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Suppose a relatively elliptic representation � of the fundamental group of the thrice-punctured sphere S is
given. We prove that all projective structures on S with holonomy � and satisfying a tameness condition
at the punctures can be obtained by grafting certain circular triangles. The specific collection of triangles
is determined by a natural framing of �. In the process, we show that (on a general surface † of negative
Euler characteristics) structures satisfying these conditions can be characterized in terms of their Möbius
completion, and in terms of certain meromorphic quadratic differentials.
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1 Introduction

This paper deals with the geometry of surfaces which are locally modeled on the geometry of the Riemann
sphere CP1, and their grafting deformations. Throughout the paper, † denotes an orientable surface
with finitely many punctures (and no boundary) and † denotes the closed orientable surface where
the punctures have been filled in. While the main technical core of the paper holds for a general †
with negative Euler characteristic (see Sections 3 and 4), Section 5 deals specifically with the case of a
thrice-punctured sphere, which we denote by S .
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The structures under consideration here are known as complex projective structures or .PSL2C;CP1/–
structures. We denote respectively by T.†/ and P.†/ the deformation spaces of complex and complex
projective structures on †. We also denote by R.†/ the space of representations of �1.†/ into PSL2C,
up to conjugation by PSL2C. We have natural forgetful maps

� W P.†/! T.†/ and Hol W P.†/!R.†/;

respectively recording the underlying complex structure and holonomy representation. We refer the reader
to Section 3 for precise definitions, and to [Dumas 2009] for a general survey about CP1–structures. For
more on the geometry of the deformation space, see [Faraco 2020].

Classic examples of complex projective structures are given by hyperbolic metrics (seen as .PSL2R;H2/–
structures), but a general projective structure is not defined by a Riemannian metric, nor is it completely
determined by its holonomy (not even in the Fuchsian case, see for instance [Calsamiglia et al. 2014a;
Goldman 1987]). However, under some additional conditions Hol is known to be a local homeomorphism
(see [Gupta and Mj 2021; Hejhal 1975; Luo 1993]), ie a structure is at least locally determined by its
holonomy. A major question in the field is the description in geometric terms of all structures having the
same holonomy.

Grafting Conjecture [Gallo et al. 2000, Problems 12.1.1–2] Two complex projective structures have
the same holonomy if and only if it is possible to obtain one from the other by some sequence of graftings
and degraftings.

Here grafting refers to a geometric surgery on † which consists in cutting † open along a curve and
inserting a domain from CP1, and degrafting is the inverse operation. For the reader familiar with grafting
deformations: by grafting we will always mean projective 2�–grafting. This construction allows one
to change a structure without changing its holonomy, and iterating this construction shows that Hol has
infinite fibers. The Grafting Conjecture has been verified for closed surfaces: the case of (quasi-)Fuchsian
representations is due to Goldman [1987], and Baba [2010; 2012; 2015; 2017] has addressed the case of
generic (ie totally loxodromic) representations in a series of papers.

Inspired by a specific question about punctured spheres in [Gallo et al. 2000, Problem 12.2.1], we propose
a study of certain structures on the thrice-punctured sphere, and we prove the Grafting Conjecture in
this setting (see Section 1.2 of this introduction for a comparison with related results available in the
literature). It is worth noticing that the complex projective geometry around a puncture is much more
interesting than the underlying complex geometry. As an example, consider the two structures on the
thrice-punctured sphere given by the complete hyperbolic metric of finite area and by the inclusion
CP1 n f0; 1;1g � CP1; they are not isomorphic as complex projective structures, but they have the
same underlying complex structure.

The study of holonomy fibers also has an analytic motivation coming from the classical monodromy
problems for ODEs, ie generalization of Hilbert’s XXI problem. Since the work of Poincaré [1908],
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projective structures have been known as a geometric counterpart to second-order linear ODEs. In more
recent years, some monodromy problems for such ODEs have successfully been approached in terms of
holonomy problems for projective structures (see [Calsamiglia et al. 2019; Chenakkod et al. 2022; Gallo
et al. 2000; Gupta 2021; Gupta and Mj 2020; Kapovich 2020]).

We consider structures satisfying some regularity conditions at the punctures, which can be roughly stated
as follows (see Section 3.1 for precise definitions):

� Tameness Each local chart has a limit along arcs going off into a puncture.

� Relative ellipticity Each peripheral holonomy (ie the holonomy around each puncture) is a
nontrivial elliptic element in PSL2C.

� Nondegeneracy There is no pair of points p˙ 2CP1 such that the entire holonomy preserves
the set fp˙g.

Motivating examples of tame structures arise from the study of triangle groups and automorphism groups
(as in [Faraco and Ruffoni 2019, Remark 2.13]), and more generally from metrics of constant curvature
with cones or cusps. Tameness is not a generic condition in the space of all complex projective structures,
but is a natural case to consider. Indeed, it corresponds to the condition that the associated second-order
linear ODE has regular singular points (see Theorem E below). It turns out that the peripheral holonomy
of a tame structure can only be trivial, parabolic, or elliptic (see Lemma 3.1.3), so the second condition is
a generic condition within the space of holonomies of tame structures. In particular, it implies that there
are no apparent singularities (ie no puncture has trivial holonomy).

For an arbitrary surface †, we denote by Pˇ.†/ the subspace of P.†/ consisting of nondegenerate
tame and relatively elliptic structures; the white disk in the superscript represents the local invariance
under a rotation, and the black dot the possibility to extend the charts to the puncture. The tameness
condition provides a natural choice of a fix point for each peripheral holonomy, ie a framing for the
holonomy representation (see Corollary 3.1.5). We observe that grafting preserves this natural framing,
which suggests a more precise formulation of the Grafting Conjecture in the noncompact case. Our main
result in the case of the thrice-punctured sphere S is the following, which confirms the conjecture, in the
spirit of [Gallo et al. 2000, Problem 12.2.1].

Theorem A Two structures in Pˇ.S/ have the same framed holonomy if and only if it is possible to
obtain one from the other by some combination of graftings and degraftings along ideal arcs.

Here an arc is ideal if it starts and ends at a puncture. To the best of our knowledge this is the first result
in this direction for the case of noncompact surfaces with nontrivial holonomy around the punctures.

The representations involved here are representations of the free group F2 D �1.S/ generated by elliptic
elements. Representations satisfying certain rationality conditions correspond to the classical triangle
groups, but the general ones are nondiscrete. In all cases we construct an explicit list of triangular
membranes (ie immersions of a triangle in CP1) realizing these representations, and identify the ones
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that are atomic; these can be taken as basic building blocks that can be grafted to reconstruct all the
projective structures in Pˇ.S/. Theorem A is a consequence of the following theorem.

Theorem B Every � 2Pˇ.S/ is obtained by grafting on an atomic triangular structure with the same
framed holonomy.

Another consequence of Theorem B is a handy description of the moduli space Pˇ.S/ with positive real
coordinates, which we plan to address in a future work.

When a representation � W�1.S/!PSL2C is unitary (ie is conjugate into PSU.2/), it preserves a spherical
metric, and a structure � 2 Pˇ.S/ is given by a spherical metrics with cone points. This special case of
Theorem B is implicit in the proof of [Mondello and Panov 2016, Theorem 3.8], which constructs such
spherical metrics by gluing together spherical triangles and bigons. Grafting a spherical metric results in
a spherical metric, with increased angles at the cones. However in general this is not always the case;
for example the structure obtained by grafting a hyperbolic structure is not defined by any Riemannian
metric.

While our results about the Grafting Conjecture are for the case of the thrice-punctured sphere S , the
main technical core of the paper applies to any noncompact surface † of negative Euler characteristic,
and is of independent interest. It consists of a characterization of structures from Pˇ.†/ in terms of
their Möbius completion (see Section 3 and [Kulkarni and Pinkall 1994]) and in terms of meromorphic
projective structures (see Section 4 and [Allegretti and Bridgeland 2020]). The easy case of structures on
a twice-punctured sphere can be worked out concretely; see Remark 3.3.8. In the remaining part of the
introduction we present our main results in the general case (see Section 1.1), as well as a comparison
with other work in the literature about the Grafting Conjecture (see Section 1.2).

1.1 Results for general surfaces

The universal cover z† of † is a topological disk. It admits a natural decoration obtained by adding ideal
points at infinity “above” the punctures. We call these ideal points ends. This gives rise to a natural
enlargement of z† that we call the end-extension, and denote by z†#. Part of the paper is concerned with
understanding the behavior of the developing map in the limit to an end.

Möbius completion Any complex projective structure � on † can be used to define another natural
extension of z†, known as the Möbius completion M� .z†/, which comes with a (noncanonical) structure
of a complete metric space (see [Kulkarni and Pinkall 1994]). For instance, when � is induced by a
spherical metric with cone points, M� .z†/ coincides with z†#, while when � is induced by a complete
hyperbolic metric of finite area M� .z†/ identifies with the closed disk model for the hyperbolic plane
H2[RP1 (see Examples 3.2.3 and 3.2.4).

The topologies on z†# and on M� .z†/ are not in general compatible. One of the main technical contributions
of this paper is a study of the geometry of the Möbius completion M� .z†/ for � 2Pˇ.†/, and of its relation
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with the end-extension z†# (see Section 3). Tameness of a structure � implies that its developing map
admits natural continuous extensions dev# to the end-extension z†# and dev� to the Möbius completion
M� .z†/. We study the local properties of dev# and dev� around the ends.

Theorem C Let � 2P.†/ be nondegenerate and without apparent singularities. Let j # W z†! z†# and
j� W z†!M� .z†/ be the natural embeddings. Then � 2 Pˇ.†/ if and only if there exists a continuous
open �1.†/–equivariant embedding j #

� W
z†#!M� .z†/ that makes the following diagram commute:

z†#

z† CP1

M� .z†/

dev#

j #
�

j #

j� dev�

In this statement, continuity is a consequence of tameness of � , and openness is a consequence of relative
ellipticity.

In general, the developing map for a projective structure is a surjection onto CP1, in which case it fails
to be a global covering map. However, under certain circumstances it is known to be a covering map onto
a component of the domain of discontinuity in CP1 for its holonomy representation (see for instance
[Kra 1971a, Theorem 1]). But in general the holonomy group is not discrete, so it has no domain of
discontinuity. The following statement shows that in our context some local covering behavior can be
guaranteed around ends.

Theorem D Let � 2 Pˇ.†/, and let E be an end. Then there is a neighborhood yNE of E in M� .z†/

onto which the developing map for � restricts to a branched covering map , branching only at E, and with
image a round disk in CP1.

These neighborhoods should be regarded as an analogue of the round balls considered in [Kulkarni and
Pinkall 1994], but “centered” at ideal points in the Möbius completion. While Theorem D is stated as a
local fact, we actually show that such a neighborhood can be chosen to be so large as to have another
ideal point on its boundary. We use the existence of these neighborhoods to define a local geometric
invariant, which we call the index (see Section 3.4). This number measures the angle described by the
developing map at a puncture, and provides a notion of complexity for an inductive proof of Theorem B.

Meromorphic projective structures A second major ingredient (once again valid for an arbitrary
noncompact surface †) consists of an analytic description of structures in Pˇ.†/ as meromorphic
projective structures in the sense of [Allegretti and Bridgeland 2020]. These are projective structures
whose developing map is defined by solving certain differential equations with coefficients given by
meromorphic quadratic differentials on the closed surface † (with poles corresponding to the punctures
of †; see Section 4.1 for precise definitions). The local control from Theorem D allows us to obtain the
following result.
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Theorem E Let � 2 P.†/ and let X 2 T.†/ be the underlying complex structure. Then � 2 Pˇ.†/

if and only if X is a punctured Riemann surface and � is represented by a meromorphic quadratic
differential on X with double poles and reduced exponents in R nZ.

Here the parametrization of projective structures by quadratic differentials is the classical one in terms
of the Schwarz derivative, which here is taken with respect to any compatible holomorphic structure on
the closed Riemann surface obtained by filling the punctures (eg the constant curvature uniformization).
From this point of view, the index of a structure at a puncture corresponds to the absolute value of the
exponents of the quadratic differential, so it can be computed in terms of its residues.

It should also be noted that work of Luo [1993] guarantees that Hol is a local homeomorphism for this
class of meromorphic projective structures, as there are no apparent singularities. Therefore fibers of
Hol in Pˇ.†/ are discrete, and in particular it makes sense to seek a description of them in terms of a
discrete geometric surgery such as the type of grafting that we consider in this paper.

Outline of the proof of Theorem B Let S be the thrice-punctured sphere, and let � 2 Pˇ.S/, with
developing map dev and holonomy �. By Theorems C and D, dev extends continuously and equivariantly
to the ends, and restricts to a branched covering map on a suitable neighborhood of each end. This allows
us to define the index of � at each puncture. Then we construct a circular triangle such that the pillowcase
obtained by doubling it provides a structure �0 2 Pˇ.S/ with holonomy �. Note that such a triangle is
not unique in general. A careful analysis of the framing of � defined by � shows that such a triangle can
be found with the same framing for �. On such a triangle, we find a suitable combination of disjoint
ideal arcs that are graftable, and we show that if sufficiently many grafting regions are inserted, the
resulting structure � 0 2 Pˇ.S/ has the same indices as � . By Theorem E, � and � 0 can be represented
by two meromorphic differentials on the Riemann sphere CP1 with double poles at 0, 1 and1. Two
such differentials on CP1 are completely determined by their residues, and in this case residues can be
computed directly from the indices, hence are the same. So we conclude that � D � 0.

1.2 Relation to other work about the Grafting Conjecture

Following seminal work of Thurston (see [Baba 2020; Dumas 2009; Kamishima and Tan 1992]), grafting
(in its general version) has been successfully used as a tool to explore the deformation space of CP1–
structures. The grafting we consider here preserves the holonomy representation, hence can be used
to explore holonomy fibers. The classical case is that of structures on a closed surface with Fuchsian
holonomy, which was considered by Goldman [1987]. Our work displays some technical differences, that
we summarize here for the expert reader.

Framing The main results for closed surfaces in [Baba 2012; 2015; 2017; Calsamiglia et al. 2014b;
Goldman 1987] confirm the Grafting Conjecture, ie that two structures with the same holonomy differ by
grafting. In our noncompact case there is a natural framing for the holonomy which needs to be taken into
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consideration, as it is preserved by grafting (see Lemma 3.1.7). We prove that having the same framed
holonomy is not only necessary, but also sufficient, for two structures on the thrice-punctured sphere to
differ by grafting.

Basepoints for holonomy fibers When � W �1.†/! PSL2C is Fuchsian, the holonomy fiber Hol�1.�/
contains a preferred structure, namely the hyperbolic structure H2=�.�1.†//. This structure serves as a
basepoint, ie any other structure in Hol�1.�/ can be obtained by grafting it (see [Goldman 1987]). In this
paper, we show that every representation coming from Pˇ.S/ is generated by reflections in the sides of a
circular triangle in CP1. Even when such a representation � is nondiscrete, the pillowcase obtained by
doubling the triangle provides a basepoint in the holonomy fiber Hol�1.�/. A first guess is that every
structure in Hol�1.�/ is obtained by grafting this pillowcase. However, this is not the case, because of the
aforementioned framing, which is given by the vertices of the triangle. In Section 2.3 we identify the list
of the structures that can be taken as basepoints in the above sense, which we call atomic. Interestingly,
they are not all embedded geodesic triangles for some invariant metric.

Type of grafting curves In the classical Fuchsian case it is enough to perform grafting along simple
closed geodesics on the hyperbolic basepoint (see [Goldman 1987]). Here we consider grafting along
ideal arcs, ie arcs that start and end at punctures. Grafting along open arcs is also known as bubbling in
the literature (see [Calsamiglia et al. 2014a; Francaviglia and Ruffoni 2021; Gallo et al. 2000; Ruffoni
2019; 2021]). Most structures considered here are not metric, but they still have a well-defined notion of
circular arc. We show that in most cases grafting arcs can be chosen to be circular.

Uniqueness of grafting curves In the classical Fuchsian case grafting curves are homotopically nontrivial,
and are uniquely determined by the structure itself (see [Goldman 1987]). Here grafting regions do not
carry any topology (they are disks), hence they should not be expected to be canonically associated with
the structure. Indeed it is quite common for a structure to arise from different graftings on different atomic
structures.

Outline of the paper

Section 2 contains background material about the geometry of circles and circular triangles in CP1 (see
Sections 2.1 and 2.2). In Section 2.3 we provide a classification of certain triangular immersions that will
serve as the atomic structures for our main grafting results. This classification is referred to in different
parts of the paper, and it is summarized in Tables 1, 2 and 3 of the appendix.

Section 3 introduces the main geometric definitions, ie that of tameness and relative ellipticity. In
Section 3.2 we study the geometry of the Möbius completion for a general surface and address Theorem C.
The proof of Theorem D is in Section 3.3, where we show that the developing map restricts to a nice
branched cover around each end. This is used in Section 3.4 to define the index of a puncture, and
in Section 4 to obtain a characterization of tame and relatively elliptic structures in terms of quadratic
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differentials on a general Riemann surface. In particular we show that the geometric notion of index can
be also defined and computed analytically. Theorem E is contained in Section 4.2.

Finally, in Section 5 we restrict our attention to the case of the thrice-punctured sphere S . In Section 5.1
we define the class of triangular structures on S , based on Section 2.3, and in Section 5.2 we prove the
main grafting results of Theorems A and B.

Acknowledgements

We thank Gabriele Mondello for some useful conversations, Spandan Ghosh and Subhojoy Gupta for
helpful comments on an earlier version of Lemma 4.1.1, and the reviewers for their careful reading of the
manuscript and their insightful suggestions.

2 Basics on complex projective geometry

In this chapter we collect some background about the geometry of the Riemann sphere, on which our
geometric structures will be modeled, mainly to fix notation and terminology. Let CP1 denote the set of
complex lines through the origin in C2, ie the quotient of C2 n f0g by scalar complex multiplication. We
fix identifications of CP1 with the extended complex plane C[f1g and the unit sphere S2. Through
them, CP1 inherits a natural complex structure, an orientation, and a spherical metric. A circle in CP1

is a circle or a line in C[f1g. Every circle divides CP1 into two disks, each of which has a standard
identification with the hyperbolic plane which respects the underlying complex structure. We denote by
PSL2C the group of projective classes of 2-by-2 complex matrices of determinant 1. This group acts on
CP1 by Möbius transformations

PSL2C �CP1!CP1;

�
a b

c d

�
; z 7!

azC b

czC d
:

For elements in PSL2C, traces and determinants are not well defined. However there is a two-to-one map
SL2C! PSL2C such that ˙A 7! ŒA�. Therefore, given an element G 2 PSL2C, we can always assume
it to be in SL2C modulo a sign. It follows that det.G/, jtr.G/j and tr.G/2 are well-defined quantities.
The action of PSL2C on CP1 is faithful, and simply transitive on triples of pairwise distinct points. In
particular, we can always map three distinct points .p1; p2; p3/ to .0; 1;1/. Möbius transformations are
conformal, preserve cross ratios and preserve circles. Three distinct points in CP1 determine a unique
circle through them. Great circles are geodesic circles in the underlying spherical metric. However,
elements of PSL2C are generally not isometries, and so the set of great circles is not PSL2C–invariant.

