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On keen weakly reducible bridge spheres

PUTTIPONG PONGTANAPAISAN

DANIEL RODMAN

A bridge sphere is said to be keen weakly reducible if it admits a unique pair of disjoint compressing
disks on opposite sides. In particular, such a bridge sphere is weakly reducible, not perturbed, and not
topologically minimal in the sense of David Bachman. In terms of Jennifer Schultens’ width complex, a
link in bridge position with respect to a keen weakly reducible bridge sphere is distance one away from a
local minimum. We give infinitely many examples of keen weakly reducible bridge spheres for links in b
bridge position for b � 4.

57K10, 57K20, 57K30

1 Introduction

Suppose that we have a decomposition of the 3–sphere S3D VC[†V� where VC and V� are 3–balls and
† is a 2–sphere. A link L� S3 intersecting † transversely is said to be in bridge position with respect
to † if L\VC D ˛C and L\V� D ˛�, where ˛C and ˛� are b–strand trivial tangles. The punctured
sphere †L D †nL is called a b–bridge sphere. To each bridge sphere, we can assign a disk complex
D.†L/, which is a simplicial complex whose vertices are isotopy classes of compressing disks in S3nL
for †L and whose k simplices are spanned by kC 1 vertices with pairwise disjoint representatives.

We say that †L is topologically minimal if one of the following holds:

(1) D.†L/D∅.

(2) There exists i 2N [f0g such that the i th homotopy group of D.†L/ is nontrivial.

The topological index of †L is defined to be 0 if D.†L/D∅, or the smallest i such that �i�1.D.†L// is
nontrivial if D.†L/¤∅. The notion of topological minimality was introduced by David Bachman [2010]
as a generalization of useful concepts such as incompressibility and strong irreducibility of surfaces in a
3–manifold. It turns out that topologically minimal surfaces possess desirable properties. For instance, in
an irreducible 3–manifold, a topologically minimal surface can be isotoped to intersect an incompressible
surface in such a way that any intersection loop is essential in both surfaces. Furthermore, the concept of
topological minimality gave rise to examples of 3–manifolds containing arbitrarily many nonminimal
genus, unstabilized Heegaard surfaces that are weakly reducible [Bachman 2013]. Moriah [2007] dubbed
these examples “the nemesis of Heegaard splittings” as they are difficult to find.
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Conjecturally, there is a special and mysterious relationship between topologically minimal surfaces and
geometrically minimal surfaces, which are surfaces whose mean curvature is identically zero. Every
geometrically minimal surface has a Morse index, which roughly speaking counts the maximal number
of directions the surface can be deformed so as to decrease its area. Freedman, Hass and Scott [Freedman
et al. 1983] showed that every surface of topological index zero is isotopic to a geometrically minimal
surface of Morse index zero. By works of Pitts and Rubinstein [1987] and of Ketover, Liokumovich, and
Song [Ketover et al. 2019], a Heegaard surface of topological index one is isotopic to a geometrically
minimal surface of Morse index at most one. Campisi and Torres [2020] showed that the genus two
Heegaard surface of the 3–sphere has topological index three. By Urbano [1990], this Heegaard surface
must have Morse index at least six. Thus, it is not true in general that a surface of topological index k is
isotopic to a surface of Morse index at most k, but the precise connection is not well understood.

One can ask the interesting question of which surfaces are topologically minimal. Several authors have
given examples of topologically minimal Heegaard surfaces [Bachman and Johnson 2010; Campisi and
Rathbun 2018; Campisi and Torres 2020; Lee 2015] and bridge surfaces [Lee 2016; Pongtanapaisan and
Rodman 2021; Rodman 2018]. Heegaard surfaces that are not topologically minimal have also been
studied by several authors who constructed keen weakly reducible Heegaard surfaces. That is, each of
these surfaces possesses a unique weak reducing pair, a pair of compressing disks on opposite sides
of the surface whose boundaries are disjoint. By a result of McCullough [1991], the disk complex of
the boundary of a handlebody is contractible. Thus having a unique pair of weak reducing disks on
distinct sides of a Heegaard splitting means that in the disk complex, there is a unique edge connecting
the two contractible subcomplexes corresponding the two handlebodies, resulting in a contractible disk
complex for the Heegaard surface. The examples of keen weakly reducible Heegaard surfaces in the
literature with simple descriptions include the canonical Heegaard surface of a surface bundle whose
monodromy has sufficiently high translation distance by Johnson [2012], some Heegaard surfaces arising
from self-amalgamations by E and Lei [2014], and certain unstabilized genus three Heegaard surfaces in
irreducible and orientable 3–manifolds by Kim [2016]. More complicated constructions of keen weakly
reducible Heegaard surfaces of genus g � 3 can also be found in [E 2017; Liang et al. 2018].

The goal of this paper is to provide infinitely many examples of nontopologically minimal bridge spheres,
which are lacking in the literature, by verifying that the canonical bridge sphere for certain links in plat
position is keen weakly reducible. Such links are obtained by “amalgamating” two types of links whose
canonical bridge spheres are topologically minimal. Keen weakly reducible bridge spheres also belong to
a family of surfaces with finitely many pairs of disjoint compressing disks [E and Zhang 2023], which is
interesting in its own right.

Theorem 1.1 There exist infinitely many links with keen weakly reducible bridge spheres.

This paper is organized as follows. In Section 2, we discuss properties of a keen weakly reducible bridge
sphere related to perturbations of bridge spheres, thin position of links, and essential surfaces in the link
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exterior. In Section 3, we define the notion of a plat position for a link, consider a particular family of
links in plat position, and describe useful positions of curves on a punctured sphere with respect to a train
track. In Section 4, we characterize the behaviors of curves that bound disks above or below the bridge
sphere. In Section 5, we use a criterion presented in [Cho 2008] to show that keen weakly reducible
bridge spheres are not topologically minimal.
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2 Consequences of being keen weakly reducible

In this section, we discuss some consequences of putting a link in bridge position with respect to a keen
weakly reducible bridge sphere. We remark that a priori keen weakly reducible bridge spheres are not
necessarily canonical bridge spheres for links in plat position.

2.1 Unperturbed bridge spheres

Let L be a link in bridge position with respect to †. Then L \ VC D ˛C is a collection of disjoint
embedded arcs with the property that there exists an isotopy (rel @˛C) taking ˛C into †. For each arc ˛i

C

of ˛C, the trace of such an isotopy is a disk called a bridge disk Di
C

. From each bridge disk Di
C

we can
obtain a compressing disk dDi

C
called the frontier ofDi

C
using the construction dDi

C
D .@N .Di

C
//\VC.

Analogous definitions can be made for L\V� D ˛�.

We say that a bridge sphere †L is perturbed if there exist two bridge disks D1
C
� VC and D1� � V� such

that D1
C
\D1� is a single point contained in L. It is an interesting problem to search for unperturbed

bridge spheres for a link up to isotopy since a perturbed bridge can always be obtained from a bridge
sphere that is not perturbed by an isotopy which introduces a maximal point and a minimal point as
shown in Figure 1. In some cases, the only destabilized bridge sphere is the one that realizes the bridge
number [Otal 1985; Ozawa 2011; Zupan 2011]. Another common way to show that a bridge sphere †L
for a nontrivial link L is unperturbed is to show that there is no weak reducing pair for †L. Being keen
weakly reducible implies the following.

Proposition 2.1 If †L is keen weakly reducible , then †L is unperturbed.

It is well known that a perturbed bridge sphere has a weak reducing pair; we prove that result here, and
show that such a bridge sphere in fact has at least two weak reducing pairs.
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Figure 1: Introducing a canceling pair of critical points.

Proof If†L is a perturbed bridge sphere for a link L in 2–bridge position, then Lmust be the unknot and
there exists a unique compressing disk D above and a unique compressing disk E below. Furthermore,
D\E ¤∅, which implies that †L does not admit a weak reducing pair, and therefore †L cannot be
keen weakly reducible. To complete the proof, we consider perturbed bridge spheres for links in b–bridge
position, where b � 3.

Suppose that †L is perturbed. By definition, there exist bridge disks D1
C
� VC and D1� � V� such that

D1
C
\D1� D fpg 2 L. Let AC be a set of b disjoint bridge disks for †, each corresponding to one of the

components of ˛C, and suppose further that D1
C
2AC. Let A� be a similarly defined set of bridge disks

below † with D1� 2A�. (We are able to define AC and A� after D1
C

and D1� by [Scharlemann 2005,
Lemma 3.2].) The elements of A� may or may not intersect the interior of the arc D1

C
\†. Below, we

describe how if they do, we can replace them with another set of b disjoint bridge disks below †, each of
which is disjoint from the interior of D1

C
\†.

Suppose that the elements of A� intersect the interior of D1
C
\†. Consider a point q of intersection

closest to p. Let D0� 2A� denote the bridge disk containing q. We perform a surgery on D0� as depicted
in Figure 2, resulting in a new disk D00�. Notice that D00� is disjoint from the other elements of A�, and
D0� and D00� both correspond to the same bridge arc. In slight abuse of notation, we will replace D0� with
D00� in the collection A�. After this replacement, A� remains a collection of pairwise disjoint bridge
disks for the bridge arcs below †. The difference is that now, the elements of A� intersect the interior of
D1
C
\† in one fewer point.

