 (strong contraction property of axes) Let G be a �–pure Garside group of finite type. Let
g 2G be a Morse element. Then:

(i) In XD �.G/=h�i, the axis fgkh�i j k 2 Zg � X is strongly contracting.

(ii) In � D �.G=Z.G//, the axis fgkZ.G/ j k 2 Zg � � is strongly contracting.

Proof of Theorem 5.5 First we recall that the axis of g being Morse in X or in � are equivalent properties,
because the property of being Morse is invariant under quasi-isometry.

Now, by Proposition 3.7, there is an element x 2 G with inf.x/D 0 which is right-rigid, and which is
obtained from g by taking a power, conjugating by some element a 2G, and multiplying by a central
element. Thus in both spaces, X and � , taking the axis of x and translating it by the action of a yields
a subset which is at finite Hausdorff distance from the axis of g. By Proposition 5.4, the axis of x is
strongly contracting in X, and so is its image under the a–action; by Lemma 5.3(i), the axis of g is
strongly contracting in X.

For Theorem 5.5(ii) we recall from Proposition 2.12 that there is an isometric embedding � W X ,! �

with
�

1
2
e
˘

–dense image. The vertices of the image are those which are represented by elements g with
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inf.g/ � 0 mod e. In particular, the axis of x in � is the image under � of the axis of x in X. By
Proposition 5.4 and Lemma 5.3(ii), the axis of x in � is strongly contracting (and so is its a–translate).
By Lemma 5.3(i), the axis of g in � is also strongly contracting.

Remark 5.6 The proof of our main theorem (Theorem 5.5) did not use the full strength of the Morse
hypothesis. Let us state carefully what is required in order to prove that the axis of an element g of a
�–pure Garside group of finite type G is strongly contracting.

First, we need g to have some power which is conjugate to a rigid element, which we will call x, with
inf.x/ divisible by e. By the result of [Birman et al. 2007] cited in the proof of Proposition 3.7, this is
the case if the centralizer of g in G=Z.G/ is virtually cyclic. (Alternatively, as seen in Proposition 3.7, it
follows if g is Morse.) We note that the axis of g is strongly contracting if and only if the axis of the
rigid element x is, as seen in the proof of Theorem 5.5.

Second, we need x to satisfy a Morse hypothesis: let us say that a rigid element with inf.x/D 0 is weakly
Garside Morse if there exists an integer M such that, for any integer i ,

(a) if h 2 G with xi 4 h, inf.h/ D inf.xi/ D 0 and sup.h/ D sup.xi/, then sup.g�1h/ 6 M , and
similarly

(b) if h 2G with h 4 xi , inf.h/D inf.xi/D 0 and sup.h/D sup.xi/, then sup.h�1g/6 M .

Roughly speaking, the weak Garside version of the Morse condition requires that in any isosceles triangle
in X made up of three Garside normal form paths, and where one of the two equal sides is part of the axis
of x, the third side must be of universally bounded length.

Our proof of Theorem 5.5 shows that for any element g of any �–pure Garside group of finite type,
the above two conditions imply strong contractibility of the axis of g, and in particular the full Morse
property.

Indeed, there are three places in the proof where the Morse property was used: first, in Proposition 3.11,
but this proposition is an immediate consequence of part (a) of the weak Garside Morse property. Second,
the Morse property was used in the proof of Proposition 4.8, which has two cases; we observe that the
first case follows again from part (a) of the weak Garside Morse property, and the second case only uses
part (b) of this property, not the full Morse property. Third, the proof of Proposition 5.4 uses the Morse
property, but only indirectly, by citing Proposition 4.8.

Remark 5.7 We conjecture that arbitrary bi-infinite axes in X satisfying the Morse property (not just the
periodic ones) are strongly contracting.

6 Consequences for the additional length graph

In this section, we record a consequence of Theorem 5.5 for the study of the additional length graph
CAL.G/ of a Garside group G. This graph was introduced in [Calvez and Wiest 2017a], and further
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studied in [Calvez and Wiest 2017b; 2021] (see also [Calvez 2022]). We briefly recall the definition and
the main results from [Calvez and Wiest 2017a]:

Definition 6.1 Let G be a Garside group of finite type.

(a) An element h 2G is absorbable if it satisfies two conditions:
(i) inf.h/D 0 or sup.h/D 0;

(ii) there exists an element g 2 G which “absorbs” h, meaning that inf.g/ D inf.gh/ and
sup.g/D sup.gh/.

(b) The additional length graph CAL.G/ of G is the (usually locally infinite) graph with the same set of
vertices and edges as X, but with, additionally, a new edge between vertices gh�i and hh�i when-
ever there is an absorbable element s 2G so that gs 2hh�i. The graph metric of CAL.G/ is denoted
by dAL: for vertices gh�i, hh�i of CAL, we sometimes write dAL.g; h/D dAL.gh�i; hh�i/.

Proposition 6.2 [Calvez and Wiest 2017a, Lemmas 1–3] (i) An element h 2G is absorbable if and
only if h�1 is.

(ii) If hD h1 � h2 � h3, with inf.h/D inf.h1/D inf.h2/D inf.h3/D 0 is absorbable , then h1, h2 and
h3 are also absorbable.

(iii) Suppose that h 2G is absorbable; then there exists an absorbing element g with inf.g/D 0 and
sup.g/D `.h/.

Since there is a natural inclusion X ,! CAL.G/, we can interpret the family of paths A.g; h/ from
Definition 2.13 as a family of paths in CAL.G/.

Proposition 6.3 (properties of CAL [Calvez and Wiest 2017a, Theorem 1]) Let G be a Garside group
of finite type.

(i) The additional length graph CAL.G/ is 60–hyperbolic.

(ii) The paths A.g; h/ form a uniform family of unparametrized quasigeodesics in CAL.G/.

Remark 6.4 (a) If G is the braid group Bn, equipped with the classical or dual Garside structure,
then CAL.G/ is conjectured to be quasi-isometric to the curve graph of the .nC1/–times punctured
sphere.

(b) Note that Proposition 6.3 is not claiming that diam.CAL.G//D1. For instance, the group GDZ3

carries a Garside structure with �D .1; 1; 1/ (see [Dehornoy et al. 2015, Chapter 1,1.1]), for which
all elements .k; 0; 0/, .0; k; 0/ and .0; 0; k/ (with k 2Z) are absorbable, so that diam.CAL.Z3//D3.
By contrast, for any Artin group of spherical type A we do have diam.CAL.A//D1; the proof
of this fact in [Calvez and Wiest 2017b] involved an explicit Garside-theoretical construction of
elements with (very) strongly constricting axes.
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Theorem 6.5 For a �–pure Garside group of finite type G we consider the additional length graph
CAL.G/, equipped with the G=Z.G/–action. For any Morse element g, the action of g on CAL.G/ is
loxodromic and WPD.

Here WPD is the weak proper discontinuity condition of [Bestvina and Fujiwara 2002]:

Definition 6.6 The action of g 2G=Z.G/ on CAL.G/ is weakly properly discontinuous (WPD) if for
every (equivalently, for any) k 2G, and for every � > 0, there exists N > 0 such that for all n > N , the
set

fh 2G=Z.G/ j dAL.k; hk/6 �; dAL.g
N k; hgnk/6 �g

is finite.

Corollary 6.7 If G contains a Morse element then diam.CAL.G//D1.

Corollary 6.8 Pseudo-Anosov braids act loxodromically and WPD on CAL.Bn/.

Proof of Theorem 6.5 Let g a Morse element of G; by Proposition 3.7, g has a power which is conjugate
to a right-rigid element of the form �emx with x right-rigid and inf.x/D 0. Thus it suffices to prove the
theorem for a right-rigid Morse element x with inf.x/D 0.

We know from Proposition 5.4 and from [Arzhantseva et al. 2015, Proposition 2.9] that there is a constant
C 2N such that the Garside-theoretical projection � W X! axis.x/ is C –strongly constricting.

Lemma 6.9 There is a constant F 2N with the following property: suppose that we have h1; h2 2G

and an absorbable element s 2G such that h1s 2 h2h�i. Then

dX.�.h1/; �.h2// < F:

Proof After exchanging the roles of h1 and h2, if necessary, we can suppose that inf.s/ D 0 (rather
than sup.s/D 0). We are going to prove that the bound F D 2M

.2;C /
x C 6C works, where M

.2;C /
x is the

Morse constant for .2;C /–quasigeodesics with endpoints on axis.x/.

If dX.�.h1/; �.h2// 6 C , then we are done. If dX.�.h1/; �.h2// > C , then the C –strong constriction
property implies that the Garside normal form of s (as a word in the letters D) can be cut into three pieces,
yielding a factorization s D s1 � s2 � s3 with inf.s1/D inf.s2/D inf.s3/D 0, and such that (see Figure 7)

dX.h1s1; �.h1//6 C and dX.h1s1s2/; �.h2//6 C:

By Proposition 6.2(ii), all three factors s1, s2 and s3 are absorbable. In particular, s2 is. Let us denote by
`2 the Garside length of s2 — thus inf.s2/D 0 and sup.s2/D `2.

As seen in [Calvez and Wiest 2021], absorbability of s2 means that there is a geodesic triangle in X

which is equilateral of side length `2, and one of whose sides is the geodesic A.h1s1; h1s1s2/. Moreover,
for any two points in two different sides of this triangle, with distances d1 and d2 from the shared

Algebraic & Geometric Topology, Volume 24 (2024)
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u

d1
d2

maxfd1; d2g

length `2 length `2

h1s1 h1s1s2

h1

h2

s1

s2, of length `2

s3

6 C 6 C

�.h1/ �.h2/
axis.x/

Figure 7: The proof of Lemma 6.9.

corner of the triangle, the distance of the two points in X is max.d1; d2/. In particular, the triangle is
.2; 0/–quasi-isometrically embedded in X (compare Lemma 2.17).

Let u 2G be such that uh�i is the corner of the triangle furthest from the axis of x. We claim that the
distance of uh�i from the axis is at least 1

2
l2� 2C . Indeed,

`2�C 6 dX.u; �.hi//6 `2CC

for i D 1; 2. Moreover, for any k 2 Z (not necessarily between �.h1/ and �.h2/) we have by the triangle
inequality

dX .u;x
k/

> max
�
dX.x

k; �.h2//�`2�C; `2�C�dX.x
k; �.h1//; `2�C�dX.x

k; �.h2//; dX.x
k; �.h1//�`2�C

�
:

Using the fact that `2� 2C 6 dX.�.h1/; �.h2//6 `2C 2C , one can calculate that, depending on k, one
of these four values is always at least 1

2
`2� 2C . This completes the proof of the claim.

.2; 0/–quasigeodesic
.2;C /–quasigeodesic

6 C 6 C

Figure 8: Left: the unit-speed parametrization of this path is a .2; 0/–quasigeodesic. Right:  ,
which coincides with the previous path except for jumps of size at most C at the starting and
endpoint, is a .2;C /–quasigeodesic.
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Now consider the path  W Œ0; 2`2�! X

� with  .0/D �.h1h�i/,

� which for t 2 �0; `2� follows a unit speed parametrization of A.h1s1;u/,

� which for t 2 Œ`2; 2`2Œ follows a unit speed parametrization of A.u; h1s1s2/, and

� with  .2`2/D �.h2h�i/.

We see that  is a .2;C /–quasigeodesic (because, apart from the jumps of size at most C at the starting
and end points it is a .2; 0/–quasigeodesic).

Thus, the Morse condition for the axis of x implies that 1
2
`2� 2C 6 M

.2;C /
x , or equivalently,

`2 6 2M .2;C /
x C 4C:

Therefore,
dX.�.h1/; �.h2//6 `2C 2C 6 2M .2;C /

x C 6C:

Coming back to the proof of Theorem 6.5, suppose that the action of x is not loxodromic. This means
that tn WD dAL.1;x

n/ grows sublinearly with n. Consider elements 1D h0; h1; : : : ; htn
D xn of G and a

geodesic in CAL.G/ between � and xnh�i through the vertices hih�i. The sublinear growth means that
for sufficiently large values of n, there must be an i 2 f1; 2; : : : ; tng such that

dX.hi�1; hi/> maxfF; `.x/g:

This contradicts either Lemma 6.9 or the Lipschitz property of � (Proposition 4.7). This completes the
proof that the x–action on CAL.G/ is loxodromic.

We now turn to the proof that the x–action on CAL.G/ is WPD. Fix � > 0. Define

S .�;n/x D fh 2G=Z.G/ j dAL.1; h/ < � and dAL.x
n; hxn/ < �g:

We look at the situation in X: letting E DmaxfF; `.x/g, Lemma 6.9 and Proposition 4.7 tell us that for
h 2 S

.�;n/
g ,

dX.1; �.h//6 E � � and dX.x
n; �.hxn//6 E � �:

We now choose N sufficiently large that dX.1;x
N / > C C 2 �E � �— then for all integers n with n > N

we also have dX.1;x
n/ > C C 2 �E � �, and by the triangle inequality

dX.�.h/; �.hxn// > C:

The strong constriction property of � then guarantees that the geodesic A.h; hxn/ passes through points
ah�i and bh�i at distance at most C from �.hh�i/ and �.hxnh�i/ respectively, and hence at distance
at most C CE � � from � and xnh�i respectively. Therefore, dX.a; b/> dX.1;x

n/� 2 �C � 2 �E � �.

On the other hand, the geodesic A.h; hxn/ has the same length as the segment of the axis A.1;xn/ (as it
is its image under left-translation by h). Thus,

dX.h; a/D dX.1;x
n/� dX.a; b/� dX.b; hxn/6 dX.1;x

n/� dX.a; b/6 2 �C C 2 �E � �:

Algebraic & Geometric Topology, Volume 24 (2024)
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h
hxn

A.h; hxn/ geodesic of length dX.1;x
n/

> dX.1;x
n/� 2 �C � 2 �E � �

6 C 6 Ca b

1 �.h/ �.hxn/ xn
axis.x/

6 E � � 6 E � �

Figure 9: The proof that the action of x is WPD.

We conclude that dX.1; h/ 6 3 � .C CE � �/. There are only finitely many elements h 2 G=Z.G/ with
this property. This completes the proof that the action of g is WPD. In fact we have proven something
slightly stronger than what was required: we found a bound on the size of the set S

.r;n/
g which does not

depend on n, as long as n > N .
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Homotopy ribbon discs with a fixed group

ANTHONY CONWAY

In the topological category, the classification of homotopy ribbon discs is known when the fundamental
group G of the exterior is Z and the Baumslag–Solitar group BS.1; 2/. We prove that if a group G is
geometrically 2–dimensional and satisfies the Farrell–Jones conjecture, then a condition involving the
fundamental group ensures that exteriors of aspherical homotopy ribbon discs with fundamental group
G are s–cobordant rel boundary. When G is good, this leads to the classification of such discs. As an
application, for any knot J � S3 whose knot group G.J / is good, we classify the homotopy ribbon
discs for J #�J whose complement has group G.J /. A similar application is obtained for BS.m; n/
when jm� nj D 1.

57K10, 57N35, 57N70, 57R67

1 Introduction

Given a knot K �S3, we consider the problem of classifying locally flat discs D�D4 with boundary K,
up to topological ambient isotopy rel boundary. Naturally K need not bound such a disc (ie K need not be
slice), but if it does, then it is conjectured that it necessarily bounds one for which the inclusion induced
map �1.S

3 nK/! �1.D
4 nD/ is surjective; such discs are called homotopy ribbon. For this reason, and

for technical purposes, we restrict our attention to homotopy ribbon discs with boundary K. Additionally,
observe that if D1 and D2 are two ambiently isotopic slice discs with boundary K, then their groups
must be isomorphic: �1.D

4 nD1/Š �1.D
4 nD2/. Our goal here is to study the following question:

Question 1.1 Given a knot K � S3 and a ribbon group G, can one describe the set of homotopy ribbon
discs for K with group G, considered up to topological ambient isotopy rel boundary?

Here a group is called ribbon if it arises as �1.D
4 nD/ for some (smoothly embedded) ribbon disc

D �D4 (D �D4 is ribbon if the restriction of the radial function D4!R to D is Morse and admits no
local maxima). We work with ribbon groups instead of fundamental groups of locally flat disc exteriors
for convenience: the former admit an algebraic characterisation [Friedl and Teichner 2005, Theorem 2.1],
while no such description appears to be known for the latter [loc. cit., Question 1.7]. Examples of ribbon
groups include GDZ and the Baumslag–Solitar group GDBS.1; 2/, and in those cases Question 1.1 has
been fully resolved [Friedl and Teichner 2005; Conway and Powell 2021]. The answers, which will be
partially recalled in Remark 1.11, both rely on Freedman’s 5–dimensional s–cobordism theorem [1982]

© 2024 The Author, under license to MSP (Mathematical Sciences Publishers). Distributed under the Creative Commons
Attribution License 4.0 (CC BY). Open Access made possible by subscribing institutions via Subscribe to Open.
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and therefore make use of the fact that Z and BS.1; 2/ are good groups. We refer to [Powell and Ray
2021, Definition 12.12] for the precise definition of a good group and to [Kim et al. 2021, Chapter 19]
for a survey, but note that the class of good groups contains all groups of subexponential growth as well
as all elementary amenable groups (eg solvable groups). At the time of writing, it is unknown whether
all groups are good; this is equivalent to the question of whether the free group F2 is good [loc. cit.,
Proposition 19.7].

Remark 1.2 The only elementary amenable ribbon groups are Z and BS.1; 2/, as can be seen by
combining [Hillman 2002, Corollary 2.6.1] with the fact that ribbon groups have deficiency one and
abelianise to Z. As a consequence, if the class of good ribbon groups were eventually shown to coincide
with the class of elementary amenable ribbon groups, then the current article would contain no new
classification result. On the other hand, Theorem 1.7 contains criteria for certain disc exteriors to be
s–cobordant rel boundary and holds regardless of the state of the art on the class of good groups. We also
hope that the approach taken here will be of interest given the recent surge of activity around the topic of
2–discs in the 4–ball, both in the smooth and topological category [Juhász and Zemke 2020; Conway and
Powell 2021; Hayden 2020; 2021; Sundberg and Swann 2022; Hayden et al. 2021; Hayden and Sundberg
2021; Lipshitz and Sarkar 2022; Dai et al. 2023].

In order to give a flavour of our results without listing technical assumptions this early on, we mention a
corollary of our main theorems (Theorems 1.7 and 1.10). To state this result succinctly, we introduce
some terminology. A G–ribbon disc refers to a homotopy ribbon disc D �D4 with �1.D

4 nD/ŠG,
and given a knot K, we write DG.K/ for the set of rel boundary topological ambient isotopy classes
of G–ribbon discs with boundary K. We also write MK for the result of 0–surgery on K and use
EpiFT.�1.MK /;G/ to denote the set of epimorphisms �1.MK /� G that satisfy (FT) below. While this
definition will be discussed in greater detail in the next couple of sections, for the moment we simply
note that Aut.G/ acts on EpiFT.�1.MK /;G/ by postcomposition, allowing us to consider the orbit set
EpiFT.�1.MK /;G/=Aut.G/. Mapping a G–ribbon disc D 2 DG.K/ with aspherical complement to the
inclusion induced homomorphism �1.MK /� �1.D

4 nD/ determines an element ˆ.D/ in this orbit set.

Theorem Fix a knot K � S3.

(i) If G is a knot group (ie G D �1.S
3 n J / for some knot J ), then exteriors of G–ribbon discs

D1;D2 2DG.K/ are s–cobordant rel boundary if ˆ.D1/Dˆ.D2/. If G is good , then ˆ induces
a bijection DG.K/� EpiFT.�1.MK /;G/=Aut.G/.

(ii) If m; n 2 Z are such that jm � nj D 1 and G is the Baumslag–Solitar group BS.m; n/ D
ha; b j abma�1 D bni, then exteriors of aspherical G–ribbon discs D1;D2 2 DG.K/ are s–
cobordant rel boundary if ˆ.D1/Dˆ.D2/. If G is good , then ˆ induces a bijection Da

G
.K/�

EpiFT.�1.MK /;G/=Aut.G/, where Da
G
.K/� DG.K/ denotes the subset of G–ribbon discs with

aspherical exterior.
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Examples 1.12 and 1.13 describe how this follows from Theorems 1.7 and 1.10. Additionally, as we explain
in more detail in Remark 1.11, this theorem recovers the previously known classifications for BS.0; 1/DZ

and BS.1; 2/ since, for these groups, homotopy ribbon disc exteriors are known to be aspherical.

1.1 Existence

We recall and motivate a sufficient condition for the existence of a G–ribbon disc with boundary K, which
is due to Friedl and Teichner [2005, Theorem 1.9]. First, if K bounds a locally flat disc D �D4, then
@ND DMK , where ND WDD4 n �D is the exterior of D and MK denotes the 3–manifold obtained by
0–framed surgery on K. Next, if D �D4 is a G–ribbon disc for a knot K, then there is an epimorphism
�1.MK /� �1.ND/ŠG and .ND ;MK / satisfies Poincaré duality or, using surgery theory jargon, is a
(4–dimensional) Poincaré pair. If, additionally, the disc exterior ND DD4 n �D is aspherical, then we
have a homotopy equivalence ND 'K.G; 1/ and we deduce that .K.G; 1/;MK / is a Poincaré pair.

Remark 1.3 It is expected that ribbon disc exteriors are aspherical [Gordon 1981, Conjecture 6.5]; see
also [Howie 1985]. As noted in [Friedl and Teichner 2005, Section 2], this would imply the ribbon
group conjecture: ribbon groups are geometrically 2–dimensional.1 Here recall that a group G is called
geometrically 2–dimensional if K.G; 1/ is (homotopy equivalent to) a 2–complex. Both statements are
in fact particular cases of the Whitehead conjecture, which states that every connected subcomplex of a
2–dimensional aspherical CW–complex is itself aspherical [Whitehead 1941]; see [Rosebrock 2007] for a
nice overview. Howie [1982, Theorem 5.2] proved that locally indicable ribbon groups are geometrically
2–dimensional. On the other hand, to the best of our knowledge, the Whitehead conjecture is not known
to imply that exteriors of homotopy ribbon discs are aspherical; see also Remark 1.11.

We argued that if D is a G–ribbon disc with aspherical exterior and boundary a knot K, then �1.MK /�
�1.ND/ŠG is an epimorphism and .K.G; 1/;MK / is a Poincaré pair. On the other hand, if we start with
an epimorphism �1.MK /� G onto a group G, then there is an embedding ' WMK ,!K.G; 1/D BG
that induces the given surjection on fundamental groups and, if G is geometrically 2–dimensional, then
[Friedl and Teichner 2005, Lemma 3.2] shows that .K.G; 1/;MK / is a Poincaré pair if and only if the
induced map satisfies

(FT) '� WH i.BGIZŒG�/!H i.MK IZŒG�'/ is an isomorphism for i D 1; 2:

Under an additional condition on the group G, Friedl and Teichner [2005, Theorem 1.9 and Lemma 3.2]
prove that this leads to a sufficient condition for K to bound a G–ribbon disc.

Theorem 1.4 (Friedl and Teichner) Let K � S3 be a knot and let G be a good geometrically 2–
dimensional ribbon group such that zLh

4
.ZŒG�/ D 0. If ' W �1.MK / � G is an epimorphism that

satisfies (FT), then there exists a G–ribbon disc D �D4 with aspherical exterior and boundary K such
that the composition �1.MK /� �1.ND/ŠG agrees with '.

1Friedl and Teichner refer to geometrically 2–dimensional groups as aspherical groups.
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Remark 1.5 � Friedl and Teichner actually prove a stronger result. Instead of asking for G to be
geometrically 2–dimensional, they merely demand that H3.G/ D 0 and H i.GIZŒG�/ D 0 for i > 2,
and instead of assuming that G is ribbon, they only require that G be finitely presented and satisfy
H1.G/D Z and H2.G/D 0. Finally, they do not require G to be good, only that the surgery sequence
(with h–decorations) be exact for all 4–dimensional Poincaré pairs .X;M / with �1.X /DG.

� The fact that the disc exterior is aspherical is implicit in [loc. cit., proof of Theorem 1.9]: their
surgery-theoretic argument yields a disc D whose exterior ND DD4 n �D is homotopy equivalent to
K.G; 1/, which is aspherical.

� The groups Z and BS.1; 2/ satisfy all the assumptions of Theorem 1.4. Additionally, for those groups,
condition (FT) simplifies considerably. Indeed if G is poly-(torsion-free abelian) (or PTFA for short),
then (FT) reduces to

(Ext) Ext1ZŒG�.H1.MK IZŒG�'/;ZŒG�/D 0;

and for G D Z it reduces further to the condition �K D 1; all of this is explained in [loc. cit., Sections 1
and 4, and Lemma 3.3].

1.2 Uniqueness and classification

We now return to the set DG.K/ of rel boundary topological ambient isotopy classes of G–ribbon discs
with boundary K. In fact, we will mostly be concerned with the subset Da

G
.K/� DG.K/ of discs with

aspherical exteriors. To that effect, inspired by [Hambleton et al. 2009, Definition 1.2], we describe some
assumptions on the group G that we will require:

Definition 1.6 A group G satisfies properties W–AA if

(W) the Whitehead group Wh.G/ vanishes,

(A4) the assembly map A4 WH4.BGIL�/!L4.ZŒG�/ is an isomorphism,2 and

(A5) the assembly map A5 WH5.BGIL�/!L5.ZŒG�/ is surjective.

We will mostly use these conditions as a blackbox, but note that thanks to extensive work on the
Farrell–Jones conjecture (see [Lück 2021] for a survey) they should not be thought of as insurmountable
restrictions. We discuss all of this in more detail in Remark 1.11 and refer to [Ranicki 1992; Chang and
Weinberger 2021; Lück 2020; 2021] for background on assembly maps in L–theory. Returning to our
aim of describing DG.K/, we consider the set

(Epi) EpiFT.�1.MK /;G/ WD f' W �1.MK /!G j ' is an epimorphism that satisfies (FT)g;

2In the work of Hambleton, Kreck and Teichner [Hambleton et al. 2009] W–AA only requires A4 to be injective.
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and observe that it is acted upon (by postcomposition) by the group Aut.G/ of automorphisms of G.
Thanks to the discussion leading up to Theorem 1.4, note that sending a G–ribbon disc with aspherical
exterior to an epimorphism �1.MK /� �1.ND/ŠG defines a map

ˆ W Da
G.K/! EpiFT.�1.MK /;G/=Aut.G/

which does not depend on the choice of the isomorphism �1.ND/Š G. If G is a good geometrically
2–dimensional ribbon group such that zL4.ZŒG�/D 0, then Theorem 1.4 ensures that ˆ is surjective. Our
main technical result gives conditions on G for ˆ to be injective and, in the absence of the goodness
condition on G, for exteriors of G–ribbon discs to be s–cobordant rel boundary.

Theorem 1.7 Let K be a knot and let G be a geometrically 2–dimensional group that satisfies (W)
and (A5). If D1 and D2 are two G–ribbon discs with aspherical exteriors and boundary K such that
ˆ.D1/Dˆ.D2/, then the disc exteriors ND1

and ND2
are s–cobordant rel boundary.

If in addition to these conditions the group G is good , then the discs D1 and D2 are ambiently isotopic
rel boundary.

We note that this result can alternatively be stated with normal subgroups instead of epimorphisms, as
this is easier to verify in practice. To state this concisely, given a slice disc D for a knot K, we use
�D W �1.MK /! �1.ND/ to denote the inclusion-induced map.

Corollary 1.8 Let K be a knot and let G be a geometrically 2–dimensional group that satisfies (W)
and (A5). If D1 and D2 are two G–ribbon discs with aspherical exteriors and boundary K such that
ker.�D1

/D ker.�D2
/, then the disc exteriors ND1

and ND2
are s–cobordant rel boundary.

If in addition to these conditions the group G is good , then the discs D1 and D2 are ambiently isotopic
rel boundary.

For smoothly embedded discs, the hypotheses of these results can be relaxed:

Remark 1.9 If D1 and D2 are ribbon discs with aspherical exteriors and �1.NDi
/Š G for i D 1; 2,

then the assumption that G be geometrically 2–dimensional can be omitted in both Theorem 1.7 and
Corollary 1.8: in this case K.G; 1/'NDi

has the homotopy type of a 2–complex.

Combining Theorems 1.4 and 1.7 we obtain an answer to Question 1.1, provided we make some restrictions
on the ribbon group G and require the ribbon disc exteriors to be aspherical.

Theorem 1.10 Let K�S3 be a knot and let G be a geometrically 2–dimensional good ribbon group that
satisfies properties W–AA. Mapping a G–ribbon disc D to the epimorphism �1.MK /� �1.ND/ŠG

defines a bijection ˆ between

(i) the set Da
G
.K/ of G–ribbon discs with aspherical exterior and boundary K, considered up to

ambient isotopy rel boundary, and

(ii) the set EpiFT.�1.MK /;G/=Aut.G/ defined in (Epi).
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Proof We argue in Remark 2.1 that since G is a geometrically 2–dimensional ribbon group with
Wh.G/ D 0, requiring G to satisfy condition (A4) is equivalent to asking for zL4.ZŒG�/ D 0. Thus
the hypotheses of Theorem 1.4 are satisfied and so ˆ is surjective. The injectivity of ˆ follows from
Theorem 1.7, which we can apply since G satisfies properties W–AA.

Remark 1.11 � If the ribbon group conjecture (or more optimistically the Whitehead conjecture) were
true, then requiring G to be geometrically 2–dimensional would be superfluous; recall Remark 1.3. It is
also tempting to conjecture that exteriors of G–ribbon discs are aspherical, and in this case we would have
Da

G
.K/DDG.K/. This latter conjecture holds when G is PTFA [Conway and Powell 2021, Lemma 2.1]

(eg when G DZ and G D BS.1; 2/) and is a consequence of the Whitehead conjecture if the disc exterior
is homotopy equivalent to a 2–complex.

� The groups Z and BS.1; 2/ satisfy the hypotheses of Theorem 1.10, and in this case unpacking the
definition of EpiFT.�1.MK /;G/=Aut.G/ recovers [loc. cit., Theorems 1.5 and 1.6]. Instead of repeating
those statements, we note that for G D Z, EpiFT.�1.MK /;G/=Aut.G/ has at most one element, while
for G D BS.1; 2/ it has at most two [loc. cit., Section 4]. Estimating the cardinality of this set in general
appears to be more challenging. Naturally, the set DG.K/ is often empty: for example, we refer to [Friedl
and Teichner 2005, Corollary 3.4] for an obstruction (based on the Alexander polynomial) to a knot K

bounding a G–ribbon disc.

� As we alluded to in Corollary 1.8, the classification result of Theorem 1.10 can be stated in terms of
normal subgroups of �1.MK / instead of epimorphisms originating from �1.MK /: to a G–ribbon disc D,
one associates the normal subgroup ker.�1.MK /��1.ND// of �1.MK /. This was the perspective taken
in [Conway and Powell 2021] where, using that BS.1; 2/ is metabelian, the results were then formulated
using submodules of the Alexander module H1.MK IZŒt

˙1�/; the details are in [loc. cit., Section 3].

� The requirement that the group be good is hard to verify in practice. On the other hand, G satisfies
properties W–AA if it is geometrically 2–dimensional and satisfies the Farrell–Jones conjecture: if a
group G is geometrically 2–dimensional, then K.G; 1/ is a 2–complex and the claim now follows as in
[Kasprowski and Land 2022, Lemma 2.3]. (The core of the argument will be recalled both in the proof
of Theorem 1.7 and in Remark 2.1.) We treat the Farrell–Jones conjecture as a blackbox, but refer the
interested reader to [Lück 2021] for a survey and to [Lück 2021, Chapter 15] for a list of groups for
which the conjecture is known to hold.

Example 1.12 We argue that the group G.J /D�1.S
3 nJ / of a classical knot J �S3 is a geometrically

2–dimensional ribbon group that satisfies properties W–AA. Thus Theorem 1.7 provides a criterion for
exteriors of G.J /–ribbon discs to be s–cobordant rel boundary and, if G.J / is additionally assumed to
be good, then Theorem 1.10 classifies G.J /–ribbon discs for J #�J .

The group of J � S3 is ribbon (the ribbon knot J #�J bounds a smoothly embedded ribbon disc with
group G.J / as explained in [Friedl and Teichner 2005, page 2135]). The sphere theorem ensures that
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�m

n

0

Figure 1: Assuming that jm�nj D 1, this figure depicts a handle diagram of a ribbon disc exterior
with fundamental for BS.m; n/. Indeed, since jm� nj D 1, the red and blue knots form a handle
diagram for D4 in which the green knot is sliced by a ribbon disc D with �1.ND/D BS.m; n/.

G.J / is geometrically 2–dimensional (the knot exterior is aspherical and has the homotopy type of a
2–complex; see eg [Lickorish 1997, Theorem 11.7]). The Farrell–Jones conjecture holds for G.J / because
it holds for the fundamental group of any 3–manifold with boundary [Lück 2021, Theorem 15.1(e)].

Since knot groups are PTFA by work of Strebel [1974], G.J /–ribbon discs are aspherical by [Conway and
Powell 2021, Lemma 2.1] and thus DG.J /.J #�J /DDa

G.J /
.J #�J /. Finally, as we noted in Remark 1.5,

since G.J / is PTFA we can use condition (Ext) instead of condition (FT).

Example 1.13 We argue that for m; n 2 Z with jm� nj D 1, the Baumslag–Solitar group BS.m; n/ is a
geometrically 2–dimensional ribbon group that satisfies properties W–AA. Thus Theorem 1.7 provides
a criterion for exteriors of aspherical BS.m; n/–ribbon discs to be s–cobordant rel boundary and, if
BS.m; n/ is additionally assumed to be good, then Theorem 1.10 classifies BS.m; n/–ribbon discs with
aspherical exteriors.

The fact that BS.m; n/ is ribbon when jm�nj D 1 can be seen by looking at the handle diagram depicted
in Figure 1. Baumslag–Solitar groups are geometrically 2–dimensional: the universal cover of the
presentation 2–complex for ha; b j bamb�1 D bni is homeomorphic to the product of R with a tree; see
eg [Freden et al. 2011, Section 2]. Additionally, every Baumslag–Solitar group BS.m; n/ satisfies the
Farrell–Jones conjecture [Farrell and Wu 2015; Gandini et al. 2015].

We conclude with a brief final remark concerning asphericity. Our methods rely heavily on G–ribbon
disc exteriors (conjecturally) being aspherical. Currently, nonaspherical 4–manifolds with boundary MK

and fundamental group G are poorly understood beyond the group G D Z [Conway and Powell 2023].
This is the reason why we only work in D4 instead of in other 4–manifolds.

Conventions Throughout this article, we work in the topological category. Manifolds are assumed to be
compact and oriented. Homeomorphisms, homotopy equivalences and isotopies are rel boundary if they
fix the boundary pointwise. If M1 and M2 are two n–manifolds with boundary Y , a cobordism between
M1 and M2 is relative Y if, when restricted to Y , it is the product Y � Œ0; 1�.
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2 Proof of the main technical result

We recall the statement of Theorem 1.7 and prove it. Let K be a knot and let G be a geometrically
2–dimensional group that satisfies (W) and (A5). The aim is to prove that if D1 and D2 are two G–ribbon
discs with aspherical exteriors and boundary K such thatˆ.D1/Dˆ.D2/2EpiFT.�1.MK /;G/=Aut.G/,
then the disc exteriors ND1

and ND2
are s–cobordant rel boundary and, if G is additionally assumed to

be good, then D1 and D2 are ambiently isotopic rel boundary.

Proof of Theorem 1.7 Assume that D1 and D2 are two G–ribbon discs with aspherical exteriors and
boundary K and that their epimorphisms agree in EpiFT.�1.MK /;G/=Aut.G/. We must show that the
exteriors ND1

and ND2
are s–cobordant rel boundary. If we additionally assume that G is good, then

Freedman’s 5–dimensional relative s–cobordism theorem will then ensure that ND1
and ND2

are in fact
homeomorphic rel boundary. That D1 and D2 are ambiently isotopic rel boundary follows by applying
Alexander’s trick, as noted in [Conway and Powell 2021, Lemma 2.5]. Our strategy decomposes into
two steps. The first uses the conditions on the epimorphisms to show that idMK

extends to a homotopy
equivalence ND1

'ND2
. The second uses surgery theory to improve this homotopy equivalence to an

s–cobordism rel boundary; here is where we rely on properties (W) and (A5) as well as on the fact that G

is good.

We start with the first step. Since the epimorphisms of D1 and D2 agree, there exists an automorphism ‰

of G that makes the following diagram commute:

�1.MK /

�D1
����

D
// �1.MK /

�D2
����

�1.ND1
/

Š

��

�1.ND2
/

Š

��

G
‰;Š

// G:

Since the bottom vertical maps in this diagram are isomorphisms, we deduce that there exists an isomor-
phism g W �1.ND1

/Š �1.ND2
/ such that g ı �D1

D �D2
; such isomorphisms were called compatible in

[loc. cit., Section 2]. As the Di have aspherical exteriors, the obstruction theory argument from [loc. cit.,
end of proof of Lemma 2.1] shows that the identity idMK

WMK!MK extends to a homotopy equivalence
f WND1

!ND2
which induces g on fundamental groups.
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We now move on to the second step: we use surgery theory to improve the homotopy equivalence f to
an s–cobordism ND1

Šs–cob ND2
rel boundary. We describe the argument very briefly for readers that

are familiar with surgery theory before giving some more details. Consider the surgery sequence, where
we can ignore decorations thanks to condition (W),

N .ND2
� Œ0; 1�; @.ND2

� Œ0; 1�//
�5
�!5 .ZŒG�/! S.ND2

; @ND2
/
�
�!N.ND2

; @ND2
/
�4
�!4 .ZŒG�/:

We use that disc exteriors have trivial H2 to deduce that � is the zero map. More concretely, we obtain a
degree-1 normal map

(1) .F 0; f; idND2
/ W .W 0;ND1

;ND2
/! .ND2

� Œ0; 1�;ND2
;ND2

/

that we can assume to be 2–connected by surgery below the middle dimension. We then use property (A5)
and the fact that G is geometrically 2–dimensional to deduce that �5 is surjective. We infer that ND1

and
ND2

are s–cobordant either by appealing to the exactness of the surgery sequence (which requires G to
be good) or by using the surjectivity of �5 to replace F 0 by another degree-1 normal map with vanishing
surgery obstruction (despite being slightly longer, this argument has the advantage of not requiring G to
be good). Thus the fact that ND1

and ND2
are s–cobordant rel boundary can be proved without using

that G is good. The homeomorphism classification result then follows from Freedman’s 5–dimensional
relative s–cobordism theorem, which we can apply if G is good.

We give more details. The set N .ND2
; @ND2

/ consists of equivalences classes of degree-1 normal
maps M !ND2

that restrict to a homeomorphism on the boundary. Two such degree-1 normal maps
fi WMi !ND2

for i D 1; 2 are equivalent if there exists a rel boundary cobordism .W;M1;M2/ and a
degree-1 normal map

.W;M1;M2/! .ND2
� Œ0; 1�;ND2

;ND2
/

that restricts to fi on Mi for i D 1; 2. A homotopy equivalence h WM !ND2
rel boundary is in particular

a degree-1 normal map that we denote by �.h/ 2N .ND2
; @ND2

/.

We claim that � is the zero map. Under the isomorphism

(2) N .ND2
; @ND2

/ŠH 4.ND2
; @ND2

/˚H 2.ND2
; @ND2

IZ2/DH 4.ND2
; @ND2

/Š Z

we have �.h/D 1
8
.�.M /� �.ND2

//; this fact is well known to surgeons, but we refer to [Conway and
Powell 2021, Proposition 2.2] in case the reader is curious about the details. Since the signature of a disc
exterior vanishes and h is a homotopy equivalence, we deduce that �.h/D 0, as claimed.

We assert that the map �5 from the surgery sequence is surjective. This relies on surgery spectra and
the algebraic theory of surgery. We treat this largely as a blackbox, but note that this part of surgery
theory was developed by Quinn [1970; 1971] and Ranicki [1979; 1981]; we also refer to [Chang and
Weinberger 2021, Section 4.4] for a nice overview of these topics and to [Cencelj et al. 2009, Section 4]
for a helpful account of the rel boundary case. Using the relation between the assembly map and the
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surgery obstruction (as mentioned for example in [Chang and Weinberger 2021, page 158]) and the fact
that ND2

is a K.G; 1/, the following diagram commutes:

N .ND2
� Œ0; 1�; @.ND2

� Œ0; 1�//
�5

//

Š

��

L5.ZŒG�/

D

��

H5.ND2
ILh1i�/

Š
//

Š

��

H5.ND2
IL�/ //

Š

��

L5.ZŒG�/

D

��

H5.BGILh1i�/
Š

// H5.BGIL�/
A5
// L5.ZŒG�/:

Here L� denotes the L–theory spectrum of the integers and Lh1i� denotes its 1–connective cover. The fact
that H5.BGILh1i�/!H5.BGIL�/ is an isomorphism follows because K.G; 1/ admits a 2–dimensional
CW–model (the Atiyah–Hirzebruch spectral sequence argument is the same as in [Kasprowski and Land
2022, proof of Lemma 2.3]), and the fact that the top left vertical map is an isomorphism is a fact from
algebraic surgery theory; see eg [Cencelj et al. 2009, (27)]. Using this commutative diagram and property
(A5) (which stipulates that the assembly map A5 is surjective), one deduces that �5 is surjective.

There are now two closely related ways to conclude that ND1
and ND2

are s–cobordant rel boundary.
The first way is shorter, but uses that the group G is good: since � is the zero map, �5 is surjective and the
surgery sequence is exact (because G is good), the structure set S.ND2

; @ND2
/— to which f belongs —

is trivial. The second argument (inspired by [Kasprowski and Land 2022]) is slightly longer but does not
require that the group G be good: Since �� 0, there is a rel boundary cobordism .W;ND1

;ND2
/ and a

degree-1 normal map

.F; f; idND2
/ W .W;ND1

;ND2
/! .ND2

� Œ0; 1�;ND2
;ND2

/:

Perform surgery below the middle dimension on the interior of W to obtain the 2–connected degree-1
normal map F 0 with surgery obstruction x WD �.F 0/ 2 L5.ZŒG�/ that we alluded to in (1). Using the
surjectivity of �5, one can find a degree-1 normal map

‰ W .V;ND2
;ND2

/! .ND2
� Œ0; 1�;ND2

;ND2
/

that restricts to the identity on both boundary components and with �x as its surgery obstruction;
stacking ‰ on top of F 0 leads to a degree-1 normal map F 00 with vanishing surgery obstruction
�.F 00/ 2L5.ZŒG�/, and it follows that F 00 is normal bordant rel MK � Œ0; 1� to a homotopy equivalence.
Thus, we have two arguments for why ND1

and ND2
are s–cobordant rel boundary.

If G is good, we can apply Freedman’s 5–dimensional relative s–cobordism theorem [Freedman and
Quinn 1990, Theorem 7.1A] and it follows that ND1

and ND2
are homeomorphic rel boundary. As we

already mentioned, [Conway and Powell 2021, Lemma 2.5] implies that the discs are ambiently isotopic
rel boundary.

We conclude by proving a statement that was used in the proof of Theorem 1.10:
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Remark 2.1 Assume that G is a geometrically 2–dimensional ribbon group with vanishing Whitehead
torsion (condition (W)). We claim that G satisfies zL4.ZŒG�/D 0 if and only if it satisfies (A4), which
stipulates that the assembly map A4 WH4.BGIL�/!L4.ZŒG�/ is an isomorphism. Since G is a ribbon
group, there is a (smoothly embedded) ribbon disc D �D4 with �1.ND/ŠG. This time ND might not
be aspherical, but it is still a 2–complex with vanishing H2. An Atiyah–Hirzebruch spectral sequence
argument therefore shows that H4.ND ILh1i�/!H4.BGILh1i�/ is an isomorphism. Here it is helpful
to note that H2.G/ D 0: use H2.ND/ D 0 together with the exact sequence �2.ND/! H2.ND/!

H2.�1.ND//! 0; see eg [Brown 1982, (0.1)]. The same argument as above then produces the following
commutative diagram:

N .ND ;MK /
�4

//

Š

��

L4.ZŒG�/

D

��

H4.ND ILh1i�/
Š
//

Š

��

H4.ND IL�/ //

Š

��

L4.ZŒG�/

D

��

H4.BGILh1i�/
Š
// H4.BGIL�/

A4
// L4.ZŒG�/:

As explained in (2) and [Freedman and Quinn 1990, Section 11.3B], the surgery obstruction �4 maps
the set of normal invariants N .ND ; @ND/ Š Z isomorphically onto the L4.Z/ Š Z–summand of
L4.ZŒG�/DL4.Z/˚ zL4.ZŒG�/. The claim now follows by combining this fact with the commutativity
of the diagram.
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Suppose a relatively elliptic representation � of the fundamental group of the thrice-punctured sphere S is
given. We prove that all projective structures on S with holonomy � and satisfying a tameness condition
at the punctures can be obtained by grafting certain circular triangles. The specific collection of triangles
is determined by a natural framing of �. In the process, we show that (on a general surface † of negative
Euler characteristics) structures satisfying these conditions can be characterized in terms of their Möbius
completion, and in terms of certain meromorphic quadratic differentials.
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1 Introduction

This paper deals with the geometry of surfaces which are locally modeled on the geometry of the Riemann
sphere CP1, and their grafting deformations. Throughout the paper, † denotes an orientable surface
with finitely many punctures (and no boundary) and † denotes the closed orientable surface where
the punctures have been filled in. While the main technical core of the paper holds for a general †
with negative Euler characteristic (see Sections 3 and 4), Section 5 deals specifically with the case of a
thrice-punctured sphere, which we denote by S .
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The structures under consideration here are known as complex projective structures or .PSL2C;CP1/–
structures. We denote respectively by T.†/ and P.†/ the deformation spaces of complex and complex
projective structures on †. We also denote by R.†/ the space of representations of �1.†/ into PSL2C,
up to conjugation by PSL2C. We have natural forgetful maps

� W P.†/! T.†/ and Hol W P.†/!R.†/;

respectively recording the underlying complex structure and holonomy representation. We refer the reader
to Section 3 for precise definitions, and to [Dumas 2009] for a general survey about CP1–structures. For
more on the geometry of the deformation space, see [Faraco 2020].

Classic examples of complex projective structures are given by hyperbolic metrics (seen as .PSL2R;H2/–
structures), but a general projective structure is not defined by a Riemannian metric, nor is it completely
determined by its holonomy (not even in the Fuchsian case, see for instance [Calsamiglia et al. 2014a;
Goldman 1987]). However, under some additional conditions Hol is known to be a local homeomorphism
(see [Gupta and Mj 2021; Hejhal 1975; Luo 1993]), ie a structure is at least locally determined by its
holonomy. A major question in the field is the description in geometric terms of all structures having the
same holonomy.