A nontrivial element G 2 PSL2C is classified as

� parabolic if tr.G/2 D 4,

� elliptic if tr.G/2 is real and tr.G/2 < 4,

� loxodromic otherwise.
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Figure 1: From left to right: a Euclidean, spherical and hyperbolic configuration of circles.

2.1 Configurations of circles

Let CD .C1;C2;C3/ be an (ordered) configuration of three distinct circles in CP1. The configuration C

is nondegenerate if every pair Ci ;Cj intersects in exactly two points fxij ; yij g, and the set of pairwise
intersection points has at least four elements. Henceforth, all configurations will be assumed to be
nondegenerate. Also notice that by definition C is an ordered triple.

A configuration of circles is Euclidean if the circles have a common intersection point. In this case there
are exactly four intersection points. If the configuration is not Euclidean, since every circle divides CP1

into two disjoint regions, then C1 separates fx23; y23g if and only if C2 separates fx13; y13g if and only
if C3 separates fx12; y12g. In that case, we say that the configuration C is spherical. Otherwise, it is
hyperbolic (see Figure 1).

Remark 2.1.1 A configuration of circles induces a CW–structure on CP1, in which the 2–cells are either
bigons, triangles or quadrilaterals; in the spherical case the structure is simplicial and isomorphic to an
octahedron. Given two configurations of circles Ci D .Ci1;C

i
2;C

i
3/ of the same kind (Euclidean, spherical

or hyperbolic), there is always (at least) one CW–isomorphism of CP1 mapping C1
k

to C2
k

. For spherical
and hyperbolic configurations, it is enough to consider orientation preserving CW–isomorphisms. On the
other hand, if CD .C1;C2;C3/ is a Euclidean configuration of circles, there is no orientation preserving
CW–isomorphism mapping .C1;C2;C3/ to .C1;C3;C2/; the obstruction being the cyclic order of the
circles at the common intersection point.

The connection between a configuration of circles and the corresponding geometries is well known. We
recall it in the next result (cf Figure 2).

Lemma 2.1.2 Let C be a configuration of three circles.

� If C is Euclidean , let y be the common intersection point. Then CP1 n fyg admits a Euclidean
metric for which the circles in C are geodesics.

Algebraic & Geometric Topology, Volume 24 (2024)
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E2

H2

S2

Figure 2: Euclidean, hyperbolic and spherical configurations are related to the corresponding geometries.

� If C is spherical , then there is a Möbius transformation G 2 PSL2C such that G �C are great circles
for the underlying spherical metric.

� If C is hyperbolic , then there is a unique circle CH orthogonal to every circle in C. In particular ,
each connected componentDH of CP1nCH admits a hyperbolic metric for which the intersections
of C with DH are geodesics.

Any two distinct circles C1 and C2 in a configuration C intersect in two points. If x is a point of
intersection, then we can use the orientation of CP1 to determine the anticlockwise angle †xC1C2 from
C1 to C2 at x (see Figure 3). We have that

†xC2C1 D � �†xC1C2 D†yC1C2;

where y is the other point of intersection of C1 and C2. It is a simple exercise in complex projective
geometry to show that a configuration of circles is uniquely determined (up to Möbius transformations)
by the ordered triple of angles at three points.

Lemma 2.1.3 For i 2 f1; 2g, let Ci D .Ci1;C
i
2;C

i
3/ be a configuration of circles. For every pair of circles

in Ci let xi
jk
2 Cij \Ci

k
be an intersection point such that

†x112
C11C12 D†x212

C21C22; †x123
C12C13 D†x223

C22C23; †x113
C11C13 D†x213

C21C23:

Then there is a Möbius transformation M 2 PSL2C such that M �C1 D C2 with M � x1
jk
D x2

jk
.

†xC2C1
C2 †yC1C2

x
†xC1C2

y

C1

Figure 3: The anticlockwise angle between two circles at a point of intersection.
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2.2 Elliptic Möbius transformations

In this section we prove a correspondence between configurations of circles and certain triples of elliptic
Möbius transformations (Corollary 2.2.7).

As defined above, a nontrivial Möbius transformation G 2 PSL2C is said to be elliptic if tr.G/2 is real
and tr.G/2 < 4. An elliptic transformation fixes exactly two points of CP1. Let G 2 PSL2C be elliptic.
The rotation angle Rot.G; x/ 2 .0; 2�/ of G at a fixed point x is the angle of anticlockwise rotation of G
at x (more precisely of dGx on TxCP1). If x and y are the fixed points of G, a Möbius transformation
mapping x; y to 0;1 conjugates G to the element of PSL2C

(2.2.1)

"
ei
1
2

Rot.G;x/ 0

0 e�i
1
2

Rot.G;x/

#
:

The definition of rotation angle implies the following result.

Lemma 2.2.1 Let G 2 PSL2C be elliptic with fixed points fx; yg. Then

Rot.G; y/D 2� �Rot.G; x/D Rot.G�1; x/:

The rotation invariant of an elliptic transformation G is the unordered pair

Rot.G/ WD fRot.G; x/;Rot.G; y/g:

Lemma 2.2.2 Let G 2 PSL2C be elliptic , and let � 2 .0; 2�/. Then � 2 Rot.G/ if and only if
4 cos2

�
1
2
�
�
D tr2.G/.

Proof Both the rotation angle and the trace operator are invariant under conjugation; thus we may
assume that G is normalized as in (2.2.1). The equation 4 cos2

�
1
2
�
�
D tr2.G/ has precisely two solutions

in .0; 2�/, of the form

�1 D 2 arccos
�
1
2
jtr.G/j

�
and �2 D 2� � 2 arccos

�
1
2
jtr.G/j

�
;

where we fix a determination of arccos in Œ0; ��. A direct computation shows that Rot.G/ D f�1; �2g,
concluding the proof.

Given the fixed points of G, the rotation invariant is enough to determine G up to inversion, while the
rotation angle is a complete invariant.

Lemma 2.2.3 Let G;H 2 PSL2C be two elliptic transformations. Then

(1) Rot.G/D Rot.H/() tr2.G/D tr2.H/()G;H are conjugate.

(2) If G and H have the same fixed points fx; yg, then

Rot.G/D Rot.H/ () G DH˙1;

and in particular
Rot.G; x/D Rot.H; x/ () G DH:
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Proof (1) Two elliptics with the same rotation invariants must have the same trace squared by the
previous Lemma 2.2.2. But this is a complete invariant of conjugacy classes for semisimple
elements of PSL2C.

(2) Since G and H share the same fixed points, we can simultaneously normalize them as in (2.2.1).
Both statements follow from comparing the two normal forms.

Next we analyze the connection between elliptic transformations, whose product is elliptic, and configu-
rations of circles in CP1. First, we recall the following result from [Gallo et al. 2000, Lemma 3.4.1].

Lemma 2.2.4 Let G;H 2 PSL2C be elliptic transformations with at most one common fixed point ,
and such that the product GH is elliptic. Then the fixed points of G and H are contained in a unique
circle CG;H .

We recall that given any two distinct circles C1 and C2 intersecting at a point x, the (anticlockwise) angle
from C1 to C2 at x is denoted by †xC1C2 (see Section 2.1).

Lemma 2.2.5 Let C1 and C2 be distinct circles in CP1 meeting exactly at two points , x and y. Let Ji
denote the reflection in Ci . Then the product G D J2J1 is an elliptic transformation fixing x and y with

Rot.G; x/D 2†xC1C2 and Rot.G; y/D 2†yC1C2:

Proof Since Möbius transformations are conformal, we can normalize so that x D 0 and y D1. Under
the standard identification CP1 DC[f1g, we can further normalize so that C1 DR[f1g. Then C2

is a Euclidean line through 0 and1. In this setting

J1.z/D Nz and J2.z/D e
i2.†xC1C2/ Nz;

and the statement follows from a direct computation.

Henceforth we fix the following notation. Given G and H , distinct elliptic transformations whose product
GH is elliptic, we denote by fpG ; qGg (resp. fpH ; qH g) the fixed points of G (resp. H ), by CG;H the
unique circle through fpG ; qG ; pH ; qH g (see Lemma 2.2.4), and by JG;H the reflection about CG;H .

Lemma 2.2.6 Let .A;B; C / be an ordered triple of elliptic transformations with at most one common
fixed point , and such that ABC D 1. Then

(1) CA;C \CA;B D fpA; qAg;

(2) 2†pACA;BCA;C D Rot.A; pA/ and 2†qACA;BCA;C D Rot.A; qA/;

(3) AD JA;CJA;B .

Proof We begin by noticing that two of the three elliptic transformations share a common fixed point p
if and only if p is fixed by all three of them. Hence there are either four or six distinct fixed points. Then
statement (1) follows from Lemma 2.2.4.
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Next, we recall that Möbius transformations are conformal; thus without loss of generality we can
simultaneously normalize .A;B; C / so that .pA; qA; pB/D .0;1; 1/. It follows that CA;B DR[f1g.
If we let � WD 1

2
Rot.A; 0/, then the three elliptic transformations take the forms

AD

�
ei� 0

0 e�i�

�
; B D

�
a b

c Na

�
; C�1 D AB D

�
aei� bei�

ce�i� Nae�i�

�
;

where jtrBj D 2jRe.a/j< 2 (the relation between the diagonal elements of B is implied by the fact that
C is elliptic). We remind the reader that we are always taking representatives in SL2C modulo a sign.
Using that det.B/D 1 and that B fixes 1, it follows that b and c are purely imaginary. In particular, there
are choices of signs for which

b D�i Im.a/˙
p

Re2.a/� 1 and c D i Im.a/˙
p

Re2.a/� 1:

We claim that C�1 has fixed points of the form tei� for t 2 R n f0g. Since C and C�1 have the same
fixed points, this will imply that †0CA;BCA;C D � D

1
2

Rot.A; 0/. To this end, we look for real solutions
of the equation

tei� D AB � tei� D
ate2i� C bei�

ct C Nae�i�
() ct2� 2i Im.aei� /t � b D 0:

Since b and c are purely imaginary, this polynomial has real roots if and only if its discriminant
�4 Im.aei� /2C 4bc is negative. But that follows from

1D det.AB/D kak2� bc D kaei�k2� bc D Re.aei˛/2C Im.aei� /2� bc;
and

2 > jtr.AB/j D j2Re.aei� /j:

This concludes the proof of the first part of (2), while the rest follows from the definition of the anticlock-
wise angle between two circles and Lemma 2.2.1.

For the last statement of the lemma, recall that G WD JA;CJA;B is an elliptic Möbius transformation with
fixed points fpA; qAg (Lemma 2.2.5). Then G has the same fixed points and rotation angles as A; thus
G D A by Lemma 2.2.3.

Lemmas 2.2.4, 2.2.5 and 2.2.6 have the following straightforward consequence.

Corollary 2.2.7 There is a bijection�
configurations
of three circles

�
 !

�
ordered triples of elliptic transformations with
at most one common fixed point and product 1

�
where .C1;C2;C3/ 7! .J3J1; J1J2; J2J3/ and .A;B; C / 7! .CA;B ;CB;C ;CA;C /.

2.3 Triangular immersions

In this section we define certain immersions of the standard 2–simplex in CP1. Lemmas 2.3.1, 2.3.3
and 2.3.4 prove the existence of immersions with certain requirements on the angles at the vertices. These
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are the ones we call atomic, and are listed in Tables 1, 2 and 3 of the appendix. Then we study some
invariants of such immersions, and conclude in Corollary 2.3.7 that they are essentially determined by the
image of the vertices, up to a minor ambiguity.

Let 4 WD f.x1; x2; x3/ 2 R3
�0 j x1 C x2 C x3 D 1g be the standard 2–dimensional simplex. Let

fV1; V2; V3g � 4 be its set of vertices V1 D .1; 0; 0/, V2 D .0; 1; 0/ and V3 D .0; 0; 1/, and let eij �4
be the edge between Vi and Vj . We endow4 with the orientation induced form the ordering .V1; V2; V3/
of its vertices.

A triangular immersion is an orientation preserving immersion � W 4 ! CP1 such that each �.eij / is
contained in a circle. In particular, we require � to be locally injective everywhere except at the vertices.
When every �.eij / is contained in a great circle, the triangle 4 inherits a spherical metric with geodesic
boundary and cone angles at the vertices. This is usually referred to as a spherical triangular membrane
in the literature [Eremenko 2004; Mondello and Panov 2016]. Triangular immersions are relevant to this
paper as they produce natural examples of CP1–structures on the thrice-punctured sphere (see Section 5.1
for details.)

Henceforth, we will often make the abuse of notation of referring to both the triangular immersion and its
image in CP1 by � , when it is not necessary to make a distinction. The image of the vertices (resp. edges)
of 4 are the vertices (resp. edges) of � . Since edges of � are arcs of circles, � has well-defined angles
at the vertices. When � is not locally injective at a vertex, the angle is larger than 2� , and � should
be thought as “spreading over” CP1. The orientation of 4 and the ordering of its vertices induce an
orientation on � , and an ordering of its vertices and of its angles (which agree with the orientation and
ordering induced by the orientation of CP1).

Configurations of circles and triangular immersions are related to one another. If � is a triangular
immersion, each one of its edges extends to a unique circle giving a (possibly degenerate) configuration
C� of three circles. In this case we say that C� supports � . When C� is nondegenerate, we say that �
is nondegenerate. When the interior of the image of � is disjoint from C� , we say that � is enclosed
in C� . These are exactly those triangular immersions whose (interior of the) images are the connected
components of CP1 nC� . Necessary and sufficient conditions on the angles of � for it to be enclosed in
C� are well known, but we provide a short proof as we could not find a direct reference.

Lemma 2.3.1 Let .a; b; c/ be an ordered triple of angles in .0; �/3.

(1) Euclidean triangles There is a Euclidean configuration of circles C and a triangular immersion �
enclosed in C with angles .a; b; c/ if and only if one of the following conditions are satisfied :

(2.3.1) aC bC c D �; �aC bC c D �; a� bC c D �; aC b� c D �:

(2) Hyperbolic triangles There is a hyperbolic configuration of circles C and a triangular immersion
� enclosed in C with angles .a; b; c/ if and only if

(2.3.2) aC bC c < �:

Algebraic & Geometric Topology, Volume 24 (2024)



Tame and relatively elliptic CP1–structures on the thrice-punctured sphere 4603

.0/

.1/

.2/

.3/

b

� � b � � b

a

b

c

a

� � a

� � a c� � c

� � c

a

b

c

Oa

Ob

Oc

Figure 4: Two Euclidean configurations. Both support an enclosed triangular immersion with
angles .a; b; c/ 2 .0; �/3, such that either aC bC c D � (left) or �aC bC c D � (right).

(3) Spherical triangles There is a spherical configuration of circles C and a triangular immersion T
enclosed in C with angles .a; b; c/ if and only if .a; b; c/ satisfies

(2.3.3) aC bC c > �; aC� > bC c; bC� > cC a; cC� > aC b:

Proof (1) Let � be a triangular immersion enclosed in a Euclidean configuration of circles C� . Then
there is a common intersection point y, and CP1 n fyg admits a Euclidean metric for which the circles in
C� are geodesics (see Lemma 2.1.2). In this setting, it is easy to check that each one of the four triangular
immersions that are enclosed in C� have angles

(0) .a; b; c/,

(1) .a; � � c; � � b/,

(2) .� � c; b; � � a/,

(3) .� � b; � � a; c/,

each one satisfying exactly one of the equalities in (2.3.1) (see Figure 4).

The converse implication is well known for aC bC c D � . If �aC bC c D � , we consider the angles
Oa D a, Ob D � � c and Oc D � � b. Clearly . Oa; Ob; Oc/ 2 .0; �/3 and OaC ObC Oc D �; therefore there is a
Euclidean triangle with angles . Oa; Ob; Oc/ supported by some configuration of circles. One of the other
enclosed triangular immersions has angles .a; b; c/ (see Figure 4). The same strategy applies to the other
cases.

(2) Let � be a triangular immersion enclosed in a hyperbolic configuration of circles C� . Let CH be the
circle that is orthogonal to the family C� (Lemma 2.1.2). In this case there are precisely two triangular
immersions that are enclosed in C� , and they are both disjoint from CH. It follows that � is a hyperbolic
triangle in one of the two connected components of CP1 nCH; thus inequality (2.3.2) is a consequence
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a

b

c

.0/

.1/

.2/

.3/

a

b

c

a

� � a

� � a

b
� � b � � b

c� � c

� � c

Figure 5: A hyperbolic configuration and a spherical configuration. They both support an enclosed
triangular immersion with angles .a; b; c/2 .0; �/3, such that either aCbCcD� (left) or (2.3.3)
is satisfied (right).

of the formula for hyperbolic area of triangles (see Figure 5). The converse implication is [Ratcliffe 2006,
Theorem 3.5.9].

(3) Finally, let � be a triangular immersion enclosed in a spherical configuration of circles C� . By
Lemma 2.1.2, we can realize this configuration of circles by great circles. So every triangular region �
enclosed in C� is a geodesic triangle for the standard spherical metric. By the area formula for spherical
triangles, we have that

aC bC c D � CArea.�/ > �:

The other inequalities (2.3.3) are obtained by applying Gauss–Bonnet to the enclosed triangular regions
adjacent to � (see Figure 5), whose angles are

(1) .a; � � c; � � b/,

(2) .� � c; b; � � a/,

(3) .� � b; � � a; c/.

The converse implication is a simple adaptation of [Ratcliffe 2006, Theorem 3.5.9] using the law of
cosines in spherical geometry (see [Ratcliffe 2006, Exercise 2.5.8]).

Remark 2.3.2 For convenience, Lemma 2.3.1 is stated just in terms of the existence of a triangular
immersion � . Although we will not need it, we remark that it is a simple consequence of Lemma 2.1.3
that � is also unique up to Möbius transformations. The same is true for the following results.

Given an enclosed triangular immersion � , there are two simple operations that one can perform to
construct new triangular immersions supported by the same configuration of circles. The first one consists
in extending � by a full disk, by “pushing” an edge of � to its complement in its supporting circle
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Figure 6: A triangular immersion can be manipulated to new triangular immersions by adding an
entire disk, or by taking a full turn around a vertex.

(Figure 6). This operation increases the two angles adjacent to the pushed edge by � . The second
manipulation involves making a full turn around a vertex, by extending the opposite edge to cover its
entire supporting circle (Figure 6). This operation increases the angle at the highlighted vertex by 2� . It
will be remarked later on how these operations are related to grafting the associated triangular structure
(see Example 5.1.2).

