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We introduce four variance flavors of (co)cartesian fibrations of1–bicategories with1–bicategorical
fibers, in the framework of scaled simplicial sets. Given a map p W E ! B of 1–bicategories, we
define p–(co)cartesian arrows and inner/outer triangles by means of lifting properties against p, leading
to a notion of 2–inner/outer (co)cartesian fibrations as those maps with enough (co)cartesian lifts for
arrows and enough inner/outer lifts for triangles, together with a compatibility property with respect to
whiskerings in the outer case. By doing so, we also recover in particular the case of1–bicategories
fibered in1–categories studied in previous work. We also prove that equivalences of such fibrations can
be tested fiberwise. As a motivating example, we show that the domain projection d W Fungr.�1;C/! C is
a prototypical example of a 2–outer cartesian fibration, where Fungr.X;Y / denotes the1–bicategory of
functors, lax natural transformations and modifications. We then define 2–inner and 2–outer flavors of
(co)cartesian fibrations of categories enriched in1–categories, and we show that a fibration p W E!B of
such enriched categories is a (co)cartesian 2–inner/outer fibration if and only if the corresponding map
Nsc.p/ W NscE! NscB is a fibration of this type between1–bicategories.
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Introduction

This paper is part of an ongoing series of works on the theory of .1; 2/–categories. We will generally
refer to these as1–bicategories, and identify them with scaled simplicial sets satisfying suitable extension
properties. Our goal here is to set up the fundamentals of a theory of (co)cartesian fibrations E!B of
1–bicategories, whose fibers encode a family of1–bicategories Eb depending functorially on b 2B.
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When E and B are 1–categories the corresponding notion of (co)cartesian fibration was set up by
Lurie in [12]. Generalizing classical work of Grothendieck, Lurie showed that such fibrations over a base
1–category B are in complete correspondence with functors B! Cat1 in the cocartesian case, and
contravariant such functors in the cartesian case. This Grothendieck–Lurie correspondence plays a key
role in higher category theory, as it permits the handling of highly coherent pieces of structure, such as
functors, in a relatively accessible manner.

When coming to consider the1–bicategorical counterpart, an immediate difference presents itself: here
we have not just two different variances, but four, depending on whether or not the functorial dependence
on 2–morphisms is covariant or contravariant. This additional axis of symmetry is already visible when
the base is an 1–bicategory and the fibers Eb are 1–categories, since Cat1 itself has a nontrivial
1–bicategorical structure. A thorough treatment of this case was taken up in our previous work [6],
where we have used the term inner (co)cartesian fibrations to indicate those cases where the dependence
on 2–morphisms matches the one on 1–morphisms, and outer (co)cartesian fibration for those where these
two dependencies have opposite variance. The division into these two types is also visible on the level
of mapping1–categories: when both variances match (the inner case) the induced functor on mapping
1–bicategories is a right fibration, and when they don’t (the outer case) the induced functor on mapping
1–categories is a left fibration. One of the main results of [6] is an1–bicategorical Grothendieck–Lurie
correspondence for all the four variances. The proof crucially relies on the work of Lurie [13] in the inner
cocartesian case, and the straightening–unstraightening Quillen equivalence he proved in that setting.

Our goal in the present paper is to extend these notions of fibrations to the setting where both the base B

and the fibers Eb are 1–bicategories. This requires defining, in addition to a notion of (co)cartesian
1–morphisms, a suitable notion of (co)cartesian 2–morphism. Working in the setting of scaled simplicial
sets, such 2–morphisms are determined by triangles, though this correspondence is not perfect (the same
2–morphism can be encoded by different triangles corresponding to different factorizations of the target
1–morphism), and one needs to be a bit more careful about how to define this. To match with the notation
for fibrations, we use the terms inner and outer to describe triangles which roughly correspond to cartesian
and cocartesian 2–morphisms. For somewhat technical reasons one needs to separate those further into
two types, which we call left and right inner/outer triangles. This distinction turns out to behave slightly
differently in the inner and outer cases, an issue due to the built-in asymmetry of triangles, which encode
a 2–morphism together with a factorization of its target 1–morphism, but not of its domain.

In the future continuation of the present work we plan to establish a complete Grothendieck–Lurie
correspondence for such fibrations over a fixed base B, showing that they encode the four possible
variances of functors B ! BiCat1. Though we will not arrive to this goal yet here, we do lay the
foundations and prove the basic properties we expect to need, based on our current work in progress in
that direction. In particular, we prove that equivalences between such fibrations are detected on fibers,
and construct a certain universal example in the form of the domain projection Fungr.�1;B/!B, where
Fungr.�1;B/ is the 1–bicategory of arrows in B and lax squares between them. We then establish
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a comparison between the notions of inner/outer (co)cartesian fibrations and an analogous one in the
setting of categories enriched in marked simplicial sets. Such a comparison played an important role
in [6] by implying that the .Z=2�Z=2/–symmetry of the theory of1–bicategories switched between the
four types of fibrations. This allowed one to reduce the Grothendieck–Lurie correspondence in [6] to
the inner cocartesian case, and we expect a similar role to be played in a future generalization of that
correspondence to fibrations.

After finishing the work on the present paper, we became aware of independent work of Abellán García
and Stern [1], which investigates the outer variant of these fibrations using a model category structure on
marked biscaled simplicial sets. By contrast, our approach here consistently covers all four variances, and
also interacts well with the framework we set up in [6], a property we expect would be useful in a future
proof of a complete1–bicategorical Grothendieck–Lurie correspondence for inner/outer (co)cartesian
fibrations. Finally, let us also note that a Grothendieck–Lurie type correspondence for outer cartesian
fibrations is sketched by Gaitsgory and Rozenblyum in [9, Appendix], though the argument relies in
various parts on unproven statements. The extensive treatment of derived algebraic geometry developed
in the body of their volumes [9; 10] based on that appendix makes for a powerful motivation for obtaining
the1–bicategorical Grothendieck–Lurie correspondence rigorously. We also plan to pursue the study of
inner/outer locally (co)cartesian fibrations, which encode lax/oplax 2–functors from an1–bicategory B

to BiCat1, as we defined in [7, Section 3]. This will enable one to compare that last definition with
that of [9; 10], which should also allow for the comparison of the two notions of Gray products, thus
establishing many key unproven statements involving Gray products made in the appendix of loc. cit.
The results of the present work are fundamental preliminaries for all these applications.

Organization of the paper

We begin with a preliminary section where we give pointers to the necessary definitions and results
concerning marked and scaled simplicial sets, and recall the framework of inner/outer (co)cartesian
fibrations set up in [6], which we rename 1–inner/outer (co)cartesian fibration in order to better distinguish
between them and the type of fibrations introduced in the present paper. Next, we introduce the main
concepts of this paper, namely those of left/right inner/outer triangles and the corresponding notions of
fibrations. We establish fundamental results concerning closure properties of inner/outer triangles, as
well as stability properties and a fiberwise criterion to test equivalences of fibrations. Finally, we prove
Theorem 3.0.7, which concerns the domain projection on an1–bicategory and provides a prototypical
example of a 2–outer cartesian fibration.

In Section 4 we briefly recall the theory of (co)cartesian fibrations for ordinary 2–categories, as developed
by Buckley in [5], as a motivation for its enhancement to the setting of categories enriched in marked
simplicial sets. We then provide an extension of the results of [6, Section 3], by showing that enriched
2–inner/outer (co)cartesian fibrations identify via the coherent nerve functor with the respective notion of
fibrations between1–bicategories; see Theorem 4.2.4 for the precise statement.

Algebraic & Geometric Topology, Volume 24 (2024)
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Vistas and applications

A theory of fibrations provides the backbone to define symmetric monoidal .1; 2/–categories, as a
suitable class of inner cocartesian fibrations over Fin�. We expect symmetric monoidal1–bicategories to
play a fundamental role as their 1–dimensional counterpart, providing extra expressive power thanks to the
2–dimensional structure. For instance, they can be used to encode the relevant dualities of Ind-coherent
sheaves of (derived) schemes of finite type, as in [9, Chapter 9].

Furthermore, inner/outer (locally) (co)cartesian fibrations are used as a tool in [9, Chapters 11 and 12] to
establish an adjoint theorem that plays a crucial role in extending the quasicoherent sheaves functor from
derived affine schemes to derived prestacks; see [9, Chapter 11, Sections 3.1.1 and 3.2.1].

Finally, the theory of fibrations can be used to define a simplicial version of the notion of (relative) .1; 2/–
operad; see Batanin [2; 3]. Possible applications in this direction come from symplectic geometry, and in
particular from the functoriality of the Fukaya category; see for instance Bottman and Carmeli [4].

Acknowledgements Gagna and Lanari gratefully acknowledge the support of Praemium Academiae
of M Markl and RVO:67985840. Lanari is also grateful to Rune Haugseng and Nick Rozenblyum for
fruitful conversations during his stay at MSRI.

1 Preliminaries

In this section we establish notation and recall some preliminary definitions and results that will be used.

1.1 Marked simplicial sets and enriched categories

Recall that a marked simplicial set is a pair .X;EX / where X is a simplicial set and EX is a collection
of edges in X , called the marked edges, containing all degenerate edges. A map of marked simplicial sets
f W .X;EX /! .Y;EY / is a map of simplicial sets f WX ! Y satisfying f .EX /�EY . When denoting
an explicit marked simplicial set we will often omit the reference to the degenerate edges. For example,
we will write .�n; �f0;1g/ for the marked simplicial set whose underlying simplicial set is the n–simplex
and whose marked edges are all the degenerate edges together with the edge �f0;1g. The category of
marked simplicial sets will be denoted by SetC

�
. It is locally presentable and cartesian closed. For more

background on marked simplicial sets we refer the reader to the comprehensive treatment in [12].

We will denote by SetC
�

–Cat the category of categories in enriched in SetC
�

with respect to the cartesian
product on SetC

�
, to which we will refer as marked simplicial categories. For a marked simplicial category

C and two objects x;y 2 C, we will denote by C.x;y/ 2 SetC
�

the associated mapping marked simplicial
set. By an arrow e W x! y in a marked simplicial category C we will simply mean a vertex e 2 C.x;y/0

in the corresponding mapping object.
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We will generally consider SetC
�

–Cat together with its associated Dwyer–Kan model structure; see
[12, Section A.3.2]. In this model structure the weak equivalences are the Dwyer–Kan equivalences,
that is, the maps which are essentially surjective on homotopy categories and induce marked categorical
equivalences on mapping objects. The fibrant objects are the enriched categories C whose mapping
objects C.x;y/ are all fibrant, that is,1–categories marked by their equivalences. The model category
SetC
�

–Cat is then a presentation of the theory of .1; 2/–categories, and is Quillen equivalent to other
known models; see Section 1.2 below.

We say that E 2 SetC
�

–Cat is a Cat1–category if it is fibrant in the Dwyer–Kan model structure, ie if it is
enriched over1–categories, with marking given by equivalences. A fibration of Cat1–categories is a
fibration between fibrant objects in the Dwyer–Kan model structure on SetC

�
–Cat.

1.2 Scaled simplicial sets and 1–bicategories

Definition 1.2.1 [13] A scaled simplicial set is a pair .X;TX / where X is a simplicial set and TX is a
subset of the set of triangles of X , called thin triangles, containing the degenerate ones. A map of scaled
simplicial sets f W .X;TX /! .Y;TY / is a map of simplicial sets f WX ! Y satisfying f .TX /� TY .

We will denote by Set sc
�

the category of scaled simplicial sets. It is locally presentable and cartesian closed.
When denoting an explicit scaled simplicial set we will often omit the reference to the degenerate edges.
For example, we will write .�n; �f0;1;ng/ for the scaled simplicial set whose underlying simplicial set is
the n–simplex and whose thin triangles are all the degenerate triangles together with the triangle �f0;1;ng.

Definition 1.2.2 The set of generating scaled anodyne maps S is the set of maps of scaled simplicial
sets consisting of

(i) the inner horns inclusions

.ƒn
i ; f�

fi�1;i;iC1g
gjƒn

i
/! .�n; f�fi�1;i;iC1g

g/ for n� 2 and 0< i < nI

(ii) the map
.�4;T /! .�4;T [f�f0;3;4g; �f0;1;4gg/;

where
T

def
D f�f0;2;4g; �f1;2;3g; �f0;1;3g; �f1;3;4g; �f0;1;2ggI

(iii) the set of maps�
ƒn

0

a
�f0;1g

�0; f�f0;1;ngg

�
!

�
�n

a
�f0;1g

�0; f�f0;1;ngg

�
for n� 3:

A general map of scaled simplicial set is said to be scaled anodyne if it belongs to the weakly saturated
closure of S .

Definition 1.2.3 An1–bicategory is a scaled simplicial set C which admits extensions along all maps
in S .
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To avoid confusion we point out that scaled simplicial sets as in Definition 1.2.3 are referred to in [13] as
weak1–bicategories, while the term1–bicategory was used to designate the stronger property of being
fibrant in the bicategorical model structure on Set sc

�
constructed in loc. cit., whose cofibrations are the

monomorphisms, and which serves as a model for the theory of .1; 2/–categories. It is related to the
model of marked simplicial categories mentioned above via a Quillen equivalence

Set sc
�

Csc

))

Nsc

ii ? SetC
�

–Cat;

in which the right functor Nsc is called as the scaled coherent nerve. Nonetheless, as we have shown
in [8], the weak and strong notions of1–bicategory in fact coincide. In particular, the fibrant objects in
the bicategorical model structure can be characterized by the extension property of Definition 1.2.3, and
the notion of weak1–bicategory will not be further mentioned in the present paper.

Notation 1.2.4 We will refer to the weak equivalences in the bicategorical model structure as bicategorical
weak equivalences. Since all the objects in the bicategorical model structure are cofibrant, the left Quillen
equivalence Csc preserves and detects weak equivalences.

Notation 1.2.5 In a drawing, every 2–simplex filled by a 2–cell with the equivalence symbol, or simply
filled by an equivalence symbol such as in the triangles

� �

�

' and
� �

�

'

is a thin 2–simplex. As for 3–simplices, we will often draw them as planarized tetrahedra

0

1 2

3

01

12

2302

03

012

023

0

1 2

3

01

12

2313

03

013

123

where an additional equivalence symbol can appear in some of the triangles to indicate their thinness.