Grafting Conjecture [Gallo et al. 2000, Problems 12.1.1–2] Two complex projective structures have
the same holonomy if and only if it is possible to obtain one from the other by some sequence of graftings
and degraftings.

Here grafting refers to a geometric surgery on † which consists in cutting † open along a curve and
inserting a domain from CP1, and degrafting is the inverse operation. For the reader familiar with grafting
deformations: by grafting we will always mean projective 2�–grafting. This construction allows one
to change a structure without changing its holonomy, and iterating this construction shows that Hol has
infinite fibers. The Grafting Conjecture has been verified for closed surfaces: the case of (quasi-)Fuchsian
representations is due to Goldman [1987], and Baba [2010; 2012; 2015; 2017] has addressed the case of
generic (ie totally loxodromic) representations in a series of papers.

Inspired by a specific question about punctured spheres in [Gallo et al. 2000, Problem 12.2.1], we propose
a study of certain structures on the thrice-punctured sphere, and we prove the Grafting Conjecture in
this setting (see Section 1.2 of this introduction for a comparison with related results available in the
literature). It is worth noticing that the complex projective geometry around a puncture is much more
interesting than the underlying complex geometry. As an example, consider the two structures on the
thrice-punctured sphere given by the complete hyperbolic metric of finite area and by the inclusion
CP1 n f0; 1;1g � CP1; they are not isomorphic as complex projective structures, but they have the
same underlying complex structure.

The study of holonomy fibers also has an analytic motivation coming from the classical monodromy
problems for ODEs, ie generalization of Hilbert’s XXI problem. Since the work of Poincaré [1908],
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projective structures have been known as a geometric counterpart to second-order linear ODEs. In more
recent years, some monodromy problems for such ODEs have successfully been approached in terms of
holonomy problems for projective structures (see [Calsamiglia et al. 2019; Chenakkod et al. 2022; Gallo
et al. 2000; Gupta 2021; Gupta and Mj 2020; Kapovich 2020]).

We consider structures satisfying some regularity conditions at the punctures, which can be roughly stated
as follows (see Section 3.1 for precise definitions):

� Tameness Each local chart has a limit along arcs going off into a puncture.

� Relative ellipticity Each peripheral holonomy (ie the holonomy around each puncture) is a
nontrivial elliptic element in PSL2C.

� Nondegeneracy There is no pair of points p˙ 2CP1 such that the entire holonomy preserves
the set fp˙g.

Motivating examples of tame structures arise from the study of triangle groups and automorphism groups
(as in [Faraco and Ruffoni 2019, Remark 2.13]), and more generally from metrics of constant curvature
with cones or cusps. Tameness is not a generic condition in the space of all complex projective structures,
but is a natural case to consider. Indeed, it corresponds to the condition that the associated second-order
linear ODE has regular singular points (see Theorem E below). It turns out that the peripheral holonomy
of a tame structure can only be trivial, parabolic, or elliptic (see Lemma 3.1.3), so the second condition is
a generic condition within the space of holonomies of tame structures. In particular, it implies that there
are no apparent singularities (ie no puncture has trivial holonomy).

For an arbitrary surface †, we denote by Pˇ.†/ the subspace of P.†/ consisting of nondegenerate
tame and relatively elliptic structures; the white disk in the superscript represents the local invariance
under a rotation, and the black dot the possibility to extend the charts to the puncture. The tameness
condition provides a natural choice of a fix point for each peripheral holonomy, ie a framing for the
holonomy representation (see Corollary 3.1.5). We observe that grafting preserves this natural framing,
which suggests a more precise formulation of the Grafting Conjecture in the noncompact case. Our main
result in the case of the thrice-punctured sphere S is the following, which confirms the conjecture, in the
spirit of [Gallo et al. 2000, Problem 12.2.1].

Theorem A Two structures in Pˇ.S/ have the same framed holonomy if and only if it is possible to
obtain one from the other by some combination of graftings and degraftings along ideal arcs.

Here an arc is ideal if it starts and ends at a puncture. To the best of our knowledge this is the first result
in this direction for the case of noncompact surfaces with nontrivial holonomy around the punctures.

The representations involved here are representations of the free group F2 D �1.S/ generated by elliptic
elements. Representations satisfying certain rationality conditions correspond to the classical triangle
groups, but the general ones are nondiscrete. In all cases we construct an explicit list of triangular
membranes (ie immersions of a triangle in CP1) realizing these representations, and identify the ones
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that are atomic; these can be taken as basic building blocks that can be grafted to reconstruct all the
projective structures in Pˇ.S/. Theorem A is a consequence of the following theorem.

Theorem B Every � 2Pˇ.S/ is obtained by grafting on an atomic triangular structure with the same
framed holonomy.

Another consequence of Theorem B is a handy description of the moduli space Pˇ.S/ with positive real
coordinates, which we plan to address in a future work.

When a representation � W�1.S/!PSL2C is unitary (ie is conjugate into PSU.2/), it preserves a spherical
metric, and a structure � 2 Pˇ.S/ is given by a spherical metrics with cone points. This special case of
Theorem B is implicit in the proof of [Mondello and Panov 2016, Theorem 3.8], which constructs such
spherical metrics by gluing together spherical triangles and bigons. Grafting a spherical metric results in
a spherical metric, with increased angles at the cones. However in general this is not always the case;
for example the structure obtained by grafting a hyperbolic structure is not defined by any Riemannian
metric.

While our results about the Grafting Conjecture are for the case of the thrice-punctured sphere S , the
main technical core of the paper applies to any noncompact surface † of negative Euler characteristic,
and is of independent interest. It consists of a characterization of structures from Pˇ.†/ in terms of
their Möbius completion (see Section 3 and [Kulkarni and Pinkall 1994]) and in terms of meromorphic
projective structures (see Section 4 and [Allegretti and Bridgeland 2020]). The easy case of structures on
a twice-punctured sphere can be worked out concretely; see Remark 3.3.8. In the remaining part of the
introduction we present our main results in the general case (see Section 1.1), as well as a comparison
with other work in the literature about the Grafting Conjecture (see Section 1.2).

1.1 Results for general surfaces

The universal cover z† of † is a topological disk. It admits a natural decoration obtained by adding ideal
points at infinity “above” the punctures. We call these ideal points ends. This gives rise to a natural
enlargement of z† that we call the end-extension, and denote by z†#. Part of the paper is concerned with
understanding the behavior of the developing map in the limit to an end.

Möbius completion Any complex projective structure � on † can be used to define another natural
extension of z†, known as the Möbius completion M� .z†/, which comes with a (noncanonical) structure
of a complete metric space (see [Kulkarni and Pinkall 1994]). For instance, when � is induced by a
spherical metric with cone points, M� .z†/ coincides with z†#, while when � is induced by a complete
hyperbolic metric of finite area M� .z†/ identifies with the closed disk model for the hyperbolic plane
H2[RP1 (see Examples 3.2.3 and 3.2.4).

The topologies on z†# and on M� .z†/ are not in general compatible. One of the main technical contributions
of this paper is a study of the geometry of the Möbius completion M� .z†/ for � 2Pˇ.†/, and of its relation
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with the end-extension z†# (see Section 3). Tameness of a structure � implies that its developing map
admits natural continuous extensions dev# to the end-extension z†# and dev� to the Möbius completion
M� .z†/. We study the local properties of dev# and dev� around the ends.

Theorem C Let � 2P.†/ be nondegenerate and without apparent singularities. Let j # W z†! z†# and
j� W z†!M� .z†/ be the natural embeddings. Then � 2 Pˇ.†/ if and only if there exists a continuous
open �1.†/–equivariant embedding j #

� W
z†#!M� .z†/ that makes the following diagram commute:

z†#

z† CP1

M� .z†/

dev#

j #
�

j #

j� dev�

In this statement, continuity is a consequence of tameness of � , and openness is a consequence of relative
ellipticity.

In general, the developing map for a projective structure is a surjection onto CP1, in which case it fails
to be a global covering map. However, under certain circumstances it is known to be a covering map onto
a component of the domain of discontinuity in CP1 for its holonomy representation (see for instance
[Kra 1971a, Theorem 1]). But in general the holonomy group is not discrete, so it has no domain of
discontinuity. The following statement shows that in our context some local covering behavior can be
guaranteed around ends.

Theorem D Let � 2 Pˇ.†/, and let E be an end. Then there is a neighborhood yNE of E in M� .z†/

onto which the developing map for � restricts to a branched covering map , branching only at E, and with
image a round disk in CP1.

These neighborhoods should be regarded as an analogue of the round balls considered in [Kulkarni and
Pinkall 1994], but “centered” at ideal points in the Möbius completion. While Theorem D is stated as a
local fact, we actually show that such a neighborhood can be chosen to be so large as to have another
ideal point on its boundary. We use the existence of these neighborhoods to define a local geometric
invariant, which we call the index (see Section 3.4). This number measures the angle described by the
developing map at a puncture, and provides a notion of complexity for an inductive proof of Theorem B.

Meromorphic projective structures A second major ingredient (once again valid for an arbitrary
noncompact surface †) consists of an analytic description of structures in Pˇ.†/ as meromorphic
projective structures in the sense of [Allegretti and Bridgeland 2020]. These are projective structures
whose developing map is defined by solving certain differential equations with coefficients given by
meromorphic quadratic differentials on the closed surface † (with poles corresponding to the punctures
of †; see Section 4.1 for precise definitions). The local control from Theorem D allows us to obtain the
following result.
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Theorem E Let � 2 P.†/ and let X 2 T.†/ be the underlying complex structure. Then � 2 Pˇ.†/

if and only if X is a punctured Riemann surface and � is represented by a meromorphic quadratic
differential on X with double poles and reduced exponents in R nZ.

Here the parametrization of projective structures by quadratic differentials is the classical one in terms
of the Schwarz derivative, which here is taken with respect to any compatible holomorphic structure on
the closed Riemann surface obtained by filling the punctures (eg the constant curvature uniformization).
From this point of view, the index of a structure at a puncture corresponds to the absolute value of the
exponents of the quadratic differential, so it can be computed in terms of its residues.

It should also be noted that work of Luo [1993] guarantees that Hol is a local homeomorphism for this
class of meromorphic projective structures, as there are no apparent singularities. Therefore fibers of
Hol in Pˇ.†/ are discrete, and in particular it makes sense to seek a description of them in terms of a
discrete geometric surgery such as the type of grafting that we consider in this paper.

Outline of the proof of Theorem B Let S be the thrice-punctured sphere, and let � 2 Pˇ.S/, with
developing map dev and holonomy �. By Theorems C and D, dev extends continuously and equivariantly
to the ends, and restricts to a branched covering map on a suitable neighborhood of each end. This allows
us to define the index of � at each puncture. Then we construct a circular triangle such that the pillowcase
obtained by doubling it provides a structure �0 2 Pˇ.S/ with holonomy �. Note that such a triangle is
not unique in general. A careful analysis of the framing of � defined by � shows that such a triangle can
be found with the same framing for �. On such a triangle, we find a suitable combination of disjoint
ideal arcs that are graftable, and we show that if sufficiently many grafting regions are inserted, the
resulting structure � 0 2 Pˇ.S/ has the same indices as � . By Theorem E, � and � 0 can be represented
by two meromorphic differentials on the Riemann sphere CP1 with double poles at 0, 1 and1. Two
such differentials on CP1 are completely determined by their residues, and in this case residues can be
computed directly from the indices, hence are the same. So we conclude that � D � 0.

1.2 Relation to other work about the Grafting Conjecture

Following seminal work of Thurston (see [Baba 2020; Dumas 2009; Kamishima and Tan 1992]), grafting
(in its general version) has been successfully used as a tool to explore the deformation space of CP1–
structures. The grafting we consider here preserves the holonomy representation, hence can be used
to explore holonomy fibers. The classical case is that of structures on a closed surface with Fuchsian
holonomy, which was considered by Goldman [1987]. Our work displays some technical differences, that
we summarize here for the expert reader.

Framing The main results for closed surfaces in [Baba 2012; 2015; 2017; Calsamiglia et al. 2014b;
Goldman 1987] confirm the Grafting Conjecture, ie that two structures with the same holonomy differ by
grafting. In our noncompact case there is a natural framing for the holonomy which needs to be taken into
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consideration, as it is preserved by grafting (see Lemma 3.1.7). We prove that having the same framed
holonomy is not only necessary, but also sufficient, for two structures on the thrice-punctured sphere to
differ by grafting.

Basepoints for holonomy fibers When � W �1.†/! PSL2C is Fuchsian, the holonomy fiber Hol�1.�/
contains a preferred structure, namely the hyperbolic structure H2=�.�1.†//. This structure serves as a
basepoint, ie any other structure in Hol�1.�/ can be obtained by grafting it (see [Goldman 1987]). In this
paper, we show that every representation coming from Pˇ.S/ is generated by reflections in the sides of a
circular triangle in CP1. Even when such a representation � is nondiscrete, the pillowcase obtained by
doubling the triangle provides a basepoint in the holonomy fiber Hol�1.�/. A first guess is that every
structure in Hol�1.�/ is obtained by grafting this pillowcase. However, this is not the case, because of the
aforementioned framing, which is given by the vertices of the triangle. In Section 2.3 we identify the list
of the structures that can be taken as basepoints in the above sense, which we call atomic. Interestingly,
they are not all embedded geodesic triangles for some invariant metric.

Type of grafting curves In the classical Fuchsian case it is enough to perform grafting along simple
closed geodesics on the hyperbolic basepoint (see [Goldman 1987]). Here we consider grafting along
ideal arcs, ie arcs that start and end at punctures. Grafting along open arcs is also known as bubbling in
the literature (see [Calsamiglia et al. 2014a; Francaviglia and Ruffoni 2021; Gallo et al. 2000; Ruffoni
2019; 2021]). Most structures considered here are not metric, but they still have a well-defined notion of
circular arc. We show that in most cases grafting arcs can be chosen to be circular.

Uniqueness of grafting curves In the classical Fuchsian case grafting curves are homotopically nontrivial,
and are uniquely determined by the structure itself (see [Goldman 1987]). Here grafting regions do not
carry any topology (they are disks), hence they should not be expected to be canonically associated with
the structure. Indeed it is quite common for a structure to arise from different graftings on different atomic
structures.

Outline of the paper

Section 2 contains background material about the geometry of circles and circular triangles in CP1 (see
Sections 2.1 and 2.2). In Section 2.3 we provide a classification of certain triangular immersions that will
serve as the atomic structures for our main grafting results. This classification is referred to in different
parts of the paper, and it is summarized in Tables 1, 2 and 3 of the appendix.

Section 3 introduces the main geometric definitions, ie that of tameness and relative ellipticity. In
Section 3.2 we study the geometry of the Möbius completion for a general surface and address Theorem C.
The proof of Theorem D is in Section 3.3, where we show that the developing map restricts to a nice
branched cover around each end. This is used in Section 3.4 to define the index of a puncture, and
in Section 4 to obtain a characterization of tame and relatively elliptic structures in terms of quadratic
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differentials on a general Riemann surface. In particular we show that the geometric notion of index can
be also defined and computed analytically. Theorem E is contained in Section 4.2.

Finally, in Section 5 we restrict our attention to the case of the thrice-punctured sphere S . In Section 5.1
we define the class of triangular structures on S , based on Section 2.3, and in Section 5.2 we prove the
main grafting results of Theorems A and B.
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2 Basics on complex projective geometry

In this chapter we collect some background about the geometry of the Riemann sphere, on which our
geometric structures will be modeled, mainly to fix notation and terminology. Let CP1 denote the set of
complex lines through the origin in C2, ie the quotient of C2 n f0g by scalar complex multiplication. We
fix identifications of CP1 with the extended complex plane C[f1g and the unit sphere S2. Through
them, CP1 inherits a natural complex structure, an orientation, and a spherical metric. A circle in CP1

is a circle or a line in C[f1g. Every circle divides CP1 into two disks, each of which has a standard
identification with the hyperbolic plane which respects the underlying complex structure. We denote by
PSL2C the group of projective classes of 2-by-2 complex matrices of determinant 1. This group acts on
CP1 by Möbius transformations

PSL2C �CP1!CP1;

�
a b

c d

�
; z 7!

azC b

czC d
:

For elements in PSL2C, traces and determinants are not well defined. However there is a two-to-one map
SL2C! PSL2C such that ˙A 7! ŒA�. Therefore, given an element G 2 PSL2C, we can always assume
it to be in SL2C modulo a sign. It follows that det.G/, jtr.G/j and tr.G/2 are well-defined quantities.
The action of PSL2C on CP1 is faithful, and simply transitive on triples of pairwise distinct points. In
particular, we can always map three distinct points .p1; p2; p3/ to .0; 1;1/. Möbius transformations are
conformal, preserve cross ratios and preserve circles. Three distinct points in CP1 determine a unique
circle through them. Great circles are geodesic circles in the underlying spherical metric. However,
elements of PSL2C are generally not isometries, and so the set of great circles is not PSL2C–invariant.

A nontrivial element G 2 PSL2C is classified as

� parabolic if tr.G/2 D 4,

� elliptic if tr.G/2 is real and tr.G/2 < 4,

� loxodromic otherwise.
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Figure 1: From left to right: a Euclidean, spherical and hyperbolic configuration of circles.

2.1 Configurations of circles

Let CD .C1;C2;C3/ be an (ordered) configuration of three distinct circles in CP1. The configuration C

is nondegenerate if every pair Ci ;Cj intersects in exactly two points fxij ; yij g, and the set of pairwise
intersection points has at least four elements. Henceforth, all configurations will be assumed to be
nondegenerate. Also notice that by definition C is an ordered triple.

A configuration of circles is Euclidean if the circles have a common intersection point. In this case there
are exactly four intersection points. If the configuration is not Euclidean, since every circle divides CP1

into two disjoint regions, then C1 separates fx23; y23g if and only if C2 separates fx13; y13g if and only
if C3 separates fx12; y12g. In that case, we say that the configuration C is spherical. Otherwise, it is
hyperbolic (see Figure 1).

Remark 2.1.1 A configuration of circles induces a CW–structure on CP1, in which the 2–cells are either
bigons, triangles or quadrilaterals; in the spherical case the structure is simplicial and isomorphic to an
octahedron. Given two configurations of circles Ci D .Ci1;C

i
2;C

i
3/ of the same kind (Euclidean, spherical

or hyperbolic), there is always (at least) one CW–isomorphism of CP1 mapping C1
k

to C2
k

. For spherical
and hyperbolic configurations, it is enough to consider orientation preserving CW–isomorphisms. On the
other hand, if CD .C1;C2;C3/ is a Euclidean configuration of circles, there is no orientation preserving
CW–isomorphism mapping .C1;C2;C3/ to .C1;C3;C2/; the obstruction being the cyclic order of the
circles at the common intersection point.

The connection between a configuration of circles and the corresponding geometries is well known. We
recall it in the next result (cf Figure 2).

Lemma 2.1.2 Let C be a configuration of three circles.

� If C is Euclidean , let y be the common intersection point. Then CP1 n fyg admits a Euclidean
metric for which the circles in C are geodesics.
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E2

H2

S2

Figure 2: Euclidean, hyperbolic and spherical configurations are related to the corresponding geometries.

� If C is spherical , then there is a Möbius transformation G 2 PSL2C such that G �C are great circles
for the underlying spherical metric.

� If C is hyperbolic , then there is a unique circle CH orthogonal to every circle in C. In particular ,
each connected componentDH of CP1nCH admits a hyperbolic metric for which the intersections
of C with DH are geodesics.

Any two distinct circles C1 and C2 in a configuration C intersect in two points. If x is a point of
intersection, then we can use the orientation of CP1 to determine the anticlockwise angle †xC1C2 from
C1 to C2 at x (see Figure 3). We have that

†xC2C1 D � �†xC1C2 D†yC1C2;

where y is the other point of intersection of C1 and C2. It is a simple exercise in complex projective
geometry to show that a configuration of circles is uniquely determined (up to Möbius transformations)
by the ordered triple of angles at three points.

Lemma 2.1.3 For i 2 f1; 2g, let Ci D .Ci1;C
i
2;C

i
3/ be a configuration of circles. For every pair of circles

in Ci let xi
jk
2 Cij \Ci

k
be an intersection point such that

†x112
C11C12 D†x212

C21C22; †x123
C12C13 D†x223

C22C23; †x113
C11C13 D†x213

C21C23:

Then there is a Möbius transformation M 2 PSL2C such that M �C1 D C2 with M � x1
jk
D x2

jk
.

†xC2C1
C2 †yC1C2

x
†xC1C2

y

C1

Figure 3: The anticlockwise angle between two circles at a point of intersection.
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2.2 Elliptic Möbius transformations

In this section we prove a correspondence between configurations of circles and certain triples of elliptic
Möbius transformations (Corollary 2.2.7).

As defined above, a nontrivial Möbius transformation G 2 PSL2C is said to be elliptic if tr.G/2 is real
and tr.G/2 < 4. An elliptic transformation fixes exactly two points of CP1. Let G 2 PSL2C be elliptic.
The rotation angle Rot.G; x/ 2 .0; 2�/ of G at a fixed point x is the angle of anticlockwise rotation of G
at x (more precisely of dGx on TxCP1). If x and y are the fixed points of G, a Möbius transformation
mapping x; y to 0;1 conjugates G to the element of PSL2C

(2.2.1)

"
ei
1
2

Rot.G;x/ 0

0 e�i
1
2

Rot.G;x/

#
:

The definition of rotation angle implies the following result.

Lemma 2.2.1 Let G 2 PSL2C be elliptic with fixed points fx; yg. Then

Rot.G; y/D 2� �Rot.G; x/D Rot.G�1; x/:

The rotation invariant of an elliptic transformation G is the unordered pair

Rot.G/ WD fRot.G; x/;Rot.G; y/g:

Lemma 2.2.2 Let G 2 PSL2C be elliptic , and let � 2 .0; 2�/. Then � 2 Rot.G/ if and only if
4 cos2

�
1
2
�
�
D tr2.G/.

Proof Both the rotation angle and the trace operator are invariant under conjugation; thus we may
assume that G is normalized as in (2.2.1). The equation 4 cos2

�
1
2
�
�
D tr2.G/ has precisely two solutions

in .0; 2�/, of the form

�1 D 2 arccos
�
1
2
jtr.G/j

�
and �2 D 2� � 2 arccos

�
1
2
jtr.G/j

�
;

where we fix a determination of arccos in Œ0; ��. A direct computation shows that Rot.G/ D f�1; �2g,
concluding the proof.

Given the fixed points of G, the rotation invariant is enough to determine G up to inversion, while the
rotation angle is a complete invariant.

Lemma 2.2.3 Let G;H 2 PSL2C be two elliptic transformations. Then

(1) Rot.G/D Rot.H/() tr2.G/D tr2.H/()G;H are conjugate.

(2) If G and H have the same fixed points fx; yg, then

Rot.G/D Rot.H/ () G DH˙1;

and in particular
Rot.G; x/D Rot.H; x/ () G DH:
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Proof (1) Two elliptics with the same rotation invariants must have the same trace squared by the
previous Lemma 2.2.2. But this is a complete invariant of conjugacy classes for semisimple
elements of PSL2C.

(2) Since G and H share the same fixed points, we can simultaneously normalize them as in (2.2.1).
Both statements follow from comparing the two normal forms.

Next we analyze the connection between elliptic transformations, whose product is elliptic, and configu-
rations of circles in CP1. First, we recall the following result from [Gallo et al. 2000, Lemma 3.4.1].

Lemma 2.2.4 Let G;H 2 PSL2C be elliptic transformations with at most one common fixed point ,
and such that the product GH is elliptic. Then the fixed points of G and H are contained in a unique
circle CG;H .

We recall that given any two distinct circles C1 and C2 intersecting at a point x, the (anticlockwise) angle
from C1 to C2 at x is denoted by †xC1C2 (see Section 2.1).

Lemma 2.2.5 Let C1 and C2 be distinct circles in CP1 meeting exactly at two points , x and y. Let Ji
denote the reflection in Ci . Then the product G D J2J1 is an elliptic transformation fixing x and y with

Rot.G; x/D 2†xC1C2 and Rot.G; y/D 2†yC1C2:

Proof Since Möbius transformations are conformal, we can normalize so that x D 0 and y D1. Under
the standard identification CP1 DC[f1g, we can further normalize so that C1 DR[f1g. Then C2

is a Euclidean line through 0 and1. In this setting

J1.z/D Nz and J2.z/D e
i2.†xC1C2/ Nz;

and the statement follows from a direct computation.

Henceforth we fix the following notation. Given G and H , distinct elliptic transformations whose product
GH is elliptic, we denote by fpG ; qGg (resp. fpH ; qH g) the fixed points of G (resp. H ), by CG;H the
unique circle through fpG ; qG ; pH ; qH g (see Lemma 2.2.4), and by JG;H the reflection about CG;H .

Lemma 2.2.6 Let .A;B; C / be an ordered triple of elliptic transformations with at most one common
fixed point , and such that ABC D 1. Then

(1) CA;C \CA;B D fpA; qAg;

(2) 2†pACA;BCA;C D Rot.A; pA/ and 2†qACA;BCA;C D Rot.A; qA/;

(3) AD JA;CJA;B .

Proof We begin by noticing that two of the three elliptic transformations share a common fixed point p
if and only if p is fixed by all three of them. Hence there are either four or six distinct fixed points. Then
statement (1) follows from Lemma 2.2.4.
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Next, we recall that Möbius transformations are conformal; thus without loss of generality we can
simultaneously normalize .A;B; C / so that .pA; qA; pB/D .0;1; 1/. It follows that CA;B DR[f1g.
If we let � WD 1

2
Rot.A; 0/, then the three elliptic transformations take the forms

AD

�
ei� 0

0 e�i�

�
; B D

�
a b

c Na

�
; C�1 D AB D

�
aei� bei�

ce�i� Nae�i�

�
;

where jtrBj D 2jRe.a/j< 2 (the relation between the diagonal elements of B is implied by the fact that
C is elliptic). We remind the reader that we are always taking representatives in SL2C modulo a sign.
Using that det.B/D 1 and that B fixes 1, it follows that b and c are purely imaginary. In particular, there
are choices of signs for which

b D�i Im.a/˙
p

Re2.a/� 1 and c D i Im.a/˙
p

Re2.a/� 1:

We claim that C�1 has fixed points of the form tei� for t 2 R n f0g. Since C and C�1 have the same
fixed points, this will imply that †0CA;BCA;C D � D

1
2

Rot.A; 0/. To this end, we look for real solutions
of the equation

tei� D AB � tei� D
ate2i� C bei�

ct C Nae�i�
() ct2� 2i Im.aei� /t � b D 0:

Since b and c are purely imaginary, this polynomial has real roots if and only if its discriminant
�4 Im.aei� /2C 4bc is negative. But that follows from

1D det.AB/D kak2� bc D kaei�k2� bc D Re.aei˛/2C Im.aei� /2� bc;
and

2 > jtr.AB/j D j2Re.aei� /j:

This concludes the proof of the first part of (2), while the rest follows from the definition of the anticlock-
wise angle between two circles and Lemma 2.2.1.

For the last statement of the lemma, recall that G WD JA;CJA;B is an elliptic Möbius transformation with
fixed points fpA; qAg (Lemma 2.2.5). Then G has the same fixed points and rotation angles as A; thus
G D A by Lemma 2.2.3.

Lemmas 2.2.4, 2.2.5 and 2.2.6 have the following straightforward consequence.

Corollary 2.2.7 There is a bijection�
configurations
of three circles

�
 !

�
ordered triples of elliptic transformations with
at most one common fixed point and product 1

�
where .C1;C2;C3/ 7! .J3J1; J1J2; J2J3/ and .A;B; C / 7! .CA;B ;CB;C ;CA;C /.

2.3 Triangular immersions

In this section we define certain immersions of the standard 2–simplex in CP1. Lemmas 2.3.1, 2.3.3
and 2.3.4 prove the existence of immersions with certain requirements on the angles at the vertices. These
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are the ones we call atomic, and are listed in Tables 1, 2 and 3 of the appendix. Then we study some
invariants of such immersions, and conclude in Corollary 2.3.7 that they are essentially determined by the
image of the vertices, up to a minor ambiguity.

Let 4 WD f.x1; x2; x3/ 2 R3
�0 j x1 C x2 C x3 D 1g be the standard 2–dimensional simplex. Let

fV1; V2; V3g � 4 be its set of vertices V1 D .1; 0; 0/, V2 D .0; 1; 0/ and V3 D .0; 0; 1/, and let eij �4
be the edge between Vi and Vj . We endow4 with the orientation induced form the ordering .V1; V2; V3/
of its vertices.

A triangular immersion is an orientation preserving immersion � W 4 ! CP1 such that each �.eij / is
contained in a circle. In particular, we require � to be locally injective everywhere except at the vertices.
When every �.eij / is contained in a great circle, the triangle 4 inherits a spherical metric with geodesic
boundary and cone angles at the vertices. This is usually referred to as a spherical triangular membrane
in the literature [Eremenko 2004; Mondello and Panov 2016]. Triangular immersions are relevant to this
paper as they produce natural examples of CP1–structures on the thrice-punctured sphere (see Section 5.1
for details.)

Henceforth, we will often make the abuse of notation of referring to both the triangular immersion and its
image in CP1 by � , when it is not necessary to make a distinction. The image of the vertices (resp. edges)
of 4 are the vertices (resp. edges) of � . Since edges of � are arcs of circles, � has well-defined angles
at the vertices. When � is not locally injective at a vertex, the angle is larger than 2� , and � should
be thought as “spreading over” CP1. The orientation of 4 and the ordering of its vertices induce an
orientation on � , and an ordering of its vertices and of its angles (which agree with the orientation and
ordering induced by the orientation of CP1).

Configurations of circles and triangular immersions are related to one another. If � is a triangular
immersion, each one of its edges extends to a unique circle giving a (possibly degenerate) configuration
C� of three circles. In this case we say that C� supports � . When C� is nondegenerate, we say that �
is nondegenerate. When the interior of the image of � is disjoint from C� , we say that � is enclosed
in C� . These are exactly those triangular immersions whose (interior of the) images are the connected
components of CP1 nC� . Necessary and sufficient conditions on the angles of � for it to be enclosed in
C� are well known, but we provide a short proof as we could not find a direct reference.

Lemma 2.3.1 Let .a; b; c/ be an ordered triple of angles in .0; �/3.

(1) Euclidean triangles There is a Euclidean configuration of circles C and a triangular immersion �
enclosed in C with angles .a; b; c/ if and only if one of the following conditions are satisfied :

(2.3.1) aC bC c D �; �aC bC c D �; a� bC c D �; aC b� c D �:

(2) Hyperbolic triangles There is a hyperbolic configuration of circles C and a triangular immersion
� enclosed in C with angles .a; b; c/ if and only if

(2.3.2) aC bC c < �:
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Figure 4: Two Euclidean configurations. Both support an enclosed triangular immersion with
angles .a; b; c/ 2 .0; �/3, such that either aC bC c D � (left) or �aC bC c D � (right).

(3) Spherical triangles There is a spherical configuration of circles C and a triangular immersion T
enclosed in C with angles .a; b; c/ if and only if .a; b; c/ satisfies

(2.3.3) aC bC c > �; aC� > bC c; bC� > cC a; cC� > aC b:

Proof (1) Let � be a triangular immersion enclosed in a Euclidean configuration of circles C� . Then
there is a common intersection point y, and CP1 n fyg admits a Euclidean metric for which the circles in
C� are geodesics (see Lemma 2.1.2). In this setting, it is easy to check that each one of the four triangular
immersions that are enclosed in C� have angles

(0) .a; b; c/,

(1) .a; � � c; � � b/,

(2) .� � c; b; � � a/,

(3) .� � b; � � a; c/,

each one satisfying exactly one of the equalities in (2.3.1) (see Figure 4).

The converse implication is well known for aC bC c D � . If �aC bC c D � , we consider the angles
Oa D a, Ob D � � c and Oc D � � b. Clearly . Oa; Ob; Oc/ 2 .0; �/3 and OaC ObC Oc D �; therefore there is a
Euclidean triangle with angles . Oa; Ob; Oc/ supported by some configuration of circles. One of the other
enclosed triangular immersions has angles .a; b; c/ (see Figure 4). The same strategy applies to the other
cases.

(2) Let � be a triangular immersion enclosed in a hyperbolic configuration of circles C� . Let CH be the
circle that is orthogonal to the family C� (Lemma 2.1.2). In this case there are precisely two triangular
immersions that are enclosed in C� , and they are both disjoint from CH. It follows that � is a hyperbolic
triangle in one of the two connected components of CP1 nCH; thus inequality (2.3.2) is a consequence
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.0/

.1/

.2/

.3/

a

b

c

a

� � a

� � a

b
� � b � � b

c� � c

� � c

Figure 5: A hyperbolic configuration and a spherical configuration. They both support an enclosed
triangular immersion with angles .a; b; c/2 .0; �/3, such that either aCbCcD� (left) or (2.3.3)
is satisfied (right).

of the formula for hyperbolic area of triangles (see Figure 5). The converse implication is [Ratcliffe 2006,
Theorem 3.5.9].

(3) Finally, let � be a triangular immersion enclosed in a spherical configuration of circles C� . By
Lemma 2.1.2, we can realize this configuration of circles by great circles. So every triangular region �
enclosed in C� is a geodesic triangle for the standard spherical metric. By the area formula for spherical
triangles, we have that

aC bC c D � CArea.�/ > �:

The other inequalities (2.3.3) are obtained by applying Gauss–Bonnet to the enclosed triangular regions
adjacent to � (see Figure 5), whose angles are

(1) .a; � � c; � � b/,

(2) .� � c; b; � � a/,

(3) .� � b; � � a; c/.

The converse implication is a simple adaptation of [Ratcliffe 2006, Theorem 3.5.9] using the law of
cosines in spherical geometry (see [Ratcliffe 2006, Exercise 2.5.8]).

Remark 2.3.2 For convenience, Lemma 2.3.1 is stated just in terms of the existence of a triangular
immersion � . Although we will not need it, we remark that it is a simple consequence of Lemma 2.1.3
that � is also unique up to Möbius transformations. The same is true for the following results.

Given an enclosed triangular immersion � , there are two simple operations that one can perform to
construct new triangular immersions supported by the same configuration of circles. The first one consists
in extending � by a full disk, by “pushing” an edge of � to its complement in its supporting circle
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Figure 6: A triangular immersion can be manipulated to new triangular immersions by adding an
entire disk, or by taking a full turn around a vertex.

(Figure 6). This operation increases the two angles adjacent to the pushed edge by � . The second
manipulation involves making a full turn around a vertex, by extending the opposite edge to cover its
entire supporting circle (Figure 6). This operation increases the angle at the highlighted vertex by 2� . It
will be remarked later on how these operations are related to grafting the associated triangular structure
(see Example 5.1.2).

On the other hand, there are triangular immersions that do not arise from these operations, whose existence
we prove now.

Lemma 2.3.3 Let .a; b; c/ be an ordered triple of angles such that

a 2 .0; �/[ .�; 2�/ and b; c 2 .0; �/:

Then there is a configuration of circles C and a triangular immersion � supported by C with angles
.a; b; c/.

Proof First suppose a 2 .0; �/. Those cases where .a; b; c/ satisfies one of the conditions (2.3.1), (2.3.2)
or (2.3.3) from Lemma 2.3.1 are covered by that lemma. Hence suppose aCbCc > � , but at least one of
the other inequalities in (2.3.3) is not satisfied. Up to permuting a; b; c we may assume that aC� < bCc.
Let

OaD a; Ob D � � b; Oc D � � c:

Then OaC Ob C Oc D aC .� � b/C .� � c/ < � by assumption; therefore by Lemma 2.3.1 there is a
hyperbolic configuration of circles C and a triangular immersion O� enclosed in C with angles . Oa; Ob; Oc/.
Figure 7 (on the left) shows that the same configuration of circles supports a triangular immersion with
angles .a; b; c/.

Now suppose a 2 .�; 2�/. Consider the relations

(1) (i) aC bC c > 3� ,
(ii) aC bC c D 3� ,
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Figure 7: Left: a triangular immersion on a hyperbolic configuration with angles .a; b; c/2 .0; �/3

such that aCbCc >� but aC� < bCc. Right: a triangular immersion supported by a spherical
configuration.

(2) (i) a� b� c > � ,
(ii) a� b� c D � ,

(3) (i) a� bC c � � ,
(ii) aC b� c � � .

We observe that these three groups of inequalities are mutually exclusive, as any two of them imply the
following contradictions:

.1/C .2/ D) a � 2�; .1/C .3/.i/ D) b � �; .2/C .3/.i/ D) c � 0;

.3/.i/C .3/.ii/ D) a � �; .1/C .3/.ii/ D) c � �; .2/C .3/.ii/ D) b � 0:

If one of those inequalities is satisfied, we define

OaD 2� � a; Ob D � � b; Oc D � � c if (1)(i) is satisfied;

OaD 2� � a; Ob D � � c; Oc D � � b if (1)(ii) is satisfied;

OaD 2� � a; Ob D b; Oc D c if (2)(i) is satisfied;

OaD 2� � a; Ob D c; Oc D b if (2)(ii) is satisfied;

OaD a��; Ob D � � b; Oc D c if (3)(i) is satisfied;

OaD a��; Ob D b; Oc D � � c if (3)(ii) is satisfied:

In each case, the assumption implies that OaC ObC Oc�� ; therefore Lemma 2.3.1 applies to give a Euclidean
or hyperbolic configuration of circles C and a triangular immersion O� enclosed in C with angles . Oa; Ob; Oc/.
Figures 8 and 9 show that the same configuration of circles supports a triangular immersion with angles
.a; b; c/.
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Oc
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(2)(i)
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Oc

(3)(i)

a
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Oa

Ob

Oc

(3)(ii)

Figure 8: Different triangular immersions with angles .a; b; c/, supported by hyperbolic configu-
rations. We remark that the one depicted in (2) covers the darker triangle twice.

Finally, let (:1), (:2), (:3)(i) and (:3)(ii) be the opposite of the inequalities (1), (2), (3)(i) and (3)(ii),
and suppose .a; b; c/ satisfies all of (:1), (:2), (:3)(i) and (:3)(ii). We define

OaD 2� � a; Ob D � � b; Oc D � � c:

This time OaC ObC Oc D 4� � a� b� c > � because of (:1). Moreover,

OaC� D 3� � a > 2� � b� c D ObC Oc by .:2/;

ObC� D 2� � b > 3� � a� c D OaC Oc by .:3/.i/;

OcC� D 2� � c > 3� � a� b D OaC Ob by .:3/.ii/:
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Figure 9: Different triangular immersions with angles .a; b; c/, supported by Euclidean configurations.

By Lemma 2.3.1, there is a spherical configuration of circles C and a triangular immersion O� enclosed in
C with angles . Oa; Ob; Oc/. See Figure 7 for a triangular immersion with angles .a; b; c/ supported by the
same configuration C.

Due to the degenerate nature of Euclidean configurations, there is one additional case that needs to be
considered, which we address in the next lemma.

Lemma 2.3.4 Let .a; b; c/ be an ordered triple of angles such that

a 2 .2�; 3�/; b; c 2 .0; �/; a� b� c D �:

Then there is a configuration of circles C and a triangular immersion � supported by C with angles .a; b; c/.
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a
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c

Oa

Ob

Oc

Figure 10: The additional triangular immersion mentioned in Lemma 2.3.4. Notice that a > 2� ,
hence the darker bigon is covered twice.

Proof Let
OaD a� 2�; Ob D � � b; Oc D � � c:

Then Oa; Ob; Oc 2 .0; �/ and OaC ObC Oc D a� 2� C� � bC� � c D � ; therefore by Lemma 2.3.1 there is
a Euclidean configuration of circles C and a triangular immersion O� enclosed in C with angles . Oa; Ob; Oc/.
Figure 10 shows that the same configuration of circles supports a triangular immersion with angles
.a; b; c/.

The triangular immersions constructed in the proofs of Lemmas 2.3.1, 2.3.3 and 2.3.4, which are depicted
in Figures 7, 8, 9 and 10, are the starting point to construct all complex projective structures of interest
in this paper. For this reason, we will refer to them as the atomic triangular immersions. They are
Euclidean/hyperbolic/spherical depending on the type of the underlying configuration of circles. In
Lemmas 2.3.3 and 2.3.4 exactly one angle is allowed to be larger than � , and we have assumed that to be
the first one for simplicity. This normalization is inessential, and the same statements and proofs hold
if one chooses a different angle to be the large one. This should be regarded as a change of marking
(ie a permutation of the vertices of the simplex on which the triangular immersions are defined), and
we call atomic triangular immersion any triangular immersion obtained in this way. Theorem B and
Corollary 5.2.3 will show that, in a precise sense, this is indeed the minimal collection of triangular
immersions to be considered.

We remark that the proofs of these lemmas are explicit, and construct a concrete collection of triangular
immersions. Notice that for every triple of real numbers .a; b; c/, two of which are in .0; �/ and one is in
.0; �/[ .�; 2�/[ .2�; 3�/, there is a unique atomic triangular immersion with those angles. This allows
us to organize the atomic triangular immersions in Tables 1, 2 and 3. We now define the other features
listed in those tables.
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Let � W 4 ! CP1 be an atomic triangular immersion, and let C� be the configuration of circles that
supports it. The configuration C� is either of spherical, Euclidean or hyperbolic type. The target angles
of � are the numbers . Oa; Ob; Oc/ defined as follows.

� If .a; b; c/ satisfies the hypothesis of Lemma 2.3.1 then . Oa; Ob; Oc/D .a; b; c/.

� If .a; b; c/ does not satisfy the hypothesis of Lemma 2.3.1 then . Oa; Ob; Oc/ is defined as in the proofs
of Lemmas 2.3.3 and 2.3.4, depending on what conditions are satisfied, and up to permuting the
angles as appropriate.

The target angles of � satisfy the hypothesis of Lemma 2.3.1. Therefore there is a triangular immersion O�
with angles . Oa; Ob; Oc/, which we call the target triangular immersion. If C� WD .C12;C23;C13/, it follows
from the construction that O� is supported either by C� or by C�� WD .C12;C13;C23/, but the latter only
happens in the Euclidean cases of Figure 4 (right) and Figure 9(1)–(2). In addition, O� is always enclosed
(while � may not be). All the above pictures representing the atomic triangular immersions have been
normalized so that O�.4/ contains the point at infinity in its interior.

For pairwise distinct i; j; k 2 f1; 2; 3g, consider the circle Cij 2 C� supporting O�.eij /; the intersection
Cij \Cjk consists of two points: one is O�.Vj /, and we define O�.Vj /0 to be the other one. The collection
fO�.Vj /; O�.Vj /

0 j j D 1; 2; 3g accounts for all the points of intersection of the circles in C� , which are the
possible vertices for � . Note that by construction we always have f�.V1/; O�.V1/g � C12\C13. We say a
vertex �.Vj / of � is positive if there exists k such that �.Vj /D O�.Vk/, ie if it coincides with a vertex of O� ,
and we say it is negative otherwise. This defines a triple of signs .s1.�/; s2.�/; s3.�// 2 f˙g3 associated
to � . In the Euclidean case, we additionally decorate this triple; we define it to be .s1.�/; s2.�/; s3.�//
when O� is supported by C� , and to be .s1.�/; s2.�/; s3.�//� when O� is supported by C�� .

Remark 2.3.5 The Euclidean case (see Table 3) displays all possible cases for the triple of signs,
including the extra � decoration, with the only exception of the cases in which all vertices are negative.
This cannot happen as it would mean that � maps all vertices to the common intersection point of the
configuration of circles, but this never happens for an atomic triangular immersion. The extra � decoration
is not needed for the hyperbolic and spherical cases as they are less degenerate than the Euclidean ones,
in the sense that circles in C have six distinct intersection points, which allows for more flexibility in
the definition of the atomic immersions. See Tables 1 and 2. In the hyperbolic case we find all possible
cases for the signs. In the spherical case we only see the triples .˙;˙;˙/. This is because a spherical
configuration of circles has only triangular complementary regions (while the complement of a hyperbolic
configuration has different shapes, with only two triangles). As a result it is much easier for a spherical
atomic triangular immersion to be enclosed, and equal to its own target triangular immersion.

Lemma 2.3.6 Let � be an atomic triangular immersions supported by a configuration of circles C. Then
O� is uniquely determined by C and the vertices of � .
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Figure 11: Two atomic triangular immersions supported by the same (spherical) configuration of
circles, and with the same signs .�;�;�/.

Proof Let CD .C12;C23;C13/ and recall that we have �.ejk/ � Cjk for j; k D 1; 2; 3, by definition
of what it means for a triangular immersion to be supported by a configuration of circles. Moreover, by
construction f�.V1/; O�.V1/g � C12\C13.

Suppose that C is Euclidean. Then O� is the unique enclosed triangular immersion mapping to the Euclidean
triangle such that O�.V1/D .C12\C13/ n f1g.

Next, if C is hyperbolic, then let CD CH be the dual circle from Lemma 2.1.2. If C is spherical, then let
C be a circle which separates the vertices of � from the other intersection points of circles in C. In either
case O� is the unique enclosed triangular immersion which has image disjoint from C, is supported by C,
and such that f�.V1/; O�.V1/g � C12\C13. We additionally remark that O� is always on the left of C with
respect to the orientation induced by C.

Corollary 2.3.7 Let C be a configuration of circles. Let �1 and �2 be two atomic triangular immersions
supported by C, such that �1.Vj /D �2.Vj / for all j 2 f1; 2; 3g. Then O�1 D O�2. Moreover , if .ai ; bi ; ci /
are the angles of �i , then exactly one of the following happens:

(1) .a1; b1; c1/D .a2; b2; c2/ and �1 D �2;

(2) .a1� a2; b1� b2; c1� c2/D .�;��; 0/ up to permutation.

Proof The first assertion follows directly from Lemma 2.3.6. As a direct consequence, �1 and �2 have
the same target angles and the same triple of signs. A direct inspection of Tables 1, 2 and 3 proves
the desired relations between the angles, just by imposing equalities of the respective target angles.
In particular, recall that atomic triangular immersions are uniquely determined by their angles; hence
.a1; b1; c1/D .a2; b2; c2/ implies �1 D �2.

Example 2.3.8 Let �1 and �2 be two atomic triangular immersions with angles

.a1; b1; c1/D
�
3�
2
; �
3
; �
4

�
and .a2; b2; c2/D

�
�
2
; 4�
3
; �
4

�
:
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These immersions correspond to the second and third row of Table 2, respectively. They are supported by
the same spherical configuration of circles C, with target angles . Oa; Ob; Oc/D

�
�
2
; 2�
3
; 3�
4

�
, and share the

same signs .�;�;�/. In particular, O�1 D O�2. Furthermore, �1 can be transformed into �2 by first adding a
disk and then removing another disk (see Figure 11).