On the other hand, there are triangular immersions that do not arise from these operations, whose existence
we prove now.

Lemma 2.3.3 Let .a; b; c/ be an ordered triple of angles such that

a 2 .0; �/[ .�; 2�/ and b; c 2 .0; �/:

Then there is a configuration of circles C and a triangular immersion � supported by C with angles
.a; b; c/.

Proof First suppose a 2 .0; �/. Those cases where .a; b; c/ satisfies one of the conditions (2.3.1), (2.3.2)
or (2.3.3) from Lemma 2.3.1 are covered by that lemma. Hence suppose aCbCc > � , but at least one of
the other inequalities in (2.3.3) is not satisfied. Up to permuting a; b; c we may assume that aC� < bCc.
Let

OaD a; Ob D � � b; Oc D � � c:

Then OaC Ob C Oc D aC .� � b/C .� � c/ < � by assumption; therefore by Lemma 2.3.1 there is a
hyperbolic configuration of circles C and a triangular immersion O� enclosed in C with angles . Oa; Ob; Oc/.
Figure 7 (on the left) shows that the same configuration of circles supports a triangular immersion with
angles .a; b; c/.

Now suppose a 2 .�; 2�/. Consider the relations

(1) (i) aC bC c > 3� ,
(ii) aC bC c D 3� ,
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a

b
c

Oa
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Oc

a

b

c

Oa

Ob

Oc

Figure 7: Left: a triangular immersion on a hyperbolic configuration with angles .a; b; c/2 .0; �/3

such that aCbCc >� but aC� < bCc. Right: a triangular immersion supported by a spherical
configuration.

(2) (i) a� b� c > � ,
(ii) a� b� c D � ,

(3) (i) a� bC c � � ,
(ii) aC b� c � � .

We observe that these three groups of inequalities are mutually exclusive, as any two of them imply the
following contradictions:

.1/C .2/ D) a � 2�; .1/C .3/.i/ D) b � �; .2/C .3/.i/ D) c � 0;

.3/.i/C .3/.ii/ D) a � �; .1/C .3/.ii/ D) c � �; .2/C .3/.ii/ D) b � 0:

If one of those inequalities is satisfied, we define

OaD 2� � a; Ob D � � b; Oc D � � c if (1)(i) is satisfied;

OaD 2� � a; Ob D � � c; Oc D � � b if (1)(ii) is satisfied;

OaD 2� � a; Ob D b; Oc D c if (2)(i) is satisfied;

OaD 2� � a; Ob D c; Oc D b if (2)(ii) is satisfied;

OaD a��; Ob D � � b; Oc D c if (3)(i) is satisfied;

OaD a��; Ob D b; Oc D � � c if (3)(ii) is satisfied:

In each case, the assumption implies that OaC ObC Oc�� ; therefore Lemma 2.3.1 applies to give a Euclidean
or hyperbolic configuration of circles C and a triangular immersion O� enclosed in C with angles . Oa; Ob; Oc/.
Figures 8 and 9 show that the same configuration of circles supports a triangular immersion with angles
.a; b; c/.
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Oc

(3)(i)

a
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Oa

Ob

Oc

(3)(ii)

Figure 8: Different triangular immersions with angles .a; b; c/, supported by hyperbolic configu-
rations. We remark that the one depicted in (2) covers the darker triangle twice.

Finally, let (:1), (:2), (:3)(i) and (:3)(ii) be the opposite of the inequalities (1), (2), (3)(i) and (3)(ii),
and suppose .a; b; c/ satisfies all of (:1), (:2), (:3)(i) and (:3)(ii). We define

OaD 2� � a; Ob D � � b; Oc D � � c:

This time OaC ObC Oc D 4� � a� b� c > � because of (:1). Moreover,

OaC� D 3� � a > 2� � b� c D ObC Oc by .:2/;

ObC� D 2� � b > 3� � a� c D OaC Oc by .:3/.i/;

OcC� D 2� � c > 3� � a� b D OaC Ob by .:3/.ii/:
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Figure 9: Different triangular immersions with angles .a; b; c/, supported by Euclidean configurations.

By Lemma 2.3.1, there is a spherical configuration of circles C and a triangular immersion O� enclosed in
C with angles . Oa; Ob; Oc/. See Figure 7 for a triangular immersion with angles .a; b; c/ supported by the
same configuration C.

Due to the degenerate nature of Euclidean configurations, there is one additional case that needs to be
considered, which we address in the next lemma.

Lemma 2.3.4 Let .a; b; c/ be an ordered triple of angles such that

a 2 .2�; 3�/; b; c 2 .0; �/; a� b� c D �:

Then there is a configuration of circles C and a triangular immersion � supported by C with angles .a; b; c/.
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a

b

c

Oa

Ob

Oc

Figure 10: The additional triangular immersion mentioned in Lemma 2.3.4. Notice that a > 2� ,
hence the darker bigon is covered twice.

Proof Let
OaD a� 2�; Ob D � � b; Oc D � � c:

Then Oa; Ob; Oc 2 .0; �/ and OaC ObC Oc D a� 2� C� � bC� � c D � ; therefore by Lemma 2.3.1 there is
a Euclidean configuration of circles C and a triangular immersion O� enclosed in C with angles . Oa; Ob; Oc/.
Figure 10 shows that the same configuration of circles supports a triangular immersion with angles
.a; b; c/.

The triangular immersions constructed in the proofs of Lemmas 2.3.1, 2.3.3 and 2.3.4, which are depicted
in Figures 7, 8, 9 and 10, are the starting point to construct all complex projective structures of interest
in this paper. For this reason, we will refer to them as the atomic triangular immersions. They are
Euclidean/hyperbolic/spherical depending on the type of the underlying configuration of circles. In
Lemmas 2.3.3 and 2.3.4 exactly one angle is allowed to be larger than � , and we have assumed that to be
the first one for simplicity. This normalization is inessential, and the same statements and proofs hold
if one chooses a different angle to be the large one. This should be regarded as a change of marking
(ie a permutation of the vertices of the simplex on which the triangular immersions are defined), and
we call atomic triangular immersion any triangular immersion obtained in this way. Theorem B and
Corollary 5.2.3 will show that, in a precise sense, this is indeed the minimal collection of triangular
immersions to be considered.

We remark that the proofs of these lemmas are explicit, and construct a concrete collection of triangular
immersions. Notice that for every triple of real numbers .a; b; c/, two of which are in .0; �/ and one is in
.0; �/[ .�; 2�/[ .2�; 3�/, there is a unique atomic triangular immersion with those angles. This allows
us to organize the atomic triangular immersions in Tables 1, 2 and 3. We now define the other features
listed in those tables.
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Let � W 4 ! CP1 be an atomic triangular immersion, and let C� be the configuration of circles that
supports it. The configuration C� is either of spherical, Euclidean or hyperbolic type. The target angles
of � are the numbers . Oa; Ob; Oc/ defined as follows.

� If .a; b; c/ satisfies the hypothesis of Lemma 2.3.1 then . Oa; Ob; Oc/D .a; b; c/.

� If .a; b; c/ does not satisfy the hypothesis of Lemma 2.3.1 then . Oa; Ob; Oc/ is defined as in the proofs
of Lemmas 2.3.3 and 2.3.4, depending on what conditions are satisfied, and up to permuting the
angles as appropriate.

The target angles of � satisfy the hypothesis of Lemma 2.3.1. Therefore there is a triangular immersion O�
with angles . Oa; Ob; Oc/, which we call the target triangular immersion. If C� WD .C12;C23;C13/, it follows
from the construction that O� is supported either by C� or by C�� WD .C12;C13;C23/, but the latter only
happens in the Euclidean cases of Figure 4 (right) and Figure 9(1)–(2). In addition, O� is always enclosed
(while � may not be). All the above pictures representing the atomic triangular immersions have been
normalized so that O�.4/ contains the point at infinity in its interior.

For pairwise distinct i; j; k 2 f1; 2; 3g, consider the circle Cij 2 C� supporting O�.eij /; the intersection
Cij \Cjk consists of two points: one is O�.Vj /, and we define O�.Vj /0 to be the other one. The collection
fO�.Vj /; O�.Vj /

0 j j D 1; 2; 3g accounts for all the points of intersection of the circles in C� , which are the
possible vertices for � . Note that by construction we always have f�.V1/; O�.V1/g � C12\C13. We say a
vertex �.Vj / of � is positive if there exists k such that �.Vj /D O�.Vk/, ie if it coincides with a vertex of O� ,
and we say it is negative otherwise. This defines a triple of signs .s1.�/; s2.�/; s3.�// 2 f˙g3 associated
to � . In the Euclidean case, we additionally decorate this triple; we define it to be .s1.�/; s2.�/; s3.�//
when O� is supported by C� , and to be .s1.�/; s2.�/; s3.�//� when O� is supported by C�� .

Remark 2.3.5 The Euclidean case (see Table 3) displays all possible cases for the triple of signs,
including the extra � decoration, with the only exception of the cases in which all vertices are negative.
This cannot happen as it would mean that � maps all vertices to the common intersection point of the
configuration of circles, but this never happens for an atomic triangular immersion. The extra � decoration
is not needed for the hyperbolic and spherical cases as they are less degenerate than the Euclidean ones,
in the sense that circles in C have six distinct intersection points, which allows for more flexibility in
the definition of the atomic immersions. See Tables 1 and 2. In the hyperbolic case we find all possible
cases for the signs. In the spherical case we only see the triples .˙;˙;˙/. This is because a spherical
configuration of circles has only triangular complementary regions (while the complement of a hyperbolic
configuration has different shapes, with only two triangles). As a result it is much easier for a spherical
atomic triangular immersion to be enclosed, and equal to its own target triangular immersion.

Lemma 2.3.6 Let � be an atomic triangular immersions supported by a configuration of circles C. Then
O� is uniquely determined by C and the vertices of � .
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Figure 11: Two atomic triangular immersions supported by the same (spherical) configuration of
circles, and with the same signs .�;�;�/.

Proof Let CD .C12;C23;C13/ and recall that we have �.ejk/ � Cjk for j; k D 1; 2; 3, by definition
of what it means for a triangular immersion to be supported by a configuration of circles. Moreover, by
construction f�.V1/; O�.V1/g � C12\C13.

Suppose that C is Euclidean. Then O� is the unique enclosed triangular immersion mapping to the Euclidean
triangle such that O�.V1/D .C12\C13/ n f1g.

Next, if C is hyperbolic, then let CD CH be the dual circle from Lemma 2.1.2. If C is spherical, then let
C be a circle which separates the vertices of � from the other intersection points of circles in C. In either
case O� is the unique enclosed triangular immersion which has image disjoint from C, is supported by C,
and such that f�.V1/; O�.V1/g � C12\C13. We additionally remark that O� is always on the left of C with
respect to the orientation induced by C.

Corollary 2.3.7 Let C be a configuration of circles. Let �1 and �2 be two atomic triangular immersions
supported by C, such that �1.Vj /D �2.Vj / for all j 2 f1; 2; 3g. Then O�1 D O�2. Moreover , if .ai ; bi ; ci /
are the angles of �i , then exactly one of the following happens:

(1) .a1; b1; c1/D .a2; b2; c2/ and �1 D �2;

(2) .a1� a2; b1� b2; c1� c2/D .�;��; 0/ up to permutation.

Proof The first assertion follows directly from Lemma 2.3.6. As a direct consequence, �1 and �2 have
the same target angles and the same triple of signs. A direct inspection of Tables 1, 2 and 3 proves
the desired relations between the angles, just by imposing equalities of the respective target angles.
In particular, recall that atomic triangular immersions are uniquely determined by their angles; hence
.a1; b1; c1/D .a2; b2; c2/ implies �1 D �2.

Example 2.3.8 Let �1 and �2 be two atomic triangular immersions with angles

.a1; b1; c1/D
�
3�
2
; �
3
; �
4

�
and .a2; b2; c2/D

�
�
2
; 4�
3
; �
4

�
:
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These immersions correspond to the second and third row of Table 2, respectively. They are supported by
the same spherical configuration of circles C, with target angles . Oa; Ob; Oc/D

�
�
2
; 2�
3
; 3�
4

�
, and share the

same signs .�;�;�/. In particular, O�1 D O�2. Furthermore, �1 can be transformed into �2 by first adding a
disk and then removing another disk (see Figure 11).

Remark 2.3.9 Some of the sign invariants in each of Tables 1, 2 and 3 occur exactly once. If two
triangular immersions have same such signs, then they are equal by Corollary 2.3.7 case (1). This applies
for instance to atomic triangular immersions arising from Lemma 2.3.4, depicted in Figure 10.

3 Tame and relatively elliptic CP 1–structures

In this chapter we define the geometric structures of interest in this paper, and study the geometry they
induce on the universal cover. The reader can find the proofs of Theorems C and D in Sections 3.2 and 3.3
respectively.

Let † be a closed oriented surface and let fx1; : : : ; xng �† be n distinct points such that the punctured
surface † WD† n fx1; : : : ; xng has negative Euler characteristic. If g is the genus of †, this is equivalent
to 2g C n > 2, and it implies that † admits a complete hyperbolic metric of finite area. The points
fx1; : : : ; xng are the punctures of †.

A complex projective structure (CP1–structure in short) on † is a maximal atlas of charts into CP1 with
transition maps in PSL2C (see [Dumas 2009; Gunning 1967]). A CP1–structure can be described by a
developing pair .dev; �/ consisting of a developing map and a holonomy representation

dev W z†!CP1; � W �1.†/! PSL2C;

satisfying the equivariance condition

dev. � x/D �.x/ � dev.x/ for all x 2 z†;  2 �1.†/:

There is a natural equivalence relation on the set of complex projective structures on a surfaces for
which two pairs .dev; �/ and .dev0; �0/ are equivalent if there is A 2 PSL2C so that dev0 D A ı dev and
�0 D A�A�1 (up to isotopy of †). The deformation space of marked CP1–structures on † is the space
of equivalence classes of complex projective structures and it is denoted by P.†/. We denote by R.†/

the space of conjugacy classes of representations of �1.†/ into PSL2C. We prefer not to use the GIT
quotient because some of the representations of interest in this paper are reducible. The holonomy map is
the forgetful map

Hol W P.†/!R.†/; Œ.dev; �/� 7! Œ��:

Every CP1–structure has a natural underlying complex structure (or equivalently a conformal structure).
We define P�.†/�P.†/ to be the subset of CP1–structures on † whose underlying conformal structure
around every puncture is the complex punctured disk D� WD fz 2C j 0 < jzj< 1g.
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The space of interest in this paper is the subspace Pˇ.†/ of P�.†/ of those structures whose developing
map is tame and whose holonomy representation is relatively elliptic. We will define these terms in
Section 3.1.

3.1 Ends, framing, and grafting

Let z† be the topological universal cover of †, and choose an identification z† Š H2 coming from a
uniformization of † as a complete hyperbolic surface of finite area. An end E of z† is defined to be the
fixed point of a parabolic deck transformation in the boundary of H2 in the closed disk model. For every
puncture x of †, we denote by Ex.z†/ the set of ends covering x (see Remark 3.1.1 for more details), and
by

E.z†/ WD
[
x

Ex.z†/

the set of all ends. The end-extension of z† is the topological space z†# D z†[E.z†/, equipped with the
topology generated by all open sets of z† together with the horocyclic neighborhoods of the ends, ie sets
of the form N DN0[fEg where N0 is an open disk in the closed disk model for H2 which is tangent to
the boundary at E. The action of �1.†/ on z† naturally extends to a continuous (neither free nor proper)
action on z†#. The quotient of E.z†/ by this action is precisely the set of punctures of †.

Remark 3.1.1 Ends cover the punctures of † in the sense that the universal cover projection z†!†

admits a continuous extension to a map z†#!†. In particular, a sequence of points xn 2 z† converges
to an end E 2 E.z†/ if and only if its projection to † is a sequence of points converging (in †) to the
puncture covered by E. This happens if and only if xn eventually enters every horocyclic neighborhood
of E.

Remark 3.1.2 Notice that z† is open and dense in z†#, but this is not the same topology as the one
induced from the closed disk model for H2. Indeed the topology of z†# is strictly finer; the natural
inclusion of z†# into the closed disk is continuous but not open. Furthermore, the topology induced on the
collection of ends is discrete, so z†# is not compact. Actually not even locally compact, as ends do not
have compact neighborhoods.

Recall that a peripheral element ıx 2 �1.†/ is the homotopy class of a peripheral loop (also denoted
by ıx) around the puncture x. If Ex is an end covering x, then ıx is a generator of the stabilizer of Ex in
�1.†/. We make the convention that ıx is the positive peripheral element if the corresponding peripheral
loop is positively oriented, namely it turns anticlockwise around x (with respect to the orientation of †).
This convention is chosen to match the convention that the angle between two circles is also taken in the
anticlockwise direction.

Let � 2 P.†/ be represented by a developing pair .dev; �/. We say that � is

� tame at a puncture x if dev admits a continuous extension

.dev#/x W z†[Ex.z†/!CP1I
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� tame if dev admits a continuous extension

dev# W z†[E.z†/!CP1

(note that this is equivalent to � being tame at each puncture);

� relatively elliptic if the holonomy representation is relatively elliptic, ie the holonomy of every
peripheral element is an elliptic Möbius transformation;

� degenerate if the holonomy representation is degenerate in the sense of [Gupta 2021, Definition 2.4],
ie if either one of the following happens:
– there are two points p˙ 2CP1 such that the entire holonomy preserves the set fp˙g and the

holonomy of every peripheral element fixes p˙ individually;
– there exists a point p 2CP1 such that the entire holonomy fixes p and the holonomy of every

peripheral element is parabolic or identity.

The property of being degenerate is related (but not equivalent) to the more classical notions of reducible
or elementary representations. In the case of punctured spheres, a degenerate representation is always
reducible; on the other hand a representation generated by rotations of the Euclidean plane around different
points is reducible but nondegenerate (see [Gupta 2021, Section 2.4] for a discussion).

The above notions are invariant under conjugation of representations in PSL2C and postcomposition of
developing maps by Möbius transformations, thus they do not depend on the choice of representative
pair .dev; �/. The deformation space of CP1–structures on † which are tame, relatively elliptic and
nondegenerate is Pˇ.†/. The image of Pˇ.†/ under the holonomy map is Rˇ.†/ WD Hol.Pˇ.†//.

Lemma 3.1.3 Let � 2 P.†/ and let .dev; �/ be a developing pair. Let x be a puncture and suppose that
� is tame at x. Let Ex be an end covering x and let ıx 2 �1.S/ be a peripheral element fixing it. Then

(1) the map .dev#/x is �–equivariant. In particular , the transformation �.ıx/ fixes dev#.Ex/;

(2) the transformation �.ıx/ is either trivial , parabolic or elliptic.

Proof (1) Follows by equivariance of dev and continuity of the extension dev#.