Figure 2: Bridge disks below †K can be isotoped to intersect D1
C in two points in K.

Algebraic & Geometric Topology, Volume 24 (2024)
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We can repeatedly perform such surgeries until the bridge disks of A� are all disjoint from the interior of
D1
C
\†. It follows that the bridge disks of A� intersect D1

C
only in the two points of D1

C
\L\†, each

of which intersects a bridge disk of A�. Since L is in a b bridge position with b > 2, these two bridge
disks must be distinct. In addition to these two, there must be at least one more bridge disk D2� 2A�

since b � 3, and so D2� is disjoint from D1
C

. Therefore, dD1
C

and dD2� comprise a weak reducing pair
for †L.

Now consider dD1�. We can mimic the trick in the previous paragraph so that a particular set of b pairwise
disjoint bridge disks above † intersects D1� only in the two points of D1�\L\†. Then there is some
bridge disk D2

C
disjoint from D1�, which means that dD1� and dD2

C
comprise another weak reducing

pair for †L. Therefore, a perturbed bridge sphere never admits a unique weak reducing pair and can
never be keen weakly reducible.

2.2 Width complex

Suppose that L is a link and h W S3!R is the standard Morse function. Assume also that hjL is a Morse
function. Suppose that c1< � � �<cn are critical values of hjL. Consider h�1.ri /, where ri is a regular value
between ci and ciC1. We say that a level sphere h�1.ri / is a thin level if jh�1.ri�1/\Lj> jh�1.ri /\Lj
and jh�1.ri / \ Lj < jh�1.riC1/ \ Lj. On the other hand, a level sphere h�1.ri / is a thick level if
jh�1.ri�1/\Lj< jh

�1.ri /\Lj and jh�1.ri /\Lj> jh�1.riC1/\Lj. We say that a disk D � S3nL is
a strong upper (resp. lower) disk with respect to h�1.ri / if

(1) @D D ˛[ˇ where ˛ � L contains exactly one maximal (resp. minimal) point and ˇ is an arc in
h�1.ri /, and

(2) the interior of D contains no critical point with respect to the height function h.

If there exists a strong upper disk and a strong lower disk intersecting in exactly one point lying in L (see
Figure 1, for instance), then there is an isotopy that cancels a maximal point and a minimal point. We call
such a move a type I move. On the other hand, if there exists a strong upper disk and a strong lower disk
that are disjoint, then there is an isotopy that interchanges a maximal point and a minimal point. We call
such a move a type II move.

Schultens [2009] associated to a knot K a graph called the width complex ofK to understand the structure
of the collection of Morse embeddings of a fixed knot K. Two embeddings k and k0 of K are considered
to be equivalent if their thin and thick levels are isotopic. With this definition of equivalence, each vertex
of the width complex is an equivalence class of embeddings of K such that hjK is a Morse function. An
edge connects two vertices representing embeddings k and k0 if k differs from k0 by one of the following
moves: a type I move, the inverse of a type I move, a type II move, or the inverse of a type II move.
Schultens proved the following interesting result.

Theorem 2.2 [Schultens 2009] The width complex of a knot is connected.
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The proof of Theorem 2.2 uses the fact that projections of k and k0 to the vertical plane differ by a finite
number of Reidemeister moves and planar isotopy. Furthermore, each of these local moves either affects
an embedding by a type I or a type II move or does not alter the equivalence class at all. As any two
projections of a multicomponent link L are also related by Reidemeister moves and planar isotopy, it
follows that the width complex of a multicomponent link is also connected.

A vertex that is particularly interesting is one representing an embedding that admits no type I or type II
moves. Such an embedding is said to be in locally thin position.

Proposition 2.3 Suppose that l is an embedding of a link L in bridge position with respect to a keen
weakly reducible bridge sphere. In the width complex of L, there is an edge between l and an embedding
l 0 of L in a locally thin position.

Proof Let D � VC and E � V� be a weak reducing pair for a keen weakly reducible bridge sphere †L.

Claim @D and @E each cut out a twice punctured disk from †L.

Proof of claim Suppose that @D cuts †L into two components F1 and F2, where each component is a
punctured disk containing more than two punctures. The loop @E is contained in one of the components,
say F1. There exists at least one bridge disk D1

C
such that @D1

C
D ˛[ˇ where ˛ �L and ˇ � F2. Then,

dD1
C

and E give rise to a weak reducing pair distinct from D and E, which is a contradiction. The same
argument also implies @E cuts out a twice-punctured disk from †L.

Observe that D cuts off a 3–ball containing a unique bridge disk, which is a strong upper disk disjoint
from a strong lower disk contained in a 3–ball cut off by E. This pair of disks gives rise to a type II move.
After the type II move is performed, there are neither type I nor type II moves left to perform because
any pair of strong upper disk and strong lower disk (intersecting in one point of L or mutually disjoint)
that emerges after the type II move on D and E will yield a distinct pair of strong upper disk and strong
lower disk on †L, and hence †L admits more than one weak reducing pair, which is a contradiction.

After a type II move is performed along D and E, a thin level emerges. This thin level is incompressible
because a compressing disk for this level would imply the existence of another weak reducing pair
different from D and E. Thus, we obtain the following corollary.

Corollary 2.4 A link with a keen weakly reducible bridge sphere contains an essential meridional surface
in its exterior.

3 Setting

In this section, we redevelop and summarize several tools and concepts of Johnson and Moriah [2016].
Specifically, Section 3.1 is a brief summary of Johnson and Moriah’s plat links and accompanying tools
such as their �i and �y projection maps. Then in Section 3.3, we develop Johnson and Moriah’s taos,

Algebraic & Geometric Topology, Volume 24 (2024)



On keen weakly reducible bridge spheres 4207

x

y

1

2

3

4

5

6

7

1 2 3 4 5 6 7 8 9 10 11
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A2;1 A2;2 A2;3 A2;4 A2;5

A3;1 A3;2 A3;3 A3;4

A4;1 A4;2 A4;3 A4;4 A4;5

A5;1 A5;2 A5;3 A5;4

Figure 3: A .6; 5/–plat structure.

eyelets, and train tracks and adapt them slightly to our situation. Finally in Section 3.4 we define the
concepts of carried and almost carried arcs, loops, and graphs in a manner very similar to that of Johnson
and Moriah, differing only in some minor ways that suit our purposes.

3.1 Plat positions

Consider the standard Morse function h W S3!R with exactly one maximum, C1, and one minimum,
�1. Let ˛ � S3 be a strictly increasing arc such that @˛ D f˙1g. We identify S3n˛ with R3 with
Cartesian coordinates .x; y; z/ in such a way that the xz–plane lies in h�1.0/, and more generally, for
each t 2 R, the plane y D t lies in h�1.t/. We orient our perspective so that the x–axis is horizontal,
the y–axis is vertical, and the z–axis points towards the reader. (This allows us to use terms like “up”,
“down”, “left”, and “right”.) We denote h�1.t/ by Pt .

For each y 2R, and k 2 Z, let cy;k be the circle of radius 1
2

in Py , centered at x D kC 1
2

, z D 0. The
plat tube Ai;j is defined to be the annulus

Ai;j D

(S
y2Œi;iC1� cy;2j if i is even;S
y2Œi;iC1� cy;2jC1 if i is odd:

For n;m 2 f2; 3; 4; : : :g, the .n;m/–plat structure is the union of the plat tubes Ai;j where i ranges from
1 to n� 1 and j either ranges from 1 to m or 1 to m� 1 depending upon whether i is even or odd,
respectively.

For n;m 2 f2; 3; 4; : : :g, an .n;m/–plat braid is a union of 2m pairwise disjoint arcs in R3 whose
projections to the y–axis are monotonic, satisfying the following properties:

(1) One endpoint of each arc lies in P1 and the other endpoint lies in Pn.

Algebraic & Geometric Topology, Volume 24 (2024)
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Figure 4: The upper gray box containsDa, a 4–twisted .2m�4;m/–plat braid, wherem� 4. The
lower gray box contains Db a 4–twisted .n;m�1/–plat braid.

(2) Each arc can be cut into subarcs, each of which is contained either in the .n;m/–plat structure or
in one of the vertical lines x D 2 or x D 2mC 1 in the xy–plane.

(3) The intersection of the braid with each plat tube consists of a pair of arcs which intersect the plane
z D 0 in a minimal number of components and whose endpoints lie in z D 0.

Observe that the plane z D 0 cuts Ai;j into two disks. Here we define the twist number ai;j . If the
braid intersects Ai;j in vertical arcs, then we define ai;j D 0. Otherwise, the disk with nonnegative
z–coordinates contains some number of arcs of the plat braid whose projection to the plane z D 0 is a set
of parallel line segments. We define jai;j j to be this number of parallel arcs. The sign of ai;j is defined
to be the sign of the slope (�y=�x) of the line segments. The integer ai;j is called the twist number
for Ai;j .