Definition 1.2.6 Given a 3–simplex � W�3!X of the form

x0

x1 x2

x3

f

'

� 0

x0

x1 x2

x3

f

'

�

we will say that � exhibits � 0 as the left whiskering of � by f .
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Similarly, a 3–simplex � W�3!X of the form

x0

x1 x2

x3

f

�

'

x0

x1 x2

x3

f

� 0

'

will be said to exhibit � 0 as the right whiskering of � by f .

Notation 1.2.7 Let X be a simplicial set. We will denote by X[D .X; deg2.X // the scaled simplicial set
where the thin triangles of X are the degenerate 2–simplices, and by X] D .X;X2/ the scaled simplicial
set where all the triangles of X are thin. The assignments

X 7!X[ and X 7!X]

are left and right adjoint, respectively, to the forgetful functor Set sc
�
! Set�.

Definition 1.2.8 Given a scaled simplicial set X , we define its core to be the simplicial set X th spanned
by those n–simplices of X whose 2–dimensional faces are all thin triangles. The assignment X 7!X th is
then right adjoint to the functor .�/] W Set�! Set sc

�
.

Warning 1.2.9 In [14, Tag 01XA], Lurie uses the term pith in place of core, and denotes it by Pith.C/.

Remark 1.2.10 If C is an1–bicategory then its core Cth is an1–category.

Definition 1.2.11 Let C be an1–bicategory. We will say that an edge in C is invertible if it is invertible
when considered in the 1–category Cth, that is, if its image in the homotopy category of Cth is an
isomorphism. We will sometimes refer to invertible edges in C as equivalences. We will denote by
C'� Cth the subsimplicial set spanned by the invertible edges. Then C' is an1–groupoid (that is, a Kan
complex), which we call the core groupoid of C. It can be considered as the1–groupoid obtained from C

by discarding all noninvertible 1–cells and 2–cells. If X is an arbitrary scaled simplicial set then we will
say that an edge in X is invertible if its image in C is invertible for any bicategorical equivalence X ! C

such that C is an1–bicategory. This does not depend on the choice of the1–bicategory replacement C.

Notation 1.2.12 Let C be an1–bicategory and let x;y 2 C be two vertices. In [13, Section 4.2], Lurie
gives an explicit model for the mapping1-category from x to y in C that we now recall. Let HomC.x;y/

be the marked simplicial set whose n–simplices are given by maps f W�n��1�!C such that fj�n�f0g is
constant on x, fj�n�f1g is constant on y, and the triangle fj�f.i;0/;.i;1/;.j ;1/g is thin for every 0� i � j � n.
An edge f W�1��1 �! C of HomC.x;y/ is marked exactly when the triangle fj�f.0;0/;.1;0/;.1;1/g is thin.
The assumption that C is an1–bicategory implies that the marked simplicial set HomC.x;y/ is fibrant
in the marked categorical model structure, that is, it is an1–category whose marked edges are exactly
the equivalences.

Algebraic & Geometric Topology, Volume 24 (2024)
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Definition 1.2.13 We will denote by Cat1 the scaled coherent nerve of the (fibrant) marked simplicial
subcategory .SetC

�
/ı � SetC

�
spanned by the fibrant marked simplicial sets. We will refer to Cat1 as the

1–bicategory of1–categories.

Definition 1.2.14 We define BiCat1 to be the scaled coherent nerve of the (large) marked simplicial
category BiCat� whose objects are the1–bicategories and whose mapping marked simplicial set, for
C;D 2 BiCat�, is given by BiCat�.C;D/ WD Funth.C;D/\. Here Funth.C;D/ is the core1–category of
the internal hom scaled simplicial set Fun.C;D/, which happens to be an1–bicategory whenever D is
(see [13, Proposition 3.1.8 and Lemma 4.2.6]), and by .�/\ we mean the associated marked simplicial
set in which the marked arrows are the equivalences. We will refer to BiCat1 as the1–bicategory of
1–bicategories.

Since the scaled coherent nerve functor Nsc is a right Quillen equivalence, it determines an equivalence

(1) .SetC
�

–Cat/1
'
�! BiCatth1

between the1–category associated to the model category SetC
�

–Cat and the core1–category of BiCat1.
In the model SetC

�
–Cat the .Z=2/2–action on the theory of .1; 2/–categories can be realized by an action

of .Z=2/2 on SetC
�

–Cat via model category isomorphisms: the operation C 7! Cop, which inverts only
the direction of 1–morphisms, is realized by setting Cop.x;y/D C.y;x/, while the operation C 7! Cco of
inverting only the direction of 2–morphisms is realized by setting Cco.x;y/D C.x;y/op, where the right-
hand side denotes the operation of taking opposites in marked simplicial sets. Through the equivalence (1)
these two involutions induce a .Z=2/2–action on the core1–category BiCatth1, which we then denote by
the same notation. In particular, we have involutions

.�/op
W BiCatth1! BiCatth1 and .�/co

W BiCatth1! BiCatth1;

the first inverting the direction of 1–morphisms and the second the direction of 2–morphisms.

Remark 1.2.15 The .Z=2/2–action on BiCatth1 does not extend to an action of .Z=2/2 on the 1–
bicategory BiCat1. Instead, it extends to a twisted action, that is, .�/co and .�/op extend to equivalences
of the form

.�/co
W BiCat1

'
�! BiCat1 and .�/op

W BiCat1
'
�! BiCatco

1:

1.3 Join and slice

In [8, Section 2.2] and [6, Section 2.1] we used join and slice constructions in the setting of marked scaled
simplicial sets, that is, simplicial sets X endowed both with a distinguished collection EX �X1 of marked
edges and a distinguished collection TX �X2 of thin triangles. The category of marked scaled simplicial
sets will be denoted by SetC;sc

�
. Though we will need only a limited amount of the generality used in [6],

let us recall the construction and terminology used there for the sake of consistency. Given two marked
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scaled simplicial sets .X;EX ;TX /; .Y;EY ;TY /, their join is the scaled simplicial set .X � Y;TX �Y /

whose underlying simplicial set X � Y is the usual join of simplicial sets and the collection of thin
triangles is

TX �Y WD ŒTX �Y0�[ ŒEX �EY �[ ŒX0 �TY �� ŒX2 �Y0�[ ŒX1 �Y1�[ ŒX0 �Y2�D .X �Y /2:

For a fixed marked scaled simplicial set .Y;EY ;TY /, the functor .X;EX ;TX / 7! .X �Y;EX �Y / is a
colimit-preserving functor from marked scaled simplicial sets to scaled simplicial sets under .Y;TY /,
and admits a right adjoint, that is, an associated slice construction. Given a marked scaled simplicial set
.K;EK ;TK / and a map of scaled simplicial set p W .K;TK /! .Z;TZ /, we will denote by .Z;TZ /=p,
or simply Z=p for brevity, the valued of this right adjoint at p. In particular, Z=p is the marked scaled
simplicial set characterized by the property that maps of marked scaled simplicial sets .X;EX ;TX /!Z=p

correspond to maps of scaled simplicial sets .X �K;TX �K /! .Z;TZ / under .K;EK ;TK /. We then
write Z=p for the underlying scaled simplicial set of Z=p , obtained by forgetting the marking. To avoid
confusion, let us emphasize that the thin triangles in Z=p do depend on the marking EK of K, and not
only on the map of scaled simplicial sets p. Similarly, we denote by Zp= the marked scaled simplicial set
representing the functor

.X;EX ;TX / 7!Map.Set sc
�
/.K;TK /=

..K �X;TK�X /;TX �K ; .Z;TZ //;

and by Zp= its underlying scaled simplicial set.

We will mostly be interested in the case where the target Z is an 1–bicategory C, and K is either
�0 or ]�1, the latter being the 1–simplex endowed with the maximal marking and the (unique) trivial
scaling. In the latter case we will sometimes make use of [6, Notation 2.3.4], which we now recall for the
convenience of the reader.

Notation 1.3.1 Given a scaled simplicial set .Z;TZ / and an edge e W x! y in Z, we will denote by
Z=e] 2 SetC;sc

�
the result of the slice construction above applied to the marked scaled simplicial set ]�1

and the map of scaled simplicial sets �1
[
! .Z;TZ / determined by e. Explicitly, the set of n–simplices

in Z=e] is given by
.Z=e]/n

def
D f˛ W [�n

�
]�1
!Z j ˛j�fnC1;nC2g D eg;

where [�n denotes the n–simplex with minimal marking and minimal scaling. The marked edges of
Z=e] are those which factor through ]�1 � ]�1, and the thin triangles are those which factor through
.�2/[

]
� ]�1, where .�2/[

]
is the 2–simplex with minimal marking and maximal scaling, that is, its unique

nondegenerate triangle is thin. As above, we will write Z=e] for the underlying scaled simplicial set
of Z=e] .

When KD�0 the map p corresponds to a vertex y 2 C, and we will denote the associated marked scaled
slice by C=y . The fiber .C=y/x of the projection C=y ! C over a vertex x of C is then a marked scaled

Algebraic & Geometric Topology, Volume 24 (2024)
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simplicial set all of whose triangles are thin. Its underlying marked simplicial set, denoted by HomFC.x;y/
in [7, Section 2.3], is fibrant in the marked categorical model structure, so that one can treat it as an
1–category (marked by its equivalences). As such, it is a model for the mapping 1–category of C;
see [8, Proposition 2.23]. We then write HomFC.x;y/ for the underlying simplicial set of HomFC.x;y/.

1.4 1–Inner/outer (co)cartesian fibrations

The theory of inner and outer (co)cartesian fibrations of 1–bicategories was developed in [6] as an
analogue of the usual notion of (co)cartesian fibrations of1–categories. As in the latter case, such a
fibration encodes the data of a family of1–categories functorially parametrized by the base B, only that
in the1–bicategorical setting there are four different variance flavors for this functorial dependence one
can consider. Specifically, inner (resp. outer) cocartesian fibrations encode a covariant dependence on
the 1–morphisms of B and a covariant (resp. contravariant) dependence on the level of 2–morphisms.
Similarly, inner (resp. outer) cartesian fibrations encode a contravariant dependence on the 1–morphisms
of B and a contravariant (resp. covariant) dependence on the level of 2–morphisms.

Below we recall the main definitions. We refer the reader to loc. cit. for a comprehensive treatment.

Definition 1.4.1 We will say that a map of scaled simplicial sets X ! Y is a weak fibration if it has the
right lifting property with respect to the following types of maps:

(i) All scaled inner horn inclusions of the form

.ƒn
i ; f�

fi�1;i;iC1g
gjƒn

i
/� .�n; f�fi�1;i;iC1g

g/ for n� 2 and 0< i < n:

(ii) The scaled horn inclusions of the form�
ƒn

0

a
�f0;1g

�0; f�f0;1;nggjƒn
0

�
�

�
�n

a
�f0;1g

�0; f�f0;1;ngg

�
for n� 2:

(iii) The scaled horn inclusions of the form�
ƒn

n

a
�fn�1;ng

�0; f�f0;n�1;ng
gjƒn

n

�
�

�
�n

a
�fn�1;ng

�0; f�f0;n�1;ng
g

�
for n� 2:

Remark 1.4.2 The maps appearing in Definition 1.4.1 are all trivial cofibrations with respect to the
bicategorical model structure. This means that any bicategorical fibration E!B is in particular a weak
fibration. For example, if E is an1–bicategory then the terminal map E!�0 is a weak fibration.

Definition 1.4.3 Given a weak fibration f WX ! Y , we will say that f is

� a 1–inner fibration if it detects thin triangles and the underlying map of simplicial sets is an inner
fibration, that is, satisfies the right lifting property with respect to inner horn inclusions;
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� a 1–outer fibration if it detects thin triangles and the underlying map of simplicial sets satisfies the
right lifting property with respect to the inclusions

ƒn
0

a
�f0;1g

�0
��n

a
�f0;1g

�0 and ƒn
n

a
�fn�1;ng

�0
��n

a
�fn�1;ng

�0 for n� 2:

Note that the collection of 1–inner fibrations is closed under the .�/op duality, and the same holds for the
collection of 1–outer fibrations.

Remark 1.4.4 In [8] and [6] we used the terms inner and outer fibration for what we called above 1–inner
and 1–outer fibrations, respectively. The reason for the terminology update is the desire to more clearly
distinguish between these notions and those of 2–inner and 2–outer fibrations introduced in the present
paper. In principle, 1–inner and 1–outer fibrations between1–bicategories are the functors which induce
right and left fibrations, respectively, on the level of mapping1–categories. The notions of 2–inner and
2–outer fibration between 1–bicategories correspond in turn to functors which induce cartesian and
cocartesian fibrations on the level of mapping1–categories, together with the condition that composition
of arrows preserves cocartesian edges; see Section 4.2.

Remark 1.4.5 In [14, Tag 01WF], Lurie uses the term interior fibration to encode what we just defined
as 1–outer fibrations. Our choice in [6] (which already appeared in [8]) is motivated by the intent of
highlighting that special outer horns admit fillers against such maps.

Definition 1.4.6 Let p WX ! Y be a weak fibration. We will say that an edge e W�1!X is p–cartesian
if the dotted lift exists in any diagram of the form

.ƒn
n; f�

f0;n�1;nggjƒn
n
/

�
//

��

.X;TX /

p

��

.�n; f�f0;n�1;ngg/

66

// .Y;TY /

with n� 2 and �j�fn�1;ng D e. We will say that e is p–cocartesian if eop W�1!X op is pop–cartesian.

As in [6, Definition 2.3.1], we will also say that the edge e W�1!X is strongly f –(co)cartesian if it is a
(co)cartesian edge with respect to the underlying map of simplicial sets.

