
ATG

Algebraic & Geometric
Topology

msp

Volume 24 (2024)

Index-bounded relative symplectic cohomology

YUHAN SUN





msp

Algebraic & Geometric Topology 24:9 (2024) 4799–4836
DOI: 10.2140/agt.2024.24.4799
Published: 27 December 2024

Index-bounded relative symplectic cohomology

YUHAN SUN

We study the relative symplectic cohomology with the help of an index-bounded contact form. For a
Liouville domain with an index-bounded boundary, we construct a spectral sequence which starts from
its classical symplectic cohomology and converges to the relative symplectic cohomology of it inside a
Calabi–Yau manifold.
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1 Introduction

Given a closed symplectic manifold .M;!/ and a compact subsetD ofM, the relative symplectic cohomol-
ogy SHM .D/ is a Floer-theoretic invariant, which captures both dynamical and topological information
of the pair .M;D/. Its construction by Varolgunes [2018] is based on the Hamiltonian Floer theory of
M with more algebraic ingredients. Roughly speaking, one considers a family of increasing Hamiltonian
functions that go to zero on D while going to positive infinity on M �D. Then SHM .D/ is defined as the
homology of a completed telescope of Floer complexes, given by this family of Hamiltonian functions.

The idea of using Hamiltonian functions “localized at a subset” may date back to work of Cieliebak, Floer
and Hofer [Cieliebak et al. 1995] and Viterbo [1990]. Recently there have been several new versions of
Hamiltonian Floer theories related to this idea and aimed at various local-to-global problems. Besides
[Varolgunes 2018], let us mention an incomplete list: [Groman 2023; McLean 2020; Venkatesh 2018].
A priori, the definitions in these papers are different, depending on whether M is open or closed, taking
completion with the action filtration or the Novikov filtration, and the orders of taking different limits. It
would be interesting to compare these theories to attack particular problems. But in this article we mainly
focus on the version of SHM .D/ by Varolgunes.
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Along its definition in [Varolgunes 2018], several good properties of this invariant SHM .D/ have been
established, including the Hamiltonian isotopy invariance, a Künneth formula, a displaceability criterion
and the Mayer–Vietoris property. These properties indicate that this invariant would play an important
role in symplectic topology and mirror symmetry. One motivation of it comes from mirror symmetry
suggested in [Seidel 2012] and the family Floer program. On the other hand, some symplectic topological
applications have already appeared in [Tonkonog and Varolgunes 2023; Dickstein et al. 2024]. Also see
its relation with quantum cohomology by Borman, Sheridan and Varolgunes [Borman et al. 2022].

Here we study a computational side of this invariant, and provide some applications to symplectic topology.
The main goal is to construct a filtration on the underlying complex of this cohomology and look at
the induced spectral sequence. Now we set up notation and state our results. Let .M;!/ be a closed
symplectic manifold. We say M is symplectic Calabi–Yau if c1.TM/D 0. A convex domain .D; �/ in M
is a compact codimension–0 symplectic submanifold of M, with a boundary @D and a 1–form � locally
defined near @D, such that the restriction of � to @D is a contact form and the local Liouville vector field
points outward. A Liouville domain .D; �/ in M is a convex domain in M such that the 1–form � is
defined on all of D and the restriction of ! on D is d� . We will focus on a special family of convex
domains, whose restrictions of � to @D are index-bounded contact forms; see Definition 2.2.

For a Liouville domain in M we will equip it with an auxiliary form Q! which represents a class in
H 2.M;DIR/, see Lemma 3.1. If Œ Q!� has integral values on H2.M;DIZ/, then we say it is integral.
This auxiliary form Q! will be used to characterize how far a Floer solution travels outside D.

Let ƒ0 be the Novikov ring and ƒE be the truncated Novikov ring; see Section 2 for the notation. Our
main result is the following.

Theorem 1.1 Let .M;!/ be a closed symplectic Calabi–Yau manifold and D be a Liouville domain
in M with an index-bounded boundary. Suppose that Œ Q!� is integral. Given any positive number E, there
is a truncated invariant SHM .DIƒE / such that :

(1) There is a spectral sequence that starts from the classical symplectic cohomology SH.DIƒE / with
coefficient ƒE and converges to SHM .DIƒE /.

(2) If the class Œ Q!� vanishes on H2.M;D/, then the above spectral sequence degenerates at the first
page , which shows that SHM .DIƒE /Š SH.DIƒE /.

(3) For an increasing sequence E1 < E2 < � � � that goes to positive infinity, the inverse limit of the
truncated invariant recovers the relative symplectic cohomology�

lim
 ��
Ei

SHkM .DIƒEi /
�
˝ƒ0 ƒŠ SHkM .D/˝ƒ0 ƒ:

Remark 1.2 In the definition of an index-bounded contact form, we assume that it is nondegenerate. We
will give a perturbative method in Section 5 that works for Morse–Bott nondegenerate contact forms.
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The proof of the above theorem draws much inspiration from [McLean 2020] and its usage of the
index-bounded condition. Now we sketch the proof. The Hamiltonian functions we are using to compute
SHM .D/ are approximately zero on D and positive infinity outside D, as a direct limit. The nonconstant
periodic orbits of our interest lie around the boundary of D; see Figure 1. We call the integral of the
Hamiltonian function over a periodic orbit the level of the orbit. Then the levels of these orbits can go to
either zero or positive infinity. We first define a valuation on the free module generated by these orbits.
However, due to the completion procedure, there will be elements with a negative infinite valuation which
comes from limits of orbits going to infinite high level. Then we use the index-bounded condition to
ignore these high limits of orbits. As a consequence, the original underlying complex of this relative
invariant is quasi-isomorphic to a new complex without the high limits. And the same valuation on the
new complex gives an exhaustive filtration, which will induce a convergent spectral sequence.

An important class of examples fitting into the above theorem comes from simply connected Lagrangian
submanifolds in Calabi–Yau manifolds. Let L be a simply connected Lagrangian submanifold in a
Calabi–Yau manifold M. Take D as a Weinstein neighborhood of L, which is isomorphic to a disk
bundle DrT �L of the cotangent bundle of L, with respect to some Riemannian metric g on L. There is
a correspondence between the geodesics of g and the Reeb orbits on the cosphere bundle of T �L. Hence
the index-bounded condition for the contact form on the cosphere bundle will be satisfied if the metric g
satisfies some relations between the length of closed geodesics and their Morse indices. For many simply
connected manifolds, the existence of such a nice Riemannian metric is known. (In Section 5 we show it is
true when g has a positive Ricci curvature.) Then we obtain a spectral sequence starting from SH.DIƒE /
and converging to SHM .DIƒE /. Note that SHM .DIƒ/˝ƒ0ƒ detects the displaceability ofD insideM
(Theorem 2.4), and it does not depend on r in the index-bounded case [Tonkonog and Varolgunes 2023,
Proposition 1.13]. Hence we can let r! 0 to detect the displaceability of L itself inside M. On the other
hand, the usual invariant to detect the displaceability of L, the self-Lagrangian Floer cohomology HF.L/
may not be defined due to possible holomorphic disks on L with Maslov index 0. Moreover, by using the
Mayer–Vietoris property, we can also study the complement of Lagrangian submanifolds. We present
one sample application of Theorem 1.1.

Proposition 1.3 Let .M;!/ be a symplectic Calabi–Yau manifold with dimension greater than 4 and
! represents an integral class in H 2.M/. For a simply connected Lagrangian S in M and a Weinstein
neighborhood U of S , we have that M �U is not stably displaceable in M.

Proof (See a more detailed proof in Proposition 5.9.) By using our spectral sequence we can show that
SH2nM .U /˝ƒ0ƒD 0, where 2n is the dimension of M. Hence the result follows from the stable displace-
ment criterion (Theorem 2.4) and the Mayer–Vietoris property of the relative symplectic cohomology.

Remark 1.4 This proposition can be regarded as an analogue of a result of Ishikawa [2016, Theorem 1.1]:
if U is a round ball in a Calabi–Yau manifold M then M � U is not stably displaceable; see also
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[Tonkonog and Varolgunes 2023, Corollary 1.15]. Ishikawa’s proof uses computations of spectral invari-
ants of certain distance functions, which shows that M �U is always a super-heavy set.

The outline of this article is as follows. In Section 2 we review backgrounds about Hamiltonian Floer
theories. In Sections 3 and 4 we construct the filtration and show its properties to prove Theorem 1.1. In
Section 5 we discuss some extensions of the theorems as well as applications.

Remark 1.5 We focus on the case that M is Calabi–Yau and D is index-bounded. More local-to-global
results of SHM .D/ in other interesting cases can be found in [Borman et al. 2022; Groman and Varolgunes
2023].

Acknowledgments

The author acknowledges Mark McLean for his generous guidance on this project. The author also
acknowledges Umut Varolgunes for helpful discussions.

2 Background

Now we review the construction of symplectic cohomology theories. First we specify the ring and field
that will be used. The Novikov ring ƒ0 and its field ƒ of fractions are defined by

ƒ0 D

� 1X
iD0

aiT
�i
ˇ̌̌
ai 2C; �i 2R�0; �i < �iC1; lim

i!1
�i DC1

�
;

ƒD

� 1X
iD0

aiT
�i
ˇ̌̌
ai 2C; �i 2R; �i < �iC1; lim

i!1
�i DC1

�
;

where T is a formal variable. The maximal ideal of ƒ0 is defined by

ƒC D

� 1X
iD0

aiT
�i
ˇ̌̌
ai 2C; �i 2R>0; �i < �iC1; lim

i!1
�i DC1

�
:

There is a valuation v Wƒ!R[fC1g by setting

v

� 1X
iD0

aiT
�i

�
WDmin

i
f�i j ai ¤ 0g and v.0/ WD C1;

which makes ƒ0 a complete valuation ring. When we say the completion of a ƒ0–module we mean the
completion with respect to this valuation. We write

ƒ�r WD v
�1.Œr;C1�/ and ƒ>r WD v

�1..r;C1�/ for all r 2 .�1;C1/;

which are ideals of ƒ0. So ƒ0 is a short notation for ƒ�0 and ƒC for ƒ>0. Later when we fix an energy
bound E > 0, we just write ƒE WDƒ0=ƒ�E .
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2.1 Hamiltonian Floer theory on closed manifolds

Now we set up the background on Hamiltonian Floer theory. We work with a closed symplectic Calabi–Yau
manifold .M;!/. Hence foundational details can be found in [Hofer and Salamon 1995; Salamon 1999].

A smooth functionH WM!R determines a smooth vector fieldXH such that dH. � /D!.XH ; � /. We say
H is a Hamiltonian function and XH is the associated Hamiltonian vector field. Let LM WDC1.S1;M/

be the space of free loops in M, where we always view S1 DR=Z and write t as the coordinate of S1.
We call t the time variable.

Moreover, we can consider a family of functions Ht W M � S1 ! R parametrized by S1. Then we
have time-dependent Hamiltonian vector fields XHt . Integrating it we obtain a family of Hamiltonian
symplectic diffeomorphisms �t W M ! M. A loop  2 LM is called a time–1 Hamiltonian orbit if
 0.t/D XHt . In this article, we only consider the component L0M which contains contractible loops.
Hence from now on, all Hamiltonian orbits are assumed to be contractible. We write

CPHt D f 2 L0M j 
0.t/DXHt g

as the set of contractible 1–periodic orbits of Ht . An orbit is nondegenerate if the Poincaré return map

d�1 W T.0/M ! T.0/M

does not have eigenvalue 1. And we say a Hamiltonian Ht is nondegenerate if all of its 1–periodic orbits
are nondegenerate.