Remark 2.3.9 Some of the sign invariants in each of Tables 1, 2 and 3 occur exactly once. If two
triangular immersions have same such signs, then they are equal by Corollary 2.3.7 case (1). This applies
for instance to atomic triangular immersions arising from Lemma 2.3.4, depicted in Figure 10.

3 Tame and relatively elliptic CP 1–structures

In this chapter we define the geometric structures of interest in this paper, and study the geometry they
induce on the universal cover. The reader can find the proofs of Theorems C and D in Sections 3.2 and 3.3
respectively.

Let † be a closed oriented surface and let fx1; : : : ; xng �† be n distinct points such that the punctured
surface † WD† n fx1; : : : ; xng has negative Euler characteristic. If g is the genus of †, this is equivalent
to 2g C n > 2, and it implies that † admits a complete hyperbolic metric of finite area. The points
fx1; : : : ; xng are the punctures of †.

A complex projective structure (CP1–structure in short) on † is a maximal atlas of charts into CP1 with
transition maps in PSL2C (see [Dumas 2009; Gunning 1967]). A CP1–structure can be described by a
developing pair .dev; �/ consisting of a developing map and a holonomy representation

dev W z†!CP1; � W �1.†/! PSL2C;

satisfying the equivariance condition

dev. � x/D �.x/ � dev.x/ for all x 2 z†;  2 �1.†/:

There is a natural equivalence relation on the set of complex projective structures on a surfaces for
which two pairs .dev; �/ and .dev0; �0/ are equivalent if there is A 2 PSL2C so that dev0 D A ı dev and
�0 D A�A�1 (up to isotopy of †). The deformation space of marked CP1–structures on † is the space
of equivalence classes of complex projective structures and it is denoted by P.†/. We denote by R.†/

the space of conjugacy classes of representations of �1.†/ into PSL2C. We prefer not to use the GIT
quotient because some of the representations of interest in this paper are reducible. The holonomy map is
the forgetful map

Hol W P.†/!R.†/; Œ.dev; �/� 7! Œ��:

Every CP1–structure has a natural underlying complex structure (or equivalently a conformal structure).
We define P�.†/�P.†/ to be the subset of CP1–structures on † whose underlying conformal structure
around every puncture is the complex punctured disk D� WD fz 2C j 0 < jzj< 1g.
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The space of interest in this paper is the subspace Pˇ.†/ of P�.†/ of those structures whose developing
map is tame and whose holonomy representation is relatively elliptic. We will define these terms in
Section 3.1.

3.1 Ends, framing, and grafting

Let z† be the topological universal cover of †, and choose an identification z† Š H2 coming from a
uniformization of † as a complete hyperbolic surface of finite area. An end E of z† is defined to be the
fixed point of a parabolic deck transformation in the boundary of H2 in the closed disk model. For every
puncture x of †, we denote by Ex.z†/ the set of ends covering x (see Remark 3.1.1 for more details), and
by

E.z†/ WD
[
x

Ex.z†/

the set of all ends. The end-extension of z† is the topological space z†# D z†[E.z†/, equipped with the
topology generated by all open sets of z† together with the horocyclic neighborhoods of the ends, ie sets
of the form N DN0[fEg where N0 is an open disk in the closed disk model for H2 which is tangent to
the boundary at E. The action of �1.†/ on z† naturally extends to a continuous (neither free nor proper)
action on z†#. The quotient of E.z†/ by this action is precisely the set of punctures of †.

Remark 3.1.1 Ends cover the punctures of † in the sense that the universal cover projection z†!†

admits a continuous extension to a map z†#!†. In particular, a sequence of points xn 2 z† converges
to an end E 2 E.z†/ if and only if its projection to † is a sequence of points converging (in †) to the
puncture covered by E. This happens if and only if xn eventually enters every horocyclic neighborhood
of E.

Remark 3.1.2 Notice that z† is open and dense in z†#, but this is not the same topology as the one
induced from the closed disk model for H2. Indeed the topology of z†# is strictly finer; the natural
inclusion of z†# into the closed disk is continuous but not open. Furthermore, the topology induced on the
collection of ends is discrete, so z†# is not compact. Actually not even locally compact, as ends do not
have compact neighborhoods.

Recall that a peripheral element ıx 2 �1.†/ is the homotopy class of a peripheral loop (also denoted
by ıx) around the puncture x. If Ex is an end covering x, then ıx is a generator of the stabilizer of Ex in
�1.†/. We make the convention that ıx is the positive peripheral element if the corresponding peripheral
loop is positively oriented, namely it turns anticlockwise around x (with respect to the orientation of †).
This convention is chosen to match the convention that the angle between two circles is also taken in the
anticlockwise direction.

Let � 2 P.†/ be represented by a developing pair .dev; �/. We say that � is

� tame at a puncture x if dev admits a continuous extension

.dev#/x W z†[Ex.z†/!CP1I
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� tame if dev admits a continuous extension

dev# W z†[E.z†/!CP1

(note that this is equivalent to � being tame at each puncture);

� relatively elliptic if the holonomy representation is relatively elliptic, ie the holonomy of every
peripheral element is an elliptic Möbius transformation;

� degenerate if the holonomy representation is degenerate in the sense of [Gupta 2021, Definition 2.4],
ie if either one of the following happens:
– there are two points p˙ 2CP1 such that the entire holonomy preserves the set fp˙g and the

holonomy of every peripheral element fixes p˙ individually;
– there exists a point p 2CP1 such that the entire holonomy fixes p and the holonomy of every

peripheral element is parabolic or identity.

The property of being degenerate is related (but not equivalent) to the more classical notions of reducible
or elementary representations. In the case of punctured spheres, a degenerate representation is always
reducible; on the other hand a representation generated by rotations of the Euclidean plane around different
points is reducible but nondegenerate (see [Gupta 2021, Section 2.4] for a discussion).

The above notions are invariant under conjugation of representations in PSL2C and postcomposition of
developing maps by Möbius transformations, thus they do not depend on the choice of representative
pair .dev; �/. The deformation space of CP1–structures on † which are tame, relatively elliptic and
nondegenerate is Pˇ.†/. The image of Pˇ.†/ under the holonomy map is Rˇ.†/ WD Hol.Pˇ.†//.

Lemma 3.1.3 Let � 2 P.†/ and let .dev; �/ be a developing pair. Let x be a puncture and suppose that
� is tame at x. Let Ex be an end covering x and let ıx 2 �1.S/ be a peripheral element fixing it. Then

(1) the map .dev#/x is �–equivariant. In particular , the transformation �.ıx/ fixes dev#.Ex/;

(2) the transformation �.ıx/ is either trivial , parabolic or elliptic.

Proof (1) Follows by equivariance of dev and continuity of the extension dev#.

(2) Let p WD .dev#/x.Ex/ be one of the fixed points of �.ıx/, and assume by contradiction that �.ıx/
is hyperbolic or loxodromic. Then it has another fixed point q and there is a �.ıx/–invariant
simple arc ` joining them. Let � be an initial segment of ` starting at p and ending at some other
point y on `, and lift it to an arc Q� starting at Ex . Consider the family of arcs Q�n WD ınx � Q�, for
n 2 Z. Up to replacing ıx with its inverse, the sequence f.dev#/x. Q�n/g converges to the whole
curve ` as n!C1, and shrinks to p as n!�1. Hence for all n 2 ZC there is a point xn 2 Q�n
developing to y. Then we have xn! Ex in the topology of z†#, but also .dev#/x.xn/D y 6D p,
which contradicts the continuity of .dev#/x at Ex .

We will see in Section 4 that if � 2 Pˇ.†/ then � 2 P�.†/, ie the underlying complex structure is
that of a punctured Riemann surface. More precisely, � can be defined by a suitable meromorphic
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quadratic differential with double poles (Theorem E). However Pˇ.†/ is strictly contained in P�.†/, as
the following examples show.

Example 3.1.4 We now collect examples of structures in P�.†/ which are or are not in Pˇ.†/. These
examples show that being tame and having relatively elliptic holonomy are independent concepts.

� All structures induced by Euclidean or hyperbolic metrics with cone points of angles 2�� are in
Pˇ.†/, when � …N. For spherical metrics one has to additionally require that they do not have coaxial
holonomy (see [Mondello and Panov 2016]).

� The structure induced by a complete hyperbolic metric of finite area is tame, but its holonomy is not
relatively elliptic because peripherals have parabolic holonomy. Hence it is in P�.†/ but not in Pˇ.†/.

� Let �0 be the structure induced by a constant curvature metric with cone points of angles 2�� , for
� …N. Remove disks centered at the cones, turn them into crowns and perform infinitely many graftings
along arcs joining the crown tips. The resulting structure is in P�.†/ and has relative elliptic holonomy,
but it is not tame, hence it is not in Pˇ.†/. This construction is described in [Gupta and Mj 2021], where
it is shown that these structures arise from meromorphic quadratic differentials with poles of order at
least 3 on punctured Riemann surfaces. Compare Example 3.2.10.

� Let �0 2P.†/ be the complex projective structure induced by a hyperbolic metric on the closed surface
†. Pick a simple closed geodesic and let �n be the structure obtained by grafting along it n times. For
n!1 we obtain a punctured surface † with two punctures (possibly disconnected if the geodesic is
separating) which is endowed with a complex projective structure in P�.†/ (see [Hensel 2011]). However
it is not tame, and peripherals have hyperbolic holonomy, so it is not in Pˇ.†/. Compare Example 3.2.11.

We conclude this section by observing that structures in Pˇ.†/ carry some additional piece of information
which can be regarded as a decoration of the holonomy representation. A framing for a representation
� W �1.†/! PSL2C consists of a choice of a fixed point in CP1 for the holonomy about each puncture
(compare [Allegretti and Bridgeland 2020; Gupta 2021]). When considering representations up to
conjugacy (as we do), a framing can equivalently be defined as a �–equivariant map F W E.z†/!CP1

from the space of ends to CP1. A framing is said to be degenerate if one of the following occurs (compare
[Gupta 2021, Section 2.5]):

� F.E.z†// consists of two points, preserved as a set by every element, and fixed individually by the
holonomy at every puncture;

� F.E.z†// consists of one point, fixed by every element, and the holonomy at every puncture is
either parabolic or the identity.

Every framing of every nondegenerate representation is nondegenerate (see [Gupta 2021, Proposition 3.1]).
In general, a CP1–structure can be framed in different ways, by arbitrarily picking the fixed point for
each peripheral curve. However, tame structures can be canonically framed.
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Q� CP1

z†

†

CP1

�

CP1

dev#. Q�/

Figure 12: The structure on z† induced by grafting a structure along a curve �.

Corollary 3.1.5 Let � 2 Pˇ.†/. Then the extension of a developing map provides a nondegenerate
canonical framing for the holonomy.

Proof Let .dev; �/ be a developing pair defining � . By Lemma 3.1.3 we know dev extends naturally
to a map dev# on the space of ends. The restriction FD dev# jE.z†/ provides the desired framing. The
framing is nondegenerated because � itself is a nondegenerate representation.

In the following, whenever dealing with a structure � 2Pˇ.†/, we assume that this natural framing F

has been chosen for its holonomy representation, and refer to the pair .�;F/ as its framed holonomy.

In this paper we are mostly interested in a surgery that can be used to deform CP1–structures and explore
their moduli space. It was introduced by Maskit [1969] and later developed in unpublished work of
Thurston (see [Baba 2020; Dumas 2009; Kamishima and Tan 1992] for some accounts). The specific
version we are interested in is designed to create new structures from old ones without changing their
holonomy. For convenience we define it just in the setting of CP1–structures in Pˇ.†/.

Let � 2 Pˇ.†/, and let � W I ! † be an ideal arc (ie with endpoints in the set of punctures). We say
� is graftable if it is simple and injectively developed, ie dev# is injective on some (every) lift of �
to z†#, all the way to the ends. In particular, the two endpoints develop to two distinct points. When � is
graftable, the developed image of any of its lifts dev#. Q�/ is a simple arc in CP1; hence CP1 n dev#. Q�/ is
a topological disk, endowed with a natural CP1–structure, which we call a grafting region.

Let � 2 Pˇ.†/ and let � W I ! † be a graftable arc. The grafting of � along � is the CP1–structure
Gr.�; �/ obtained by the following procedure: for each lift Q� of � to the universal cover, cut z† along Q�
and glue in a copy of the disk CP1 n dev#. Q�/ using dev# as a gluing map. The obvious inverse operation
is called degrafting. The structure on z† induced by Gr.�; �/ looks like the union of the one induced by
� together with an equivariant collection of grafting regions, glued along all the possible lifts of � (see
Figure 12).
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Remark 3.1.6 If two graftable arcs � and �0 have the same endpoints and are isotopic through graftable
curves, then Gr.�; �/D Gr.�; �0/, and Gr.�; �/ is graftable again along � (see [Calsamiglia et al. 2014a,
Lemma 2.8] or [Ruffoni 2021, Section 2] for details). On the other hand, if � and �0 are disjoint, then
Gr.�; �/ (resp. Gr.�; �0/) is graftable along �0 (resp. �), and Gr.Gr.�; �/; �0/D Gr.Gr.�; �0/; �/.

More generally, a grafting surgery can be defined along any graftable measured lamination on a CP1–
structure, and the reader familiar with grafting deformations will identify the type of grafting introduced
here as a type of projective 2�–grafting (see [Baba 2020; Dumas 2009; Kamishima and Tan 1992] for
details). We record the following statement for future reference.

Lemma 3.1.7 Let � 2 Pˇ.†/ and � W I !† be a graftable arc. Then

(1) Hol.Gr.�; �//D Hol.�/ (ie grafting preserves the holonomy),

(2) Gr.�; �/ 2 Pˇ.†/,

(3) grafting does not change the developed images of the punctures (ie grafting preserves the framed
holonomy).

Proof The first statement is well known in the literature for this type of grafting (see for instance [Baba
2020]). The statements about tameness and framing follow by pasting together the developing map for �
and the natural embedding of the grafting regions in CP1.

3.2 The Möbius completion

In this section we prove Theorem C. Henceforth we fix a complex projective structure � 2 P.†/ with
developing pair .dev; �/. First of all we recall the definition of a natural projective completion of z†
defined in terms of � (see [Kulkarni and Pinkall 1994] for details). Let g0 be a conformal Riemannian
metric on CP1 (eg the standard spherical metric). Let g WD dev�.g0/ be the metric on z† obtained by
pullback, and let d be the associated distance function, ie

d.x; y/ WD inff`g.�/ j � W Œ0; 1�! z† is a rectifiable arc from x to yg

where `g.�/ denotes the length of  with respect to the metric g. Notice that g is generally not invariant
under deck transformations. By construction .z†; d/ is a path-connected length space. It is locally
path-connected, but not necessarily geodesic. Moreover it is locally compact, but in general not proper,
nor complete.

The Möbius completion M� .z†/ of z† with respect to � is defined to be the metric completion of .z†; d/.
The subspace @�1.z†/ WDM� .z†/ n z† is called the ideal boundary of z† with respect to � . We collect the
following facts from [Kulkarni and Pinkall 1994, Section 2]:

(1) Different choices of the metric g0 on CP1 or of the developing map for � result in metrics on z†
having the same underlying uniform structure. So M� .z†/ does not depend (up to homeomorphism)
on these choices.
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(2) dev W z†!CP1 extends continuously to a map dev� WM� .z†/!CP1.

(3) The action of �1.†/ by deck transformations extends to an action by homeomorphisms on the
Möbius completion.

Lemma 3.2.1 The map dev� is �–equivariant.

Proof Let � 2 @�1.z†/ and let xn 2 z† a Cauchy sequence converging to �. Then by continuity of dev� ,

dev� . � �/D dev� . � lim
n!1

xn/D lim
n!1

dev� . � xn/

D �./ � lim
n!1

dev� .xn/D �./ � dev� .�/:

Lemma 3.2.2 M� .z†/ is a complete , path-connected and locally path-connected length space.

Proof Completeness is trivial by construction. The completion of a length space is a length space
(see for instance [Bridson and Haefliger 1999, I.3.6(3)]). Since z† is path-connected and M� .z†/ is a
length space, it follows that M� .z†/ is path-connected. Analogously one can obtain that M� .z†/ is locally
path-connected.

The following examples describe more explicitly the Möbius completion for projective structures defined
by certain constant curvature metrics. Notice they are both examples of hyperbolic Möbius structures
with respect to the terminology introduced in [Kulkarni and Pinkall 1994, Section 2].

Example 3.2.3 Let � D .dev; �/ be defined by a complete hyperbolic metric of finite area on †. In this
case M� .z†/ is homeomorphic to a closed disk, and @�1.z†/ to a circle. Ideal points are either ends, or
limit points of complete lifts of closed geodesics. Indeed, � W �1.†/! PSL2R is an isomorphism onto
Fuchsian group, and dev W z†!CP1 is a �–equivariant diffeomorphism with an open hemisphere.

Example 3.2.4 Let � D .dev; �/ be defined by a spherical metric on †, with cone singularities at the
punctures. In this case M� .z†/D z†# is homeomorphic to the end-extension, and @�1.z†/D E.z†/. Indeed,
the action of �1.†/ on z† preserves a spherical metric and admits a fundamental domain D given by a
geodesic spherical polygon having finite area A and all the vertices in the set of ends. Notice that each
pair of nonintersecting edges of this polygon has positive finite distance, and let L> 0 be the minimum of
such distances. Pick � 2 @�1.z†/, and a rectifiable curve of finite length  W Œ0; 1/!M� .z†/ tending to � .
If  intersects finitely many fundamental domains, then it is eventually contained in a single one, hence �
must be an end. If  intersects infinitely many domains Dn, then the length of the arcs  \Dn converges
to zero, so is eventually less than L. In particular, eventually all the domains Dn share a common vertex.
By construction this vertex is an end and  converges to it, which forces � to be an end.

Lemma 3.2.5 For all x 2 z†, � 2 @�1.z†/ and c > 0 there is a continuous curve �c W Œ0; 1/! z† such that
�c.0/D x, limt!1 �c.t/D � and d.x; �/� `.�c/� d.x; �/C c.
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Proof By definition, d.x; �/D limn!1 d.x; yn/ for any Cauchy sequence fyng converging to �. Let
fyng be a Cauchy sequence in z† converging to � such that

d.x; yi /� d.x; �/C
1

i
and d.yi ; yiC1/�

1

i2
:

Such sequence can be easily constructed from any Cauchy sequence by taking an appropriate subsequence.
Since z† is a length space, for all k there is a continuous curve k W Œ0; 1�! z† such that k.0/ D yk ,
k.1/D ykC1 and

`.k/� d.yk; ykC1/C
1

k2
D

2

k2
:

By concatenating these curves, for every i , we obtain a continuous curve i W Œ0; 1/ ! z† such that
i .0/D yi , limt!1 i .t/D �, and

`.i /�

1X
kDi

2

k2
DW Ti :

In particular, limi!1 `.i / D limi!1 Ti D 0. Finally, let �i W Œ0; 1/! z† be a continuous curve such
that �i .0/D x, �i .1/D yi , and

`.�i /� d.x; yi /C
1

i2
:

Let fi W Œ0; 1/! z† be the continuous curve obtained by concatenating �i with i . Then fi is a continuous
curve such that fi .0/D x, limt!1 fi .t/D � and

d.x; �/� `.fi /D `.�i /C `.i /� d.x; yi /C
1

i2
CTi � d.x; �/C

1

i
C
1

i2
CTi :

Now let i such that 1=i C 1=i2CTi < c and take fc WD fi .

Lemma 3.2.6 Let � 2 @�1.z†/ and " > 0. Then B� .�; "/\ z† is path-connected.

Proof First of all let us show that each path-component N of B� .�; "/\ z† contains points arbitrarily
close to � . Pick a base point x 2N , and let RD d.x; �/; notice R < ". By Lemma 3.2.5 for all c > 0 we
can pick a continuous curve �c W Œ0; 1/! z† such that �c.0/D x, limt!1 �c.t/D � and R� `.�c/�RCc.
For each t 2 Œ0; 1/ we have

d.�c.t/; �/� `.�c.Œt; 1///� `.�c.Œ0; 1///�RC c:

In particular, for c < 1
2
."�R/ we get that d.�c.t/; �/ < ", ie �c is entirely contained in B� .�; "/\ z†.

Since it is a curve starting at x, it is then entirely contained in N ; since it converges to � we get
limt!1 d.�c.t/; �/D 0.

Suppose by contradiction that B� .�; "/\ z† admits at least two different path-components N1 and N2. Let
xk 2Nk be two points such that d.xk; �/ < 1

4
". In particular, d.x1; x2/ < 1

2
". Since .z†; d/ is a length

space, for every ı > 0 we can find a continuous curve ı W Œ0; 1�! z† joining x1 to x2 of length at most
1
2
"C ı. Let now z 2 ı . Without loss of generality let us assume that d.z; x1/� d.z; x2/, so that by the

triangle inequality we get

d.z; �/� d.z; x1/C d.x1; �/�
1
2

�
1
2
"C ı

�
C
1
4
"D 1

2
"C 1

4
ı:
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In particular, for each ı < " we get that the curve �ı is at distance at most " from �. In particular,
it is entirely contained in B� .�; "/\ z†, which contradicts the fact that x1 and x2 are in distinct path-
components.

Our next goal is to define a cyclic order on @�1.z†/, which will induce a total order on @�1.z†/ n f�g, for
any � 2 E.z†/.

Lemma 3.2.7 For any pair of distinct points .�0; �1/ 2 @�1.z†/ there exists a simple continuous curve
 W .0; 1/! z† such that limt!0 .t/D �0 and limt!1 .t/D �1.

Moreover , for any such curve  , the space M� .z†/ nCl./ has exactly two path-components , which we
call the left and right components , CL./ and CR./, with respect to the orientation of  . The induced
partition of @�1.z†/ as

f�0; �1g[ .@
�
1.
z†/\CL.//[ .@

�
1.
z†/\CR.//

only depends on the ordered pair .�0; �1/ and not on  .

Proof Existence of  is clear, for instance by Lemma 3.2.5. Let us show that its complement consists of
exactly two path-components. z† n  clearly has exactly two path components, so M� .z†/ nCl./ has at
most two components (again by Lemma 3.2.5). We need to show that no ideal point can be joined by an
arc to both components. This follows from Lemma 3.2.6.

To show that the induced decomposition of @�1.z†/ does not depend on the choice of  , just notice that
any two such curves are isotopic relatively to their endpoints in z†.

Hence we denote by CL.�0; �1/ WD @�1.z†/\CL./ and CR.�0; �1/D @�1.z†/\CR./ for any curve 
as in Lemma 3.2.7. We define the following ternary relation on @�1.z†/. If �0; �1; � 2 @�1.z†/ then we say
they are in relation (denoted by Œ�0; �; �1�) if � 2 CR.�0; �1/, ie � is on the right of  .

Remark 3.2.8 This relation defines a �1.†/–invariant cyclic order on @�1.z†/.

The goal of the rest of this section is to explore the features of the Möbius completion and the ideal
boundary in the case of structures from Pˇ.†/.

Proposition 3.2.9 A structure � is tame if and only if the natural embedding j� W z† ,!M� .z†/ extends to
a �1.†/–equivariant continuous embedding j #

� W
z†# ,!M� .z†/. Moreover in this case dev# D dev� ıj #

� .

Proof First assume the existence of a �1.†/–equivariant continuous embedding j #
� W
z†# ,!M� .z†/. As

remarked above there exists a continuous extension dev� of dev to M� .z†/. Then dev� ıj � provides a
continuous extension of dev to z†#, ie � is tame.

Conversely let � be tame, let E 2 E.z†/ and pE D dev#.E/. Since dev extends continuously to E, for all
"> 0 the set N"D .dev#/

�1.B.pE ; "// is an open neighborhood of E in z†#, containing points at distance
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at most " from E. Therefore we can construct a Cauchy sequence xn in z† converging to E (in z†#). We
can associate to E the limit of xn in the completion M� .z†/. Suppose yn is another Cauchy sequence
in z† converging to E (in z†#). By definition of the topology on z†, continuity of dev# at E implies that
dev#.xn/ and dev#.yn/ both converge to pE . Hence yn eventually enters each neighborhood N". As a
result we get d.xn; yn/ � 2", which implies that the two sequences give rise to the same point in the
completion. This defines the desired extension, which is (sequentially) continuous. Injectivity follows
from the fact that any two ends are at a positive distance from each other. Moreover dev# D dev� ıj #

�

because they agree on the dense subset z† and CP1 is Hausdorff.

In particular, tame structures have infinitely many ideal points, hence they are of hyperbolic type with
respect to the classification in [Kulkarni and Pinkall 1994]. Moreover it should be noticed that ends do
not have compact neighborhoods, so the completion fails to be locally compact or proper.

Example 3.2.10 Gupta and Mj [2021] considered structures obtained by grafting crowned hyperbolic
surfaces, and showed that the local structure at the crown can be modeled by a meromorphic differential
with a pole of sufficiently high order. For such a structure, every sequence going off to a puncture gives
rise to an ideal point in the Möbius completion, but sequences converging in different Stokes sectors
develop to sequences converging to different limit points in CP1, hence give rise to different ideal
points in the Möbius completion. They are not tame structures (as observed in Example 3.1.4), and the
space of ends does not embed continuously in their ideal boundary. Notice that Lemma 3.2.6 applies to
each individual ideal point, while the intersection of z† with the neighborhood of an end can fail to be
connected.

Example 3.2.11 For a more extreme behavior, take a closed hyperbolic surface, and graft it along a
geodesic pants decomposition infinitely many times. The underlying complex structure is being pinched
along each pants curve, and in the limit the structure decomposes into a collection of thrice-punctured
spheres (see [Hensel 2011, Section 6]). There, punctures do not give rise to well-defined ideal points;
indeed, the structure has hyperbolic peripheral holonomy, hence it is not tame (by Lemma 3.1.3).

Remark 3.2.12 In general the embedding j #
� in Proposition 3.2.9 is not open. For instance consider

the tame relatively parabolic structure induced by a complete finite area hyperbolic metric. In this case
the completion is the closed disk, and we have already observed in Remark 3.1.2 that inclusion of the
space of ends in it is not open. We will show below in Proposition 3.2.15 that having relatively parabolic
holonomy is actually the only obstruction to the openness of j #

� .

For a point p 2M� .z†/ we define the balls

B.p; r/ WD fz 2 z† j d.p; z/ < rg;

B#.p; r/ WD fz 2 z†
#
j d.p; z/ < rg;

B� .p; r/ WD fz 2M� .z†/ j d.p; z/ < rg:
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By Proposition 3.2.9, B.p; r/� B#.p; r/� B� .p; r/ for any p and r , and these balls are open. For small
values of r they also enjoy extra properties.

By Proposition 3.2.9 we know we can embed the space of ends in the ideal boundary @�1.z†/ of the
Möbius completion M� .z†/. So it makes sense for a given subset Z of z† to consider its closure Cl#.Z/
in z†# or Cl� .Z/ in M� .z†/; by completeness of M� .z†/, the latter is the same as the metric completion
of Z with respect to some choice of metric as in the previous sections. In either case, the (topological)
boundary of a subset Z is the difference between its closure and its interior @Z WD Cl.Z/ n Int.Z/.

Lemma 3.2.13 For each p 2 z† let RD d.p; @�1.z†//. Then for all r < R,

(1) B.p; r/D B#.p; r/D B� .p; r/,

(2) Cl.B.p; r//D Cl#.B#.p; r//D Cl� .B� .p; r// is complete.

Proof Since the metric structure on z† is induced by the Riemannian metric gE , for sufficiently small
radius, the metric balls are just balls for the Riemannian metric gE . In particular, they are all disjoint
from the ideal boundary, hence they coincide and their closure is complete and contained in z†.

Lemma 3.2.14 For each p 2 z† let RD d.p; @�1.z†//; then for all r �R the developing map induces an
isometry between Cl� .B� .p; r// and Cl.B.dev.p/; r//.

Proof Let I be the set of r 2 Œ0; R� such that the developing map induces an isometry between
Cl� .B� .p; r// and Cl.B.dev.p/; r//. We are going to show that I is not empty, open on the right and
closed on the right to conclude that I D Œ0; R�.

� Œ0; �/� I for � > 0 small enough. This is because dev is a local isometry at p.

� If Œ0; r/ � I then Œ0; r� � I . Notice that the developing map induces an isometry between
Cl�

�
B�
�
p; r � 1

n

��
and Cl

�
B
�
dev.p/; r � 1

n

��
for all n > 0. This is enough to deduce that the

developing map induces an isometry between B� .p; r/ and B.dev.p/; r/. Since Cl� .B� .p; r// is
complete, and the metric completion is unique, the developing map induces an isometry between
Cl� .B� .p; r// and Cl.B.dev.p/; r//.

� If Œ0; r�� I for r < R then Œ0; rC ��� I for � > 0 small enough. Given that r 2 I , the developing
map induces an isometry between Cl� .B� .p; r// and Cl.B.dev.p/; r//. In particular, @B� .p; r/
is compact. Since r < d.p; @�1.z†//, there is an �–neighborhood of @B� .p; r/ on which dev is an
isometry and r C � 2 I .

We call Cl� .B� .p;R// the maximal ball centered at p. It is a maximal round ball containing p, in
the sense of [Kulkarni and Pinkall 1994]. Our goal in Section 3.3 is to construct analogous “round
neighborhoods” of all the ends, in the case of elliptic holonomy. We will need the following preliminary
results.

Proposition 3.2.15 Let E 2 E.z†/, let � be tame at E, and let N be an open horocyclic neighborhood
of E. Then j #

� .N / is open if and only if E has nonparabolic holonomy.
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Proof Let ıE be the peripheral element fixing E, let RE WD �.ıE /, and let pE D dev#.E/. By
Lemma 3.2.13, every point in j #

� .N /\
z† is in the interior of j #

� .N /, so we only need to check whether
E is in the interior of j #

� .N /.

First, consider the case RE is parabolic. Pick a point x 2 @j #
� .N / that does not develop to pE , eg on the

image via j #
� .N / of a horocycle bounding N . Then d.E; ınE .x//! 0, ie ınE .x/!E in M� .z†/. So the

sequence ınE .x/ must eventually enter in every open neighborhood of E in M� .z†/. However it clearly
does not enter in j #

� .N / by construction, which shows j #
� .N / is not open.

So let us now assume RE is nonparabolic; by Lemma 3.1.3 we know that since � is tame at E, RE is
either the identity or elliptic. Since ıE acts cocompactly on the boundary @N of N and dev# is a local
diffeomorphism along @N , we have that dev�1# .pE /\ @N is finite in any ıE–fundamental domain. In
particular, we can equivariantly modify N to a ıE–invariant neighborhood W �N of E, such that @W
stays at finite distance from @N . By construction E is the only end in the closure of W .

When RE is trivial or elliptic, the set dev#.@W / has compact closure in CP1 n fpE g. In particular,
it sits in the annulus fz 2 CP1 j R1 � d0.pE ; z/ � R2g, for some suitable radii 0 < R1 � R2. For
r < R1 consider the open RE–invariant ball Dr � CP1 of radius r around pE , as well as the open
ball B� .E; r/. Observe that dev� .B� .E; r// is contained in Dr , and so is disjoint from dev#.@W /. We
claim B� .E; r/� j #

� .W /� j
#
� .N /. By contradiction let x 2 B� .E; r/ n j #

� .W /. Then connect x to E
by a continuous arc  contained in B� .E; r/ (which is possible since we are in a length space). Then
 has to cross @j #

� .W /, since @W separates E from the complement of W in z†#. Then dev� ./ meets
dev#.@W /D dev� .@j #

� .W //, which leads to the desired contradiction.

We summarize the results of this section in the following statement.

Theorem C Let � 2P.†/ be nondegenerate and without apparent singularities. Let j # W z†! z†# and
j� W z†!M� .z†/ be the natural embeddings. Then � 2 Pˇ.†/ if and only if there exists a continuous
open �1.†/–equivariant embedding j #

� W
z†#!M� .z†/ that makes the following diagram commute:

z†#

z† CP1

M� .z†/

dev#

j #
�

j #

j� dev�

Proof First assume � 2 Pˇ.†/. Since � is tame, by Proposition 3.2.9 we know that j� W z† ,!M� .z†/

extends to a �1.†/–equivariant continuous embedding j #
� W
z†# ,!M� .z†/, and that dev# D dev� ıj #

� .
To check that j #

� is open we argue as follows. Observe that the restriction of j #
� to z† is just the natural

embedding of z† in its completion, which is open. So we only need to check the ends. Let E be an end;
without loss of generality we can assume that an open neighborhood of E in z†# is an open horocycle N .
Since � is relatively elliptic, Proposition 3.2.15 implies that j #

� .N / is an open neighborhood of j #
� .E/

in M� .z†/.
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E

ıE

B� .E; r/

N z†

dev

pE
RE

B.pE ; r/

CP1

Figure 13: A horocycle containing a ball, in the elliptic case.

Conversely, assume the existence of the extension j #
� as in the statement. Its continuity implies tameness

of � by Proposition 3.2.9. Let E be an end. By Lemma 3.1.3 we know that the holonomy of � at E is
either trivial, parabolic or elliptic. The first case is excluded by the hypothesis that � has no apparent
singularities, and the second case by the hypothesis that j #

� is open, together with Proposition 3.2.15.
Therefore � is relatively elliptic. It is also assumed to be nondegenerate, hence we can conclude that
� 2 Pˇ.†/.

Corollary 3.2.16 If � 2 P.†/, then E.z†/ is a discrete subspace of @�1.z†/.

Proof Let E be an end. By Theorem C any horocyclic neighborhood N of E is open for the topology
of M� .z†/, under the natural embedding j #

� . By definition, N does not contain any other point of @�1.z†/,
hence E is an open point.

Corollary 3.2.17 Let � be tame and relatively elliptic. For every end E 2 E.z†/, the action of the
peripheral subgroup hıE i on M� .z†/ n fEg is proper and free.

Proof The action on the Möbius completion extends the action by deck transformations, so the statement
is trivial for points in z†. By Proposition 3.2.15, both metric balls and horocyclic neighborhoods provide
fundamental systems of neighborhoods of the ends in the completion. So one can see that the action of
ıE on the subspace E.z†/ nE is proper and free. The case of a general ideal point follows from this fact
together with the existence of a ıE–invariant cyclic order on the ideal boundary (see Remark 3.2.8).

3.3 Local properties of the developing map at an end

The main goal of this section is to prove Theorem D, about the behavior of developing maps around E for
a structure � 2Pˇ.†/. If � has developing pair .dev; �/, and ifE 2E.z†/, then let pE WD dev#.E/2CP1

and let ıE 2 �1.†/ be a peripheral element fixing E. Then RE WD �.ıE / is an elliptic Möbius transfor-
mation fixing pE (Lemma 3.1.3); let qE denote the other fixed point of RE . We will construct a family
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of ıE–invariant neighborhoods of E which develop to RE–invariant round disks in CP1, and on which
dev# restricts to a branched covering (branching only at E).

While the results of the previous sections relied (but did not depend), on the choice of the background
metric g0 on CP1, we now want to exploit the fact that the peripheral holonomy is elliptic to pick a
convenient metric. The topological structure of the Möbius completion is not affected by this (eg ideal
points, etc), but finer metric statements (eg the shape and properties of individual metric balls) are. Let
g0 be the unique RE–invariant spherical round metric on CP1 for which the fixed points pE and qE of
RE are antipodal points at distance 1. Let us denote by gE D dev�.g0/ the Riemannian metric and by
dE the distance function induced on z†. By construction, the Möbius completion is the metric completion
of .z†; dE /.

Lemma 3.3.1 Let U � M� .z†/ be a ıE–invariant neighborhood of E. Then the distance between
ıE–orbits defines a metric on U=hıE i with respect to which the quotient map

�E W U n fEg ! .U n fEg/=hıE i

is a locally isometric covering map.

Proof Let �E .u/; �E .v/ 2 U=hıE i. Then their distance is defined to be

d.�E .u/; �E .v// WD inffd.ınE .u/; ı
m
E .v// jm; n 2 Zg:

Since the action on U n fEg is isometric, free and proper (Corollary 3.2.17), by [Bridson and Haefliger
1999, Proposition I.8.5] we get our statement in the complement of the end. To include the end it is
enough to notice that it is an isolated fix point and that no orbit accumulates to it, since the holonomy is
elliptic.

Lemma 3.3.2 Let U �M� .z†/ be a ıE–invariant neighborhood of E on which ıE acts cocompactly.
Then the following hold.

(1) U is complete.

(2) If V � U is closed and ıE–invariant , then V is complete and ıE acts on V cocompactly.

Proof (1) Let xn 2 U be a Cauchy sequence. Let us denote by Fn a (coarse) compact fundamental
domain for the action hıE iÕ U containing xn. If the sequence of Fn eventually stabilizes to
some F , then eventually the sequence xn lies entirely in F , hence converges in it by compactness.
So let us assume that the sequence Fn does not stabilize. We claim that since xn is a Cauchy
sequence this forces dE .xn; E/ to decrease to zero, ie xn converges to E. Indeed, since the
holonomy is elliptic and the metric invariant, if jn�mj is large enough then the shortest curve
between a point in Fn and a point in Fm goes through E.

(2) If V is closed then it is complete by completeness of U . Let F be a (coarse) compact fundamental
domain for the action hıE iÕ U . Since V is invariant we get V=hıE i D .V \F /=hıE i, and this
is compact because V \F is.
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We have seen in Proposition 3.2.15 that, when the holonomy is elliptic, horocycles contain metric balls
(see Figure 13). We now describe a sufficient condition on a metric ball to be fully contained in a horocycle.
Notice that the following statement fails in the case of parabolic holonomy (see Remark 3.2.12).

Lemma 3.3.3 For each E 2 E.z†/ let �E WD dE .E; @�1.z†/n fEg/. Then �E > 0 and for all 0 < r < �E ,
there is a proper horocyclic neighborhood of E containing B� .E; r/.

Henceforth we call �E WD dE .E; @�1.z†/ n fEg/ the critical radius of E.

Proof For the first part of the lemma, let V be a proper (ie Cl#.V /¨†[fEg) horocycle based at E. By
Proposition 3.2.15 V is open, so there is r >0 such that B� .E; r/�V . We claim that B� .E; r/�†[fEg,
from which it follows that �E � r > 0. Recall that ıE acts cocompactly on Cl#.V /; therefore Cl#.V / is
complete by Lemma 3.3.2. It follows that

Cl� .B� .E; r//� Cl� .V /D Cl#.V /¨†[fEg:

Next, let r < �E . Suppose by contradiction that, for every proper horocyclic neighborhood N of E, there
was a point x 2 B� .E; r/ nN . Fix fNkg a sequence of proper horocyclic neighborhoods of E such that
Nk �NkC1 and

S
Nk D z†[fEg. Let xk 2 B� .E; r/ nNk . For every k, let rk WD dE .E; @Nk/. As ıE

acts cocompactly and by isometries on @Nk , there is some point on @Nk at distance rk from E. The fact
that E … @Nk and the sequence fNkg is nested further implies that

rk > 0; rk � rkC1; lim
k!1

rk D �E :

Notice that the second inequality is due to the fact that @Nk separates E from @NkC1. Similarly, @Nk
separates E from xk , therefore rk � dE .E; xk/ < r , hence in the limit we get �E D limk!1 rk � r , in
contradiction with the choice of r .

Corollary 3.3.4 For each E 2 E.z†/ and 0 < r < �E , B#.E; r/ D B� .E; r/ and Cl#.B#.E; r// is
complete. Moreover , Cl#.B#.E; r//D Cl� .B� .E; r//.

Proof By Lemma 3.3.3, the ball B#.E; r/ is contained in a proper horocyclic neighborhood V of E. It
follows that B� .E; r/� z†[fEg and so B#.E; r/D B� .E; r/.

By Lemma 3.3.2, the closed ball Cl#.B#.E; r// is complete.

Finally, since Cl#.B#.E; r// contains B#.E; r/ and is complete, it must contain the completion of B#.E; r/.
Since M� .z†/ is complete we have that Cl� .B� .E; r// coincides with the completion of B� .E; r/. But
we also know that B� .E; r/D B#.E; r/. So Cl� .B� .E; r// coincides with the completion of B#.E; r/,
and it is therefore contained in Cl#.B#.E; r//.

Recall that a metric space Z is star-shaped at a point x 2Z if for every y 2Z there is a geodesic in Z
connecting x to y.

Lemma 3.3.5 For each E 2 E.z†/ and 0 < r < �E , the open ball B� .E; r/ is star-shaped at E.
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Proof Let x 2 B� .E; r/ and let r 0 WD dE .x;E/ < r . By Lemma 3.2.5, for all c > 0 we can pick a
continuous curve �c W Œ0; 1/! z† such that �c.0/D x, limt!1 �c.t/D E and r 0 � `.�c/ � r 0C c. For
each t 2 Œ0; 1/ we have

d.�c.t/; E/� `.�c.Œt; 1///� `.�c.Œ0; 1///� r
0
C c:

In particular, for c < r � r 0 we get that dE .�c.t/; E/ < r , ie �c is entirely contained in B� .E; r/\ z†.
Let n W Œ0; 1/! B� .E; r/ be the curve obtained for c D 1

n
.

Consider the quotient �E W Cl� .B� .E; r//! Cl� .B� .E; r//=hıE i DW Y . It follows from Lemma 3.3.1
that �E is a branched covering map onto a metric space, branching only at E; let us denote by dY the
distance in Y . Moreover by Lemma 3.3.3 the ball B� .E; r/ is properly contained in a horocycle. Since
ıE acts cocompactly on horocycles, it follows that Y is compact by Lemma 3.3.2. Notice that since ıE
acts by isometries and E is the only fixed point, we also have that r 0 D dE .x;E/D dY .�E .x/; �E .E//.

Projecting the curves n to the quotient we obtain curves �E ın W Œ0; 1/!Y such that �E ın.0/D�E .x/,
limt!1 �E ı n.t/D �E .E/ and

dY .�E .E/; �E .x//D r
0
� `.�E ı n/� r

0
C
1
n
:

In particular, by Arzelà–Ascoli we can extract a uniform limit N W Œ0; 1� ! Y . By the above length
inequality we obtain

dY .�E .E/; �E .x//D r
0
D `. N/D lim

n!1
`.�E ı n/;

ie N is a geodesic from �E .x/ to �E .E/. Notice that it goes through �E .E/ only at one endpoint; so we
can lift it to a curve  W Œ0; 1/! Cl� .B� .E; r// starting at x and limiting to E, of the same length r 0. By
the same argument as the beginning,  is completely contained in the open ball B� .E; r/, so this is the
desired geodesic.

We now consider the restriction of dev� to a ball around an end E 2 E.z†/, ie

dev� W B� .E; r/! B.pE ; r/;

and we find the values of r for which it is a covering map, branching only at E. The proof is reminiscent
of (and based on) the classical fact that a local isometry from a complete Riemannian manifold to a
connected one is a covering map. Notice that in our setting dev� is not locally isometric at E (not even
locally injective), and on the other hand Cl� .B� .E; r// n fEg is not complete. The proof shows how to
deal with this, and also provides quantitative control on the critical radius.

Proposition 3.3.6 For each E 2 E.z†/ we have that �E � 1. Moreover ,

(1) for each 0 < r � �E , dev� maps @B� .E; r/ to @B.pE ; r/;

(2) for each 0 < r � �E , dev� W B� .E; r/! B.pE ; r/ is a branched covering map , branching only
at E.
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Proof We are first going to prove statements (1) and (2) for r �minf�E ; 1g, and then we will show that
�E � 1.

We begin with the following observation. Suppose r < �E and let x 2 @B� .E; r/. Then dE .E; x/D r
and d0.pE ; dev� .x//� r . Let r 0 > 0 be such that r < r 0 < �E . Then x 2 B� .E; r 0/ and by Lemma 3.3.5
there exists a geodesic r from x to E contained in B� .E; r 0/. Observe that r D `.r/D `.dev� .r//.
Notice that dev is a local isometry on z†, so r maps to a geodesic in CP1.

Next, additionally assume that r < 1, the diameter of CP1. Then the curve r maps to a simple geodesic
arc, starting from pE and avoiding qE , of length r < 1. Since the choice of x above was arbitrary, it
follows that dev� .@B� .E; r//� @B.pE ; r/. In particular, it avoids qE . This concludes the proof of (1) in
the case where r <minf�E ; 1g. The limiting case r Dminf�E ; 1g follows by continuity of the developing
map.

We now start the proof of (2). To begin with, we claim that when r <minf�E ; 1g, each component of
@B� .E; r/ is isometric to a complete line. Since r < 1, @B.pE ; r/ is a circle in CP1. Since r < �E ,
we have that @B� .E; r/� z† and dev� is a local homeomorphism on it. In particular, @B� .E; r/ is a 1–
dimensional submanifold of z†; moreover it is closed in Cl� .B� .E; r//, hence complete by Corollary 3.3.4.
Then dev� induces a local isometry from the complete manifold @B� .E; r/ to the connected manifold
@B.pE ; r/; it follows that it is a Riemannian covering map. Notice that hıE i is an infinite cyclic group
acting on @B� .E; r/ properly and freely by Corollary 3.2.17, hence each component of @B� .E; r/ must
be isometric to a complete line.

Now we claim that, for all 0 < r �minf�E ; 1g, dev� W B� .E; r/! B.pE ; r/ is a branched covering map,
branching only at E. First notice that

(3.3.1) B� .E; r/ n fEg D B� .E; r/ n fdev�1� .pE /g:

Indeed suppose z 2 B� .E; r/ is another point developing to pE ; then there is r 0 < r � �E such that
z 2 B� .E; r 0/, and a geodesic  from z to E contained in B� .E; r 0/. Since dev� .E/D dev� .z/D pE ,
this geodesic  has to cover at least a great circle through pE in CP1, hence dE .E; z/� 2. But r 0<r � 1
forbids this. In particular, we get a well-defined local homeomorphism

' WD dev� jB� .E;r/nfEg W B� .E; r/ n fEg ! B.pE ; r/ n fpE g:

It is enough to show that this is a covering map. We are going to show that every point in B.pE ; r/nfpE g
is evenly covered. Let y 2 B.pE ; r/n fpE g and let ry WD d0.pE ; y/. Notice that 0 < ry < r . Since dev�
is a covering map between @B� .E; ry/ and @B.pE ; ry/, there is �y > 0 such that B.y; �y/\@B.pE ; ry/
is evenly covered. Let

ıy WDminf�y ; r � ry ; ryg:

Notice that the ball B.y; ıy/ is entirely contained in B.pE ; r/ n fpE g. Then we claim that B.y; ıy/ is
evenly covered. Let z 2 dev�1� .y/\B� .E; r/. By definition of ıy , B� .z; ıy/ is entirely contained in
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B� .E; r/ n fEg. In particular, it is smaller than the maximal ball centered at z, so it is isometrically
mapped to B.y; ıy/ by dev� (Lemma 3.2.14). This implies that if z0 2 dev�1� .y/\B� .E; r/ is different
from z, then B� .z; ıy/\B� .z0; ıy/D¿. This concludes the proof of (2) in the case r �minf�E ; 1g.