For our purposes, we will only consider .n;m/–plat braids with n even. In this case, we can obtain a link
from an .n;m/–plat braid by first connecting the point .2j; 1; 0/ to .2j C1; 1; 0/ for each 1� j �m with
the unique (up to isotopy) arc in the portion of the plane z D 0 which lies below the line y D 1. Similarly,
for each 1� j �m, we also connect the point .2j; n; 0/ to the point .2j C 1; n; 0/ with the unique arc
in the portion of plane z D 0 above the line y D n. These 2m arcs can be isotoped in the plane z D 0
(with respect to their endpoints) so that each is injective when projected to the x–axis and each contains
either a single maximum or minimum point (with respect to h), with the result that the set of 2m arcs is
pairwise disjoint. The embedding of a link constructed as the union of the plat braid and these 2m arcs in
this way is said to be an .n;m/–plat position of a link. If a link has an .n;m/–plat position, it is called an
.n;m/–plat link. A plat link is called k–twisted if jai;j j � k for every twist number ai;j .

Throughout the rest of the paper, when discussing plat links, ˛1
C
: : : ˛m

C
will refer to the bridge arcs above

Pn, labeled from left to right. Likewise, let ˛1� : : : ˛
m
� be the bridge arcs below P1, labeled from left to

Algebraic & Geometric Topology, Volume 24 (2024)
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Figure 5: A (10,5)-plat link L 2 L.

right. Let Li be the link component that contains ˛i
C

. (Of course, since an m–bridge link may have fewer
than m components, it may be that the component containing ˛i

C
also contains ˛j

C
for some j ¤ i , and

so Li D Lj .)

There are two types of projection maps that we will often refer to. The first type of projection map
is the Euclidean projection map �i W R3 ! R3 defined by �i .x; y; z/ D .x; i; z/. The second type of

Algebraic & Geometric Topology, Volume 24 (2024)
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projection map is the map �y WR� Œ1; n��R! Py , which sends each component of the plat braid to the
corresponding point .j; y; 0/, and extends to a homeomorphism from Py0 to Py for each y0 2 Œ1; n�. (In a
slight abuse of notation, we will refer to this homeomorphism as �y .)

3.2 The family of links we consider

Let Da be a 4–twisted .na; m/–plat position of a link La such that m� 4 and naD 2m�4, and let Db be
a 4–twisted .nb; m�1/–plat position of a link Lb . Position Da above Db as shown on the left of Figure 4.
Let Dab be an .naCnb; m/–plat position obtained from Da tDb by replacing each of the 0–tangles in
the dashed ovals with vertical half-twists as shown on the right of Figure 4. (Note: the subscripts a and
b are used for “above” and “below”.) We define L to be the family of links constructed in this fashion
which have the following additional properties.

(1) The rightmost twist regions of every row alternate in sign from row to row. That is, the sign of the
rightmost nonzero twist region of each row is opposite to the sign of the rightmost nonzero twist
regions of any adjacent rows.

(2) The sign of an�1;2, the twist number for the second twist region in the top row of Da, is even, and
every other twist region that involves L3 has an odd twist number. (This forces L3 to be an unknot
component containing the bridge arcs ˛3

C
and ˛m� .)

(3) The signs of the twist numbers for the twist regions involving Lm are chosen so that Lm contains
the lower left bridge arc ˛1�.

(4) The rest of the twist numbers for Dab are chosen so that Dab is an m–component link and so that
the bridges ˛m

C
and ˛1� are contained in the same link component, namely Lm. (It follows that for

each i; j 2 f1; : : : ; mg, with i ¤ j , Li is a distinct link component from Lj.)

(5) Excluding the pair fL1; L3g, every pair of link components comprises a two-bridge nonsplit sublink.
(Note: The sublink L1[L3 will always be split no matter what set of twist numbers is chosen.)

Below in Proposition 3.1, we will show that L is a nonempty set. First, observe that L is a family of links
in .n;m/–plat position for m� 4 and nD naCnb with the following conditions on the twist numbers:

(1) For i > nb , jai;j j � 4 for all possible values of j .

(2) If i is odd, 1� i � nb , and 1� j �m� 2, (resp. j Dm� 1), then jai;j j � 4 (resp. ai;j D 0/.

(3) If i is even, 1� i � nb , and 1� j �m� 1, (resp. j Dm), then jai;j j � 4 (resp. ai;j D 0/.

(4) If ai;� denotes the rightmost nonzero twist number in row i, then ai;� �ai�1;�<0 and ai;� �aiC1;�<0.
In other words, the signs of the rightmost nonzero twist numbers alternate from row to row.

Figure 5 shows an example of what L 2 L may look like. In this case, nD 10, and mD 5. It follows
from the definition of the family L that for any L 2 L, L3 is the component containing the lower right
bridge arc ˛m� .

Algebraic & Geometric Topology, Volume 24 (2024)
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L1 L2 L3 L4 L5 L6 L7

L7 L6 L5 L4 L2 L1 L3

level 22 (naCnb)

level 21

level 20

level 19

level 18

level 17

level 16

level 15

level 14

level 13

level 12 (nb)

level 11

level 10

level 9

level 8

level 7

level 6

level 5

level 4

level 3

level 2

level 1

4 224 777 340 164 5000

12 24 �45 �57 88 �4 �20

8 �10 9 99 90 18

�10 62 �8 �33 15 34 �4

100 �100 100 5 555 50

4 4 4 4 �7 71 �14

�12 �16 6 �6 41 511

�14 4 4 �4 8 �9 �89

22 �26 30 38 4 11

�7 61 45 33 21 �81

133 �5 �5 �5 5

41 139 45 95 95 �11

7 81 251 23 7

9 9 99 1001 9 �9

11 �11 195 9 5

99 �97 95 �93 91 �89

5 5 5 5 5

7 7 7 7 7 �49

�77 �5 61 63 65

17 9 83 �11 �65 �77

5 7 9 11 13

Figure 6: This figure illustrates Proposition 3.1, showing an example a 7–bridge link in L. The
seven different colors and line styles represent seven different link components. Each rectangle
represents a twist region, and the integer inside each rectangle is the twist number indicating the
number and sign of half twists present in that twist region.
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Proposition 3.1 For each integer m� 4, the family L contains infinitely many links of bridge number m.

Proof It is not difficult to satisfy properties (1) and (2). We need to show that properties (3), (4), and (5)
can be satisfied. We will do this by constructing an infinite family of examples for each bridge number
m� 4.

Fix m� 4. Let Da and Db be a .2m�4;m/–plat link and an .2m�2;m�1/–plat link. We will show that
the right choices of the parities and magnitudes of the twist numbers of Da and Db will allow us to fulfill
the conditions given above.

First, after choosing odd numbers for the particular twist numbers in Da prescribed by property (2),
choose all even numbers for the rest of the twist numbers in Da. Then choose any integers of magnitude
at least four (regardless of parity) for the row of twist regions between Da and Db . The twist number
choices we have made so far guarantee that at level nb , the punctures of Pnb

occur in pairs corresponding
to the link components in this order, from left to right: L1; L2; L4; L5; : : : ; Lm; L3. That is, they are
arranged in numerical order from left to right except that the punctures of L3 appear at the end of the line.

Then for every twist region below Pnb
(ie the twist numbers corresponding to Db), we choose all odd

twist numbers. This guarantees that the punctures of P1 occur in pairs corresponding from left to right to
the link components Lm; Lm�1; : : : ; L5; L4; L2; L1; L3. That is, they area arranged in reverse numerical
order, except that again, the punctures of L3 are at the end of the line. Thus L is an m–component link
whose lower left bridge arc is contained in Lm, satisfying conditions (3) and (4).

Since every twist number in Db is odd, it follows that for each pair fLi ; Lj g of distinct link components
from the set fL1; L2; L4; : : : ; Lmg (the set of all link components excluding L3), there are exactly four
twist regions in Db which involve both Li and Lj . The choices of twist numbers in Da guarantees that
there is one twist region containing arcs of both L2 and L3, and there are exactly four twist regions
containing arcs of both L3 and Lj for each j � 4. Now let fLi ; Lj g be any pair of link components
except for the pair fL1; L3g. To satisfy condition (5), simply choose twist numbers such that the linking
number of Li [Lj is nonzero. For example here is one way to do so. There will be some positive
number N of twist regions that involve strands from both Li and Lj . For these twist regions, choose
twist numbers t1; t2; : : : ; tN such that jt1j>

PN
kD2 jtkj.

Proposition 3.2 Each link in the family L is nonsplit.

Proof Let L 2 L, and assume S is a splitting sphere for L.

Case 1 The link components L1 and L2 are both on the same side of S .

In this case, let Lj be a link component on the other side of S . Then by condition (5) of the definition
of L, L2[Lj is a nonsplit link which is split by S , a contradiction.