(2) Let p WD .dev#/x.Ex/ be one of the fixed points of �.ıx/, and assume by contradiction that �.ıx/
is hyperbolic or loxodromic. Then it has another fixed point q and there is a �.ıx/–invariant
simple arc ` joining them. Let � be an initial segment of ` starting at p and ending at some other
point y on `, and lift it to an arc Q� starting at Ex . Consider the family of arcs Q�n WD ınx � Q�, for
n 2 Z. Up to replacing ıx with its inverse, the sequence f.dev#/x. Q�n/g converges to the whole
curve ` as n!C1, and shrinks to p as n!�1. Hence for all n 2 ZC there is a point xn 2 Q�n
developing to y. Then we have xn! Ex in the topology of z†#, but also .dev#/x.xn/D y 6D p,
which contradicts the continuity of .dev#/x at Ex .

We will see in Section 4 that if � 2 Pˇ.†/ then � 2 P�.†/, ie the underlying complex structure is
that of a punctured Riemann surface. More precisely, � can be defined by a suitable meromorphic
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quadratic differential with double poles (Theorem E). However Pˇ.†/ is strictly contained in P�.†/, as
the following examples show.

Example 3.1.4 We now collect examples of structures in P�.†/ which are or are not in Pˇ.†/. These
examples show that being tame and having relatively elliptic holonomy are independent concepts.

� All structures induced by Euclidean or hyperbolic metrics with cone points of angles 2�� are in
Pˇ.†/, when � …N. For spherical metrics one has to additionally require that they do not have coaxial
holonomy (see [Mondello and Panov 2016]).

� The structure induced by a complete hyperbolic metric of finite area is tame, but its holonomy is not
relatively elliptic because peripherals have parabolic holonomy. Hence it is in P�.†/ but not in Pˇ.†/.

� Let �0 be the structure induced by a constant curvature metric with cone points of angles 2�� , for
� …N. Remove disks centered at the cones, turn them into crowns and perform infinitely many graftings
along arcs joining the crown tips. The resulting structure is in P�.†/ and has relative elliptic holonomy,
but it is not tame, hence it is not in Pˇ.†/. This construction is described in [Gupta and Mj 2021], where
it is shown that these structures arise from meromorphic quadratic differentials with poles of order at
least 3 on punctured Riemann surfaces. Compare Example 3.2.10.

� Let �0 2P.†/ be the complex projective structure induced by a hyperbolic metric on the closed surface
†. Pick a simple closed geodesic and let �n be the structure obtained by grafting along it n times. For
n!1 we obtain a punctured surface † with two punctures (possibly disconnected if the geodesic is
separating) which is endowed with a complex projective structure in P�.†/ (see [Hensel 2011]). However
it is not tame, and peripherals have hyperbolic holonomy, so it is not in Pˇ.†/. Compare Example 3.2.11.

We conclude this section by observing that structures in Pˇ.†/ carry some additional piece of information
which can be regarded as a decoration of the holonomy representation. A framing for a representation
� W �1.†/! PSL2C consists of a choice of a fixed point in CP1 for the holonomy about each puncture
(compare [Allegretti and Bridgeland 2020; Gupta 2021]). When considering representations up to
conjugacy (as we do), a framing can equivalently be defined as a �–equivariant map F W E.z†/!CP1

from the space of ends to CP1. A framing is said to be degenerate if one of the following occurs (compare
[Gupta 2021, Section 2.5]):

� F.E.z†// consists of two points, preserved as a set by every element, and fixed individually by the
holonomy at every puncture;

� F.E.z†// consists of one point, fixed by every element, and the holonomy at every puncture is
either parabolic or the identity.

Every framing of every nondegenerate representation is nondegenerate (see [Gupta 2021, Proposition 3.1]).
In general, a CP1–structure can be framed in different ways, by arbitrarily picking the fixed point for
each peripheral curve. However, tame structures can be canonically framed.
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Q� CP1

z†

†

CP1

�

CP1

dev#. Q�/

Figure 12: The structure on z† induced by grafting a structure along a curve �.

Corollary 3.1.5 Let � 2 Pˇ.†/. Then the extension of a developing map provides a nondegenerate
canonical framing for the holonomy.

Proof Let .dev; �/ be a developing pair defining � . By Lemma 3.1.3 we know dev extends naturally
to a map dev# on the space of ends. The restriction FD dev# jE.z†/ provides the desired framing. The
framing is nondegenerated because � itself is a nondegenerate representation.

In the following, whenever dealing with a structure � 2Pˇ.†/, we assume that this natural framing F

has been chosen for its holonomy representation, and refer to the pair .�;F/ as its framed holonomy.

In this paper we are mostly interested in a surgery that can be used to deform CP1–structures and explore
their moduli space. It was introduced by Maskit [1969] and later developed in unpublished work of
Thurston (see [Baba 2020; Dumas 2009; Kamishima and Tan 1992] for some accounts). The specific
version we are interested in is designed to create new structures from old ones without changing their
holonomy. For convenience we define it just in the setting of CP1–structures in Pˇ.†/.

Let � 2 Pˇ.†/, and let � W I ! † be an ideal arc (ie with endpoints in the set of punctures). We say
� is graftable if it is simple and injectively developed, ie dev# is injective on some (every) lift of �
to z†#, all the way to the ends. In particular, the two endpoints develop to two distinct points. When � is
graftable, the developed image of any of its lifts dev#. Q�/ is a simple arc in CP1; hence CP1 n dev#. Q�/ is
a topological disk, endowed with a natural CP1–structure, which we call a grafting region.

Let � 2 Pˇ.†/ and let � W I ! † be a graftable arc. The grafting of � along � is the CP1–structure
Gr.�; �/ obtained by the following procedure: for each lift Q� of � to the universal cover, cut z† along Q�
and glue in a copy of the disk CP1 n dev#. Q�/ using dev# as a gluing map. The obvious inverse operation
is called degrafting. The structure on z† induced by Gr.�; �/ looks like the union of the one induced by
� together with an equivariant collection of grafting regions, glued along all the possible lifts of � (see
Figure 12).
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Remark 3.1.6 If two graftable arcs � and �0 have the same endpoints and are isotopic through graftable
curves, then Gr.�; �/D Gr.�; �0/, and Gr.�; �/ is graftable again along � (see [Calsamiglia et al. 2014a,
Lemma 2.8] or [Ruffoni 2021, Section 2] for details). On the other hand, if � and �0 are disjoint, then
Gr.�; �/ (resp. Gr.�; �0/) is graftable along �0 (resp. �), and Gr.Gr.�; �/; �0/D Gr.Gr.�; �0/; �/.

More generally, a grafting surgery can be defined along any graftable measured lamination on a CP1–
structure, and the reader familiar with grafting deformations will identify the type of grafting introduced
here as a type of projective 2�–grafting (see [Baba 2020; Dumas 2009; Kamishima and Tan 1992] for
details). We record the following statement for future reference.

Lemma 3.1.7 Let � 2 Pˇ.†/ and � W I !† be a graftable arc. Then

(1) Hol.Gr.�; �//D Hol.�/ (ie grafting preserves the holonomy),

(2) Gr.�; �/ 2 Pˇ.†/,

(3) grafting does not change the developed images of the punctures (ie grafting preserves the framed
holonomy).

Proof The first statement is well known in the literature for this type of grafting (see for instance [Baba
2020]). The statements about tameness and framing follow by pasting together the developing map for �
and the natural embedding of the grafting regions in CP1.

3.2 The Möbius completion

In this section we prove Theorem C. Henceforth we fix a complex projective structure � 2 P.†/ with
developing pair .dev; �/. First of all we recall the definition of a natural projective completion of z†
defined in terms of � (see [Kulkarni and Pinkall 1994] for details). Let g0 be a conformal Riemannian
metric on CP1 (eg the standard spherical metric). Let g WD dev�.g0/ be the metric on z† obtained by
pullback, and let d be the associated distance function, ie

d.x; y/ WD inff`g.�/ j � W Œ0; 1�! z† is a rectifiable arc from x to yg

where `g.�/ denotes the length of  with respect to the metric g. Notice that g is generally not invariant
under deck transformations. By construction .z†; d/ is a path-connected length space. It is locally
path-connected, but not necessarily geodesic. Moreover it is locally compact, but in general not proper,
nor complete.

The Möbius completion M� .z†/ of z† with respect to � is defined to be the metric completion of .z†; d/.
The subspace @�1.z†/ WDM� .z†/ n z† is called the ideal boundary of z† with respect to � . We collect the
following facts from [Kulkarni and Pinkall 1994, Section 2]:

(1) Different choices of the metric g0 on CP1 or of the developing map for � result in metrics on z†
having the same underlying uniform structure. So M� .z†/ does not depend (up to homeomorphism)
on these choices.
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(2) dev W z†!CP1 extends continuously to a map dev� WM� .z†/!CP1.

(3) The action of �1.†/ by deck transformations extends to an action by homeomorphisms on the
Möbius completion.

Lemma 3.2.1 The map dev� is �–equivariant.

Proof Let � 2 @�1.z†/ and let xn 2 z† a Cauchy sequence converging to �. Then by continuity of dev� ,

dev� . � �/D dev� . � lim
n!1

xn/D lim
n!1

dev� . � xn/

D �./ � lim
n!1

dev� .xn/D �./ � dev� .�/:

Lemma 3.2.2 M� .z†/ is a complete , path-connected and locally path-connected length space.

Proof Completeness is trivial by construction. The completion of a length space is a length space
(see for instance [Bridson and Haefliger 1999, I.3.6(3)]). Since z† is path-connected and M� .z†/ is a
length space, it follows that M� .z†/ is path-connected. Analogously one can obtain that M� .z†/ is locally
path-connected.

The following examples describe more explicitly the Möbius completion for projective structures defined
by certain constant curvature metrics. Notice they are both examples of hyperbolic Möbius structures
with respect to the terminology introduced in [Kulkarni and Pinkall 1994, Section 2].

Example 3.2.3 Let � D .dev; �/ be defined by a complete hyperbolic metric of finite area on †. In this
case M� .z†/ is homeomorphic to a closed disk, and @�1.z†/ to a circle. Ideal points are either ends, or
limit points of complete lifts of closed geodesics. Indeed, � W �1.†/! PSL2R is an isomorphism onto
Fuchsian group, and dev W z†!CP1 is a �–equivariant diffeomorphism with an open hemisphere.

Example 3.2.4 Let � D .dev; �/ be defined by a spherical metric on †, with cone singularities at the
punctures. In this case M� .z†/D z†# is homeomorphic to the end-extension, and @�1.z†/D E.z†/. Indeed,
the action of �1.†/ on z† preserves a spherical metric and admits a fundamental domain D given by a
geodesic spherical polygon having finite area A and all the vertices in the set of ends. Notice that each
pair of nonintersecting edges of this polygon has positive finite distance, and let L> 0 be the minimum of
such distances. Pick � 2 @�1.z†/, and a rectifiable curve of finite length  W Œ0; 1/!M� .z†/ tending to � .
If  intersects finitely many fundamental domains, then it is eventually contained in a single one, hence �
must be an end. If  intersects infinitely many domains Dn, then the length of the arcs  \Dn converges
to zero, so is eventually less than L. In particular, eventually all the domains Dn share a common vertex.
By construction this vertex is an end and  converges to it, which forces � to be an end.

Lemma 3.2.5 For all x 2 z†, � 2 @�1.z†/ and c > 0 there is a continuous curve �c W Œ0; 1/! z† such that
�c.0/D x, limt!1 �c.t/D � and d.x; �/� `.�c/� d.x; �/C c.
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Proof By definition, d.x; �/D limn!1 d.x; yn/ for any Cauchy sequence fyng converging to �. Let
fyng be a Cauchy sequence in z† converging to � such that

d.x; yi /� d.x; �/C
1

i
and d.yi ; yiC1/�

1

i2
:

Such sequence can be easily constructed from any Cauchy sequence by taking an appropriate subsequence.
Since z† is a length space, for all k there is a continuous curve k W Œ0; 1�! z† such that k.0/ D yk ,
k.1/D ykC1 and

`.k/� d.yk; ykC1/C
1

k2
D

2

k2
:

By concatenating these curves, for every i , we obtain a continuous curve i W Œ0; 1/ ! z† such that
i .0/D yi , limt!1 i .t/D �, and

`.i /�

1X
kDi

2

k2
DW Ti :

In particular, limi!1 `.i / D limi!1 Ti D 0. Finally, let �i W Œ0; 1/! z† be a continuous curve such
that �i .0/D x, �i .1/D yi , and

`.�i /� d.x; yi /C
1

i2
:

Let fi W Œ0; 1/! z† be the continuous curve obtained by concatenating �i with i . Then fi is a continuous
curve such that fi .0/D x, limt!1 fi .t/D � and

d.x; �/� `.fi /D `.�i /C `.i /� d.x; yi /C
1

i2
CTi � d.x; �/C

1

i
C
1

i2
CTi :

Now let i such that 1=i C 1=i2CTi < c and take fc WD fi .

Lemma 3.2.6 Let � 2 @�1.z†/ and " > 0. Then B� .�; "/\ z† is path-connected.

Proof First of all let us show that each path-component N of B� .�; "/\ z† contains points arbitrarily
close to � . Pick a base point x 2N , and let RD d.x; �/; notice R < ". By Lemma 3.2.5 for all c > 0 we
can pick a continuous curve �c W Œ0; 1/! z† such that �c.0/D x, limt!1 �c.t/D � and R� `.�c/�RCc.
For each t 2 Œ0; 1/ we have

d.�c.t/; �/� `.�c.Œt; 1///� `.�c.Œ0; 1///�RC c:

In particular, for c < 1
2
."�R/ we get that d.�c.t/; �/ < ", ie �c is entirely contained in B� .�; "/\ z†.

Since it is a curve starting at x, it is then entirely contained in N ; since it converges to � we get
limt!1 d.�c.t/; �/D 0.

Suppose by contradiction that B� .�; "/\ z† admits at least two different path-components N1 and N2. Let
xk 2Nk be two points such that d.xk; �/ < 1

4
". In particular, d.x1; x2/ < 1

2
". Since .z†; d/ is a length

space, for every ı > 0 we can find a continuous curve ı W Œ0; 1�! z† joining x1 to x2 of length at most
1
2
"C ı. Let now z 2 ı . Without loss of generality let us assume that d.z; x1/� d.z; x2/, so that by the

triangle inequality we get

d.z; �/� d.z; x1/C d.x1; �/�
1
2

�
1
2
"C ı

�
C
1
4
"D 1

2
"C 1

4
ı:
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In particular, for each ı < " we get that the curve �ı is at distance at most " from �. In particular,
it is entirely contained in B� .�; "/\ z†, which contradicts the fact that x1 and x2 are in distinct path-
components.

Our next goal is to define a cyclic order on @�1.z†/, which will induce a total order on @�1.z†/ n f�g, for
any � 2 E.z†/.

Lemma 3.2.7 For any pair of distinct points .�0; �1/ 2 @�1.z†/ there exists a simple continuous curve
 W .0; 1/! z† such that limt!0 .t/D �0 and limt!1 .t/D �1.

Moreover , for any such curve  , the space M� .z†/ nCl./ has exactly two path-components , which we
call the left and right components , CL./ and CR./, with respect to the orientation of  . The induced
partition of @�1.z†/ as

f�0; �1g[ .@
�
1.
z†/\CL.//[ .@

�
1.
z†/\CR.//

only depends on the ordered pair .�0; �1/ and not on  .

Proof Existence of  is clear, for instance by Lemma 3.2.5. Let us show that its complement consists of
exactly two path-components. z† n  clearly has exactly two path components, so M� .z†/ nCl./ has at
most two components (again by Lemma 3.2.5). We need to show that no ideal point can be joined by an
arc to both components. This follows from Lemma 3.2.6.

To show that the induced decomposition of @�1.z†/ does not depend on the choice of  , just notice that
any two such curves are isotopic relatively to their endpoints in z†.

Hence we denote by CL.�0; �1/ WD @�1.z†/\CL./ and CR.�0; �1/D @�1.z†/\CR./ for any curve 
as in Lemma 3.2.7. We define the following ternary relation on @�1.z†/. If �0; �1; � 2 @�1.z†/ then we say
they are in relation (denoted by Œ�0; �; �1�) if � 2 CR.�0; �1/, ie � is on the right of  .

Remark 3.2.8 This relation defines a �1.†/–invariant cyclic order on @�1.z†/.

The goal of the rest of this section is to explore the features of the Möbius completion and the ideal
boundary in the case of structures from Pˇ.†/.

Proposition 3.2.9 A structure � is tame if and only if the natural embedding j� W z† ,!M� .z†/ extends to
a �1.†/–equivariant continuous embedding j #

� W
z†# ,!M� .z†/. Moreover in this case dev# D dev� ıj #

� .

Proof First assume the existence of a �1.†/–equivariant continuous embedding j #
� W
z†# ,!M� .z†/. As

remarked above there exists a continuous extension dev� of dev to M� .z†/. Then dev� ıj � provides a
continuous extension of dev to z†#, ie � is tame.

Conversely let � be tame, let E 2 E.z†/ and pE D dev#.E/. Since dev extends continuously to E, for all
"> 0 the set N"D .dev#/

�1.B.pE ; "// is an open neighborhood of E in z†#, containing points at distance
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at most " from E. Therefore we can construct a Cauchy sequence xn in z† converging to E (in z†#). We
can associate to E the limit of xn in the completion M� .z†/. Suppose yn is another Cauchy sequence
in z† converging to E (in z†#). By definition of the topology on z†, continuity of dev# at E implies that
dev#.xn/ and dev#.yn/ both converge to pE . Hence yn eventually enters each neighborhood N". As a
result we get d.xn; yn/ � 2", which implies that the two sequences give rise to the same point in the
completion. This defines the desired extension, which is (sequentially) continuous. Injectivity follows
from the fact that any two ends are at a positive distance from each other. Moreover dev# D dev� ıj #

�

because they agree on the dense subset z† and CP1 is Hausdorff.

In particular, tame structures have infinitely many ideal points, hence they are of hyperbolic type with
respect to the classification in [Kulkarni and Pinkall 1994]. Moreover it should be noticed that ends do
not have compact neighborhoods, so the completion fails to be locally compact or proper.

Example 3.2.10 Gupta and Mj [2021] considered structures obtained by grafting crowned hyperbolic
surfaces, and showed that the local structure at the crown can be modeled by a meromorphic differential
with a pole of sufficiently high order. For such a structure, every sequence going off to a puncture gives
rise to an ideal point in the Möbius completion, but sequences converging in different Stokes sectors
develop to sequences converging to different limit points in CP1, hence give rise to different ideal
points in the Möbius completion. They are not tame structures (as observed in Example 3.1.4), and the
space of ends does not embed continuously in their ideal boundary. Notice that Lemma 3.2.6 applies to
each individual ideal point, while the intersection of z† with the neighborhood of an end can fail to be
connected.