Now suppose by contradiction that �E > 1. Then there is r such that 1 < r < �E , and the open ball
B� .E; r/ is star-shaped at E (Lemma 3.3.5). Moreover, the developing map maps @B� .E; 1/ to qE ,
the only point at distance 1 from pE in CP1. Since the open ball B� .E; r/ is entirely contained in z†,
and contains @B� .E; 1/, the developing map is a local homeomorphism on @B� .E; 1/. In particular
@B� .E; 1/ is discrete. On the other hand, for every r 0 < 1Dminf�E ; 1g we can apply the first part of
the proof where we proved that dev� maps @B� .E; r 0/ to @B.pE ; r 0/, and

lim
r 0!1�

@B.pE ; r 0/D fqE g:

This implies that, for radii r 0 < 1Dminf�E ; 1g sufficiently close to 1, @B� .E; r 0/ is a disjoint union of
circles, contradicting that each connected component is isometric to a complete line.

Theorem D Let � 2 Pˇ.†/, and let E be an end. Then there is a neighborhood yNE of E in M� .z†/

onto which the developing map for � restricts to a branched covering map , branching only at E, and with
image a round disk in CP1.

Proof We can just take yNE to be any ball B� .E; r/ satisfying the conditions of Proposition 3.3.6.

Let E 2 E.z†/, and let �E be its critical radius. The open metric ball yNE D B� .E; �E / plays the role of
a canonical maximal neighborhood of E, similar to the maximal round balls in [Kulkarni and Pinkall
1994]. Indeed, it develops to a round ball in CP1, and by definition of �E , the boundary of yNE contains
an ideal point. However, note that we have normalized things “locally” at E, by fixing the RE–invariant
round metric on CP1 for which the fixed points pE and qE of the holonomy at E are antipodal points of
distance 1 (here RE D �.ıE / denotes the peripheral holonomy at E). Then yNE is defined as a metric
ball for the induced metric gE on M� .z†/. If E 0 is a different end, then the metric ball around E 0 (with
respect to gE ) does not necessarily agree with yNE 0 , which would be defined as a metric ball for the
metric gE 0 .

Moreover one can observe that when r < �E the ball @B� .E; r/ contains a horocycle and is contained in
a horocycle. Therefore each component of its boundary is contained in the lune between two horocycles.
Since B� .E; r/ is star-shaped at the end, and @B� .E; r/ is invariant under the action of the periph-
eral ıE , we can see that @B� .E; r/ is actually connected and isometric to a complete line. In particular,
@B� .E; r/ is the universal cover of @B.pE ; r/, and B� .E; r/n fEg is isometric to the universal cover of
B.pE ; r/ n fpE g.

Remark 3.3.7 If � is the tame and relatively parabolic structure induced by complete hyperbolic metric
of finite area, then dev is a global diffeomorphism, and horocycles develop to round disks. In particular,
Theorem D holds for such a structure. However, there is no analogue of Theorem D in the general
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parabolic case. For example, consider the structure obtained by grafting � along an ideal arc, and let E be
an end covering one of the endpoints of the grafting arc. If U is any ıE–invariant neighborhood of E, then
V D dev� .U / is invariant under a parabolic transformation and contains its fixed point pE D dev#.E/ in
its interior. This forces V DCP1. In particular, we see that the local homeomorphism (analogous to the
one considered in the proof of Proposition 3.3.6)

' WD dev� jUndev�1� .pE/
W U n dev�1� .pE /! V n fpE g DC

cannot be a covering map, because it is not injective and the image is simply connected.

Throughout this section we have worked under the normalization in which the fixed points pE ; qE 2CP1

of the rotation RE are antipodal points at distance 1. As established in Proposition 3.3.6, it follows that
the critical radius of an end E satisfies �E � 1. We conclude this chapter by discussing what happens
when a tame structure � has an end E with elliptic holonomy and �E D 1.

Remark 3.3.8 (structures on a twice-punctured sphere) Suppose � is tame and has an end E with
elliptic holonomy and �E D 1. By (1) in Proposition 3.3.6 all the points on the boundary of yNE must
develop to qE . It follows from the proof of Proposition 3.3.6 that in this case the boundary of yNE cannot
contain any isolated points in z†. As a result, yNE D z†. By tameness, this forces all the ends different
from E to develop to qE . We claim that in this case † must be a twice-punctured sphere, and � is the
structure associated to a power map z 7! z˛ for some ˛ 2R nZ. To see this, assume by contradiction
that there is a peripheral element  2 �1.†/ distinct from any power of the peripheral element ıE which
fixes E. Then  moves E to another end E ¤E. By equivariance and tameness of the developing map
(see Lemma 3.1.3) we see that

qE D dev#.E/D �./ dev#.E/D �./pE :

On the other hand,  fixes an end E 0 ¤ E. It follows that dev#.E
0/ D qE D �./qE . We get

�./pE D �./qE , which is absurd. Therefore all peripheral elements are powers of a fixed one. But the
only orientable surface in which this happens is a sphere with two punctures. Notice that this surface has
zero Euler characteristic, z† identifies with C, and we can normalize things so that dev.z/D eaz , pE D 0
and qE D1, for some a 2C�. Deck transformations are generated by z 7! zC 2�i , and the holonomy
by w 7! e2�iaw; ellipticity of the holonomy means a 2R nZ. The Möbius completion is obtained by
adding just two ideal points, for Re.z/!˙1, mapping to qE D1 and pE D 0 respectively. Structures
of this type can be defined by a spherical metric with two cone points and coaxial holonomy.

Remark 3.3.9 Spherical metrics with cone points and coaxial holonomy exist also on a surface of
negative Euler characteristic (see [Eremenko 2004; Mondello and Panov 2016]), and provide examples of
structures with degenerate holonomy. However such a structure must have some apparent singularities (ie
punctures with trivial holonomy, see [Gupta 2021]), whose presence forces the critical radius to be strictly
less than 1 at every end with elliptic holonomy. Indeed, if E is an end with elliptic holonomy, then the
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family of neighborhoods B� .E; r/ must hit another end (possibly one covering an apparent singularity)
before r D 1. As an illustrative example, consider the structure obtained by puncturing an additional
point on a sphere endowed with a spherical metric with two cone points.

3.4 The index of a puncture

Using the neighborhoods constructed in the previous section (namely Theorem D), we can define a
numerical invariant of the complex projective structure for each puncture, which we call the index. This
is essentially the angle that the developed image of a peripheral curve makes around the image of a
corresponding end.

Let � 2 Pˇ.†/ be a structure represented by a pair .dev; �/. Let x be a puncture of †, and let � be a
positive peripheral curve in † around x. This can be chosen so that for any end E covering x (in the
sense of Remark 3.1.1), the lift of � which is asymptotic to E is entirely contained in a neighborhood VE
of E on which dev is a branched covering map, branching only at E (see Theorem D).

Let us fix an end E, and let ıE 2�1.†/ be the positive peripheral deck transformation fixing E. We recall
that pE WD dev#.E/ is one of the two fixed points for the elliptic transformation �.ıE / (see Lemma 3.1.3).
Let us normalize so that �.ıE / fixes 0 and1. Let Q�� VE be the lift of � in VE , and choose Q�0 � Q� to
be a fundamental domain for the action hıE iÕ Q�. Let � WD dev. Q�0/� dev.VE / n f0g. Notice that freely
homotoping � deeper into the puncture results in a homotopy of � in the complement of pE D 0, because
there are no other preimages of pE in VE (see (3.3.1) in Proposition 3.3.6).

The index of the structure � at the puncture x is defined to be the number

I� .x/ WD Im
�Z

�

dz

z

�
:

When clear from the context, we will usually drop the � and write I.x/D I� .x/.

We remark explicitly that this definition does not depend on any of the choices involved. Indeed, let us
choose a parametrization � W Œ0; 1�!C n f0g; �.s/D r.s/ei�.s/, where � W Œ0; 1�!R is a determination
of the argument function on C n f0g, and r W Œ0; 1�!R. A direct computation in local coordinates shows
that Z

�

dz

z
D log

�
r.1/

r.0/

�
C i.�.1/� �.0//:

Notice that since � is chosen to be a peripheral curve, its holonomy is elliptic. Therefore we get
r.1/ei�.1/ D ei'r.0/ei�.0/, where ' is such that �.ıE /z D ei'z. It follows that

I� .x/D 2�kC';

where k 2 Z counts the number of times � turns around 0 anticlockwise. Notice that the index is always
positive, since ıE was chosen to be a positive peripheral.
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Remark 3.4.1 Let � 2 Pˇ.†/, and let x and y be punctures. If � is a graftable arc joining x to y, then

� if x ¤ y then IGr.�;�/.x/D I� .x/C 2� and IGr.�;�/.y/D I� .y/C 2� ;

� if x D y then IGr.�;�/.x/D I� .x/C 4� .

4 The complex analytic point of view

The theory of CP1–structures enjoys fundamental interactions with the study of second-order linear
ODEs on complex domains, namely through the use of the Schwarzian derivative. The purpose of this
chapter is to describe the complex analytic counterpart to the structures in Pˇ.†/ (see Theorem E).
These are described by meromorphic quadratic differentials satisfying certain conditions on their Laurent
expansion around poles.

4.1 Local theory at regular singularities

We start by reviewing the classical theory for the convenience of the reader, with a particular focus to the
behavior around singularities of the coefficients (see [Hille 1969; Ince 1944]). This will provide the local
model for our structures around the punctures.

Let us consider a holomorphic function q WD�!C on the punctured unit disk D�Dfz 2C j 0< jzj<1g

with a double pole at the origin with leading coefficient a, ie a function of the form q.z/D a=z2CO.1=z/.
We will consider the second-order linear ODE

(4.1.1) u00C 1
2
quD 0 for u WD�!C;

as well as the Schwarz equation

(4.1.2) Sf D q for f WD�!CP1;

where the operator

Sf D

�
f 00

f 0

�0
�
1

2

�
f 00

f 0

�2
is the Schwarzian derivative. The main properties of S are the following:

(1) Invariance Sf D 0 if and only if f is the restriction of some Möbius transformation.

(2) Cocycle If f and g are locally injective holomorphic functions for which the composition is
defined, then S.f ıg/D g�.Sf /CSg.

The relationship between the two equations above is well known (see [Hille 1969, Appendix D]), and can
be summarized as follows: if u1 and u2 are linearly independent solutions for (4.1.1), then f D u1=u2 is
a solution for (4.1.2); conversely, any solution for (4.1.2) is obtained in this way. In both cases, since
the domain of the equation is not simply connected, these equations can have nontrivial monodromy,
ie solutions are to be considered as multivalued functions, or as single-valued functions on a suitable
covering domain.

Algebraic & Geometric Topology, Volume 24 (2024)



Tame and relatively elliptic CP1–structures on the thrice-punctured sphere 4633

The classical theory of linear ODEs (see [Ince 1944, Section 15.3], or [Allegretti and Bridgeland 2020,
Section 5] for a more recent treatment) provides an explicit description of the local solutions of (4.1.1).
First, the indicial equation of (4.1.1) is given by

r.r � 1/C 1
2
aD 0:

Let r1; r2 2C be its solutions; then one has two cases:

(1) if r1� r2 … Z then (4.1.1) has two linearly independent solutions of the form uk.z/D z
rkhk.z/

for k D 1; 2, where hk is holomorphic on D and hk.0/¤ 0;

(2) if r1�r2 2Z then (4.1.1) has two linearly independent solutions of the form u1.z/D z
r1h1.z/ and

u2.z/D z
r2h2.z/CCu1.z/ log.z/ where C 2C, and hk is holomorphic on D with hk.0/¤ 0 for

k D 1; 2.

An analogous dichotomy for solutions of (4.1.2) is easier to state if we write the leading coefficient
in the form a D 1

2
.1� �2/, where � D ˙

p
1� 2a will be called the reduced exponent of q at z D 0.

With respect to the terminology used in [Allegretti and Bridgeland 2020], the exponent of q at z D 0 is
r D˙2�i

p
1� 2aD 2�i� . For the reader’s convenience, we remark that in [Allegretti and Bridgeland

2020] a slightly different form of the Schwarzian derivative is used, leading to a different normalization
for constants in the correspondence between differentials and monodromy of solutions. Observing that
˙� D r1� r2, and recalling the relation f D u1=u2, one has the following:

(1) if � …Z then (4.1.2) has a solution of the form f .z/D z�M.z/, where M is holomorphic at zD 0,
M.0/¤ 0;

(2) if � 2Z then (4.1.2) has a solution of the form f .z/D z�M.z/CC log.z/, where C 2C, and M
is holomorphic at z D 0, M.0/¤ 0.

For each q one can regard a solution to (4.1.2) as a developing map for a projective structure on D�,
equivariant with respect to the monodromy group of the equation. Notice that the holonomy of this structure
(ie the monodromy of (4.1.2)) is a representation � W �1.D�/! PSL2C which is just the projectivization
of the monodromy Q� W �1.D�/! SL2C of (4.1.1). If  denotes a simple loop in D� around z D 0, then
the action of the monodromy is given by the linear fractional transformation �./ � z D e2�i�zC 2�iC .

A direct computation using the above description of solutions to (4.1.2) leads to the following statement.
Here continuous extensions to the origin should be thought in the sense of the end-extension topology
introduced in Section 3.1.

Lemma 4.1.1 In the above notation , the following hold :

(1) if � D 0 then �./ is parabolic (necessarily C ¤ 0);

(2) if � 2 Z n f0g, then �./ is trivial (if C D 0) or parabolic (if C ¤ 0);

(3) if � 2R nZ, then �./ is elliptic;
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(4) if � 2 Z˚ iR, then �./ is hyperbolic;

(5) if � 2C n .Z˚ iR/, then �./ is purely loxodromic.

Moreover , if � 2R nZ, then a solution f of (4.1.2) extends continuously to z D 0.

As the reader might expect, projective structures in Pˇ.†/ relate to the elliptic case in the above statement.
On the other hand, a solution f of (4.1.2) does not extend continuously to z D 0 when � D n 2 Z and
C ¤ 0 (ie when f is of the form f .z/ D znM.z/C C log.z/), which can be seen by inspecting the
behavior of f along appropriately chosen sequences that spiral into the singularity. A similar phenomenon
occurs when � …R.

4.2 Meromorphic projective structures

We now recall how to construct projective structures in terms of meromorphic quadratic differentials, and
discuss its relationship with our space Pˇ.†/ of tame, relatively elliptic, and nondegenerate structures,
introduced in Section 3.1. This is analogous to the classical parametrization of complex projective
structures on closed surfaces by holomorphic quadratic differentials (see [Dumas 2009, Section 3] for an
expository account). This section includes the proof of Theorem E.

Let us fix a complex structure X on the closed surface †, and let N�0 be the CP1–structure on X defined
by the Poincaré uniformization, ie the unique conformal metric of constant curvature �1, 0 or 1, the exact
value depending on the genus g of X . Let X be the induced complex structure on †D† n fx1; : : : ; xng;
notice X is a punctured Riemann surface, ie each xj has a neighborhood biholomorphic to D�. We
consider the space Q2.X/ of meromorphic quadratic differentials with at worst double poles at the
punctures of X ; these are meromorphic sections of the line bundle K2X , where KX denotes the canonical
bundle of X . More concretely, by slight abuse of notation, in suitable local complex coordinates around
the puncture these differentials can be written as

q.z/D
�
a

z2
CO

�
1

z

��
dz2:

The leading coefficient at a double pole is a well-defined invariant of a quadratic differential, ie does
not depend on the chosen coordinates (see [Strebel 1984, Section 4.2]). In particular, the local analysis
developed in Section 4.1 applies, and provides a definition of exponents and reduced exponents of q at a
puncture.

Moreover the properties of the Schwarzian derivative ensure that the Schwarz equation Sf D q is
well-defined on X , as soon as a background projective structure has been fixed, and we choose the
Poincaré uniformization N�0. Local solutions are in general multivalued, ie they should be considered as
functions on the universal cover, equivariant with respect to some representation �q W �.X/! PSL2C,
which is called the monodromy of q. We say a puncture is an apparent singularity if �q./ is trivial for a
peripheral loop  around the puncture. It is a theorem of Luo [1993] that differentials without apparent
singularities are locally determined by their monodromy. The analogous results for holomorphic quadratic
differentials is due to Hejhal [1975].
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Following [Allegretti and Bridgeland 2020, Section 3; Gupta and Mj 2021, Section 3.1], we define a
meromorphic projective structure to be the structure �q induced by a meromorphic quadratic differentials
q 2 Q2.X/ as follows: a developing map devq for �q is given by taking a local solution to Sf D q and
considering its analytic continuation as a function on the universal cover; the monodromy of the differential
provides the holonomy �q of the structure. The differential q is recovered from �q by computing the
Schwarzian derivative of devq with respect to the background projective structure N�0.

For the sake of clarity, we emphasize that this correspondence between meromorphic quadratic differ-
entials and meromorphic projective structures is not canonical, and does depend on the choice of a
background projective structure. Changing this choice only translates the differentials by the vector space
of holomorphic differentials; hence orders and leading coefficients of poles are well-defined invariant for
the projective structure.

We are now ready to provide a proof of the following correspondence. Here Pˇ.†/ is the space of tame,
relatively elliptic and nondegenerate structures introduced in Section 3.1.

Theorem E Let � 2 P.†/ and let X 2 T.†/ be the underlying complex structure. Then � 2 Pˇ.†/

if and only if X is a punctured Riemann surface and � is represented by a meromorphic quadratic
differential on X with double poles and reduced exponents in R nZ.

Proof We prove the backward direction first. Let X be a punctured Riemann surface structure on †, and
let � D �q for some meromorphic quadratic differential q 2Q2.X/ with reduced exponents �i 2RnZ. By
Lemma 4.1.1, since the �i are real but not integers, the developing map for � extends continuously to the
punctures (ie � is tame), and the peripheral holonomy of � is elliptic at every puncture. In particular, the
holonomy representation is known to be nondegenerate by [Allegretti and Bridgeland 2020, Theorem 6.1],
as there are no apparent singularities. Therefore � 2 Pˇ.†/.

We now prove the forward direction. Let � 2Pˇ.†/, and let U be a neighborhood of a puncture x, which
is some conformal annulus. We claim that its modulus is infinite. Let E 2 E.z†/ be an end covering x,
and let zU be the lift of U around E. By Theorem D we can choose U so that dev W zU !D�D dev. zU/ is
a conformal covering map onto a punctured disk. The family of curves � in D� joining the boundary to
the puncture has infinite extremal length, lifts to a family of curves in zU joining @ zU to E, and projects to
a family of curves in U joining the boundary to the puncture x. Since extremal length is conformally
invariant, this family has infinite extremal length in U , hence the modulus of U is infinite. This shows
that the complex structure X underlying � is that of a punctured Riemann surface.

Finally let us check the conditions on the differential are satisfied. Let Qq D S.dev/; recall we have fixed
the Poincaré uniformization N�0 as a reference projective structure on †, and we are taking Schwarzian
derivatives with respect to the induced structure on †. Since dev is a conformal immersion, possibly
branching only at the ends, Qq is holomorphic on z†, possibly with double poles at the ends. By the classical
cocycle property of the Schwarzian, Qq descends to a meromorphic quadratic differential q with at worst
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double poles on †. By Lemma 4.1.1, since the peripheral holonomy is elliptic, the reduced exponents
must be in R nZ.

For completeness, with respect to the list of cases in Lemma 4.1.1, we observe the following. Differentials
with zero reduced exponents at all punctures correspond to parabolic projective structures (see [Deroin
and Dujardin 2017; Hussenot Desenonges 2019; Kra 1969; 1971a; 1971b]). Differentials with integer
nonzero reduced exponents and trivial holonomy at the punctures (apparent singularities) correspond
to branched projective structures (see [Calsamiglia et al. 2014a; 2019; Francaviglia and Ruffoni 2021;
Mandelbaum 1972]). The next lemma implies that for structures in Pˇ.†/ the absolute value of the
exponent at a puncture coincides with the value of the index, as defined in Section 3.4.

Lemma 4.2.1 If q 2 Q2.X/ has reduced exponent ˙� 2R nZ at a puncture x, then the index of �q at
that puncture is I� .x/D 2�j� j.

Proof Let z be a coordinate around the puncture, let � be a simple closed positively oriented peripheral
loop around the puncture. Up to normalizing by a Möbius transformation, we can assume that a local
determination of the developing map is given by w D f .z/ D devq� .z/ D z

�M.z/, for � > 0 and for
some M holomorphic and nonzero at z D 0 (see Section 4.1). Then the statement follows from the
following computation in local coordinates:Z

f .�/

dw

w
D

Z
�

�z��1M.z/C z�M 0.z/

z�M.z/
dz D �

Z
�

dz

z
C

Z
�

M 0.z/

M.z/
dz D 2�i�;

where the second integral vanishes, because M is holomorphic, and � can be chosen to be small enough
to enclose z D 0 but no zero of M .

Remark 4.2.2 When the exponent (equivalently the reduced exponent) is not zero, a choice of a sign is
called a signing of the projective structure at that puncture, and can be used to define a framing from
the holonomy representation (see [Allegretti and Bridgeland 2020; Gupta 2021]). This is in general an
arbitrary choice. However, as observed in Corollary 3.1.5, continuously extending the developing map to
the punctures always provides a canonical framing for structures in Pˇ.†/.

5 Structures on the thrice-punctured sphere

In this chapter we prove Theorems A and B about grafting structures on the thrice-punctured sphere
S WD S2 n fx˛; xˇ ; xg. This is the oriented topological space obtained from the 2–dimensional unit
sphere S2 by removing three distinct points fx˛; xˇ ; xg � S2. The points fx˛; xˇ ; xg are the punctures
of S . (For the easier case of the twice-punctured sphere we refer the reader back to Remark 3.3.8.) The
fundamental group �1.S/ of S is isomorphic to the free group on two generators F2. Once and for all we
fix the presentation

�1.S/D h˛; ˇ;  j ˛ˇ D 1i Š F2;
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where each generator ı 2 f˛; ˇ; g can be represented by a peripheral loop (also denoted by ı) around xı ,
oriented to travel around the puncture in the anticlockwise direction. Furthermore, we denote byEı 2E. zS/

the end in the end-extended universal cover zS# of S , that is fixed by ı.

In this setting, we observe that P�.S/ is the space of complex projective structures whose underlying
conformal structure is that of CP1 n f0; 1;1g. The PSL2C–character variety can be explicitly described
(see [Heusener and Porti 2004, Remark 4.4] for details). A conjugacy class of representations is said to
be nondegenerate relatively elliptic if it is the class of a nondegenerate relatively elliptic representation.
It follows from Theorem E and [Gupta 2021, Theorem 1.1] that any nondegenerate relatively elliptic
conjugacy class arises from the holonomy of a structure in Pˇ.S/. We will see that the structure can be
chosen to be of a special type (see Corollary 5.1.4).

Remark 5.0.1 A relatively elliptic representation of �1.S/ is degenerate if and only if its image is
a subgroup of rotations around two fixed points, ie a group of coaxial rotations (see [Gupta 2021,
Section 2.4]).

The main result of this chapter is a complete description of Pˇ.S/. We begin in Section 5.1 by constructing
some structures in Pˇ.S/, called triangular structures, which will be our key examples. Then in
Section 5.2 we show that Pˇ.S/ is precisely the space of complex projective structures obtained by
grafting triangular structures.

5.1 Triangular structures

In this section we construct a family of structures in Pˇ.S/ which will be the main reference example
for the rest of the paper.

First, we fix the following ideal triangulation T of S (see Figure 14). For every distinct pair ı; ı02f˛; ˇ; g,
let eıı 0 be a simple arc on S from xı to xı 0 . The collection of arcs fe˛ˇ ; eˇ ; e˛g are the ideal edges
of T, and subdivide S into two ideal triangles tS and NtS . The orientation of S induces an orientation
on tS (resp. NtS ) such that the punctures are ordered as .x˛; xˇ ; x / (resp. .x˛; x ; xˇ /) on its boundary.
The ideal triangulation T lifts to a triangulation zT of zS#. We notice that the restriction of zT to zS is an
ideal triangulation of zS . We denote by QtS the unique triangle in zT with vertices fE˛; Eˇ ; Eg, and by QtıS
the unique triangle adjacent to QtS that does not have Eı as its vertex. It is easy to check that QtS projects
onto tS , while fQt˛S ; Qt

ˇ
S ; Qt


S g all project onto NtS .

Recall that 4�R3 is the standard 2–simplex (see Section 2.3). Let � W 4!CP1 be a nondegenerate
triangular immersion, with vertices .Va; Vb; Vc/ and angles .a; b; c/. Let C� D .Cab;Cbc ;Cac/ be
the configuration of circles determined by � , defined such that Vx; Vy 2 Cxy , for all distinct pairs
x; y 2 fa; b; cg. From Corollary 2.2.7 we have a relatively elliptic representation associated to C� given
by

�� WD �C� W �1.S/! PSL2C;

�� .˛/ WD JacJab; �� .ˇ/ WD JabJbc ; �� ./ WD JbcJac ;
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e˛

e˛

eˇ

eˇ

Figure 14: The ideal triangulation T of the thrice-punctured sphere S , and its lift to the end-
extended universal cover zS#.

where Jxy denotes the reflection of CP1 in Cxy . Notice that, if � embeds onto a Euclidean, hyperbolic
or spherical triangle with angles rational multiples of � , then the image of this representation is a discrete
Euclidean, hyperbolic or spherical group; however a generic choice of � results in a nondiscrete subgroup
of PSL2C.

The triangular structure �� 2 P.S/ associated to the triangular immersion � W 4!CP1 is the structure
defined by the developing pair .dev� ; �� /, where the developing map is constructed as follows. Recall
that .V1; V2; V3/ are the vertices of 4. Consider the following maps:

(1) ' W QtS !4, the unique simplicial map mapping .E˛; Eˇ ; E / to .V1; V2; V3/;

(2) ' W Qt

S !4, the unique simplicial map mapping .Eˇ ; E˛; Eˇˇ�1/ to .V1; V2; V3/;

(3) � W 4!4, the unique (orientation reversing) simplicial map mapping .V1; V2; V3/ to .V2; V1; V3/;

(4) � WDJabı�ı�, the triangular immersion conjugate to � , mapping .V1; V2; V3/ to .Vb; Va; Jab.Vc//.

Then we define
.dev#/� jQtS WD � ı' and .dev#/� jQtS

WD � ı':

Since this defines .dev#/� on a fundamental domain for the action of �1.S/ on zS#, we can then extend
it by equivariance with respect to the representation �� to obtain a global .dev#/� W zS

# ! CP1. The
developing map dev� is the restriction of .dev#/� to zS . Notice that, when � is an embedding, this is the
pillowcase structure obtained by doubling �.4/.

By construction, triangular structures are nondegenerate, tame and their holonomy representations are
relatively elliptic. We record this in the following lemma.

Lemma 5.1.1 Let � be a nondegenerate triangular immersion and let �� be the associated triangular
structure. Then �� 2 Pˇ.S/.

Triangular immersions that are especially simple, eg embeddings, carry some obvious curves that one can
graft along, namely the edges eıı 0 of the triangulation T. Other graftable curves are those joining one
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C2� Gr.�; �1/

�01
CP1

�001

C2�

�

�1
�2

Gr.�; �2/

CP1�02

�002

C4�

Figure 15: An edge-grafting and a core-grafting on a structure � .

puncture to itself by crossing the triangle. We introduce the following terminology, motivated by these
observations (see Section 3.1 for the general definition of this surgery). Let � 2Pˇ.S/ and let � W I ! S

be a graftable curve. The grafting along � will be called an edge-grafting if � joins two different punctures,
and a core-grafting if it starts and ends at the same puncture and separates S into two punctured disks.
The inverse surgery will be called edge-degrafting and core-degrafting respectively (see Figure 15).

Example 5.1.2 Some embedded triangular structures allow for an easy description of edge-grafting.
Let �; � 0 W 4 ! CP1 be two triangular embeddings such that �� 0 differs from �� by the insertion of
a disk D along one of the edges (see the first two pictures of Figure 16). Then �� 0 is isomorphic to
the structure obtained by edge-grafting �� along that edge. Indeed reflecting in the edges of � 0.4/ we
obtain a copy of CP1 obtained by the union of D and its complement. Since D is included in � 0.4/, its
complement is contained in a suitable reflection of it; the union of D and its complement gives precisely
a grafting region on �� 0 . This grafting procedure can be iterated by thinking of immersions as membranes
spread over CP1, obtained by including additional disks across the edges that are being grafted. This is a
particularly concrete way of thinking about edge-grafting triangular structures.

A triangular structure is said to be Euclidean/hyperbolic/spherical atomic if it comes from a Eu-
clidean/hyperbolic/spherical atomic triangular immersion (see the end of Section 2.3). The terminology
is motivated by the main theorem (Theorem B), which states that every tame and relatively elliptic
CP1–structure is obtained by grafting an atomic structure.

D

�
4

� 0

D
Gr

Figure 16: An edge-grafting on an embedded structure � .
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x˛

xˇ x
G˛e˛

G˛ˇe˛ˇ G˛e˛

x˛

xˇ x
Gˇeˇ

G˛ˇe˛ˇ G˛e˛

Figure 17: The multicurves � (on the left), and �0 (on the right).

Lemma 5.1.3 Let � be an atomic triangular structure with indices I� WD .2a; 2b; 2c/. Let eıı 0 be the edge
of the triangle of T in S connecting the two distinct punctures xı and xı 0 . Let eı be a simple ideal arc in
S connecting the puncture xı to itself by crossing the edge opposite to xı . For G˛ˇ ; G˛ ; G˛; Gˇ 2N,
consider the formal sums

� WDG˛ˇe˛ˇ CG˛e˛ CG˛e˛ and �0 WDG˛ˇe˛ˇ CG˛e˛ CGˇeˇ :

If � is spherical or hyperbolic , then � is graftable along both � and �0, up to small deformations. If � is
Euclidean and we further assume that a 2 .0; 3�/ while b; c 2 .0; �/, then

(1) if a 2 .0; �/ and �aCbCcD � , then � is graftable along �0, but not along any arc isotopic to e˛;

(2) if a 2 .�; 2�/ and a�b� c D � , then � is graftable along �, but not along any arc isotopic to eˇ ;

(3) if a 2 .2�; 3�/, then � is graftable along �, but not along any arc isotopic to eˇ ;

(4) otherwise � is graftable along both � and �0.

Proof We begin by noticing that � (and �0) can be realized as a group of pairwise disjoint arcs in S (see
Figure 17); therefore we only need to check that � is graftable once along each arc (see Remark 3.1.6).

If � comes from a triangular immersion � supported by a spherical configuration, then � is graftable
along both � and �0 because the triangular immersion � is an embedding (see Figures 5 (right) and 7
(right)); hence each simple ideal arc develops injectively into CP1.

Similarly, if � is supported by a hyperbolic configuration, then � is an embedding unless it is as in
Figure 8(2)(i). These are immersions where one angle is in .�; 2�/, say for example a, and a�b�c > � .
In these situations, the edge eˇ (opposite to the large angle a) is not graftable on the nose, as the
developing map develops it surjectively to a circle. However any arbitrarily small deformation of it is
graftable (see Figure 18).

Finally, suppose that � is supported by a Euclidean configuration. Here we further assume a 2 .0; 3�/
while b; c 2 .0; �/, namely that if there is an angle larger than � , then it is a. Here we have an issue only
when a puncture is mapped to the common intersection point y of the Euclidean configuration. If a2 .0; �/
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E˛
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zS�
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pˇ

p

CP1 E˛
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zS�

CP1

Gr.�; eˇ /

Figure 18: An edge-grafting on the hyperbolic atomic structure coming from a hyperbolic atomic
triangular immersion as in Figure 8(2)(i).

and �aC bC c D � (case (1)), then the puncture x˛ develops to y and it is not possible to core-graft
along any arc isotopic to e˛ (see Figure 4, right). On the other hand, every edge is injectively developed,
and therefore � is graftable along �0. If a 2 .�; 2�/ and a�b� c D � (case (1) and Figure 9(2)(ii)), then
both xˇ ; x are mapped to y, thus � is not graftable along any arc isotopic to eˇ , and in particular along
�0. However, e˛ is injectively developed, hence � is graftable along �. Case (3) is similar to the previous
one (see Figure 10). The remaining Euclidean cases are embeddings where x˛ never maps to y, hence all
relevant arcs are injectively developed.

We conclude this section with a simple consequence of Lemma 5.1.1, namely that almost every nonde-
generate framed relatively elliptic representation is the framed holonomy representation of an atomic
triangular structure. Recall that a framing of a representation � is a �–equivariant map F W E.z†/!CP1

from the space of ends to CP1, and that for structures in Pˇ.S/ there is a canonical framing given by a
continuous extensions of the developing map (Corollary 3.1.5). We remark that [Gupta 2021, Theorem 1.2]
states that a nondegenerate framed representation is the holonomy of a signed meromorphic projective
structure with respect to some framing, while here we realize these framed representations with respect
to this canonical framing (compare the discussion in Remark 4.2.2). To simplify the statement of the
following result, we say that a framing F is pathological if F maps the entire set of ends to a single point.
In our context, the holonomy representation of a triangular structure is pathological if and only if the
underlying configuration of circles is Euclidean and the framing consists only of the point at infinity.
Therefore the holonomy representation of an atomic triangular structure is never pathological. Note that a
pathological framing is not considered degenerate according to the definition in Section 3.1.

Corollary 5.1.4 Every nondegenerate framed relatively elliptic representation that is not pathological is
the framed holonomy representation of an atomic triangular structure. In particular , Rˇ.S/DHol.Pˇ.S//.

Proof Suppose � is a nondegenerate relatively elliptic representation, with a nonpathological framing F.
Then .�.˛/; �.ˇ/; �.// is an ordered triple of elliptic transformations with trivial product. As � is
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nondegenerate, .�.˛/; �.ˇ/; �.// share at most one common fixed point. By Corollary 2.2.7, there is a
unique nondegenerate configuration of circles C WD .Cab;Cbc ;Cac/ associated to .�.˛/; �.ˇ/; �.//. By
construction,

p˛ WD F.E˛/ 2 Cab \Cac ; pˇ WD F.Eˇ / 2 Cab \Cbc ; p WD F.E / 2 Cbc \Cac :

We are going to show that there is an atomic triangular immersion � supported by C, with vertices
.p˛; pˇ ; p /. As a consequence, the framed holonomy representation of its associated triangular structure
�� is .�;F/, proving the first part of the corollary. If C is a spherical configuration, the points .p˛; pˇ ; p /
are the vertices of a unique triangular region R in CP1nC. Depending on the cyclic order of .p˛; pˇ ; p /
on the boundary of R, we either take � to map onto R, or to map onto the complement of R in a disk
(see Figure 7, right). If C is a hyperbolic configuration, we refer to Table 1 to check that any framing
is realized by at least one triangular immersion � . Finally, Table 3 shows that any framing that is not
pathological, namely .�;�;�/ and .�;�;�/�, can be realized by at least one triangular immersion � .

The last statement of the corollary follows from the observation that every nondegenerate relatively
elliptic conjugacy class Œ�� has a class representative � that can be framed with a nondegenerate and
nonpathological framing.

5.2 Grafting Theorems A and B

We are now ready to prove the main results about the Grafting Conjecture. A key step will be being able
to recognize structures based on their indices, which we are able to do thanks to the description of Pˇ.S/

in terms of meromorphic differentials (Theorem E).

Up to isomorphism, there is a unique complex structure on the thrice-punctured sphere, namely that of
CP1 n f0; 1;1g. The space of meromorphic quadratic differentials with double poles at 0, 1 and1 can
be described as�

q‚ D

�
1� �21
2z2

C
1� �22
2.z� 1/2

C
�21 C �

2
2 � �

2
3 � 1

2z.1� z/

�
dz2

ˇ̌̌
‚D .�1; �2; �3/ 2C3

�
:

A direct computation shows that q‚ has double poles at 0, 1 and 1 with reduced exponents �1,
�2 and �3, respectively. In particular, the indices of the structure defined by the differential q‚ are
.2�j�1j; 2�j�2j; 2�j�3j/ (see Lemma 4.2.1). Therefore we obtain the following statement.

Proposition 5.2.1 If �; � 0 2 Pˇ.S/ have the same indices , then � D � 0.

Proof By Theorem E we know that �D�q and � 0D�q0 for some meromorphic differentials q; q02Q2.S/,
with real noninteger reduced exponents at each puncture. Since the index at each puncture is the same,
by Lemma 4.2.1 the exponent at each puncture is also the same (up to sign). So q and q0 have the same
leading coefficient at each puncture, but this determines them completely, so q D q0.

Notice that the developing maps of structures obtained with �i 2 .0; 1/ correspond to Schwarz triangle
maps. The special cases in which �i D 1=pi , for pi 2 Z, correspond to the classic uniform tilings of
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the sphere, Euclidean or hyperbolic plane. In the general case �i 2 R nZ, the associated holonomy
representations are not discrete, and the groups are not isomorphic to triangle groups.

A direct application of Proposition 5.2.1 to Lemmas 2.3.3 and 2.3.4 allows us to easily characterize atomic
structures through their indices.

Lemma 5.2.2 Let � 2Pˇ.S/ with indices .2a; 2b; 2c/. Then � is atomic if and only if (up to relabeling
the punctures) either

(1) a 2 .0; 2�/ and b; c 2 .0; �/, or

(2) a 2 .2�; 3�/ and b; c 2 .0; �/ and a� b� c D � .

Proof Atomic structures are defined in such a way that their indices satisfy the above conditions (see
Lemmas 2.3.3 and 2.3.4). But more importantly, every triple of numbers .2a; 2b; 2c/ satisfying those
conditions is the triple of indices of an atomic structure; see for example Tables 1, 2 and 3. The fact that
there are no other structures with those indices follows by Proposition 5.2.1.

As observed in Corollary 3.1.5, the holonomy representation of a structure in Pˇ.S/ carries a natural
framing, given by the extension of the developing map to the punctures. Edge-grafting and core-grafting
do not change the holonomy representation, nor this framing (see Lemma 3.1.7).

Theorem B Every � 2 Pˇ.S/ is obtained by a sequence of edge- and core-graftings on an atomic
triangular structure with the same framed holonomy.

Proof Let � 2 Pˇ.S/, and let 2a WD I� .x˛/, 2b WD I� .xˇ / and 2c WD I� .x / be its indices. Without
loss of generality we can assume that a � b � c. Indeed we can rename the punctures so that I� .x˛/ is
the largest index, and the case where a � c � b follows by a similar argument.

Let ka D ba=�c, kb D bb=�c, kc D bc=�c 2 N. We are going to reduce the triple .a; b; c/ to a triple
.a0; b0; c0/ by subtracting as many integer multiple of � as possible in a certain controlled way, until
.a0; b0; c0/ satisfies the conditions of Lemma 2.3.3, that is

(5.2.1) a0 2 .0; �/[ .�; 2�/ and b0; c0 2 .0; �/:

We distinguish two cases:

(i) If ka � kbC kc , let

G˛ WD kc ; G˛ˇ WD kb; G˛ WD
�
1
2
.ka � .kbC kc//

˘
; Gˇ WD 0:

(ii) If ka < kbC kc , let L WD ka � kb , L0 WD kc C kb � ka and

G˛ WD LC
�
1
2
L0
˘
; G˛ˇ WD kb �

˙
1
2
L0
�
; G˛ WD 0; Gˇ WD

˙
1
2
L0
�
:

Either way, let

a0 WD a��.G˛ CG˛ˇ C 2G˛/; b0 WD b��.Gˇ CG˛ˇ /; c0 WD c ��.G˛ CGˇ /:
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It is easy to check that G˛ ; G˛ˇ ; G˛; Gˇ � 0, and

Gˇ CG˛ˇ D kb; G˛ CGˇ D kc ; G˛ CG˛ˇ C 2G˛ 2 fka; ka � 1gI

therefore (5.2.1) is satisfied, and by Lemma 2.3.3 there is a triangular immersion � with angles .a0; b0; c0/.
Let �� be the associated triangular structure. By construction �� is atomic with indices .2a0; 2b0; 2c0/,
thus it is left to check if �� grafts to � .

Recall we have fixed an ideal triangulation T of S . Let eıı 0 be the edges of T connecting the two distinct
punctures xı and xı 0 . Let eı be a simple ideal arc in S connecting the puncture xı to itself by crossing
the edge opposite to xı . Consider the multicurve

� WDG˛ˇe˛ˇ CG˛e˛ CG˛e˛CGˇeˇ :

If � is graftable then grafting �� along � would yield a structure with indices .2a; 2b; 2c/ and the same
framed holonomy as �� (Lemma 3.1.7). It follows from Proposition 5.2.1 that � D Gr.�� ; �/, so it is left
to check if �� is graftable along �.

Depending on the above cases, we remark that at least one of Gˇ and G˛ is 0; hence � is either � or �0

in the notation of Lemma 5.1.3.

If Gˇ DG˛ D 0 then �D �D �0 and every atomic triangular structure �� is graftable along �.

If G˛ > 0 then Gˇ D 0 and �D �. Lemma 5.1.3 covers every case except the Euclidean case where
a0 2 .0; �/ and �a0C b0C c0 D � . In this case we must consider a different atomic structure � 0� and
curve �0, as �� is not graftable along e˛. Let

a00 WD a0C 2�; b00 WD b0; c00 WD c0;

G0˛ WDG˛ � 1; �0 WDG˛ˇe˛ˇ CG˛e˛ CG
0
˛e˛:

By construction a00 2 .2�; 3�/, b00; c00 2 .0; �/ and a00 � b00 � c00 D �; therefore there is an atomic
triangular structure � 0� with indices .2a00; 2b00; 2c00/ (see Lemma 2.3.4). Furthermore, the structure � 0� is
graftable along �0 (Lemma 5.1.3). Grafting � 0� yields a structure with indices .2a; 2b; 2c/, which must
be � by Proposition 5.2.1, concluding this case.

Lastly, suppose that Gˇ > 0. This time G˛ D 0 and �D �0. Recall that a0 < 2� , hence the only case
that is not covered by Lemma 5.1.3 is the Euclidean case where a0 2 .�; 2�/ and a0� b0� c0 D � . We
are once again forced to consider a different atomic structure as �� is not graftable along eˇ . Let

a00 WD a0��; b00 WD b0C�; c00 WD c0;

G0˛ WDG˛ C 1; G0ˇ WDGˇ � 1; �0 WDG˛ˇe˛ˇ CG
0
˛e˛ CG

0
ˇeˇ :

By construction b00 2 .�; 2�/, a00; c00 2 .0; �/ and �a00 C b00 C c00 D �; therefore there is an atomic
triangular structure � 0� with indices .2a00; 2b00; 2c00/ (see Lemma 2.3.3). The structure � 0� is graftable
along �0 according to Lemma 5.1.3 part .5/ applied to the triple .b00; c00; a00/. Once again, grafting � 0�
along �0 yields a structure with indices .2a; 2b; 2c/, which must be � by Proposition 5.2.1, concluding
the proof.
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�

�0

�1 D �
0
1

� 00

� 0

Figure 19: To prove Theorem A we find a path of graftings and degraftings from � to � 0, passing
through atomic structures.

Theorem B has two interesting consequences. The first is the promised characterization of atomic
structures in terms of grafting.

Corollary 5.2.3 A structure � 2 Pˇ.S/ is atomic if and only if it is not degraftable.

Proof For one implication, let � be a structure which cannot be degrafted. Then by Theorem B it must
be atomic.

For the reverse implication, let � be atomic. Suppose by contradiction that � was degraftable to some
structure � 0. Recall that core-grafting increases one index by 4� and edge-grafting increases two indices
by 2� . Then � cannot be one of the atomic structures coming from the atomic triangular immersions
of Lemma 2.3.3, as its indices would be too small. It follows that � is the atomic triangular structure
associated to an atomic triangular immersion � from Lemma 2.3.4. Without loss of generality we may
assume that the largest index of � is at x˛, while the other two are less than 2� , so that

I� .x˛/ 2 .4�; 6�/; I� .xˇ /; I� .x / 2 .0; 2�/; I� .x˛/� I� .xˇ /� I� .x /D 2�:

Then � cannot be obtained by edge-grafting � 0, and the only option is that � 0 is a core-degrafting at x˛
on � . In particular I� 0.x˛/D I� .x˛/� 4� 2 .0; 2�/ and

I� 0.x˛/; I� 0.xˇ /; I� 0.x / 2 .0; 2�/ and � I� 0.x˛/C I� 0.xˇ /C I� 0.x /D 2�:

It follows that � 0 is an atomic triangular structure (Lemma 5.2.2), coming from a triangular immersion
� 0 enclosed in a Euclidean configuration (Lemma 2.3.1). But this is impossible because � 0 is not core-
graftable at x˛ (Lemma 5.1.3 part (1)), giving the desired contradiction.

Next, we obtain that edge-grafting and core-grafting (together with the inverse operations) account for all
the possible deformations that preserve the holonomy as a framed representation.

Theorem A Two structures in Pˇ.S/ have the same framed holonomy if and only if it is possible to
obtain one from the other by some combination of graftings and degraftings along ideal arcs.

Proof One direction is clear by Lemma 3.1.7. For the reverse implication, suppose �; � 0 2 Pˇ.S/ have
the same framed holonomy. By Theorem B, the structure � (resp. � 0) can be degrafted to an atomic
structure �0 (resp. � 00) having the same framed holonomy.

Let �0 and � 00 be the atomic triangular immersions defining �0 and � 00, with angles .a0; b0; c0/ and
.a00; b

0
0; c
0
0/, respectively. Since these structures have the same framed holonomy, up to conjugation we
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can assume that �0 and � 00 are supported by the same configuration of circles C (see Corollary 2.2.7), and
that �0.Vj /D � 00.Vj /, for j D 1; 2; 3. By Corollary 2.3.7 we are in one of the following two cases:

(1) .a0; b0; c0/D .a
0
0; b
0
0; c
0
0/;

(2) .a0� a
0
0; b0� b

0
0; c0� c

0
0/D .�;��; 0/ up to permutation.