Remark 1.4.7 If p W E! B is weak fibration between1–bicategories, then any equivalence in E is
both p–cartesian and p–cocartesian, see [6, Corollary 2.3.10]. On the other hand, if e W x! y is either a
p–cartesian or p–cocartesian edge in E such that pe is an equivalence in B then e is an equivalence. To
see this, let g W y! x be an inverse to pe in B, equipped with thin triangles of the following forms:

px px

y
pe g

'

py py

px

g pe
'
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If e is p–cartesian then we can lift the right-hand side triangle to a triangle in E of the form

y y

x
g0 e

'

producing in particular a right inverse g0 to e. But then g0 is also p–cartesian by [6, Lemma 2.3.8], and
since pg0 D g is invertible in B we deduce from the same argument that g0 also has a right inverse in E.
It then follows from standard arguments (which can be applied on the level of the core1–category Cth)
that e and g0 are homotopy inverses, and in particular e is an equivalence. If e is assumed instead to be
p–cocartesian then one proceeds in the same manner by lifting the left-hand side triangle to E.

Remark 1.4.8 If p W E!B is a weak fibration and e; e0 W�1! E are two arrows which are equivalent
in Fun.�1;E/, then e is p–cartesian if and only if e0 is. To see this, note that in this case one has both
an equivalence going from e to e0 and an equivalence going from e0 to e, and so it will suffice to show
that if we have an equivalence e ) e0 and e0 is p–cartesian, then e is p–cartesian. Indeed, such an
equivalence is given by a map H W�1

[
��1

[
! E such that H j�1

[
��f0g D e and H j�1

[
��f1g D e0. Since

p–cartesian edges are closed under composition [6, Lemma 2.3.9] and every equivalence is p–cartesian
(Remark 1.4.7), we get that H sends the diagonal edge �f.0;0/;.1;1/g ��1 ��1 to a p–cartesian edge.
Then, from the partial two-out-of-three property for p–cartesian edges of [6, Lemma 2.3.8], we get that
e is p–cartesian.

Passing to opposites, we also obtain from this argument that e is p–cocartesian if and only if e0 is. In
addition, if p is a 1–outer fibration then by [6, Proposition 2.3.7] the collection of strongly p–(co)cartesian
arrows coincides with that of p–(co)cartesian arrows, and hence e is strongly p–(co)cartesian if and only
if e0 is so — alternatively, when p is a 1–outer fibration the statements of [6, Lemmas 2.3.8 and 2.3.9]
also apply to strongly p–(co)cartesian arrows, so that the above argument can simply be carried out
verbatim.

Definition 1.4.9 Let f W X ! Y be a weak fibration of scaled simplicial sets. We will say that f
is a cartesian fibration if for every x 2 X and an edge e W y ! f .x/ in Y there exists a f –cartesian
edge ze W zy ! x such that f .ze/ D e. Dually, we will say that f W X ! Y is a cocartesian fibration if
f op WX op! Y op is a cartesian fibration.

Definition 1.4.10 Let f WX ! Y be a weak fibration of scaled simplicial sets. We will say that f is a
1–inner (resp. 1–outer) cartesian fibration if it is both a 1–inner (resp. 1–outer) fibration and a cartesian
fibration. Dually, we will say that f is a 1–inner (resp. 1–outer) cocartesian fibration if pop is a 1–inner
(resp. 1–outer) cartesian fibration.

Remark 1.4.11 The classes of weak fibrations, 1–inner/outer fibrations and 1–inner/outer (co)cartesian
fibrations are all closed under base change.
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Example 1.4.12 If C is an 1–bicategory, then the projection C=x ! C is an example of a 1–outer
cartesian fibration, where the cartesian edges are exactly those whose corresponding triangle in C is thin
(equivalently, those corresponding to marked edges in C=x); see [6, Corollary 2.4.7]. Similarly, Cx=! C

is a 1–outer cocartesian fibration, with the cocartesian edges again corresponding to thin triangles. More
generally, for any map of scaled simplicial sets p W .K;TK /! C, the associated slice projections C=p! C

and Cp=! C are 1–outer cartesian and cocartesian fibrations, respectively.

Proposition 1.4.13 Any (co)cartesian fibration between1–bicategories is a fibration in the bicategorical
model structure on Set sc

�
.

Proof We prove the cartesian case, from which the cocartesian case can be deduced by passing to
opposites. Let p WE!B be a cartesian fibration between1–bicategories. To show that p is a bicategorical
fibration we need to produce the dotted lift in any square of the form

(2)
K

f
//

��

E

��

L
g
//

>>

B

such that K!L is a bicategorical trivial cofibration of scaled simplicial sets. Since E is an1–bicategory
it is in particular fibrant in the bicategorical model structure (see discussion in Section 1.2), and hence we
can extend f to a map h WL!E. This is not yet a solution to the above lifting problem since the composite
ph might be different from g. The two maps ph and g agree however on K by construction. Since the
bicategorical model structure is cartesian closed and B is fibrant, we may solve the lifting problem

ŒK ��1
[
�
`

K�@�1 ŒL� @�1� //

��

B

L��1
[

66

yielding a natural transformation H WL��1
[
!B from g and ph which is constant on K. Since K!L

is a trivial cofibration and B is fibrant the induced functor Fun.L;B/! Fun.K;B/ is an equivalence of
1–bicategories, and since the arrow in Fun.L;B/ associated to H maps to an identity arrow in Fun.K;B/
we deduce that it must be invertible in Fun.L;B/. In particular, the restriction of H to flg ��1

[
is an

invertible arrow of B for every vertex l 2L. Now since p is a cartesian fibration we can choose for each
l 2 L0 nK0 a p–cartesian lift el W flg ��

1
[
! E of H jflg��1

[
. Then each el is a p–cartesian lift of an

equivalence, and is hence itself an equivalence, see Remark 1.4.7. Let L0 �L be the scaled simplicial
subset whose underlying simplicial set is that of L and whose thin triangles are only those thin triangles
which are contained in K. Applying [8, Proposition 2.38] we may solve the lifting problem

ŒK ��1
[
�
`

K��f1g ŒL
0 ��f1g� //

��

E

��

L0 ��1
[

G

55

H
// B
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to yield a natural transformation G WL0 ��1
[
! E such that Gjflg��1

[
D el for every l 2L0 nK0, where

we point out that the assumption made in [8, Proposition 2.38] that p detects thin triangles is not needed
since L0 does not contain any thin triangles that are not in K, see [8, Remark 2.40]. In particular, G is
a levelwise invertible natural transformation. We wish to show that GjL0��f0g extends to L��f0g, thus
providing a solution to the original lifting problem (2). Indeed, if � W�2

[
!L0 is a triangle that is thin

in L then the composed map
H� W�

2
[ ��

1
[

��id
��!L0 ��1

[

G
�! E

is a levelwise invertible natural transformation between two triangles, one of which is thin (since GjL0��f1g

extends to L��1
[

by construction), and hence the other one is thin as well by [8, Corollary 3.5].

Over a fixed base B, the collection of 1–inner cocartesian fibrations, and cocartesian edges preserving
functors between them, can be organized into an1–bicategory coCarinn.B/. This1–bicategory can be
presented by a suitable model structure on the category of marked simplicial sets over the underlying
simplicial set of B, developed in [13, Section 3.2] using the machinery of categorical patterns. Lurie then
constructs in loc. cit. a straightening-unstraightening Quillen equivalence between this model structure
and the projective model structure on Fun.Csc.B/; SetC

�
/. In [6] we used this to establish the following

1–bicategorical form of the Grothendieck–Lurie correspondence, for both cartesian and cocartesian,
inner and outer flavors of fibrations:

Theorem 1.4.14 [6, Corollary 3.3.3] For an1–bicategory B 2 BiCat1 there are natural equivalences
of1–bicategories

coCarinn.B/' Fun.B;Cat1/; coCarout.B/' Fun.Bco;Cat1/;

Carinn.B/' Fun.Bcoop;Cat1/; Carout.B/' Fun.Bop;Cat1/:

2 2–Inner/outer cartesian fibrations

In this section we will define the principal notion of this paper, namely that of 2–inner/outer (co)cartesian
fibrations, and study their basic properties.

2.1 Inner and outer triangles

Definition 2.1.1 Let p W E!B be a weak fibration of1–bicategories and � W�2! E a triangle.

� We will say that � is left p–inner if the corresponding arrow in E=�.2/ is strongly cartesian with
respect to the projection E=�.2/! E�BB=p�.2/.

� We will say that � is right p–inner if the corresponding arrow in E�.0/= is strongly cocartesian
with respect to the projection E�.0/=! E�BBp�.0/=.

� We will say that � is left p–outer if the corresponding arrow in E=�.2/ is strongly cocartesian with
respect to the projection E=�.2/! E�BB=p�.2/.
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� We will say that � is right p–outer if the corresponding arrow in E�.0/= is strongly cartesian with
respect to the projection E�.0/=! E�BBp�.0/=.

Remark 2.1.2 Unwinding the definitions, we see that � is left p–inner if and only if, for n� 3, every
commutative square of the form

(3)

�fn�2;n�1;ng

ƒn
n�1

E

�n B

�

p

admits a diagonal filler as displayed by the dotted arrow, and right p–inner if the same holds for diagrams
as above where ƒn

n�1
is replaced by ƒn

1
and �fn�2;n�1;ng by �f0;1;2g. On the other hand, � is left

p–outer if and only if every commutative square of the form

(4)

�f0;1;ng

ƒn
0

E

�n B

�

p

admits a diagonal filler as displayed by the dotted arrow, and right p–outer if and only if the same holds
for diagrams as above where ƒn

0
is replaced by ƒn

n and �f0;1;ng by �f0;n�1;ng.

Remark 2.1.3 It follows from Remark 2.1.2 that any thin triangle in E is both left and right p–inner.
On the other hand, any thin triangle whose left leg is p–cocartesian is left p–outer and any thin triangle
whose right leg p–cartesian is right p–outer.

Remark 2.1.3 admits a type of a converse statement:

Proposition 2.1.4 Let p WE!B be a weak fibration of1–bicategories. Suppose � W�2!E is a triangle
such that p.�/ is thin in B. If � is either left or right p–inner then � is thin in E. The same holds if we
assume that � is left p–outer and left-degenerate or that � is right p–outer and right-degenerate.

Proof Write x D �.0/; z D �.2/. Suppose first that � is left p–inner. The condition that p.�/ is thin
means that the arrow determined by p.�/ in B=pz is cartesian with respect to the projection B=pz!B;
see Example 1.4.12. By base change it then follows that the arrow determined by � in E�B B=pz is
cartesian with respect to the projection E�BB=pz! E. At the same time, the arrow determined by � in
E=z is cartesian with respect to the projection E=z! E�BB=pz (by the definition of being left p–inner)

Algebraic & Geometric Topology, Volume 24 (2024)



4746 Andrea Gagna, Yonatan Harpaz and Edoardo Lanari

and so we conclude that the arrow determined by � in E=z is cartesian with respect to the composed
projection E=z ! E. By Example 1.4.12 we then get that � is thin. The dual argument using Ex= and
Bpx= applies to the case where � is right p–inner.

Now suppose that � is left p–outer and left-degenerate. Then p� is left-degenerate and since p� is
assumed thin it follows that the arrow in B=pz determined by p.�/ is invertible (indeed, by Example 1.4.12
it is a cocartesian arrow with respect to the 1–outer fibration B=pz!B lying over an equivalence). Since
� is left-degenerate we then have that the arrow determined by � in E �B B=pz is invertible as well.
Since � is left p–outer it now follows that the arrow in E=z determined by � is a cocartesian lift of an
equivalence along the 1–outer fibration E=z! E�BB=pz , and is hence itself an invertible arrow E=z . As
such, this arrow is in particular cocartesian with respect to the projection Ez=! E (Remark 1.4.7), and so
we conclude that � is thin by Example 1.4.12. The dual argument using Ex= and Bpx= applies to the case
where � is right p–outer and right-degenerate.

Remark 2.1.5 By [6, Lemma 2.3.9 and Lemma 2.3.8] the collection of strongly (co)cartesian arrows in
a given 1–outer fibration is closed under composition and has a partial two-out-of-three property. More
precisely, if C!D is a 1–outer fibration of1–bicategories and

y

x z

g

h

f

'

is a thin triangle in C such that g is strongly cartesian then f is strongly cartesian if and only if h is
strongly cartesian. Dually, if f is strongly cocartesian then g is strongly cocartesian if and only if h is
strongly cocartesian. Now for any weak fibration p W E!B of1–bicategories, both Ex=! E�BBx=

and E=x! E�BB=x are 1–outer fibrations for every x 2 E by Remark 1.4.11 and Example 1.4.12. The
above partial two-out-of-three property for strongly (co)cartesian edges then translates to a certain partial
two-out-of-three property for inner/outer triangles. More precisely, suppose given a 3–simplex � W�3! E

of the form
x0

x1 x2

x3

f

�

�

x0

x1 x2

x3

f

�

�

If � is thin then we may consider � as encoding a thin triangle in E=x3
exhibiting the edge associated to �

as the composite of those associated to � and �, whereas if � is thin then we may consider � as encoding
thin a triangle in Ex0= exhibiting the edge associated to � as the composite of those associated to � and � .
We hence conclude the following:

(i) If � is thin and � is left p–inner then � is left p–inner if and only if � is.

(ii) If � is thin and � is right p–inner then � is right p–inner if and only if � is.
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(iii) If � is thin and � is left p–outer then � is left p–outer if and only if � is.

(iv) If � is thin and � is right p–outer then � is right p–outer if and only if � is.

Combining this with Remark 2.1.3, we conclude that the collection of left p–inner triangles in E is closed
under left whiskering with 1–morphisms and the collection of right p–inner triangles is closed under right
whiskering with 1–morphisms. On the other hand, the collection of left p–outer triangles is only closed
under left whiskering with p–cocartesian 1–morphisms and the collection of right p–outer triangles is
only closed under right whiskering with p–cartesian arrows.

Combining Remark 2.1.5(4) with Remark 2.1.3 we get that if

x0

x1 x2

x3

g

�

'

x0

x1 x2

x3

g

�

'

is a 3–simplex such that g is p–cartesian then � is right p–outer if and only if � is. The “only if” direction
of this implication also holds for right p–inner triangles by Remark 2.1.5(2) and Remark 2.1.3. The
following lemma shows that on the other hand, the “if” direction of this implication actually holds for left
p–inner and left p–outer triangles:

Lemma 2.1.6 Let p W E!B be a weak fibration. Given a 3–simplex � W�3! E as above with g being
p–cartesian , if � is left p–inner or left p–outer then so is � .