Next we assign an index CZ./ to each orbit  , the Conley–Zehnder index; see [Salamon 1999, Lecture 2].
By the Calabi–Yau condition, this index does not depend on choices of cappings. We grade our orbits by
setting

(2-1) �Ht ./ WD nCCZ./;

where 2n is the real dimension of M. (Our grading is different from that in [Salamon 1999], since we use
cohomology instead of homology.) When we say a degree–k or an index–k orbit we mean an orbit 
with �Ht ./D k. We remark that for a constant orbit of a C 2–small Morse function, its degree defined
above equals its Morse index.

Therefore CPHt becomes a graded set
CPHt D

M
k2Z

CPkHt ;

where CPkHt is the set of orbits with index k.

Then for a nondegenerate Hamiltonian Ht , we define

(2-2) CFk.Ht Iƒ0/D
�X
iD1

cii

ˇ̌̌
ci 2ƒ0; i 2 CPkHt

�
;
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which is the free ƒ0–module generated by index–k orbits. Similarly we can define

(2-3) CFk.Ht Iƒ/D
�X
iD1

cii

ˇ̌̌
ci 2ƒ; i 2 CPkHt

�
;

which is the ƒ–vector space generated by index–k orbits. We don’t grade the formal variable T.

By using a family of compatible almost-complex structures Jt , we can study the solutions of the Floer
equation

(2-4) @suCJt .@tu�XHt /D 0

for u WR�S1!M. Here s is the R–coordinate and t is the S1–coordinate on the domain. For two orbits
�; C and a homotopy class A 2 �2.M I �[ C/, consider the solution space

(2-5) M.�; CIA/D
˚
u WR�S1!M j @suCJt .@tu�XHt /D 0; u.�1; t /D �;

u.C1; t /D C; Œu�D A 2 �2.M I �[ C/
	
=� :

There is an R–action on this space by translating the s–coordinate of a solution u, and � is the quotient
of this R–action. The L2–energy of a solution u is

0�E.u/D

Z
j@suj

2
D

Z
u�!C

Z
C

Ht �

Z
�

Ht :

For generic pairs .Ht ; Jt /, the solution space is an l–dimensional manifold where

�Ht .C/��Ht .�/D l C 1:

We call a pair .Ht ; Jt / satisfying the above condition a regular pair. By the Gromov–Floer compactness
theorem, when �; C; A are fixed, the above solution spaces admit compactifications by adding broken
Floer trajectories and J –holomorphic sphere bubbles. The bubbles can be ruled out by using the Calabi–
Yau condition when the moduli space is 0– or 1–dimensional; see [Hofer and Salamon 1995]. There are
also coherent orientations on these moduli spaces. In particular, when the moduli space is 0–dimensional,
we can count the signed number of elements, which we denote by n.�; CIA/.

Then we define an operator
d W CFk.Ht /! CFkC1.Ht /;

with either ƒ0– or ƒ–coefficients, by setting

(2-6) d.�/ WD
X
C

X
Œu�DA

n.�; CIA/ � C �T

R
u�!C

R
C

Ht�
R
�
Ht
:

The right-hand side is summed over all C with �Ht .C/ � �Ht .�/ D 1 and all classes A are in
�2.M I �[ �/. It may not be a finite sum, but it converges as an element in CFk.Ht /, by the Gromov
compactness theorem. Then we extend this operator ƒ0 or ƒ–linearly to CFk.Ht /.

By the analysis of codimension–1 boundaries of M.�; CIA/ with

�Ht .C/��Ht .�/D 2;
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a big theorem in Hamiltonian Floer theory shows that d2 D 0. Then we write the resulting cohomology
groups as HFk.Ht ; Jt Iƒ0/ and HFk.Ht ; Jt Iƒ/.

Another theorem shows that HFk.Ht ; Jt Iƒ/ is independent of the choices of generic pairs .Ht ; Jt /.
Hence we can call it the Hamiltonian Floer cohomology of M. This invariance result is proved by
considering continuation maps between different choices of .Ht ; Jt /. We sketch it here since we will use
it later to define symplectic cohomology; see [Salamon 1999, Section 3.4] for a full proof.

For simplicity we only vary Ht . The case for Jt can be handled in the same way. Let H˛
t and Hˇ

t be
two nondegenerate Hamiltonians. Assume that both .H˛

t ; Jt / and .Hˇ
t ; Jt / are regular for a fixed Jt .

Then we choose a homotopy H˛ˇ
s;t of Hamiltonians to connect H˛

t and Hˇ
t . That is,

(2-7) H
˛ˇ
s;t WR�S

1
�M !R; H

˛ˇ
s;t D

�
H˛
t ; s � �1;

H
ˇ
t ; s � 1:

Then we consider the s–dependent Floer equation

(2-8) @suCJt .@tu�XH˛ˇ
s;t
/D 0

and the moduli space

M.˛�; 
ˇ
C
IA/D

˚
u WR�S1!M j @suCJt .@tu�XH˛ˇ

s;t
/D 0;

u.�1; t /D ˛�; u.C1; t /D 
ˇ
C
; Œu�D A 2 �2.M I 

˛
� [ 

ˇ
C
/
	
:

Note that now the equation is s–dependent; hence there is no R–action. For a generic pathH˛ˇ
s;t , the above

moduli space is a manifold of dimension �
H
ˇ
t
.C/��H˛

t
.�/. And it admits a similar compactification

by adding broken trajectories. When �
H
ˇ
t
.C/D �H˛

t
.�/, we define an operator

(2-9) f ˛ˇ W CFk.H˛
t /! CFk.Hˇ

t /

by setting

f ˛ˇ .˛�/ WD
X

ˇ
C

X
Œu�DA

n˛ˇ .˛�; 
ˇ
C
IA/ � 

ˇ
C
�T

R
u�!C

R
@s.H

˛ˇ
s;t .u.s;t///;

where n˛ˇ .˛�; 
ˇ
C
IA/ is a signed count of elements of the above moduli space. Note that the weight

(2-10)
Z
u�!C

Z
@s.H

˛ˇ
s;t .u.s; t///D

Z
j@suj

2
C

Z
@H

˛ˇ
s;t

@s
.u.s; t//

is not necessarily nonnegative; hence we need to use ƒ–coefficients now. We call this weight the
topological energy of a Floer solution. (It is nonnegative if the family of Hamiltonian functions satisfies
that

R
@sH

˛ˇ
s;t � 0.) Then one can show that f ˛ˇ is a chain map and moreover f ˛ˇ ı f ˇ˛ is chain

homotopy equivalent to the identity map.

We add one more lemma here which will be used frequently in later sections.

Algebraic & Geometric Topology, Volume 24 (2024)
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Lemma 2.1 Let M be a Calabi–Yau manifold and Ht be a nondegenerate Hamiltonian function on M.
For a constant �> 0, suppose that we have a homotopy fH s

t gs2Œ0;1� such that H s
t DHt C s�. Then the

continuation map between CF.H 0
t / and CF.H 1

t / is a multiplication by T�. In particular , when �D 0,
this shows that the continuation map of a constant homotopy is the identity map.

Proof Since our Hamiltonian functions are just a translation of a fixed one, the Floer equation of the
continuation map (2-8) does not depend on s. Therefore any solution of it still carries an R–action. By
using the Calabi–Yau condition, we can pick a regular family Jt for Ht . For two different orbits 
and  0 with index k, any Floer solution of the continuation map equation connecting  and  0 carries an
R–action. So the corresponding moduli space is at least 1–dimensional, contradicting that both  and  0

have index k.

Then the continuation maps only exist when  D  0 and it will be a constant map. One can directly check
that the constant map is regular and has contribution 1. Hence the continuation map between CF.H 0

t /

and CF.H 1
t / is an identity matrix, weighted by the change of the Hamiltonian function which is T�.

2.2 Liouville domain and contact cylinder

Let .C; ˛/ be a contact manifold with a contact form ˛. The Reeb vector field of ˛ is the unique vector
field R˛ on C such that

d˛.R˛; � /D 0; ˛.R˛/D 1:

Then a Reeb orbit of length � > 0 is a map

.t/ WR=�Z! C;
d

dt
.t/DR˛:

We write �˛;� � C for the set formed by Reeb orbits of length � and �˛ WD
S
�>0 �˛;�. We say a Reeb

orbit is nondegenerate if the Poincaré return map of the Reeb flow does not have eigenvalue 1. And we
say a contact form ˛ is nondegenerate if all of its orbits are nondegenerate. We say ˛ is Morse–Bott
nondegenerate if, for all � > 0, the set �˛;� is a closed submanifold in C, the rank of d˛ j�˛;� is locally
constant, and Tp�˛;� D ker.Tp��� id/ for all p 2 �˛;�, where �t is the Reeb flow. For a Morse–Bott
nondegenerate contact form, one can define a Conley–Zehnder index of its Reeb orbits; see [Cieliebak
and Mohnke 2018, Section 2.1] for more details on Reeb orbits and their indices. Then we have the
following definition.

Definition 2.2 [Tonkonog and Varolgunes 2023, Definition 1.12] Suppose .M;!/ is Calabi–Yau. A
contact hypersurface .C; ˛/ in M is called index-bounded if:

(1) ˛ is a nondegenerate contact form.

(2) All of its Reeb orbits are contractible inside M.

(3) For any integer k, the lengths of the Reeb orbits of Conley–Zehnder index k are bounded from
above.

Algebraic & Geometric Topology, Volume 24 (2024)
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Similarly, we call a Liouville domain .D; �/ in M index-bounded if its boundary .@D; ˛ D � j@D/ is
index-bounded.

Let .D; �/ be a Liouville domain in .M;!/. For small � > 0 there is an embedding

C D Œ1� �; 1C ��� @D!M

such that @D is the image of f1g � @D. We do not distinguish C from its image. Then C is called a
contact cylinder associated to the Liouville domain D if ! jCD d.r˛/, where r is the coordinate on
Œ1� �; 1C ��. And we will write D1C� DD[C as a compact neighborhood of D. The 1–form � on D
smoothly extends to a 1–form � on D1C� such that ! jD1C�D d� .

2.3 Relative symplectic cohomology of a Liouville domain

The relative symplectic cohomology is the homology of a suitable limit of complexes derived from
Hamiltonian Floer theory of M. The whole construction [Varolgunes 2018] of relative symplectic
cohomology defines a module SHM .D/ over the universal Novikov ring ƒ0 for any compact subset D
of a closed symplectic manifold M. Now we briefly review its definition when D is a convex domain in a
symplectic Calabi–Yau manifold M.

The following data is called an acceleration data for D:

(1) H1;t � H2;t � � � � a monotone sequence of nondegenerate Hamiltonian functions such that
Hi;t .x/! 0 on D and Hi;t .x/!C1 on M �D.

(2) Monotone homotopies of Hamiltonians fHs;tgs2Œi;iC1� for all i , which means that Hs;t .x/ �
Hs0;t .x/ if s � s0 and Hs;t DHi;t if s D i .

(3) A family of almost-complex structures fJs;tg.s;t/2Œ1;C1/�S1 such that, for each i , .Hi;t ; Ji;t / is a
regular pair, and, for each i , .Hs;t ; Js;t /s2Œi;iC1� is a regular homotopy.