Case 2 The link components L1 and L2 are not both on the same side of S .

Then S is a splitting sphere for the nonsplit link L1[L2, another contradiction.
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To say that a given compressing disk C is a cap is to say that there exists some bridge disk D such that
C D dD. If ˛ is the bridge arc corresponding to D, then we say that C is a cap for ˛. It follows that
@C cuts the bridge sphere into two components, one of which is a twice-punctured disk, where the two
punctures are the intersection points of the bridge sphere with ˛.

Proposition 3.3 Let D and E be compressing disks above and below P , respectively. If fD;Eg is a
weak reducing pair for P , then D is a cap for ˛1

C
, and E is a cap for ˛m� .

Proof The loop @D � P partitions the link components of L into two nonempty sets, A and A0 (based
on which side of @D the punctures of each link component lie). Let A be the set containing L1. The loop
@E also partitions the link components into two nonempty sets, B and B 0. Let B be the set containing L3.
If A contains Li for any i ¤ 1, then fD;Eg is a weak reducing pair for the sublink Li [L3, a nonsplit
2–bridge link, a contradiction. Similarly, if B contains Lj for any j ¤ 3, then fD;Eg is a weak reducing
pair for the sublink L1[Lj, a nonsplit 2–bridge link, another contradiction. Therefore D is a cap for ˛1

C
,

the bridge arc above P contained in L1, and E is a cap for ˛m� , the bridge arc below P contained in L3.

The rest of the paper will be devoted to proving that each L 2L admits a keen weakly reducible bridge
sphere. The reason Proposition 3.3 does not immediately imply this is because for any given bridge arc,
there are infinitely many distinct caps for that bridge arc, provided there are at least three bridges on each
side of the bridge sphere, which is the case for all of the links in L.

3.3 Plat train tracks

Speaking generally, let †L denote a bridge sphere, and let I denote a closed unit interval. A train track
� is a compact subsurface of †L whose interior is fibered by open intervals and the fibration extends
to a fibration of � by closed intervals except for at finitely many intervals called singular fibers. Let ˛
be a singular fiber, and denote its closed neighborhood in � by N.˛/. Then there is a homeomorphism
f WN.˛/! .I � I /n

��
1
4
; 3
4

�
�
�
1
2
; 1
��

such that f .˛/D I �
˚
1
2

	
. We will refer to the inverse image of�

I �
˚
1
2

	�
n
��
I �

�
0; 1
4

��
t
�
I �

�
3
4
; 1
���

under f as a switch of � ; see Figure 7.

Figure 7: A train track at a singular fiber. The closed red line segment is a switch.
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Figure 8: At left, a left-handed tao diagram. At right, a right-handed tao diagram.

In this paper, we will assign a train track �i to each bridge sphere Pi for i D 1; 2; : : : ; n� 1. (There is no
need for a train track at the top level Pn.) To this end, we will construct a certain trivalent graph, called a
train graph, on each bridge sphere based on the parity of i and the twist numbers ai;j for the row. The
train track will then be constructed from the train graph in a natural way.

We define a train graph to be a connected trivalent graph with the property that the three edges incident
to each vertex are tangent to each other at the vertex, and not all three edges emanate from the vertex in
the same direction. (See the left side of Figure 14.) Below, we will construct a specific train graph Ti
embedded in Pi for each i D 1; 2; : : : ; n� 1, and these train graphs will have the property that PinTi
consists of 2m once-punctured disks and one (nonpunctured) disk. We will informally express this by
saying that each puncture is “surrounded by” Ti .

To construct each train graph, there are various cases to consider. Recall from Section 3.2 that L is a
family of links in .n;m/–plat position for nDnaCnb . If i is odd and n�1� i �nbC1 (resp. i <nbC1),
we define `i;j to be the circle in Pi centered at

�
2j C 3

2
; i; 0

�
with radius 3

4
for j D 1; 2; : : : ; m� 1

(resp. for j D 1; 2; : : : ; m�2/. If i is even and n�2� i � nbC1 (resp. i < nbC1/, we define `i;j to be
the circle in Pi centered at

�
2j C 1

2
; i; 0

�
with radius 3

4
for j D 1; 2; : : : ; m (resp. j D 1; 2; : : : ; m� 1).

Now, each `i;j cuts out a twice-punctured disk from Pi . We will distinguish two types of arcs that
separate the two punctures. If `i;j is directly below a positive twist region, then we draw a right-handed
tao arc separating the two punctures as shown on the right of Figure 8. In the case where `i;j is directly
below a negative twist region, we instead draw a left-handed tao arc. The union of a left-handed tao arc
(resp. right-handed tao arc) with `i;j will be called a left-handed tao diagram (resp. right-handed tao
diagram). An important aspect of these tao diagrams is that at a tao arc’s endpoints, the circle and the tao
arc are tangent to each other as pictured.

Figure 9: The way we add an edge between two adjacent tao diagrams depends on their handedness.
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Figure 10: Adding eyelets to “leftover” punctures that are adjacent to a tao diagram.

At this point we have constructed various disconnected tao diagrams in each Pi . We next connect each
pair of adjacent tao diagrams with an edge in one of the four ways pictured in Figure 9, depending on the
handedness of each tao diagram. If i is even and i � nbC 1, the result of this procedure is a train graph
which we call Ti .

In all other cases (ie if i is odd and/or i < nb C 1), begin the construction of the train graph as above,
combining tao diagrams and connecting edges; however, after doing so, there will be “leftover” punctures
that are not surrounded by any tao diagrams. If any such puncture is adjacent to a puncture surrounded by
a tao diagram, then we modify our graph according to Figure 10, adding a vertex and two edges to the
graph in a way that depends on which side of the tao diagram the puncture is on and the handedness of
the tao diagram. The newly added subgraph consists of two edges, one forming a loop around a puncture,
and the other connecting the loop to a tao diagram. We refer to such a subgraph as an eyelet. If i is odd
and i � nbC 1, this procedure gives a connected trivalent graph containing two eyelets, surrounding all
the punctures. We call this train graph Ti .

For 1� i < nbC 1, there are still “leftover” punctures that are not surrounded by a tao diagram or eyelet.
Since the sign of the rightmost nonzero twist region of a row is opposite to the sign of the rightmost

Pn�.2m�4/

Pn�.2m�3/

Pn�.2m�2/

Pn�.2m�1/

Figure 11: Adding eyelets to “leftover” punctures on Pi for 1� i < nbC 1. If the rightmost tao
in Pn�.2m�4/ is left-handed (resp. right-handed), we add eyelets according to the left (resp. right)
picture.
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Figure 12: A fibration of N.e/ by intervals.

nonzero twist region of adjacent rows, there are only two possibilities for the rightmost tao and the eyelet
adjacent to it. These are depicted in gray in Figure 11. If an�1;m�1 < 0, we add the eyelets according to
the left of Figure 11. If an�1;m�1 > 0, we add the eyelets according to the right of Figure 11. The newly
added eyelets are colored gold. After doing so, we have a train graph that surrounds all the punctures for
each Pi for 1� i � n� .2m� 4/, and we call this train graph Ti .

We have constructed a train graph Ti on each bridge sphere Pi . Now we will use each train graph Ti
to construct a train track �i on each sphere Pi . Let Vi and Ei be the vertex set and the edge set for Ti ,
respectively. For each vertex v 2 Vi , let N.v/ be a closed regular neighborhood of v in Pi .

Let e0 denote the connected component of Tin
S
v2Vi

N.v/ corresponding to the edge e. Let N 0.e0/
be a closed regular neighborhood of e0 in Pi , and then define N.e/ D N 0.e0/n

S
v2Vi

N.v/. Notice
that

�S
v2Vi

N.v/
�
t
�S

e2Ei
N.e/

�
is a regular neighborhood of Ti which we call N.Ti /, and the set

fN.e/;N .v/ j e 2Ei ; v 2 Vig is a partition for N.Ti /.

We fiber each set N.e/ with interval fibers, each one intersecting e0 transversely exactly once as in
Figure 12. Then we impose a singular fibration on each N.v/ containing exactly one singular fiber, as in
Figure 13. This makes N.v/ into a neighborhood of a switch in a train track. The surface N.Ti /, together
with the singular fibration, is a train track which we call �i , constructed from the train graph Ti . This
construction process is illustrated in Figure 14.

3.4 Carried and almost carried

We want to isotope certain objects in the bridge sphere Pi to a position that behaves nicely with respect
to the train track �i .

Definition 3.4 For an arc ˛ (not necessarily properly) embedded in Pi , �i is said to almost carry ˛ if
the following are true.

Figure 13: A singular fibration on N.v/ containing one singular fiber.
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Figure 14: Constructing a train track �i from the train graph Ti .

(1) For each point p 2 ˛, either p … �i or p is a transverse intersection point of ˛ with an interval fiber
of �i .

(2) No point of ˛ is an endpoint of an interval fiber of �i .

(3) No connected component ˛0 of ˛n V�i is parallel (rel @˛0) into a switch.