Proof Consider the commutative diagram

E=x2
E=g] E=x3

E�BB=px2
E�BB=pg] E�BB=px3

B=pg] B=px3

q2

'

q2;3 q3

'

in which the left-pointing horizontal arrows are trivial fibrations by [6, Lemma 2.4.6]. Now since the
two faces of � leaning on g are thin we have that the 3–simplex � determines an arrow e in E=g] , whose
image in E=x2

is the arrow associated to � . We conclude that � is left p–inner (resp. left p–outer) if and
only if e is q2;3–cartesian (resp. q2;3–cocartesian). Now the image of e in E=x3

is the arrow associated
to � , and since � is assumed to be left p–inner (resp. left p–outer) its associated arrow is q3–cartesian
(resp. q3–cocartesian) in E=x3

. At the same time, the assumption that g is p–cartesian implies that the
vertical external square on the right is homotopy cartesian by [6, Lemma 2.3.6], and since the bottom right
square is also cartesian we get from the pasting lemma that the top right square is homotopy cartesian.
We hence conclude that e is q2;3–cartesian (resp. q2;3–cocartesian), as desired.
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Remark 2.1.7 Inner and outer lifts in a given weak fibration are unique up to equivalence (once they
exist). For example, suppose we have two left p–inner triangles ˛; ˛0 in E whose restrictions to ƒ2

1
and

whose images under p coincide. By Remark 2.1.2 (applied for � 0 and nD 3) we can find a 3–simplex H

of the form
�

� �

�

f

gf

h

D

˛

�

� �

�

f

gh0

h

ˇ

˛0

H

where ˇ lives over a degenerate triangle in B. By Remark 2.1.5 we then have that ˇ is left p–inner
as well, and hence thin by Proposition 2.1.4. We may consider H as exhibiting an equivalence between ˛
and ˛0: its leftmost leg is invertible, the two faces leaning on this leg are thin, and the remaining two faces
are ˛ and ˛0. In a very similar manner, if ˛ and ˛0 are assumed instead to be right p–outer and such that
their restrictions to ƒ2

2
and images under p coincide, then we construct the same type of 3–simplex H ,

only that this time we will take its �f0;1;3g–face to be degenerate and extend H from its right outer horn
using the right p–outerness of ˛. Replacing p with pop W Eop!Bop we get the analogous statements for
the uniqueness of right inner and left outer lifts.

Remark 2.1.8 Let p W E! B be a weak fibration of1–bicategories. For given x; z 2 E, if we base
change the weak fibration E=z! E�BB=pz along the map fxg �BB=pz! E�BB=pz then we get the
map of maximally scaled simplicial sets, whose underlying map of simplicial sets is

pFx;z W HomFE.x; z/! HomFB.px;pz/;

which is a model for the induced map on mapping1–categories by [8, Section 2.3]; see in particular
[8, Proposition 2.23]. Since base change maps detect (co)cartesian edges, it follows that for a triangle
� W�2! E such that � j�f0;1g is degenerate, we have:

� If � is left p–inner then the corresponding edge of HomFE.x; z/ is pFx;z–cartesian.

� If � is left p–outer then the corresponding edge of HomFE.x; z/ is pFx;z–cocartesian.

2.2 2–Inner and 2–outer fibrations

Definition 2.2.1 Let p W E!B be a weak fibration and � W�2!B a triangle.

� We say that � has a sufficient supply of left (resp. right) p–inner lifts if for every � Wƒ2
1
! E lifting

� jƒ2
1

there exists a left (resp. right) p–inner triangle � W�2! E such that p� D � and � jƒ2
1
D �.

� We say that � has a sufficiently supply of left p–outer lifts if for every � W ƒ2
0
! E lifting � jƒ2

0

and such that �j�f0;1g is p–cocartesian, there exists a left p–outer triangle � W�2! E such that
p� D � and � jƒ2

0
D �.
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� We say that � has a sufficient supply of right p–outer lifts if for every � Wƒ2
2
! E lifting � jƒ2

0
and

such that �j�f1;2g is p–cartesian, there exists a right p–outer triangle � W�2! E such that p� D �

and � jƒ2
2
D �.

Definition 2.2.2 A weak fibration of scaled simplicial sets p W E!B is said to be a 2–inner fibration if
every triangle in B admits both a sufficient supply of left p–inner lifts and a sufficient supply of right
p–inner lifts.

We say that p is a 2–inner cartesian fibration if it is both a 2–inner fibration and a cartesian fibration (in
the sense of Definition 1.4.9). We say that p is a 2–inner cocartesian fibration if pop W Eop! Bop is a
2–inner cartesian fibration.

Definition 2.2.3 A weak fibration of scaled simplicial sets p W E!B is said to be a 2–outer fibration if
the following conditions are satisfied:

(i) Every triangle in B admits both a sufficient supply of left p–outer lifts and a sufficient supply of
right p–outer lifts.

(ii) The collection of left p–outer triangles in E is closed under right whiskering and the collection of
right p–outer triangles is closed under left whiskering.

We say that p is a 2–outer cartesian fibration if it is both a 2–outer fibration and a cartesian fibration (in
the sense of Definition 1.4.9). Dually, we say that p is a 2–outer cocartesian fibration if pop W Eop!Bop

is a 2–outer cartesian fibration.

Remark 2.2.4 For the previously introduced classes of fibrations, the class of 2–inner/outer (co)cartesian
fibrations is readily seen to be closed under base change.

Definition 2.2.5 Given 2–inner/outer (co)cartesian fibrations q WD!A and p W E!B, a morphism of
2–inner/outer (co)cartesian fibrations from q to p is a commutative square

D E

A B

q

g

p

f

such that g sends q-(co)cartesian arrows to p–(co)cartesian arrows and left/right p–inner/outer triangles
to left/right q–inner/outer triangles.

Proposition 2.2.6 Let p W E!B be a weak fibration of 1–bicategories. Then:

(i) If p is a 2–inner fibration then the induced map px;y WHomFE.x;y/!HomFB.px;py/ is a cartesian
fibration of 1–categories for every x;y 2 E.

(ii) If p is a 2–outer fibration then the induced map px;y W HomFE.x;y/! HomFB.px;py/ is a cocarte-
sian fibration of 1–categories for every x;y 2 E.
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Proof The condition that p is a weak fibration implies that the induced map E=y ! E�B B=py is a
1–outer fibration (see Remark 1.4.11 and Example 1.4.12), and hence its base change .E=y/x! .B=py/px

is a 1–outer fibration as well, and in particular a weak fibration. This last map is between1–bicategories
in which every triangle is thin, and hence its underlying map of simplicial sets

px;y W HomFE.x;y/! HomFB.px;py/

is an inner fibration between1–categories. We also note that arrows in HomFB.px;py/ correspond to
triangles � W�2!B such that � j�f0;1g is degenerate on px and � j�f2g D py. More precisely, these are
arrows from � j�f0;2g to � j�f1;2g , considered as vertices in HomFB.px;py/.

Now if p is a 2–inner fibration, then for any choice of an edge g W x! y in E lifting � j�f1;2g , there exists
a left p–inner triangle � such that � j�f0;1g is degenerate, � j�f1;2g D g and p� D � . By Remark 2.1.8
the triangle � determines a px;y–cartesian lift with target g of the arrow in HomFB.px;py/ determined
by � . Since g was arbitrary we conclude that px;y is a cartesian fibration. Similarly, if p is a 2–outer
fibration we have that for any choice of an edge g W x! y in E lifting � j�f0;2g , there exists a left p–outer
triangle � such that � j�f0;1g is degenerate, � j�f0;2g D g and p� D � . By Remark 2.1.8, the triangle �
determined a px;y–cocartesian lift with domain g of the arrow in HomFB.px;py/ determined by � , and
so px;y is a now a cocartesian fibration.

2.3 Congruent triangles

Our goal in the present subsection is to establish some preliminary results showing that for most questions
about 2–outer (co)cartesian fibrations between1–bicategories, one may restrict attention to left/right
outer triangles which are left/right-degenerate in the following sense:

Definition 2.3.1 We say that a triangle � W �2 ! X is left degenerate if the edge � j�f0;1g of X is
degenerate. The triangle � is said to be right degenerate if the edge � j�f1;2g is degenerate.

Warning 2.3.2 To avoid confusion, let us emphasize that left (or right) degenerate triangles in the sense
of Definition 2.3.1 are not necessarily themselves degenerate. This terminology is also used in [1].

We will make use of the following construction.

Definition 2.3.3 Let X be a scaled simplicial set. Given a 3–simplex � W�3!X of the form

x0

x1 x2

x3

f

'

�

x0

x1 x2

x3

f

� 0

'

we say that � exhibits � as left congruent to � 0, and � 0 as right congruent to � .
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Lemma 2.3.4 Let p W E!B be a weak fibration and let � and � 0 be two triangles in E such that � is
left congruent to � 0 via a 3–simplex � as in Definition 2.3.3. Then the following holds:

(i) The triangle � is left/right p–inner if and only if � 0 is.

(ii) If f is p–cocartesian and � 0 is left p–outer , then � is left p–outer.

(iii) If f is p–cartesian and � is right p–outer , then � 0 is right p–outer.

(iv) If f is an equivalence , then � is left/right p–outer if and only if � 0 is.

Proof The first three statements follows directly from the partial two-out-of-three properties elaborated
in Remark 2.1.5 together with the fact that thin triangles are always left and right p–inner and that
thin triangles with p–cocartesian left leg are left p–outer, while thin triangles with p–cartesian right
leg are right p–outer; see Remark 2.1.3. To prove the last claim, we note that if f is an equivalence
then the 3–simplex � determines in particular an equivalence between the arrows associated to � and � 0

in Ex0=, where x0D �.0/D �
0.0/, and hence each of these arrows is strongly cartesian with respect to the

projection Ex0=! E�BBpx0= if and only if the other is so; see Remark 1.4.8. Similarly, � determines
an equivalence between the arrows associated to � and � 0 in E=x3

, where x3 D �.2/D �
0.2/, and hence

each of these arrows is strongly cocartesian with respect to the projection E=x3
! E�B B=px3

if and
only if the other is so.

Lemma 2.3.5 Let p W E! B be a weak fibration between 1–bicategories and let � and � 0 be two
triangles in B such that � is left congruent to � 0. Then the following holds:

(i) If the left leg of � 0 admits a sufficient supply of p–cocartesian lifts and � 0 admits a sufficient
supply of left p–outer lifts , then � admits a sufficient supply of left p–outer lifts.

(ii) If the right leg of � admits a sufficient supply of p–cartesian lifts and � admits a sufficient supply
of right p–outer lifts , then � 0 admits a sufficient supply of right p–outer lifts.

Proof We prove the first claim, the second claim then follows by applying the first claim to Eop and
switching the roles of � and � 0. Let � W�3! E be a 3–simplex as above exhibiting � as left congruent
to � 0. In particular, � D �j�f0;2;3g . We need to show that for every pair of arrows

y0

e0;3
//

e0;2
!!

y3

y2

of E lifting � j�f0;2g and � j�f0;3g , respectively, with e0;2 being p–cocartesian, there exists a left p–outer
triangle lifting � :

y0 y3

x2

e0;2

e0;3

e2;3
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Now by assumption, the left leg of � 0 admits a p–cocartesian lift e0;1 W y0! y1. Since � 0 is assumed to
have a sufficient supply of left p–outer lifts, we may now find a left p–outer lift � 0 of � 0, depicted as

y0 y3

y1

e0;3

e0;1 e1;3

At the same time, since �j�f0;1;2g is thin and e0;1 is p–cocartesian the pair e0;1; e0;2 extends to a thin
triangle � W�f0;1;2g! E such that p� D �j�f0;1;2g . Set e1;2 D � j�f1;2g . By the two-out-of-three property
for p–cocartesian edges — eg the dual of [6, Lemma 2.3.8] — we get that e1;2 is p–cocartesian. Since
�j�f1;2;3g is thin we may now lift it to a triangle � W�f1;2;3g! E extending e1;2 and e1;3. The triangles � 0,
� and � now glue to give a map ˛ W ƒ3

1
! E lifting �jƒ3

1
, where ˛ sends �f0;1;2g and �f1;2;3g to thin

triangles by construction. Since p is a weak fibration we may extend ˛ to a map ˇ W�3! E lifting �, so
that � WD ˇj�f0;2;3g gives in particular a triangle lifting � and extending e0;2; e0;3. The 3–simplex ˇ now
exhibits � as left congruent to � 0 and hence � is left p–outer by Lemma 2.3.4(2).

Remark 2.3.6 In the proof of Lemma 2.3.5(1) we have complete freedom in choosing the p–cocartesian
lift e0;1 of � 0j�f0;1g . We may consequently slightly weaken the assumption on � 0: it suffices to assume
that for every choice of lift of e1;3 of � 0j�f1;2g there exists some left p–outer lift � 0 of � 0 such that
� j�f1;2g D e1;3 and � j�f0;1g is p–cartesian (as opposed to assuming this for any choice of p–cocartesian
lift of � j�f0;1g). For example, if � 0 is left degenerate then it suffices to assume that it has a sufficient supply
of left degenerate left p–outer lifts (that is, for each choice of a lift of � 0j�f1;2g). A similar statement
holds for the right p–outer case of Lemma 2.3.5(2).

Lemma 2.3.7 Let B be an 1–bicategory. Then the following holds:

(i) Any triangle � in B is left congruent to a left degenerate triangle � 0.

(ii) Any triangle � 0 in B is right congruent to a right degenerate triangle � .