From an acceleration data, we obtain a sequence of chain complexes over ƒ0

CF k D CFk.H1;t /! CFk.H2;t /! � � �

which are connected by continuation maps. Here each CFk.Hi;t / is the degree–k Floer complex of the
Hamiltonian Hi;t . Since Hi;t �HiC1;t are connected by a monotone family of Hamiltonians, the weight
(2-10) in the continuation map is nonnegative.

Then the relative symplectic cohomology module SHkM .DIƒ0/ is defined as the cohomology

(2-11) H.btel.CF k/Iƒ0/

of the completion btel.CF k/ of the telescope

tel.CF k/D
M
n2ZC

.CnŒ1�˚Cn/:

Algebraic & Geometric Topology, Volume 24 (2024)
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Here we write Cn D CFk.Hn;t /. Another algebraic way to define it is that

(2-12)
SCkM .DIƒ0/ WD lim

 ��
r�0

lim
��!
n

Cn˝ƒ0 ƒ0=ƒ�r ;

SHkM .DIƒ0/ WDH.SCkM .D/Iƒ0/:

For the equivalence of these two definitions, see [Varolgunes 2018, Section 2]. And it is also shown that
the definition of SHkM .DIƒ0/ is independent of various choices.

Proposition 2.3 [Varolgunes 2018, Proposition 3.3.4] (1) Let Hs and H 0s be two different acceleration
data. Then H.SCM .D;Hs//ŠH.SCM .D;H 0s// canonically. Therefore we simply denote this invariant
by SHM .D/.

(2) Let � W M ! M be a symplectomorphism. There exists a canonical isomorphism SHM .D/ D
SHM .�.D// by relabeling an acceleration data by the map �.

(3) ForD �D0, there exist canonical restriction maps SHM .D0/! SHM .D/. This satisfies the presheaf
property.

Hence we can write this invariant as SHM.D/ WDSHM.DIƒ0/ and its torsion-free part SHM.DIƒ0/˝ƒ0ƒ.
This invariant has many good properties. Notably it satisfies the Mayer–Vietoris exact sequence in some
settings. Another property we will keep using here is the stably displaceability condition.

Theorem 2.4 [Varolgunes 2018, Theorem 4.0.1 and Remark 4.3.1] If the compact subset D �M is
stably displaceable then SHM .DIƒ0/˝ƒ0 ƒD 0.

In practice when D is a convex domain, with a nondegenerate contact form on its boundary, we will use
a particular class of acceleration data to compute the relative symplectic cohomology. For small � > 0 we
fix a contact cylinder C associated to D and write D1C� DD[C as a compact neighborhood of D. We
introduce the notion of S–shaped Hamiltonian functions; see Figure 1.

Definition 2.5 A time-independent Hamiltonian function H WM !R is called an S–shaped Hamilton-
ian if:

(1) H is cylindrical on the region
�
1� �

4
; 1C 3�

4

�
� @D � C. That is, H.x/DH.x0/ if r.x/D r.x0/,

where r is the cylindrical coordinate. So we can write H.x/D h.r.x// for some h W
�
1� �

4
; 1C 3�

4

�
!R

on the cylinder region.

(2) h0.r/ is concave and h.r/D �r Cm on
�
1C �

4
; 1C �

2

�
� @D � C for some constants � > 0 and m.

(3) The linear slope � is not in the action spectrum of the contact form.

(4) H is a C 2–small Morse function on D1��=4, and it is a Morse function on M �D1C3�=4 with small
derivatives such that it only has constant orbits outside

�
1� �

4
; 1C 3�

4

�
� @D.
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r
1� �

4 1

1C �
4
1C �

2 1C
3�
4
1C�

Figure 1: Hamiltonian functions in the cylindrical coordinate.

By this special shape of our Hamiltonian functions, we have further description of their 1–periodic orbits.
First in the region where the Hamiltonians have small derivatives, there are only constant orbits. Hence
all nonconstant orbits lie in the contact cylinder C. By a direct computation we have that

XHn;t .r0; c0/D�@rHn;t .r0/ �R˛.c0/ for all .r0; c0/ 2 C D Œ1� �; 1C ��� @D:

That is, the Hamiltonian vector field is proportional to the Reeb vector field with the negative slope as the
ratio. Hence any �–periodic Reeb orbit gives rise to a 1–periodic Hamiltonian orbit in r0�@D if and only if

� D

ˇ̌̌̌Z 1

0

@rHn;t .r0/ dt

ˇ̌̌̌
:

Since the Hamiltonian is linear in the middle of the cylindrical region, with a slope which is not in the
action spectrum of the contact form, there are no orbits in this region. Hence all the nonconstant 1–periodic
Hamiltonian orbits can be separated into two groups. One group is located in the region

�
1� �

4
; 1C �

4

�
�@D

and we call them lower orbits. The other group is located in the region
�
1C �

2
; 1C 3�

4

�
� @D and we call

them upper orbits.

Previously, an S–shaped Hamiltonian function is time-independent. So the nonconstant orbits appear in
S1–families. Now we use small time-dependent perturbations to make them nondegenerate by using the
technique in [Cieliebak et al. 1996].

Proposition 2.6 [Cieliebak et al. 1996, Lemma 2.1 and Proposition 2.2] Let H be a time-independent
S–shaped Hamiltonian function and let  be a nonconstant 1–periodic orbit of H such that  is transver-
sally nondegenerate. Pick U to be a neighborhood of  which does not contain other 1–periodic orbits.
Then there exists a time-dependent function Ht such that :

(1) The support of H �Ht is in U.

(2) There are exactly two 1–periodic orbits ˙ of Ht in U.

(3)
R
�� D

R
�
C
� D

R
��� , where � is the Liouville 1–form in the cylindrical region.

(4) The difference between the Conley–Zehnder indices of  and ˙ is bounded by 1.
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Note that the orbit  is both a Hamiltonian orbit of H and a Reeb orbit of the contact form. One can
compute its index in two ways. The following lemma relates these two indices.

Lemma 2.7 [McLean 2020, Lemma 5.25] Let C D Œ1� �; 1C ���C be an index-bounded contact
cylinder with cylindrical coordinate r and associated contact form ˛ and let � W C ! C be the natural
projection map. Let f W Œ1� �; 1C ��! R be a smooth function , R�;Œ�m;m� be the set of Reeb orbits
of length � and index in Œ�m;m� and O�;Œ�m;m� be the set of 1–periodic orbits of f .r/ contained in
fr D .f 0/�1.�/g of index in Œ�m;m� which are null homologous in M. Then the map

O�;Œ�m;m�!R�;Œ�m�1=2;mC1=2�

sending  WR=Z! C to � ı  ı b� is well-defined , where

b� W Œ0; ��! Œ0; 1�; b�.t/ WD t=� for all t 2 Œ0; ��:

Hence we can use the index-bounded condition, which was previously defined for Reeb orbits, in the
setting of Hamiltonian orbits. Let D be a convex domain with an index-bounded boundary in a Calabi–
Yau manifold. We start with a time-independent S–shaped Hamiltonian function and perturb it. Before
perturbation, a nonconstant orbit  satisfies the index-length relation in Definition 2.2 since it comes from
a Reeb orbit. After perturbation, by the above proposition and lemma, the index-length relation still holds
for new orbits ˙.

Now we say a time-dependent function Ht is a time-dependent S–shaped Hamiltonian function if it is a
perturbation of a time-independent S–shaped Hamiltonian function as in Proposition 2.6. Note that we
only perturb the region where nonconstant orbits lie, so we can still talk about upper and lower orbits
after the perturbation.

Definition 2.8 Let D be a convex domain in a Calabi–Yau manifold M. A time-dependent S–shaped
Hamiltonian function Ht is called index-bounded if, for any integer k, there exists a constant �k > 0
such that

R
�� < �k for all degree–k 1–periodic orbits of Ht .

The above discussion says that if D is a convex domain with an index-bounded boundary, then we can
always find time-dependent nondegenerate S–shaped Hamiltonian functions which are index-bounded.
In practice we will use families of time-dependent nondegenerate S–shaped Hamiltonian functions to
compute SHM .D/.

2.4 Hamiltonian Floer theory on manifolds with convex boundary

Now we review the construction of Hamiltonian Floer theory on convex manifolds, and fix our notation
along the way. Symplectic cohomology was first introduced by Cieliebak, Floer and Hofer [Cieliebak
et al. 1995] and Viterbo [1999] in the exact setting, and by Ritter [2010] in the nonexact setting.

Let .M;! D d�/ be a Liouville domain, and let ˛ WD � j@M be the contact form. Then we can attach a
cylindrical end to M to get an open symplectic manifold

yM WDM [ .@M � Œ1;C1//:
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Let r be the coordinate on Œ1;C1/. We equip the manifold yM with a smooth symplectic form O!, where
O! D ! on M and O! D d.r˛/ on @M � Œ1;C1/. And . yM; O!/ will be called the completion of M. In the
following we assume that ˛ on @M is nondegenerate.

Now we define admissible Hamiltonian functions we will use. A Hamiltonian function Ht W S1� yM !R

is called admissible if:

(1) It is a negative time-independent Morse function on M.

(2) All its contractible 1–periodic orbits in yM are nondegenerate.

(3) It is a linear function just depending on r with a positive slope on @M � ŒR0;C1/ for some R0 > 1.

(4) The slope of the linear part is not an element in Spec.˛/.

For an admissible Hamiltonian function, there are only finitely many 1–periodic orbits. Next with an
admissible Hamiltonian Ht , we consider the degree–k Floer complex CFk.Ht / as in (2-2) and (2-3).
Then for suitably chosen almost-complex structures, we can use moduli spaces of Floer solutions to define
differentials and continuation maps as in the closed case.

For a monotone family Hi;t such that Hi;t �HiC1;t and the linear slope of Hi;t goes to positive infinity,
we have a sequence of complexes

CF k D CFk.H1;t /! CFk.H2;t /! � � �

connected by continuation maps. Here all Floer differentials and continuation maps are weighted by the
topological energy; see (2-10). Since the symplectic form on our Liouville domain is exact, the images of
an orbit under Floer differentials and continuation maps are finite sums of other orbits. Hence we can
both define the classical symplectic cohomology over C or over ƒ0. The former theory can be defined by
the latter one by setting T D 1.

The classical symplectic cohomology of M over ƒ0 is defined as

SHk.M Iƒ0/ WDH.tel.CF k//:

An essential difference between this definition and that of the relative symplectic cohomology is that the
classical one does not complete tel.CF k/ before taking homology.

The classical symplectic cohomology of M over C is defined as

SHk.M IC/ WDH.tel.CF k/ jTD1/:

In other words, all differentials and continuation maps are defined without weights. Since .M; d�/ is an
exact symplectic manifold, this reduction to T D 1 is well-defined.
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2.5 Lower semicontinuous Hamiltonian functions

Defining the classical SHk.M IC/ via taking a direct limit is equivalent to the definition via a single
Hamiltonian function that is quadratic at infinity; see [Seidel 2008, Section 3]. Similarly, we will see that
the relative symplectic cohomology SHM .D/ is related to a kind of Hamiltonian Floer theory for a lower
semicontinuous Hamiltonian function FD0 , where FD0 jDD 0 and FD0 jM�DDC1. A general study of
Hamiltonian Floer theory of lower semicontinuous functions can be found in [Groman 2023; McLean
2020]. Now we will discuss a special case of it for our purpose.