(4) No connected component ˛0 of ˛n V�i is parallel (rel @˛0) into an arc ˛00 � @�i with the property
that ˛00 is partitioned into three subintervals: the outer two being subintervals of switches and the
middle subinterval of ˛00 being an interval of fiber endpoints of �i (see Figure 15).

Remark 3.5 It follows from Definition 3.4 that if �i almost carries an arc ˛, and an endpoint of ˛ lies
in @�i , then that endpoint lies in the interior of a switch.

Remark 3.6 If an arc ˛ satisfies conditions (1), (2), and (3) of Definition 3.4, then each arc of ˛\.Pin V�i /
which is properly embedded in Pin V�i but which does not satisfy condition (4) can be isotoped into the
train track, as illustrated in Figure 15. This results in a position of ˛ which is now almost carried.

Definition 3.7 A loop ` � Pi is said to be almost carried by the train track �i if every connected
component of �i \ ` and every connected component of .Pin V�i /\ ` is an arc which is almost carried
by �i .

Remark 3.8 An arc or loop in Pi which is completely disjoint from �i still satisfies the definition of
being almost carried by �i .

Figure 15: The red shaded arc is ˛00 from Definition 3.4.
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Figure 16: The black graph is T , the vertical gray lines are fibers of � , and N.T /, the closed
regular neighborhood of T , is outlined with dashed lines. On the right, we see that a slight isotopy
of N.T / makes it into a train track diagram � with fibers inherited from � . That is, every fiber of
� is a subinterval of a fiber of � .

Definition 3.9 A train graph T is said to be almost carried by the train track �i if each edge of T is
almost carried by �i .

As a simple example, for each i , the train graph Ti is almost carried by the train track �i .

Definition 3.10 Let T 0i be a subgraph of the train graph Ti (eg a tao), and let � 0i � �i be the sub train
track constructed from T 0i following the instruction in Section 3.3. If ` is a loop or train graph, then ` is
said to cover T 0i if ` is almost carried by � 0i and ` intersects every interval fiber of � 0i .

Definition 3.11 Let � and � be two different train tracks contained in the same bridge sphere Pi . Then
� is said to almost carry � if for each interval fiber I of � , I is disjoint from � or I is contained in the
interior of some interval fiber of � .

Proposition 3.12 Let T be a train graph in the bridge sphere P , corresponding to train track diagram � ,
and let � be another train track diagram in P . If T is almost carried by � , then � is almost carried by � .
Furthermore , if p is a point in T which lies in the interval fiber I � � , and p also lies in the interval fiber
J � � , then I � J .

Proof Our strategy here is to reexamine the construction of � and see that it has the desired properties.
Let T be a train graph in P , almost carried by � , and let N.T / be a closed regular neighborhood of T .

By definition, every point of T is either disjoint from � or lies in the interior of a fiber interval of � . It
follows that N.T / is disjoint from the fiber endpoints of � .

Near each vertex v of T which lies in � , we perform a slight isotopy of N.T / (pictured in Figure 16) as
follows. We locate an arc � of @N.T / located between the two edges of T which emanate from v in the
same direction. We isotope N.T / so that � is a subinterval of one of the fiber intervals of � .
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Next we allow the portion of N.T / which lies inside � to inherit a fibering from � this way: if J is a
fiber of � , then J \N.T / is a (possibly empty) set of fibers of N.T /.

After extending this fibration to the rest of N.T / which lies outside of � , N.T /, endowed with a fibration,
is now a train track diagram � with the desired properties.

4 How compressing disks meet train tracks

It is desirable to isotope a simple closed curve to intersect a train track in a way over which we can have
some control.

For future convenience, we partition the compressing disks into two disjoint sets. Consider ˛1
C

, the
leftmost bridge arc above Pn. A vertical isotopy of ˛1

C
into bridge sphere Pn traces out a bridge disk D1

C
.

Let BDdD1
C

; that is, B is the cap which is the frontier of a regular neighborhood ofD1
C

in VC. Similarly,
consider ˛m� , the rightmost bridge arc below P1. The bridge arc ˛m� gives rise to a bridge disk Dm�
and a corresponding caps B 0 D dDm� . We will refer to these two isotopy classes of caps as blue disks.
Compressing disks for Pi that are not blue will be referred to as red disks.

Proposition 4.1 [Johnson and Moriah 2016, Lemma 8.4] If D is a compressing disk above Pn, then
�n�1.@D/ covers at least one tao of �n�1, and away from those one or more taos , �n�1.@D/ intersects
�n�1 in almost carried arcs or in fiber intervals.

Definition 4.2 A subgraph T 0i of Ti is called a mini-graph of Ti if it has the following properties.

(1) T 0i is a union of taos, connecting arcs, and eyelets of the train graph Ti .

(2) Two adjacent taos of Ti are contained in T 0i if the taos’ connecting arc is contained in T 0i .

(3) An eyelet E � Ti is contained in T 0i only if both the tao T nearest to E in Ti and every other eyelet
between E and T are also contained in T 0i .

Definition 4.3 Let T 0i be a mini-graph of Ti . The mini-graph directly below T 0i is defined to be the
unique mini-graph T 0i�1 of Ti�1 with the following properties.

(1) If T � T 0i is a tao or an eyelet and �i�1.T / intersects a tao T 0 of Ti�1, then T 0 � T 0i�1.

(2) If T � T 0i is a tao and �i�1.T / intersects two taos of Ti�1, say T 0 and T 00, then the connecting arc
between T 0 and T 00 is contained in T 0i�1.

(3) If T � T 0i is a tao and �i�1.T / intersects an eyelet E 0 of Ti�1, then E 0 � T 0i�1.

(4) If T � T 0i is an eyelet and �i�1.T / is an eyelet of Ti�1, then �i�1.T / is also an eyelet of T 0i�1.

Let i; i�j 2 f1; 2; : : : ; n�1g, with i > i�j . Let T 0i and T 0i�j be mini-graphs of Ti and Ti�j , respectively.
We say that T 0i�j is below T 0i if and only if there exists a sequence of mini-graphs T 0i ; T

0
i�1; T

0
i�2; : : : ; T

0
i�j

such that for k D 1; 2; : : : ; j , the mini-graph T 0
i�k�1

is directly below Ti�k . Naturally, we will say that a
mini-graph T 0i lies (directly) above a mini-graph T 0i�j if and only if T 0i�1 lies (directly) below T 0i .
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Figure 17: Illustration of Proposition 4.1. In this and following figures, an arc with a label (such
as the arc coming out of the bottom of the second picture in the bottom row, marked with an r),
represents not just one, but a number of parallel arcs, according to the label. The box at the bottom
of the figure illustrates that the small squares placed at various places in this and following figures
represents a set of parallel arcs separating into two different sets of parallel arcs. In particular, the
square does not represent a vertex of a graph.

Observation 4.4 If T 0i and T 00i are mini-graphs of Ti , then T 0i [T
00
i is a mini-graph of Ti as well.

Observation 4.5 Suppose that T 0i and T 00i are mini-graphs of Ti , that T 0i�1 and T 00i�1 are mini-graphs of
Ti�1, that T 0i�1 is below T 0i , and that T 00i�1 is below T 00i . Then T 0i�1[T

00
i�1 is the mini-graph below T 0i [T

00
i .

Proposition 4.6 First , if T 0n�1 is the leftmost tao of Tn�1, and if T 01 is the mini-graph of T1 constructed
by excluding from T1 only the rightmost two eyelets , then T 0n�1 is above T 01. Second , if T 00n�1 is any other
tao of Tn�1 besides the leftmost tao , then T 00n�1 is either above T1 itself or above some mini-graph T 001 of
T1 constructed by excluding from T1 the leftmost eyelet and/or the rightmost eyelet.

In reading through the following proof, the reader may find it helpful to use the example link in Figure 5
to help locate and visualize the various mini-graphs we discuss.
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Proof We will need to define a few more specific mini-graphs. Define T 0nbC1
to be the mini-graph

constructed from TnbC1 by excluding from it the rightmost eyelet, tao, and connecting arc. Define T 0nb
to

be the mini-graph of Tnb
consisting of all of the taos and connecting arcs of Tnb

but excluding both eyelets.
Now the reader can observe that by virtue of the dimensions of the link La, that is, since na D 2m� 4,
the tao T 0n�1 is above the mini-graph T 0nbC1

. Further, observe that T 0nbC1
is directly above T 0nb

, which is
above T 01. Therefore, T 0n�1 is above T 01.

For the next part of the proof, suppose that T 00n�1 is a tao of Tn�1, but not the leftmost one. Appealing
again to the dimensions of La, the tao T 00n�1 is above some mini-graph T 00nbC1

of TnbC1 which includes
at least all of the taos of TnbC1 but the leftmost one. That is, while T 00nbC1

may contain the leftmost tao
of TnbC1, T 00nbC1

does contain all the other taos of TnbC1. It follows that T 00nbC1
is directly above some

mini-graph T 00nb
of Tnb

which contains at least all but the leftmost tao of Tnb
and also the first of the two

eyelets on the right side of Tnb
. Going down another level, T 00nb

must be directly above a mini-graph
T 00nb�1

of Tnb�1 which contains all the taos and connecting arcs of Tnb�1 as well as the first and second
(but not necessarily the third) eyelet on the right.