In the first case �0 and � 00 have the same indices; hence �0 D � 00 by Proposition 5.2.1, and we are done.
For the second case, let us fix the permutation .a0�a00; b0�b

0
0; c0� c

0
0/D .�;��; 0/, as the other cases

are similar. Then in particular a0; b00 2 .�; 2�/ while a00; b0; c0; c
0
0 2 .0; �/. Let �1 (resp. � 01) be the

triangular structure obtained by grafting �0 along eˇ (resp. � 00 along e˛ ). These structures exist by
Lemma 5.1.3 (with respect to �0), and they both have indices

.2a0; 2b0C 2�; 2c0C 2�/D .2a
0
0C 2�; 2b

0
0; 2c

0
0C 2�/:

We explicitly observe that Lemma 5.1.3 has only two cases in which �0 is not graftable, and a direct
inspection of Table 3 shows that those two structures are covered by the case .a0; b0; c0/D .a00; b

0
0; c
0
0/

above (see Remark 2.3.9). It follows that �1 D � 01 by Proposition 5.2.1, completing the proof.

Appendix Tables of atomic triangular immersions

angles range target angles
a b c conditions type . Oa; Ob; Oc/ signs figure

.0; �/ .0; �/ .0; �/ aC bC c < � H .a; b; c/ .C;C;C/ Figure 5, left

.0; �/ .0; �/ .0; �/ aC� < bC c H .a; � � b; � � c/ .C;�;�/ Figure 7, left

.0; �/ .0; �/ .0; �/ bC� < aC c H .� � a; b; � � c/ .�;C;�/ Figure 7, left

.0; �/ .0; �/ .0; �/ cC� < aC b H .� � a; � � b; c/ .�;�;C/ Figure 7, left

.�; 2�/ .0; �/ .0; �/ aC bC c > 3� H .2� � a; � � b; � � c/ .�;�;�/ Figure 8(1)
.0; �/ .�; 2�/ .0; �/ aC bC c > 3� H .� � a; 2� � b; � � c/ .�;�;�/ Figure 8(1)
.0; �/ .0; �/ .�; 2�/ aC bC c > 3� H .� � a; � � b; 2� � c/ .�;�;�/ Figure 8(1)

.�; 2�/ .0; �/ .0; �/ a� b� c > � H .2� � a; b; c/ .�;C;C/ Figure 8(2)
.0; �/ .�; 2�/ .0; �/ �aC b� c > � H .a; 2� � b; c/ .C;�;C/ Figure 8(2)
.0; �/ .0; �/ .�; 2�/ �a� bC c > � H .a; b; 2� � c/ .C;C;�/ Figure 8(2)

.�; 2�/ .0; �/ .0; �/ a� bC c < � H .a��; � � b; c/ .C;�;C/ Figure 8(3)(i)
.0; �/ .�; 2�/ .0; �/ aC b� c < � H .a; b��; � � c/ .C;C;�/ Figure 8(3)(i)
.0; �/ .0; �/ .�; 2�/ �aC bC c < � H .� � a; b; c ��/ .�;C;C/ Figure 8(3)(i)

.�; 2�/ .0; �/ .0; �/ aC b� c < � H .a��; b; � � c/ .C;C;�/ Figure 8(3)(ii)
.0; �/ .�; 2�/ .0; �/ �aC bC c < � H .� � a; b��; c/ .�;C;C/ Figure 8(3)(ii)
.0; �/ .0; �/ .�; 2�/ a� bC c < � H .a; � � b; c ��/ .C;�;C/ Figure 8(3)(ii)

Table 1: Table of atomic triangular immersions of hyperbolic type.

Algebraic & Geometric Topology, Volume 24 (2024)



Tame and relatively elliptic CP1–structures on the thrice-punctured sphere 4647

angles range target angles
a b c conditions type . Oa; Ob; Oc/ signs figure

.0; �/ .0; �/ .0; �/ aC bC c > � S .a; b; c/ .C;C;C/ Figure 5, right
aC� > bC c

bC� > aC c

cC� > aC b

.�; 2�/ .0; �/ .0; �/ 3� > aC bC c S .2� � a; � � b; � � c/ .�;�;�/ Figure 7, right
aC b > � C c

aC c > � C b

� > a� b� c

.0; �/ .�; 2�/ .0; �/ 3� > aC bC c S .� � a; 2� � b; � � c/ .�;�;�/ Figure 7, right
aC b > � C c

bC c > � C a

� > �aC b� c

.0; �/ .0; �/ .�; 2�/ 3� > aC bC c S .� � a; � � b; 2� � c/ .�;�;�/ Figure 7, right
bC c > � C a

aC c > � C b

� > �a� bC c

Table 2: Table of atomic triangular immersions of spherical type.

angles range target angles
a b c conditions type . Oa; Ob; Oc/ signs figure

.0; �/ .0; �/ .0; �/ aCbCc D � E .a; b; c/ .C;C;C/ Figure 4, left

.0; �/ .0; �/ .0; �/ �aCbCc D � E .a; ��c; ��b/ .�;C;C/� Figure 4, right

.0; �/ .0; �/ .0; �/ a�bCc D � E .��a; ��c; b/ .C;�;C/� Figure 4, right

.0; �/ .0; �/ .0; �/ aCb�c D � E .��a; c; ��b/ .C;C;�/� Figure 4, right

.�; 2�/ .0; �/ .0; �/ aCbCc D 3� E .2��a; ��c; ��b/ .C;C;C/� Figure 9(1)
.0; �/ .�; 2�/ .0; �/ aCbCc D 3� E .��a; ��c; 2��b/ .C;C;C/� Figure 9(1)
.0; �/ .0; �/ .�; 2�/ aCbCc D 3� E .��a; 2��c; ��b/ .C;C;C/� Figure 9(1)

.�; 2�/ .0; �/ .0; �/ a�b�c D � E .2��a; c; b/ .C;�;�/� Figure 9(2)
.0; �/ .�; 2�/ .0; �/ �aCb�c D � E .a; c; 2��b/ .�;C;�/� Figure 9(2)
.0; �/ .0; �/ .�; 2�/ �a�bCc D � E .a; 2��c; b/ .�;�;C/� Figure 9(2)

.�; 2�/ .0; �/ .0; �/ a�bCc D � E .a��; ��b; c/ .C;�;C/ Figure 9(3)(i)
.0; �/ .�; 2�/ .0; �/ aCb�c D � E .a; b��; ��c/ .C;C;�/ Figure 9(3)(i)
.0; �/ .0; �/ .�; 2�/ �aCbCc D � E .��a; b; c��/ .�;C;C/ Figure 9(3)(i)

.�; 2�/ .0; �/ .0; �/ aCb�c D � E .a��; b; ��c/ .C;C;�/ Figure 9(3)(ii)
.0; �/ .�; 2�/ .0; �/ �aCbCc D � E .��a; b��; c/ .�;C;C/ Figure 9(3)(ii)
.0; �/ .0; �/ .�; 2�/ a�bCc D � E .a; ��b; c��/ .C;�;C/ Figure 9(3)(ii)

.2�; 3�/ .0; �/ .0; �/ a�b�c D � E .a�2�; ��b; ��c/ .C;�;�/ Figure 10
.0; �/ .2�; 3�/ .0; �/ �aCb�c D � E .��a; b�2�; ��c/ .�;C;�/ Figure 10
.0; �/ .0; �/ .2�; 3�/ �a�bCc D � E .��a; ��b; c�2�/ .�;�;C/ Figure 10

Table 3: Table of atomic triangular immersions of Euclidean type.
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We introduce a new invariant for a 2–knot in S4, called the shadow-complexity, based on the theory of
Turaev shadows, and we give a characterization of 2–knots with shadow-complexity at most 1. Specifically,
we show that the unknot is the only 2–knot with shadow-complexity 0 and that there exist infinitely many
2–knots with shadow-complexity 1.
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1 Introduction

A 2–knot is a smoothly embedded 2–sphere in S4. The first example of a nontrivial 2–knot was given
by Artin [1925], called a spun knot. The nontriviality is of fundamental interest in knot theory. In the
classical case, namely the 1–knot case, the trefoil knot can be said to be the simplest nontrivial knot in
terms of some numerical invariants: the crossing number, the bridge number, the tunnel number, and
so forth. Then one naturally wonders which 2–knot is the simplest nontrivial one. The answer to this
question should be based on as many criteria as possible that measures, in some sense, how different a
given 2–knot is from the trivial one.

There are several studies on numerical invariants for 2–knots. For examples, we refer the reader to [Satoh
2000; Satoh and Shima 2004; Yajima 1964] for the triple point number and to [Saito and Satoh 2005;
Satoh 2009] for the sheet number. These two invariants are defined with broken surface diagrams [Carter
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4652 Hironobu Naoe

et al. 1997; Roseman 1998], which is a natural analogue of classical knot diagrams. Yoshikawa [1994]
introduced the ch-index by using ch-diagrams (also called marked graph diagrams), and he gave the
table of 2–knots with ch-index up to 10. These invariants measure how complicated the descriptions of a
given 2–knot must be, like the crossing numbers for 1–knots. On the one hand, for example, the bridge
number and the tunnel number for classical knots seem to be the complexity of the embedding or the
complement. Recently, bridge positions of knotted surfaces, called bridge trisections, were introduced
by Meier and Zupan [2017; 2018] using a trisection (see [Gay and Kirby 2016] for the details) of the
ambient 4–manifold, and the bridge numbers for knotted surfaces were defined by using this notion.
Incidentally, Kirby and Thompson introduced an integer-valued invariant, called the L–invariant or the
Kirby–Thompson length, for closed 4–manifolds, and this notion was adapted to the knotted surfaces in
[Blair et al. 2022].

In the present paper, we propose to study 2–knots using a Turaev shadow; a notion introduced by
Turaev [1994]. A shadow is a simple polyhedron embedded in a closed 4–manifold as a 2–skeleton,
in other words, a simple polyhedron such that the complement of its neighborhood is diffeomorphic to
a 4–dimensional 1–handlebody. Turaev showed that regions of a shadow are naturally equipped with
half-integers such as “relative self-intersection numbers”, which has sufficient information to reconstruct
the ambient 4–manifold. It is known as Turaev’s reconstruction theorem. Thus, a shadow can be treated
as a description of a 4–manifold, which brings about several studies: Stein structures, spinc structures
and complex structures, stable maps and hyperbolic structures on 3–manifolds, Lefschetz fibrations, and
so on; see [Costantino 2006b; 2008; Costantino and Thurston 2008; Ishikawa and Koda 2017; Ishikawa
and Naoe 2020] for examples. Moreover, as another benefit of the theory of shadows, we can define a
complexity for 4–manifolds, called the shadow-complexity. Costantino [2006a] introduced this notion.
The shadow-complexity of a 4–manifold is defined as the minimum number of specific points called true
vertices contained in a shadow of the 4–manifold. He also gave the classification of closed 4–manifolds
with complexity up to 1 in a special case. Martelli [2011] gave a characterization of all the closed
4–manifolds with shadow-complexity 0. He also showed that a closed simply connected 4–manifold
with shadow-complexity 0 is diffeomorphic to S4 or the connected sum of some copies of CP2, CP2

and S2 �S2. This implies that the shadow-complexity is a diffeomorphism invariant. Note that exotic
smooth structures on CP2 # kCP2 have been found for some k. Koda, Martelli and the present author
[Koda et al. 2022] introduced a new complexity, called the connected shadow-complexity, and gave a
characterization of all the closed 4–manifolds with connected shadow-complexity at most 1.

If a surface F is embedded in a shadow of a 4–manifold, then such an F in the 4–manifold is smoothly
embedded and generally knotted. In view of this situation, we define a shadow of a 2–knot K as a shadow
X of the ambient 4–manifold S4 such that K is embedded in X . Of course, we can define a shadow for
a knotted surface as well (see Remark 4.5), but the focus in this paper is 2–knots.

Every closed 4–manifold admits a shadow, which follows from the existence of a handle decomposition.
We can also show the following.

Algebraic & Geometric Topology, Volume 24 (2024)
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Theorem 3.2 Every 2–knot admits a shadow.

The above theorem allows us to define a complexity for 2–knots

f2–knots in S4
g ! Z�0

as the minimum number of true vertices in a shadow of K. We call this number the shadow-complexity
of K and write it as sc.K/.

The aim of this paper is to give the classification of 2–knots with shadow-complexity at most 1. First,
one might expect that the unknot is the only 2–knot with shadow-complexity 0 as well as some other
numerical invariants for 1– or 2–knots, which is indeed true.

Theorem 6.4 A 2–knot has shadow-complexity 0 if and only if it is unknotted.

The unknotted 2–knot admits a special shadow with no true vertices, which implies that the unknot is
also the only 2–knot with special shadow-complexity 0. The condition for a shadow to be special is fairly
strong, and any special polyhedron with one true vertex cannot be a shadow of any 2–knot except for the
unknot.

Theorem 7.2 There are no 2–knots with special shadow-complexity 1.

It is noteworthy that the special shadow-complexity for closed 4–manifolds is a finite-to-one invariant
[Martelli 2005, Corollary 2.7]. However, that for 2–knots is not finite-to-one as noted in Remark 8.11,
where we find infinitely many 2–knots with special shadow-complexity at most 5. We actually have not
determined the special shadow-complexity of any nontrivial 2–knot. Note that all the special polyhedra
with complexity up to 2 are listed in [Koda and Naoe 2020, Appendix B], so we already have possible
candidates of shadows of 2–knots with special shadow-complexity 2 if such a 2–knot exists.

Before stating the theorem on the complexity 1 case, we introduce a series of 2–knots. For n 2 Z, let
Kn be a 2–knot presented by a banded unlink diagram shown in Figure 1. See [Hughes et al. 2020] and
Section 4 for the definition and the details of banded unlink diagrams. Note that K0 is trivial. The knot
K�1 is the spun trefoil, and K1 is the knot 91 in Yoshikawa’s table [1994]. For any n 2Z, the knot Kn is
a ribbon 2–knots. As stated in Proposition 8.9, two 2–knots Kn and Kn0 are not equivalent unless nD n0,
which can be distinguished by their Alexander polynomials.

The following is the main theorem for 2–knots with shadow-complexity 1.

Theorem 8.10 A 2–knot K whose knot group is not infinite cyclic has shadow-complexity 1 if and only
if K is diffeomorphic to Kn for some nonzero integer n.

The unknotting conjecture says that a 2–knot is unknotted if its knot group is infinite cyclic, which is
known to be true in the topological category in [Freedman and Quinn 1990] and is also studied in the

Algebraic & Geometric Topology, Volume 24 (2024)
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Kn:
n

n

Figure 1: Banded unlink diagram of Kn for n 2 Z. Note that the number written in the lower-left
box is the absolute value jnj of n.

smooth category in [Kawauchi 2021] (see also [Kawauchi 2023]). Supposing the unknotting conjecture is
true in the smooth category, we obtain the complete classification of all 2–knots with shadow-complexity
at most 1.

One interpretation of the shadow-complexity for 2–knots is an analogue to the tunnel number for 1–knots.
We recall that the tunnel number of a 1–knot is the minimum number of 1–cells such that the complement
of the neighborhood of the union of the 1–knot and the 1–cells is a 3–dimensional 1–handlebody. The
procedure to make the complement trivial is similar to a construction of a shadow from a 2–knot. By
definition, a shadow of a 2–knot K can be obtained from K by attaching 1–cells and 2–cells so that the
complement of the neighborhood is diffeomorphic to a 4–dimensional 1–handlebody. In this sense, the
shadow-complexity can seem to measure the nontriviality of the complement of a given 2–knot.

Organization

In Section 2, we review the theory of Turaev shadows and encoding graphs. In Section 3, we define a
shadow of a 2–knot, and give a presentation of the knot group using a shadow. In Section 4, we introduce
a banded unlink diagram, from which we construct a shadow of a 2–knot. In Section 5, we introduce two
important modifications: compressing disk addition and connected-sum and reduction. In Section 6, we
give the proof for the complexity zero case. A large part of Section 7 is devoted to compute the knot
groups of shadows having one true vertex. In Section 8, we give the proofs for the complexity one case
by describing the 2–knots in banded unlink diagrams.

Acknowledgements

The author would like to express his gratitude to Masaharu Ishikawa, Seiichi Kamada and Yuya Koda for
many valuable suggestions and their kindness, and also to Mizuki Fukuda for useful discussion. This
work was supported by JSPS KAKENHI grant 20K14316.

2 Preliminaries

For polyhedral spaces A� B, let Nbd.AIB/ denote a regular neighborhood of A in B. If B collapses
onto A, we use the notation B&A.

Algebraic & Geometric Topology, Volume 24 (2024)
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(i) (ii) (iii) (iv) (v)

Figure 2: Local models of simple polyhedra.

For integers 0� k � n, an n–dimensional k–handlebody is an n–dimensional manifold admitting a handle
decomposition consisting of handles whose indices are at most k.

Throughout this paper, we assume that any manifold is compact, connected, oriented and smooth unless
otherwise noted.

2.1 Simple polyhedra and shadows of 4–manifolds with boundary

A simple polyhedron is a compact connected space whose every point has a regular neighborhood
homeomorphic to one of (i)–(v) in Figure 2. Let X be a simple polyhedron. The singular set S.X / of
X is the set of points of type (ii), (iii) or (v) in Figure 2. The point of type (iii) is called a true vertex.
Let c.X / denote the number of true vertices contained in X , and this number is called the complexity
of X . A connected component consisting of points of type (ii) is called a triple line. The boundary
@X of X is the set of points of type (iv) or (v). It is clear that the boundary of a simple polyhedron
is a (possibly nonconnected) trivalent graph. If @X D ∅, we say that X is closed. A region of X is a
connected component of X nS.X /. A region is called a boundary region if it contains a point of @X
(or equivalently, a point of type (iv)), otherwise it is called an internal region. If every region is simply
connected, then X is called a special polyhedron.

We then define a shadow of a 4–manifold with boundary.

Definition 2.1 Let M be a 4–manifold with boundary. A simple polyhedron X properly embedded in
M is called a shadow of M if X is locally flat in M and M &X .

Note that X is locally flat in M if for any x 2X , there exists a local chart .Ux; �x/ around x in M such
that X \Ux is contained in a smooth 3–ball in Ux .

The notion of a shadow was introduced by Turaev [1994], and he proved the following.

Theorem 2.2 [Turaev 1994] Any 4–dimensional 2–handlebody admits a shadow.

We next define gleams of regions of a shadow. Let R be an internal region of X , and set XS D

Nbd.S.X /IX /. Then there exists a (possibly nonorientable) 3–dimensional 1–handlebody HS in M

such that XS is properly embedded in HS and HS&XS . Set RDRnInt HS . Its boundary @RDR\@HS

forms a disjoint union of circles in the surface @HS . Set B D Nbd.RI @HS /, which is a disjoint union

Algebraic & Geometric Topology, Volume 24 (2024)
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of some annuli or Möbius bands. Let R0 be a small perturbation of R in M such that @R0 � B and
jR\R0j<1. Then the gleam gl.R/ is defined as

(1) gl.R/D #.Int R\ Int R0/C 1
2

#.@R\ @R0/;

where # is the algebraic intersection number.

The number of the Möbius bands in B is actually determined only by the combinatorial structure of X ,
that is, it does not depends on the embedding X �M . If it is even, the region R is said to be even,
otherwise odd. The gleam gl.R/ is an integer if and only if R is even.

2.2 Shadowed polyhedra and shadows of closed 4–manifolds

For a simple polyhedron X , we assign a half integer to each internal region R of X so that it is an integer
if and only if R is even. Such a polyhedron is called a shadowed polyhedron.

The following theorem is known as Turaev’s reconstruction theorem.

Theorem 2.3 [Turaev 1994] There is a canonical way to construct a 4–manifold MX with boundary
from a shadowed polyhedron X such that X is a shadow of MX . Moreover , the gleam of an internal
region of X coincides with that coming from (1).

The gleam is a kind of “local self-intersection number” as one can see in (1). Indeed, the intersection
form for the 4–manifold MX , reconstructed from a shadowed polyhedron X , can be calculated with
the gleam (see [Turaev 1994] and the next subsection). Especially, if a closed surface F is embedded
in a shadowed polyhedron X , the sum of all the gleams of regions contained in F coincides with the
self-intersection number of F in MX .

We then define a shadow for a closed 4–manifold.

Definition 2.4 Let W be a closed 4–manifold. A simple polyhedron X embedded in W is called a
shadow of W if it is locally flat in W and W n Int Nbd.X IW / is diffeomorphic to a 4–dimensional
1–handlebody.

By definition, @Nbd.X IW / must be diffeomorphic to the connected-sum of some copies of S1 �S2.
Thus, if X is a shadowed polyhedron and @MX is diffeomorphic to the connected-sum of some copies of
S1 �S2, then X is a shadow of some closed 4–manifold by [Laudenbach and Poénaru 1972].

We then define the complexities of 4–manifold that was introduced by Costantino [2006a].

Definition 2.5 For a 4–manifold W , the shadow-complexity sc.W / and the special shadow-complexity
scsp.W / of W are the minimum number of true vertices of all shadows of W and that of all special
shadows of W , respectively.
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L3 L12 L111

Figure 3: Links in S1 �B3. The polyhedra Y3, Y12 and Y111 can be constructed from these links.

2.3 Intersection forms

Let X be a shadow of a closed 4–manifold W . Since X can be considered as a 2–skeleton of W , the
inclusion � WX ,!W induces an epimorphism �� WH2.X /!H2.W /.

We equip each orientable region Ri of X with an orientation arbitrarily. Then any element in H2.X / is
represented by a sum

P
aiRi of oriented regions R1; : : : ;Rn with integer coefficients a1 : : : ; an 2 Z.

Defining the intersection form QX on H2.X / as

QX

�X
aiRi ;

X
biRi

�
D

X
aibigl.Ri/;

we can calculate the intersection form QW on H2.W / as

QW .˛; ˇ/DQX

�X
aiRi ;

X
biRi

�
;

where ˛ and ˇ are the images of
P

aiRi and
P

biRi by ��, respectively. See [Turaev 1994] for the
details.

2.4 Topological types of neighborhoods of singular sets with c � 1

Let X be a simple polyhedron and S be a connected component of S.X /. Here we review the topological
types of Nbd.S IX / in the cases c.Nbd.S IX // D 0 and 1. Note that Nbd.S IX / itself is a simple
polyhedron.

First suppose c.Nbd.S IX //D 0, that is, S is a circle. There are three possibilities, Y3, Y12 and Y111, for
topological types of Nbd.S IX /. These simple polyhedra are interpreted as follows. Let � WS1�B3!S1

be the canonical projection, and let L3, L12 and L111 be the links in S1 �B3 given in Figure 3. Then
Y3, Y12 and Y111 are the mapping cylinders of � restricted to L3, L12 and L111, respectively.

Next we suppose c.Nbd.S IX //D 1. Then S is an 8–shaped graph, that is, the wedge sum S1 _S1 of
two circles. In this case, there are 11 possible topological types X1; : : : ;X11 of Nbd.S1IX /, which are
explained as follows. Let � be a natural projection from .S1�B3/ \ .S1�B3/ to S1_S1, and let Li be
the link in .S1�B3/ \ .S1�B3/ given in Figure 4 for i 2 f1; : : : ; 11g. Then Xi is the mapping cylinder
of � restricted to Li .

Note that the over/under information of the links in Figures 3 and 4 does not matter for defining the
polyhedra Y3;Y12;Y111;X1; : : : ;X11 since they are links in S1 �B3 or .S1 �B3/ \ .S1 �B3/.
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L1 L2 L3 L4

L5 L6 L7 L8

L9 L10 L11

Figure 4: Links in .S1 �B3/ \ .S1 �B3/. The polyhedra X1; : : : ;X11 can be constructed from
these links.

2.5 Encoding graphs

Here we explain a presentation of a simple polyhedron X using a graph consisting of some special
vertices. This notion was introduced by Martelli [2011] for the case c.X /D 0 and generalized in [Koda
et al. 2022] to the case where each connected component of S.X / contains at most one true vertex.

Let X be a simple polyhedron whose boundary consists of circles and suppose that c.X /� 1. We first
give a decomposition of X into some fundamental portions. Each connected component of S.X / is
homeomorphic to S1 or S1 _ S1. As reviewed in the previous subsection, a connected component
of Nbd.S.X /IX / is homeomorphic to one of Y3;Y12;Y111;X1; : : : ;X11. Then each component of
X n Int Nbd.S.X /IX / is a compact surface corresponding to a region of X . Note that such a surface is
possibly nonorientable, and hence it is decomposed into some disks, pair of pants and Möbius bands.
Thus, we conclude that X is decomposed (along circles contained in regions) into some copies of
D;P;Y2;Y3;Y12;Y111;X1; : : : ;X11, where D is a 2–disk, P is a pair of pants, and Y2 is a Möbius band.

The above decomposition induces an encoding graph G of X that has one vertex for each portion
D;P;Y2;Y3;Y12;Y111;X1; : : : ;X11 or boundary component of X . Two vertices are connected by an
edge if the corresponding portions in X are adjacent. Hence each edge e of G corresponds to a simple
closed curve contained in a region of X , which is determined up to isotopy. This simple closed curve

(B) (D) (P) (Y2) (Y3) (Y12) (Y111)

Figure 5: The vertices of types .B/, .D/, .P/, .Y2/, .Y3/, .Y12/, and .Y111/, which correspond
to boundary components of X and portions D, P , Y2, Y3, Y12 and Y111, respectively.
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.X1/ .X2/ .X3/ .X4/ .X5/ .X6/ .X7/

.X8/ .X9/ .X10/ .X11/

Figure 6: The vertices of types .X1/; : : : ; .X11/, which correspond to portions X1; : : : ;X11, respectively.

is called a lift of e. The vertices corresponding to D;P;Y2;Y3;Y12;Y111;X1; : : : ;X11 are said to be
of types .D/; .P/; .Y2/; .Y3/; .Y12/; .Y111/; .X1/; : : : ; .X11/, respectively. These are shown in Figures 5
and 6, where the vertex of type .B/ indicates a boundary component of X . See also [Koda et al. 2022;
Martelli 2011].

If an encoding graph G is a tree, the polyhedron X is uniquely reconstructed from G up to homeomorphism.
In such a case, we say that G encodes X . Hence, in this case, the fundamental group of X can be computed
from G by using van Kampen’s theorem. The necessary information is summarized in Tables 1 and 2,
which exhibit encoding graphs of the portions D;P;Y2;Y3;Y12;Y111;X1; : : : ;X11, presentations of
their fundamental groups and the homotopy classes of their boundaries. Here each vertex of type .B/
is denoted by vi for some i 2 f1; : : : ; 4g, and i is the corresponding component of the boundary of a
portion.

portion graph �1 boundary classes in �1

D f1g 1 D 1

P hx;y; z j xyzi 1 D x, 2 D y, 3 D z

Y2 hxi 1 D x2

Y3 hxi 1 D x3

Y12 hxi 1 D x, 2 D x2

Y111 hxi 1 D 2 D 3 D x

Table 1: Encoding graphs of D, P , Y2, Y3, Y12 and Y111, their fundamental groups, and the
homotopy classes of the boundary components.
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portion graph �1 boundary classes in �1

X1 hx;yi 1 D xyx�2y�2

X2 hx;yi 1 D xyx2y�2

X3 hx;yi 1 D y, 2 D xyx�2y�1

X4 hx;yi 1 D y, 2 D xyx�2y

X5 hx;yi 1 D y, 2 D xyx2y�1

X6 hx;yi 1 D xy, 2 D x2y�2

X7 hx;yi 1 D xy2, 2 D x2y�1

X8 hx;yi 1 D xyx�1y�1, 2 D x, 3 D y

X9 hx;yi 1 D xyxy�1, 2 D x, 3 D y

X10 hx;yi 1 D y, 2 D xy, 3 D x2y�1

X11 hx;yi 1 D x, 2 D y, 3 D xy, 4 D xy�1

Table 2: Encoding graphs of X1; : : : ;X11, their fundamental groups, and the homotopy classes
of the boundary components.

Each boundary component  of Y3;Y12;Y111;X1; : : : ;X11 is represented by a word in hxi or hx;yi as
in Tables 1 and 2, and its length coincides with the number of triple lines along which  goes, counted
with multiplicity. This number is called the length of  as well.

Several edges of G are decorated with some dashes and red dots near the vertices; see Figure 5 and 6.
The number of dashes indicates the length of the corresponding boundary, and a red dot indicates the
parity of the corresponding region of X . Note that the length for a Möbius band Y2 has not defined, but
the incident edge of a vertex of type .Y2/ is also decorated with two dashes for consistency with the other
notations. We also note that a red dot of a vertex of type .Y12/ is sometimes omitted if no confusion
arises.

Notice that an encoding graph is not uniquely determined from X . Two moves on encoding graphs are
shown in Figure 7: the left is a YV-move and the right is an IH-move. These moves correspond to giving
another decomposition of a region, so they do not change the homeomorphism types of the corresponding
polyhedra.
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Figure 7: YV-move and IH-move.

Suppose that G is a tree and let G0 ¨ G be a subgraph. Let N.G0/ denote the neighborhood of G0, that
is, N.G0/�G is obtained from G0 by adding all the vertices adjacent to vertices of G0 and all the edges
between them. Then we replace each vertex in N.G0/ nG0 with a vertex of type .D/, and the obtained
graph is called the .D/–closure of G0, denoted by yG0. See Figure 8 for an example. The left of the figure
shows an encoding graph G and subgraphs G0; : : : ;G4 of G, and the right one shows the .D/–closure
yG0 of G0.

3 Shadows of 2–knots and knot groups

3.1 Shadows of 2–knots

A smoothly embedded surface K in a 4–manifold W is called a knotted surface. If K and W are
diffeomorphic to S2 and S4, respectively, then K is called a 2–knot. A 2–knot is said to be unknotted (or
trivial) if it bounds a smooth 3–ball in S4.

We now define a shadow of a 2–knot as follows.

Definition 3.1 Let K be a 2–knot. A shadow X of S4 is called a shadow of K if K is embedded in X .

We can define a shadow also for a knotted surface in a similar manner, but it is not our focus in this paper.

Note that an unknotted 2–knot is a shadow of itself with gleam 0. In general, a 2–knot is unknotted if and
only if it admits a shadow without true vertices, which will be shown in Theorem 6.4.

Theorem 3.2 Every 2–knot admits a shadow.

By considering the handle decomposition relative to Nbd.KIS4/, we can prove the above as an application
of Theorem 2.2. In Section 4, we will give a recipe for making a shadow of a 2–knot from a banded
unlink diagram, which gives an alternative proof of Theorem 3.2.

Then we define complexities for 2–knots as well as for 4–manifolds.

G0G1 G2

G3

G0

Figure 8: The .D/–closure of a subgraph G0.
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Definition 3.3 For a 2–knot K, the shadow-complexity sc.K/ and the special shadow-complexity scsp.K/

of K are defined as the minimum number of true vertices of all shadows of K and that of all special
shadows of K, respectively.

3.2 Knot groups

Let K be a 2–knot. The knot group G.K/ of K is the fundamental group of the complement of K. We
will give a presentation of G.K/ in Proposition 3.4. To state this proposition, we first give some notation.

Let X be a shadow of K and XK be a regular neighborhood Nbd.KIX / of K in X . Choose a regular
neighborhood Nbd.KIS4/ such that XK is proper in Nbd.KIS4/, and let it be denoted by MK . Set

X 0 DX n Int XK ;

T D @X 0\ @XK � @X
0;

MX 0 D Nbd.X 0IS4
n Int MK /:

We assume that X 0 and T are connected for simplicity. Note that this can always be assumed by applying
some .0!2/–moves (see [Costantino 2004; Turaev 1994]) in advance; see also Remark 3.5. The gluing
map @MX 0 \MK ! @MK will be written as f . Note that T is a graph and the valency of each vertex of
T is 3. By the definition of shadows of 2–knots, the knot complement S4 nK admits a decomposition

.MK nK/[f MX 0 [ .3– and 4–handles/:

We can easily see that MK nK Š .S2 �D2/ n .S2 � f0g/ and it retracts onto @MK (Š S2 �S1). We
also see that MX 0 retracts onto X 0 with keeping T . Thus, the knot group G.K/ can be computed from
@MK [f jT X 0.

Choose a basepoint t 2 T and a presentation

�1.X
0; t/D hS jRi:

Since T is a graph, its fundamental group is freely generated by some loops

w1; : : : ; wm 2 �1.X
0; t/:

We assign an orientation to K arbitrarily. Then the fundamental group of @MK has a presentation

�1.@MK ; t/D h�i;

where � is the meridian of K whose orientation agrees with those of K and S4.

For each i 2 f1; : : : ;mg, there is a 2–chain Di D
P

ai;j Rj in K with

@Di D Œwi � 2H1.Cl.XK nK//ŠH1.S.X /\K/;

where Rj is a region contained in K with an orientation induced from that of K. Set

(2) gl.wi/D
X

ai;jgl.Rj /:
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This number is equal to the algebraic intersection number of zDi and K in MK , where zDi is a smooth
oriented surface bounded by f .wi/ in MK . Hence we have f .wi/D �

gl.wi / in �1.@MK ;�/. Therefore,
by van Kampen’s theorem, we obtain the following.

Proposition 3.4 Under the above settings ,

G.K/Š hS; � jR; w1�
�gl.w1/; : : : ; wm�

�gl.wm/i:

Remark 3.5 The assumption that X 0 and T are connected is not essential. The case where X 0 and T

are not connected is as follows. Let X 0
1
; : : : ;X 0

k
and T1; : : : ;Tk denote the connected components of X 0

and T , respectively. Then the knot group G.K/ is presented as

G.K/Š hS1; : : : ;Sk ; � jR1; : : : ;Rk ; w1�
�gl.w1/; : : : ; wm0��gl.wm0 /

i;

where �1.X
0

j /Š hSj jRj i for j 2 f1; : : : ; kg and w1; : : : ; wm0 are loops in �1.X
0
1
/� � � � ��1.X

0
k
/ such

that they generate �1.T1/� � � � ��1.Tk/.

4 Banded unlink diagrams

In this section, we give a review of a description called a banded unlink diagram for a knotted surface.
See [Hughes et al. 2020] for the details. We start with the definition of banded links in a 3–manifold.

4.1 Banded links

For a link L in a 3–manifold N, the image b D Imˇ of an embedding ˇ W Œ0; 1� � Œ0; 1� ! N with
L\ b D ˇ.f0; 1g � Œ0; 1�/ is called a band. The core of b is defined as ˇ.Œ0; 1�� f1=2g/. The pair .L;b/
of L and mutually disjoint bands bD b1[ � � � [ bn is called a banded link. The negative resolution and
the positive resolution of .L;b/, respectively, are defined as the links L and Lb, where

Lb D

�
L n

� n[
iD1

ˇi.f0; 1g � Œ0; 1�/

��
[

� n[
iD1

ˇi.Œ0; 1�� f0; 1g/

�
:

4.2 Banded unlink diagrams

Let W be a closed 4–manifold, and fix a handle decomposition of W having a single 0–handle. For
i 2 f0; : : : ; 4g, let Wi denote the handlebody consisting of all the handles with indices at most i . Clearly,
W0 Š B4 and W4 D W . Suppose that this handle decomposition is described by a Kirby diagram
K D L1 t L2 � S3, where L1 is a dotted unlink indicating the 1–handles and L2 is a framed link
indicating the 2–handles. Note that S3 in which K is drawn is considered as the boundary @W0 of the
0–handle, and we can identify the complement S3 n �K of a tubular neighborhood �K of K with a subset
in @W2.
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Figure 9: Band moves of banded unlink diagrams.

Let .L;b/ be a banded link in S3 n �K. Note that .L;b/ is considered as a banded link in @W2 and
also in @W1. Suppose that the negative resolution L and the positive resolution Lb are unlinks in @W1

and @W2, respectively. Then we call the triple .K;L;b/ a banded unlink diagram in K.

A banded unlink diagram .K;L;b/ can be interpreted as a presentation of a knotted surface in the
4–manifold W in the following way. By the definition of a banded unlink diagram, there exist collections
D1 � @W1 and D2 � @W2 of 2–disks bounded by L and Lb, respectively. We push the interiors of D1

and D2 into Int W1 and W nW2, respectively, with keeping the boundaries. Then set K D D1[b[D2.
It forms a knotted surface in W , and .K;L;b/ is also said to be a banded unlink diagram for K.

If a Kirby diagram for S4 consists of no dotted circles and no framed knots, we will say that such a
diagram is the trivial Kirby diagram. By Kawauchi, Shibuya and Suzuki [Kawauchi et al. 1982] and also
by Lomanaco [1981], it was shown that any 2–knot admits a banded unlink diagram in the trivial Kirby
diagram. In the general case, Hughes, Kim and Miller [Hughes et al. 2020] showed that any knotted
surface in any closed 4–manifold admits a banded unlink diagram.

See Figure 9. The three moves shown in the left of the figure (in the trivial Kirby diagram) were introduced
by Yoshikawa [1994], and it was shown that these moves are sufficient to relate any two banded unlink
diagrams describing the same knotted surface by Swenton [2001] and also by Kearton and Kurlin [2008].
The other moves in Figure 9 were introduced by Hughes, Kim and Miller [Hughes et al. 2020] for the
general case. The seven kinds of moves exhibited in the figure are called band moves.
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zX.L;b;pr/

(i) .L;b/ (ii) �

(iii)
D0

zX 0
.L;b;pr/

D0

X.L;b;pr/

D0

cap

Figure 10: An example of a banded unlink diagram .L;b/, � , and polyhedra zX.L;b;pr/, zX 0.L;b;pr/
and X.L;b;pr/.

Theorem 4.1 (Hughes, Kim and Miller [Hughes et al. 2020]) Two banded unlink diagrams .K;L;b/
and .K;L0;b0/ representing the same knotted surface are related by a finite sequence of band moves.

4.3 Shadows from banded unlink diagrams

We again focus on the case of 2–knots. In this subsection, we give a construction of a shadow of a 2–knot
from a banded unlink diagram.

Let K be a 2–knot and .K;L;b/ a banded unlink diagram for K, where L D L1 t � � � t Lm and
b D b1 t � � � t bn. For simplicity, we suppose K is the trivial Kirby diagram, and we will write .L;b/
instead of .K;L;b/. In this case, the ambient 4–manifold S4 is decomposed into one 0–handle W0 and
one 4–handle, and .L;b/ is assumed to be in @W0. As explained in Section 4.2, the 2–knot K lies in S4 so
that K\@W0DL[b, and we recall the notations D1D .K\Int W0/[L and D2D .K\S4nW0/[Lb.

Step 1 Let � be the union of L and the cores of b1; : : : ; bn, which is a trivalent graph in S3 D @B4. Let
� be a regular projection from � to a 2–disk D0 such that the images of L1; : : : ;Lm bound mutually
disjoint 2–disks D1; : : : ;Dm �D0, respectively. Then consider (abstractly) the mapping cylinder

zX.L;b;pr/ D
�
D0[ .� � Œ0; 1�/

�
=�

of � , where � is defined by �.x/� .x; 0/ for x 2 � . Since � is chosen so that the diagram is regular,
zX.L;b;pr/ is a simple polyhedron. This polyhedron can be embedded in the 4–ball W0 as a shadow since
zX.L;b;pr/ can collapses onto the disk D0. Actually, there is a natural gleam on zX.L;b;pr/ determined from

the diagram of � such that it corresponds to a 4–ball in which zX.L;b;pr/ is embedded as a shadow. See
Remark 4.3. Then zX.L;b;pr/ will be considered as a shadow of W0, and we can naturally identify

� @ zX.L;b;pr/ n @D0 with � � @W0, and

�
Sm

iD1

�
Di [ .Li � Œ0; 1�/

�
with D1 �W0.

See Figure 10 for an example. The banded link .L;b/ shown in Figure 10(i) consists of one unknot L

and one band bD b, and it is a presentation of the trivial 2–knot. Figure 10(ii) shows a diagram of the
graph � DL[ .core of b/. Then zX.L;b;pr/ is a polyhedron as shown in the leftmost of Figure 10(iii).
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1
2
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Figure 11: The local contribution to the gleams.

Step 2 The graph � lies in @W0 as the boundary of zX.L;b;pr/, and the whole banded link .L;b/ is also
embedded in @W0. Set

zX 0.L;b;pr/ D
zX.L;b;pr/[b

and then push Nbd.bI zX 0
.L;b;pr// into Int W0 so that zX 0

.L;b;pr/ is properly embedded in W0. See the center

of Figure 10(iii). Note that zX 0
.L;b;pr/ is also a shadow of W0.

Step 3 The boundary @ zX 0
.L;b;pr/ � @W0 is the positive resolution Lb of .L;b/, which is the m0–

component unlink, where m0 D 2Cn�m. We attach m0 2–handles to W0 along Lb with 0–framing, and
we set

X.L;b;pr/ D zX
0
.L;b;pr/[D01[ � � � [D0m0 ;

where D0
1
; : : : ;D0m0 are the core disks of the 2–handles. See the right of Figure 10(iii). These disks

D0
1
; : : : ;D0m0 correspond to D2. The 4–manifold W0 with the 2–handles attached is diffeomorphic to

\m0.S2 �D2/, and X.L;b;pr/ is its shadow. We can obtain S4 from this 4–manifold by attaching m0

3–handles and a 4–handle in a canonical way [Laudenbach and Poénaru 1972]. Hence X.L;b;pr/ is a
shadow of S4, and the 2–knot K is realized in S4 as� m[

iD1

�
Di [ .Li � Œ0; 1�/

��
[b[

� m0[
jD1

D0j

�
in X.L;b;pr/. Thus we have the following.

Proposition 4.2 The polyhedron X.L;b;pr/ is a shadow of K.

Remark 4.3 The gleams of regions of X.L;b;pr/ can be easily calculated. For regions on the disk D0, we
can use the rule shown in Figure 11: the gleam of an internal region contained in D0 is given as the sum
of the local contribution shown in the figure at each crossing of the diagram of � adjacent to the region
[Costantino and Thurston 2008; Turaev 1994]. The gleam of the region forming .core of bi/� Œ0; 1� is
given as the number of times bi twists with respect to D0 on the diagram. Each of the remaining regions
is a part of K and contains a core disk D0j of a 2–handle. The gleams of them are the minus of the writhe
number of L0j on D0, where L0j is the component of Lb to which D0j is attached.

Remark 4.4 All the true vertices of X.L;b;pr/ lie on D0. Each of them derives from a crossing of the
diagram of � or a trivalent vertex of � . Thus, we can estimate the shadow-complexity of K from the
diagram of � . Examples will be studied in the next subsection.
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n
k

b1

b2 L1 L2

n
k

D0

Figure 12: Left: a banded unlink diagram of the k–twist spun knot of T .2; 2nC 1/. Right: a
diagram of the graph � that is the union of L1;L2 and the cores of b1; b2.

Remark 4.5 Even if K is not trivial, we also can construct a shadow of K by considering a shadow of
W2 instead of the disk D0.

4.4 Examples

Let T .2; 2nC1/k denote the k–twist spun of the classical torus knot T .2; 2nC1/. Figure 12, left, shows
a banded unlink diagram .L;b/D .L1 tL2; b1[ b2/ for T .2; 2nC 1/k that was given in [Jabłonowski
2016]. Considering a natural projection pr W �!D0 from the graph � DL1[L2[ .cores of b1; b2/ to
a 2–disk D0, we draw a regular diagram of � as in Figure 12, right. This diagram has 4nC 2k crossings,
and � has 4 trivalent vertices. Hence X.L;b;pr/, a shadow of T .2; 2nC1/k , has 4nC2kC4 true vertices.
The polyhedron X.L;b;pr/ has a single boundary region, which is adjacent to 2kC 3 true vertices. These
true vertices are eliminated by collapsing, and the resulting polyhedron is still a shadow of T .2; 2nC1/k .
Therefore, we obtain an upper bound of the shadow-complexity of the twist spun knot T .2; 2nC 1/k .

Proposition 4.6 sc.T .2; 2nC 1/k/� 4nC 1.

Remark 4.7 The 1–twist spun of any 1–knot is trivial [Zeeman 1965]. As we will see in Theorem 6.4,
the shadow-complexity of an unknotted 2–knot is 0. The 2–knot T .2; 2nC 1/k with nD 1 and k D 0 is
the spun trefoil, which is K�1 in our notation; see Figure 1. We will show that its shadow-complexity
is 1 in Theorem 8.10.

5 Modifications and fundamental groups

A subspace Y of a simple polyhedron X is called a subpolyhedron if there exist simple closed curves
1t� � �tn in X n.S.X /[@X / such that Y is the closure of a connected component of X n.1t� � �tn/.
It is obvious that Y itself is a simple polyhedron. Each simple closed curve i is a boundary component
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of Y , and it is called a cut end of Y in X . In other words, a boundary component of Y but not of X is
called a cut end. If X is a shadowed polyhedron, Y can also be assigned with gleams canonically [Naoe
2017].

Henceforth, we fix the following notation:

� K is a 2–knot, and

� X is a shadow of K.

Note that X is simply connected since it is a shadow of S4.

5.1 Compressing disk addition

Let  be a simple closed curve contained in a region of X . Let � WMX !X be the projection, where MX

is the 4–manifold obtained from X by Turaev’s reconstruction. Since X is also a shadow of S4, we have
@MX Š #h.S

1 �S2/ for some h 2 Z�0. Hence .�j@MX
/�1. / is an embedded torus in #h.S

1 �S2/.
Every embedded torus in #h.S

1�S2/ has a compressing disk by Dehn’s lemma, so let D be such a disk
for the torus .�j@MX

/�1. /. We consider a 2–disk D0 enlarged from D such that D0 nD � �
�1. /

and @D0 � X , and then modify the disk D0 near its boundary so that @D0 is a generically immersed
curve in Nbd. IX / by a small perturbation. This can be done without creating self-intersections of
Int D0 . We thus obtain a new simple polyhedron X [D0 embedded in S4.

Proposition 5.1 [Koda et al. 2022] Under the above settings , X [D0 is a shadow of S4 and also of K.

The disk D0 is called a compressing disk of  . The addition of D0 corresponds to attaching a 2–handle
that is canceled with a 3–handle.

Note that the image of @D by � is contained in  . Then we can define a map � W@D! by �.x/D�.x/.
There are two important cases:

(i) deg.�/D 0, and

(ii) jdeg.�/j D 1.

In other words,

(i) @D0 is null-homotopic in Nbd. IX /, and

(ii) @D0 is homotopic to  in Nbd. IX /.

The disk D is said to be vertical if (i), and horizontal if (ii). Figure 13 shows the modification of X to
X [D0 in the cases (i) and (ii).

Remark 5.2 If  is a small circle bounding a disk in a region and has a vertical compressing disk,
then we often say that the region has a vertical compressing disk. Clearly, any such  has a horizontal
compressing disk.
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(i) (ii)

 1

�1

1
�n 0 n

Figure 13: A vertical compressing disk (i) and a horizontal compressing disk (ii).