Fix a closed symplectic Calabi–Yau manifold M and let F WM �S1! R be a lower semicontinuous
function. Pick a monotone sequence fHn;tg of nondegenerate Hamiltonian functions such that

H1;t �H2;t � � � � �Hn;t � � � � ! F:

The Hamiltonian Floer cohomology HF.F / is defined as

(2-13) H.btel.CF.H1;t /! CF.H2;t /! � � � //:

Also we have an equivalent definition in terms of (2-12).

From its definition, we can see that the lower semicontinuous Hamiltonian Floer cohomology HF.F / is a
generalization of the relative symplectic cohomology. For a domain D in M, we have

SHM .D/Š HF.FD0 /:

This indicator-type function FD0 is a very degenerate one, since it is identically zero on D. In practice,
it is often more handy to replace its part on D by a fixed nondegenerate Hamiltonian function f . And
our main result of this subsection is the following isomorphism, which shows that the choice f does not
matter if we work over the Novikov field.

Proposition 2.9 LetD be a domain inM. Let F WM �S1!R be a lower semicontinuous function such
that F is a smooth negative nondegenerate Hamiltonian function f on D �S1 and F DC1 otherwise.
Then we have

SHM .D/˝ƒ0 ƒŠ HF.F /˝ƒ0 ƒ:

Proof Pick a cofinal family fHn;tg of nondegenerate Hamiltonian functions such that

H1;t �H2;t � � � � �Hn;t � � � � ! FD0

and a cofinal family fKn;tg of nondegenerate Hamiltonian functions such that

K1;t �K2;t � � � � �Kn;t � � � � ! F:

By the nondegeneracy of f in D �S1, we can choose Kn;t such that Kn;t .x/D f .x; t/ for all n 2N,
.x; t/ 2D�S1. Moreover, since F is negative on D we can choose above families such that Hn;t �Kn;t
for all n. Moreover, we can assume that

max
.x;t/2M�S1

.Hn;t �Kn;t /D max
.x;t/2D�S1

.Hn;t �Kn;t / for all n 2N:
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Kn;t

Kn;tC�

Hn;t

Figure 2: A sandwich of Hamiltonian functions.

Consider the continuation map

CF.Ki;t /! CF.Hi;t /

over ƒ0 for each i . These continuation maps induce a ƒ0–module map

HF.F /! HF.FD0 /Š SHM .D/:

Next we set � WD �min.x;t/2D�S1 K1;t , and set F C� to be the lower semicontinuous function such
that it is f C� on D �S1 and positive infinity otherwise. Note that the family fKn;t C�g is a cofinal
family for the function F C�, so on D �S1 we have that Kn;t C� �K1;t C� � 0 �Hn;t for all n.
On the other hand, since Hn;t �Kn;t takes maximum on D �S1, we have Kn;t C��Hn;t globally on
M �S1, see Figure 2. This gives the second ƒ0–module map in

HF.F /! HF.FD0 /! HF.F C�/! HF.FD0 C�
0 /:

Similarly we can find some other constant �0 to define the third map. (For example, we can take �0 D�.
What we need is that Hn;t C�0 � Kn;t C� for all n.) Since the data to define HF.F C�/ is just a
translation of the data to define HF.F /, the composition of the first two maps is the multiplication by T�,
by Lemma 2.1. By the same reason, the composition of the last two maps is the multiplication by T�

0

.
After tensoring with the Novikov field, these compositions become isomorphisms, which shows that the
three ƒ0–modules HF.F /, HF.FD0 / and HF.F C�/ are all isomorphic over ƒ.

Therefore if we only care about the relative symplectic cohomology over the Novikov field, we can relax
the condition of the acceleration data of Hamiltonian functions we used for computations. That is, the
Hamiltonian functions converge to a fixed negative Morse function on D, instead of converging to zero.
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3 A filtration on the completed telescope

Let .M;!/ be a closed Calabi–Yau symplectic manifold and letD�M be a Liouville domain. Recall that
the relative symplectic cohomology SHM .D/ is the homology of the completion btel.CF/ of the telescope

tel.CF/D
M
i2N

.Ci Œ1�˚Ci /:

Now we will define a filtration on btel.CF/ which is compatible with the differentials.

3.1 Auxiliary symplectic forms

First we define some auxiliary symplectic forms with respect to our Liouville domainD. The boundary @D
is a contact hypersurface in M and for small � > 0 we write D1C� DD[ .Œ1; 1C ��� @D/ as a compact
neighborhood of D. That is, we fix a choice of a contact cylinder associated to D. On D1C� there is a
1–form � such that d� D !. Then we can interpolate ! from D1C3�=4 to M �D1C�.

Lemma 3.1 There exists a global 2–form Q! and a 1–form Q� on M such that :

(1) ! D Q!C d Q� on M .

(2) The support of Q� is in D1C� and Q� D � in D1C3�=4.

(3) The support of Q! is in M �D1C3�=4 and Q! D ! in M �D1C�.

Proof Let �.r/ W Œ1; 2�!R be a smooth increasing function such that

�.r/D

�
0; 1� r � 1C 3

4
�;

1; 1C � � r:
Next we define

Q! jx D

8<:
0; x 2D1C3�=4;

d.�.r/�/; x 2D1C� �D1C3�=4;

!; x 2M �D1C�;

Q� jx D

8<:
�; x 2D1C3�=4;

.1� �.r//�; x 2D1C� �D1C3�=4;

0; x 2M �D1C�:

Then we can check that Q! and Q� satisfy the conditions we need; see Figure 3.

By the definition of Q!, it represents a cohomology class Œ Q!�2H 2.M;D/. The exact sequence of de Rham
cohomology

� � � !H 1.D/!H 2.M;D/
j
�!H 2.M/!H 2.D/! � � �

says that j.Œ Q!�/ D Œ!�. So we also call Œ Q!� a lift of Œ!�. In the case that Œ Q!� takes integral values on
H2.M;DIZ/, we say Œ Q!� is an integral lift of Œ!�. From now on, our Liouville domain D is always
equipped with such an auxiliary form Q! and we assume it represents an integral class.
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Q!

1 1C3
4
� 1C�

Q�

1 1C3
4
� 1C�

Figure 3: Cut-off functions for Q! and Q� .

Example 3.2 If D is simply connected, then H 1.D/D 0 and we have a unique lift Œ Q!� of Œ!�. Moreover,
the map H2.M/!H2.M;D/ is surjective. Hence if Œ!� represents an integral class in H 2.M/ then
Œ Q!� is automatically integral. A similar conclusion holds when the map �1.D/! �1.M/ is injective.

For a Hamiltonian vector field which is small on M �D1C3�=4, the Floer equation becomes very close
to the genuine Cauchy–Riemann equation on that region. This implies the positivity of the !–energy
of solutions on that region. To prove this first we recall the following computation for a solution to the
Floer equation. Let H be a Hamiltonian function and J be a compatible almost-complex structure. Let
g. � ; � / WD !. � ; J � / be the induced Riemannian metric. For a solution u with finite energy we have

!.Œu�/D

Z
u�! D

Z
!.@su; @tu/D

Z
j@suj

2
g C

Z
!.@su;XH /:

For the second term we haveZ
!.@su;XH /D�

Z
dH.@su/

D�

Z C1
�1

@

@s

Z 1

0

H.u/ dt ds D�

�Z 1

0

H.u.C1; t // dt �

Z 1

0

H.u.�1; t // dt

�
� �kHk;

where kHkD
R 1
0 .maxx2M H.x; t/�minx2M H.x; t// dt is the Hofer norm of H. When we restrict our

function to some region of M, the relative Hofer norm is defined in a similar way by taking the max and
min on that region.

Lemma 3.3 Let .M;!/ be a closed symplectic manifold and D be a Liouville domain in M. Let Q! be an
auxiliary form constructed above. We assume that Œ Q!� is an integral lift of Œ!�. Then for any nondegenerate
Hamiltonian function H with kHkM�D1C3�=4 < 1, for any finite-energy solution u W S1 �R!M of the
Floer equation

@suCJ.@tu�XH /D 0;

the integral
R
u� Q! � 0. Here J is a cylindrical almost-complex structure compatible with D.
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Proof We prove this lemma by computation. By the definitions of Q! and a cylindrical almost-complex
structure J , we know that Qg. � ; � / WD Q!. � ; J � / defines a Riemannian metric on the region where Q! ¤ 0.
Then by the above computation we have thatZ

u� Q! D

Z
Q!.@su; @tu/�

Z
j@suj

2
Qg �kHkM�D1C3�=4 � �kHkM�D1C3�=4 :

Since Q! is supported in M �D1C3�=4, we only need to consider the relative Hofer norm kHkM�D1C3�=4 .
In particular, if the image of u does not intersect M �D1C3�=4, then

R
u� Q! D 0.

Since the nonconstant orbits of H are in D1C3�=4, the cylinder u represents a relative homology class
in H2.M;D/. By our assumption that the number

R
u� Q! is an integer, when kHkM�D1C3�=4 < 1, the

number
R
u� Q! is nonnegative.

Note that Lemma 3.3 also works for a family of Hamiltonian fHt;sg under small perturbations. That is, if
kHt;s �Ht;s0kM�D1C3�=4 < 1 for any s; s0 then we still have positivity of solutions of the parametrized
Floer equation.

3.2 A filtration which is not exhaustive

The computation in the last subsection tells that when the Hamiltonian functions have small relative
Hofer norms outside the Liouville domain, the outside part of the corresponding Floer solutions carry
nonnegative Q!–energy. Now we use this fact to define a filtration on the telescope, which is the underlying
complex of the relative symplectic cohomology.

First we consider the case of a single S–shaped Hamiltonian H such that kHk < 1 on M �D1C3�=4.
We define a valuation of a single element

a �  2 CFk.H/D
M

2CPk.H/

ƒ0 � 

by setting

(3-1) �.a � /D v.a/�

Z


H �

Z


Q�;

where v.a/ is the valuation on ƒ0. If  is a constant orbit, the integral
R

Q� is zero. For a general sum

x D
P
i aii we define the valuation as

(3-2) �.x/ WD inf
i
f�.aii /g D inf

i

�
v.ai /�

Z
i

Hi �

Z
i

Q�

�
:

Lemma 3.4 For the valuation � we have

�.d.a � //� �.a � /:

Hence it induces a filtration

(3-3) F � CFk.H/D fx 2 CFk.H/ j �.x/� �g

on the complex CFk.H/.
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Proof We prove this lemma by a direct computation. First from our definition

d.a � /D a �
X
 0;A

n.;  0IA/ �  0 �T !.A/�
R
 HC

R
0 H ;

where A is the homotopy class represented by a solution u connecting  and  0. Hence we have

(3-4) �.d.a � //D �

�
a �
X
 0;A

n.;  0IA/ �  0 �T !.A/�
R
 H

R
0 H

�
D inf
 0;A

�
v.a/C!.A/�

Z


H C

Z
 0
H �

Z
 0
H �

Z
 0

Q�

�
D inf
 0;A

�
v.a/C!.A/�

Z


H �

Z
 0

Q�

�
D inf
 0;A

�
v.a/C Q!.A/C d Q�.A/�

Z


H �

Z
 0

Q�

�
D inf
 0;A

�
v.a/C Q!.A/C

Z
 0

Q� �

Z


Q� �

Z


H �

Z
 0

Q�

�
D inf
 0;A

�
v.a/C Q!.A/�

Z


Q� �

Z


H

�
D inf
 0;A
f�.a � /C Q!.A/g � �.a � /:

Here we use that ! D Q! C d Q� and the Stokes formula to compute d Q�.A/. The last inequality uses
Lemma 3.3.