Example 3.2.11 For a more extreme behavior, take a closed hyperbolic surface, and graft it along a
geodesic pants decomposition infinitely many times. The underlying complex structure is being pinched
along each pants curve, and in the limit the structure decomposes into a collection of thrice-punctured
spheres (see [Hensel 2011, Section 6]). There, punctures do not give rise to well-defined ideal points;
indeed, the structure has hyperbolic peripheral holonomy, hence it is not tame (by Lemma 3.1.3).

Remark 3.2.12 In general the embedding j #
� in Proposition 3.2.9 is not open. For instance consider

the tame relatively parabolic structure induced by a complete finite area hyperbolic metric. In this case
the completion is the closed disk, and we have already observed in Remark 3.1.2 that inclusion of the
space of ends in it is not open. We will show below in Proposition 3.2.15 that having relatively parabolic
holonomy is actually the only obstruction to the openness of j #

� .

For a point p 2M� .z†/ we define the balls

B.p; r/ WD fz 2 z† j d.p; z/ < rg;

B#.p; r/ WD fz 2 z†
#
j d.p; z/ < rg;

B� .p; r/ WD fz 2M� .z†/ j d.p; z/ < rg:
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By Proposition 3.2.9, B.p; r/� B#.p; r/� B� .p; r/ for any p and r , and these balls are open. For small
values of r they also enjoy extra properties.

By Proposition 3.2.9 we know we can embed the space of ends in the ideal boundary @�1.z†/ of the
Möbius completion M� .z†/. So it makes sense for a given subset Z of z† to consider its closure Cl#.Z/
in z†# or Cl� .Z/ in M� .z†/; by completeness of M� .z†/, the latter is the same as the metric completion
of Z with respect to some choice of metric as in the previous sections. In either case, the (topological)
boundary of a subset Z is the difference between its closure and its interior @Z WD Cl.Z/ n Int.Z/.

Lemma 3.2.13 For each p 2 z† let RD d.p; @�1.z†//. Then for all r < R,

(1) B.p; r/D B#.p; r/D B� .p; r/,

(2) Cl.B.p; r//D Cl#.B#.p; r//D Cl� .B� .p; r// is complete.

Proof Since the metric structure on z† is induced by the Riemannian metric gE , for sufficiently small
radius, the metric balls are just balls for the Riemannian metric gE . In particular, they are all disjoint
from the ideal boundary, hence they coincide and their closure is complete and contained in z†.

Lemma 3.2.14 For each p 2 z† let RD d.p; @�1.z†//; then for all r �R the developing map induces an
isometry between Cl� .B� .p; r// and Cl.B.dev.p/; r//.

Proof Let I be the set of r 2 Œ0; R� such that the developing map induces an isometry between
Cl� .B� .p; r// and Cl.B.dev.p/; r//. We are going to show that I is not empty, open on the right and
closed on the right to conclude that I D Œ0; R�.

� Œ0; �/� I for � > 0 small enough. This is because dev is a local isometry at p.

� If Œ0; r/ � I then Œ0; r� � I . Notice that the developing map induces an isometry between
Cl�

�
B�
�
p; r � 1

n

��
and Cl

�
B
�
dev.p/; r � 1

n

��
for all n > 0. This is enough to deduce that the

developing map induces an isometry between B� .p; r/ and B.dev.p/; r/. Since Cl� .B� .p; r// is
complete, and the metric completion is unique, the developing map induces an isometry between
Cl� .B� .p; r// and Cl.B.dev.p/; r//.

� If Œ0; r�� I for r < R then Œ0; rC ��� I for � > 0 small enough. Given that r 2 I , the developing
map induces an isometry between Cl� .B� .p; r// and Cl.B.dev.p/; r//. In particular, @B� .p; r/
is compact. Since r < d.p; @�1.z†//, there is an �–neighborhood of @B� .p; r/ on which dev is an
isometry and r C � 2 I .

We call Cl� .B� .p;R// the maximal ball centered at p. It is a maximal round ball containing p, in
the sense of [Kulkarni and Pinkall 1994]. Our goal in Section 3.3 is to construct analogous “round
neighborhoods” of all the ends, in the case of elliptic holonomy. We will need the following preliminary
results.

Proposition 3.2.15 Let E 2 E.z†/, let � be tame at E, and let N be an open horocyclic neighborhood
of E. Then j #

� .N / is open if and only if E has nonparabolic holonomy.
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Proof Let ıE be the peripheral element fixing E, let RE WD �.ıE /, and let pE D dev#.E/. By
Lemma 3.2.13, every point in j #

� .N /\
z† is in the interior of j #

� .N /, so we only need to check whether
E is in the interior of j #

� .N /.

First, consider the case RE is parabolic. Pick a point x 2 @j #
� .N / that does not develop to pE , eg on the

image via j #
� .N / of a horocycle bounding N . Then d.E; ınE .x//! 0, ie ınE .x/!E in M� .z†/. So the

sequence ınE .x/ must eventually enter in every open neighborhood of E in M� .z†/. However it clearly
does not enter in j #

� .N / by construction, which shows j #
� .N / is not open.

So let us now assume RE is nonparabolic; by Lemma 3.1.3 we know that since � is tame at E, RE is
either the identity or elliptic. Since ıE acts cocompactly on the boundary @N of N and dev# is a local
diffeomorphism along @N , we have that dev�1# .pE /\ @N is finite in any ıE–fundamental domain. In
particular, we can equivariantly modify N to a ıE–invariant neighborhood W �N of E, such that @W
stays at finite distance from @N . By construction E is the only end in the closure of W .

When RE is trivial or elliptic, the set dev#.@W / has compact closure in CP1 n fpE g. In particular,
it sits in the annulus fz 2 CP1 j R1 � d0.pE ; z/ � R2g, for some suitable radii 0 < R1 � R2. For
r < R1 consider the open RE–invariant ball Dr � CP1 of radius r around pE , as well as the open
ball B� .E; r/. Observe that dev� .B� .E; r// is contained in Dr , and so is disjoint from dev#.@W /. We
claim B� .E; r/� j #

� .W /� j
#
� .N /. By contradiction let x 2 B� .E; r/ n j #

� .W /. Then connect x to E
by a continuous arc  contained in B� .E; r/ (which is possible since we are in a length space). Then
 has to cross @j #

� .W /, since @W separates E from the complement of W in z†#. Then dev� ./ meets
dev#.@W /D dev� .@j #

� .W //, which leads to the desired contradiction.

We summarize the results of this section in the following statement.

Theorem C Let � 2P.†/ be nondegenerate and without apparent singularities. Let j # W z†! z†# and
j� W z†!M� .z†/ be the natural embeddings. Then � 2 Pˇ.†/ if and only if there exists a continuous
open �1.†/–equivariant embedding j #

� W
z†#!M� .z†/ that makes the following diagram commute:

z†#

z† CP1

M� .z†/

dev#

j #
�

j #

j� dev�

Proof First assume � 2 Pˇ.†/. Since � is tame, by Proposition 3.2.9 we know that j� W z† ,!M� .z†/

extends to a �1.†/–equivariant continuous embedding j #
� W
z†# ,!M� .z†/, and that dev# D dev� ıj #

� .
To check that j #

� is open we argue as follows. Observe that the restriction of j #
� to z† is just the natural

embedding of z† in its completion, which is open. So we only need to check the ends. Let E be an end;
without loss of generality we can assume that an open neighborhood of E in z†# is an open horocycle N .
Since � is relatively elliptic, Proposition 3.2.15 implies that j #

� .N / is an open neighborhood of j #
� .E/

in M� .z†/.
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E

ıE

B� .E; r/

N z†

dev

pE
RE

B.pE ; r/

CP1

Figure 13: A horocycle containing a ball, in the elliptic case.

Conversely, assume the existence of the extension j #
� as in the statement. Its continuity implies tameness

of � by Proposition 3.2.9. Let E be an end. By Lemma 3.1.3 we know that the holonomy of � at E is
either trivial, parabolic or elliptic. The first case is excluded by the hypothesis that � has no apparent
singularities, and the second case by the hypothesis that j #

� is open, together with Proposition 3.2.15.
Therefore � is relatively elliptic. It is also assumed to be nondegenerate, hence we can conclude that
� 2 Pˇ.†/.

Corollary 3.2.16 If � 2 P.†/, then E.z†/ is a discrete subspace of @�1.z†/.

Proof Let E be an end. By Theorem C any horocyclic neighborhood N of E is open for the topology
of M� .z†/, under the natural embedding j #

� . By definition, N does not contain any other point of @�1.z†/,
hence E is an open point.

Corollary 3.2.17 Let � be tame and relatively elliptic. For every end E 2 E.z†/, the action of the
peripheral subgroup hıE i on M� .z†/ n fEg is proper and free.

Proof The action on the Möbius completion extends the action by deck transformations, so the statement
is trivial for points in z†. By Proposition 3.2.15, both metric balls and horocyclic neighborhoods provide
fundamental systems of neighborhoods of the ends in the completion. So one can see that the action of
ıE on the subspace E.z†/ nE is proper and free. The case of a general ideal point follows from this fact
together with the existence of a ıE–invariant cyclic order on the ideal boundary (see Remark 3.2.8).

3.3 Local properties of the developing map at an end

The main goal of this section is to prove Theorem D, about the behavior of developing maps around E for
a structure � 2Pˇ.†/. If � has developing pair .dev; �/, and ifE 2E.z†/, then let pE WD dev#.E/2CP1

and let ıE 2 �1.†/ be a peripheral element fixing E. Then RE WD �.ıE / is an elliptic Möbius transfor-
mation fixing pE (Lemma 3.1.3); let qE denote the other fixed point of RE . We will construct a family
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of ıE–invariant neighborhoods of E which develop to RE–invariant round disks in CP1, and on which
dev# restricts to a branched covering (branching only at E).

While the results of the previous sections relied (but did not depend), on the choice of the background
metric g0 on CP1, we now want to exploit the fact that the peripheral holonomy is elliptic to pick a
convenient metric. The topological structure of the Möbius completion is not affected by this (eg ideal
points, etc), but finer metric statements (eg the shape and properties of individual metric balls) are. Let
g0 be the unique RE–invariant spherical round metric on CP1 for which the fixed points pE and qE of
RE are antipodal points at distance 1. Let us denote by gE D dev�.g0/ the Riemannian metric and by
dE the distance function induced on z†. By construction, the Möbius completion is the metric completion
of .z†; dE /.

Lemma 3.3.1 Let U � M� .z†/ be a ıE–invariant neighborhood of E. Then the distance between
ıE–orbits defines a metric on U=hıE i with respect to which the quotient map

�E W U n fEg ! .U n fEg/=hıE i

is a locally isometric covering map.

Proof Let �E .u/; �E .v/ 2 U=hıE i. Then their distance is defined to be

d.�E .u/; �E .v// WD inffd.ınE .u/; ı
m
E .v// jm; n 2 Zg:

Since the action on U n fEg is isometric, free and proper (Corollary 3.2.17), by [Bridson and Haefliger
1999, Proposition I.8.5] we get our statement in the complement of the end. To include the end it is
enough to notice that it is an isolated fix point and that no orbit accumulates to it, since the holonomy is
elliptic.

Lemma 3.3.2 Let U �M� .z†/ be a ıE–invariant neighborhood of E on which ıE acts cocompactly.
Then the following hold.

(1) U is complete.

(2) If V � U is closed and ıE–invariant , then V is complete and ıE acts on V cocompactly.

Proof (1) Let xn 2 U be a Cauchy sequence. Let us denote by Fn a (coarse) compact fundamental
domain for the action hıE iÕ U containing xn. If the sequence of Fn eventually stabilizes to
some F , then eventually the sequence xn lies entirely in F , hence converges in it by compactness.
So let us assume that the sequence Fn does not stabilize. We claim that since xn is a Cauchy
sequence this forces dE .xn; E/ to decrease to zero, ie xn converges to E. Indeed, since the
holonomy is elliptic and the metric invariant, if jn�mj is large enough then the shortest curve
between a point in Fn and a point in Fm goes through E.

(2) If V is closed then it is complete by completeness of U . Let F be a (coarse) compact fundamental
domain for the action hıE iÕ U . Since V is invariant we get V=hıE i D .V \F /=hıE i, and this
is compact because V \F is.
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We have seen in Proposition 3.2.15 that, when the holonomy is elliptic, horocycles contain metric balls
(see Figure 13). We now describe a sufficient condition on a metric ball to be fully contained in a horocycle.
Notice that the following statement fails in the case of parabolic holonomy (see Remark 3.2.12).

Lemma 3.3.3 For each E 2 E.z†/ let �E WD dE .E; @�1.z†/n fEg/. Then �E > 0 and for all 0 < r < �E ,
there is a proper horocyclic neighborhood of E containing B� .E; r/.

Henceforth we call �E WD dE .E; @�1.z†/ n fEg/ the critical radius of E.

Proof For the first part of the lemma, let V be a proper (ie Cl#.V /¨†[fEg) horocycle based at E. By
Proposition 3.2.15 V is open, so there is r >0 such that B� .E; r/�V . We claim that B� .E; r/�†[fEg,
from which it follows that �E � r > 0. Recall that ıE acts cocompactly on Cl#.V /; therefore Cl#.V / is
complete by Lemma 3.3.2. It follows that

Cl� .B� .E; r//� Cl� .V /D Cl#.V /¨†[fEg:

Next, let r < �E . Suppose by contradiction that, for every proper horocyclic neighborhood N of E, there
was a point x 2 B� .E; r/ nN . Fix fNkg a sequence of proper horocyclic neighborhoods of E such that
Nk �NkC1 and

S
Nk D z†[fEg. Let xk 2 B� .E; r/ nNk . For every k, let rk WD dE .E; @Nk/. As ıE

acts cocompactly and by isometries on @Nk , there is some point on @Nk at distance rk from E. The fact
that E … @Nk and the sequence fNkg is nested further implies that

rk > 0; rk � rkC1; lim
k!1

rk D �E :

Notice that the second inequality is due to the fact that @Nk separates E from @NkC1. Similarly, @Nk
separates E from xk , therefore rk � dE .E; xk/ < r , hence in the limit we get �E D limk!1 rk � r , in
contradiction with the choice of r .

Corollary 3.3.4 For each E 2 E.z†/ and 0 < r < �E , B#.E; r/ D B� .E; r/ and Cl#.B#.E; r// is
complete. Moreover , Cl#.B#.E; r//D Cl� .B� .E; r//.

Proof By Lemma 3.3.3, the ball B#.E; r/ is contained in a proper horocyclic neighborhood V of E. It
follows that B� .E; r/� z†[fEg and so B#.E; r/D B� .E; r/.

By Lemma 3.3.2, the closed ball Cl#.B#.E; r// is complete.

Finally, since Cl#.B#.E; r// contains B#.E; r/ and is complete, it must contain the completion of B#.E; r/.
Since M� .z†/ is complete we have that Cl� .B� .E; r// coincides with the completion of B� .E; r/. But
we also know that B� .E; r/D B#.E; r/. So Cl� .B� .E; r// coincides with the completion of B#.E; r/,
and it is therefore contained in Cl#.B#.E; r//.

Recall that a metric space Z is star-shaped at a point x 2Z if for every y 2Z there is a geodesic in Z
connecting x to y.

Lemma 3.3.5 For each E 2 E.z†/ and 0 < r < �E , the open ball B� .E; r/ is star-shaped at E.
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Proof Let x 2 B� .E; r/ and let r 0 WD dE .x;E/ < r . By Lemma 3.2.5, for all c > 0 we can pick a
continuous curve �c W Œ0; 1/! z† such that �c.0/D x, limt!1 �c.t/D E and r 0 � `.�c/ � r 0C c. For
each t 2 Œ0; 1/ we have

d.�c.t/; E/� `.�c.Œt; 1///� `.�c.Œ0; 1///� r
0
C c:

In particular, for c < r � r 0 we get that dE .�c.t/; E/ < r , ie �c is entirely contained in B� .E; r/\ z†.
Let n W Œ0; 1/! B� .E; r/ be the curve obtained for c D 1

n
.

Consider the quotient �E W Cl� .B� .E; r//! Cl� .B� .E; r//=hıE i DW Y . It follows from Lemma 3.3.1
that �E is a branched covering map onto a metric space, branching only at E; let us denote by dY the
distance in Y . Moreover by Lemma 3.3.3 the ball B� .E; r/ is properly contained in a horocycle. Since
ıE acts cocompactly on horocycles, it follows that Y is compact by Lemma 3.3.2. Notice that since ıE
acts by isometries and E is the only fixed point, we also have that r 0 D dE .x;E/D dY .�E .x/; �E .E//.

Projecting the curves n to the quotient we obtain curves �E ın W Œ0; 1/!Y such that �E ın.0/D�E .x/,
limt!1 �E ı n.t/D �E .E/ and

dY .�E .E/; �E .x//D r
0
� `.�E ı n/� r

0
C
1
n
:

In particular, by Arzelà–Ascoli we can extract a uniform limit N W Œ0; 1� ! Y . By the above length
inequality we obtain

dY .�E .E/; �E .x//D r
0
D `. N/D lim

n!1
`.�E ı n/;

ie N is a geodesic from �E .x/ to �E .E/. Notice that it goes through �E .E/ only at one endpoint; so we
can lift it to a curve  W Œ0; 1/! Cl� .B� .E; r// starting at x and limiting to E, of the same length r 0. By
the same argument as the beginning,  is completely contained in the open ball B� .E; r/, so this is the
desired geodesic.

We now consider the restriction of dev� to a ball around an end E 2 E.z†/, ie

dev� W B� .E; r/! B.pE ; r/;

and we find the values of r for which it is a covering map, branching only at E. The proof is reminiscent
of (and based on) the classical fact that a local isometry from a complete Riemannian manifold to a
connected one is a covering map. Notice that in our setting dev� is not locally isometric at E (not even
locally injective), and on the other hand Cl� .B� .E; r// n fEg is not complete. The proof shows how to
deal with this, and also provides quantitative control on the critical radius.

Proposition 3.3.6 For each E 2 E.z†/ we have that �E � 1. Moreover ,

(1) for each 0 < r � �E , dev� maps @B� .E; r/ to @B.pE ; r/;

(2) for each 0 < r � �E , dev� W B� .E; r/! B.pE ; r/ is a branched covering map , branching only
at E.
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Proof We are first going to prove statements (1) and (2) for r �minf�E ; 1g, and then we will show that
�E � 1.

We begin with the following observation. Suppose r < �E and let x 2 @B� .E; r/. Then dE .E; x/D r
and d0.pE ; dev� .x//� r . Let r 0 > 0 be such that r < r 0 < �E . Then x 2 B� .E; r 0/ and by Lemma 3.3.5
there exists a geodesic r from x to E contained in B� .E; r 0/. Observe that r D `.r/D `.dev� .r//.
Notice that dev is a local isometry on z†, so r maps to a geodesic in CP1.