5.2 Connected-sum and reduction

Suppose that X has a disk region D such that Nbd.@DIX / is homeomorphic to Y111 and gl.D/D 0. The
neighborhood Nbd.DIX / is shown in the left of Figure 14. Note that there exists a smooth 3–ball BD

in S4 such that Nbd.DIX /� BD since gl.D/D 0. We consider a modification as shown in Figure 14.
Precisely, we first remove Int Nbd.DIX / from X and then cap each of the resulting boundary circles
off with a 2–disk. This modification can be performed locally in BD as in the figure. Since X is simply
connected, this modification produces two new simple polyhedra X 0

1
and X 0

2
. We suppose that X 0

1
contains

the whole K, and we say that X 0
1

is obtained from X by the connected-sum reduction along D.

Proposition 5.3 Suppose c.X / � 1 and that X 0
1

is obtained from X by the connected-sum reduction
along a disk region D. Then X 0

1
is a shadow of K.

Proof Let W denote the 4–sphere in which K and X are embedded. By [Martelli 2011, Proposition 4.1],
the 4–sphere W can be decomposed as W1 # W2, where W1 and W2 are closed 4–manifolds admitting
shadows X 0

1
and X 0

2
, respectively. Since either X 0

1
or X 0

2
has no true vertices by c.X /� 1, the correspond-

ing 4–manifold, namely W1 or W2, is diffeomorphic to S4 by [Martelli 2011, Corollary 1.8]. Thus, both
W1 and W2 are diffeomorphic to S4. Then W n Int Nbd.X 0

1
IW / is diffeomorphic to a 4–dimensional

1–handlebody, and hence X 0
1

is a shadow of K.

5.3 Lemmas on encoding graphs

Here we prepare some lemmas about the shape and the types of the vertices of an encoding graph of X .

Lemma 5.4 [Martelli 2011, Claim 1] Suppose that a loop  � X separates X into two connected
components V1 and V2. Then both V 0

1
and V 0

2
are simply connected , where V 0

1
D V1 [ D2 and

V 0
2
D V2[ D2.

Proof The quotient space X= is homeomorphic to the wedge sum V 0
1
_V 0

2
. Then we have a surjection

from �1.X /D f1g onto �1.V
0

1
/��1.V

0
2
/.

0

Figure 14: Connected sum.
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Figure 15: Graphs that are not contained in a graph encoding a simply connected polyhedron.

We rephrase the above lemma in terms of encoding graphs as below.

Lemma 5.5 Let G be a tree encoding X and G0 ¨ G be a subgraph. Then a simple polyhedron encoded
by the .D/–closure yG0 is also simply connected.

Lemma 5.6 Suppose c.X /� 1. Let G be a graph encoding X .

(1) G is a tree.

(2) G does not have a vertex of type .Y2/, .Y3/, .X1/, .X2/, .X5/, .X6/ or .X7/.

(3) G does not contain either subgraph shown in Figure 15.

Proof (1) We can embed G in X as a retract, and hence there is a surjection �1.X /! �1.G/.

(2) Assume that G has a vertex v of type .Y2/, .Y3/, .X1/, .X2/, .X5/, .X6/ or .X7/. Then the
polyhedron encoded by the .D/–closure Ov is not simply connected, which is a contradiction to
Lemma 5.5.

(3) The proof is similar to that of (2).

Remark 5.7 (1) The fundamental groups of the special polyhedra encoded by the .D/–closures of
vertices of types .Y2/, .Y3/, .X1/, .X2/, .X5/, .X6/ and .X7/ are isomorphic to Z=2Z, Z=3Z,
hx;y j xyx�2y�2i, hx;y j xyx2y�2i, Z=3Z, Z=4Z and Z=5Z, respectively.

(2) The two polyhedra encoded by the .D/–closures of the subgraphs shown in Figure 15 are homeo-
morphic, and their fundamental groups are isomorphic to Z=2Z.

5.4 Lemmas on the fundamental groups of subpolyhedra

In this subsection, we present four lemmas on the fundamental group of subpolyhedron in X . Lemmas 5.9
and 5.10 treat a subpolyhedron with one cut end, and Lemmas 5.11 and 5.12 treat a subpolyhedron with
two cut ends. Note that we will assume that X is closed in these lemmas, which actually does not matter
for our main theorems due to Lemma 6.1.

Definition 5.8 Let G be a tree graph encoding a simple polyhedron. Let v and v0 be vertices of G and
v0 is of type .Y12/. If the edge incident to v0 with no dashes is contained in the shortest path from v to v0,
then v0 is said to be one-sided to v. Otherwise we say that v0 is two-sided to v.

Lemma 5.9 Suppose X is closed , and let V be a subpolyhedron of X with a single cut end  and
c.V /D 0. Then there exists a nonnegative integer k such that �1.V /Š h j 

2k

i.
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G1

m

m

m0

m0

G2

G1
m m0

G2

v

v

v

e0

e0

v

v

v

e1

e1

e2

e2

Figure 16: The possible cases of a graph G encoding V .

Proof Let G be an encoding graph of V . From Lemma 5.4, the polyhedron V [ D2 is simply connected,
and G is a tree from Lemma 5.6(1). This graph G has exactly one vertex of type .B/ corresponding to  ;
let v denote it. Other vertices in G are of types .D/, .Y12/, .P/ or .Y111/ by Lemma 5.6(2). Note that
the valencies of types .D/, .Y12/, .P/ and .Y111/ are 1, 2, 3 and 3, respectively.

We assign an orientation to  arbitrarily. Let v be the nearest vertex from v among those of types .D/,
.P/ and .Y111/. By Lemma 5.6(3), the possible cases are shown in Figure 16, where m;m0 2 Z�0. We
prove the argument by induction on the number of vertices of types .D/, .P/ and .Y111/ in G, so it is
enough to consider the following (i)–(iii).

(i) Suppose that G is as shown in Figure 16, top. Then we easily obtain �1.V /Š h j 
2m

i.

(ii) Suppose that G is as shown in Figure 16, middle, and that �1.Vi/ Š hi j 
2ki

i i for i 2 f1; 2g,
where Vi is the polyhedron encoded by the subgraph Gi and i D @Vi . Let 0 be a lift of e0. Note
that i is a lift of ei for i 2 f1; 2g. By Lemma 5.5 applied to the subgraph v [G1 [G2, the group
h1; 2 j 

2k1

1
;  2k2

2
; 12i must be trivial, and hence we have k1 D 0 or k2 D 0. Suppose k2 D 0. Then

�1.V /Š h; 0; 1; 2 j 
2m

 2m0

0 ;  2k1

1 ;  2k2

2 ; 012i

Š h; 0; 1 j 
2m

 2m0

0 ;  2k1

1 ; 01i

Š h; 0 j 
2m

 2m0

0 ;  2k1

0 i:

It becomes trivial by adding a relation  D 1 since �1.V [ D2/D f1g. Hence m0 D 0 or k1 D 0, and
the lemma follows in either case.

(iii) Suppose that G is as shown in Figure 16, bottom, and that �1.Vi/Š hi j 
2ki

i i for i 2 f1; 2g, where
Vi is the polyhedron encoded by the subgraph Gi and i D @Vi . Let 0 be a lift of e0. We have

�1.V /Š h; 0; 1; 2 j 
2m

 2m0

0 ;  2k1

1 ;  2k2

2 ; 0 D 1 D 2i Š h; 0 j 
2m

 2m0

0 ;  2k3

0 i;
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where k3Dminfk1; k2g. It becomes trivial by adding a relation  D 1 since �1.V [ D2/D f1g. Hence
m0 D 0 or k3 D 0, and the lemma follows in either case.

For each vertex v of type .D/, let k.v/ denote the number of vertices of type .Y12/ one-sided to v
contained in the geodesic from v to v. By the proof of Lemma 5.9, the integer k stated in the lemma is
given as the minimum of k.v/ for any vertex v of type .D/. Thus we also have proved the following.

Lemma 5.10 Under the same notation as in Lemma 5.9 and its proof , if �1.V /D f1g, then there exists
a leaf such that all the vertices of type .Y12/ contained in the geodesic (in G) from v to the leaf are
two-sided to v .

Lemma 5.11 Suppose X is closed , and let U be a subpolyhedron of X with exactly two cut ends 1t2

and c.U /D 0. Suppose that Œ1� is not a torsion element in H1.U /.

(1) Œ2� is also not a torsion element in H1.U /.

(2) �1.U /Š h1; 2 j .
2m

1
 2l

2
/2

k

i for some k; l;m 2 Z�0.

Proof (1) We have c.U [2
D2/D 0. Hence H1.U [2

D2/ is a finite cyclic group generated by Œ1�

by Lemma 5.9. Suppose, to derive a contradiction, that Œ2� is a torsion element in H1.U /. Then the
normal subgroup hŒ2�i generated by Œ2� is contained in the torsion subgroup t.H1.U // of H1.U /. Since
the free part H1.U /=t.H1.U // has the nontrivial element Œ1� and H1.U [2

D2/ŠH1.U /=hŒ2�i, the
free part of H1.U [2

D2/ is also nontrivial, which is a contradiction.

(2) Let G be a tree encoding U , and let v1 and v2 be the vertices of type .B/ corresponding to 1 and 2,
respectively. Let ` be the geodesic from v1 to v2. The vertices in G other than v1 or v2 are of types .D/,
.Y12/, .P/ or .Y111/

We assume that ` contains a vertex v of type .Y111/ and lead to a contradiction. Recall that there are three
edges incident to v. See Figure 17(i-1). Let e be the edge such that it is incident to v and between v and v2,
and let e0 be the edge incident to v and not on `. Let G1, G2 and G3 be subgraphs of G as indicated in
Figure 17(i-1). Now let U 0 be one of the components containing 1 obtained by cutting U along a lift
of e, which is encoded in Figure 17(i-2). This subpolyhedron U 0 has two boundary components: one is
1 and the other, namely a lift of e, will be denoted by  0

2
. Since U 0 itself satisfies the assumption of the

lemma, the cycle Œ 0
2
� is not a torsion element in H1.U

0/ by (1). It is homologous to a cycle represented
by a lift of e0, which is a torsion element in the subpolyhedron encoded by G3 by Lemma 5.9. It is a
contradiction. Therefore, the vertices between v1 and v2 are of types .Y12/ or .P/.

If ` does not contain vertices of type .P/, the graph G is as shown in Figure 17(ii) by Lemma 5.6(3). We
then have �1.U /Š h1; 2 j 

2m

1
 2l

2
i.

We then suppose that G has a vertex v of type .P/, and G is as shown in Figure 17(iii-1). We can assume
that each vertex of type .Y12/ in ` is two-sided to v by Lemma 5.6(3). Suppose that there is a subgraph of
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v1 v2

v1 v2

v1 v2

e1 e2

m l

e v1 e

v

v

v0
G4 G5

G3

G1 G2

G3

G1

G6 G7
e3

e0e0

(ii)

(i-1) (i-2)

(iii-1) (iii-2)

Figure 17: Encoding graphs of U used in the proof of Lemma 5.11.

G4 as shown in Figure 17(iii-2), where v0 is a vertex of type .P/ contained in `. The fundamental group
of the subpolyhedron encoded by G7 is isomorphic to h 0 j  02

k0

i for some k 0 2 Z�0 by Lemma 5.9,
where  0 is the boundary of the subpolyhedron. The simple polyhedron encoded by the .D/–closure
of the graph shown in Figure 17(iii-2) is simply connected by Lemma 5.5. Hence the subpolyhedron
encoded by G7 must be simply connected as well. Therefore, the graph G4 in Figure 17(iii-1) encodes a
polyhedron whose fundamental group is presented by h1;u1 j u1

2m

1
i, where u1 is a lift of e1 and m

is the number of vertices of type .Y12/ in G4\ `. Similarly, the graph G5 in Figure 17(iii-1) encodes a
polyhedron whose fundamental group is presented by h2;u2 j u2

2l

2
i, where u2 is a lift of e2 and l is

the number of vertices of type .Y12/ in G5\ `. By Lemma 5.9, the graph G6 in Figure 17(iii-1) encodes
a polyhedron whose fundamental group is presented by hu3 j u

2k

3
i for some k 2 Z�0, where u3 is a lift

of e3. Thus, we obtain a presentation

�1.U /Š h1; 2;u1;u2;u3 j u1
2m

1 ;u2
2l

2 ;u2k

3 ;u1u2u3i Š h1; 2 j .
2m

1  2l

2 /2
k

i:

From the above proof, we immediately obtain the following lemma, which will be used in the proof of
Theorem 8.6.

Lemma 5.12 Under the same notation as in Lemma 5.11 and its proof , if �1.U /Š h1; 2 j 
2m

1
2i,

then

� any vertex lying in ` is of type .Y12/ or .P/,

� m is the number of the vertices of type .Y12/ lying in `, all of which are one-sided to v1, and

� the subpolyhedron corresponding to each connected component of G n ` is simply connected.
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6 2–Knots with complexity zero

From now on, we discuss the classification of 2–knots according to the shadow-complexity, and we give
the proof of the theorem for the case sc.K/D 0 in this section.

Let us start with the following lemma. It is an analogue of [Koda and Naoe 2020, Lemma 1.3], and the
original statement in the paper is for shadows of “4–manifolds”. Roughly speaking, the shadow-complexity
of any 2–knot is always attained by a closed shadow.

Lemma 6.1 If sc.K/D n, then K admits a closed shadow with complexity exactly n.

Proof The proof is almost the same as that of [Koda and Naoe 2020, Lemma 1.3], so we only sketch the
proof.

Let X be a shadow of K with c.X / D n and @X ¤ ∅. Then X collapses onto an almost-simple
polyhedron Y (see [Matveev 2003] for the definition and the details) that is minimum with respect to
collapsing and has at most n true vertices. Note that the collapsing is done in a regular neighborhood
Nbd.X IS4/, which is also a regular neighborhood of Y in S4. Since K is a 2–sphere embedded in X ,
it is kept by collapsing, that is, K is also embedded in Y . The polyhedron Y is either a closed simple
polyhedron or the union of a closed simple polyhedron and a graph. If the former, this Y is what we
required. If the latter, as in the proof of [Koda and Naoe 2020, Lemma 1.3], Y can be modified to a
closed simple polyhedron Y 0 such that Y and Y 0 have the same regular neighborhood in S4 and also that
no new true vertices are created by the modification.

As well as in Lemma 5.9, we consider a subpolyhedron having one cut end in the next lemma. However,
unlike in Lemma 5.9, Lemma 6.2 gives a homological condition, and a subpolyhedron can have true
vertices and boundary components other than the cut end. Recall the notation gl. / defined in formula (2).

Lemma 6.2 Set XK D Nbd.KIX /, and suppose that @XK has a circle component  . Let X 0 be a
connected component of X n Int XK with XK \ @X

0 D  . Give orientations to K and  arbitrarily. Then
at least one of the following holds:

� H1.X
0/ is an infinite cyclic group generated by Œ �, or

� gl. /D 0.

Proof We have H1. /Š Zh i and H1.X /Š 0. From the Mayer–Vietoris sequence

H1. /!H1.X n Int X 0/˚H1.X
0/!H1.X /;

H1.X
0/ admits a surjection from Z generated by Œ �.

If H1.X
0/D Z=kZh i for some k 2 Z>0, there is a 2–chain C in X 0 such that @C D kŒ �. Let

D D
X

aj Rj
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be a 2–chain in XK with @D D Œ �, where Rj is a region contained in K. Then C � kD is a homology
cycle in X , and we have

Q.ŒK�;C � kD/D�k
X

ajgl.Rj /D�kgl. /;

where Q is the intersection form on H2.X /. Since the intersection form of S4 is trivial, gl. /D 0.

Lemma 6.3 Suppose X is closed and that S.X /\K has a circle component  bounding a disk region
D on K. Let X 0 be a connected component of X nK with @X 0 D  . If X 0 does not contain true vertices ,
then X nX 0 is a shadow of K.

Proof From Lemma 5.9, H1.X
0/Š Z=2kZ for some k 2 Z�0. Then gl.D/D 0 by Lemma 6.2, and

X nX 0 is a shadow of K by Proposition 5.3.

Theorem 6.4 A 2–knot K is unknotted if and only if sc.K/D 0.

Proof Let X be a shadow of a 2–knot K with c.X /D 0. By Lemma 6.1, we can assume @X D∅. Since
c.X /D 0, each component of S.X /\K is a circle, and each component of X nK does not contain true
vertices. By iterating Lemma 6.3, K admits itself as a shadow. Hence K is unknotted. The converse is
obvious.

7 Existence of 2–knots with complexity one

From here, we always assume that

� X is a closed shadow of a 2–knot K, and

� c.X /D 1.

Note that K\S.X / is not empty. Then there are two cases:

(i) the true vertex is contained in a component of K\S.X /, which is an 8–shaped graph, and

(ii) the true vertex does not lie on K and every component of K\S.X / is a circle.

Therefore, we can also assume the following by Lemma 6.3:

� K\S.X / is connected, and it is a circle or an 8–shaped graph.

Moreover, we fix the notation

� X 0 DX n Int Nbd.KIX /,

which is also connected by the above assumption.

7.1 True vertex lies on K

Suppose that the true vertex of X lies on K. Let us first consider the case of special shadow-complexity 1.
We need the following lemma.
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Lemma 7.1 Let K be a 2–knot. Suppose that S4 admits a decomposition consisting of Nbd.KIS4/,
one 2–handle , two 3–handles and one 4–handle. Then K is unknotted.

Proof We regard Nbd.KIS4/ as the union of a 0–handle h0 and a 2–handle h2. This 2–handle h2 is
attached along the 0–framed unknot L lying on the boundary of h0 since Nbd.KIS4/Š S2 �D2. Let
h0

2
be the other 2–handle in the decomposition, and let L0 be its attaching circle. This framed knot L0 is

contained in @h0 n�L, and hence LtL0 forms a 2–component link in @h0 Š S3. By [Gompf et al. 2010,
Proposition 3.2], we can modify the link LtL0 into the unlink only by using handle-slides of L0 over L.
Then L0 is contained in a small 3–ball in the boundary of h0[ h2 (D Nbd.KIS4/), and the 2–sphere K

can be pushed to the boundary of h0 [ h2 [ h0
2

by isotopy. The resulting 2–sphere plays a role of the
attaching sphere of a 3–handle by [Laudenbach and Poénaru 1972]. Hence K bounds a 3–ball in S4,
which is the definition of K to be unknotted.

Theorem 7.2 There are no 2–knots with special shadow-complexity 1.

Proof Let us suppose that X is a special shadow X of K with c.X /D 1. Then S.X / is connected and
S.X /�K. Moreover, it is homeomorphic to an 8–shaped graph, and Nbd.S.X /IK/ is homeomorphic
to a pair of pants. Hence Nbd.S.X /IX / is homeomorphic to X11 (see Section 2.4), and X 0 is a 2–disk.
Thus, S4 is decomposed as in Lemma 7.1, and K is unknotted and scsp.K/D 0.

We next consider the nonspecial case.

Proposition 7.3 If the true vertex of X lies on K, then G.K/ is an infinite cyclic group.

Proof Let S be the component of K \ S.X / containing the true vertex. As well as in the proof of
Theorem 7.2, Nbd.S IX / is homeomorphic to X11, and @X 0DX 0\Nbd.KIX / is a circle. By Lemma 5.9,
�1.X

0/Š h j  2k

i for some k 2 Z�0, where  D @X 0. Then we have G.K/Š h; � j  2k

; ��gl. /i

by Proposition 3.4. Since gl. /D 0 by Lemma 6.2, G.K/ is an infinite cyclic group.

7.2 True vertex does not lie on K

Hereafter we suppose that the true vertex of X does not lie on K, that is, it is contained in X 0. In this
subsection, we investigate the knot group of K.

The part S.X /\K of the singular set separates K into two disk regions, and their gleams are g and �g

for some g 2 Z�0 since the self-intersection number of K is 0.

If g D 0, K is a shadow of itself by Proposition 5.3. Then K is unknotted.

We henceforth suppose g> 0. Let us orient K arbitrarily, and then an oriented meridian � of K is defined.
Set  D @X 0, and let G be a graph encoding X 0. This graph G has exactly one vertex of type .B/, which
corresponds to  and will be denoted by v. By Lemma 5.6(2), G have exactly one vertex v0 of type .X3/,
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v v0v v0

v v0 v v0

G0 G1G0 G1

G0 G1 G0 G1

(i) (ii)

(iii) (iv)

Figure 18: The possible cases of encoding graph G of X such that v0 is of type .X3/ or .X4/.

.X4/, .X8/, .X9/, .X10/ or .X11/, and hence G is one of those shown in Figures 18, 19 and 20. Note that
X8 and X11 have symmetries that interchange two boundary components with the same length. Let Xv0

be the connected component of Nbd.S.X /IX / corresponding to v0, which is homeomorphic to one of
X3, X4, X8, X9, X10 or X11.

Let a denote the abelianization map of a group. In the following, we discuss what kind of 2–knot admits
a shadow encoded by a graph in Figures 18, 19 and 20.

Case 1 (v0 is of type .X3/ or .X4/) The graph G is one of those shown in Figure 18. Let G0 and G1

be subgraphs of G as indicated in the figure. The subpolyhedron X 0 is decomposed into U , Xv0
and V ,

where U and V are the subpolyhedron corresponding to G0 and G1, respectively. Note that U has two cut
ends  t 0, and also note that V has one cut end 1. Then we have �1.V /Š h1 j 

2k1

1
i by Lemma 5.9

for some k1 2Z�0. We also have H1.X
0/ŠZh i by Lemma 6.2. Then we can apply Lemma 5.11 to U ,

and we have �1.U /Š h; 0 j .
2m

 2l

0
/2

k0
i for some k0; l;m 2 Z�0.

Lemma 7.4 The following hold.

(1) If G is shown in Figure 18(i ), then �1.U /Šh; 0 j 
2m

0i and V is simply connected. Moreover ,
G.K/Š hx; � j x2�nx�1��ni, where nD 2mg.

(2) If G is shown in Figure 18(ii ), then G.K/ is an infinite cyclic group.

(3) If G is shown in Figure 18(iii ), then �1.U / Š h; 0 j 
2m

0i and V is simply connected.
Moreover , G.K/Š hx; � j x2�nx�1�ni, where nD 2mg.

(4) If G is shown in Figure 18(iv), then G.K/ is an infinite cyclic group.

Proof (1) The polyhedron X 0 is decomposed as U [X3[V , and U and V are glued with X3 along
the boundary components of X3 with length 1 and 5, respectively. Then the fundamental group of X 0 and
its abelianization are obtained as follows:

�1.X
0/Š hx;y; ; 0; 1 j .

2m

 2l

0 /2
k0
;  2k1

1 ; 0 D y; 1 D xyx�2y�1
i

Š hx;y;  j . 2m

y2l

/2
k0
; .xyx�2y�1/2

k1
i

a
�! Zhxi˚Zhyi˚Zh i=Zh2mCk0 C 2lCk0yi˚Zh2k1xi

ŠH1.X
0/:
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It must be an infinite cyclic group generated by Œ �. Hence k0 D k1 D l D 0. Thus,

G.K/Š hx;y; ; � j . 2m

y2l

/2
k0
; .xyx�2y�1/2

k1
; ��g

i

Š hx; � j x2�nx�1��n
i;

where nD 2mg.

(2) The polyhedron X 0 is decomposed as U [X3 [ V , and U and V are glued with X3 along the
boundary components of X3 with length 5 and 1, respectively. Then the fundamental group of X 0 and its
abelianization are obtained as follows:

�1.X
0/Š hx;y; ; 0; 1 j y D 1;xyx�2y�1

D 0; .
2m

 2l

0 /2
k0
;  2k1

1 i

Š hx;y;  j . 2m

.xyx�2y�1/2
l

/2
k0
;y2k1

i

a
�! Zhxi˚Zhyi˚Zh i=Zh2mCk0 C 2lCk0xi˚Zh2k1yi

ŠH1.X
0/:

It must be an infinite cyclic group generated by Œ �. Hence k0 D k1 D l D 0. Thus,

G.K/Š hx;y; ; 0; 1; � j y D 1;xyx�2y�1
D 0; .

2m

 2l

0 /2
k0
;  2k1

1 ; ��g
i

Š h�i:

(3) The polyhedron X 0 is decomposed as U [X4 [ V , and U and V are glued with X4 along the
boundary components of X4 with length 1 and 5, respectively. Then the fundamental group of X 0 and its
abelianization are obtained as follows:

�1.X
0/Š hx;y; ; 0; 1 j y D 0;xyx�2y D 1; .

2m

 2l

0 /2
k0
;  2k1

1 i

Š hx;y;  j . 2m

y2l

/2
k0
; .xyx�2y/2

k1
i

a
�! Zhxi˚Zhyi˚Zh i=Zh2mCk0 C 2lCk0yi˚Zh2k1.2y �x/i

ŠH1.X
0/:

It must be an infinite cyclic group generated by Œ �. Hence k0 D k1 D l D 0. Thus,

G.K/Š hx;y; ; 0; 1; � j y D 0;xyx�2y D 1; .
2m

 2l

0 /2
k0
;  2k1

1 ; ��g
i

Š hx; � j x2�nx�1�n
i;

where nD 2mg.

(4) The polyhedron X 0 is decomposed as U [X4 [ V , and U and V are glued with X4 along the
boundary components of X4 with length 5 and 1, respectively. Then the fundamental group of X 0 and its
abelianization are obtained as follows:

�1.X
0/Š hx;y; ; 0; 1 j y D 1;xyx�2y D 0; .

2m

 2l

0 /2
k0
;  2k1

1 i

Š hx;y;  j . 2m

.xyx�2y/2
l

/2
k0
;y2k1

i

a
�! Zhxi˚Zhyi˚Zh i=Zh2mCk0 C 2lCk0.2y �x/i˚Zh2k1yi

ŠH1.X
0/:
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Figure 19: The possible cases of encoding graph G of X such that v0 is of type .X8/, .X9/ or .X10/.

It must be an infinite cyclic group generated by Œ �. Hence k0 D k1 D l D 0. Thus,

G.K/Š hx;y; ; � j . 2m

.xyx�2y/2
l

/2
k0
;y2k1

; ��g
i Š h�i:

Case 2 (v0 is of type .X8/; .X9/ or .X10/) The graph G is one of those shown in Figure 19. Let G0, G1

and G2 be subgraphs of G as indicated in the figure. The subpolyhedron X 0 is decomposed into U , Xv0
,

V1 and V2, where U , V1 and V2 are the subpolyhedron corresponding to G0, G1 and G2, respectively.
Note that U has two cut ends  t 0, and also note that Vi has one cut end i for i 2 f1; 2g. Then
we have �1.Vi/ Š hi j 

2ki

i i by Lemma 5.9 for some ki 2 Z�0. We also have H1.X
0/ Š Zh i by

Lemma 6.2. Then we can apply Lemma 5.11 to U , and we have �1.U /Š h; 0 j .
2m

 2l

0
/2

k0
i for some

k0; l;m 2 Z�0.

Lemma 7.5 The following hold.

(1) If G is shown in Figure 19(i ), then G.K/ is an infinite cyclic group.

(2) Figure 19(ii ) does not encode a shadow of any 2–knot.

(3) Figure 19(iii ) does not encode a shadow of any 2–knot.

(4) If G is shown in Figure 19(iv), then G.K/ is an infinite cyclic group.

(5) Figure 19(v) does not encode a shadow of any 2–knot.
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(6) Figure 19(vi ) does not encode a shadow of any 2–knot.

(7) Figure 19(vii ) does not encode a shadow of any 2–knot.

(8) Figure 19(viii ) does not encode a shadow of any 2–knot.

Proof (1) Suppose that G is as shown in Figure 19(i). The polyhedron X 0 is decomposed as

U [X8[V1[V2;

and U , V1 and V2 are glued with X8 along the boundary components of X8 with length 1, 1 and 4,
respectively. The fundamental group of X 0 and its abelianization are obtained as follows:

�1.X
0/Š hx;y; ; 0; 1; 2 j .

2m

 2l

0 /2
k0
;  2k1

1 ;  2k2

2 ; 0 D x; 1 D y; 2 D xyx�1y�1
i

Š hx;y;  j . 2m

x2l

/2
k0
;y2k1

; .xyx�1y�1/2
k2
i

a
�! Zhxi˚Zhyi˚Zh i=Zh2mCk0 C 2lCk0xi˚Zh2k1yi

ŠH1.X
0/:

It must be an infinite cyclic group generated by Œ �. Hence k0 D k1 D l D 0. Thus,

G.K/Š hx;y; ; � j . 2m

x2l

/2
k0
;y2k1

; .xyx�1y�1/2
k2
; ��g

i Š h�i:

(2) Suppose G is as shown in Figure 19(ii). The polyhedron X 0 is decomposed as U [X8[V1[V2,
and U , V1 and V2 are glued with X8 along the boundary components of X8 with length 4, 1 and 1,
respectively. Then the fundamental group of X 0 and its abelianization are obtained as follows:

�1.X
0/Š hx;y; ; 0; 1; 2 j .

2m

 2l

0 /2
k0
;  2k1

1 ;  2k2

2 ; 0 D xyx�1y�1; 1 D x; 2 D yi

Š hx;y;  j . 2m

.xyx�1y�1/2
l

/2
k0
;x2k1

;y2k2
i

a
�! Zhxi˚Zhyi˚Zh i=Zh2mCk0 i˚Zh2k1xi˚Zh2k2yi

ŠH1.X
0/:

It must be an infinite cyclic group generated by Œ �, which is impossible.

(3) Suppose G is as shown in Figure 19(iii). The polyhedron X 0 is decomposed as U [X9[V1[V2.
One of the boundary components of X9 has length 4 and the other two have 1. Note that, however, X9 does
not have a symmetry such as X8. The boundary components of X9 are represented by words xyxy�1, x

and y. Here U , V1 and V2 are glued with X9 along the boundary components of X9 corresponding to x,
y and xyxy�1, respectively. Then the fundamental group of X 0 and its abelianization are obtained as
follows:

�1.X
0/Š hx;y; ; 0; 1; 2 j .

2m

 2l

0 /2
k0
;  2k1

1 ;  2k2

2 ; 0 D x; 1 D y; 2 D xyxy�1
i

Š hx;y;  j . 2m

x2l

/2
k0
;y2k1

; .xyxy�1/2
k2
i

a
�! Zhxi˚Zhyi˚Zh i=Zh2mCk0 C 2lCk0xi˚Zh2k1yi˚Zh2k2C1xi

ŠH1.X
0/:

It must be an infinite cyclic group generated by Œ �, which is impossible.
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(4) Suppose that G is as shown in Figure 19(iv). The polyhedron X 0 is decomposed as U [X9[V1[V2,
and U , V1 and V2 are glued with X9 along the boundary components of X9 corresponding to y, x and
xyxy�1, respectively. Then the fundamental group of X 0 and its abelianization are obtained as follows:

�1.X
0/Š hx;y; ; 0; 1; 2 j .

2m

 2l

0 /2
k0
;  2k1

1 ;  2k2

2 ; 0 D y; 1 D x; 2 D xyxy�1
i

Š hx;y;  j . 2m

y2l

/2
k0
;x2k1

; .xyxy�1/2
k2
i

a
�! Zhxi˚Zhyi˚Zh i=Zh2mCk0 C 2lCk0yi˚Zh2k1xi˚Zh2k2C1xi ŠH1.X

0/:

It must be an infinite cyclic group generated by Œ �. Hence k0 D k1 D l D 0. Thus,

G.K/Š hx;y; ; � j . 2m

y2l

/2
k0
;x2k1

; .xyxy�1/2
k2
; ��g

i Š h�i:

(5) Suppose G is as shown in Figure 19(v). The polyhedron X 0 is decomposed as U [X9[V1[V2,
and U , V1 and V2 are glued with X9 along the boundary components of X9 corresponding to xyxy�1,
x and y, respectively. Then the fundamental group of X 0 and its abelianization are obtained as follows:

�1.X
0/Š hx;y; ; 0; 1; 2 j .

2m

 2l

0 /2
k0
;  2k1

1 ;  2k2

2 ; 0 D xyxy�1; 1 D x; 2 D yi

Š hx;y;  j . 2m

.xyxy�1/2
l

/2
k0
;x2k1

;y2k2
i

a
�! Zhxi˚Zhyi˚Zh i=Zh2mCk0 C 2lCk0C1xi˚Zh2k1xi˚Zh2k2yi ŠH1.X

0/:

It must be an infinite cyclic group generated by Œ �, which is impossible.

(6) Suppose G is as shown in Figure 19(vi). The polyhedron X 0 is decomposed as U [X10[V1[V2,
and U , V1 and V2 are glued with X10 along the boundary components of X10 with length 1, 2 and 3,
respectively. Then the fundamental group of X 0 and its abelianization are obtained as follows:

�1.X
0/Š hx;y; ; 0; 1; 2 j .

2m

 2l

0 /2
k0
;  2k1

1 ;  2k2

2 ; 0 D x; 1 D xy; 2 D xy�2
i

Š hx;y;  j . 2m

x2l

/2
k0
; .xy/2

k1
; .xy�2/2

k2
i

a
�!

Zhxi˚Zhyi˚Zh i

Zh2mCk0 C 2lCk0xi˚Zh2k1.xCy/i˚Zh2k2.x� 2y/i
ŠH1.X

0/:

It must be an infinite cyclic group generated by Œ �, which is impossible.

(7) Suppose G is as shown in Figure 19(vii). The polyhedron X 0 is decomposed as U [X10[V1[V2,
and U , V1 and V2 are glued with X10 along the boundary components of X10 with length 2, 1 and 3,
respectively. Then the fundamental group of X 0 and its abelianization are obtained as follows:

�1.X
0/Š hx;y; ; 0; 1; 2 j .

2m

 2l

0 /2
k0
;  2k1

1 ;  2k2

2 ; 0 D xy; 1 D x; 2 D xy�2
i

Š hx;y;  j . 2m

.xy/2
l

/2
k0
;x2k1

; .xy�2/2
k2
i

a
�!

Zhxi˚Zhyi˚Zh i

Zh2mCk0 C 2lCk0.xCy/i˚Zh2k1xi˚Zh2k2.x� 2y/i
ŠH1.X

0/:

It must be an infinite cyclic group generated by Œ �, which is impossible.
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Figure 20: The possible cases of encoding graph G of X such that v0 is of type .X11/.

(8) Suppose G is as shown in Figure 19(viii). The polyhedron X 0 is decomposed as U [X10[V1[V2,
and U , V1 and V2 are glued with X10 along the boundary components of X10 with length 3, 1 and 2,
respectively. Then the fundamental group of X 0 and its abelianization are obtained as follows:

�1.X
0/Š hx;y; ; 0; 1; 2 j .

2m

 2l

0 /2
k0
;  2k1

1 ;  2k2

2 ; 0 D xy�2; 1 D x; 2 D xyi

Š hx;y;  j . 2m

.xy�2/2
l

/2
k0
;x2k1

; .xy/2
k2
i

a
�!

Zhxi˚Zhyi˚Zh i

Zh2mCk0 C 2lCk0.x� 2y/i˚Zh2k1xi˚Zh2k2.xCy/i
ŠH1.X

0/:

It must be an infinite cyclic group generated by Œ �, which is impossible.

Case 3 (v0 is of type .X11/) The graph G is one of those shown in Figure 20. Let G0, G1, G2 and G3

be subgraphs of G as indicated in the figure. The subpolyhedron X 0 is decomposed into U , Xv0
, V1, V2

and V3, where U , V1, V2 and V3 are the subpolyhedron corresponding to G0, G1, G2 and G3. Note that U

has two cut ends  t0 as a subpolyhedron of X , and also note that Vi has one cut end i for i 2 f1; 2; 3g.
Then we have �1.Vi/Š h1 j 

2ki

1
i by Lemma 5.9 for some ki 2 Z�0. We also have H1.X

0/Š Zh i

by Lemma 6.2. Then we can apply Lemma 5.11 to U , and we have �1.U /Š h; 0 j .
2m

 2l

0
/2

k0
i for

some k0; l;m 2 Z�0.

Lemma 7.6 The following hold.

(1) Figure 20, left , does not encode a shadow of any 2–knot.

(2) Figure 20, right , does not encode a shadow of any 2–knot.

Proof (1) Suppose G is as shown in Figure 20, left. The polyhedron X 0 is decomposed as U [X11[

V1 [V2 [V3, and U , V1, V2 and V3 are glued with X11 along the boundary components of X11 with
length 1, 1, 2 and 2, respectively. The fundamental group of X 0 and its abelianization are obtained as
follows:

�1.X
0/Š hx;y; ; 0; 1; 2; 3 j .

2m

 2l

0 /2
k0
;  2k1

1 ;  2k2

2 ;  2k3

3 ; 0 D x; 1 D y; 2 D xy; 3 D xy�1
i

Š hx;y;  j . 2m

x2l

/2
k0
;y2k1

; .xy/2
k2
; .xy�1/2

k3
i

a
�!

Zhxi˚Zhyi˚Zh i

Zh2mCk0 C 2lCk0xi˚Zh2k1yi˚Zh2k2.xCy/i˚Zh2k3.x�y/i
ŠH1.X

0/:

It must be an infinite cyclic group generated by Œ �, which is impossible.
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1
1�1

0

0

edge eedge e

G1 G2 G1

n�n
(ii)

(iii)

(i)

Figure 21: Adding a horizontal compressing disk (i), adding a vertical compressing disk (ii), and
connected-sum reduction (iii).

(2) Suppose G is as shown in Figure 20, right. The polyhedron X 0 is decomposed as

U [X11[V1[V2[V3;

and U , V1, V2 and V3 are glued with X11 along the boundary components of X11 with length 2, 1, 1
and 2, respectively. Then the fundamental group of X 0 and its abelianization are obtained as follows:

�1.X
0/Š hx;y; ; 0; 1; 2; 3 j .

2m

 2l

0 /2
k0
;  2k1

1 ;  2k2

2 ;  2k3

3 ; 0 D xy; 1 D x; 2 D y; 3 D xy�1
i

Š hx;y;  j . 2m

.xy/2
l

/2
k0
;x2k1

;y2k2
; .xy�1/2

k3
i

a
�!

Zhxi˚Zhyi˚Zh i

Zh2mCk0 C 2lCk0.xCy/i˚Zh2k1xi˚Zh2k2yi˚Zh2k3.x�y/i
ŠH1.X

0/:

It must be an infinite cyclic group generated by Œ �, which is impossible.

8 Classification of 2–knots with complexity one

8.1 Lemmas on decorated graphs

We now define a decoration of an edge e of an encoding graph G as a half-integer such that it is an integer
if and only if the number of red dots appended to e is even (actually, zero or two). If every edge of G is
assigned with a decoration, G is called a decorated graph. A decoration corresponds to a gleam, and a
decorated tree encodes a shadowed polyhedron.

We can easily describe how a decorated graph G changes by adding a compressing disk and a connected-
sum reduction. See Figure 21. If a lift of an edge e of G has a horizontal (resp. vertical) compressing
disk, we can replace the edge e as shown in Figure 21(i) (resp. (ii)). If a decorated graph is as shown in
the left of Figure 21(iii) and if the subpolyhedron corresponding to the subgraph G1 contains K, we can
adopt a decorated graph shown in the right of the figure.

In this subsection, we provide some modifications of shadows and decorated graphs not changing a
2–knot.
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1 1
�1 �1

˙1 ˙1

�1

Figure 22: A move on a shadow: if a region R has a vertical compressing disk, then we can
modify the gleams of R;R0 and R00 as in the figure, where R0 and R00 are regions adjacent to a
common triple line with R.

Lemma 8.1 Suppose that X 0 has a part as shown in the left of Figure 22. Then the move shown in the
figure and its inverse modify X to another shadow of K.

See [Koda et al. 2022] for the proof of the above lemma.

We next introduce eight moves on decorated graphs as shown in Figure 23; moves (a), (b), (c), (d), (e),
(f), (g) and (h). Note that the decoration r in a move (g) is not ˙1

2
.

Lemma 8.2 Let G be a decorated graph of X and G0 be the subgraph corresponding to X 0. Then the
moves shown in Figure 23 that are performed on G0 modify G to another decorated graph encoding a
shadow of K.

Proof Moves (a) and (b) are obtained by a move in Figure 22.

A move (c) is explained in [Martelli 2011, Figure 34(7)].

A move (d) is a obtained by a move (a), a connected-sum reduction, and a YV-move.

A move (e) is a kind of propagation principle [Koda et al. 2022]: if two of the three regions adjacent to a
triple line have vertical compressing disks, then the other also has.

A move (f) is explained in [Martelli 2011, Figure 34(4)].

A move (g) is explained in Figure 24. Let � WMX !X be a natural projection, where MX DNbd.X IS4/.
Then the preimage of the subpolyhedron corresponding to the leftmost graph of Figure 24 by �j@MX

is homeomorphic to the complement of the .2; 2r/–torus knot in S3; see [Ishikawa and Koda 2017,
Figure 11]. Recall that r ¤ 1

2
. Let e be an edge as indicated in the figure, then a lift of e has a vertical

compressing disk by Property P and Property R. Hence we can add a vertical compressing disk as in
Figure 24(i). The move in Figure 24(ii) is obtained by performing a move (b) as many times as necessary.
The move in Figure 24(iii) is done by a move (f) and a YV-move.

A move (h) is explained in Figure 25. The move in Figure 25(i) is obtained by performing moves (c) as
many times as necessary. The move in Figure 25(ii) can be done by using [Martelli 2011, Figure 34(3)].
Here we need the following claim:

Claim 1 A lift of e0 has a vertical compressing disk , where e0 is an edge indicated in the figure.
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1
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2
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�1
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�1 1 �1 1 �1 1 �1 1

Figure 23: Eight moves on decorated graphs. The decoration r in (g) is not˙1
2

.

Proof Let � WMX !X be a natural projection. The preimage of a subpolyhedron homeomorphic to Y111

by �j@MX
is homeomorphic to P�S1. Hence the subgraph after the move in Figure 24(ii) corresponds to a

3–manifold homeomorphic to the Seifert fibered space .D2I .2; 1/; .2;�1//, which has one torus boundary.
The Dehn filling of this manifold along the .p; q/–slope is .S2I .2; 1/; .2;�1/; .p; q//. Note that the slope
with .p; q/D .p; 1/ is sent to a lift of the edge e0 by� injectively, and the slope with .p; q/D .1; 0/ is sent to
one point by � . The 3–manifold .S2I .2; 1/; .2;�1/; .p; q// is not homeomorphic to #h.S

1�S2/ for any
h2Z�0 unless qD0. If qD0, then we have pD1 and .S2I .2; 1/; .2;�1/; .1; 0//Š .S2I .2; 1/; .2;�1//.

1

�11

�1 1

1

�1 1

�1r r �
1
2

(iii)(ii)(i)
edge e

Figure 24: The proof of a move (g).
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1

�1

1

�1

2

�2

2

�21

�1 1

0

01

�1 1

1

�1

r ˙
1
2

1

(i) (ii)

(iii)

(iv) (v)

edge e0

Figure 25: The proof of a move (h).

This space can be understood as a 3–manifold obtained by gluing two solid tori along their boundaries so
that the meridians are identified, and hence it is homeomorphic to S1 �S2. It follows that a lift of e0 has
a vertical compressing disk.

We then continue the proof for the move (h). The move of Figure 25(iii) is the addition of a compressing
disk of a lift of e0. The move in Figure 25(iv) is done by applying move (a) twice. The move in Figure 25(v)
is done by a connected-sum reduction and a YV-move.

Lemma 8.3 Let V be a subpolyhedron of X with a single cut end  and c.V /D 0. Let G be a graph
encoding V and v be the vertex of type .B/ corresponding to  . Suppose that G has a vertex v of
type .D/ that is adjacent to a vertex v0 of type .Y111/. Let R be the disk region of X corresponding to v.
If G has another vertex of type .Y111/ between v and v0, that is , if G is as shown in Figure 26, then
gl.R/D 0.

Proof We give an orientation to R arbitrarily, and we define edges e1, e2, e0
2

and e3 and subgraphs G1,
G2 and G3 of G as indicated in Figure 26. Let V1, U2 and V3 be subpolyhedra of V encoded by G1,
G2 and G3, respectively. Note that each of V1 and V3 has one cut end and U2 has two. Set i D @Vi

for i 2 f1; 3g, and note that it is a lift of ei . Let 2 and  0
2

denote the cut ends of U2, and also note that
2 and  0

2
are lifts of e2 and e0

2
, respectively. By Lemma 5.9, we have �1.Vi/ Š hi j 

2ki

i i for some

v

v

v0

G1

G2 G3

e1

e02 e2 e3

Figure 26: An encoding graph restricting the gleam of a disk region.
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�1 1

1

�1

G1

v �

Figure 27: The modification of a decorated graph as in Lemma 8.4.

ki 2Z�0, and hence there is a 2–chain ci in Vi � V such that @ci D 2ki Œi � for i 2 f1; 3g. We then define
a 2–chain C1 according to the order of Œ2�;

� in the case p2Œ2� D 0 in H1.U2/ for some p2 2 Z>0, there exists a 2–chain c2 in U2 with
@c2 D p2Œ2�, and then set C1 D c2�p2ŒR�;

� in the case where Œ2� is not a torsion element in H1.U2/, we have p0
2
Œ 0

2
�D p2Œ2� in H1.U2/ for

some p2;p
0
2
2 Z n f0g by Lemma 5.11, and then set C1 D p0

2
c1�p2ŒR�.

Define another 2–chain as C3 D c3� 2k3 ŒR�. These 2–chains C1 and C3 are homology cycles in H2.V /

since Œ1� D Œ
0
2
� and Œ2� D Œ3� D @ŒR�. Then we have Q.C1;C3/ D p22k3gl.R/, which must be 0.

Hence gl.R/D 0.

Lemma 8.4 Suppose that X 0 contains a simply connected subpolyhedron V with one cut end such that a
lift of the cut end has a vertical compressing disk. Then K admits a shadow obtained from X by replacing
V with a 2–disk , and the gleam of the newly formed region containing the 2–disk is one of �1

2
, 0, 1

2
or 1.

Proof We give the proof by using decorated graphs. The assumption in the statement implies that a
decorated graph of X 0 has a subgraph G as shown in the left of Figure 27, where the subgraph G1 in the
figure corresponds to V . It is enough to modify the graph as in the figure. Note that the decoration �
in the right of the figure can be replaced with �˙ 2 by applying move (c), and hence the gleam of the
corresponding region can be chosen to be one of �1

2
; 0; 1

2
or 1 by applying the move as many times as

necessary.

Let v be the vertex of type .P/ shown in the left of Figure 27. By Lemma 5.10, there exists a leaf in G1

such that all the vertices of type .Y12/ contained in the geodesic from v to the leaf are two-sided to v.
Taking the union of all such geodesics `1; : : : ; `m, which we denote by T` D

Sm
iD1 `i , is a subtree of G

whose leaves are of type .D/ except for v. Note that a vertex of type .P/ contained in T` n v is a trivalent
vertex even in T`. We divide the proof into the following three cases:

(1) T` n v does not contain a vertex of type .Y111/ or .P/;

(2) T` nv contains vertices of type .Y111/ or .P/, and farthest one from v among them is of type .Y111/;

(3) T` n v contains vertices of type .Y111/ or .P/, and farthest one from v among them is of type .P/.