Similarly we can check that �.dx/ � �.x/ for a sum x D
P
i aii . Hence this valuation � induces a

decreasing filtration on CF.H/.

The above computation also works for a 1–parameter family of Hamiltonian functions if the variation of
these functions is sufficiently small outside the Liouville domain. More precisely, we pick a monotone
1–parameter family of Hamiltonian functions Hn;t which form an acceleration data to compute the
relative symplectic cohomology of D such that:

(1) The relative Hofer norm of Hn;t on M �D1C3�=4 is less than 1 for each n.

(2) The relative Hofer norm of Hn;t �HnC1;t on M �D1C3�=4 is less than 1 for each n.

Then each of the continuation maps also satisfies the above lemma. Therefore the telescope given by

CF WD CF.H1;t /! CF.H2;t /! � � � ! CF.Hn;t /! � � �

satisfies that its differentials and continuation maps are compatible with � . We write btel.CF/ as the
completion of the telescope of this 1–ray. For a general element x D

P
i aii 2

btel.CF/ we define
� W btel.CF/!R[f�1g by

(3-5) �.x/ WD inf
i
f�.aii /g D inf

i

�
v.ai /�

Z
i

Hi;t �

Z
i

Q�

�
:
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This valuation gives a filtration on btel.CF/. The differentials of the completed telescope are sums of the
differentials and continuation maps in the Floer complex. Hence the differential of btel.CF/ is compatible
with this filtration, which makes btel.CF/ a filtered differential graded module. The homology of btel.CF/
is the relative symplectic cohomology.

Note that for a fixed Hamiltonian H this valuation takes values strictly in R since H is bounded and
there are finitely many periodic orbits. But for a general element in the completion of the telescope the
valuation can be negative infinity. Therefore the induced filtration is not exhaustive. That is,[

�

F � btel.CF/¤ btel.CF/;

which is one main reason that the induced spectral sequence sometimes does not converge. We also
remark that this filtration is weakly convergent since\

�

F � btel.CF/D f0g:

Now we recall two foundational theorems on spectral sequences from [McCleary 2001], one on the
existence and the other on the convergence.

Definition 3.5 Let R be a commutative ring with unit. An R–module A is called a filtered differential
graded module if:

(1) A is a direct sum of submodules, AD
L1
nD0A

n.

(2) There is an R–linear map d W A! A satisfying d ı d D 0.

(3) A has a filtration F and the differential d respects the filtration, that is, d W F pA! F pA.

Theorem 3.6 [McCleary 2001, Theorem 2.6] Each filtered differential graded module .A; d; F / deter-
mines a spectral sequence , fE�;�r ; drg, r D 1; 2; : : : , with dr of bidegree .r; 1� r/ and

E
p;q
1 ŠHpCq.F pA=F pC1A/:

Theorem 3.7 [McCleary 2001, Theorem 3.2] Let .A; d; F / be a filtered differential graded module
such that the filtration is exhaustive and weakly convergent. Then the associated spectral sequence with
E
p;q
1 ŠHpCq.F pA=F pC1A/ converges to H.A; d/, that is ,

Ep;q1 Š F pHpCq.A; d/=F pC1HpCq.A; d/:

4 The induced spectral sequence

Previously we constructed a filtration on btel.CF/ by using a special family of Hamiltonian functions that
have small variations outside D. However, the induced spectral sequence does not always converge since
the filtration is not exhaustive. Now we study the particular case that D is a Liouville domain with an
index-bounded boundary in a symplectic Calabi–Yau manifold M.
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First, we give an outline of the proof in this section. For a fixed degree k, we will study SHkM .D/.
In practice we will study the Hamiltonian Floer cohomology of a lower semicontinuous function such
that it is a fixed nondegenerate Hamiltonian function on D �S1 and it is positive infinity outside. It is
isomorphic to SHkM .D/ over the Novikov field. Abusing the notation, we still write it as SHkM .D/. Letbtel.CF/ be the completed telescope, constructed by a special family of Hamiltonian functions as in the
previous section. Pick a sequence

0 < E1 <E2 < � � �<El < � � �

of positive numbers going to infinity. We have a sequence of telescopes tel.CF/˝ƒ0 ƒEl , which form
an inverse system by using projection maps. The homology

SHkM .DIƒEl / WDH
k.tel.CF/˝ƒ0 ƒEl /

is called the truncated symplectic cohomology. Since projections are chain maps, we have an inverse
system in the homology level

� � �  SHkM .DIƒEl�1/ SHkM .DIƒEl / � � � :

The inverse limit
lim
 ��
l

SHkM .DIƒEl /

is called the reduced symplectic cohomology in [Groman and Varolgunes 2023]. The relation between
this reduced symplectic cohomology and the relative symplectic cohomology can be studied by verifying
certain Mittag-Leffler condition of the above inverse systems.

The goal of this section is the following:

(1) For each El , we will construct two chain models which both compute SHkM .DIƒEl /. They are
defined by using particular Hamiltonians, which depend on El . The first chain model is a telescope, on
which the filtration defined in the previous section is exhaustive. Hence we have a convergent spectral
sequence for this chain model to compute SHkM .DIƒEl /. This will establish (1), (2) in Theorem 1.1.

(2) The second chain model is a direct limit. It helps us to show SHkM .DIƒEl / is finitely generated,
and the number of generators is independent of El , thanks to the index-bounded condition. By using this,
we can verify a finite homological torsion criterion in [Groman and Varolgunes 2023], which shows that
the reduced symplectic cohomology is isomorphic to the relative symplectic cohomology. This proves (3)
in Theorem 1.1.

4.1 Ignoring upper orbits and convergence

For a monotone family of S–shaped Hamiltonian functions, the orbits form two groups: upper orbits
and lower orbits. And the Floer differentials/continuation maps have four components: upper-to-upper,
upper-to-lower, lower-to-upper and lower-to-lower. The next lemma says that, under the index-bounded
condition, any lower-to-upper Floer trajectory has a big topological energy.
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Lemma 4.1 Given any energy bound E > 0 and an integer k, there exists an S–shaped Hamiltonian
function such that any lower-to-upper Floer differential with degree–k input has topological energy greater
than E.

Proof First, we choose an S–shaped Hamiltonian function Ht with kHkM�D1C3�=4 less than 1. For a
Floer differential with degree–k input  and degree–.kC1/ output  0, the energy weight isZ

u�! �

Z


Ht C

Z
 0
Ht D�

Z


Q� C

Z
 0

Q� C

Z
u� Q! �

Z


Ht C

Z
 0
Ht :

By the index-bounded condition, the difference �
R

Q� C

R
 0
Q� is a bounded number which only depends

on k. The computation in Lemma 3.3 says that
R
u� Q! is nonnegative. Therefore if we choose an S–shaped

Hamiltonian function such that its upper level is high enough, then the above energy weight is larger
than E.

Note that this estimate is uniform for all degree k orbits; hence we can make a subcomplex which only
contains lower orbits, which gives the following lemma.

Lemma 4.2 For any integer k and an energy bound E > 0, let H be a Hamiltonian function which
satisfies Lemma 4.1 for all three integers k�1, k, kC1 forE. Let CFk;L.H/ be the subspace of CFk.H/
which only contains lower orbits. Let d be the restriction of the Floer differential to CFk;L.H/. Then

0! CFk�1;L.H/ d
�! CFk;L.H/ d

�! CFkC1;L.H/! 0

satisfies that d ı d D 0 over ƒE .

Proof Take  2 CFk�1;L.H/. The usual argument to show d ı d./ D 0 is to look at broken Floer
trajectories. In our case, if it breaks along an upper orbit, then the energy weight is greater than E by
Lemma 4.1, which is automatically zero over ƒE . Hence we can ignore the upper orbits’ contributions.

The above two lemmas tell us for any fixed energy bound E and degree k, we can use only lower orbits to
form a homology theory. By the same argument, lower-to-upper continuation maps have big topological
energy for particular Hamiltonians.

Lemma 4.3 Given any energy bound E > 0 and an integer k, there exists a family of nondegenerate
S–shaped Hamiltonian functions fHngn2N such that :

(1) H1 �H2 � � � � �Hn �HnC1 � � � � .

(2) H1 DH2 D � � �Hn D � � � on S1 �D.

(3) H1 satisfies the above two lemmas.

(4) Any lower degree–k orbits are inside D.

(5) Any continuation map from a lower degree–k orbit to an upper degree–k orbit has topological
energy greater than E.
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Hn;t

HnC1;t

1
2

Figure 4: Hamiltonian functions with fixed lower parts and small variations outside.

Proof Take H1 as a function which satisfies the above two lemmas. Then we construct H2 in the
following way:

(1) H1 DH2 on D.

(2) H1C
1
2
DH2 on M �D1C3�=4.

(3) Near @D, the function H2 is obtained from a cylindrical function by adding time-dependent
perturbations. We assume the perturbation is small such that H1 �H2 globally; see Figure 4.

Then we repeat this process inductively to get HnC1 from Hn. Hence the items (1)–(4) are satisfied, and
we can connect Hn with HnC1 by a monotone homotopy. If we have a continuation map from a lower
degree–k orbit  of Hn to an upper degree–k orbit  0 of HnC1, then it is weighted by an energyZ
u�! �

Z


HnC

Z
 0
HnC1C

Z
.@sHs/D

Z
u� Q! �

Z


Q� C

Z
 0

Q� �

Z


HnC

Z
 0
HnC1C

Z
.@sHs/:

By the construction, we have that kHn�HnC1kM�D1C3�=4 < 1; hence the first term is nonnegative. The
monotonicity of @sHs shows the last term is nonnegative and the index-bounded condition shows the
second and third terms are bounded. So the whole energy is larger than E because the difference between
the lower levels of Hn and the upper level of HnC1 are big enough.

Therefore by using the above family of Hamiltonian functions, we are computing the Hamiltonian Floer
cohomology of a semi-lower-continuous function, which is a nondegenerate Hamiltonian function on D
and is positive infinity outside D. By Proposition 2.9, the resulting invariant is isomorphic to the relative
symplectic cohomology over the Novikov field.

Now we consider two direct systems

CF k D CFk.H1;t /! CFk.H2;t /! � � � ;

CF k;L D CFk;L.H1;t /! CFk;L.H2;t /! � � �

overƒE , induced by Hamiltonian functions defined in the above lemma. For each n, we have an inclusion
of a subcomplex CFk;L.Hn;t /! CFk.Hn;t / over ƒE . We recall the following algebraic property of a
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telescope of subcomplexes. Suppose that we have a commutative diagram of chain complexes

C0 WD C 01 C 02 C 03 � � �

C WD C1 C2 C3 � � �

where horizontal maps are chain maps (which we call continuation maps) and vertical maps are inclusion
maps of subcomplexes. Then we have an induced map between telescopes tel.C0/! tel.C/.

Lemma 4.4 [Borman et al. 2022, Lemma A.1] Suppose that for every  2 Cn there exists N./ > 0
such that under continuation maps  lands in C 0

nCN./
. Then tel.C0/! tel.C/ is a quasi-isomorphism.

This lemma can be applied to our lower Floer complexes.