Next, additionally assume that r < 1, the diameter of CP1. Then the curve r maps to a simple geodesic
arc, starting from pE and avoiding qE , of length r < 1. Since the choice of x above was arbitrary, it
follows that dev� .@B� .E; r//� @B.pE ; r/. In particular, it avoids qE . This concludes the proof of (1) in
the case where r <minf�E ; 1g. The limiting case r Dminf�E ; 1g follows by continuity of the developing
map.

We now start the proof of (2). To begin with, we claim that when r <minf�E ; 1g, each component of
@B� .E; r/ is isometric to a complete line. Since r < 1, @B.pE ; r/ is a circle in CP1. Since r < �E ,
we have that @B� .E; r/� z† and dev� is a local homeomorphism on it. In particular, @B� .E; r/ is a 1–
dimensional submanifold of z†; moreover it is closed in Cl� .B� .E; r//, hence complete by Corollary 3.3.4.
Then dev� induces a local isometry from the complete manifold @B� .E; r/ to the connected manifold
@B.pE ; r/; it follows that it is a Riemannian covering map. Notice that hıE i is an infinite cyclic group
acting on @B� .E; r/ properly and freely by Corollary 3.2.17, hence each component of @B� .E; r/ must
be isometric to a complete line.

Now we claim that, for all 0 < r �minf�E ; 1g, dev� W B� .E; r/! B.pE ; r/ is a branched covering map,
branching only at E. First notice that

(3.3.1) B� .E; r/ n fEg D B� .E; r/ n fdev�1� .pE /g:

Indeed suppose z 2 B� .E; r/ is another point developing to pE ; then there is r 0 < r � �E such that
z 2 B� .E; r 0/, and a geodesic  from z to E contained in B� .E; r 0/. Since dev� .E/D dev� .z/D pE ,
this geodesic  has to cover at least a great circle through pE in CP1, hence dE .E; z/� 2. But r 0<r � 1
forbids this. In particular, we get a well-defined local homeomorphism

' WD dev� jB� .E;r/nfEg W B� .E; r/ n fEg ! B.pE ; r/ n fpE g:

It is enough to show that this is a covering map. We are going to show that every point in B.pE ; r/nfpE g
is evenly covered. Let y 2 B.pE ; r/n fpE g and let ry WD d0.pE ; y/. Notice that 0 < ry < r . Since dev�
is a covering map between @B� .E; ry/ and @B.pE ; ry/, there is �y > 0 such that B.y; �y/\@B.pE ; ry/
is evenly covered. Let

ıy WDminf�y ; r � ry ; ryg:

Notice that the ball B.y; ıy/ is entirely contained in B.pE ; r/ n fpE g. Then we claim that B.y; ıy/ is
evenly covered. Let z 2 dev�1� .y/\B� .E; r/. By definition of ıy , B� .z; ıy/ is entirely contained in
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B� .E; r/ n fEg. In particular, it is smaller than the maximal ball centered at z, so it is isometrically
mapped to B.y; ıy/ by dev� (Lemma 3.2.14). This implies that if z0 2 dev�1� .y/\B� .E; r/ is different
from z, then B� .z; ıy/\B� .z0; ıy/D¿. This concludes the proof of (2) in the case r �minf�E ; 1g.

Now suppose by contradiction that �E > 1. Then there is r such that 1 < r < �E , and the open ball
B� .E; r/ is star-shaped at E (Lemma 3.3.5). Moreover, the developing map maps @B� .E; 1/ to qE ,
the only point at distance 1 from pE in CP1. Since the open ball B� .E; r/ is entirely contained in z†,
and contains @B� .E; 1/, the developing map is a local homeomorphism on @B� .E; 1/. In particular
@B� .E; 1/ is discrete. On the other hand, for every r 0 < 1Dminf�E ; 1g we can apply the first part of
the proof where we proved that dev� maps @B� .E; r 0/ to @B.pE ; r 0/, and

lim
r 0!1�

@B.pE ; r 0/D fqE g:

This implies that, for radii r 0 < 1Dminf�E ; 1g sufficiently close to 1, @B� .E; r 0/ is a disjoint union of
circles, contradicting that each connected component is isometric to a complete line.

Theorem D Let � 2 Pˇ.†/, and let E be an end. Then there is a neighborhood yNE of E in M� .z†/

onto which the developing map for � restricts to a branched covering map , branching only at E, and with
image a round disk in CP1.

Proof We can just take yNE to be any ball B� .E; r/ satisfying the conditions of Proposition 3.3.6.

Let E 2 E.z†/, and let �E be its critical radius. The open metric ball yNE D B� .E; �E / plays the role of
a canonical maximal neighborhood of E, similar to the maximal round balls in [Kulkarni and Pinkall
1994]. Indeed, it develops to a round ball in CP1, and by definition of �E , the boundary of yNE contains
an ideal point. However, note that we have normalized things “locally” at E, by fixing the RE–invariant
round metric on CP1 for which the fixed points pE and qE of the holonomy at E are antipodal points of
distance 1 (here RE D �.ıE / denotes the peripheral holonomy at E). Then yNE is defined as a metric
ball for the induced metric gE on M� .z†/. If E 0 is a different end, then the metric ball around E 0 (with
respect to gE ) does not necessarily agree with yNE 0 , which would be defined as a metric ball for the
metric gE 0 .

Moreover one can observe that when r < �E the ball @B� .E; r/ contains a horocycle and is contained in
a horocycle. Therefore each component of its boundary is contained in the lune between two horocycles.
Since B� .E; r/ is star-shaped at the end, and @B� .E; r/ is invariant under the action of the periph-
eral ıE , we can see that @B� .E; r/ is actually connected and isometric to a complete line. In particular,
@B� .E; r/ is the universal cover of @B.pE ; r/, and B� .E; r/n fEg is isometric to the universal cover of
B.pE ; r/ n fpE g.

Remark 3.3.7 If � is the tame and relatively parabolic structure induced by complete hyperbolic metric
of finite area, then dev is a global diffeomorphism, and horocycles develop to round disks. In particular,
Theorem D holds for such a structure. However, there is no analogue of Theorem D in the general
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parabolic case. For example, consider the structure obtained by grafting � along an ideal arc, and let E be
an end covering one of the endpoints of the grafting arc. If U is any ıE–invariant neighborhood of E, then
V D dev� .U / is invariant under a parabolic transformation and contains its fixed point pE D dev#.E/ in
its interior. This forces V DCP1. In particular, we see that the local homeomorphism (analogous to the
one considered in the proof of Proposition 3.3.6)

' WD dev� jUndev�1� .pE/
W U n dev�1� .pE /! V n fpE g DC

cannot be a covering map, because it is not injective and the image is simply connected.

Throughout this section we have worked under the normalization in which the fixed points pE ; qE 2CP1

of the rotation RE are antipodal points at distance 1. As established in Proposition 3.3.6, it follows that
the critical radius of an end E satisfies �E � 1. We conclude this chapter by discussing what happens
when a tame structure � has an end E with elliptic holonomy and �E D 1.

Remark 3.3.8 (structures on a twice-punctured sphere) Suppose � is tame and has an end E with
elliptic holonomy and �E D 1. By (1) in Proposition 3.3.6 all the points on the boundary of yNE must
develop to qE . It follows from the proof of Proposition 3.3.6 that in this case the boundary of yNE cannot
contain any isolated points in z†. As a result, yNE D z†. By tameness, this forces all the ends different
from E to develop to qE . We claim that in this case † must be a twice-punctured sphere, and � is the
structure associated to a power map z 7! z˛ for some ˛ 2R nZ. To see this, assume by contradiction
that there is a peripheral element  2 �1.†/ distinct from any power of the peripheral element ıE which
fixes E. Then  moves E to another end E ¤E. By equivariance and tameness of the developing map
(see Lemma 3.1.3) we see that

qE D dev#.E/D �./ dev#.E/D �./pE :

On the other hand,  fixes an end E 0 ¤ E. It follows that dev#.E
0/ D qE D �./qE . We get

�./pE D �./qE , which is absurd. Therefore all peripheral elements are powers of a fixed one. But the
only orientable surface in which this happens is a sphere with two punctures. Notice that this surface has
zero Euler characteristic, z† identifies with C, and we can normalize things so that dev.z/D eaz , pE D 0
and qE D1, for some a 2C�. Deck transformations are generated by z 7! zC 2�i , and the holonomy
by w 7! e2�iaw; ellipticity of the holonomy means a 2R nZ. The Möbius completion is obtained by
adding just two ideal points, for Re.z/!˙1, mapping to qE D1 and pE D 0 respectively. Structures
of this type can be defined by a spherical metric with two cone points and coaxial holonomy.

Remark 3.3.9 Spherical metrics with cone points and coaxial holonomy exist also on a surface of
negative Euler characteristic (see [Eremenko 2004; Mondello and Panov 2016]), and provide examples of
structures with degenerate holonomy. However such a structure must have some apparent singularities (ie
punctures with trivial holonomy, see [Gupta 2021]), whose presence forces the critical radius to be strictly
less than 1 at every end with elliptic holonomy. Indeed, if E is an end with elliptic holonomy, then the
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family of neighborhoods B� .E; r/ must hit another end (possibly one covering an apparent singularity)
before r D 1. As an illustrative example, consider the structure obtained by puncturing an additional
point on a sphere endowed with a spherical metric with two cone points.

3.4 The index of a puncture

Using the neighborhoods constructed in the previous section (namely Theorem D), we can define a
numerical invariant of the complex projective structure for each puncture, which we call the index. This
is essentially the angle that the developed image of a peripheral curve makes around the image of a
corresponding end.

Let � 2 Pˇ.†/ be a structure represented by a pair .dev; �/. Let x be a puncture of †, and let � be a
positive peripheral curve in † around x. This can be chosen so that for any end E covering x (in the
sense of Remark 3.1.1), the lift of � which is asymptotic to E is entirely contained in a neighborhood VE
of E on which dev is a branched covering map, branching only at E (see Theorem D).

Let us fix an end E, and let ıE 2�1.†/ be the positive peripheral deck transformation fixing E. We recall
that pE WD dev#.E/ is one of the two fixed points for the elliptic transformation �.ıE / (see Lemma 3.1.3).
Let us normalize so that �.ıE / fixes 0 and1. Let Q�� VE be the lift of � in VE , and choose Q�0 � Q� to
be a fundamental domain for the action hıE iÕ Q�. Let � WD dev. Q�0/� dev.VE / n f0g. Notice that freely
homotoping � deeper into the puncture results in a homotopy of � in the complement of pE D 0, because
there are no other preimages of pE in VE (see (3.3.1) in Proposition 3.3.6).

The index of the structure � at the puncture x is defined to be the number

I� .x/ WD Im
�Z

�

dz

z

�
:

When clear from the context, we will usually drop the � and write I.x/D I� .x/.

We remark explicitly that this definition does not depend on any of the choices involved. Indeed, let us
choose a parametrization � W Œ0; 1�!C n f0g; �.s/D r.s/ei�.s/, where � W Œ0; 1�!R is a determination
of the argument function on C n f0g, and r W Œ0; 1�!R. A direct computation in local coordinates shows
that Z

�

dz

z
D log

�
r.1/

r.0/

�
C i.�.1/� �.0//:

Notice that since � is chosen to be a peripheral curve, its holonomy is elliptic. Therefore we get
r.1/ei�.1/ D ei'r.0/ei�.0/, where ' is such that �.ıE /z D ei'z. It follows that

I� .x/D 2�kC';

where k 2 Z counts the number of times � turns around 0 anticlockwise. Notice that the index is always
positive, since ıE was chosen to be a positive peripheral.
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Remark 3.4.1 Let � 2 Pˇ.†/, and let x and y be punctures. If � is a graftable arc joining x to y, then

� if x ¤ y then IGr.�;�/.x/D I� .x/C 2� and IGr.�;�/.y/D I� .y/C 2� ;

� if x D y then IGr.�;�/.x/D I� .x/C 4� .

4 The complex analytic point of view

The theory of CP1–structures enjoys fundamental interactions with the study of second-order linear
ODEs on complex domains, namely through the use of the Schwarzian derivative. The purpose of this
chapter is to describe the complex analytic counterpart to the structures in Pˇ.†/ (see Theorem E).
These are described by meromorphic quadratic differentials satisfying certain conditions on their Laurent
expansion around poles.

4.1 Local theory at regular singularities

We start by reviewing the classical theory for the convenience of the reader, with a particular focus to the
behavior around singularities of the coefficients (see [Hille 1969; Ince 1944]). This will provide the local
model for our structures around the punctures.

Let us consider a holomorphic function q WD�!C on the punctured unit disk D�Dfz 2C j 0< jzj<1g

with a double pole at the origin with leading coefficient a, ie a function of the form q.z/D a=z2CO.1=z/.
We will consider the second-order linear ODE

(4.1.1) u00C 1
2
quD 0 for u WD�!C;

as well as the Schwarz equation

(4.1.2) Sf D q for f WD�!CP1;

where the operator

Sf D

�
f 00

f 0

�0
�
1

2

�
f 00

f 0

�2
is the Schwarzian derivative. The main properties of S are the following:

(1) Invariance Sf D 0 if and only if f is the restriction of some Möbius transformation.

(2) Cocycle If f and g are locally injective holomorphic functions for which the composition is
defined, then S.f ıg/D g�.Sf /CSg.

The relationship between the two equations above is well known (see [Hille 1969, Appendix D]), and can
be summarized as follows: if u1 and u2 are linearly independent solutions for (4.1.1), then f D u1=u2 is
a solution for (4.1.2); conversely, any solution for (4.1.2) is obtained in this way. In both cases, since
the domain of the equation is not simply connected, these equations can have nontrivial monodromy,
ie solutions are to be considered as multivalued functions, or as single-valued functions on a suitable
covering domain.
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The classical theory of linear ODEs (see [Ince 1944, Section 15.3], or [Allegretti and Bridgeland 2020,
Section 5] for a more recent treatment) provides an explicit description of the local solutions of (4.1.1).
First, the indicial equation of (4.1.1) is given by

r.r � 1/C 1
2
aD 0:

Let r1; r2 2C be its solutions; then one has two cases:

(1) if r1� r2 … Z then (4.1.1) has two linearly independent solutions of the form uk.z/D z
rkhk.z/

for k D 1; 2, where hk is holomorphic on D and hk.0/¤ 0;

(2) if r1�r2 2Z then (4.1.1) has two linearly independent solutions of the form u1.z/D z
r1h1.z/ and

u2.z/D z
r2h2.z/CCu1.z/ log.z/ where C 2C, and hk is holomorphic on D with hk.0/¤ 0 for

k D 1; 2.

An analogous dichotomy for solutions of (4.1.2) is easier to state if we write the leading coefficient
in the form a D 1

2
.1� �2/, where � D ˙

p
1� 2a will be called the reduced exponent of q at z D 0.

With respect to the terminology used in [Allegretti and Bridgeland 2020], the exponent of q at z D 0 is
r D˙2�i

p
1� 2aD 2�i� . For the reader’s convenience, we remark that in [Allegretti and Bridgeland

2020] a slightly different form of the Schwarzian derivative is used, leading to a different normalization
for constants in the correspondence between differentials and monodromy of solutions. Observing that
˙� D r1� r2, and recalling the relation f D u1=u2, one has the following:

(1) if � …Z then (4.1.2) has a solution of the form f .z/D z�M.z/, where M is holomorphic at zD 0,
M.0/¤ 0;

(2) if � 2Z then (4.1.2) has a solution of the form f .z/D z�M.z/CC log.z/, where C 2C, and M
is holomorphic at z D 0, M.0/¤ 0.

For each q one can regard a solution to (4.1.2) as a developing map for a projective structure on D�,
equivariant with respect to the monodromy group of the equation. Notice that the holonomy of this structure
(ie the monodromy of (4.1.2)) is a representation � W �1.D�/! PSL2C which is just the projectivization
of the monodromy Q� W �1.D�/! SL2C of (4.1.1). If  denotes a simple loop in D� around z D 0, then
the action of the monodromy is given by the linear fractional transformation �./ � z D e2�i�zC 2�iC .

A direct computation using the above description of solutions to (4.1.2) leads to the following statement.
Here continuous extensions to the origin should be thought in the sense of the end-extension topology
introduced in Section 3.1.

Lemma 4.1.1 In the above notation , the following hold :

(1) if � D 0 then �./ is parabolic (necessarily C ¤ 0);

(2) if � 2 Z n f0g, then �./ is trivial (if C D 0) or parabolic (if C ¤ 0);

(3) if � 2R nZ, then �./ is elliptic;
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(4) if � 2 Z˚ iR, then �./ is hyperbolic;

(5) if � 2C n .Z˚ iR/, then �./ is purely loxodromic.

Moreover , if � 2R nZ, then a solution f of (4.1.2) extends continuously to z D 0.

As the reader might expect, projective structures in Pˇ.†/ relate to the elliptic case in the above statement.
On the other hand, a solution f of (4.1.2) does not extend continuously to z D 0 when � D n 2 Z and
C ¤ 0 (ie when f is of the form f .z/ D znM.z/C C log.z/), which can be seen by inspecting the
behavior of f along appropriately chosen sequences that spiral into the singularity. A similar phenomenon
occurs when � …R.

4.2 Meromorphic projective structures

We now recall how to construct projective structures in terms of meromorphic quadratic differentials, and
discuss its relationship with our space Pˇ.†/ of tame, relatively elliptic, and nondegenerate structures,
introduced in Section 3.1. This is analogous to the classical parametrization of complex projective
structures on closed surfaces by holomorphic quadratic differentials (see [Dumas 2009, Section 3] for an
expository account). This section includes the proof of Theorem E.

Let us fix a complex structure X on the closed surface †, and let N�0 be the CP1–structure on X defined
by the Poincaré uniformization, ie the unique conformal metric of constant curvature �1, 0 or 1, the exact
value depending on the genus g of X . Let X be the induced complex structure on †D† n fx1; : : : ; xng;
notice X is a punctured Riemann surface, ie each xj has a neighborhood biholomorphic to D�. We
consider the space Q2.X/ of meromorphic quadratic differentials with at worst double poles at the
punctures of X ; these are meromorphic sections of the line bundle K2X , where KX denotes the canonical
bundle of X . More concretely, by slight abuse of notation, in suitable local complex coordinates around
the puncture these differentials can be written as

q.z/D
�
a

z2
CO

�
1

z

��
dz2:

The leading coefficient at a double pole is a well-defined invariant of a quadratic differential, ie does
not depend on the chosen coordinates (see [Strebel 1984, Section 4.2]). In particular, the local analysis
developed in Section 4.1 applies, and provides a definition of exponents and reduced exponents of q at a
puncture.