(1) In this case, T` is a line, and all the vertices between v and the leaf are of type .Y12/. We can modify
G as in Figure 27 by using moves (f), (g) and (h).
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�1 1 �1 1�1 1

�1 1�1 1�1 1

1

�1

v v1 v0

n n

0r C 1� n

r C 1r

r C 1� nv

n

(i)

(ii)

(iii)

G0
1

G0
1

G0
1

Figure 28: The case (2) in the proof of Lemma 8.4.

(2) Let v1 be the vertex of type .Y111/ farthest from v. Then there is a geodesic `i containing v1, and let
v0 be the other endpoint than v. The vertices between v0 and v1 are of type .Y12/. If the edge incident to
v0 is decorated by r ¤ 1

2
, a move (g) can be applied, which is contrary to Lemma 8.3. Hence we can

eliminate all the vertices of type .Y12/ between v0 and v1 using only moves (f), and then we can assume
that v0 and v1 are connected by one edge. Let e denote this edge.

If `i has a vertex of type .Y111/ other than v1, the edge e is decorated with 0 by Lemma 8.3. Then the
vertex v1 can be eliminated by a connected-sum reduction.

If `i has no vertices of type .Y111/ other than v1, then G is as shown in the upper left of Figure 28.
The modifications in Figure 28(i) and (ii) are done by moves (e) and (a), respectively. The move in
Figure 28(iii) is a connected-sum reduction and a YV-move. The lower right graph in Figure 28 can be
modified as required by moves (h), (d) and (c).

(3) Let v2 be the vertex of type .P/ farthest from v. Then G is as the uppermost graph in Figure 29. Let
G0

1
, G00

1
and G000

1
be subgraphs of G1 as defined in the figure. The subgraphs G00

1
and G000

1
do not contain

vertices of type .Y111/ or .P/. Then we can apply moves (f), (g) or (h) as well as in (1) to these subgraphs,
and G is modified as shown in one of Figure 29(i), (ii) or (iii). Moreover, the moves of Figure 29(iv)
and (v) are obtained by YV-moves, and the move of Figure 29(vi) is done by a move (d). In either case,
the vertex v2 is eliminated, and we obtain the modification in Figure 27 inductively.

8.2 Existence of compressing disks

For i 2 f1; : : : ; 11g, the polyhedron Xi can be embedded in \2.S1�B3/ as a shadow, and the complement
of @Xi in @.\2.S1�B3// (D #2.S

1�S2/) is a 3–manifold with tori boundary. Note that this 3–manifold
#2.S

1 �S2/ n @Xi admits a complete hyperbolic structure with finite volume [Costantino and Thurston
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v v2

�1 1

1

�1

�1 1

1

�1

1

�1

�1 1

�1 1

1

�1

�1 1

G0
1

G0
1

G0
1

G0
1

G0
1

G000
1

G01

G001
n

n0

n0

n0 n0

n00

(i) (ii) (iii)

(vi)(iv) (v)

Figure 29: The case (3) in the proof of Lemma 8.4.

2008]. In [Koda et al. 2022], Dehn fillings on this 3–manifold giving #h.S
1 �S2/ for some h 2 Z�0 are

studied, and it leads to the following.

Lemma 8.5 [Koda et al. 2022] Suppose that X contains a subpolyhedron Y homeomorphic to X3

or X4. Then at least one of the following holds:

(1) both of the components of @Y have vertical compressing disks; or

(2) the component of @Y with length 1 has a horizontal compressing disk.

8.3 Banded unlink diagram of 2–knot with complexity one

Recall that, for n 2 Z, Kn is a 2–knot defined by the banded unlink diagram shown in Figure 1. We first
prove the essential part of Theorem 8.10:

Theorem 8.6 If a 2–knot K with G.K/ 6Š Z has shadow-complexity 1, then K is diffeomorphic to Kn

for some nonzero integer n.

Proof Let X be a shadow of K with c.X /D1, and let G be a decorated tree graph for X . By Lemmas 7.4,
7.5 and 7.6, G has exactly one vertex v0 of type .X3/ or .X4/. Here we suppose that v0 is of type .X3/.
Then G is as shown in Figure 30 by Lemma 7.4.
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g

�g

G0 G1

v0

Figure 30: A decorated graph encoding a shadow of K having a subpolyhedron homeomorphic to X3.

If Lemma 8.5(2) holds, then the graph G can be assumed as shown in the left of Figure 31. Applying a
connected-sum reduction, we obtain the right graph. This graph encodes a simple polyhedron without
true vertex, which is not our focus here.

We then assume that Lemma 8.5(1) holds, and the graph G is as shown in the top of Figure 32. Let U

and V be the subpolyhedra corresponding to the subgraphs G0 and G1, respectively. By Lemmas 7.4,
we have �1.U /Š h; 1 j 

2m

1i and V is simply connected. We apply Lemmas 5.10 and 5.12 to U

and V , respectively, and then the graph G can be assumed to be the second graph in Figure 32. Note that
subgraphs G0;0;G0;1; : : : ;G0;m in the figure encode simply connected subpolyhedra by Lemma 5.12.
The move in Figure 32(ii) is done by iterating moves (e), and the move in Figure 32(iii) is done by that in
Figure 27 (cf Lemma 8.4).

From the bottom graph in Figure 32, we obtain a banded unlink diagram shown in the top of Figure 33.
We refer the reader to [Koda and Naoe 2020] for a translation of a shadow into a Kirby diagram; see also
Remark 8.7 and [Costantino and Thurston 2008; Martelli 2005]. Though the framings �0; �1; : : : ; �m and
� are determined from the gleams, each of them can be assumed to be 0 or 1 since there is a 0–framed
knot as a meridian. The first move of Figure 33(i) is obtained by handle-slides and a cancellation of a
1-2 pair. We iterate the same process in Figure 33(ii). The move (iii) is obtained by handle-slides and
a cancellation of a 1-2 pair, and we set nD 2mg and �0 D 0 or 1. The move (iv) is done by a cup and
2–handle band swims. The move (v) is an isotopy, and (iv) is obtained by a 2–handle band slide and a
cancellation of a 1-2 pair. The move (vii) is done by an isotopy if �0 D 1, and we also need 2–handle
band slides if �0 D 0. The move (viii) is obtained by a cap and 2–handle band slides. Finally, applying a
2–handle band swim and a cancellation of a 2-3 pair, we obtain the diagram shown in Figure 1.

One can show the case where v0 is of type .X4/ in a similar way to the above, so we skip the details.

Remark 8.7 The method of a translation of a shadow only to a Kirby diagram is treated in [Koda and
Naoe 2020], and that to a banded unlink diagram is actually not discussed. However, we can draw a
diagram as shown in Figure 33 by considering a decomposition X D Nbd.KIX /[X 0 and using [Koda

g

�g
G0

0

v0
G1

g

�g
G0

Figure 31: A decorated graph encoding a shadow of K having a subpolyhedron homeomorphic
to X3 such that the boundary component of the subpolyhedron with length 1 has a horizontal
compressing disk.
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G0;1 G0;m
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v0

G0;1 G0;m

v0
g

�g

g

�g

g

�g

(i)

(ii)

(iii)

�1 1
1 1 1

�1 �1 �1

�1

1

�1 1�1 1�1 1

�1 1�1 1

�1 1�1 1

G1

v0

G0

g

�g

Figure 32: A decorated graph encoding a shadow of K having a subpolyhedron homeomorphic
to X3 such that the two boundary components of the subpolyhedron has vertical compressing
disks.

and Naoe 2020, Lemmas 1.1 and 1.2]. Note that Nbd.KIX / is a shadow of Nbd.KIS4/Š S2�D2 and
@Nbd.KIX / is a knot in @Nbd.KIS4/Š S2 �S1 such that it winds g times along fptg �S1.

Remark 8.8 If v0 is of type .X3/, the 2–knot K is diffeomorphic to Kn with nD 2mg > 0. On the other
hand, if v0 is of type .X4/, the 2–knot K is diffeomorphic to Kn with nD�2mg < 0.

The following implies that there exist infinitely many 2–knots with shadow-complexity 1.

Proposition 8.9 The 2–knots Kn and Kn0 are not equivalent unless nD n0.

Proof From Lemma 7.4 and Remark 8.8, we have

G.Kn/Š hx;y j x
2yjnjx�1y�n

i;
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nnn
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(vii)

(vi)

n

n

0

(viii)

Figure 33: A banded unlink diagram of a 2–knot with complexity one and its modifications.

and its Alexander polynomial is

�Kn
.t/D

�
2� tn if n� 0;

1� tnC t2n if n< 0:

If n¤ n0, two polynomials �Kn
.t/ and �Kn0 .t/ are distinct.

At last, we give the proof of the complexity one case.
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n

�n

0
1
2

1

�1

n

�n

0 0
1

�1

Figure 34: A decorated graph of a shadow of a 2–knot with complexity one.

Theorem 8.10 A 2–knot K whose knot group is not infinite cyclic has shadow-complexity 1 if and only
if K is diffeomorphic to Kn for some nonzero integer n.

Proof The only if part has been already discussed in Theorem 8.6.

Let n be an arbitrary nonzero integer. The banded unlink diagram of Kn shown in Figure 1 can be obtained
from a shadow encoded in Figure 34, left or right, in the same way as in the proof of Theorem 8.6.
Therefore, sc.Kn/� 1, and hence sc.Kn/D 1 by Proposition 8.9 and Theorem 6.4.

Remark 8.11 Let X be a shadow of Kn encoded by a decorated graph as shown in Figure 34. Its
singular set S.X / has 3 connected components: two circles and one 8–shaped graph. Then we can
obtain a special shadow of Kn from X by applying .0!2/–moves twice [Costantino 2004; Turaev 1994],
and hence we have scsp.Kn/� 5. This implies that the special shadow-complexity for 2–knots is not a
finite-to-one invariant, while that for closed 4–manifolds is finite-to-one [Martelli 2005, Corollary 2.7].
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Automorphisms of some variants of fine graphs

FRÉDÉRIC LE ROUX

MAXIME WOLFF

Recently, Bowden, Hensel and Webb defined the fine curve graph for surfaces, extending the notion
of curve graphs for the study of homeomorphism or diffeomorphism groups of surfaces. Later, Long,
Margalit, Pham, Verberne and Yao proved that for a closed surface of genus g > 2, the automorphism
group of the fine graph is naturally isomorphic to the homeomorphism group of the surface. We extend
this result to the torus case g D 1; in fact our method works for more general surfaces, compact or not,
orientable or not. We also discuss the case of a smooth version of the fine graph.

37E30, 57K20

1 Introduction

1.1 Context and results

For a connected, compact surface †g of genus g > 1, Bowden, Hensel and Webb [2] recently introduced
the fine curve graph C�.†/, as the graph whose vertices are all the essential closed curves on †, with an
edge between two vertices a and b whenever a\ b D ∅, if g > 2, and whenever ja\ bj 6 1 if g D 1.
They proved that for every g > 1, the graph C�.†/ is hyperbolic, and derived a construction of an infinite
dimensional family of quasimorphisms on Homeo0.†/, thereby answering long standing questions of
Burago, Ivanov and Polterovich.

The ancestor of the fine graph is the usual curve complex of a surface †, ie the complex whose vertices
are the isotopy classes of essential curves, with an edge (or a simplex, more generally) between some
vertices if and only if they have disjoint representatives. Since its introduction by Harvey [5], the curve
complex of a surface has been an extremely useful tool for the study of the mapping class group Mod.†/
of that surface, as it acts on it naturally. In particular, the fact that this complex is hyperbolic, discovered
by Masur and Minsky [13; 14], has greatly improved the understanding of the mapping class groups. The
result of Bowden, Hensel and Webb, promoting the hyperbolicity of the curve complex to that of the fine
curve graph, opens the door both to the study of what classical properties of usual curve complexes have
counterparts in the fine curve graph, and to the use of this graph to derive properties of homeomorphism
groups. A first step in this direction was taken by Bowden, Hensel, Mann, Militon and Webb [1], who
explored the metric properties of the action of Homeo.†/ on this hyperbolic graph.

© 2024 MSP (Mathematical Sciences Publishers). Distributed under the Creative Commons Attribution License 4.0 (CC BY).
Open Access made possible by subscribing institutions via Subscribe to Open.
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A classical theorem by Ivanov (see [7], as well as Korkmaz [8] and Luo [12] for other surfaces) states that,
when † is a closed surface of genus g> 2, every automorphism of C.†/ is realized by a homeomorphism.
Recently, Long, Margalit, Pham, Verberne and Yao [11] proved the following natural counterpart of
Ivanov’s theorem for fine graphs: provided † is a compact orientable surface of genus g > 2, the natural
map

Homeo.†/! Aut.C�.†//

is an isomorphism. They also suggested that this map (with the appropriate version of C�) may also be
an isomorphism when g D 1, and conjectured that the automorphism group of the fine curve graph of
smooth curves should be nothing more than Diff.†/.

In this article, we address both these questions. Our motivation originates from the case of the torus: excited
by [1], we wanted to understand more closely the relation between the rotation set of homeomorphisms
isotopic to the identity and the metric properties of their actions on the fine graph. This subject will be
treated in another article, joint with Passeggi and Sambarino [10]. The methods developed in the present
article are valid not only for the torus but for a large class of surfaces.

We work on nonspherical surfaces (ie surfaces not embeddable in the 2–sphere, or equivalently, containing
at least one nonseparating simple closed curve), orientable or not, compact or not. We consider the graph
NC

�

t
.†/, whose vertices are the nonseparating simple closed curves, and with an edge between two

vertices a and b whenever they are either disjoint, or have exactly one topologically transverse intersection
point (see the beginning of Section 2 for more detail). Our first result answers a problem raised in [11].

Theorem 1 Let † be a connected , nonspherical surface , without boundary. Then the natural map
Homeo.†/! Aut.NC

�

t
.†// is an isomorphism.

Our second result concerns the smooth version of fine graphs. We consider the graph NC
�1

t
.†/ whose

vertices are the smooth nonseparating curves in †, with an edge between a and b if they are disjoint
or have one transverse intersection point, in the differentiable sense (in particular, NC

�1

t
.†/ is not the

subgraph of NC
�

t
.†/ induced by the vertices corresponding to smooth curves; it has fewer edges). The

following result partially confirms the conjecture of [11]; here we restrict to the case of orientable surfaces
for simplicity.

Theorem 2 Let † be a connected , orientable , nonspherical surface , without boundary. Then all the
automorphisms of NC

�1

t
.†/ are realized by homeomorphisms of †.

In other words, if we denote by Homeo1t.†/ the subgroup of Homeo.†/ preserving the collection of
smooth curves and preserving transversality, then the natural map

Homeo1t.†/! Aut.NC
�1

t
.†//

is an isomorphism. We were surprised to realize however that Homeo1t.†/ is strictly larger than
Diff.†/.
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Figure 1: A necklace (left) and a bouquet (right) of three circles.

Proposition 3 Every surface † admits a homeomorphism f such that f and f �1 preserve the set of
smooth curves , and preserve transversality , but such that neither f nor f �1 is differentiable. In particular ,
the natural map

Diff.†/! Aut.NC
�1

t
.†//

is not surjective.

1.2 Idea of the proof of Theorem 1

The main step in this proof is the following.

Proposition 4 If fa; bg or fa; b; cg is a 2–clique or a 3–clique of NC
�

t
.†/ then , from the graph structure

of NC
�

t
.†/, we can tell the type of the clique.

If fa1; : : : ; ang and fb1; : : : ; bng are two n–cliques in the graph NC
�

t
.†/, we say they have the same

type if the unions
Sn

jD1 aj and
Sn

jD1 bj are homeomorphic. Note that we do not require that such a
homeomorphism extends to a homeomorphism of the surface (as we do not consider how the cliques
are embedded, Figure 1 does not show the transversality at the intersection points). Let us describe the
different types of 2– and 3–cliques. A 2–clique fa; bg, ie an edge of the graph NC

�

t
.†/, may be of two

distinct types: the intersection a\ b may be empty or not. For a 3–clique fa; b; cg, up to permuting the
curves a, b and c, the cardinals of the intersections a\ b, a\ c and b\ c, respectively, may be .1; 1; 1/,
.1; 1; 0/, .1; 0; 0/, or .0; 0; 0/. This determines the type of the 3–clique, except in the case .1; 1; 1/, where
the intersection points a\ b, a\ c and b\ c may be pairwise distinct, in which case we will speak of a
3–clique of type necklace, or these intersection points may be equal, in which case we will speak of a
3–clique of type bouquet; see Figure 1.

The main bulk of the proof of Proposition 4 consists in distinguishing the 3–cliques of type necklace
from any other 3–clique of NC

�

t
.†/. Here, the key is that among all the 3–cliques, the cliques fa; b; cg

of type necklace are exactly those such that the union a[ b [ c contains nonseparating simple closed
curves other than a, b and c. In terms of the graph structure, this leads to the following property, denoted
by N.a; b; c/, which turns out to characterize these cliques:
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There exists a finite set F of at most 8 vertices of NC
�

t
.†/, all distinct from a, b and c, such that every

vertex d connected to a, b and c in this graph, is connected to at least one element of F .

From this, we will easily characterize all the configurations of 2–cliques and 3–cliques in terms of similar
statements in the first order logic of the graph NC

�

t
.†/.

Now, let T .NC
�

t
.†// denote the set of edges fa; bg of NC

�

t
.†/ satisfying ja\ bj D 1. Then we have a

map
Point W T .NC

�

t
.†//!†;

which to each edge fa; bg of NC
�

t
.†/, associates the intersection point a\b. The next step in the proof of

Theorem 1 now consists in characterizing the equality Point.a; b/D Point.c; d/ in terms of the structure
of the graph. This characterization shows that every automorphism of NC

�

t
.†/ is realized by some

bijection of †; then we prove that such a bijection is necessarily a homeomorphism (see Proposition 20).

In order to characterize the equality Point.a; b/D Point.c; d/, we introduce on T .NC
�

t
.†// a relation y.

This relation is generated, essentially, by .a; b/y .b; c/ if .a; b; c/ is a 3–clique of type bouquet (see
Section 3.2 for details). If .a; b/y .c; d/ then Point.a; b/D Point.c; d/. Interestingly, the converse is
false, but we can still use this idea in order to characterize the points of † in terms of the graph structure
of NC

�

t
.†/.

This subtlety between the relation y and the equality of points is related to the nonsmoothness of the
curves involved, and more precisely, to the fact that a curve may spiral infinitely with respect to another
curve in a neighborhood of a common point. We think that this phenomenon is of independent interest
and we investigate it in Section 4. In particular, we can easily state, in terms of the graph structure of
NC

�

t
.†/, an obstruction for a homeomorphism to be conjugate to a C 1–diffeomorphism; see Section 4.6.

1.3 Ideas of the proof of Theorem 2

In the smooth case, the adaptation of our proof of Theorem 1 fails from the start: indeed, the closed curves
contained in the union a[b[c of a necklace, and distinct from a, b and c, are not smooth. This suggests
the idea to use sequences of curves (at the expense of losing the characterizations of configurations in
terms of first order logic).

This time it is easiest to first characterize disjointness of curves (see Lemma 43), and then recover the
different types of 3–cliques. Then the strategy follows the C 0 case.

Once we start to work with sequences, it is natural to say that a sequence .fn/ of curves not escaping to
infinity converges to a in some weak sense, if for every vertex d such that fa; dg is an edge of the graph,
ffn; dg is also an edge for all n large enough. As it turns out, this property implies convergence in the
C 0–sense to a, and is implied by convergence in the C 1–sense. But it is not equivalent to the convergence
in the C 1–sense, and it is precisely this default of C 1–convergence that enables us to distinguish between
disjoint or transverse pairs of curves.
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Interestingly, this simple criterion for disjointness has no counterpart in the C 0–setting. Indeed, in that
setting, no (noneventually constant) sequence of curves converges in this weak sense: given a curve a, and
a sequence .fn/ of curves with, say, some accumulation point x in a, we can build a curve d intersecting
a once transversally (topologically) at x, but oscillating so much that it intersects several times each
fn that does not contain x. From this perspective, none of our approaches in the C 0–setting and in the
C1–setting are directly adaptable to the other.

1.4 Further comments

We can imagine many variants of fine graphs. For example, in the arXiv version of [2], for the case of
the torus they worked with the graph NC

�

t
.†/ on which we are working here, whereas in the published

version, they changed to a fine graph in which two curves a and b are still related by an edge when they
have one intersection, not necessarily transverse.

More generally, in the spirit of Ivanov’s metaconjecture, we expect that the group of automorphisms
should not change from any reasonable variant to another. And indeed, using the ideas of [11, Section 2]
and those presented here, we can navigate between various versions of fine graphs, and recover, from
elementary properties of one version, the configurations defining the edges in another version, thus proving
that their automorphism groups are naturally isomorphic. From this perspective, it seems satisfying to
recover the group of homeomorphisms of the surface as the automorphism group of any reasonable
variant of the fine graph. In this vein, we should mention that the results of [11, Section 2] directly yield
a natural map Aut.C�.†//! Aut.NC

�

t
.†//, and from there, our proof of Theorem 1 may be used as an

alternative proof of their main result.

All reasonable variants of the fine graphs should be quasi-isometric, and a unifying theorem (yet out of
reach today, as it seems to us) would certainly be a counterpart of the theorem by Rafi and Schleimer [15],
which states that every quasi-isometry of the usual curve graph is bounded distance from an isometry.

1.5 Organization of the article

Section 2 is devoted to the recognition of the 3–cliques in the C 0–setting, and of some other configurations
regarding the nonorientable case. We encourage the reader to skip, at first reading, everything that concerns
the nonorientable case; these points should be easily identified, and this halves the length of the proof.
In Section 3 we prove Theorem 1. In Section 4 we characterize, from the topological viewpoint, the
relationy introduced above in terms of the graph structure, and deduce our obstruction to differentiability.
Finally in Section 5 we prove Theorem 2 and Proposition 3.
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2 Recognizing configurations of curves

2.1 Standard facts and notation

We will use, often without mention, the following easy or standard facts for curves on surfaces.

The first is the classification of connected, topological surfaces with boundary (not necessarily compact).
In particular, every topological surface admits a smooth structure. Given a closed curve a in a surface †,
we can apply this classification to †X a and understand all possible configurations of simple curves; this
is the so-called change of coordinates principle in the vocabulary of the book of Farb and Margalit [3].

In particular, every closed curve a has a neighborhood homeomorphic to an annulus or a Möbius strip
in which a is the “central curve”. Very often in this article, we will consider the curves a0 obtained by
deforming a in such a neighborhood, so that a0 is disjoint from a in the first case, or intersects it once,
transversely, in the second, as in Figure 2. We will say that a0 is obtained by pushing a aside.

If two curves a and b have a unique intersection point, we say that the intersection is transverse, or
essential, if there is a homeomorphism of the surface which maps a and b to smooth curves intersecting
transversely in the usual smooth sense. Otherwise we say the intersection is inessential.

The change of coordinates principle also applies to finite graphs embedded in†: there is a homeomorphism
of † that sends any given graph to a smooth graph, such that all edges connected to a given vertex leave it
in distinct directions. In the simple case when the graph is the union of two or three simple closed curves
that pairwise intersect at most once, this observation justifies the description of the possible configurations
of cliques in the introduction.

Here are two other useful facts.

Fact 5 A simple closed curve a in a surface is nonseparating if and only if there exists a closed curve b
such that a\ b is a single point and this intersection is transverse.

Fact 6 Let p and q be two distinct points , and x, x0 and x00 three simple arcs , each with endpoints p
and q, such that

x\ x0 D x0\ x00 D x\ x00 D fp; qg:

If two of the three curves x[ x0, x0[ x00, x00[ x are separating , then the third one is also separating.

Proof Denote y D xXfp; qg, the arc x without its ends, and similarly, define y0 and y00. Suppose x[x0

and x [ x00 are separating. Denote by †1 and †2 (resp. †3 and †4) the components of †X .x [ x0/
(resp. †X .x[x00/) where †2 contains y00 and †4 contains y0. By looking at neighborhoods of p and q

a a0 a a0

Figure 2: Left: pushing a two-sided curve a. Right: pushing a one-sided curve a.
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p

y y0

y00

†1

†3
†2\†4

Figure 3: A neighborhood of p.

(see Figure 3), we see that †0 D†2\†4 is nonempty, and that the arc y bounds †1 on one side, and
†3 on the other, so †00 D†1[y [†3 is a surface. Now, †X .x0[ x00/D†0[†00, and †0 and †00 are
disjoint by construction.

2.2 Properties characterizing geometric configurations

Now we list the properties, in terms of the graph NC
�

t
.†/, that will be used as characterizations of certain

configurations of curves. This allows us to specify the statement of Proposition 4, which will be proved
in the next paragraph, and define the relation y in terms of the graph NC

�

t
.†/.

In the following, the letters N D, T and B respectively stand for necklace, disjoint, transverse and
bouquet. If a, b and c are vertices of this graph, we will denote by

� N.a; b; c/ the property that fa; b; cg is a 3–clique of NC
�

t
.†/ and there exists a finite set F of at

most 8 vertices of NC
�

t
.†/, all distinct from a, b and c, such that for every vertex d such that

fa; b; c; dg is a 4–clique, there is an edge from d to at least one element of F ;

� D.a; b/ the property that fa; bg is an edge of NC
�

t
.†/ and there does not exist a vertex d such

that N.a; b; d/ holds,

� T .a; b/ the property that fa; bg is an edge of NC
�

t
.†/ and D.a; b/ does not hold;

� B.a; b; c/ the property that T .a; b/, T .a; c/ and T .b; c/ all hold but N.a; b; c/ does not.

The following proposition is the main part of Proposition 4.

Proposition 7 Let a, b and c be vertices of the graph NC
�

t
.†/. Property N.a; b; c/ holds if and only if

fa; b; cg is a 3–clique of type necklace of NC
�

t
.†/.

The proof of Proposition 7 will occupy Section 2.3 below. The following corollary complements
Proposition 7 and provides a precise version of Proposition 4.

Corollary 8 � Property D.a; b/ holds if and only if the curves a and b are disjoint.

� Property T .a; b/ holds if and only if a and b have a unique intersection point and the intersection
is transverse.

� Property B.a; b; c/ holds if and only if fa; b; cg is a 3–clique of type bouquet.
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b

a
c

b

c
a

Figure 4: Completing .a; b/ to a 3–clique of type necklace.

Proof Let a and b be neighbors in the graph NC
�

t
.†/. Of course, if a and b are disjoint, then D.a; b/

holds: there does not exist a curve d such that N.a; b; d/ holds, since this would mean that fa; b; dg is
of type necklace and then, by definition, a and b would intersect. Conversely, suppose that a and b are
not disjoint, and let us prove that D.a; b/ does not hold, ie let us find a curve c such that fa; b; cg is a
3–clique of type necklace. In the case when one of a or b is one-sided, up to exchanging the two, suppose
a is one-sided. Then we may push a in order to find a curve c which makes a 3–clique of type necklace
with a and b; see Figure 4, left. In the case when both a and b are two-sided, then by the change of
coordinates principle, a regular neighborhood of a[ b is homeomorphic to a one-holed torus, embedded
in †, with a choice of meridian and longitude coming from a and b. In this torus, a curve c with slope 1
will form a 3–clique of type necklace with a and b; see Figure 4, right. This proves the first point.

The second point is a straightforward consequence of the first, and the third simply follows from the
second point together with Proposition 7.

2.3 Proof of Proposition 7

The following lemma is a key step in the proof of the direct implication in Proposition 7.

Lemma 9 Let fa; b; cg be a 3–clique of NC
�

t
.†/ which is not of type necklace. Then there exists

a vertex d of NC
�

t
.†/ such that fa; b; c; dg is a 4–clique of NC

�

t
.†/, and such that d meets every

connected component of †X .a[ b[ c/.

Before entering the proof, we note that we cannot remove the hypothesis that fa; b; cg is not of type
necklace. Indeed, in the flat torus †DR2=Z2, consider three closed geodesics a, b and c respectively
directed by .1; 0/, .0; 1/ and .1; 1/. By pushing c aside if necessary, we obtain a 3–clique of type necklace.
The complement of a[ b[ c in † has three connected components, and there is no curve d satisfying
the conclusion of the lemma.

Proof Throughout the proof, we will denote †0D†X.a[b[c/. Up to permuting the curves a, b and c,
we may suppose that the triple of cardinals of intersections, .ja\ bj; ja\ cj; jb \ cj/, equals .1; 1; 1/,
.1; 1; 0/, .1; 0; 0/, or .0; 0; 0/. We will deal with these cases separately.

Algebraic & Geometric Topology, Volume 24 (2024)



Automorphisms of some variants of fine graphs 4705

c

b

a

d
†1

†2 c
b

a

d†1

†2

†3

Figure 5: Finding d in the case .0; 0; 0/.

Let us begin with the case .0; 0; 0/. If †0 is connected, then any curve d making a 4–clique with .a; b; c/
satisfies the lemma. Such a curve can be found, for example, by pushing a aside. If †0 has two connected
components, denote them by †1 and †2. Since a, b and c are each nonseparating, at least two of the
curves a, b, c (say, a and b) correspond to boundary components of both †1 and †2. Choose one point
xa in a and one point xb in b. For i D 1; 2, there is an arc i connecting xa to xb in †i , and disjoint from
the boundary of †i except at its ends. Then the curve d D 1[2 satisfies the lemma (see Figure 5, left).
It may also happen that †0 has three connected components, in which case we find a curve d exactly in
the same way; see Figure 5, right.

Next we deal with the case of intersections .1; 0; 0/. In this case, a and b intersect transversely, once,
and c is disjoint from a[ b. By hypothesis, the curve c is (globally) nonseparating. Consider the union
a[ b. If a or b is two-sided, then a[ b does not disconnect its regular neighborhoods. This is seen by
traveling along a small band on one side of a[ b (see Figure 6, left). In this case, †0 cannot have more
connected components than †X c; hence †0 is connected, and any curve d obtained by pushing c, as in
the preceding case, satisfies the lemma. If both a and b are one-sided, then a[b is locally disconnecting,
so †0 may have up to two connected components. In this case, a curve d obtained by pushing a satisfies
the lemma (see Figure 6, right).

Now assume we are in the case .1; 1; 1/ or .1; 1; 0/. Since fa; b; cg is not of type necklace, in these cases
b and c do not meet outside a. We first treat the subcase when a is two-sided. For this we consider
any curve d obtained by pushing a aside, and we claim that d meets every connected component of †0.
Indeed, let C be such a component. Of course the closure of C meets a, b or c. Since both b and c meet
a, it actually has to meet a, as we can see by traveling along b or c in C . More precisely, by following b
or c in both directions, we see that C meets any neighborhood of a from both sides. Thus it meets d .

a

b

d

a

b

Figure 6: Finding d in case .1; 0; 0/.
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a

b c

d
a

b c

d
a

b c

d
a

b c

d

case .1; 1; 1/ b and c two-sided b two-sided, c one-sided b and c one-sided

Figure 7: Finding d in cases .1; 1; 1/ and .1; 1; 0/.

It remains to treat the subcase when a is one-sided, first for the .1; 1; 1/ case, and then for the .1; 1; 0/
case. In the .1; 1; 1/ case, the curves a, b and c play symmetric roles, and by the above argument it just
remains to consider the case when they are all one-sided. Then the situation is depicted on Figure 7, left:
a[ b[ c disconnects its regular neighborhoods into three connected components, and the figure shows a
curve d , obtained by pushing a aside, which intersects all three components and such that fa; b; c; dg is
a 4–clique. In the remaining case the curves b and c play symmetric roles, and there are three different
cases to consider, regarding whether b and c are one or two-sided. These three cases are pictured in
Figure 7, and in each case, we obtain d by pushing a aside.

We deduce the following.

Lemma 10 Let fa; b; cg be a 3–clique of NC
�

t
.†/, not of type necklace. Let .˛1; : : : ; ˛n/ be a finite

family of vertices of NC
�

t
.†/, all distinct from a, b and c. Then there exists a vertex d of NC

�

t
.†/,

such that

� fa; b; c; dg is a 4–clique of NC
�

t
.†/;

� for all j 2 f1; : : : ; ng, the intersection d \ j̨ is infinite; in particular , fd; j̨ g is not an edge of
NC

�

t
.†/.

As a corollary, we get the direct implication in Proposition 7.

Corollary 11 If fa; b; cg is a 3–clique not of type necklace , then N.a; b; c/ does not hold.

Proof of Lemma 10 The hypotheses that fa; b; cg is not of type necklace and j̨ … fa; b; cg, impose
that for every j , the curve j̨ is not contained in the union a[ b[ c. Hence, there exists a small subarc

ǰ � j̨ lying in the complement of a[ b[ c, and we may further suppose that these n arcs are pairwise
disjoint, and choose a point xj in ǰ for each j .

Now, let d0 be a vertex of NC
�

t
.†/ as from Lemma 9. Since d0 meets every component of

†0 D†X .a[ b[ c/;

we may perform a surgery on d0, far from a[ b[ c, to obtain a new curve d1 such that fa; b; c; d1g is
still a 4–clique, and d1 still meets every component of †0, and d1 passes through x1. We may iterate this
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process, to get a curve dn which passes through xj for every j , and such that fa; b; c; dng is a 4–clique.
Finally, we may perform a last surgery on dn, in the neighborhood of all xj , in order to obtain a curve d
such that for each j , j ǰ \ d j is infinite.

It remains to prove the converse implication in Proposition 7, which we restate as Lemma 12.

Lemma 12 Let fa; b; cg be a 3–clique of NC
�

t
.†/ of type necklace. Then there exists a finite set F , of

at most 8 vertices of NC
�

t
.†/ all distinct from a, b and c, and such that every d such that fa; b; c; dg is

a 4–clique of NC
�

t
.†/ is connected by an edge to some element of F .

In fact this set F can be chosen explicitly, with cardinal at most 8, as follows. If fa; b; cg is a 3–clique of
type necklace, then there exists a family of arcs .x;X; y; Y; z;Z/, all embedded in†, such that aD x[X ,
b D y [Y , c D z [Z, and such that these six arcs pairwise intersect at most at their ends. The union
a[ b[ c may be viewed as a graph embedded in †, and these six arcs are the edges of this embedded
graph. We let F be the set of nonseparating curves, among the 8 curves X[Y [Z, X[Y [z, X[y[Z,
etc (there is one choice of upper/lower case for each letter). In the course of the proof of Lemma 12, we
will see that F is nonempty, and satisfies the lemma.

Proof Let fa; b; cg be a 3–clique of type necklace. Let F be the set of nonseparating curves, as above,
among all the 8 curves x[y[ z, X [y[ z, X [Y [ z, etc. Let d be such that fa; b; c; dg is a 4–clique.
Up to permuting the curves a, b and c, we may suppose that .ja\ d j; jb\ d j; jc \ d j/ equals .1; 1; 1/,
.1; 1; 0/, .1; 0; 0/ or .0; 0; 0/; our proof proceeds case by case.

The easiest case is .1; 0; 0/. In this case, up to exchanging the arcs X and x, we may suppose that d
intersects a at an interior point of X , and is disjoint from all the other arcs. Consider f D X [ y [ z.
This curve intersects d at a unique point, transversely. It follows that f is nonseparating. Hence f 2 F
and f satisfies the conclusion of the lemma.

Now let us deal simultaneously with the cases .1; 1; 1/ and .1; 1; 0/. Suppose first that the intersections
of d with a[ b [ c do not occur at the intersection points a\ b, a\ c or b \ c. Up to exchanging x
with X , y with Y and z with Z, we may suppose that the intersections occur in the interior of the arcs X ,
Y and Z in the case .1; 1; 1/, and in the interior of the arcs X and Y in the case .1; 1; 0/. Now the curve
f DX [y [ z, for instance, satisfies the conclusion of the lemma.

Now suppose that d contains one of the points a\b, a\ c or b\ c. In case .1; 1; 1/ we may suppose, up
to permuting a, b and c, that d contains the point a\ b, and in the case .1; 1; 0/, this is automatic, as
d is disjoint from c. Now in any case, d cannot contain a\ c nor b \ c, because it intersects a and b
only once. Hence, up to exchanging z with Z, we may suppose d \ z D∅. In the neighborhood of the
point a\ b, up to homeomorphism, the configuration of our curves is as depicted in Figure 8, because all
the intersections are supposed to be transverse. Then, up to exchanging X with x or Y with y, we can
suppose that the arc X [Y has a transverse intersection with d , and then the arc f DX [Y [ z satisfies
the conclusion of the lemma.
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b d

x

y

X

Y

Figure 8: A suitable choice of X and Y .

We are left with the case .0; 0; 0/. In this case, any curve in F will satisfy the conclusion of the lemma,
and hence all we have to do is to prove that F is nonempty. If X [ Y [Z and X [ Y [ z were both
separating, then so would be c D z [Z, by Fact 6. Hence, among these two curves, at least one is
nonseparating, and F is nonempty (in fact, it contains at least 4 elements).

2.4 One- or two-sided curves, and extra bouquets

In this last paragraph of this section, we will see how to recognize, from the graph structure of NC
�

t
.†/,

some additional configurations. We insist that the work in this paragraph is useful only in the case when
† is nonorientable; it is needed in order to make our proof of Theorem 1 work in that case (see Remark 22
below).

We start with a simple characterization of one-sided and two-sided curves.

� Two.a/, the property that for all b such that T .a; b/ holds, there exists c such that T .b; c/ and
D.a; c/ both hold,

� One.a/, the negation of Two.a/: there exists b such that T .a; b/ and such that there does not exist
c satisfying T .b; c/ and D.a; c/.

Observation 13 Let a be a vertex of NC
�

t
.†/. Then the curve a is one-sided , if and only if One.a/

holds.

Proof If a is two-sided, and b satisfies T .a; b/, by pushing a aside we find another curve c as in the
definition of Two.a/. This proves the reverse implication.

If a is one-sided, let b be a curve obtained by pushing a aside. We have T .a; b/, and a and b bound a
disk. Any curve c disjoint from a, and with T .b; c/, has to enter this disk; but then, it has to get out,
which is impossible without touching a and without intersecting b another time.

Our next objective is to characterize when two one-sided curves a and b meet exactly once, nontransversely.
We will do this in several steps.

Lemma 14 Let a and b be one-sided simple curves of †. Suppose the intersection a\b is not connected.
Then there exists a vertex c of NC

�

t
.†/, distinct from a and b, such that for every neighbor d of both a

and b in this graph , and such that D.a; d/ or D.b; d/ (or both ), the vertices c and d are neighbors in
this fine graph.
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Proof Let x be a subarc of b, whose endpoints lie in a, and disjoint from a otherwise. Since a \ b
is disconnected, such an arc exists, and has two distinct end points, p and q. Let x0 and x00 be the
two subarcs of a whose ends are p and q. From Fact 6, we know that x [ x0 or x [ x00 (or both) is a
nonseparating curve; denote it by c. By construction, we have c ¤ a and c ¤ b.

Now let d be a curve satisfying the hypothesis of the lemma. If d is disjoint from a and b, then it is
disjoint from c; otherwise d intersects exactly one of a or b, far away from the other. So the intersection
between d and c, if any, is still transverse, and d is a neighbor of c in NC

�

t
.†/.

This contrasts with the situation we want to characterize, as we see now.

Lemma 15 Let a and b be two one-sided curves , and suppose that a\ b consists in one , inessential
intersection point. Then , for every nonseparating curve c … fa; bg, there exists d such that T .a; d/ and
D.b; d/ hold but such that the intersection c \ d is infinite.

Proof We first observe that †0 D†X .a[ b/ is connected. This is seen by following the curves a and
b in both directions: the union a[ b does not disconnect its small neighborhoods. Let c be a curve as
above. Then we may consider a first curve d0, obtained by pushing a aside, in such a way that d0 is
disjoint from b (this is possible since the intersection a\ b is inessential). Since c … fa; bg, the curve c
intersects †0. Since d0 meets every component of †0 (there is only one), we may deform it into a curve
d which intersects c infinitely many times, exactly as in the proof of Lemma 10.

After these two lemmas, we have a simple sentence in terms of the graph NC
�

t
.†/, which holds when

a\ b is a single inessential intersection point, and which guarantees that a\ b is connected. In order to
upgrade this into a characterization of the first situation, we need to be able to exclude as well the cases
when a\ b is a nondegenerate arc. These cases fall into two subcases: the intersection arc a\ b can
be essential or inessential, exactly as an intersection point. One way to formalize this, is to say that the
intersection a\b is essential if a cuts a regular neighborhood of a\b into two regions both containing a
subarc of b, and inessential otherwise.

Lemma 16 Let a and b be one-sided curves. Suppose that a\ b is a nondegenerate arc , and suppose
this intersection is essential. Then there exist curves ˛; ˛0; ˇ; ˇ0 obtained by pushing a aside , such that
B.a; ˛; ˇ/, B.b; ˛; ˇ/, B.a; ˛0; ˇ0/, B.b; ˛0; ˇ0/, and N.a; ˛; ˇ0/.

Proof The curves ˛, ˇ, ˛0 and ˇ0 may be taken in a neighborhood of a[ b, as pictured in Figure 9.

Finally, we deal with inessential arcs.

Lemma 17 Let a and b be one-sided curves , such that a\ b is an inessential arc or intersection point.
Let c be such that T .a; c/. Then there exists d such that B.a; c; d/ and D.b; d/, if and only if the
intersection point a\ c does not belong to b.
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a

b ˛
ˇ

˛0
ˇ0

Figure 9: The curves ˛, ˇ, ˛0 and ˇ0.

Proof If a\ c belongs to b, then any curve d satisfying B.a; c; d/ will meet b. Otherwise, we may
push a aside, in order to obtain a curve d , as in Figure 10, left.

Putting all together, this yields the following characterization of inessential intersection points between
one-sided curves.

Corollary 18 Let a and b be one-sided curves. Then a\ b consists of one inessential intersection point
if and only if the following conditions are satisfied :

(1) a and b are not neighbors in NC
�

t
.†/;

(2) for every c … fa; bg, there exists d such that d is a neighbor of a and b in NC
�

t
.†/, and D.a; d/

or D.b; d/ (or both ), but d is not a neighbor of c in that graph ;

(3) there do not exist ˛, ˇ, ˛0 and ˇ0 such that B.a; ˛; ˇ/, B.b; ˛; ˇ/, B.a; ˛0; ˇ0/, B.b; ˛0; ˇ0/ and
N.a; ˛; ˇ0/ all hold ;

(4) there do not exist c1 and c2 with D.c1; c2/ and with the property that , for i D 1; 2, we have
T .a; ci / and for all d , B.a; ci ; d / and D.b; d/ do not both hold.

This enumeration of conditions expressed only in terms of the graph structure of NC
�

t
.†/, with the

addition of the conditions One.a/ and One.b/, will be also denoted by I.a; b/, for inessential intersection
(of one-sided curves).

Proof First, let us check that if a and b have one inessential intersection point then I.a; b/ holds.
Condition (1) holds by definition, and (2) follows from Lemma 15. The negation of condition (3) would
imply that the cardinality of a\ b is at least 2. Indeed, B.a; ˛; ˇ/ implies that ˛ \ ˇ is a point lying
in a. Thus, the bouquet conditions imply that both ˛ \ ˇ and ˛0 \ ˇ0 lie in a\ b. And the condition
N.a; ˛; ˇ0/ then implies that a\˛ and a\ˇ0 are disjoint; hence the two points ˛\ˇ and ˛0\ˇ0 are
distinct. Finally, condition (4) follows from Lemma 17. Indeed, this lemma implies that the two curves
c1 and c2 should both contain a point of a\ b; hence they cannot be disjoint.
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c2

Figure 10: Some configurations of curves for properties I and xB .

Now, let a and b be any two nonseparating curves and suppose that I.a; b/ holds. By conditions (1)
and (2), the intersection a\ b is nonempty, and connected. Along the lines of the proof of Lemma 16,
we can see that condition (3) implies that a¤ b, so a\ b is an inessential intersection point, or an arc.
Suppose for contradiction that it is a nondegenerate arc. By Lemma 16 and condition (3), this intersection
arc cannot be essential. Now Figure 10, right, shows the desired contradiction with condition (4).

Finally, we deal with extra bouquets. We denote by xB.a; b; c/ the property that T .a; b/, T .a; c/ and
I.b; c/ all hold and, moreover, for all d such that B.a; b; d/ holds, D.c; d/ does not.

Lemma 19 Let a, b and c be such that T .a; b/, T .a; c/ and I.b; c/, with b and c one-sided. Then
xB.a; b; c/ holds if and only if the intersection points a\ b, a\ c and b\ c coincide.

Proof Of course if these points coincide, then property xB.a; b; c/ holds; every curve d such that
B.a; b; d/ holds, must contain this point and hence cannot be disjoint from c.

Now suppose that these points do not coincide, hence, are three pairwise distinct points. Then, we may
push b aside, in order to find a curve d which does not intersect c any more, as the intersection b \ c
is not essential. This curve d , obtained by pushing b, can be made to satisfy T .b; d/, while crossing b
precisely at the point a\b, and this intersection can be made transverse; the illustration of this situation is
similar to Figure 10, left, and this time we leave it to the reader. This yields a curve d such that B.a; b; d/
holds and d disjoint from c.

3 Proof of Theorem 1

Here as above, † is a connected surface admitting a nonseparating closed curve.

3.1 From bijections to homeomorphisms

In order to prove Theorem 1, it suffices to prove that every automorphism of NC
�

t
.†/ is supported by a

bijection of the surface, in virtue of the following observation.

Proposition 20 Let f W†!† be a bijection. We suppose that for every nonseparating simple closed
curve ˛ �†, the sets f .˛/ and f �1.˛/ are also nonseparating simple closed curves in †. Then f is a
homeomorphism.
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Proof If our hypothesis was that f and f �1 are closed (ie send closed sets to closed sets), then f would
be a homeomorphism. So our strategy is to use our hypothesis here in a similar fashion. We need only
prove that f is continuous, the argument for f �1 is symmetric.

Let x 2† and suppose that f is not continuous at x. Then there exists a sequence .xn/n>0 of distinct
points converging to x, and a neighborhood V of f .x/, such that for all n we have f .xn/ … V . Notice
that in the open unit disk of the plane, up to homeomorphism, there is only one sequence of distinct
points converging to the origin. With this in mind, we may construct an embedded arc, in †, with one end
at x, and which contains all the points xn. Then we may construct a nonseparating simple closed curve
˛ containing this arc. By hypothesis, f .˛/ is a nonseparating closed curve in †, which contains f .x/.
We may perform a surgery of f .˛/ inside V , to obtain a nonseparating simple closed curve ˇ, which
coincides with f .˛/ outside V but which does not contain f .x/. Now f �1.ˇ/ is, by hypothesis, a closed
subset of †, which contains all the points xn but not x. This is a contradiction.