Proposition 4.5 For any integer k and energy boundE>0, there exists a family of Hamiltonian functions
such that

tel.CF k;L/! tel.CF k/

is a quasi-isomorphism over ƒE .

Proof For any integer k and energy bound E > 0, we pick Hamiltonian functions as above to get a
commutative diagram between CFk;L.Hn;t / and CFk.Hn;t / such that horizontal maps are continuations
and vertical maps are inclusions. Next we check the condition in Lemma 4.4.

Pick  2 CFk.Hn;t /. If it is a lower orbit, then its images under continuation maps are always lower, by
Lemma 4.3(5). So we assume  is an upper orbit, and we will show after several continuation maps,
it becomes lower or zero. Let T E11 be the image of  under the continuation map CFk.Hn;t /!
CFk.HnC1;t /. Then

E1 D�

Z


Q� C

Z
1

Q� C

Z
u�1 Q! �

Z


Hn;t C

Z
1

HnC1;t :

If 1 is a lower orbit, then we are done. Otherwise we consider T E22 as the image of T E11 under the
continuation map CFk.HnC1;t /! CFk.HnC2;t /. We have

E2 DE1C

�
�

Z
1

Q� C

Z
2

Q� C

Z
u�2 Q! �

Z
1

HnC1;t C

Z
2

HnC2;t

�
D�

Z


Q� C

Z
2

Q� C

Z
u�1 Q!C

Z
u�2 Q! �

Z


Hn;t C

Z
2

HnC2;t :

By the index-bounded condition, the first two terms are bounded. Moreover, our Hamiltonian functions
have small variations outside; the Q!–energy terms are nonnegative. If 2 is still an upper orbit, we will
consider its image under the third continuation map. Therefore after N compositions of continuation
maps, either  is sent to a lower orbit, or EN >E, since �

R
 Hn;t C

R
N
HnCN;t becomes arbitrarily

large. This completes the proof by applying Lemma 4.4.
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We call the process to get this quasi-isomorphism ignoring upper orbits. And we define the truncated
symplectic cohomology as

SHkM .DIƒE / WDH.tel.CF k;L/IƒE /DH.tel.CF k/IƒE /:

Therefore Proposition 4.5 gives two ways to compute the truncated symplectic cohomology: by using
tel.CF k;L/ or tel.CF k/. The former has the advantage that all generators of the underlying complex
are local and the differentials are global. Moreover, the filtration on tel.CF k/ constructed in Section 3
becomes exhaustive when restricted to tel.CF k;L/. Hence we will get a convergent spectral sequence to
compute the truncated symplectic cohomology. This will be discussed in next subsection. Now we study
how this truncated symplectic cohomology is related to the usual relative symplectic cohomology.

First, note that a telescope is quasi-isomorphic to a direct limit. Hence we also have

SHkM .DIƒE /DH.tel.CF k;L/IƒE /DH
�
lim
��!
n

CF k;LIƒE
�
:

The following lemma shows that the direct limit has a simpler description in our index-bounded case.

Lemma 4.6 For a fixed degree k, the direct limit lim
��!n

CF k;L which contains lower orbits is a finite-
dimensional free ƒE–module.

Proof By the index-bounded condition and nondegeneracy of the contact form, for each fixed Hamiltonian,
CFk;L.Hn;t / is a finite-dimensional free ƒE–module, generated by degree–k orbits. On the other hand,
the lower parts of the Hamiltonian functions Hn;t are fixed. Hence we have a canonical identification
between CFk;L.Hn;t / for different n. Next we study the continuation maps between CFk;L.Hn;t /.
After identifying the generators of CFk;L.Hn;t / for different n, the continuation maps can be written as
l � l matrices fanij g with entries anij 2ƒE , where l is the dimension of CFk;L.Hn;t /.

Let u be a Floer cylinder contributing to the continuation maps, and assume u is contained in the region
where the Hamiltonian function is fixed. Then by regularity it can only be the identity map; see Lemma 2.1.
There may be other Floer cylinders that travel outside D and contribute to the continuation maps, which
have nontrivial topological energy. Hence the continuation maps, viewed as a matrix, have the following
properties:

(1) The entries on the diagonal are anjj D 1C b
n
jj , with v.bnjj / > 0.

(2) The off-diagonal entries have strictly positive valuations.

Note that the determinant of the matrix fanij g has a constant term 1, which says that the matrix is invertible.
Hence each continuation map is an isomorphism of ƒ0–modules. So the direct limit lim

��!n
CF k;L is

isomorphic to CFk;L.Hn;t /, which is a finite-dimensional free ƒE–module.

To effectively use the truncated symplectic cohomology, there are two options: to show it is an invariant
with good properties, or to relate it with the original relative symplectic cohomology SHkM .D/.

Algebraic & Geometric Topology, Volume 24 (2024)



4824 Yuhan Sun

For the first option, we expect the following is true:

Proposition 4.7 The truncated symplectic cohomology SHkM .DIƒE / is a finite-dimensional ƒE–
module. Let � > 0 be the smallest number such that

T � �SHkM .DIƒE /D 0:

Then the displacement energy of D is not less than �.

Proof The finite-dimensionality follows from the above lemma. We expect the proof of the energy
relation is similar to [Varolgunes 2018, Remark 4.2.8] in the original relative symplectic cohomology
setting. The full proof will be pursued in the future.

The number � is an analogue of the torsion threshold of the Lagrangian Floer cohomology (see [Fukaya
et al. 2009, Theorem J]), which is related to the displacement energy of a Lagrangian submanifold. Since
the energy boundE can be as large as one needs, this proposition is useful for most displacement problems.

For the second option, we have the following:

Proposition 4.8 The inverse limit of the truncated symplectic cohomology recovers the original relative
symplectic cohomology. That is ,�

lim
 ��
E

SHkM .DIƒE /
�
˝ƒ0 ƒŠ SHkM .D/˝ƒ0 ƒ:

Here the inverse limit is taken as E goes to infinity.

To prove the proposition, first we recall some results in homological algebra.

Definition 4.9 An inverse system
C D C1 C2 � � �

is said to satisfy the Mittag-Leffler condition if, for each n 2N, there exists i � n such that, for all j � i ,
we have

Im.Cj ! Cn/Š Im.Ci ! Cn/:

The Mittag-Leffler condition shows the vanishing of the lim
 ��

1 of an inverse system.

Proposition 4.10 [Weibel 1994, Proposition 3.5.7] If an inverse system C satisfies the Mittag-Leffler
condition , then lim

 ��

1.C/D 0.

Proposition 4.11 [Weibel 1994, Proposition 3.5.8] For an inverse system

C D C1 C2 � � �

of complexes , which satisfies the degreewise Mittag-Leffler condition , we have a short exact sequence

0! lim
 ��

1H�.Cn/!H�.lim
 ��

Cn/! lim
 ��

H�.Cn/! 0:
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Now we begin the proof of Proposition 4.8.

Proof Fix a sequence of positive numbers

0 < E1 <E2 < � � �<El < � � �

going to infinity. Let fGng be a fixed acceleration data we used in Proposition 4.5 and Lemma 4.6. Then
we have

SHkM .D/˝ƒ0 ƒDH
�
lim
 ��
El

tel.CFk.Gn/˝ƒ0 ƒEl /
�
˝ƒ0 ƒ:

The complexes tel.CFk.Gn/˝ƒ0 ƒEl / form an inverse system over El . Note that the Hamiltonian
functions are independent of El , so the maps in this system are given by projection. Since projections are
surjective, this inverse system satisfies the degreewise Mittag-Leffler condition. Hence we have a short
exact sequence

0! lim
 ��

1H.Cl/!H.lim
 ��

Cl/! lim
 ��

H.Cl/! 0;

where Cl WD tel.CFk.Gn/˝ƒ0ƒEl /. In this short sequence, the middle term is what we need to compute
and the right term is the inverse limit of truncated symplectic cohomology. Hence it suffices to show the
vanishing of the left term.

In Lemma 4.6, we have showed that H
�
lim
��!n

CF k;LIƒEl
�

is finite-dimensional by using acceleration
datum depending on El . On the other hand, the quasi-isomorphisms before Lemma 4.6 shows that

H.Cl/DH
�
lim
��!
n

CF k;LIƒEl
�
:

So H.Cl/ is finite-dimensional for any El . Moreover, for different El the defining Hamiltonians for
CF k;L have the same fixed lower part. Hence the dimensions of H.Cl/ have a uniform upper bound,
independent of l , given by the number of lower degree–k orbits of Hamiltonian functions with a fixed
lower part. Therefore H.Cl/ over l is an inverse system of finite-dimensional modules with a uniform
upper bound on ranks. In the following we will show it satisfies the degreewise Mittag-Leffler condition,
which completes the proof.

Now we prove that H.Cl/ over l is an inverse system which satisfies the degreewise Mittag-Leffler
condition, by using the finite torsion criterion in [Groman and Varolgunes 2023].

Let V be a ƒ0–module. For any element v 2 V we define

�.v/ WD inff�� 0 j T �v D 0g

and we define the maximal torsion of V as

�.V / WD sup
v2V;�.v/<C1

�.v/I

see [Groman and Varolgunes 2023, Definition 6.15]. The following is a combination of Lemma 6.19
and Proposition 6.12 in [loc. cit.]. The invariant SHkM;�.D/ in [loc. cit.] is our truncated invariant
SHkM .DIƒE // with E D �.
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Proposition 4.12 If SHkM .D/ has finite maximal torsion , then H.Cl/ over l is an inverse system which
satisfies the degreewise Mittag-Leffler condition.

Next we verify that SHkM .D/ has a finite maximal torsion. Suppose SHkM .D/ has an infinite maximal
torsion. Then we have a sequence of elements xn; yn in the completed telescope such that

d.xn/D 0; d.yn/D T
�nx; 0 < �1 < �2 � � �< �n < � � � ! C1:

This shows that as l goes to infinity, the number of xn’s with valuations less than El goes to infinity.
Hence the rank of H.Cl/ also goes to infinity, which contradicts that their ranks are uniformly bounded
from above.

4.2 The first page of the spectral sequence

We showed that the truncated symplectic cohomology recovers the relative symplectic cohomology. Now
we study how to compute the truncated symplectic cohomology.

For any integer k and energy bound E > 0, we have three chain models

tel.CF k/; tel.CF k;L/; lim
��!
n

CF k;L

given by a particular family of Hamiltonian functions. They are all quasi-isomorphic; hence they all
compute the truncated symplectic cohomology over ƒE . Now we equip the second chain model with
the filtration defined in (3-5). Recall that for a general element x D

P
i aii 2 tel.CF k;L/ we define

� W tel.CF k;L/!R[f�1g by

(4-1) �.x/ WD inf
i

�
v.ai /�

Z
i

Hi;t �

Z
i

Q�

�
:

And for any p 2R we define

(4-2) F p tel.CF k;L/ WD fx 2 tel.CF k;L/ j �.x/� pg:

By the computations in Section 3, we know that the differentials in the telescope are compatible with this
filtration, which makes tel.CF k;L/ a filtered differential graded module. Moreover, since all generators in
tel.CF k;L/ are lower orbits, the Hamiltonian terms in �.x/ are uniformly bounded. By the index-bounded
condition, the integrals of Q� in �.x/ are also uniformly bounded. Hence �.x/ > �1 for any x. This
shows that the filtration is exhaustive. (Actually this filtration is bounded from below by some number.)
Therefore Theorems 3.6 and 3.7 give us a spectral sequence which converges to the truncated symplectic
cohomology. This proves the convergence part in Theorem 1.1(1). In the following we will compute the
first page of this spectral sequence.