Proof We prove the first claim. The second claim then follows by applying the first statement to Bop

and switching the roles of � and � 0. Let us depict � as

x0 x3

x2

f

h

g

Let K ��3 be the simplicial subset spanned by the faces �f0;2;3g and �f0;1;2g and let � WK!B be the
map which sends �f0;2;3g to � and �f0;1;2g to the degenerate triangle whose left leg is degenerate and
whose other two legs are f . We may then visualize � as

x0 x3

x1 x2

f

h

f

D
g
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Now since B is an1–bicategory we may extend � to a map �0 Wƒ3
2
!B which sends the triangle�f1;2;3g

to a thin triangle, and then proceed to extend �0 to a full 3–simplex �3!B, which we can depict as

x0

x1 x2

x3

f

gf

h

D

�

x0

x1 x2

x3

f

g

h

� 0

'

This 3–simplex then exhibits � as left congruent to � 0, and � 0 is left degenerate, as desired.

Corollary 2.3.8 Let p W E!B be a weak fibration. If every left degenerate triangle in B has a sufficient
supply of left p–outer lifts , then every triangle in B has a sufficient supply of left p–outer lifts. Similarly ,
if every right degenerate triangle in B has a sufficient supply of right p–outer lifts then every triangle
in B has a sufficient supply of right p–outer lifts.

Proof Combine Lemma 2.3.7 with Lemma 2.3.5 using the fact that any degenerate arrow in B has a
sufficient supply of (co)cartesian lifts.

Using Remark 2.3.6 we may also obtain the following strengthening of Corollary 2.3.8:

Corollary 2.3.9 Let p W E!B be a weak fibration. If every left degenerate triangle in B has a sufficient
supply of left degenerate left p–outer lifts , then every triangle in B has a sufficient supply of left p–outer
lifts. Similarly , if every right degenerate triangle in B has a sufficient supply of right-degenerate right
p–outer lifts then every triangle in B has a sufficient supply of right p–outer lifts.

2.4 Homotopy invariance of fibrations

Our goal in this section is to prove the following homotopy invariance property for (co)cartesian fibrations.

Proposition 2.4.1 Let
D E

A B

q

'

p

'

be a commutative diagram of 1–bicategories whose vertical maps are both bicategorical fibrations and
whose horizontal maps are bicategorical equivalences. Then p is a 2–inner/outer (co)cartesian fibration
if and only if q is. In addition , an edge in D is q–(co)cartesian if and only if its image in E is p–
(co)cartesian , and similarly a triangle in D is left/right q–inner/outer if and only if its image in E is so
with respect to p.

Algebraic & Geometric Topology, Volume 24 (2024)



4754 Andrea Gagna, Yonatan Harpaz and Edoardo Lanari

The proof of Proposition 2.4.1 will require a couple of lemmas, and will be given at the end of the section.

Lemma 2.4.2 Let
D E

A B

q

'

p

'

be a commutative diagram of 1–bicategories whose vertical maps are both bicategorical fibrations and
whose horizontal maps are bicategorical equivalences. Then an arrow in D is q–(co)cartesian if and only
if its image in E is p–(co)cartesian.

Proof By [6, Proposition 2.3.7] we may replace the property of being cartesian with that of being weakly
(co)cartesian. The desired claim now follows from the characterization [6, Proposition 2.3.3] of weakly
(co)cartesian arrows in terms of mapping spaces.

In any weak fibration p W E! B between1–bicategories, the collection of p–(co)cartesian arrows is
closed under equivalences in the arrow category; see [6, Remark 2.3.12]. We now show that a similar
property holds for inner/outer triangles:

Lemma 2.4.3 Let p W E! B be a weak fibration between1–bicategories , and let H W �1
[
��2

[
! E

be levelwise invertible natural transformation between triangles. Then �0 WD H j�f0g��2 is left/right
p–inner/outer if and only if �1 WDH j�f1g��2 is so.

Proof To fix ideas we prove the left inner and left outer cases, the right inner and right outer cases then
follow by replacing p with opposite. In addition, it will suffice to prove that �0 is left p–inner/outer as
soon as �1 is such, since we can get the other direction by replacing H by the inverse equivalence. We
hence assume that �1 is left p–inner/outer.

For i D 0; 1; 2, let �i W�
3!�1 ��2 be the 3–simplex given by

�i.j /D

�
.0; j / if j � i;

.1; j � 1/ if j > i:

We may then write H�0 as

�

� �

�

'

'

�

�

� �

�

'

'

�1

for some triangle � . Since �1 is left p–inner/outer we get from the two-out-of-three properties of
Remark 2.1.5 that � is left p–inner/outer (in the outer case, we also point out that the triangle H�0j�f0;1;3g
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is left p–outer by Remarks 2.1.3 and 1.4.7, since it is thin and its left leg is an equivalence). We now
write H�1 as

�

� �

�

'

'

�

�

� �

�

'

� 0

'

for some triangle � 0. Since � is left p–inner/outer we now get from Points (1) and (4) of Lemma 2.3.4
that � 0 is left p–inner/outer. Finally, we may write H�2 as

�

� �

�

'

�0

'

�

� �

�

'

� 0

'

and so by Lemma 2.1.6 we conclude that �0 is left p–inner/outer as well, as desired.

Proof of Proposition 2.4.1 We first note that since both vertical arrows are fibrant and cofibrant in the
arrow category (with respect to the projective model structure), the existence of a levelwise equivalence
from q to p implies the existence of a levelwise equivalence from p to q. It will hence suffice to show
that if p is a 2–inner/outer (co)cartesian fibration then so is q. Now since weak equivalences between
fibrant objects are preserved under base change along fibrations it follows from the two-out-of-three
property that the map D! E�BA is an equivalence of1–bicategories. The map E0 WD E�BA!A is
then again a 2–inner/outer (co)cartesian fibration (Remark 2.2.4). We now factor the weak equivalence
D
'
�! E0 as a composite

D
'
�!D0

'
�! E0;

where the first map is a trivial cofibration and the second a trivial fibration. Then D0! E0! A is a
composite of a 2–inner/outer (co)cartesian fibration and a trivial fibration of scaled simplicial sets, and is
hence itself again a 2–inner/outer (co)cartesian fibration. On the other hand, since D!D0 is a trivial
cofibration and D!A is in particular a bicategorical fibration we may solve the lifting problem

D

��

D

��

D0 //

>>

A

so that we obtain a retract diagram of arrows

D

q

��

i
// D0

q0

��

r
// D

q

��

A A A
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Now by Lemma 2.4.2 the map D0!D preserves (co)cartesian arrows over A, and hence the fact that D0

has a sufficient supply of q0–(co)cartesian edges implies that D has a sufficient supply of q–(co)cartesian
edges. It is thus left to show that D also has a sufficient supply of left/right q–inner/outer triangles.
Solving a lifting problem of the form

Œ�1 �D�
`
@�1�D0 Œ@�

1 �D� //

��

D0

q0

��

D0 ��1 //

H

66

A

we obtain a natural transformation H over A from i ı r WD0!D0 to the identity idD0 , whose restriction
to D is constant on i . Since i is a trivial cofibration, it is in particular essentially surjective, and so the
natural transformation H is levelwise invertible. We now prove the inner case. Suppose we are given
a triangle � W �2 ! A and a lift � W ƒ2

1
! D of � jƒ2

1
. Since q0 is a left/right inner fibration we may

extend i� to a left/right q0–inner triangle � W�2!D0 lifting � . Evaluating the levelwise invertible natural
transformation H at � we obtain an equivalence i r�) � covering the identity transformation on � and
restricting to the identity transformation from i� to itself on ƒ2

1
. By Lemma 2.4.3 we deduce that i r� is

also q0–inner. Since i admits a retraction and by the explicit description of left/right inner triangles in
terms of lifting properties as in Remark 2.1.2, we then deduce that r� itself is a left/right q–inner extension
of � lifting � . In the outer case, the argument for the existence of a sufficient supply of left/right q–outer
triangles is completely analogous, but one also needs to show the closure of q–outer triangles under
whiskering as required in Definition 2.2.3(2). But this again follows from the corresponding property
for q0 and the fact that i WD!D0 detects left/right outer triangles, as it admits a retraction over A.

2.5 Equivalences of cartesian fibrations

This section is devoted to the proof of a fiberwise criterion to test equivalences of fibrations.

Theorem 2.5.1 Consider a morphism of 2–inner/outer (co)cartesian fibrations (in the sense of Definition
2.2.5) given by a commutative diagram of the form

(5)
E E0

B B0

p

r

q

f

where p and q are 2–inner/outer cartesian fibrations between 1–bicategories. Suppose that f is an
equivalence of 1–bicategories. Then r is an equivalence if and only if the induced map rb W Eb! E0

f .b/

on the level of fibers is an equivalence of 1–bicategories for all b 2B.

Before proving this, we need a preliminary result, generalizing [12, Proposition 2.4.4.2]. Here we make
use of the results from [6] involving the slice1–bicategories associated with marked scaled simplicial
sets; see Section 1.3 and Notation 1.3.1.
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Lemma 2.5.2 Let p W C!D be a 2–inner/outer cartesian fibration of 1–bicategories. Let x;y 2 C be
two objects , xe W px ! py an arrow between their images in D, and e W x0! y a p–cartesian lift of xe.
Then the (homotopy) fiber of the map

� W HomFC.x;y/! HomFD.px;py/

at xe is naturally equivalent to the mapping1–category HomFCpx
.x;x0/, where Cpx denotes the (homotopy)

fiber of p over px.

Proof To begin with we note that the map � is a cartesian (or cocartesian in the outer case) fibration
of 1–categories by Proposition 2.2.6 and hence the homotopy fiber in question is equivalent to the
corresponding strict fiber. We now consider the following diagram

C=e]

'

vv

'

''

C=x0 �D=px0
D=xe] C=y �D=py

D=xe]

where the left diagonal map is a trivial fibration by [6, Lemma 2.4.6] and the right diagonal map is a
trivial fibration by [6, Lemma 2.3.6] and the assumption that e is p–cartesian (and is hence in particular
weakly p–cartesian, in the sense of loc. cit.). Taking fibers over .x; s1.xe// 2 C�D D=xe] we thus get a
zig-zag of equivalences

C=e] �C�DD=xe] f.x; s1.xe//g

'

uu

'

((

HomFCp.x/
.x;x0/] ��1.xe/]

relating the fiber of � over xe to HomFCp.x/
.x;x0/, as desired.

Proof of Theorem 2.5.1 We prove the 2–inner cartesian case. The proof for the remaining three
variance flavors proceeds in exactly the same manner. Let us begin by proving the “only if” direction
of the statement. Every object in the square (5) is fibrant, and the vertical maps are fibrations by
Proposition 1.4.13, therefore every pullback along these maps is automatically a homotopy pullback.
Consider the following commutative cube:

Eb E0
f .b/

E E0

�0 �0

B B0

rb

r

p
qfbg

ff .b/gf
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The front face and the side faces are homotopy pullbacks by assumption, so that the back one must also
be such. Since the bottom horizontal map is an equivalence, the map rb must be an equivalence as well.

Assume now that r is a fiberwise equivalence, and let us prove it is essentially surjective on objects and
fully faithful. To see that r is essentially surjective, factor it as a composite E! E0 �B0 B! E0, where
the first map is essentially surjective since rb W Eb! E0

f b
is essentially surjective for every b 2B, and the

second is essentially surjective because f WB!B0 is so. Concerning full-faithfulness, we consider the
following commutative square of1–categories:

(6)

HomFE.x;y/ HomFE0.rx; ry/

HomFB.px;py/ HomFB0.qrx; qry/

p

r

q

f

Here, we have used the fact that qr D fp, and we denoted the induced action between the1–categories
of morphisms with the same letter as that of the map between the relevant1–bicategories. Now, the
vertical maps are cartesian fibrations of1–categories by Proposition 2.2.6, and the bottom horizontal
map is an equivalence since f is fully faithful. Therefore, the top horizontal map is an equivalence if and
only if the square (6) is a homotopy pullback, which happens precisely if the maps induced between the
(strict) fibers of the vertical maps are equivalences. Thanks to Lemma 2.5.2, the fiber of the left-hand side
map over xe W p.x/! p.y/ coincides with HomFEpx

.x;x0/ for some p–cartesian 1–simplex e W x0! y that
lifts xe. Since r is assumed to preserve cartesian edges we have that re W rx0! ry is a q–cartesian lift
of f xe, and so the fiber of q over f .xe/ is given by HomF

E0qr x
.rx; rx0/. We can now finish the proof by

observing that the induced map

HomFEpx
.x;x0/! HomF

E0qr x
.rx; rx0/

is an equivalence of 1–categories, since Epx ! E0
fpx
' E0qrx is assumed to be an equivalence of

1–bicategories.

3 The domain projection

In this section we analyze a key example of a 2–outer cartesian fibration: the domain projection
d WFungr.�1;C/!C induced by the inclusion f0g ,!�1, where Fungr.�1;C/ is the1–bicategory whose
objects are the arrows in C and whose morphisms are the lax-commutative squares. It is characterized by
the property that for every scaled simplicial set .K;TK /, maps .K;TK /! Fungr.�1;C/ correspond to
maps of scaled simplicial sets

�1
[ ˝ .K;TK /! C;

where ˝ denotes the Gray product of scaled simplicial sets [7, Definition 2.1]. Explicitly, �1
[
˝ .K;TK /

is the scaled simplicial set whose underlying simplicial set is the cartesian product �1 �K, and where a
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triangle � W�2!�1 �K is thin if and only if its image in K belongs to TK and either � j�f0;1g maps to
a degenerate edge in K or � j�f1;2g maps to a degenerate edge in �1. Here, we have used the fact that all
the triangles in �1

[
are thin, otherwise the additional condition of projecting to a thin triangle in the first

factor would have been necessary.

Remark 3.0.1 By the main result of [7] the functor �˝� is a left Quillen bifunctor. It then follows
that for any1–bicategory C, the domain projection

d W Fungr.�1;C/! C

is a bicategorical fibration of1–bicategories, and in particular a weak fibration; see Remark 1.4.2.

Our argument to show that the domain fibration is a 2–outer cartesian fibrations is based on the following
extension lemma.