Moreover the properties of the Schwarzian derivative ensure that the Schwarz equation Sf D q is
well-defined on X , as soon as a background projective structure has been fixed, and we choose the
Poincaré uniformization N�0. Local solutions are in general multivalued, ie they should be considered as
functions on the universal cover, equivariant with respect to some representation �q W �.X/! PSL2C,
which is called the monodromy of q. We say a puncture is an apparent singularity if �q./ is trivial for a
peripheral loop  around the puncture. It is a theorem of Luo [1993] that differentials without apparent
singularities are locally determined by their monodromy. The analogous results for holomorphic quadratic
differentials is due to Hejhal [1975].
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Following [Allegretti and Bridgeland 2020, Section 3; Gupta and Mj 2021, Section 3.1], we define a
meromorphic projective structure to be the structure �q induced by a meromorphic quadratic differentials
q 2 Q2.X/ as follows: a developing map devq for �q is given by taking a local solution to Sf D q and
considering its analytic continuation as a function on the universal cover; the monodromy of the differential
provides the holonomy �q of the structure. The differential q is recovered from �q by computing the
Schwarzian derivative of devq with respect to the background projective structure N�0.

For the sake of clarity, we emphasize that this correspondence between meromorphic quadratic differ-
entials and meromorphic projective structures is not canonical, and does depend on the choice of a
background projective structure. Changing this choice only translates the differentials by the vector space
of holomorphic differentials; hence orders and leading coefficients of poles are well-defined invariant for
the projective structure.

We are now ready to provide a proof of the following correspondence. Here Pˇ.†/ is the space of tame,
relatively elliptic and nondegenerate structures introduced in Section 3.1.

Theorem E Let � 2 P.†/ and let X 2 T.†/ be the underlying complex structure. Then � 2 Pˇ.†/

if and only if X is a punctured Riemann surface and � is represented by a meromorphic quadratic
differential on X with double poles and reduced exponents in R nZ.

Proof We prove the backward direction first. Let X be a punctured Riemann surface structure on †, and
let � D �q for some meromorphic quadratic differential q 2Q2.X/ with reduced exponents �i 2RnZ. By
Lemma 4.1.1, since the �i are real but not integers, the developing map for � extends continuously to the
punctures (ie � is tame), and the peripheral holonomy of � is elliptic at every puncture. In particular, the
holonomy representation is known to be nondegenerate by [Allegretti and Bridgeland 2020, Theorem 6.1],
as there are no apparent singularities. Therefore � 2 Pˇ.†/.

We now prove the forward direction. Let � 2Pˇ.†/, and let U be a neighborhood of a puncture x, which
is some conformal annulus. We claim that its modulus is infinite. Let E 2 E.z†/ be an end covering x,
and let zU be the lift of U around E. By Theorem D we can choose U so that dev W zU !D�D dev. zU/ is
a conformal covering map onto a punctured disk. The family of curves � in D� joining the boundary to
the puncture has infinite extremal length, lifts to a family of curves in zU joining @ zU to E, and projects to
a family of curves in U joining the boundary to the puncture x. Since extremal length is conformally
invariant, this family has infinite extremal length in U , hence the modulus of U is infinite. This shows
that the complex structure X underlying � is that of a punctured Riemann surface.

Finally let us check the conditions on the differential are satisfied. Let Qq D S.dev/; recall we have fixed
the Poincaré uniformization N�0 as a reference projective structure on †, and we are taking Schwarzian
derivatives with respect to the induced structure on †. Since dev is a conformal immersion, possibly
branching only at the ends, Qq is holomorphic on z†, possibly with double poles at the ends. By the classical
cocycle property of the Schwarzian, Qq descends to a meromorphic quadratic differential q with at worst
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double poles on †. By Lemma 4.1.1, since the peripheral holonomy is elliptic, the reduced exponents
must be in R nZ.

For completeness, with respect to the list of cases in Lemma 4.1.1, we observe the following. Differentials
with zero reduced exponents at all punctures correspond to parabolic projective structures (see [Deroin
and Dujardin 2017; Hussenot Desenonges 2019; Kra 1969; 1971a; 1971b]). Differentials with integer
nonzero reduced exponents and trivial holonomy at the punctures (apparent singularities) correspond
to branched projective structures (see [Calsamiglia et al. 2014a; 2019; Francaviglia and Ruffoni 2021;
Mandelbaum 1972]). The next lemma implies that for structures in Pˇ.†/ the absolute value of the
exponent at a puncture coincides with the value of the index, as defined in Section 3.4.

Lemma 4.2.1 If q 2 Q2.X/ has reduced exponent ˙� 2R nZ at a puncture x, then the index of �q at
that puncture is I� .x/D 2�j� j.

Proof Let z be a coordinate around the puncture, let � be a simple closed positively oriented peripheral
loop around the puncture. Up to normalizing by a Möbius transformation, we can assume that a local
determination of the developing map is given by w D f .z/ D devq� .z/ D z

�M.z/, for � > 0 and for
some M holomorphic and nonzero at z D 0 (see Section 4.1). Then the statement follows from the
following computation in local coordinates:Z

f .�/

dw

w
D

Z
�

�z��1M.z/C z�M 0.z/

z�M.z/
dz D �

Z
�

dz

z
C

Z
�

M 0.z/

M.z/
dz D 2�i�;

where the second integral vanishes, because M is holomorphic, and � can be chosen to be small enough
to enclose z D 0 but no zero of M .

Remark 4.2.2 When the exponent (equivalently the reduced exponent) is not zero, a choice of a sign is
called a signing of the projective structure at that puncture, and can be used to define a framing from
the holonomy representation (see [Allegretti and Bridgeland 2020; Gupta 2021]). This is in general an
arbitrary choice. However, as observed in Corollary 3.1.5, continuously extending the developing map to
the punctures always provides a canonical framing for structures in Pˇ.†/.

5 Structures on the thrice-punctured sphere

In this chapter we prove Theorems A and B about grafting structures on the thrice-punctured sphere
S WD S2 n fx˛; xˇ ; xg. This is the oriented topological space obtained from the 2–dimensional unit
sphere S2 by removing three distinct points fx˛; xˇ ; xg � S2. The points fx˛; xˇ ; xg are the punctures
of S . (For the easier case of the twice-punctured sphere we refer the reader back to Remark 3.3.8.) The
fundamental group �1.S/ of S is isomorphic to the free group on two generators F2. Once and for all we
fix the presentation

�1.S/D h˛; ˇ;  j ˛ˇ D 1i Š F2;
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where each generator ı 2 f˛; ˇ; g can be represented by a peripheral loop (also denoted by ı) around xı ,
oriented to travel around the puncture in the anticlockwise direction. Furthermore, we denote byEı 2E. zS/

the end in the end-extended universal cover zS# of S , that is fixed by ı.

In this setting, we observe that P�.S/ is the space of complex projective structures whose underlying
conformal structure is that of CP1 n f0; 1;1g. The PSL2C–character variety can be explicitly described
(see [Heusener and Porti 2004, Remark 4.4] for details). A conjugacy class of representations is said to
be nondegenerate relatively elliptic if it is the class of a nondegenerate relatively elliptic representation.
It follows from Theorem E and [Gupta 2021, Theorem 1.1] that any nondegenerate relatively elliptic
conjugacy class arises from the holonomy of a structure in Pˇ.S/. We will see that the structure can be
chosen to be of a special type (see Corollary 5.1.4).

Remark 5.0.1 A relatively elliptic representation of �1.S/ is degenerate if and only if its image is
a subgroup of rotations around two fixed points, ie a group of coaxial rotations (see [Gupta 2021,
Section 2.4]).

The main result of this chapter is a complete description of Pˇ.S/. We begin in Section 5.1 by constructing
some structures in Pˇ.S/, called triangular structures, which will be our key examples. Then in
Section 5.2 we show that Pˇ.S/ is precisely the space of complex projective structures obtained by
grafting triangular structures.

5.1 Triangular structures

In this section we construct a family of structures in Pˇ.S/ which will be the main reference example
for the rest of the paper.

First, we fix the following ideal triangulation T of S (see Figure 14). For every distinct pair ı; ı02f˛; ˇ; g,
let eıı 0 be a simple arc on S from xı to xı 0 . The collection of arcs fe˛ˇ ; eˇ ; e˛g are the ideal edges
of T, and subdivide S into two ideal triangles tS and NtS . The orientation of S induces an orientation
on tS (resp. NtS ) such that the punctures are ordered as .x˛; xˇ ; x / (resp. .x˛; x ; xˇ /) on its boundary.
The ideal triangulation T lifts to a triangulation zT of zS#. We notice that the restriction of zT to zS is an
ideal triangulation of zS . We denote by QtS the unique triangle in zT with vertices fE˛; Eˇ ; Eg, and by QtıS
the unique triangle adjacent to QtS that does not have Eı as its vertex. It is easy to check that QtS projects
onto tS , while fQt˛S ; Qt

ˇ
S ; Qt


S g all project onto NtS .

Recall that 4�R3 is the standard 2–simplex (see Section 2.3). Let � W 4!CP1 be a nondegenerate
triangular immersion, with vertices .Va; Vb; Vc/ and angles .a; b; c/. Let C� D .Cab;Cbc ;Cac/ be
the configuration of circles determined by � , defined such that Vx; Vy 2 Cxy , for all distinct pairs
x; y 2 fa; b; cg. From Corollary 2.2.7 we have a relatively elliptic representation associated to C� given
by

�� WD �C� W �1.S/! PSL2C;

�� .˛/ WD JacJab; �� .ˇ/ WD JabJbc ; �� ./ WD JbcJac ;
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e˛ eˇ

x˛ xˇ

x

x

T
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e˛ˇ
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e˛

eˇ

eˇ

Figure 14: The ideal triangulation T of the thrice-punctured sphere S , and its lift to the end-
extended universal cover zS#.

where Jxy denotes the reflection of CP1 in Cxy . Notice that, if � embeds onto a Euclidean, hyperbolic
or spherical triangle with angles rational multiples of � , then the image of this representation is a discrete
Euclidean, hyperbolic or spherical group; however a generic choice of � results in a nondiscrete subgroup
of PSL2C.

The triangular structure �� 2 P.S/ associated to the triangular immersion � W 4!CP1 is the structure
defined by the developing pair .dev� ; �� /, where the developing map is constructed as follows. Recall
that .V1; V2; V3/ are the vertices of 4. Consider the following maps:

(1) ' W QtS !4, the unique simplicial map mapping .E˛; Eˇ ; E / to .V1; V2; V3/;

(2) ' W Qt

S !4, the unique simplicial map mapping .Eˇ ; E˛; Eˇˇ�1/ to .V1; V2; V3/;

(3) � W 4!4, the unique (orientation reversing) simplicial map mapping .V1; V2; V3/ to .V2; V1; V3/;

(4) � WDJabı�ı�, the triangular immersion conjugate to � , mapping .V1; V2; V3/ to .Vb; Va; Jab.Vc//.

Then we define
.dev#/� jQtS WD � ı' and .dev#/� jQtS

WD � ı':

Since this defines .dev#/� on a fundamental domain for the action of �1.S/ on zS#, we can then extend
it by equivariance with respect to the representation �� to obtain a global .dev#/� W zS

# ! CP1. The
developing map dev� is the restriction of .dev#/� to zS . Notice that, when � is an embedding, this is the
pillowcase structure obtained by doubling �.4/.

By construction, triangular structures are nondegenerate, tame and their holonomy representations are
relatively elliptic. We record this in the following lemma.

Lemma 5.1.1 Let � be a nondegenerate triangular immersion and let �� be the associated triangular
structure. Then �� 2 Pˇ.S/.

Triangular immersions that are especially simple, eg embeddings, carry some obvious curves that one can
graft along, namely the edges eıı 0 of the triangulation T. Other graftable curves are those joining one
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C2� Gr.�; �1/

�01
CP1

�001

C2�

�

�1
�2

Gr.�; �2/

CP1�02

�002

C4�

Figure 15: An edge-grafting and a core-grafting on a structure � .

puncture to itself by crossing the triangle. We introduce the following terminology, motivated by these
observations (see Section 3.1 for the general definition of this surgery). Let � 2Pˇ.S/ and let � W I ! S

be a graftable curve. The grafting along � will be called an edge-grafting if � joins two different punctures,
and a core-grafting if it starts and ends at the same puncture and separates S into two punctured disks.
The inverse surgery will be called edge-degrafting and core-degrafting respectively (see Figure 15).

Example 5.1.2 Some embedded triangular structures allow for an easy description of edge-grafting.
Let �; � 0 W 4 ! CP1 be two triangular embeddings such that �� 0 differs from �� by the insertion of
a disk D along one of the edges (see the first two pictures of Figure 16). Then �� 0 is isomorphic to
the structure obtained by edge-grafting �� along that edge. Indeed reflecting in the edges of � 0.4/ we
obtain a copy of CP1 obtained by the union of D and its complement. Since D is included in � 0.4/, its
complement is contained in a suitable reflection of it; the union of D and its complement gives precisely
a grafting region on �� 0 . This grafting procedure can be iterated by thinking of immersions as membranes
spread over CP1, obtained by including additional disks across the edges that are being grafted. This is a
particularly concrete way of thinking about edge-grafting triangular structures.

A triangular structure is said to be Euclidean/hyperbolic/spherical atomic if it comes from a Eu-
clidean/hyperbolic/spherical atomic triangular immersion (see the end of Section 2.3). The terminology
is motivated by the main theorem (Theorem B), which states that every tame and relatively elliptic
CP1–structure is obtained by grafting an atomic structure.

D

�
4

� 0

D
Gr

Figure 16: An edge-grafting on an embedded structure � .
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x˛

xˇ x
G˛e˛

G˛ˇe˛ˇ G˛e˛

x˛

xˇ x
Gˇeˇ

G˛ˇe˛ˇ G˛e˛

Figure 17: The multicurves � (on the left), and �0 (on the right).

Lemma 5.1.3 Let � be an atomic triangular structure with indices I� WD .2a; 2b; 2c/. Let eıı 0 be the edge
of the triangle of T in S connecting the two distinct punctures xı and xı 0 . Let eı be a simple ideal arc in
S connecting the puncture xı to itself by crossing the edge opposite to xı . For G˛ˇ ; G˛ ; G˛; Gˇ 2N,
consider the formal sums

� WDG˛ˇe˛ˇ CG˛e˛ CG˛e˛ and �0 WDG˛ˇe˛ˇ CG˛e˛ CGˇeˇ :

If � is spherical or hyperbolic , then � is graftable along both � and �0, up to small deformations. If � is
Euclidean and we further assume that a 2 .0; 3�/ while b; c 2 .0; �/, then

(1) if a 2 .0; �/ and �aCbCcD � , then � is graftable along �0, but not along any arc isotopic to e˛;

(2) if a 2 .�; 2�/ and a�b� c D � , then � is graftable along �, but not along any arc isotopic to eˇ ;

(3) if a 2 .2�; 3�/, then � is graftable along �, but not along any arc isotopic to eˇ ;

(4) otherwise � is graftable along both � and �0.

Proof We begin by noticing that � (and �0) can be realized as a group of pairwise disjoint arcs in S (see
Figure 17); therefore we only need to check that � is graftable once along each arc (see Remark 3.1.6).

If � comes from a triangular immersion � supported by a spherical configuration, then � is graftable
along both � and �0 because the triangular immersion � is an embedding (see Figures 5 (right) and 7
(right)); hence each simple ideal arc develops injectively into CP1.

Similarly, if � is supported by a hyperbolic configuration, then � is an embedding unless it is as in
Figure 8(2)(i). These are immersions where one angle is in .�; 2�/, say for example a, and a�b�c > � .
In these situations, the edge eˇ (opposite to the large angle a) is not graftable on the nose, as the
developing map develops it surjectively to a circle. However any arbitrarily small deformation of it is
graftable (see Figure 18).

Finally, suppose that � is supported by a Euclidean configuration. Here we further assume a 2 .0; 3�/
while b; c 2 .0; �/, namely that if there is an angle larger than � , then it is a. Here we have an issue only
when a puncture is mapped to the common intersection point y of the Euclidean configuration. If a2 .0; �/
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E˛

Eˇ E

zS�

�

p˛

pˇ

p

CP1 E˛

Eˇ E

zS�

CP1

Gr.�; eˇ /

Figure 18: An edge-grafting on the hyperbolic atomic structure coming from a hyperbolic atomic
triangular immersion as in Figure 8(2)(i).

and �aC bC c D � (case (1)), then the puncture x˛ develops to y and it is not possible to core-graft
along any arc isotopic to e˛ (see Figure 4, right). On the other hand, every edge is injectively developed,
and therefore � is graftable along �0. If a 2 .�; 2�/ and a�b� c D � (case (1) and Figure 9(2)(ii)), then
both xˇ ; x are mapped to y, thus � is not graftable along any arc isotopic to eˇ , and in particular along
�0. However, e˛ is injectively developed, hence � is graftable along �. Case (3) is similar to the previous
one (see Figure 10). The remaining Euclidean cases are embeddings where x˛ never maps to y, hence all
relevant arcs are injectively developed.

We conclude this section with a simple consequence of Lemma 5.1.1, namely that almost every nonde-
generate framed relatively elliptic representation is the framed holonomy representation of an atomic
triangular structure. Recall that a framing of a representation � is a �–equivariant map F W E.z†/!CP1

from the space of ends to CP1, and that for structures in Pˇ.S/ there is a canonical framing given by a
continuous extensions of the developing map (Corollary 3.1.5). We remark that [Gupta 2021, Theorem 1.2]
states that a nondegenerate framed representation is the holonomy of a signed meromorphic projective
structure with respect to some framing, while here we realize these framed representations with respect
to this canonical framing (compare the discussion in Remark 4.2.2). To simplify the statement of the
following result, we say that a framing F is pathological if F maps the entire set of ends to a single point.
In our context, the holonomy representation of a triangular structure is pathological if and only if the
underlying configuration of circles is Euclidean and the framing consists only of the point at infinity.
Therefore the holonomy representation of an atomic triangular structure is never pathological. Note that a
pathological framing is not considered degenerate according to the definition in Section 3.1.

Corollary 5.1.4 Every nondegenerate framed relatively elliptic representation that is not pathological is
the framed holonomy representation of an atomic triangular structure. In particular , Rˇ.S/DHol.Pˇ.S//.

Proof Suppose � is a nondegenerate relatively elliptic representation, with a nonpathological framing F.
Then .�.˛/; �.ˇ/; �.// is an ordered triple of elliptic transformations with trivial product. As � is
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nondegenerate, .�.˛/; �.ˇ/; �.// share at most one common fixed point. By Corollary 2.2.7, there is a
unique nondegenerate configuration of circles C WD .Cab;Cbc ;Cac/ associated to .�.˛/; �.ˇ/; �.//. By
construction,

p˛ WD F.E˛/ 2 Cab \Cac ; pˇ WD F.Eˇ / 2 Cab \Cbc ; p WD F.E / 2 Cbc \Cac :

We are going to show that there is an atomic triangular immersion � supported by C, with vertices
.p˛; pˇ ; p /. As a consequence, the framed holonomy representation of its associated triangular structure
�� is .�;F/, proving the first part of the corollary. If C is a spherical configuration, the points .p˛; pˇ ; p /
are the vertices of a unique triangular region R in CP1nC. Depending on the cyclic order of .p˛; pˇ ; p /
on the boundary of R, we either take � to map onto R, or to map onto the complement of R in a disk
(see Figure 7, right). If C is a hyperbolic configuration, we refer to Table 1 to check that any framing
is realized by at least one triangular immersion � . Finally, Table 3 shows that any framing that is not
pathological, namely .�;�;�/ and .�;�;�/�, can be realized by at least one triangular immersion � .