First we observe that by using the special family of S–shaped Hamiltonians, all Floer cylinders which are
not contained in the Liouville domain have positive Q!–energy, given that the asymptotic boundaries of
the cylinders are lower orbits.
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This will be proved via Abouzaid and Seidel’s integrated maximum principle. We follow [Borman
et al. 2022, Section 3.4] and recall the setup now. Let .K; !/ be a symplectic manifold with a concave
boundary .Y; ˛/. That is, there is a symplectic embedding .Y � Œc; cC �/; d.r˛// onto a neighborhood
of Y in K, where r is the Liouville coordinate. We will consider maps u W .†; @†/! .K; Y / solving the
Floer equation with respect to a certain class of almost-complex structures and Hamiltonian perturbations.
Here .†; @†/ is a general Riemann surface with boundary.

To define our Floer equation, we choose a family of compatible almost-complex structures Jz parametrized
by z 2 †, and a Hamiltonian-valued 1–form � 2 �1.†IC1.K//. Note that we may interpret � as a
1–form on †�K. The de Rham differential has a decomposition

d WD d†�K D d†C dK :

Then the nondegeneracy of ! gives us a Hamiltonian-vector-field-valued 1–form X� 2�
1.†IC1.T W //.

The Floer equation in consideration is

.du�X�/
0;1
D 0:

Proposition 4.13 [Borman et al. 2022, Proposition 3.9] Suppose that :

(1) Jz is of contact type along Y for all z 2 @†, that is , dr ıJz D�r˛.

(2) There exist 1–forms ˇ1; ˇ2 2�1.†/ such that � D ˇ1 � r Cˇ2 in a neighborhood of Y .

(3) d†� �f�; �g� dˇ2 � 0.1

Then any smooth map u W .†; @†¤∅/! .K; Y / solving .du�X�/0;1 D 0, will satisfy thatZ
†

u�! �

Z
@†

u�.c˛/� 0;

with equality if and only if u is contained in Y.

Next we apply the above proposition to our setting. We make two more assumptions on the S–shaped
Hamiltonian functions which are used to define the telescope:

(1) Near the boundary of D1C3�=4, the function H1 is a function of the radial coordinate with small
positive slope.

(2) All Hn’s and all homotopies connecting them are given by translations in the s–coordinate outside
D1C3�=4. That is, we choose a smooth nondecreasing function �.s/ WR!R such that

�.s/D 0 for all s � 0; �.s/D 1
2

for all s � 1:

Then define HnDH1C n
2

and define the homotopy between Hn and HnC1 to be Hs DHnC�.s/
outside D1C3�=4.

1Here f�; �g lives in �2.†IC1.K// and is defined by f�; �g.v; w/ WD f�.v/; �.w/g by the Poisson bracket.
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Proposition 4.14 Let D be a Liouville domain in M. Assume that Œ Q!� is integral ; see the paragraph
after Lemma 3.1. And assume our acceleration data satisfies the above conditions. Let �; C be two
1–periodic orbits of H�;HC in the telescope which are lower orbits. Let u be a Floer solution connecting
�; C. If Im.u/\.M �D1C3�=4/¤∅, then Q!.u/> „, where „ is a positive number independent ofH˙.

Proof Suppose that Im.u/\ .M �D1C3�=4/¤∅. We pick a number �0 which is slightly greater than �
and @D1C3�0=4 intersects Im.u/ transversally. The intersection is a disjoint union of circles in R�S1,
which is nonempty when �0 is close to �.

Then we set M �D1C3�0=4 to be the concave manifold K in Proposition 4.13, and c D 1C 3�0

4
. By the

transversal intersection we get a new map u0 W .†; @†¤∅/! .K; Y / solving the Floer equation. We will
check the hypotheses in Proposition 4.13. First in our definition of the telescope we did use contact-type
almost-complex structures in the cylindrical region. Hence .1/ is satisfied.

In our case the 1–form satisfies � DHs dt . Near Y it is given by linear Hamiltonian functions, in terms
of the r–coordinate: � D .arCbC�.s// dt . Hence .2/ is satisfied, with ˇ1D a dt , ˇ2D .bC�.s// dt .

Next we verify .3/. Since there is no ds term in �, we have that f�; �g.@s; @t /D 0. Moreover, we can
compute that

d†� � dˇ2 D @sHs ds dt � dˇ2

D �0.s/ ds dt � @s.bC�.s// ds dt

D �0.s/ ds dt ��0.s/ ds dt D 0:

Therefore all hypotheses in Proposition 4.13 are satisfied and we get

0 <

Z
†

u0�! �

Z
@†

u0�.c˛/D

Z
†

u0�! �

Z
@†

u0� Q�:

By our integrality assumption, the right-hand side of the equation is an integer. On the other hand, since
the support of Q! is outside D1C3�=4, the integralZ

u� Q! D

Z
u�! �

Z
u� d Q�

can be approximated by Z
†

u0�! �

Z
@†

u0� Q� D

Z
†

u0�! �

Z
@†

u0�.c˛/ > 0

as �0 tends to �. This shows that if Im.u/\ .M �D1C3�=4/¤∅, then Q!.u/� 1. Finally, for example,
we can set „ D 1

2
.

Remark 4.15 The above proposition is an analogue of [Borman et al. 2022, Proposition 5.10]. However,
our situation is easier since we can assume the Hamiltonian functions are translations of a fixed one
outside D1C3�=4.

Now we can use this positive number „ to construct a Z–valued filtration out of the R–valued filtration
(4-2). And for any l 2 Z we define

(4-3) F l tel.CF k;L/ WD fx 2 tel.CF k;L/ j �.x/� l„g:
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Then this new filtration induces a convergent spectral sequence. Its first page is calculated by using all
differentials of which the change of the Q!–energy are less than „. On the other hand, Floer solutions that
are not contained in D are weighted by a positive Q!–energy greater than „. Hence the first page of this
spectral sequence is calculated by all differentials and continuation maps that are in D. Since in D our
Hamiltonian function is a fixed function, the continuation maps are identity maps and the differentials
give the classical symplectic cohomology SHk.DIƒE /. In particular, when Œ Q!�D 0 2H 2.M;DIZ/,
there will not be outside contributions; hence the spectral sequence degenerates at its first page. Now we
have completed the proofs of .1/ and .3/ in Theorem 1.1.

5 Examples and extensions

We now discuss some applications of our spectral sequence, and how to construct perturbations in the
Morse–Bott case.

Example 5.1 Let B be a round ball symplectically embedded in a Calabi–Yau manifold M 2n with
an integral symplectic form. Then the boundary @B carries the standard contact structure on an odd-
dimensional sphere, which is Morse–Bott index-bounded. After perturbing, the nondegenerate Reeb
orbits on the sphere all have positive Conley–Zehnder indices. Our Hamiltonian flow is the reverse of
the Reeb flow in the cylindrical region. Hence the degrees of nonconstant Hamiltonian orbits are all less
than 2n. Moreover, we can choose the fixed lower part of our Hamiltonians so that they do not have
degree–2n constant orbits. So the only degree–2n constant orbits are upper constant orbits. Then we
apply the ignoring-upper-orbits process to get that SH2nM .B/˝ƒ0 ƒD 0. Finally, the Mayer–Vietoris
sequence shows that any neighborhood of M �B has nonvanishing relative symplectic cohomology;
hence it is not stably displaceable. This fact is already known in [Ishikawa 2016, Theorem 1.1] and
[Tonkonog and Varolgunes 2023, Corollary 1.15] by using different methods (with stronger conclusions).
We put our argument here to motivate Proposition 5.9.

5.1 Simply connected Lagrangians in Calabi–Yau manifolds

Let .L; g/ be a Riemannian manifold and let T �L be its cotangent bundle with the standard symplectic
form. The unit disk bundle D1T �L, with respect to the metric g, is a Liouville domain with the unit
sphere bundle ST �L being its contact boundary. A closed geodesic q.t/ in L lifts to a Reeb orbit
.t/ D .q.t/; q0.t// in ST �L. Pick a trivialization ˆ of the contact distribution along  . There is a
Conley–Zehnder index CZˆ./. On the other hand, the trivialization ˆ also gives a trivialization of the
symplectic vector bundle T T �L along q. Hence there is a Maslov index �ˆ.q/ of q, viewed as a loop
in L. The relation between these two indices is the following lemma.

Lemma 5.2 [Cieliebak and Mohnke 2018, Lemma 2.1] In the above notation , we have

CZˆ./C�ˆ.q/D ind.q/;

where ind.q/ is the Morse index of q as a geodesic.
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Now we consider a Lagrangian submanifold L in a Calabi–Yau manifold M. Let D be a Weinstein
neighborhood of L, which is isomorphic to D1T �L for some metric g on L. Then @D is a contact
hypersurface in M. In particular, when L is simply connected we can use trivializations induced by disk
cappings to compute these indices. The Maslov index is always zero and we have CZˆ./D ind.q/� 0.

Similar to the index-bounded condition, we can consider the following relation between the Morse index
and the length of a closed geodesic.

Definition 5.3 A Riemannian metric g is called index-bounded if, for every m> 0, there exists �m > 0
such that

flength.q/ j �m< ind.q/ < mg � .0; �m/

for all closed geodesics. And the metric is called (Morse–Bott) nondegenerate if the length functional is
(Morse–Bott) nondegenerate.

Hence if L admits an index-bounded Riemannian metric g then any Lagrangian embedding of L into a
Calabi–Yau manifold admits an index-bounded neighborhood. This is true for Riemannian manifolds
with a positive Ricci curvature.

Lemma 5.4 [Milnor 1963, Theorems 19.4 and 19.6] Let .L; g/ be a closed Riemannian manifold of
dimension n whose Ricci curvature satisfies Ricg � .n� 1/C for some positive real number C. Then
any closed geodesic on L with length � has Morse index greater than �

p
C=� � 1. In particular , g is

index-bounded.

Proof Let  be a closed geodesic on L with length �. For the constant C there exists an integer l such
that

l�=
p
C < �� .l C 1/�=

p
C :

We cut  into lC1 segments such that each of the first l segments has length slightly greater than �=
p
C .

Then by the proof of [Milnor 1963, Theorem 19.6], any geodesic segment with length greater than �=
p
C

is unstable. Hence each of these l segments has index at least 1, and the index of  is at least l .

Now let  be a closed geodesic with index k and length �, we know that k > �
p
C=� � 1, which shows

that � < .kC 1/�=
p
C . Hence g is index-bounded.

Remark 5.5 The positivity of the Ricci curvature of a metric g is preserved under C1–small perturba-
tions. Hence we obtain a nondegenerate index-bounded metric g� after perturbation.

Let .L; g�/ be a closed Riemannian manifold with a positive Ricci curvature. Then g� is a nondegenerate
index-bounded metric. Suppose there is a Lagrangian embedding L!M into a Calabi–Yau manifold M.
Another consequence of the Bonnet–Myers theorem [Milnor 1963, Theorem 19.6] is that L has a finite
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fundamental group. Hence L is a Lagrangian submanifold of M with a vanishing Maslov class. Now
let U be a Weinstein neighborhood of L induced by the metric g�. The above lemma tells us that U
is a Liouville domain with a nondegenerate index-bounded boundary in M. In conclusion, our spectral
sequence works for computing SHM .U /, given the integrality condition on Q!.