3.2 The adjacency relation y

Let ET .NC
�

t
.†// denote the set of edges fa; bg of NC

�

t
.†/ satisfying T .a; b/. Then we have a map

Point WET .NC
�

t
.†//!†;

which to each edge fa; bg associates the intersection point a\ b. The main part of proof of Theorem 1
consists in showing that we can express the equality

Point.a; b/D Point.˛; ˇ/

in terms of the graph. For this we introduce the equivalence relation y on ET .NC
�

t
.†// as follows. If

fa; b; cg is a 3–clique of NC
�

t
.†/ of type bouquet we set fa; bgy fa; cg. We also set fa; bgy fa; cg if

a, b and c satisfy the “extra bouquet” condition, denoted above by xB.a; b; c/; see Section 2.4 (this is
void when † is orientable). Then y is defined as the equivalence relation generated by these relations.
In other words, y is by definition the smallest equivalence relation that connects the pairs fa; bg and
fa; cg whenever B.a; b; c/ or xB.a; b; c/ holds. We will gradually make this relation more explicit, in
this section and in Section 4. When † is orientable, the relationy corresponds to the equivalence relation
on triangles, generated by adjacency, in the subgraphs of NC

�

t
.†/ induced by curves passing through a

common point. This is what motivates our notation.

The relation fa; bgy fa0; b0g obviously implies Point.a; b/D Point.a0; b0/. We will see that the converse
is not true, and describe geometrically the equivalence classes in Section 4, but for now we will only
need the following partial statement.

Proposition 21 Let a, b, a0 and b0 be such that T .a; b/ and T .a0; b0/ hold. Suppose that they have the
same intersection point , xD Point.a; b/D Point.a0; b0/, and suppose that the germs of a and a0 coincide ,
ie there exists a neighborhood V of x such that a\V D a0\V . Then fa; bgy fa0; b0g.
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Figure 11: Completing the germs of a and b to form a nonbouquet 3–clique .a0; b0; c/.

Remark 22 If † is a Klein bottle, there are no couples fa; bg of two-sided curves such that T .a; b/
holds, and for every one-sided curve b, the curves c such that T .b; c/ holds fall into only two isotopy
classes: that of b and that of a two-sided curve, prescribed by b. It follows that, without the extra bouquets
in the definition of y, there would have been too many classes of y, as such a class would remember the
isotopy class of a one-sided curve, and Proposition 21 would not be true in this special case. These extra
bouquets will be used in the proof of Lemma 28 below.

We postpone the proof of the proposition to the end of this section; for now we will explain how it implies
Theorem 1.

3.3 Proof of Theorem 1

If a, b and c are vertices of NC
�

t
.†/, we denote by F.a; b; c/ the property that T .a; b/ holds, and there

exists an edge fa0; b0g with fa; bgyfa0; b0g such that fa0; b0; cg is a 3–clique which is not of type bouquet.
Note that this property F.a; b; c/ implies that c does not contain the point Point.a0; b0/ D Point.a; b/.
The next lemma asserts that F.a; b; c/ actually characterizes this geometric property, and the letter F
stands for “a\ b is far from c”.

Lemma 23 Let a, b and c be vertices of NC
�

t
.†/, and suppose T .a; b/ holds. Then

F.a; b; c/ () Point.a; b/ … c:

Proof The direct implication follows directly from the definitions; we have to prove the converse
implication. Suppose Point.a; b/ … c. Since † is connected, there exists a regular neighborhood of c
containing the point Point.a; b/. Depending on whether c is one-sided or two-sided, up to homeomorphism,
this leads to only two distinct situations. In Figure 11, we represent in bold the germs of the curves a
and b near the point a\ b, and show how to complete these germs to new curves a0 and b0 such that
fa0; b0; cg is a 3–clique not of type bouquet. When c is one-sided (see Figure 11, left), we may use two
curves a0 and b0 obtained by pushing c, while when c is two-sided (see Figure 11, right), we have to use
a curve d which meets c once transversely.

Now, by Proposition 21, we have fa; bgy fa0; b0g, and fa0; b0; cg is a nonbouquet 3–clique, so we have
F.a; b; c/ by definition.
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Corollary 24 Suppose T .a; b/ and T .˛; ˇ/ hold. Then Point.a; b/¤ Point.˛; ˇ/ if and only if there
exists a nonseparating closed curve c such that F.˛; ˇ; c/ holds but not F.a; b; c/.

The corollary is a direct consequence of Lemma 23. It follows that the equality Point.a; b/D Point.˛; ˇ/
can be expressed in terms of the graph structure of NC

�

t
.†/, because, as a consequence of Corollary 8,

being a 3–clique not of type bouquet is also characterized in terms of this graph structure. Now we can
conclude the proof of Theorem 1, provided Proposition 21 holds.

Proof of Theorem 1 Let ' be an automorphism of NC
�

t
.†/. Given a point x in †, we choose

two nonseparating simple closed curves a and b intersecting exactly once, transversely, at x, and set
'†.x/ D Point.'.a/; '.b//. This formula is valid because, by Proposition 4, '.a/ and '.b/ are still
nonseparating simple closed curves intersecting exactly once. The point '†.x/ does not depend on
the choice of .a; b/, because if .˛; ˇ/ is another choice, the equalities Point.a; b/ D Point.˛; ˇ/ and
Point.'.a/; '.b//D Point.'.˛/; '.ˇ// can be all expressed in terms of the graph structure of NC

�

t
.†/,

thanks to Corollary 24. Thus, the map '† is well defined, and by following the definitions we observe
that the map .'�1/† is its inverse; hence '† is a bijection of †. Finally, it follows from Lemma 23
that for any nonseparating simple closed curve ˛, the curve '.˛/ coincides with the set of points '†.x/

as x describes ˛. In other words, the automorphism ' is realized by the bijection '†. Proposition 20
concludes.

3.4 Connectedness of some arc graphs

In order to finally prove Proposition 21, we will first need a couple of elementary results on fine arc
graphs.

Lemma 25 Let S be a connected topological surface , with boundary, and let x and y be two distinct
points of @S . Let EA�.S; x; y/ be the graph whose vertices are the simple arcs joining x and y and
which meet @S only at their ends , with an edge between two such arcs if and only if they are disjoint
except at x and y. Then the graph EA�.S; x; y/ is connected.

Note that, when x and y are taken in the same connected component, we are not requiring that the arcs
be nonseparating; this is the reason why we use the letter E, for extended, in the same fashion as in [11].

Proof Let a and b be two vertices of this graph. As a first case we suppose that a\ b is made of a finite
number of transverse intersection points; we will prove by induction on the cardinal of a\ b that, in this
case, a and b are connected in EA�.S; x; y/. If a\ b is as small as possible, ie is equal to fx; yg, then a
and b are neighbors in this graph. Otherwise, if a and b intersect at other points than x and y, we may,
in the spirit of [6], pick a unicorn path c, made of one subarc of a beginning at x, and one subarc of b
ending at y. (For example, we may follow a until it first meets b after x, and then continue along b).
Now we may push c aside while fixing its ends, at the appropriate side of c, to obtain a new arc c0 with
both c0\ a and c0\ b of cardinal strictly lower than that of a\ b.
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This proves that arcs intersecting at finitely many points are connected in EA�.S; x; y/.

Now if the intersection a\b is infinite, fix a differentiable structure on the surface S . We may consider a
smooth curve a0, neighbor of a, by pushing a aside while fixing its ends, and similarly, a smooth neighbor
b0 of b similarly. Up to perturbing b0, we may suppose that b0 is transverse to a0. By the step above, a0

and b0 are connected in EA�.S; x; y/ and the lemma is proved.

We will also need a version for nonseparating arcs.

Lemma 26 Let S be a connected surface containing a nonseparating curve. Suppose S has boundary ,
and let x and y be two distinct points in the same boundary component of S . Let NA�.S; x; y/ be the set
of nonseparating simple arcs connecting x to y, with an edge when they are disjoint away from x and y.
Then NA�.S; x; y/ is connected.

The points x and y add some technicality; let us first prove the following simpler statement.

Lemma 27 Let S be a connected surface containing a nonseparating curve , and with at least one
boundary component , denoted by C . Let NA�.S; C / be the graph whose vertices are the nonseparating
arcs joining two distinct points of C , and with an edge between two such vertices whenever they are
disjoint. Then this graph is connected.

This lemma is a variation on [11, Corollary 3.2]; here we additionally require that the arcs end at C . In
fact, [11, Corollary 3.3] is stated for surfaces with b > 0 boundary components, but proved only in the
case b D 1, which is the case needed in the proof of their main theorem. Lemma 27 may be used to
extend this corollary to any b > 0.

Proof We begin with the observation that the graph NA�.S; C / has no isolated point. Indeed, if  is a
vertex of NA�.S; C /, by definition it is nonseparating. So we may consider a simple closed curve u with
one transverse intersection point with  . This curve u is nonseparating; this follows from Fact 5, applied
to u, and a curve v obtained by concatenation of  with some arc of C . Now we can perform a surgery
on u, and push its intersection point towards one end of  until we hit C . This constructs an arc ˛, which
is now disjoint from  , and which is also nonseparating.

Next, we claim that we can suppose, without loss of generality, that the surface S is compact. Indeed, if
1 and 2 are vertices of NA�.S; C /, and if u is a nonseparating curve intersecting 1 as above, consider
the set K D C [1[2[u. This set is compact; hence there exists a compact topological subsurface S 0

of S containing K. This surface S 0 contains nonseparating curves, as it contains u and 1[C , which
may be used as above to find two simple closed curves u and v with one essential intersection. Now a
path joining 1 to 2 in S 0 is also a path joining 1 to 2 in S . So, until the end of the proof, S is now
supposed to be compact.

Next, observe that if two vertices 1 and 2 of NA�.S; C / are isotopic (ie there exists a continuous map
H W Œ0; 1�2! S such that 1.t/DH.0; t/ and 2.t/DH.1; t/ for all t , H.s; 0/;H.s; 1/2C for all s and
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the curve Hs W t!H.s; t/ is injective for all s), then 1 and 2 are in the same component of NA�.S; C /.
This argument is borrowed from [2]: for all s, the arcHs has at least a neighbor ˛s (by the first observation
above), and the set of s0 such that Hs0 is still a neighbor of ˛s is open in Œ0; 1�. By compactness of Œ0; 1�,
there exist a finite number of arcs ˛1; : : : ; ˛n, and a subdivision 0D t0 < t1 < � � �< tn D 1 such that j̨

is disjoint from Ht for all t 2 Œtj�1; tj � for all j , and now .1; ˛1;Ht1
; ˛2; : : : ;Htn�1

; ˛n; 2/ is a path
of NA�.S; C / joining 1 to 2. As a result of this observation, we need only prove the connectedness of
the graph NA.S; C /, whose vertices are the isotopy classes of arcs between two distinct points of C , and
with an edge between two vertices whenever the corresponding classes admit disjoint representatives.

We proceed with the observation that the graph A.S; C /, defined exactly as NA.S; C / except we consider
essential arcs, which may be separating, is connected. A simple way to do this is by using the idea of
unicorn arcs exactly as in the proof of the preceding lemma: if two arcs a and b are in minimal position
then their unicorn arcs are essential, and have fewer intersections with both a and b than the number of
points of a\ b.

We will promote the connectedness of A.S; C / to that of NA.S; C /, by induction on the number of
boundary components of S .

First, suppose that S has only one boundary component, C . Let 1 and 2 be two vertices of NA.S; C /.
We may connect them by a path .1; ˛1; ˛2; : : : ; ˛n; 2/ in A.S; C /, where each of the j̨ may be
separating; consider such a path with minimal number of separating arcs. For contradiction, and up to
some relabeling, suppose ˛1 is separating. Then it cuts S in two components; denote by S1 the one
containing 1 and S2 the other. Then ˛2 is also contained in S1, otherwise we may delete ˛1 from our
path. Since S has no boundary component other than C and since the curve ˛1 is essential, the surface
S2 contains a nonseparating arc, ˛01. This arc may be used instead of ˛1 in our initial path from 1 to 2,
contradicting the minimality of the number of separating arcs. This proves that NA.S; C / is connected if
S has no other boundary component.

Now, we suppose, for inductive hypothesis, that NA.S 0; C 0/ is connected for every surface S 0 with
less boundary components than S . Let 1 and 2 be two vertices of NA.S; C /. As before, consider a
path .1; ˛1; ˛2; : : : ; ˛n; 2/ in A.S; C / between them, with minimal number of separating arcs. For
contradiction, and up to some relabeling, suppose ˛1 is separating: it cuts S into two subsurfaces; let S1

be the one containing 1, and, by hypothesis, must also contain ˛2, and let S2 be the other. If S2 contains
nonseparating arcs, we conclude as before. If not, then S2 contains some of the boundary components
of S ; hence the surface with boundary S 0 D S1[˛1 has strictly less boundary components than S . One
is C 0, composed by an arc of C and the arc ˛1, and there may be others.

If ˛2 is nonseparating, then, by the induction hypothesis, there is a path .1; ˇ1; : : : ; ˇk; ˛2/ of NA.S 0; C 0/
connected them. The arcs ˇ1; : : : ; ˇk may have end points in ˛1, but we may perform a surgery in order
to push all these points to C , and obtain arcs ˇ01; : : : ; ˇ

0
k

which are also vertices of NA.S; C /, and we
are done in this case.

Algebraic & Geometric Topology, Volume 24 (2024)



Automorphisms of some variants of fine graphs 4717

Finally, if ˛2 is a separating arc (of S , or of S1, equivalently), then we may find an arc ˛02 of S1

which is nonseparating and disjoint from ˛2. By following the last case above, there exists a path
.1; ˇ1; : : : ; ˇk; ˛

0
2/ in NA.S; C /; hence the path .1; ˇ1; : : : ; ˇk; ˛

0
2; ˛2; : : : ; ˛n; 2/ of A.S; C / has

one less separating arc than the initial path. This contradiction ends the proof.

Proof of Lemma 26 Let 1 and 2 be two vertices of NA�.S; x; y/. First, we may construct a neighbor
 02 in NA�.S; x; y/ of 2, which, in a neighborhood of x (resp. y), touches 1 only at x (resp. y).

Indeed, there is a neighborhood Ux of x homeomorphic to the closed half unit disk

fz j jzj6 1 and Im.z/> 0g;

where the middle ray (Re.z/D 0) corresponds to the points of 1. On either side of this ray, we may
find an arc disjoint from 1 and 2 except at 0, arbitrarily close to the boundary (Im.z/D 0), and joining
0 to the unit circle, and then this small arc may be continued to construct a curve  02 which consists of
pushing 2 aside.

So we may suppose that 1 and 2, close to x and y, intersect only at these points, and we may now
find neighborhoods Ux and Uy as above, such that their intersections with 1 and 2 are along rays in
this disk, in distinct directions around 0. Let S 0 be the surface obtained by removing the interiors of
Ux and Uy from S . Then the path given by applying Lemma 27 to S , yields a path from 1 to 2 in
NA�.S; x; y/, just by adding some rays in Ux and Uy to the corresponding arcs.

3.5 Proof of Proposition 21

Let us go back to the proof of Proposition 21. For the remainder of the section we fix a point x 2†. Let
X denote the set of nonseparating simple closed curves passing through x.

Lemma 28 Let a; b; c 2X . Suppose that T .a; b/ and T .a; c/ hold. Then .a; b/y .a; c/.

Proof Let S be the surface obtained by cutting † along a; it is the surface with boundary obtained by
gluing back two copies of the curve a to †X a. The point x of † yields two points, p and q, of @S , and
the curves b and c define two arcs of S joining p and q. By Lemma 25, there exists a finite sequence
0D b, . . . , nD c, of arcs of S joining p and q, with i and iC1 disjoint except at p and q. For each i ,
the arc i defines a closed curve in †, which has precisely one, transverse intersection with a; we will
still denote it by i , abusively.

For every i , if T .i ; iC1/ holds, then we have .a; i /y .a; iC1/, by definition. If T .i ; iC1/ does not
hold, then either i or iC1 are both one-sided, or one of them is two-sided. In the first case, the condition
xB.a; i ; iC1/ holds, by definition, and hence .a; i /y .a; iC1/. In the second, up to reversing the
notation suppose i is two-sided. Figure 12 shows how to insert a curve ı such that B.a; ı; i / and
B.a; ı; iC1/ both hold, and hence we still have .a; i /y .a; iC1/ in this case.

By transitivity, we deduce that .a; b/y .a; c/.
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a

i iC1

d
a

i iC1

d

Figure 12: Connecting the curves by common adjacency. The left shows the case when a is
one-sided, and the right is when a is two-sided

The last ingredient for the proof of Proposition 21 is the following observation.

Observation 29 Let a and a0 be two nonseparating simple closed curves in † such that a\ a0 is an arc.
Then both sides of this arc lie in the same connected component of †X .a[ a0/.

Proof A priori, the complement of †X.a[a0/ may have up to four connected components, as suggested
in Figure 13. Suppose first that the intersection a\a0 is essential. If a (resp. a0) is one-sided, by following
the curve a (resp. a0) we see that A D B . If both a and a0 are two-sided, by following a we see that
ADD and C D B , while by following a0 we get AD C and B DD, so AD B .

Now, suppose the intersection arc a\ a0 is inessential. By following a, we see that C DD, regardless of
a being one or two-sided. Thus, if A¤B , then one of A or B , say A, is not connected from any of B , C
or D. But this implies that a is separating, a contradiction.

We are now in a position to prove Proposition 21, but instead we will prove the following stronger
statement, which will be more convenient later in this article.

Proposition 30 Let a, b, a0 and b0 be such that T .a; b/ and T .a0; b0/ hold , with intersection point
x D Point.a; b/ D Point.a0; b0/, and suppose that a and a0 locally “half coincide” near x, ie a \ a0

contains a nondegenerate arc with endpoint x. Then fa; bgy fa0; b0g.

Proof Suppose first that a and a0 coincide along some arc with x as an endpoint, and are disjoint apart
from this arc. By Observation 29, there exists a curve d passing through x such that T .a; d/ and T .a0; d /.
By Lemma 28, this implies .a; d/y .a0; d /, and by the same lemma we also have .a; b/y .a; d/ and
.a0; b0/y .a0; d /. Hence .a; b/y .a0; b0/.

A

B

C D

a

a0

a or a0

a or a0

Figure 13: The arc a\ a0 cannot disconnect.
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Now we do not make the assumption any more that a and a0 meet only along an arc. Still, thanks to
the hypothesis of the proposition, we may choose a set V homeomorphic to a closed disk, with x on
its boundary, and such that a \ V D a0 \ V is an arc whose endpoints are x and some other point y.
Lemma 26, applied to the surface †X VV , provides a sequence a0 D a, . . . , an D a

0, of nonseparating
curves such that for all i , the curves ai and aiC1 intersect only along the arc a \ V ; hence we may
conclude by applying iteratively the reasoning above.

4 Local subgraphs

In Section 3.2, we considered edges fa; bg and fa0; b0g in the graph NC
�

t
.†/ satisfying

ja\ bj D ja0\ b0j D 1;

and Point.a; b/D Point.a0; b0/. We defined and used the equivalence relation y. The aim of this section
is to provide a geometric interpretation of the equivalence classes. The results here are not used anywhere
else in the paper. In particular, this section is not used in the proof of our main results. Nevertheless, we
think it may help the reader to get a clear picture of the situation.

4.1 The graph of germs

Let x be a marked point in the surface †. In this section the we will study the local geometry of curves
near x, so we may assume that .†; x/ D .R2; 0/ whenever this is convenient. Given two simple arcs
a; a0 W Œ0; 1�! † with a.0/ D a0.0/ D x, we say that a and a0 locally coincide at x if there exists a
neighborhood V of x such that a.Œ0; 1�/\ V D a0.Œ0; 1�/\ V . This is an equivalence relation, whose
equivalence classes are called germs of simple arcs at x. The germ of a is denoted Œa�x . We say that a and
a0 locally intersect only at x if there exists a neighborhood V of x such that a.Œ0; 1�/\a0.Œ0; 1�/\V Dfxg.
This second relation depends only on the germs of a and a0, and thus induces a relation on germs. Let
us consider the graph A.x/ whose vertices are the germs of simple arcs at x, with an edge between the
germs of a and a0 whenever a and a0 locally intersect only at x.

This graph is not connected, in fact it has infinitely (uncountably) many connected components, as we
will see below. We postpone the description of the connected components to explain the relation with
the adjacency relation defined in Section 3.2. We say that two vertices ˛ and ˛0 of the graph A.x/ are
comparable if they belong to the same connected component of the graph.

4.2 Germs and adjacency

Given a point x in † and a simple closed curve a in † that contains x, we choose any one of the two
germs of simple arc at x included in a and denote it by bacx . Which one of the two germs is chosen will
not matter in what follows.
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Proposition 31 Let a, b, a0 and b0 be vertices in NC
�

t
.†/ such that T .a; b/ and T .a0; b0/ hold , and

assume Point.a; b/D Point.a0; b0/. Then fa; bgy fa0; b0g if and only if the germs bacx and ba0cx are
comparable.

Proposition 31 will be proved in Section 4.5 below. The aim of the next two sections is to provide a
simple characterization of distance, and connected components, in the graph of germs; see Proposition 33
below.

4.3 Distance in local subgraphs

In this section, we give a geometric interpretation of the distance in three different graphs, which are very
much like the graph of germs A.x/.

Let † be one of the following surfaces:

(1) the compact annulus S1 � Œ0; 1�,

(2) the open annulus S1 �R, or

(3) the 2–torus T2 D S1 �S1.

We consider nonoriented simple arcs in †; more precisely, simple curves connecting both sides of the
annulus in case (1), properly embedded images of the real line connecting both ends of the open annulus
in case (2), or simple closed curves in a fixed homotopy class, say homotopic to f0g�S1 in case (3). Let
A denote the graph whose vertices are one of the three above family of curves, with an edge between two
curves whenever they are disjoint.

In order to express geometrically the distance in A, let us consider the cyclic cover p W z†!†, respectively
in cases (1), (2) and (3),

p WR� Œ0; 1�!R=Z� Œ0; 1�; p WR�R!R=Z�R; p WR�S1
!R=Z�S1

given by the formula p.x; y/D .x mod 1; y/. Let T be the deck transformation .x; y/! .xC 1; y/.

Now consider two curves a; b which are vertices of the graph A. Let Qa and Qb be respective lifts of a and
b under the covering map p. Note that the set

fk 2 Z j T k. Qa/\ Qb ¤∅g

is an interval of Z, which is finite in the compact cases (1) and (3) but may be infinite in the open annulus
case (2). We define the relative width Width.a; b/ as the cardinal of this set. This is an element of
f0; 1; : : : ;C1g. The reader may check easily that Width.a; b/DWidth.b; a/.

Proposition 32 For every vertices a¤ b of the graph A, the distance in the graph is given by

d.a; b/DWidth.a; b/C 1:

In cases (1) and (3), the graph A is connected. In case (2), a and b are in the same connected component
of A if and only if Width.a; b/ <C1.
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Proof Let a and b be as in the statement, and denote w DWidth.a; b/. We first assume that w <C1.
By Schoenflies’ theorem (in case (2), applied in the two-point compactification of the annulus, which is a
sphere), we may assume that a is a vertical curve whenever this makes our life easier. We first note that if
w D 0 then a and b admit lifts that are disjoint from every T –translate of each other, which shows that
a and b are disjoint, and thus d.a; b/D 1. Let us now assume w > 0, and prove the two following key
properties.

(i) For every vertex a0 of A such that d.a; a0/D 1,

Width.a0; b/� w� 1:

(ii) There exists a vertex a0 of A such that d.a; a0/D 1 and

Width.a0; b/� w� 1:

To prove the first property, consider a0 such that d.a; a0/D 1. By definition of the width w, we may find
lifts Qa and Qb of a and b such that Qb is disjoint from Qa and T wC1 Qa but meets T . Qa/; : : : ; T w. Qa/. Since a
and a0 are disjoint, there is a lift Qa0 of a0 which is between Qa and T . Qa/. Then the curves

T . Qa0/; : : : ; T w�1. Qa0/

are between the two curves T . Qa/ and T w. Qa/, and those two curves are not in the same connected
component of z†XT i . Qa0/, for i D 1; : : : ; w� 1. Since the curve Qb is connected and meets the two curves
T . Qa/ and T w. Qa/, it must meet all the T i . Qa0/. This proves that Width.a0; b/� w� 1.

Let us prove the second property. We consider Qa and Qb as above. Let S denote the compact strip or
annulus bounded by Qa[T . Qa/. Remember that Qb meets T . Qa/ but not Qa. Thus Qb\S is included in a (maybe
infinite) family of bigons, ie topological disks bounded by a simple closed curve made of a segment of
the curve T . Qa/ and a segment of the curve Qb. Let SC denote the union of these bigons. Symmetrically,
the curve Qb0 WD T �w. Qb/ meets Qa but not T . Qa/. Thus T �w. Qb/\S is included in a union S� of bigons
formed by the curves Qa and Qb0. A key point is that the sets S� and SC are disjoint, because the curves
Qb and Qb0 are disjoint, since b is simple. Thus we may construct a homeomorphism H supported in S
such that H.S�/ is included in an arbitrarily small neighborhood of Qa, and H.SC/ is included in an
arbitrarily small neighborhood of T . Qa/. In particular, we may find a curve Qa0, which is a lift of some
element a0 of A, included in the interior of S and disjoint from both S� and SC (to be more explicit, take
Qa0DH�1.f1=2g� Œ0; 1�/ in the annulus case, in coordinates for which a is the vertical curve f0g� Œ0; 1�).
Note that Qa0 is disjoint from Qb and T �w. Qb/, and separate both curves, ie the first one is on the right-hand
side of Qa0, and the second one is on the left-hand side. Thus the set

fk 2 Z j T k. Qb/\ Qa0 ¤∅g

has cardinality at most w� 1. Which proves that Width.a0; b/� w� 1, as wanted.

Using (i) and (ii), an induction on n shows that d.a; b/D n if and only if Width.a; b/C 1D n, which
completes the proof in the case when Width.a; b/ is finite. When Width.a; b/ D C1, an argument

Algebraic & Geometric Topology, Volume 24 (2024)



4722 Frédéric Le Roux and Maxime Wolff

analogous to property (i) above shows that Width.a0; b/DC1 for every a0 such that d.a; a0/D 1. This
shows that a and b are not in the same connected component of the graph.

4.4 Distance in the graph of germs

Let us go back to the graph of germs A.x/. Assume .†; x/ D .R2; 0/. Given two vertices a and b
of A.x/, let us define their local relative width Width.a; b/ as the number of turns b does around x in
arbitrary small neighborhoods of x, in a coordinate system in which a goes straight to x. More precisely,
the plane minus the origin is identified with the open annulus S1 �R, and we consider the graph A from
the previous section in the open annulus case. Then Width.a; b/ is defined as the infimum of the quantity
Width.A;B/, where A and B are vertices of A whose germs respectively equal a and b. Here is a more
practical definition, which is easily seen to be equivalent. Consider the universal cover p W z†! † as
above. Abuse the definition by still denoting a; b W Œ0; 1�!† two curves with a.0/D b.0/D 0 whose
germs respectively equal a and b. Let Qa and Qb denote lifts of (the restrictions to .0; 1� of) a and b in z†.
Then the number Width.a; b/D w is characterized by the two following properties:

(i) for every t0 2 .0; 1�, the restriction of Qa to .0; t0� meets at least w integer translates of Qb;

(ii) there exists t0 2 .0; 1� such that the restriction of Qa to .0; t0� meets exactly w integer translates of Qb;

Analogously to the previous section, the distance in the graph of germs is characterized by the local
relative width.

Proposition 33 Let a¤ b be two vertices of the graph A.x/. Then a and b are in the same connected
component of A.x/ if and only if Width.a; b/ <C1. In this case , the distance in the graph is given by

d.a; b/DWidth.a; b/C 1:

The proof is very similar to the proof in the previous section. Details are left to the reader.

4.5 Proof of Proposition 31

Let a, b, a0 and b0 be vertices of NC
�

t
.†/ such that T .a; b/ and T .a0; b0/ hold, and assume that

Point.a; b/D Point.a0; b0/. Denote by x the common intersection point.

If c is another vertex such that fa; b; cg is a 3–clique of type bouquet or extra bouquet, then the germs
bacx and bccx are disjoint, thus comparable. This entails the direct implication in Proposition 31.

Let us prove the converse implication. We assume that the germs bacx and ba0cx are comparable. In other
words, there exists arcs ˛0; : : : ; ˛n with ˛i .0/D x and whose sequence of corresponding germs is a path
from bacx to ba0cx in the graph of germs. Note that each germ ˛i may be extended to a nonseparating
curve ai , and we can find another nonseparating curve bi such that T .ai ; bi / holds. Thus the end of the
proof is a direct consequence of the following lemma.
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Lemma 34 Let a, b, a0 and b0 be vertices in NC
�

t
.†/ such that T .a; b/ and T .a0; b0/ hold. Assume

that for some choices bacx and ba0cx of arcs at x included respectively in a and a0, the germs bacx and
ba0cx intersect only at x. Then fa; bgy fa0; b0g.

Proof Let c be an arc that contains x in its interior and locally coincides with bacx[ba0cx . Extend c into
a nonseparating closed curve, still denoted by c, and consider any other nonseparating curve d such that
T .c; d/ holds. Since c locally “half coincides” near x with both a and a0, we may apply Proposition 30
twice, and get that fa; bgy fc; dgy fa0; b0g.

4.6 Curves and diffeomorphisms

In this short subsection we explain how one can use the fine curve graph to detect fundamental nondiffer-
entiability.

Let ˆ be an automorphism of NC
�

t
.†/. We introduce the following property D.ˆ/:

For all vertices a and b of NC
�

t
.†/ such that T .a; b/ holds, if Point.ˆ.a/;ˆ.b// D Point.a; b/ then

there exists a0 and b0 such that T .a0; b0/ holds, Point.a0; b0/D Point.a; b/ and fˆ.a0/; ˆ.b0/gy fa0; b0g.

Note that this property is invariant under conjugacy in the group of automorphisms; indeed, according
to Lemma 23, this property is defined entirely in terms of the graph structure of NC

�

t
.†/. Let h be a

homeomorphism of †, and denote ˆDˆh the action of h on the graph NC
�

t
.†/.

Observation 35 If h is differentiable everywhere , then property D.ˆh/ holds.

Indeed, the hypothesis Point.ˆ.a/;ˆ.b// D Point.a; b/ is equivalent to the fact that x D Point.a; b/
is a fixed point of h. Since h is differentiable at x, it is easy to check that the germ of any smooth
arc at x is comparable to its image. Take any two smooth curves a0 and b0 such that T .a0; b0/ and
Point.a0; b0/D Point.a; b/; then Proposition 31 tells us that fˆ.a0/; ˆ.b0/gy fa0; b0g.

Now consider a particular homeomorphism h of † and assume that h admits a fixed point where, for
some local polar coordinates, h is defined by

.r; �/ 7!
�
r; � C

1

r

�
:

Observation 36 Property D.ˆh/ does not hold.

An easy proof of this is obtained by considering the local rotation interval of h at x, as defined in [9,
Section 2.3]. Indeed, the local rotation interval of h at x equals fC1g, which accounts for the fact that
orbits turn faster and faster around x, in the positive direction, as we get nearer and nearer to x (the
quickest way to check this is to show that the local rotation set of h at x is fC1g, and then to apply [9,
théorème 3.9] that relates the local rotation set and the local rotation interval). We argue by contradiction
to show that property D.ˆh/ does not hold. Assuming property D.ˆh/ holds, consider curves a and
b such that T .a; b/ holds and Point.a; b/ D x. Let a0 and b0 be given by property D.ˆh/, such that
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fˆ.a0/; ˆ.b0/gy fa0; b0g. The reverse direction of Proposition 31 tells us that the germs of h.a0/ and a0

are comparable at x. This entails easily, from the definition, that the local rotation interval of h at s is a
bounded interval, a contradiction.

5 Fine graph of smooth curves

In this section we address the case of smooth curves, and prove Theorem 2 and Proposition 3. Throughout
the section, † will be a connected, nonspherical surface without boundary, endowed with a smooth
structure. In Section 5.3 we will restrict to the orientable case.

5.1 From bijections to higher regularity

One step in the proof of Theorem 1 was Proposition 20, in which we proved that if an automorphism of
NC

�

t
.†/ is supported by a bijection of †, then that bijection is a homeomorphism of †.

We may ask the same question about automorphisms of NC
�1

t
.†/, and this paragraph is devoted to the

proof of the following two statements. We denote by Homeo1t.†/ the group of bijections of † which
preserve the family of smooth, nonseparating closed curves, and preserve transversality between such
curves. The first statement below justifies this notation. Here, for simplicity we restrict to the case of
orientable surfaces.

Proposition 37 Let † be a connected , nonspherical orientable surface. The group Homeo1t.†/ is
contained in Homeo.†/.

Proof Let h 2Homeo1t.†/. We will prove that the image under h of any open set is an open set. This
is the continuity of h�1, and by applying the argument to h we also get the continuity of h.

To do this, we only need to consider the images of a family of sets that generates the topology. Given
three nonseparating curves a, b and c, we denote by V.aI b; c/ the union of all the nonseparating curves
d that meet a and are disjoint from b and c.

Observation 38 The set V.aI b; c/ is the union of some of the connected components of the complement
of b[ c that meet a. In particular , it is an open set.

Indeed, let x be a point of V.aI b; c/. By definition there is a nonseparating curve d passing through x
and meeting a but not b nor c. Consider another point y that belongs to the connected component Vx of
the complement of b[ c that contains x. By modifying d using an arc connecting x to y in Vx , we find
another curve d 0, isotopic to d , still meeting a but not b nor c, and passing through y. This proves that
V.aI b; c/ contains Vx , and the observation follows.

Now let a be a nonseparating curve. Let aC and a� be obtained by pushing a to both sides. Then
V.aI aC; a�/ is a neighborhood of a, and by making aC and a� vary we get a basis of neighborhoods
B.a/ of the curve a. The union of all these families B.a/ generates the topology of †.
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Thus it suffices to check that the image under h of each set V.aI b; c/ is an open set. But since h is a
bijection, we have

h.V .aI b; c//D V.h.a/I h.b/; h.c//:

By hypothesis, h.a/, h.b/ and h.c/ are nonseparating closed curves, and by the observation this set is
open.

We now prove Proposition 3 stated in the introduction, namely the existence of elements of Homeo1t.†/

that are not smooth.

Proof of Proposition 3 We will construct a homeomorphism F WR2!R2, which is not differentiable
at the origin, but such that both F and F�1 send smooth curves to smooth curves. The construction can
easily be modified to make F compactly supported, and then be transported on our surface †. It will be
clear from the construction that this map preserves transversality.

Let h WR!R be a smooth diffeomorphism supported in the segment Œ1=2; 2�. That is to say, h.x/D x
for all x outside Œ1=2; 2�; we suppose however that h.1/ ¤ 1. We consider the map F defined by
F.x; y/D .x; xh.y=x// if x¤ 0, and F.x; y/D .x; y/ otherwise. We claim that this map has the desired
property.

This map, as well as its inverse, is obviously smooth in restriction to R2 X f.0; 0/g. Direct computation
shows that F has directional derivatives in all directions around the origin, but the “differential” fails to
be linear: both partial derivatives are those of the identity, while the directional derivative in the direction
.1; 1/ is not. So F is not differentiable at the origin.

Now, let  WR!R2 be a smooth, proper embedding. If .0; 0/ is not in the image of  , then of course,
F ı  is still smooth. So suppose, say, that .0/D .0; 0/. If  0.0/ lies outside the two (opposite) sectors
of vectors of slopes between 1=2 and 2, then F ı  and  have the same germ at 0. Otherwise, and up to
reparametrization, we can write, near 0, .t/D .t; ˛.t// where ˛ is a smooth map (satisfying ˛.0/D 0/),
from a neighborhood of 0, to R. This yields the formula

F ı .t/D

�
t; th

�
˛.t/

t

��
:

Now, the smoothness of F ı  follows from the following elementary observation.

Claim Let ˛ WR!R be a smooth map satisfying ˛.0/D 0. Then the map t 7! ˛.t/=t when t ¤ 0, and
˛0.0/ when t D 0, is smooth.

Indeed, by the fundamental theorem of calculus, for all t 2R� we have

˛.t/

t
D

Z 1

0

˛0.ts/ds;

and this integral with parameter can be differentiated indefinitely.1

1We borrow this elegant argument from [4].
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x

B1
B2

Figure 14: Three bottles. Any arc from B1 to the outside of B2 and disjoint from d1 must meet
d2 and d3.

5.2 A weak convergence for sequences of curves

In order to prove Theorem 2, we now explain how to recognize configurations of smooth curves. Given
two vertices a and b of the graph NC

�1

t
.†/, we will denote by a�b the property that they are neighbors

in the graph. If .fn/n2N is a sequence of vertices, we denote by .fn/n2N � a the property that for all n
large enough, fn�a. The first property of sequences we may recover from the graph is the distinction of
what curves go to infinity.

Lemma 39 Let .fn/n2N be a sequence of vertices of NC
�1

t
.†/. The following are equivalent :

� for all d , we have .fn/n2N � d ;

� for every compact subset K of †, for every n large enough , K \fn D∅.

Proof The second statement implies the first, as we may just take K D d . Let us prove the converse
implication by contraposition. Suppose K intersects infinitely many fn. Since K is compact, there is a
point x 2K, such that every neighborhood of x intersects infinitely many fn. We consider two open sets
B1 and B2 with x 2 B1 and B1 � B2, and three bottle-shaped arcs, as in Figure 14. These arcs may be
continued to form three nonseparating closed curves, d1, d2 and d3. Now, let n be such that fn enters B1.
If fn does not enter nor leave B2 through the neck of the bottle corresponding to d1, then we cannot have
fn�d1, since fn and d1 have to intersect at least twice. Hence, fn passes through the neck of d1, and in
order to impose that fn� d2, another arc of fn has to get out of the bottle corresponding of d2 through
its neck. But then fn has to meet d3 twice, and we cannot have fn� d3. In other words, for all n such
that fn enters B1, we can’t have fn� d1 and fn� d2 and fn� d3, hence the first statement is not true,
and our implication is proved.

Thus, we will say here that a sequence .fn/n2N is relevant if it has no subsequence .f'.n//n2N such that
for all d , .f'.n//n2N �d . We now explore, for such sequences, the following notion of convergence. We
say that a relevant sequence .fn/ converges in a weak sense to a curve a if for every d such that a� d ,
we have .fn/� d . We denote this property by W..fn/; a/.
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Lemma 40 Let .fn/n2N be a sequence of vertices , and a be a vertex of NC
�1

t
.†/.

� If W..fn/; a/, then the sequence .fn/n2N converges in the Hausdorff topology to a; for every
neighborhood V of the curve a, for all n large enough , we have fn � V .

� If the sequence .fn/n2N of curves , with some appropriate parametrization , converges in the
C 1–topology to a, then W..fn/n2N ; a/.

Proof We first prove the first point. Let us first mention that the statement we wrote is indeed equivalent
to the Hausdorff convergence, because any essential curve in a small enough neighborhood of a must
pass close to every point of a, and thus is Hausdorff-close to a. Suppose for contradiction that for some
neighborhood V of a, we have fn 6� V infinitely often. Then we may find a point x, not in V , such that
every neighborhood of x is visited by infinitely many fn. We may construct three bottle-shaped arcs
around x exactly as in the proof of the preceding lemma, and complete these arcs to nonseparating simple
closed curves d1, d2 and d3, which can be requested to satisfy a� di for i D 1; 2; 3. Then we cannot
have fn� di for all i 2 f1; 2; 3g for the same reason as in this preceding proof, and this contradicts the
hypothesis that W..fn/; a/ holds.

The second point is the well known stability of transversality in the C 1–topology.

Remark 41 In fact, the condition W..fn/; a/ implies C 0–convergence, in the following sense. Given a
parametrization ˛ of a, we can choose the parametrizations of the fn’s yielding a sequence of parametrized
curves converging uniformly to ˛.

As we will not use this fact, we only sketch a quick argument. Let V be a small tubular neighborhood of a,
and let d1; : : : ; dN be simple closed nonseparating curves, each meeting a transversely at one point, and
cutting V in small chunks V1; : : : ; VN that are met by ˛ in that cyclic order. Let n be large enough that
fn � V and fn� di for each i . Then fn\Vi is connected, and fn visits the pieces V1; : : : ; VN in that
order. Hence we may choose a parametrization of fn, say Fn, in such a way that for all i 2 f1; : : : ; N g
and all t , Fn.t/ 2 Vi if and only if ˛.t/ 2 Vi . This implies that Fn is uniformly close to ˛.

This notion is actually somewhere strictly in between C 0–convergence and C 1–convergence, as we remark
in the following example. This construction will play a crucial role below in the proof of Theorem 2.

Example 42 Let a be a smooth nonseparating curve in †. We choose a point p in a, and a chart
around one of its points, diffeomorphic to R2, in such a way that a corresponds to the axis of equation
y D 0 in that plane. In this chart, we consider the functions f1 W x 7! 2=.1C x2/, and for all n > 2,
fn W x 7! f1.nx/=n. Abusively, we still denote their graphs by the same letters, and then, we may extend
these arcs, viewed in †, to simple closed curves (consisting of pushing a aside), that converges C 1 to a
outside of the point p. Abusively we still use the same letters fn to denote these closed curves.

The sequence .fn/n>1 does not converge C 1 to a, because fn has slope �1 at the point .1=n; 1=n/.

Algebraic & Geometric Topology, Volume 24 (2024)



4728 Frédéric Le Roux and Maxime Wolff

Nonetheless, we claim that W..fn/; a/ holds. Indeed, let d be such that a� d . Since the sequence .fn/

converges C 1 to a everywhere except at the origin of this R2 chart, the only case in which it is not
already clear that .fn/� d is when d meets a transversely at the origin. If d has a strictly positive slope
there, then for n large enough, the intersection fn \ d will be transverse because the slopes of fn are
all negative in the region x > 0. The case when d has negative slope is symmetric, and if d has vertical
slope, it will be transverse with fn since these have bounded slopes.

5.3 Recognizing configurations of smooth curves

In this last section we assume that our surface † is orientable.

If a, b are vertices of NC
�1

t
.†/, we will denote byD1.a; b/ the condition that a�b and for all sequences

.fn/ and .gm/ such that W..fn/; a/ and W..gm/; b/, we have fn�gm for all m; n large enough.

Lemma 43 Let a and b be smooth nonseparating curves. Then D1.a; b/ holds if and only if a and b
are disjoint.

Proof Suppose first that a and b are disjoint. Then they admit disjoint neighborhoods, V1 and V2. For
any sequences .fn/ and .gm/ with W..fn/; a/ and W..gm/; b/, for all m and n large enough we have
fn � V1 and gm � V2, by Lemma 40. Hence, fn�gm for all m and n large enough, and D1.a; b/ holds
indeed.

Now, suppose that a and b are not disjoint. Since a�b, the curves a and b have a transverse intersection,
and in an appropriate chart diffeomorphic to R2, the curves a and b correspond respectively to the axes
y D 0 and x D 0.

Then we may form a sequence .fn/ such that W..fn/; a/ exactly as in Example 42, and for .gn/ we just
exchange coordinates x and y. For all n, the curves fn and gn have a nontransverse intersection point (at
.1=n; 1=n/ in the chart of Example 42); hence the condition D1.a; b/ does not hold.

In the end of the proof, the curves fn and gn were tangent at their intersection point, hence not neighbors
in the graph NC

�1

t
.†/. This tangency may look like an accidental reason for fn and gn not being

neighbors in the graph NC
�1

t
.†/, but upon changing the formula of f1 in Example 42 by a small C 1

perturbation we can get fn and gn to have, for example, infinitely many transverse intersection points.

From now on, we restrict ourselves to the case of orientable surfaces. One reason is that it would take
more work to recover the extra bouquets and not only the bouquets; one other reason is that the next
lemma works best when at least one of a, b or c is two-sided.

Lemma 44 Suppose † is orientable. Let fa; b; cg be a 3–clique of NC
�1

t
.†/, and suppose that these

three curves pairwise intersect. Then the following are equivalent :

(1) This 3–clique is of type bouquet.

(2) There exists a relevant sequence .fn/ of vertices of NC
�1

t
.†/, which are all disjoint from a, and

such that for all d disjoint from b and satisfying c � d , we have .fn/� d .

Algebraic & Geometric Topology, Volume 24 (2024)



Automorphisms of some variants of fine graphs 4729

Proof Suppose fa; b; cg is of type bouquet. Then the sequence .fn/n2N can be constructed explicitly.
Let p D b \ c. Fix a (smooth) metric on †, we remove all points of the ball B.p; 1=n/ off the curves
b and c, this gives two arcs. There is a natural way of adding smooth subarcs of B.p; 1=n/ in order to
extend this union of two arcs, to a curve fn which does not intersect a. In a one-holed torus neighborhood
of b [ c, with a choice of meridian and longitude coming from b and c, these curves fn have slope 1,
or �1; these are indeed nonseparating simple closed curves. Now if d is disjoint from b and satisfies
c � d , then either d is disjoint from c, and then fn is disjoint from d for all n large enough, or d has a
transverse intersection with c at a point distinct from p, and we also have fn� d for all n large enough.
Thus, (1) implies (2).

Conversely, suppose (2). We first claim that the sequence .fn/ then concentrates into neighborhoods
of b[ c. For contradiction, suppose that we can find a neighborhood V of b[ c, such that fn 6� V for
infinitely many n. Then, there exists a point x, with x … b[ c, and such that every neighborhood of x
meets infinitely many fn. Then we may choose three bottle-shaped arcs around x, and complete them
into curves d1, d2 and d3 disjoint from b and satisfying dj � c for j D 1; 2; 3. Indeed, we may start with
a curve d0 obtained by pushing b aside, and then perform surgeries on d0. The same reasoning as in the
proof of Lemma 39 shows that fn 6�dj for some j 2 f1; 2; 3g and for infinitely many n, contradicting the
hypothesis (2).

Now, suppose for contradiction that fa; b; cg is a necklace. Then, for a sufficiently small regular neighbor-
hood V of b[ c, we may observe that V X a is contractible. Hence it cannot contain any nonseparating
simple closed curve fn, and the hypothesis (2) cannot be fulfilled. This proves that (2) implies (1).

Now the proof of Theorem 2 is a straightforward adaptation of the proof of Theorem 1. The statements
about connectedness of complexes of arcs, for example, are equivalent to their counterparts with regularity,
because of the argument of homotopy recalled in the proof of Lemma 27 and borrowed from [2].
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