Lemma 3.0.2 Let C be an 1–bicategory, and for n� 2 suppose we are given an extension problem of
the form �

Œ�1 �ƒn
n�

a
@�1�ƒn

n

Œ@�1
��n�;T 0

�
��

�
// C

.�1 ��n;T /

66

where

T D f�f.0;n�1/;.0;n/;.1;n/g; �f.0;0/;.1;n�1/;.1;n/g
g

and T 0 is its restriction to the top left corner. If � sends �f1g ��fn�1;ng to an invertible edge in C, then
the dotted extension exists.

Proof We define a sequence of scaled maps

�1; : : : ; �n�1 W .�
n; �f0;n�1;ng/! .�1

��n;T /

in the following manner:

�i.j /D

�
.0; j / if j < i;

.1; j / if j � i:

Set K0 WD
�
Œ�1�ƒn

n�
`
@�1�ƒn

n
Œ@�1��n�;T 0

�
and Ki WDKi�1[�i for 1� i � n�1, so that for every

1� i � n� 1 we have pushout diagrams of the form

.ƒn
n; f�

f0;n�1;ngg/ Ki�1

.�n; f�f0;n�1;ngg/ Ki
�i
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These all have the property that the edge �fn�1;ng is mapped to an equivalence in C. All these maps
admit lifts against C by [6, Corollary 2.3.10], and so we can extend the map � to a map �0 WKn�1! C.
Consider now the .nC 1/–simplices �0; : : : ; �n W�

nC1!�1 ��n defined as

�i.j /D

�
.0; j / if j � i;

.1; j � 1/ if j > i:

Observe that �0; : : : ; �n�1 can be promoted to maps

.�nC1; f�f0;n;nC1g
g/! .�1

��n;T /

whereas �n can be promoted to a map

.�nC1; f�fn�1;n;nC1g
g/! .�1

��n;T /

We now set KnCk DKn�1Ck [ �n�k for 0 � k � n, and observe that K2n D .�
1 ��n;T /. We then

have a pushout diagram of the form

.ƒnC1
n ; f�fn�1;n;nC1ggj

ƒ
nC1
n

/ Kn�1

.�nC1; f�fn�1;n;nC1gg/ Kn
�n

and, for every k > 0, there are pushout diagrams of the form

.ƒnC1
nC1

; f�f0;n;nC1gg/ Kn�1Ck

.�nC1; f�f0;n;nC1gg/ KnCk
�n�k

where the corresponding image of the edge �fn;nC1g in C is an equivalence. As before, this is enough to
prove the existence of an extension to C.

Remark 3.0.3 Applying Lemma 3.0.2 to Cop one obtains the following dual form of its statement, which
we spell out for the convenience of the reader: suppose given an extension problem of the form�

Œ�1 �ƒn
0
�
a

@�1�ƒn
0

Œ@�1
��n�;T 0

�

��

�
// C

.�1 ��n;T /

66

where
T D f�f.0;0/;.1;0/;.1;1/g; �f.0;0/;.0;1/;.1;n/gg

and T 0 is its restriction to the top left corner. If � sends �f1g ��f0;1g to an invertible edge in C then the
dotted lift exists.
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We now consider the question of cartesian 1–simplices for the domain projection.

Lemma 3.0.4 Let C be an 1–bicategory and consider the domain projection d W Fungr.�1;C/ ! C

as above. Then a 1–simplex ˛ W �1 ! Fungr.�1;C/ is d–cartesian if its transpose y̨ W �1 ˝�1 ! C

corresponds to a commutative square (ie both its nondegenerate triangles are thin) with the side y̨.f1g��1/

being an equivalence in C. Pictorially, y̨ looks like

a x

b y

kg '

l

'

'

Proof Consider a 1–simplex ˛ W�1! Fungr.�1;C/, as described above. Given n� 2 and a solid square
of the form

�fn�1;ng

.ƒn
n; ƒ

n
n\�

f0;n�1;ng/ Fungr.�1;C/

.�n; �f0;n�1;ng/ C

˛

d

we have to exhibit a filler as indicated by the dotted arrow. Note that this lifting problem corresponds to
one of the form

(7)

�
�1 �ƒn

n

a
�f0g�ƒn

n

�f0g ��n;T 0
�

C

.�1 ��n;T /

f

in which �1 ��fn�1;ng is mapped to y̨ under the adjunction �1˝� a Fungr.�1;�/. Here T is the
union of the triangles which are thin in �1

[
˝ .�n; f�f0;n�1;ngg/, together with �f.0;n�1/;.0;n/;.1;n/g, and

T 0 � T is the subset of those triangles which are contained in the domain of the vertical arrow in (7).
Since the edge �f1g ��fn�1;ng maps to an invertible edge of C by our assumption on ˛ and T contains
�f1g ��f0;n�1;ng we can extend the map f in (7) to a map

f 0 W
�
Œ�1
�ƒn

n�
a

@�1�ƒn
n

Œ@�1
��n�;T 00

�
! C;

where T 00 is the intersection of T with the triangles in Œ�1 � ƒn
n�
`
@�1�ƒn

n
Œ@�1 � �n�. Let S D

T 00[f�f.0;n�1/;.0;n/;.1;n/g; �f.0;0/;.1;n�1/;.1;n/gg. Then S is contained in T and by Lemma 3.0.2 we may
extend f 0 to .�1��n;S/. When n�3 we have that T DT 00DS and so the proof is complete. In the case
nD2, one needs to additionally verify that the resulting extension sends�f.0;0/;.1;0/;.1;1/g to a thin triangle.
Indeed, this follows from [8, Proposition 3.4] since S contains �f.0;0/;.1;1/;.1;2/g; �f.0;0/;.1;0/;.1;2/g and
�f.1;0/;.1;1/;.1;2/g, and �f.1;1/;.1;2/g maps to an invertible edge in C by assumption.
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Lemma 3.0.5 The domain projection

d W Fungr.�1;C/! C

of an1–bicategory C has enough cartesian edges.

Proof A lifting problem of the form

�f1g Fungr.�1;C/

�1 C

h

d

f

corresponds to the following data in C:
x

y z

f

h

This can be extended to a 1–simplex in Fungr.�1;C/, depicted as

x z

y z

f

hf

hf

h

'

D

where the bottom triangle is given by an extension along ƒ2
1
!�2

]
and the upper triangle is degenerate.

Such a 1–simplex is then d–cartesian by Lemma 3.0.4.

Lemma 3.0.6 Let ˛ W�2! Fungr.�1;C/ be a triangle with transpose y̨ W�1˝�2! C.

(i) If y̨j�f1g��2 is thin and ˛j�f1;2g satisfies the assumption of Lemma 3.0.4 (so that it is d–cartesian
by that lemma), then ˛ is right d–outer.

(ii) If y̨j�f1g��2 is thin and ˛j�f0;1g is invertible , then ˛ is left d–outer.

Proof We first prove (i). By Remark 2.1.2 we need to consider a lifting problem of the form

�
f0;n�1;ng

[

.ƒn
n/[ Fungr.�1;C/

�n
[

C

˛

d

for n� 3, where we have to exhibit a diagonal filler as indicated by the dotted arrow.
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We obtain an equivalent lifting problem of the form�
�1 �ƒn

n

a
�f0g�ƒn

n

�f0g ��n;T
�

C

.�1 ��n;T /

f

where T is the set of thin triangles in �1
[
˝�n

[
together with �f.0;n�1/;.0;n/;.1;n/g and �f1g��f0;n�1;ng

(all of whom are contained in the top left corner, since n� 3). Our assumption on ˛ implies that the edge
�f1g ��fn�1;ng is invertible in C and so by [6, Corollary 2.3.10] we can extend the map f to a map

f 0 W
�
�1
�ƒn

n

a
@�1�ƒn

n

@�1
��n;T

�
! C:

Now since T contains �f.0;0/;.1;0/;.1;n�1/g, �f.0;0/;.1;0/;.1;n/g and �f1g ��f0;n�1;ng and C is an 1–
bicategory, the map f 0 must also send �f.0;0/;.1;n�1/;.1;n/g to a thin triangle; see [13, Remark 3.1.4]. We
may consequently apply Lemma 3.0.2 in order to extend f 0 to all of .�1 ��n;T /, as desired.

We now prove (ii). By Remark 2.1.2 we now need to consider a lifting problem of the form

�
f0;1;ng

[

.ƒn
0
/[ Fungr.�1;C/

�n
[

C

˛

d

with n� 3. We obtain an equivalent lifting problem of the form�
�1 �ƒn

0

a
�f0g�ƒn

0

�f0g ��n;T
�

C

.�1 ��n;T /

f

where T is the set of thin triangles in�1
[
˝�n

[
together with�f.0;0/;.0;1/;.1;1/g and�f1g��f0;1;ng. Since

the image of the edge �f1g ��f0;1g is invertible in C we can extend the map f to a map

f 0 W
�
Œ�1
�ƒn

0�
a

@�1�ƒn
0

Œ@�1
��n�;T

�
! C:

Now since T contains�f.0;0/;.1;0/;.1;1/g,�f.0;0/;.1;0/;.1;n/g and�f1g��f0;1;ng and C is an1–bicategory,
the map f 0 must also send �f.0;0/;.1;1/;.1;n/g to a thin triangle. Since f 0 also sends �f.0;0/;.0;1/;.1;1/g and
�f.0;1/;.1;1/;.1;n/g to thin triangles, the same holds for �f.0;0/;.0;1/;.1;n/g. We may consequently apply the
dual form of Lemma 3.0.2 (see Remark 3.0.3), in order to extend f 0 to all of .�1��n;T /, as desired.
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Finally, we are ready to prove the main result of this section.

Theorem 3.0.7 Given an 1–bicategory C, the domain projection

d W Fungr.�1;C/! C

is a 2–outer cartesian fibration , whose p–cartesian 1–simplices are those described in Lemma 3.0.4. In
addition , the right p–outer triangles whose right legs are cartesian are those described in Lemma 3.0.6(1),
and the left p–outer triangles whose left leg is invertible are those described in Lemma 3.0.6(2).

Proof By Remark 3.0.1, the map d is a weak fibration and by Lemma 3.0.4 it has a sufficient supply of
d–cartesian lifts for 1–morphisms. By the essential uniqueness of d–cartesian lifts we deduce that all
d–cartesian arrows are of the form described in Lemma 3.0.4.

We now show that the triangles in C have a sufficient supply of right p–outer lifts. This translates into a
lifting problem of the form

ƒ2
2

Fungr.�1;C/

�2 C

�

d




with �j�f1;2g a d–cartesian edge, and so (as argued just above) of the form described in Lemma 3.0.4.
This means in particular that �j�f1;2g corresponds to a map �1

[
˝�

f1;2g

[
! C which sends both triangles

to thin triangles and the edge �f1g ��f1;2g to an invertible edge in C. Solving this lifting problem in a
way that produces a triangle of Fungr.�1;C/ of the form described in Lemma 3.0.6(1) then corresponds
to solving a lifting problem of the form

(8)

�
�1 �ƒ2

2

a
�f0g�ƒ2

2

�f0g ��2;T 0
�

C

.�1 ��2;T /

y�[


where T 0 is obtained by intersection from T , which in turn contains all triangles which are thin in�1
[
˝�2

[

as well as �f1g ��2 and �f.0;1/;.0;2/;.1;2/g, and y� sends �f1g ��f1;2g to an invertible edge in C. Since
C is an1–bicategory we may then extend y�[ 
 to a map

g W
�
�1
�ƒ2

2

a
@�1�ƒ2

2

@�1
��2;T 00

�
! C;

where T 00 is obtained from T by intersection. Applying Lemma 3.0.2 we may extend g to a map
g0 W .�1 ��2;T 00 [ f�f.0;0/;.1;1/;.1;2/gg/! C. We then observe that there is exactly one triangle in T

which is not in T 00[f�f.0;0/;.1;1/;.1;2/gg, and that is the triangle�f.0;0/;.1;0/;.1;1/g. But this triangle is sent
by g to a thin triangle in C by [8, Proposition 3.4], since T contains �f.0;0/;.1;1/;.1;2/g, �f.0;0/;.1;0/;.1;2/g

and �f.1;0/;.1;1/;.1;2/g, and g sends �f1g ��f1;2g to an invertible edge.
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We now show that the triangles in C have a sufficient supply of left p–outer lifts. Invoking Corollary 2.3.8,
it will suffice to test this only for triangles in B whose left leg is degenerate. This then translates into a
lifting problem of the form

ƒ2
0

Fungr.�1;C/

�2 C

�

d




with �j�f0;1g a d–cocartesian lift of an identity, and hence an invertible edge of Fungr.�1;C/. This means
in particular that �j�f0;1g corresponds to a map �1

[
˝�

f0;1g

[
! C which sends both triangles to thin

triangles and the edges �f0g ��f0;1g and �f1g ��f0;1g to invertible edges in C. Solving this lifting
problem in a way that produces a triangle of Fungr.�1;C/ of the form described in Lemma 3.0.6(2) then
corresponds to solving a lifting problem of the form

(9)

�
�1 �ƒ2

0

a
�f0g�ƒ2

0

�f0g ��2;T 0
�

C

.�1 ��2;T /

y�[


where T 0 is obtained by intersection from T , which in turn contains all triangles which are thin in�1
[
˝�2

[

as well as the triangles �f1g��2 and �f.0;0/;.0;1/;.1;1/g, and y� sends �f"g��f0;1g to an invertible edge
in C for "D 0; 1. Since C is an1–bicategory we may then extend y�[ 
 to a map

g W
�
�1
�ƒ2

0

a
@�1�ƒ2

0

@�1
��2;T 00

�
! C;

where T 00 is obtained from T by intersection. Applying the dual of Lemma 3.0.2 (Remark 3.0.3) we
may extend g to a map g0 W .�1 ��2;T 00 [ f�f.0;0/;.0;1/;.1;2/gg/! C. We then observe that there are
exactly two triangles in T which are not in T 00, namely, �f.0;0/;.1;1/;.1;2/g and �f.0;1/;.1;1/;.1;2/g. To
finish the proof we will show that these two triangles are sent by g to thin triangles in C. For the first
one, we note that since g sends �f.0;0/;.1;0/;.1;1/g, �f.0;0/;.1;0/;.1;2/g and �f1g ��2 to thin triangles,
then it must also send �f.0;0/;.1;1/;.1;2/g to a thin triangle. Then, since g also sends �f.0;0/;.0;1/;.1;1/g

and �f.0;0/;.0;1/;.1;2/g to thin triangles, and the edge �f.0;0/;.0;1/g to an equivalence, then it must send
�f.0;1/;.1;1/;.1;2/g to a thin triangle as well; see [8, Proposition 3.4].