If we have two Riemannian manifolds both with positive Ricci curvature, then the product manifold also
admits a metric with positive Ricci curvature. Hence we can also study Lagrangian submanifolds of
product type.

Now we present the example of spheres, to demonstrate the above method. Let Sn be a sphere with
dimension n � 3, and let gR be the round metric on Sn. It is known that gR is a Morse–Bott non-
degenerate index-bounded metric. Next let g� be a C1–small generic perturbation of gR such that it is a
nondegenerate index-bounded metric.

The above discussion tells us that for any Lagrangian sphere S D Sn with n � 3 in a Calabi–Yau
manifold M with an integral symplectic form, a Weinstein neighborhood U of S induced by the metric g�
has a nondegenerate index-bounded contact boundary. Hence our spectral sequence works for computing
SHM .U /.

Lemma 5.6 For .M; S; U / as above , we have SHM .U /˝ƒ0 ƒ¤ 0.

Proof For a given energy bound E > 0, there is a convergent spectral sequence which starts from the
symplectic cohomology SH.T �SnIƒE / and converges to SHM .U IƒE /. In our degree notation (2-1),
the usual symplectic cohomology SH.T �SnIC/ is nonzero and 1–dimensional in degrees

fng[ fi.1�n/Cn; i.1�n/Cn� 1 j i 2 ZCg:

(Note that our Hamiltonian flow is the reverse of the Reeb flow in the cylindrical region.) The nonzero
element in degree n cannot be killed in the spectral sequence when n � 3, since the differential only
changes the degree by 1.

Hence for any energy bound E > 0, the truncated invariant satisfies that

SHnM .U IƒE /ŠƒE :

Then by taking the inverse limit over E, we have that SHM .U /˝ƒ0 ƒ¤ 0.

So any Lagrangian sphere with dimension n� 3 in a Calabi–Yau manifold is stably nondisplaceable. This
is known by using the Lagrangian Floer cohomology of S ; see [Fukaya et al. 2009, Theorem L]. But by
using the Mayer–Vietoris property, we can get more from the above lemma. Note that SH2M .U / is zero,
and hence it cannot be isomorphic to the quantum cohomology of M. Pick a Weinstein neighborhood V
of S , also induced by the same g� but with a smaller radius in the fiber direction, compared with U. Then
.M �V /[U DM and the boundaries of U; V do not intersect. The Mayer–Vietoris property says that
SH2M .M �V /˝ƒ0 ƒ¤ 0.
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Lemma 5.7 For .M; S; U / as above , we have that M �U is stably nondisplaceable.

Proof Suppose that M �U is stably displaceable. Then a neighborhood K of M �U is also stably
displaceable. We can choose V as above such thatM�V �K, contradicting SH2M .M�V /˝ƒ0ƒ¤0.

This result is new and it contrasts the case where the ambient space is not Calabi–Yau: a Weinstein
neighborhood U of a Lagrangian sphere can be compactified to be a quadric hypersurface Qn �CP nC1.
Note thatQn is a monotone symplectic manifold, and the complement of U inQn is a small neighborhood
of a divisor Qn�1, which is stably displaceable.

Example 5.8 Let LD S2 �S3 be a Lagrangian submanifold in a Calabi–Yau manifold M. Then there
exists a Weinstein neighborhood of L which is a Liouville domain with a nondegenerate index-bounded
boundary. So it’s possible to use our spectral sequence to compute SHM .L/, which could determine the
displaceability of L. However, due to the S2–factor, we don’t have an immediate nonvanishing result,
compared with the case of spheres with dimension larger than 2. Hence SHM .L/ may depend on the
ambient space.

On the other hand, the Lagrangian Floer cohomology of L may have obstructions to be defined. The
obstruction lies in H 2.LIQ/; see [Fukaya et al. 2009, Theorem L].

Another application of the geodesic-Reeb orbit correspondence is a generalization of Lemma 5.7. If we
only care about the complement of the Lagrangian, then no index-bounded Riemannian metric is needed.

Proposition 5.9 Let .M 2n; !/ be a symplectic Calabi–Yau manifold with n > 2 and ! represents an
integral class in H 2.M/. For a simply connected Lagrangian S in M and a Weinstein neighborhood U of
S , we have that M �U is not stably displaceable in M.

Proof When nD 3, the only simply connected 3–manifold is the 3–sphere which has been discussed.
So in the following we assume n > 3.

Let g be a nondegenerate Riemannian metric on S . By the discussion after Lemma 5.2, the Reeb orbits
on the boundary of U DD1T �S all have nonnegative Conley–Zehnder indices. Then we pick a family
of S–shaped Hamiltonian functions to be our acceleration data such that all the lower constant orbits
have degrees less than nC 1. This can be achieved since U D D1T

�S . Note that the Hamiltonian
flow is in the opposite direction of the Reeb flow, in the cylindrical region. From a Reeb orbit to its
corresponding Hamiltonian orbit, the index is changed by a sign, plus a error term bounded by 1; see
Lemma 2.7. Hence the Conley–Zehnder indices of nonconstant Hamiltonian orbits are all less than 2.
Their degrees, defined as CZ./Cn, are all less than nC 3 after time-dependent perturbations. So these
Hamiltonian functions are index-bounded in degree 2n, since all degree–2n generators are upper constant
orbits. Then the ignoring upper orbits process says that SH2nM .DIƒE /D 0 for any E > 0. Finally we
apply the Mayer–Vietoris argument in Lemma 5.7 to complete the proof.
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The disk cotangent bundle can be regarded as a Liouville domain with a smooth Lagrangian skeleton. On
the other hand, certain Brieskorn manifolds are Liouville domains of which the Lagrangian skeletons are
chains of spheres modeled by trees. In [Kwon and van Koert 2016], the Reeb orbits of many Brieskorn
manifolds have been studied explicitly. Hence one can use the calculation of indices therein to get more
applications, like the rigidity of symplectic embeddings of Brieskorn manifolds into Calabi–Yau manifolds.

5.2 Perturbation of Morse–Bott orbits

Let D be a Liouville domain with a contact boundary .C; ˛/ in a closed Calabi–Yau manifold M such
that ˛ is Morse–Bott index-bounded. Then a time-independent S–shaped Hamiltonian function H has
nondegenerate constant orbits, and nonconstant 1–periodic orbits that are Morse–Bott degenerate, given by
the Reeb orbits of ˛. Now we will perturb H to get a nondegenerate S–shaped Hamiltonian function Ht
such that it is index-bounded. We remark that we are perturbing the Hamiltonian function instead of
perturbing the contact form, since the index-bounded condition may be destroyed by the latter perturbation.

Let Y be the set of l–periodic Reeb orbits of ˛. By the Morse–Bott condition, Y is a closed smooth
submanifold of C. It may have several connected components, and we will construct our perturbation
componentwisely. For simplicity, we assume that l D 1. The general case is similar. Our perturbation is a
modification of the case of a time-independent Hamiltonian function with transversally nondegenerate
orbits, where Y D S1.

There is an S1–action on Y induced by the Reeb flow �t . For a Morse function g W Y !R, we twist it by
the S1–action to get a time-dependent function on Y :

gt .y/ WD g.�
1�t .y//; t 2 Œ0; 1�; y 2 Y:

Next letN be the normal bundle of Y inM. We extend gt to be a function Qgt onN which is supported near
the zero section. We also require that Qgt does not depend on the fiber direction in a small neighborhood
of the zero section.

Now for a time-independent S–shaped Hamiltonian function H WM !R, it has degenerate 1–periodic
orbits in the cylindrical region, which form the submanifold Y. Define G�t W S

1 �M !R as

G�t .m/ WH.m/C � Qgt .m/; m 2M:

Our main result of this subsection is:

Proposition 5.10 For small � > 0, the 1–periodic orbits of G�t in a small neighborhood of Y are in
one-to-one correspondence with critical points of g. Let  be a 1–periodic orbit of H on Y and � be a
1–periodic orbit of G�t near Y. We have that :

(1)
R
 � D

R
� � , where � is the Liouville 1–form on D.

(2) jCZ./�CZ.�/j � dimR Y.
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Proof This proposition, which is known to experts, is a modification of [Cieliebak et al. 1996, Lemma 2.1
and Proposition 2.2].

Let J be a compatible almost-complex structure on M which is cylindrical near C. By the construction,
the Hamiltonian vector field of G�t is

XG�t .m/DXH .m/C �Jr Qgt .m/:

Here the gradient is computed with respect to the metric !. � ; J � /. Let p 2 Y be a critical point of g.
Then �t .p/ is a 1–periodic orbit of H on Y. We can also check that it is also a 1–periodic orbit of G�t .
Hence each critical point of g gives a 1–periodic orbit of G�t . Next we will show there is no other
1–periodic orbit.

Let U be a neighborhood of Y in M which does not contain other 1–periodic orbits of H disjoint from Y.
Then, for any open set V �U with Y � V, there exists �0 > 0 such that for any 0 < � < �0 the 1–periodic
orbits ofG�t in U are also in V. This is due to the compactness result in [Cieliebak et al. 1996, Lemma 2.2].
Hence when � is small, any 1–periodic orbit of G�t is close to a 1–periodic orbit of H on Y, particularly
in the W 1;2–topology.

Next consider a nonlinear operator

A WW 1;2.S1; N /! L2.S1; TN /

given by
A.x.t// WD �J.x0.t/�XH .x.t///:

By the Morse–Bott nondegeneracy, the linearization of A is nondegenerate in the normal direction of Y.
More precisely, there exists a constant c > 0 such that for any 1–periodic orbit x0.t/ of H on Y and a
vector field y.t/ along x0.t/ with y.t/ … T Y for some t , we have

kDA.x0/ �y.t/k � cky.t/k:
Now define another operator

f WW 1;2.S1; N /! L2.S1; TN /

given by
f .x.t// WD Qg0t .x.t//:

Note that the kernel of the operator AC �f is the set of all 1–periodic orbits of G�t in N. Since any
1–periodic orbit of G�t is close to a 1–periodic orbit x0.t/ of H on Y, we can write it as x0Cy.t/ with a
vector field y.t/ along x0.t/.

Then we use the Taylor expansion to calculate that

.AC �f /.x0Cy/D A.x0/CDA.x0/ �yC �f .x0/C �Df .x0/ �yCO.kyk2/:

Note that A.x0/D 0 and kDA.x0/ �yk � ckyk. So we have that

k.AC �f /.x0Cy/k � ckykC �kf .x0/k� �c
0
kykCO.kyk2/

� c00kykC �kf .x0/k
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when � and kyk are sufficiently small. Hence .AC �f /.x0Cy/D 0 if and only if y D 0 and f .x0/D 0,
which are the orbits given by critical points of g. Geometrically these perturbed orbits are the same orbits
which start at critical points of g. So the integrations of the Liouville 1–form do not change.

The proof of .2/ will be a direct computation to relate the Conley–Zehnder index with the Morse index,
similar to that in [Cieliebak et al. 1996].

Therefore, given a Liouville domain D with a contact boundary .C; ˛/ in M such that ˛ is Morse–Bott
index-bounded, we can create nondegenerate index-bounded S–shaped Hamiltonian functions associated
with D. Then we can use them to construct the spectral sequence as we did in the Morse index-bounded
case.
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