If nb D 2, then Tnb�1 D T1, and we can define T 001 D T
00
nb�1

, in which case the proof is finished, for the
tao T 00n�1 is above T 001 , which has been shown to have the desired properties.

If nb > 2, then observe that at each level from level nb � 1 down to level 1, T 00nb�1
will be above a

mini-graph consisting of all of the level’s taos and connecting arcs as well as all of the level’s eyelets,
possibly excluding the leftmost eyelet and/or the rightmost eyelet. Therefore T 00nb�1

is above some
mini-graph T 001 with the desired properties, which finishes the proof.

Definition 4.7 It will be helpful to name a few special types of mini-graphs.

(0) If T is a tao, we will call T a type 0 mini-graph.

(1) A type 1 mini-graph consists of a final eyelet of Ti and an adjacent tao.

(2) A type 2 mini-graph consists of a final eyelet E2, an eyelet E1 adjacent to E2, and a tao adjacent
to E1.

(3) A type 3 mini-graph consists of a final eyelet E3, an eyelet E2 adjacent to E3, an eyelet E1 adjacent
to E2, and a tao adjacent to E1.

(4) Collectively we will refer to mini-graphs of type 0, 1, 2, or 3 as typed mini-graphs.

Observation 4.8 If T 0i is a mini-graph of Ti , then for some positive integer k, T 0i can be decomposed
into a union T 0i D t1 [ t2 [ � � � [ tk [ c, where t1; t2; : : : ; tk are typed mini-graphs and c is a (possibly
empty) union of connecting arcs.

Observation 4.9 Suppose T 0i is a mini-graph of Ti , and T 0i�1 is the mini-graph directly below T 0i . Let
T 0i be decomposed into a union T 0i D t1[ t2[ � � �[ tk [ c, where t1; t2; : : : ; tk are typed mini-graphs and
c is a union of connecting arcs. For each j 2 f1; 2; : : : ; kg, let uj be the mini-graph directly below tj .
Then T 0i�1 D u1[u2[ � � � [uk .
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r �2 r �1

r �1
r �2

s�2 s�1

s�1
s�2

s�3
s�1

s�2

Figure 18: A type 0 mini-graph (ie a tao) covers the mini-graph directly below it. In each picture
which includes both red and blue arcs, only either the blue arcs or the red arcs will be present,
depending on the handedness of the tao.

Proposition 4.10 For each i D 2; 3; : : : ; n� 1, if T 0i is a mini-graph of Ti , then �i�1.T 0i / covers the
mini-graph directly below T 0i .
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Figure 19: A type 1 mini-graph may lie directly above two taos and their connecting arc. If so,
the type 1 mini-graph will cover the two taos and their connecting arc. The dashed lines of the
train track diagram and of the train graph are either both present or both absent.

r �1

r �1

r

r

r �1

r r �2

Figure 20: A type 1 mini-graph may lie directly above a type 2 mini-graph, in which case the
former will cover the latter.
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Figure 21: A type 2 mini-graph always lies directly above and covers a type 3 mini-graph.

Proof Fix 2� i � n�1. Let T 0i � Ti be a mini-graph, and let T 0i�1 be the mini-graph directly below T 0i .
We will prove this proposition by proving several special cases which will lead us to the general result.

To begin, consider the case in which T 0i is a type 0 mini-graph (a tao). The mini-graph T 0i�1 may consist
of two adjacent taos and their connecting arc, as in the first or second column of pictures in Figure 18, or
T 0i�1 may instead be a type 1 mini-graph, as depicted in the third column of pictures in Figure 18. In any
case, the result of the isotopy of the bridge sphere from level i to level i �1 is shown from the top row of
pictures to the second row, or from the fourth row of pictures to the fifth row.

Observe that an isotopy of �i�1.T 0i / in Pi�1 (the result of which is shown in the third and sixth rows of
pictures in Figure 18) shows how we may push �i�1.T 0i / into �i�1 so that �i�1.T 0i / covers T 0i�1.

Next, if T 0i is a type 1 mini-graph, then either T 0i�1 is a pair of taos (pictured in Figure 19) or T 0i�1 is a
type 2 mini-graph (pictured in Figure 20). Either way, the figures illustrate that �i�1.T 0i / covers T 0i�1.

Now suppose T 0i is a type 2 mini-graph. In this case, T 0i�1 must be a type 3 mini-graph. Figure 21 depicts
this case and shows that �i�1.T 0i / covers T 0i�1.

Finally, suppose T 0i is a type 3 mini-graph. It follows that T 0i�1 is a type 2 mini-graph, as depicted in
Figure 22, which shows that as before, �i�1.T 0i / covers T 0i�1.

Observation 4.11 Notice that in each of the cases above, if c is a connecting arc of Ti which is attached
to T 0i at vertex v, then the connected component of c \ �i�1 which contains v is almost carried by �i�1.
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Figure 22: A type 3 mini-graph always lies directly above and covers a type 2 mini-graph
(assuming there exists a level below the level of the type 3 minigraph).

Now that we have proven the proposition for cases in which T 0i is a typed mini-graph, we are ready to prove
it in the general case where T 0i is an arbitrary mini-graph. According to Observation 4.8, we can view T 0i
as a union T 0i D t1[ t2[� � �[ tk[c of typed mini-graphs and connecting arcs. For each j 2 f1; 2; : : : ; kg,
define uj to be the mini-graph of Ti�1 below tj . By Observation 4.9, T 0i�1 D u1 [u2 [ � � � [uk . The
special cases above demonstrate that for each j 2 f1; 2; : : : ; kg, the mini-graph uj is covered by tj , so it
follows that u1[u2[� � �[uk is covered by �i�1.t1[ t2[� � �[ tk/. Further, if c0 is one of the connecting
arcs of c, then by Observation 4.11, c0 is also almost carried by �i�1. Therefore, since u1[u2[� � �[uk is
covered by �i�1.t1[ t2[� � �[ tk/ and c is almost carried by �i�1, we can conclude that u1[u2[� � �[uk
is covered by �i�1.t1[ t2[ � � � [ tk [ c/, or more simply, T 0i�1 is covered by �i�1.T 0i /.

Corollary 4.12 Let ` be a loop which covers a mini-graph T 0i � Ti , and let T 0i�1 be the mini-graph
directly below T 0i . The loop �i�1.`/ covers T 0i�1.

Proof Let J be an interval fiber of � 0i�1 that T 0i�1 intersects. By Proposition 4.10, �i�1.T 0i / covers T 0i�1,
and so by the definition of covering, J is also intersected by �i�1.T 0i /.

Let p be a point of .�i�1.T 0i //\ J , and let I be the interval fiber of �i�1.�i / which contains p. By
Proposition 3.12, I � J . Further, since ` covers T 0i , ` must by definition intersect I . It follows that since
I � J , ` intersects J .

Corollary 4.13 Let i1 < i2, and let T 0i1 � Ti1 be the mini-graph below a mini-graph T 0i2 � Ti2 . If ` is a
loop which covers T 0i2 � Ti2 , then �i1.`/ covers T 0i1 .
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Recall the notation of Proposition 4.6. The leftmost blue disk B above Pn is the only disk whose boundary
loop covers T 0n�1 but no other taos. In contrast, the boundary of every red disk above Pn must cover at
least one of the other taos. The next corollary then follows from Proposition 4.6 and Corollary 4.13.

Corollary 4.14 The boundary of the blue disk B above Pn covers T 01 (the mini-graph defined in
Proposition 4.6), and the boundary of every red disk above P covers either T1 or some mini-graph T 001
constructed from T1 by excluding the leftmost and/or the rightmost eyelet of T1.

An almost carried loop ` that covers enough taos and eyelets is very beneficial in the sense that its presence
allows us to predict the behavior of loops which are disjoint from `.

Remark 4.15 The following is [Johnson and Moriah 2016, Lemma 6.5].

Lemma 4.16 If ` is a loop in Pi that covers a mini-graph T 00i of Ti , and if `0 is another loop in Pi
disjoint from `, then `0 can be isotoped to be almost carried by � 00i , the train track diagram corresponding
to T 00i .

Proof Let N.`/ be an open regular neighborhood of ` disjoint from `0. Since � 00i is covered by `, every
interval fiber of � 00i intersects N.`/.

We perform a small isotopy of � 00i with the following properties:

(1) The image of each interval fiber of � 00i at each moment of the isotopy is a subinterval of the original
interval fiber.

(2) The endpoints of each interval fiber of � 00i never intersect ` throughout the isotopy.

(3) After the isotopy, both endpoints of every interval fiber of � 00i lie in N.`/.