Having provided sufficiently many left and right d–outer lifts of the form appearing in Lemma 3.0.6,
the uniqueness of d–outer lifts, as expressed for example in Remark 2.1.7, shows that all right d–outer
triangles whose right leg is cartesian are of the form described in 3.0.6(1), and all left d–outer triangles
whose left leg is invertible are of the form described in 3.0.6(2). To show that the collection of right
(resp. left) d–outer triangles is closed under right (resp. left) whiskering, it will hence suffice to show
that the collection of triangles ˛ W�2! Fungr.�1;C/ whose adjoint y̨ W�1˝�2! C sends �f1g ��2
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to a thin triangle, is closed under both left and right whiskering. Indeed, this is exactly the preimage in
Fungr.�1;C/ under the codomain projection of the collection of thin triangles in C, and the collection of
thin triangles is closed under whiskering from both sides.

Remark 3.0.8 Passing to opposites, Theorem 3.0.7 implies that the codomain projection

cod W Funopgr.�1;C/! C

is 2–outer cocartesian fibration, whose cocartesian arrows and outer triangles admit similar descriptions.
Note that we have switched not only from domain to codomain but also from Fungr to Funopgr. If we only
switch from domain to codomain then the resulting projection

cod W Fungr.�1;C/! C

is a 2–inner cocartesian fibration. This claim does not formally follow from the outer statement, but
its proof can be obtained using a completely analogous argument, replacing the key extension result of
Lemma 3.0.2 with one involving the pushout product of @�1!�1 and a suitable inner horn inclusion.
Similarly, the projection

d W Funopgr.�1;C/! C

is a 2–inner cartesian fibration.

4 Enriched cartesian fibrations

In this section we define the notion of cartesian fibration in the context of marked simplicial categories.
The definition is motivated by the one given for 2–categories by Buckley in [5], which we recall in
Section 4.1.

4.1 Recollection: fibrations of 2–categories

Fibrations of 2–categories were initially introduced by Hermida [11]. A suitably modified definition was
later given by Buckley [5], who also proved an (un)straightening-type result. In what follows we give a
concise summary of the main results of loc. cit., to be considered as a motivation for the discussion of
simplicial categories in Section 4.2.

Definition 4.1.1 Let p W E!B be a 2–functor between 2–categories.

� A 1–cell f W x! y in E is p–cartesian if the following square is a pullback of categories for every
a 2 E:

E.a;x/ E.a;y/

B.pa;px/ B.pa;py/

f ı�

pa;x pa;y

p.f /ı�

� A 2–cell ˛ W f ) g W x! y in E is p–cartesian if it is cartesian with respect to the induced functor
px;y W E.x;y/!B.px;py/.
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The notion of cartesian fibration for 2–categories amounts to the existence of enough cartesian lifts, as in
the 1–dimensional case, but it also requires an additional property: cartesian 2–cells must be closed under
horizontal composition.

Definition 4.1.2 A 2–functor between 2–categories p W E!B is called a 2–fibration if it satisfies the
following properties:

(i) For every object e 2 E and every 1–cell f W b! p.e/ there exists a p–cartesian 1–cell h W a! e

in E such that p.h/D f .

(ii) For every pair of objects x;y in E, the map px;y W E.x;y/!B.px;py/ is a cartesian fibration of
categories.

(iii) Cartesian 2–cells are closed under horizontal composition, ie for every triple of objects .x;y; z/
in E, the functor ıx;y;z W E.y; z/ � E.x;y/ ! E.x; z/ sends py;z � px;y–cartesian 1–cells to
px;z–cartesian ones.

Replacing cartesian lifts for 1–cells by cocartesian lifts and similarly for 2–cells one may obtain four
different variants of fibration, corresponding to the four possible types of variance for pseudofunctors
B! 2–Cat.

Remark 4.1.3 Condition (iii) of Definition 4.1.2 is equivalent to requiring that given 1–cells in E of the
form f W w! x and g W y! z, the whiskering functors

�ıf WE.x;y/! E.w;y/ and g ı�W E.x;y/! E.x; z/

preserve cartesian 2–cells. This follows from the fact that horizontal composition can be obtained from
vertical composition and whiskering composition.

The following result appears as Theorem 2.2.11 in [5].

Theorem 4.1.4 There exists an equivalence of 3–categories between 2Fibs.B/ and ŒBop
co ; 2–Cat�, the

former being the 3–category of fibrations equipped with a choice of cartesian lifts compatible with
composition , while the latter is the 3–category of (strict) 2–functors into 2–Cat, natural transformations
and modifications.

In the same paper, the author proves several weakenings of this statement, by looking at fibrations without
a choice of lifts (which correspond to pseudofunctors) and fibrations of bicategories.

4.2 Cartesian fibrations of enriched categories

We now consider cartesian fibrations in the setting of Cat1–categories. All definitions and statements
can be dualized to the case of cocartesian fibrations by replacing all Cat1–categories by their opposites.
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Definition 4.2.1 Let p W E!B be a map of marked simplicial categories. A morphism h 2 E.e0; e/0 is
said to be p–cartesian if the induced square

E.a; e0/ E.a; e/

B.pa;pe0/ B.pa;pe/

hı�

pa;e0 pa;e

p.h/ı�

is a homotopy pullback for the model structure on marked simplicial sets.

Definition 4.2.2 Let p W E!B be a fibration of Cat1–categories. We say that p is an enriched cartesian
fibration if for any e 2 E and any morphism f 2 B.a;p.e//0 there exists a p–cartesian morphism
h 2 E.e0; e/0, for some e0 2 E, such that p.h/D f .

Definition 4.2.3 Let p W E!B be a fibration of Cat1–categories. We say that p is an enriched 2–inner
(resp. 2–outer) fibration if it satisfies the following properties:

(i) For every pair of objects .x;y/ in E, the map px;y W E.x;y/!B.px;py/ is a cartesian (resp. co-
cartesian) fibration on the level of underlying simplicial sets.

(ii) For every pair of 0–simplices u W y! z and v W w! x in E, the commutative squares

E.x;y/ E.x; z/ E.x;y/ E.w;y/

B.px;py/ B.px;pz/ B.px;py/ B.pw;py/

uı�

px;y px;z

�ıv

px;y pw;y

p.u/ı� �ıp.v/

are morphisms of cartesian (resp. cocartesian) fibrations, ie the top horizontal maps in both squares
preserve cartesian (resp. cocartesian) edges.

We will say that p is an enriched 2–inner (resp. 2–outer) cartesian fibration if it is an enriched 2–inner
(resp. 2–outer) fibration and an enriched cartesian fibration.

Our goal in the present section is to prove the following:

Theorem 4.2.4 Let p W E!B be a fibration of Cat1–categories. Then p W E!B is an enriched 2–inner
(resp. 2–outer) cartesian fibration in the sense of Definition 4.2.2 if and only if

Nsc.p/ W NscE! NscB

is a 2–inner (resp. 2–outer) cartesian fibration of 1–bicategories.

The remainder of this section is devoted to the proof of Theorem 4.2.4.
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Definition 4.2.5 We will denote by �n D .�1/n the simplicial n–cube and by @�n its boundary, so that
the inclusion @�n ��n can be identified with the pushout-product of @�1 ,!�1 with itself n times.
For i D 1; : : : ; n we denote by un;i

" ,!�n the iterated pushout-product

Œ@�1 ,!�1�� � � ��Œ�f"g ,!�1�� � � ��Œ@�1 ,!�1�;

where " 2 f0; 1g and Œ�f"g ,!�1� appears in the i th factor.

Lurie introduces in [12, Definition 3.1.1.1] the class of cartesian anodyne morphisms (called marked
anodyne in loc. cit.), which is the smallest weakly saturated class generated by a certain set of monomor-
phisms of marked simplicial sets listed in [12, Definition 3.1.1.1], which contain, in particular, the
collection of all (minimally marked) inner horn inclusions, as well as the marked outer horn inclusion
.ƒn

n; f�
fn�1;ngg/ ,! .�n; f�fn�1;ngg/. Dually, we shall call cocartesian anodyne maps the smallest

weakly saturated class generated by the opposites of those maps (or simply those maps whose opposites
are cartesian anodyne). By [12, Proposition 3.1.2.3], (co)cartesian anodyne maps are closed under
pushout-product with monomorphisms.

Lemma 4.2.6 For " 2 f0; 1g, n � 1 and 1 � i � n let Ei
" � .�n/1 be the set of all degenerate edges

together with the edge ."; : : : ; "/��1 � ."; : : : ; "/, where �1 sits in the i th place. Then the inclusion
of marked simplicial sets .un;i

1
;Ei

1
/ ,! .�n;Ei

1
/ is cartesian anodyne , and the inclusion of marked

simplicial sets .un;i
0
;Ei

0
/ ,! .�n;Ei

0
/ is cocartesian anodyne.

Proof We note that the "D 0 and "D 1 statements imply each other by passing to opposites. We hence
just prove the cartesian case. Ignoring the order of factors, we may identify the map un;i

1
,!�n with the

box product of @�n�1 ,!�n�1 and �f1g ,!�1. The nondegenerate m–simplices of �n�1 which are
not in @�n�1 correspond to maps of posets Œm�! Œ1�n�1 whose projection to each factor Œ1� is surjective.
It then follows that the initial vertex of such an m–simplex must be .0; : : : ; 0/, and the final vertex must
be .1; : : : ; 1/. Adding these nondegenerate simplices one by one in an order that respects dimensions
(that is, first all the 1–dimensional ones, then all the 2–dimensional ones, etc, up to dimension n� 1)
results in a factorization of the map .un;i

1
;Ei

1
/ ,! .�n;Ei

1
/ into a finite composite of pushouts of maps

of the form �
�f1g ��m

a
�f1g�@�m

�1
� @�m; f�1

��fmgg
�
! .�1

��m; f�1
��fmgg/

for m� 1. It will hence suffice to show that each of these maps is cartesian anodyne. For `D 0; : : : ;m, let

�` W�
mC1
!�1

��m

be the map given on vertices by the formula

�`.j /D

�
.0; j / if j � `;

.1; j � 1/ if j > `;
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and for k D 0; : : : ;mC 1 let Zk � .�
1 ��m; f�1 ��fmgg/ be the marked simplicial subset obtained

as the union of Œ�1 � @�m�
`
�f1g�@�m Œ�f1g ��m� and the simplices �` for 0� ` < k. Set

Z0
def
D

�
Œ�1
� @�m�

a
�f1g�@�m

Œ�f1g ��m�; f�1
��fmgg

�
:

We then have an ascending filtration of marked simplicial sets

Z0 �Z1 � � � � �ZmC1 D .�
1
��m; f�1

��fmgg/:

For each k D 0; : : : ;m� 1 we then find a pushout square of marked simplicial sets

.ƒmC1
kC1

/[ //

��

Zk

��

.�mC1/[ // ZkC1

so that Zk!ZkC1 is inner anodyne, and in particular cartesian anodyne. Finally, in the last step k Dm

we find a pushout square of the form

.ƒmC1
mC1

; f�fm;mC1gg/ //

��

Zm

��

.�mC1; f�fm;mC1gg/ // ZmC1

so that Zm!ZmC1 is cartesian anodyne, as desired.

We recall the comparison of the notion of (co)cartesian 1–cells between the enriched and scaled models:

Proposition 4.2.7 [6, Proposition 3.1.3] Given a fibration p W E!B of Cat1–categories , an arrow in
E is p–cartesian if and only if the corresponding 1–simplex of NscE is Nsc.p/–cartesian.

Since the morphisms in a given Cat1–category are in bijection with the edges of its scaled coherent
nerve we readily obtain:

Corollary 4.2.8 A fibration p WE!B of Cat1–categories is cartesian if and only if Nsc.p/ is a cartesian
fibration of 1–bicategories (in the sense of Definition 1.4.9).

We now consider the analogous question on the level of triangles.

Remark 4.2.9 Let E be a Cat1–category and consider two 2–simplices ˛ and ˛0 of NscE. If a 3–simplex �
of NscE exhibits ˛ as left-congruent to ˛0 (cf Definition 2.3.3) in the form

x

x y

z

g

hg

f

D

˛

x

x y

z

g

hi

f

˛0

'
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then the 2–simplex �� of E.x; z/ corresponding to � goes from the 1–simplex ˛� of E.x; z/ corresponding
to ˛ to the composition of the 1–simplex .˛0/� corresponding to ˛0 followed by an equivalence. Hence, in
the arrow1–category of E.x; z/ the 3–simplex � induces an equivalence between ˛� and the composition
of .˛0/� with an arrow of E.x; z/ which is an equivalence.

Lemma 4.2.10 Let p W E!B be a fibration of Cat1–categories. Then a triangle ˛ W�2! NscE of the
form

x

y

z

f g

h

˛

is left Nsc.p/–inner if and only if the corresponding 1–simplex ˛� W h! gf in E.x; z/ is px;z–cartesian
and maps to a px0;z–cartesian arrow in E.x0; z/ after precomposing with any arrow x0!x. Similarly, ˛ is
right Nsc.p/–inner if and only if the corresponding 1–simplex ˛� W h! gf in E.x; z/ is px;z–cartesian
and maps to a px;z0–cartesian arrow in E.x; z0/ after postcomposing with any arrow z! z0.