The last statement of the corollary follows from the observation that every nondegenerate relatively
elliptic conjugacy class Œ�� has a class representative � that can be framed with a nondegenerate and
nonpathological framing.

5.2 Grafting Theorems A and B

We are now ready to prove the main results about the Grafting Conjecture. A key step will be being able
to recognize structures based on their indices, which we are able to do thanks to the description of Pˇ.S/

in terms of meromorphic differentials (Theorem E).

Up to isomorphism, there is a unique complex structure on the thrice-punctured sphere, namely that of
CP1 n f0; 1;1g. The space of meromorphic quadratic differentials with double poles at 0, 1 and1 can
be described as�

q‚ D

�
1� �21
2z2

C
1� �22
2.z� 1/2

C
�21 C �

2
2 � �

2
3 � 1

2z.1� z/

�
dz2

ˇ̌̌
‚D .�1; �2; �3/ 2C3

�
:

A direct computation shows that q‚ has double poles at 0, 1 and 1 with reduced exponents �1,
�2 and �3, respectively. In particular, the indices of the structure defined by the differential q‚ are
.2�j�1j; 2�j�2j; 2�j�3j/ (see Lemma 4.2.1). Therefore we obtain the following statement.

Proposition 5.2.1 If �; � 0 2 Pˇ.S/ have the same indices , then � D � 0.

Proof By Theorem E we know that �D�q and � 0D�q0 for some meromorphic differentials q; q02Q2.S/,
with real noninteger reduced exponents at each puncture. Since the index at each puncture is the same,
by Lemma 4.2.1 the exponent at each puncture is also the same (up to sign). So q and q0 have the same
leading coefficient at each puncture, but this determines them completely, so q D q0.

Notice that the developing maps of structures obtained with �i 2 .0; 1/ correspond to Schwarz triangle
maps. The special cases in which �i D 1=pi , for pi 2 Z, correspond to the classic uniform tilings of
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the sphere, Euclidean or hyperbolic plane. In the general case �i 2 R nZ, the associated holonomy
representations are not discrete, and the groups are not isomorphic to triangle groups.

A direct application of Proposition 5.2.1 to Lemmas 2.3.3 and 2.3.4 allows us to easily characterize atomic
structures through their indices.

Lemma 5.2.2 Let � 2Pˇ.S/ with indices .2a; 2b; 2c/. Then � is atomic if and only if (up to relabeling
the punctures) either

(1) a 2 .0; 2�/ and b; c 2 .0; �/, or

(2) a 2 .2�; 3�/ and b; c 2 .0; �/ and a� b� c D � .

Proof Atomic structures are defined in such a way that their indices satisfy the above conditions (see
Lemmas 2.3.3 and 2.3.4). But more importantly, every triple of numbers .2a; 2b; 2c/ satisfying those
conditions is the triple of indices of an atomic structure; see for example Tables 1, 2 and 3. The fact that
there are no other structures with those indices follows by Proposition 5.2.1.

As observed in Corollary 3.1.5, the holonomy representation of a structure in Pˇ.S/ carries a natural
framing, given by the extension of the developing map to the punctures. Edge-grafting and core-grafting
do not change the holonomy representation, nor this framing (see Lemma 3.1.7).

Theorem B Every � 2 Pˇ.S/ is obtained by a sequence of edge- and core-graftings on an atomic
triangular structure with the same framed holonomy.

Proof Let � 2 Pˇ.S/, and let 2a WD I� .x˛/, 2b WD I� .xˇ / and 2c WD I� .x / be its indices. Without
loss of generality we can assume that a � b � c. Indeed we can rename the punctures so that I� .x˛/ is
the largest index, and the case where a � c � b follows by a similar argument.

Let ka D ba=�c, kb D bb=�c, kc D bc=�c 2 N. We are going to reduce the triple .a; b; c/ to a triple
.a0; b0; c0/ by subtracting as many integer multiple of � as possible in a certain controlled way, until
.a0; b0; c0/ satisfies the conditions of Lemma 2.3.3, that is

(5.2.1) a0 2 .0; �/[ .�; 2�/ and b0; c0 2 .0; �/:

We distinguish two cases:

(i) If ka � kbC kc , let

G˛ WD kc ; G˛ˇ WD kb; G˛ WD
�
1
2
.ka � .kbC kc//

˘
; Gˇ WD 0:

(ii) If ka < kbC kc , let L WD ka � kb , L0 WD kc C kb � ka and

G˛ WD LC
�
1
2
L0
˘
; G˛ˇ WD kb �

˙
1
2
L0
�
; G˛ WD 0; Gˇ WD

˙
1
2
L0
�
:

Either way, let

a0 WD a��.G˛ CG˛ˇ C 2G˛/; b0 WD b��.Gˇ CG˛ˇ /; c0 WD c ��.G˛ CGˇ /:
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It is easy to check that G˛ ; G˛ˇ ; G˛; Gˇ � 0, and

Gˇ CG˛ˇ D kb; G˛ CGˇ D kc ; G˛ CG˛ˇ C 2G˛ 2 fka; ka � 1gI

therefore (5.2.1) is satisfied, and by Lemma 2.3.3 there is a triangular immersion � with angles .a0; b0; c0/.
Let �� be the associated triangular structure. By construction �� is atomic with indices .2a0; 2b0; 2c0/,
thus it is left to check if �� grafts to � .

Recall we have fixed an ideal triangulation T of S . Let eıı 0 be the edges of T connecting the two distinct
punctures xı and xı 0 . Let eı be a simple ideal arc in S connecting the puncture xı to itself by crossing
the edge opposite to xı . Consider the multicurve

� WDG˛ˇe˛ˇ CG˛e˛ CG˛e˛CGˇeˇ :

If � is graftable then grafting �� along � would yield a structure with indices .2a; 2b; 2c/ and the same
framed holonomy as �� (Lemma 3.1.7). It follows from Proposition 5.2.1 that � D Gr.�� ; �/, so it is left
to check if �� is graftable along �.

Depending on the above cases, we remark that at least one of Gˇ and G˛ is 0; hence � is either � or �0

in the notation of Lemma 5.1.3.

If Gˇ DG˛ D 0 then �D �D �0 and every atomic triangular structure �� is graftable along �.

If G˛ > 0 then Gˇ D 0 and �D �. Lemma 5.1.3 covers every case except the Euclidean case where
a0 2 .0; �/ and �a0C b0C c0 D � . In this case we must consider a different atomic structure � 0� and
curve �0, as �� is not graftable along e˛. Let

a00 WD a0C 2�; b00 WD b0; c00 WD c0;

G0˛ WDG˛ � 1; �0 WDG˛ˇe˛ˇ CG˛e˛ CG
0
˛e˛:

By construction a00 2 .2�; 3�/, b00; c00 2 .0; �/ and a00 � b00 � c00 D �; therefore there is an atomic
triangular structure � 0� with indices .2a00; 2b00; 2c00/ (see Lemma 2.3.4). Furthermore, the structure � 0� is
graftable along �0 (Lemma 5.1.3). Grafting � 0� yields a structure with indices .2a; 2b; 2c/, which must
be � by Proposition 5.2.1, concluding this case.

Lastly, suppose that Gˇ > 0. This time G˛ D 0 and �D �0. Recall that a0 < 2� , hence the only case
that is not covered by Lemma 5.1.3 is the Euclidean case where a0 2 .�; 2�/ and a0� b0� c0 D � . We
are once again forced to consider a different atomic structure as �� is not graftable along eˇ . Let

a00 WD a0��; b00 WD b0C�; c00 WD c0;

G0˛ WDG˛ C 1; G0ˇ WDGˇ � 1; �0 WDG˛ˇe˛ˇ CG
0
˛e˛ CG

0
ˇeˇ :

By construction b00 2 .�; 2�/, a00; c00 2 .0; �/ and �a00 C b00 C c00 D �; therefore there is an atomic
triangular structure � 0� with indices .2a00; 2b00; 2c00/ (see Lemma 2.3.3). The structure � 0� is graftable
along �0 according to Lemma 5.1.3 part .5/ applied to the triple .b00; c00; a00/. Once again, grafting � 0�
along �0 yields a structure with indices .2a; 2b; 2c/, which must be � by Proposition 5.2.1, concluding
the proof.
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�
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�1 D �
0
1

� 00

� 0

Figure 19: To prove Theorem A we find a path of graftings and degraftings from � to � 0, passing
through atomic structures.

Theorem B has two interesting consequences. The first is the promised characterization of atomic
structures in terms of grafting.

Corollary 5.2.3 A structure � 2 Pˇ.S/ is atomic if and only if it is not degraftable.

Proof For one implication, let � be a structure which cannot be degrafted. Then by Theorem B it must
be atomic.

For the reverse implication, let � be atomic. Suppose by contradiction that � was degraftable to some
structure � 0. Recall that core-grafting increases one index by 4� and edge-grafting increases two indices
by 2� . Then � cannot be one of the atomic structures coming from the atomic triangular immersions
of Lemma 2.3.3, as its indices would be too small. It follows that � is the atomic triangular structure
associated to an atomic triangular immersion � from Lemma 2.3.4. Without loss of generality we may
assume that the largest index of � is at x˛, while the other two are less than 2� , so that

I� .x˛/ 2 .4�; 6�/; I� .xˇ /; I� .x / 2 .0; 2�/; I� .x˛/� I� .xˇ /� I� .x /D 2�:

Then � cannot be obtained by edge-grafting � 0, and the only option is that � 0 is a core-degrafting at x˛
on � . In particular I� 0.x˛/D I� .x˛/� 4� 2 .0; 2�/ and

I� 0.x˛/; I� 0.xˇ /; I� 0.x / 2 .0; 2�/ and � I� 0.x˛/C I� 0.xˇ /C I� 0.x /D 2�:

It follows that � 0 is an atomic triangular structure (Lemma 5.2.2), coming from a triangular immersion
� 0 enclosed in a Euclidean configuration (Lemma 2.3.1). But this is impossible because � 0 is not core-
graftable at x˛ (Lemma 5.1.3 part (1)), giving the desired contradiction.

Next, we obtain that edge-grafting and core-grafting (together with the inverse operations) account for all
the possible deformations that preserve the holonomy as a framed representation.

Theorem A Two structures in Pˇ.S/ have the same framed holonomy if and only if it is possible to
obtain one from the other by some combination of graftings and degraftings along ideal arcs.

Proof One direction is clear by Lemma 3.1.7. For the reverse implication, suppose �; � 0 2 Pˇ.S/ have
the same framed holonomy. By Theorem B, the structure � (resp. � 0) can be degrafted to an atomic
structure �0 (resp. � 00) having the same framed holonomy.

Let �0 and � 00 be the atomic triangular immersions defining �0 and � 00, with angles .a0; b0; c0/ and
.a00; b

0
0; c
0
0/, respectively. Since these structures have the same framed holonomy, up to conjugation we
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can assume that �0 and � 00 are supported by the same configuration of circles C (see Corollary 2.2.7), and
that �0.Vj /D � 00.Vj /, for j D 1; 2; 3. By Corollary 2.3.7 we are in one of the following two cases:

(1) .a0; b0; c0/D .a
0
0; b
0
0; c
0
0/;

(2) .a0� a
0
0; b0� b

0
0; c0� c

0
0/D .�;��; 0/ up to permutation.

In the first case �0 and � 00 have the same indices; hence �0 D � 00 by Proposition 5.2.1, and we are done.
For the second case, let us fix the permutation .a0�a00; b0�b

0
0; c0� c

0
0/D .�;��; 0/, as the other cases

are similar. Then in particular a0; b00 2 .�; 2�/ while a00; b0; c0; c
0
0 2 .0; �/. Let �1 (resp. � 01) be the

triangular structure obtained by grafting �0 along eˇ (resp. � 00 along e˛ ). These structures exist by
Lemma 5.1.3 (with respect to �0), and they both have indices

.2a0; 2b0C 2�; 2c0C 2�/D .2a
0
0C 2�; 2b

0
0; 2c

0
0C 2�/:

We explicitly observe that Lemma 5.1.3 has only two cases in which �0 is not graftable, and a direct
inspection of Table 3 shows that those two structures are covered by the case .a0; b0; c0/D .a00; b

0
0; c
0
0/

above (see Remark 2.3.9). It follows that �1 D � 01 by Proposition 5.2.1, completing the proof.

Appendix Tables of atomic triangular immersions

angles range target angles
a b c conditions type . Oa; Ob; Oc/ signs figure

.0; �/ .0; �/ .0; �/ aC bC c < � H .a; b; c/ .C;C;C/ Figure 5, left

.0; �/ .0; �/ .0; �/ aC� < bC c H .a; � � b; � � c/ .C;�;�/ Figure 7, left

.0; �/ .0; �/ .0; �/ bC� < aC c H .� � a; b; � � c/ .�;C;�/ Figure 7, left

.0; �/ .0; �/ .0; �/ cC� < aC b H .� � a; � � b; c/ .�;�;C/ Figure 7, left

.�; 2�/ .0; �/ .0; �/ aC bC c > 3� H .2� � a; � � b; � � c/ .�;�;�/ Figure 8(1)
.0; �/ .�; 2�/ .0; �/ aC bC c > 3� H .� � a; 2� � b; � � c/ .�;�;�/ Figure 8(1)
.0; �/ .0; �/ .�; 2�/ aC bC c > 3� H .� � a; � � b; 2� � c/ .�;�;�/ Figure 8(1)

.�; 2�/ .0; �/ .0; �/ a� b� c > � H .2� � a; b; c/ .�;C;C/ Figure 8(2)
.0; �/ .�; 2�/ .0; �/ �aC b� c > � H .a; 2� � b; c/ .C;�;C/ Figure 8(2)
.0; �/ .0; �/ .�; 2�/ �a� bC c > � H .a; b; 2� � c/ .C;C;�/ Figure 8(2)

.�; 2�/ .0; �/ .0; �/ a� bC c < � H .a��; � � b; c/ .C;�;C/ Figure 8(3)(i)
.0; �/ .�; 2�/ .0; �/ aC b� c < � H .a; b��; � � c/ .C;C;�/ Figure 8(3)(i)
.0; �/ .0; �/ .�; 2�/ �aC bC c < � H .� � a; b; c ��/ .�;C;C/ Figure 8(3)(i)

.�; 2�/ .0; �/ .0; �/ aC b� c < � H .a��; b; � � c/ .C;C;�/ Figure 8(3)(ii)
.0; �/ .�; 2�/ .0; �/ �aC bC c < � H .� � a; b��; c/ .�;C;C/ Figure 8(3)(ii)
.0; �/ .0; �/ .�; 2�/ a� bC c < � H .a; � � b; c ��/ .C;�;C/ Figure 8(3)(ii)

Table 1: Table of atomic triangular immersions of hyperbolic type.
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angles range target angles
a b c conditions type . Oa; Ob; Oc/ signs figure

.0; �/ .0; �/ .0; �/ aC bC c > � S .a; b; c/ .C;C;C/ Figure 5, right
aC� > bC c

bC� > aC c

cC� > aC b

.�; 2�/ .0; �/ .0; �/ 3� > aC bC c S .2� � a; � � b; � � c/ .�;�;�/ Figure 7, right
aC b > � C c

aC c > � C b

� > a� b� c

.0; �/ .�; 2�/ .0; �/ 3� > aC bC c S .� � a; 2� � b; � � c/ .�;�;�/ Figure 7, right
aC b > � C c

bC c > � C a

� > �aC b� c

.0; �/ .0; �/ .�; 2�/ 3� > aC bC c S .� � a; � � b; 2� � c/ .�;�;�/ Figure 7, right
bC c > � C a

aC c > � C b

� > �a� bC c

Table 2: Table of atomic triangular immersions of spherical type.

angles range target angles
a b c conditions type . Oa; Ob; Oc/ signs figure

.0; �/ .0; �/ .0; �/ aCbCc D � E .a; b; c/ .C;C;C/ Figure 4, left

.0; �/ .0; �/ .0; �/ �aCbCc D � E .a; ��c; ��b/ .�;C;C/� Figure 4, right

.0; �/ .0; �/ .0; �/ a�bCc D � E .��a; ��c; b/ .C;�;C/� Figure 4, right

.0; �/ .0; �/ .0; �/ aCb�c D � E .��a; c; ��b/ .C;C;�/� Figure 4, right

.�; 2�/ .0; �/ .0; �/ aCbCc D 3� E .2��a; ��c; ��b/ .C;C;C/� Figure 9(1)
.0; �/ .�; 2�/ .0; �/ aCbCc D 3� E .��a; ��c; 2��b/ .C;C;C/� Figure 9(1)
.0; �/ .0; �/ .�; 2�/ aCbCc D 3� E .��a; 2��c; ��b/ .C;C;C/� Figure 9(1)

.�; 2�/ .0; �/ .0; �/ a�b�c D � E .2��a; c; b/ .C;�;�/� Figure 9(2)
.0; �/ .�; 2�/ .0; �/ �aCb�c D � E .a; c; 2��b/ .�;C;�/� Figure 9(2)
.0; �/ .0; �/ .�; 2�/ �a�bCc D � E .a; 2��c; b/ .�;�;C/� Figure 9(2)

.�; 2�/ .0; �/ .0; �/ a�bCc D � E .a��; ��b; c/ .C;�;C/ Figure 9(3)(i)
.0; �/ .�; 2�/ .0; �/ aCb�c D � E .a; b��; ��c/ .C;C;�/ Figure 9(3)(i)
.0; �/ .0; �/ .�; 2�/ �aCbCc D � E .��a; b; c��/ .�;C;C/ Figure 9(3)(i)

.�; 2�/ .0; �/ .0; �/ aCb�c D � E .a��; b; ��c/ .C;C;�/ Figure 9(3)(ii)
.0; �/ .�; 2�/ .0; �/ �aCbCc D � E .��a; b��; c/ .�;C;C/ Figure 9(3)(ii)
.0; �/ .0; �/ .�; 2�/ a�bCc D � E .a; ��b; c��/ .C;�;C/ Figure 9(3)(ii)

.2�; 3�/ .0; �/ .0; �/ a�b�c D � E .a�2�; ��b; ��c/ .C;�;�/ Figure 10
.0; �/ .2�; 3�/ .0; �/ �aCb�c D � E .��a; b�2�; ��c/ .�;C;�/ Figure 10
.0; �/ .0; �/ .2�; 3�/ �a�bCc D � E .��a; ��b; c�2�/ .�;�;C/ Figure 10

Table 3: Table of atomic triangular immersions of Euclidean type.
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