The result of this isotopy is illustrated in Figure 23. The point is that each arc of @� 00i consisting of
endpoints of interval fibers gets pushed into N.`/. Now each component of � 00i nN.`/ is a band in Pi
fibered by intervals (each of which is a subinterval of the original interval fibers of � 00i ). The two interval
fibers contained in the boundary of a band will be referred to as exits. Note that topologically, each of
these bands is a closed disk.

Now we isotope `0 in PinN.`/ to intersect these bands minimally. Suppose `0 \ � 00i D ¿. Then by
Remark 3.8, `0 is almost carried by � 00i . If `0\ .Pin V�i

00
/ is empty (that is, `0 lies completely in a band),

then we can perform an isotopy of `0, pushing it out of the band through an exit, contradicting minimality.

Assume then that both `0\� 00i and `0\.Pin V�i
00
/ are nonempty. Consider a component ˛ of `0\.� 00i nN.`//.

The component ˛ must be an arc properly embedded in a band. Since `0\N.`/ is empty, the endpoints
of ˛ must lie in exits. Further, the endpoints of ˛ must lie on different exits, for otherwise ˛ could be
isotoped out of the band, reducing the number of components of `0 \ .� 00i nN.`//, again contradicting
minimality. Thus ˛ is an arc that travels through a band from one exit to another, so it follows that the
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Figure 23: The loop `, shown in blue, covers the train track � 00i . We perform a small isotopy of � 00i
which takes each arc of @� 00i consisting of fiber endpoints into a regular neighborhood N.`/ of `.

arc ˛ can then be made transverse to each fiber of the band, and thus `0 fulfills conditions (1) and (2) of
the definition of almost carried. (Note that ˛ also vacuously fulfills condition (3).)

Now let ˇ be a component of `0 \ .Pin V�i
00
/. The endpoints of ˇ lie on @� 00i . Since the interval fiber

endpoints of � 00i all lie in N.`/ and `0\N.`/ is empty, the endpoints of ˇ must lie in exits. Clearly then, ˇ
satisfies conditions (1) and (2) of the definition of almost carried. The arc ˇ cannot be parallel in PinN.`/
to a subarc of an exit, for the parallelism would guide an isotopy of `0 through a band of � 00i nN.`/, thereby
removing two components of intersection between `0 and the bands, once again contradicting minimality.
Thus `0 fulfills condition (3) of the definition of almost carried.

We have shown that each arc of `\ � 00i and each arc of `\ .Pin V�i
00
/ satisfies conditions (1), (2) and (3)

of Definition 3.4. Remark 3.6 tells us that each such arc can be isotoped to be almost carried by � 00i .
Therefore `0 is by definition almost carried by � 00i .

Henceforth, on Pn, we label the punctures as p1; p2; : : : ; p2m in order from left to right. We label the
straight arcs connecting the puncture labeled p2k�1 to the puncture labeled p2k as ˇk . Finally, we label
the straight arcs connecting the puncture labeled p2k to the puncture labeled p2kC1 as 
k .

Lemma 4.17 As above , let T 01 be the mini-graph of T1 constructed by excluding the rightmost two
eyelets , and let � 01 be the train track diagram corresponding to T 01. Let T 001 be a mini-graph of T1
constructed by possibly excluding the leftmost and/or rightmost eyelet of T1, and let � 001 be the train
track diagram corresponding to T 001 . Neither � 01 nor � 001 almost carries the boundary of any red cap for the
rightmost bridge arc ˛m� .

Proof We prove this by contradiction. Let R be a red cap for ˛m� (which implies R is not isotopic to the
blue cap B 0 D dDm� ), and assume @R is almost carried by � 01 or � 001 . Assume R is in minimal position
with respect to the vertical bridge disks below P1.
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We will first establish that R must intersect a lower vertical bridge disk. Let �1 be the unique straight line
segment in P1 which both contains all of the punctures and has p1 and p2m as endpoints. If @R does not
intersect �1, then R is trivial, a contradiction. So R must intersect �1. Suppose @R passes between the
i th and the .iC1/st vertical bridge disks for i 2 f1; 2; : : : ; m� 3;m� 2g. (This is equivalent to supposing
that @R intersects �1.
i /.) Since �1.
i / is surrounded by a tao, and since @R is almost carried by the
train track � 01 or � 001 , the loop @R is forced to intersect one of the lower vertical bridge disks. Suppose @R
passes between the .m�1/st and mth vertical bridge disk. If @R does not also pass between some other
pair of bridge disks, then R is the blue disk B 0, a contradiction. Then @R must pass between two of the
other bridge disks, and so according to the argument above, @R will intersect one of the lower bridge
disks. Thus we have established that R is not disjoint from the vertical bridge disks.

Let ƒ D R \
�Sm

iD1D
i
�

�
, which is nonempty, as shown above. Since R is in minimal position with

respect to the bridge disks, ƒ contains no loops of intersection, and so ƒ is a collection of arcs. Let

 �ƒ be an outermost arc in R, cutting off an outermost disk Rout from R. Define q DRout\P1. Then
q is an arc in P1 with endpoints on ˇi for some i . Let ˇ� be the subarc of ˇi which shares its endpoints
with q.

We examine what q can look like (and eventually arrive at a contradiction). First if q never crosses the
arc �1, then q would define an isotopy of R through which we could decrease the number of components
of ƒ, contradicting the fact that R is in minimal position with respect to the lower vertical bridge disks.
Since the interior of q is by definition disjoint from the lower vertical bridge disks, q must therefore
intersect �1.
k/ for some k. If q passes between the j th and the .jC1/st vertical bridge disks for
j 2 f1; 2; : : : ; m� 3;m� 2g, then as above, since q is almost carried and since the point q\ �1.
k/ is
surrounded by a tao, the train track � 01 or � 001 (whichever is relevant) will force q to intersect two distinct
vertical bridge disks, a contradiction. Therefore q must pass between the .m�1/st and the mth bridge
disks.

Suppose that @R is almost carried by � 001 . There are five ways that q, as an almost carried arc, can pass
between the .m�1/st and the mth bridge disks, and they are illustrated in Figure 24. In cases 1 and 2,
since q is almost carried, the endpoints of q must lie on both the .m�1/st and the .m�2/nd bridge disks,
but that contradicts the definition of q, for both endpoints of q must lie on the same vertical bridge disk.
Similarly, in cases 4 and 5, the endpoints of q must lie on both the .m�1/st and the mth bridge disks,
which contradicts the definition of q in the same way. Therefore the only case remaining is case 3, in
which we see q must enter a switch of � 001 and go on to intersect the .m�1/st bridge disk. By the definition
of q, the other endpoint of q must also intersect the .m�1/st bridge disk on the same side. Thus q has
these properties:

� The arc q has both endpoints on the .m�1/st bridge disk.

� Of the two bands of � 001 going through the .m�1/st bridge disk, an endpoint of q is contained in the
rightmost one.
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Figure 24: There are only five ways for a loop or arc to pass between the rightmost two bridge
arcs while remaining almost carried by � 001 . The leftmost and rightmost eyelets in this figure are
shaded a lighter color to remind the reader that they may or may not be present in � 001 .

� The arc q is almost carried by � 001 .

� The interior of q does not intersect any bridge disks below P1.

� The arc q leaves the .m�1/st bridge disk in the same direction from both endpoints.

Up to isotopy, there is only one arc that has these properties, and it is depicted in Figure 25. Let a and b
be the left and right endpoints, respectively, of q.

The loop q [ ˇ� cuts P1 into two punctured disks, one of which contains exactly two punctures: the
endpoints of ˇm. Call this 2–punctured disk Q (see Figure 25). Observe that @R must intersect ˇm, or
else R would be isotopic to B 0, contradicting the definition of R. Further, since both endpoints of ˇm
must be on the same side of @R, there must be an even number of points of intersection between ˇm
and @R. It follows that along the interior of ˇ�, there must be at least four points of intersection with @R.
Along ˇ�, let c be the point of ˇı�\ @R nearest to a, and let d be the point of ˇı�\ @R nearest to b.

Since R is a cap, R cuts a 2–punctured disk FR out of P1 (see Figure 26). Consider the components of�Sm
iD1D

i
�

�
\FR. There are two components which are arcs that connect a puncture in FR to @R at points

we will call x and y. All of the rest of arcs are parallel arcs which separate the two punctures of FR.

The points x and y cut @R into two arcs, one of which must contain both endpoints of q; otherwise q
would intersect ˇm at point x or at point y, contradicting the definition of q. Now in FR, a and b are

a bc d e f

Q

q

Figure 25: The arc q and the disk Q.
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a b

c d

q

q0

FR

Figure 26: The arc q in relation to the disk FR. The outer circle is @R, and the red vertical arcs
are subarcs of ˇ�.

connected via arcs of @R to the points c and d , respectively. These two arcs in FR with endpoints a, b, c,
and d , along with the arc q and another arc of @R form a quadrilateral in FR whose interior is disjoint
from

Sm
iD1D

i
� (clear from Figure 25). Let the side of this quadrilateral whose endpoints are c and d be

called q0.