Proof We prove the left inner case. The proof for right inner triangles is completely analogous. Suppose
first that ˛� is px;z–cartesian in E.x; z/ and maps to a px0;z–cartesian arrow in E.x0; z/ after precomposing
with any arrow x0!x. By Remark 2.1.2 we have to provide a solution for every lifting problem of the form

�fn�2;n�1;ng

ƒn
n�1

NscE

�n NscB

˛

Nsc.p/

for n� 3. Transposing along the adjunction Csc a Nsc, this corresponds to a lifting problem of the form

(10)

Csc�fn�2;n�1;ng

Cscƒn
n�1

E

Csc�n B

˛�

f

p

g

where we have committed a small abuse of language denoting by ˛� also the transpose map Csc�2! E

induced by ˛. As a straightforward calculation shows, the lifting problem in (10) corresponds, at the
level of marked simplicial sets, to the lifting problem

.u
n�1;n�1
1

/[ E.x0; z/

.�n�1/[ B.px0;pz/

px0;z
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where x0 WD f .0/. Moreover, the edge .1; : : : ; 1/ ��1 is mapped by the top horizontal map to the
whiskering of the 1–simplex ˛� by a sequence of 0–simplices connecting x0 and x, and it is therefore
px0;z–cartesian in E.x0; z/. The desired lift hence exists by Lemma 4.2.6.

We now prove the “only if” direction, and so we assume that ˛ is left p–inner. By Lemma 2.3.7 we
may find a left degenerate triangle ˛0 such that ˛ is left congruent to ˛0, so that ˛0 is also left p–inner by
Lemma 2.3.4. Then ˛0 has the same first and last vertex as ˛ and hence determines an edge .˛0/� in E.x; z/.
Furthermore, as pointed out in the previous remark the 3–simplex exhibiting ˛0 as left congruent to ˛ also
determines an equivalence in the arrow1–category of E.x; z/ between the edge ˛� and the edge given
by .˛0/� followed by an equivalence. Since every equivalence is px;z–cartesian and moreover the property
of being px;z–cartesian is invariant under equivalences we may replace ˛ by ˛0, so that we may simply
assume that ˛ is left degenerate. We now consider the commutative diagram of marked simplicial sets

(11)

HomFNscE.x; z/
'
//

pFx;y

��

HomNscE.x; z/

��

E.x; z/
'
oo

px;y

��

HomFNscB.x; z/
'
// HomNscB.x; z/ B.x; z/

'
oo

in which the horizontal maps are marked categorical equivalences and the vertical maps are fibra-
tions between fibrant objects in the marked categorical model structure. Here, the horizontal equiva-
lences in the right column are given by the canonical isomorphism HomNscE.x; z/Š Unsc E.x; z/, see
[13, Remark 4.2.1], and the horizontal equivalences in the left column are established in [8, Proposi-
tion 2.33]. The triangle ˛ determines arrows in both the top left and top right marked simplicial sets, and
the images of these two arrows coincides in HomNscE.x; z/ by direct inspection. We hence obtain that
the arrow ˛� is px;z–cartesian in E.x; z/ if and only if the arrow determined by ˛ in HomFNscE.x; z/ is
pFx;z–cartesian. The latter, and hence the former, indeed holds when ˛ is left p–inner by Remark 2.1.8.
The desired implication is now a consequence of the closure of left p–inner triangles under left whiskering;
see Remark 2.1.5.

We now come to the outer counterpart of Lemma 4.2.10.

Lemma 4.2.11 Let p WE!B be a fibration of Cat1–categories. Let ˛� be a triangle in NscE of the form

x

y

z

f g

h

˛�

Then the following holds:

(i) If the associated 1–simplex ˛� W h! gf is px;z–cocartesian in E.x; z/ and f W x! y is Nsc.p/–
cocartesian , then ˛ is left Nsc.p/–outer.

(ii) If the associated 1–simplex ˛� W h! gf is px;z–cocartesian in E.x; z/ and g W y! z is Nsc.p/–
cartesian , then ˛ is right Nsc.p/–outer.
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(iii) If ˛ is left Nsc.p/–outer and f is a degenerate edge , then ˛� is px;z–cocartesian.

(iv) If ˛ is right Nsc.p/–outer and g is a degenerate edge , then ˛� is px;z–cocartesian.

Proof Statements (iii) and (iv) follow from Remark 2.1.8 by using the commutative diagram (11) as
in the proof of Lemma 4.2.10, and statements (i) and (ii) imply each other by passing to opposites. We
now prove (i). Suppose that f is Nsc.p/–cocartesian and that ˛� is px;z–cocartesian in E.x; z/, and let
us prove that ˛ is left Nsc.p/–outer. By Remark 2.1.2 we have to provide a solution for every lifting
problem of the form

(12)

�f0;1;ng

ƒn
0

NscE

�n NscB

˛�

Nsc.p/

Transposing along the adjunction Csc a Nsc we obtain an equivalent lifting problem of the form

Csc�f0;1;ng

Cscƒn
0

E

Csc�n B

˛�

f

p

g

A simple combinatorial analysis shows that this amounts to compatibly solving the lifting problems
determined by the back and front faces of the cube

(13)

u
n�1;1
0

E.x; z/

@�n�2 E.y; z/

�n�1 B.px;pz/

�n�2 B.py;pz/

f0;n

px;z

�ıf0;1g

f1;n

�ıf

g0;n

�ıf0;1g

g1;n

�ıp.f /

py;z

where we have identified

Csc�n.0; n/D�n�1; Cscƒn
0.0; n/Du

n�1;1
0

; Csc�n.1; n/D�n�2; Cscƒn
0.1; n/D @�

n�2:

Equivalently, we may consider this as a lifting problem in the arrow category of marked simplicial sets,
involving the morphism between arrows encoded by the left square against the morphism between arrows
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encoded by the right square. We may endow this arrow category with the projective model structure,
so that cofibrations are Reedy cofibrations and fibrations are levelwise. We then find that in the lifting
problem encoded by the above cube, the left arrow constitutes a cofibration between cofibrant objects,
while the right arrow is a fibration between fibrant objects (by our assumption that p is a fibration of
Cat1–categories).

Now, it is a general fact concerning model categories that the lifting property in a given square involving
a cofibration between cofibrant objects against a fibration between fibrant objects is a homotopy invariant
property, that is, it does not change if one replaces the given square by a levelwise weakly equivalent one
of the same nature. In particular, in proving the existence of a lift we may as well replace the cube (13)
with a levelwise weakly equivalent one, as long as we make sure it also has the property that its left
square is Reedy cofibrant and its right square is levelwise fibrant with vertical legs fibrations. We now
choose to make such a modification by simply replacing the corner E.y; z/ with the fiber product

X WD E.x; z/�B.px;pz/B.py;pz/;

which is also a homotopy fiber product since the vertical legs are fibrations between fibrant objects. The
map E.y; z/! X is an equivalence: indeed, by Proposition 4.2.7, f 2 E.x;y/0 is a cocartesian arrow,
and hence the right square in (13) is homotopy cartesian. We conclude that the new cube is levelwise
equivalent to the old one, while clearly still keeping the same property of having its left square Reedy
cofibrant and its right square levelwise fibrant with vertical maps fibrations. At the same time, by its
construction, the data of a lift in the modified cube is the same as a lift in its back square

u
n�1;1
0

E.x; z/

�n�1 B.px;pz/

px;z

where the edge corresponding to�1�.0; : : : ; 0/ in un�1;1
0

is sent to a px;z–cocartesian edge in E.x; z/ by
assumption. A solution therefore exists by Lemma 4.2.6, thus concluding the proof of the proposition.

Proposition 4.2.12 Let p W E! B be a fibration of Cat1–categories. Then p is an enriched 2–inner
(resp. 2–outer) fibration if and only if

Nsc.p/ W NscE! NscB

is a 2–inner (resp. 2–outer) fibration of 1–bicategories.

Proof We first note that since p is a fibration between fibrant objects the same holds for Nsc.p/, and so
the latter is always a weak fibration. We now recall that the vertices in Nsc.E/ correspond exactly to the
objects of E, and the edges f W x! y in Nsc.E/ correspond exactly to a pair of objects x;y 2 E and a
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vertex f 2 E.x;y/. In addition, triangles
y

g

��

x

f
??

h
// z

correspond bijectively to triples of objects x;y; z 2 E, triples of vertices f 2 E.x;y/, g 2 E.y; z/,
h 2 E.x; z/ and an edge � W h) g ıf in E.x; z/.

Considering inner lifts of triangles, it follows directly from Lemma 4.2.10 that the triangles in Nsc.B/

admits a sufficient supply of left (resp. right) Nsc.p/–inner lifts if and only if each px;y WE.x;y/!B.x;y/

has a sufficient supply of cartesian lifts, and these cartesian lifts are closed under precomposition
(resp. postcomposition) in E. We may then conclude that Nsc.p/ is an 2–inner fibration if and only if E is
a 2–inner fibration of Cat1–categories.

We now consider the outer case. By Corollary 2.3.9 we may restrict attention to triangles in B with
one leg degenerate and lifts whose same leg is degenerate in E. We then deduce from Lemma 4.2.11
that the triangles in Nsc.B/ admits a sufficient supply of left (resp. right) p–outer lifts if and only if
each px;y W E.x;y/!B.x;y/ has a sufficient supply of cocartesian lifts. Since the definition of 2–outer
fibration contains explicitly the closure under left/right whiskering (which corresponds, up to equivalence,
to pre/post composition), we can conclude that Nsc.p/ is a 2–outer fibration if and only if E is an enriched
2–outer fibration of Cat1–categories, as desired.

We can now deduce our main result of interest:

Proof of Theorem 4.2.4 Our goal is to compare enriched 2–inner cartesian fibrations of Cat1–
categories with 2–inner cartesian fibrations of1–bicategories. The cartesian fibrational part is given by
Corollary 4.2.8 while the 2–inner fibrational part is dealt with by Proposition 4.2.12. Combining the two
results the theorem is thereby proven.

We finish this section by collecting a few corollaries which can be easily deduced from the comparison of
Theorem 4.2.4.

Corollary 4.2.13 Let p W E!B be a 2–inner (co)cartesian fibration. Then a triangle � W�2! E is left
p–inner if and only if it is right p–inner.

Proof Since Nsc is a right Quillen equivalence there exists a fibration q W C!D of Cat1–categories
which fits in a commutative diagram of the form

(14)
E NscC

B NscD

p

'

Nscq

'

where the horizontal maps are equivalences of 1–bicategories. Now the right vertical arrow is a
bicategorical fibration, being the image under a right Quillen functor of a Dwyer–Kan fibration, while the
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left vertical arrow is a bicategorical fibration by Proposition 1.4.13. Applying Proposition 2.4.1 we now
obtain that the right vertical map is a 2–inner/outer (co)cartesian fibration and that the top horizontal map
preserves and detects left/right inner triangles. It will hence suffice to prove the left and right Nsc.p/–inner
triangles coincide in Nsc.C/. By Lemma 4.2.10 this amounts to showing that for every x;y 2 C and
morphism e 2 C.x;y/1 in the mapping 1–category, the condition that e is cartesian with respect to
qx;y W C.x;y/! D.qx; qy/ and remains cartesian after postcomposing with any morphism y ! z is
equivalent to the condition that e is qx;y–cartesian and remains cartesian after precomposing with any
morphism w! x. Indeed, by Theorem 4.2.4 we have that q W C!D is an enriched 2–inner cartesian
fibration of Cat1–categories, and so both conditions are equivalent to e simply being qx;y–cartesian.

Corollary 4.2.14 Let E and B two1–bicategories.

(i) A given 2–inner (co)cartesian fibration p W E!B is equivalent to a 1–inner (co)cartesian fibration
if and only if every triangle is left and right inner.

(ii) A given 2–outer (co)cartesian fibration p W E!B is equivalent to a 1–outer (co)cartesian fibration
if and only if every triangle whose left leg is p–cocartesian is left outer and every triangle whose
right leg is p–cartesian is right outer.

Proof From the explicit description of Remark 2.1.2 one immediately finds that if p is a 1–inner
(co)cartesian fibration then every triangle is both left and right p–inner. Similarly, if p is a 1–outer cartesian
fibration then any (co)cartesian arrow is automatically strongly (co)cartesian by [6, Proposition 2.3.7]
(and its dual), and so every triangle whose left leg is p–cocartesian is left p–outer and any triangle whose
right leg is p–cartesian is right p–outer.

To prove the “if” direction, we now invoke the fact that Nsc is a right Quillen equivalence to deduce the
existence of fibration q W C!D of Cat1–categories which fits in a commutative diagram of the form

(15)
E NscC

B NscD

p

'

Nscq

'

whose horizontal maps are equivalences of1–bicategories. Now the right vertical arrow is a bicategorical
fibration, being the image under a right Quillen functor of a Dwyer-Kan fibration, while the left vertical
arrow is a bicategorical fibration by Proposition 1.4.13. Applying Proposition 2.4.1 we now obtain that
the right vertical map is a 2–inner/outer (co)cartesian fibration, and hence by Theorem 4.2.4 the functor
q WC!D is an enriched 2–inner/outer (co)cartesian fibration of Cat1–categories. For every x;y 2E with
images x0;y0 2 NscC (which we can identify with objects of C) we may then consider the commutative
diagram

(16)

HomFE.x;y/

��

'
// HomFNscC.x

0;y0/
'

//

��

HomNscC.x
0;y0/

��

C.x0;y0/
'

oo

��

HomFB.px;py/
'
// HomFNscD.qx0; qy0/

'
// HomNscD.qx0; qy0/ D.qx0; qy0/ ;

'
oo
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in which all vertical arrows are cartesian fibrations in the inner case and cocartesian fibrations in the outer
case. Our assumption implies in particular that every left degenerate triangle in E is left p–inner/outer,
which by Remark 2.1.8 implies that the leftmost vertical map in (16) is a left fibration in the outer
case and a right fibration in the inner case. The same consequently holds for all vertical maps in (16),
which implies that q W C! D is an enriched 1–inner/outer (co)cartesian fibration of Cat1–categories.
By [6, Proposition 3.1.3] this means that Nscq W NscC! NscD is a 1–inner/outer (co)cartesian fibration.
Since the square (15) is an equivalence between two bicategorical fibrations between fibrant objects, these
two fibrations satisfy the same right lifting properties. Applying this to the right lifting properties of
Definition 1.4.3, we conclude that if the right one is a 1–inner fibration then so is the left, and if the
right one is a 1–outer fibration then so is the left. We may consequently deduce that p W E! B is a
1–inner/outer (co)cartesian fibration, as desired.
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