Now q0 is parallel to q. But at this point we could repeat this argument, focusing on q0 instead of on q,
which would lead us to accept the existence of another parallel arc q00, and we could repeat this infinitely
many times, each time obtaining another arc of @R with endpoints on ˇm�1, each of which is nested
inside the last one. But this contradicts general position; it cannot be the case that ˇm�1 cuts @R into
infinitely many subarcs. Therefore we conclude that R cannot be almost carried by � 001 .

Assume then that @R is almost carried by � 01. In this case, there are more options for what the arc q may
look like, but q still must be an arc with endpoints on a ˇ–arc and with interior disjoint from any ˇ–arcs
(see Figure 27). The arc q cannot have its endpoints on ˇm, as in Figure 28, because that would force

Figure 27: When @R is almost carried by � 01, there are many possibilities for the arc q. Three are
illustrated here (each with a different stroke style.)
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Figure 28: Pictured here are the only nonisotopic possibilities for what q could look like, given
that its endpoints lie on ˇm. Either way, @Rnq must contain an arc that cobounds a bigon with ˇm,
contradicting minimality.

@Rnq to contain an arc which bounds a bigon with ˇm; in other words, @R would not be in minimal
position with respect to ˇm. Then since @q lies in ˇi for some i 2 f1; 2; 3; : : : ; m� 1g, then q [ ˇ�
bounds a disk Q � FR which contains ˇm. At this point we can apply the same logic as above, leading
us to assert the existence of an infinite set fq; q0; q00; q000; : : :g of pairwise disjoint arcs of @R cut out by ˇi ,
which again contradicts general position. Therefore, we may conclude that @R cannot be almost carried
by � 001 either.

Lemma 4.18 The blue disks B and B 0 are a weak reducing pair for the bridge sphere.

Proof Observe that for all points along @B , the y–coordinates are all less than 4. (We will speak
informally this way even though technically we mean that an isotopy class of @B in Pn has the property
that all the y–coordinates are less than 4.) Moving down a level, �n�1.@B/ is a loop in Pn�1 whose
y–coordinates are all less than 5. Similarly, �n�2.@B/ is a loop in Pn�2 whose y–coordinates are all less
than 6, and so on. In general, for the levels corresponding to Da, �n�k.@B/ is a loop in Pn�k whose
y–coordinates are all less than 4C k. Recall that nD naCnb , so nbC 1D n�naC 1D n� .na � 1/.
Therefore �nbC1.@B/D �n�.na�1/.@B/ is a loop in Pn�.na�1/ whose y–coordinates are all less than
4Cna � 1. Since the dimensions of Da were chosen so that na D 2m� 4, it follows by substitution that
the y–coordinates of �nbC1.@B/ are all less than 4C.2m�4/�1D 2m�1. This means that �nbC1.@B/

is completely to the left of the rightmost two punctures of PnbC1. Thus �nbC1.@B/ is disjoint from
�nbC1.ˇm/ (the straight line segment connecting those two punctures).

Consider the �–projections of @B at consecutively lower levels. For 1 � t � nb , �t .@B/ will remain
disjoint from �t .ˇm/ because the isotopy �t from PtC1 to Pt fixes the two rightmost punctures of the
bridge sphere pointwise. Observe that �1.ˇm/D ˇm DDm� \P1. Therefore �1.@B/ is disjoint from ˇm,
which implies that �1.@B/\ @B 0 D¿, and so fB;Bg are a weak reducing pair.

Observation 4.19 In general, if we compress the cap R for a bridge arc ˛ along a boundary compressing
disk �, the result will be two disjoint compressing disks whose boundary loops cut the bridge sphere into
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two punctured disks and a twice-punctured annulus, the latter of whose punctures correspond to ˛. This
means that neither of the resulting compressing disks are caps for ˛.

Lemma 4.20 The blue cap B for ˛1
C

intersects all of the red disks below P1.

Proof First, by Proposition 3.3, we already know that B intersects all of the red disks below P1 which
are not caps for ˛m� , so it only remains to show that B also intersects all the red caps for ˛m� .

Observe that @B 0 cuts P1 into a disk F1 with two punctures and another disk F2 with 2m� 2 punctures.
By Corollary 4.14, �1.@B/ covers T 01 (the mini-graph defined in Proposition 4.6 consisting of all of T1
except the rightmost two eyelets). It follows from Lemma 4.18 that �1.@B/ is contained in F2.

Let R be a red cap for ˛m� , and assume by way of contradiction that fB;Rg is a weak reducing pair.
Arrange for R to be in minimal position with respect to the bridge disk Dm� . An outermost disk � on
Dm� cut out by an outermost arc of Dm� \R must be a boundary compressing disk for R, or else Dm� and
R would not be in minimal position. We perform a boundary compression of R along �, resulting in a
disjoint union R1 tR2 of two nonparallel compressing disks for P1. Since R was disjoint from @B , and
the boundary compression happened away from @B , both R1 and R2 are also disjoint from B . Further, by
Observation 4.19, neither R1 nor R2 are caps for ˛m� , and so we have two weak reducing pairs, fB;R1g
and fB;R2g which both contradict Proposition 3.3.

Lemma 4.21 If Ra andRb are red disks above and below the bridge sphere (respectively), then fRa; Rbg
is not a weak reducing pair.

Proof Assume to the contrary that fRa; Rbg is a weak reducing pair of red disks. By Proposition 3.3,
Ra and Rb are caps for ˛1

C
and ˛m� , respectively. By Corollary 4.14, the loop �1.@Ra/ covers either T1

or some mini-graph T 001 constructed from T1 by excluding the leftmost and/or the rightmost eyelet of T1.

Suppose @Rb is disjoint from �1.@Ra/. Then by Lemma 4.16, @Rb is isotopic to an almost carried loop,
which contradicts Lemma 4.17.

The following lemma is an immediate corollary of [Pongtanapaisan and Rodman 2021, Theorem 5.10]
since the upper braid Da of our link is a .na; m/ plat link with na D 2m� 4.

Lemma 4.22 The cap B 0 is disjoint from all red disks on the other side of the bridge sphere.

We have now shown that B and B 0 are the only weak reducing pair, and so we have proved our main
theorem.

Theorem 1.1 There exist infinitely many links with keen weakly reducible bridge spheres.

Since a bridge sphere †L of a link L induces a Heegaard surface z†L for the 2–fold cover of S3 branched
along L, it is natural to ask whether z†L satisfies properties that †L possesses. In our situation, the answer
is no.
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@Q

Figure 29: The purple curve bounds a once-punctured disk Q above the bridge sphere and
@Q\ @B 0 D∅. To visualize Q, imagine a hemisphere shaped disk whose boundary is the purple
loop and which is punctured by the second pictured bridge arc.

Proposition 4.23 Keen weakly reducible bridge spheres in this paper do not lift to keen weakly reducible
Heegaard surfaces.

Proof The blue compressing disk B 0 is not only disjoint from B , but @B 0 is also disjoint from a curve
bounding a once-punctured disk Q above †L (see Figure 29). Such a once-punctured disk lifts to a
compressing disk for one of the handlebodies of the Heegaard splitting of the double branched cover.
Since B 0 lifts to a compressing disk in the other handlebody whose boundary is disjoint from lifts of both
B and Q, the Heegaard surface z†L is not keen.

5 Nontopologically minimal bridge spheres

One of the main motivations of this article is to search for examples of bridge spheres that are not
topologically minimal. The following criterion is needed for our construction of links with nontopologically
minimal bridge spheres.

5.1 Cho’s criterion

For a link in bridge position, we have that V˙nN.˛˙/ is homeomorphic to a handlebody. Therefore, the
complex spanned by compressing disks for the bridge sphere for L in V˙nN.˛˙/ is a full subcomplex of
the disk complex of the handlebody. We recall the following criterion by Cho [2008]:

Theorem 5.1 If L is a full subcomplex of the disk complex of the handlebody K.V˙nN.˛˙// that
satisfies the following condition , then L is contractible:

Let D and E be disks representing vertices of L and suppose that D \E ¤ ¿. We assume that D
intersects E minimally and transversely. If ��D is an outermost subdisk cut off by an outermost arc of
D\E, then at least one of the disks obtained from surgery on E along � is also a vertex of L.

Proposition 5.2 The disk complex of .V˙; ˛˙/ is contractible

Proof Suppose that compressing disks D and E in .V˙; ˛˙/ intersect transversely and minimally. Then
the boundary of one of the disks that arises from surgery on E along � defined as in Theorem 5.1 must
enclose at least two punctures. Otherwise, D\E would not be minimal.

Using Cho’s criterion and Theorem 1.1, we obtain the following corollary.
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Corollary 5.3 There is an infinite family of nontrivial links with bridge spheres that are not topologically
minimal.

Proof Since the bridge sphere P1 for each link L2L contains a unique pair of disjoint compressing disks
on opposite sides of P1, there is exactly one edge connecting the contractible disk complex of .VC; ˛C/
to the contractible disk complex of .V�; ˛�/ showing that the disk complex of P1 is contractible.
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