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We describe a formula for the H;—action on the knot Floer homology of knotifications of links in S3.
Using our results about knotifications, we are able to study complex curves with noncuspidal singularities,
which were inaccessible using previous Heegaard Floer techniques. We focus on the case of a transverse
double point, and give examples of complex curves of genus g which cannot be topologically deformed
into a genus g — 1 surface with a single double point.
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1 Introduction

1.1 General context

Let C be a complex curve in CP2. The curve C is called rational if C is irreducible and there exists a
continuous degree one map from S2 to C. The curve C is called cuspidal if all its singularities have one
branch (ie their links have one component).

Fernandez de Bobadilla, Luengo, Melle-Hernandez and Némethi [Ferndndez de Bobadilla et al. 2006]
indicated a connection between Seiberg—Witten invariants and rational cuspidal curves. As a consequence
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of these connections, they stated a conjecture binding coefficients of Alexander polynomials of singular
points of a rational cuspidal curve. A variant of this conjecture was proved in [Borodzik and Livingston
2014]; the proof used the relation of semigroups of singular points with Vs—invariants of knots together
with the Ozsvath—-Szab6 d—invariant inequality.

The methods of [Borodzik and Livingston 2014] were later generalized by Bodndr, Celoria and Golla
[Bodnir et al. 2016] and Borodzik, Hedden and Livingston [Borodzik et al. 2017] to the case of nonrational
cuspidal curves. Their result does not generalize immediately to the case where C has noncuspidal
singularities. In this case, the boundary of a suitably defined tubular neighborhood of C can be presented
as a surgery on a connected sum of links of cuspidal singularities and knotifications of links of noncuspidal
singularities of C.

Knotification is an operation described by Ozsvath and Szabd [2008a], which transforms an n—component
link L in S3 into a knot L C #" ' §2 x S'. The knot Floer homology HFK™ (Z) admits an action of
the exterior algebra over Z on n — 1 generators, which is identified with A* H; (#n_1 S2x S 1). To apply
the strategy of [Bodnar et al. 2016; Borodzik et al. 2017; Borodzik and Livingston 2014] to noncuspidal
singularities, one must compute explicitly the action of A* Hy (#"~' $2 x S') on the knot Floer complex
of the knotification. Performing explicit computations is often challenging, since computing the action of
A*Hy (#"_1 $2 x S1) involves counting pseudoholomorphic curves in a symmetric product Sym¢ (%)
of a surface X in a Heegaard decomposition of #"71 §2x S1, which is used to compute the knot Floer
complex. In this paper, we prove a general result which relates the homology action on the knotified link
to counts of pseudoholomorphic curves on a Heegaard diagram for the original link in S3. In many cases,
this is more practical, since it allows us to compute pseudoholomorphic curves in a symmetric product of
lower index d. For the links we consider, we are able to reduce the computations to Sym!(S2), which is
completely combinatorial.

1.2 Main results

Given an n—component link L. C S3, we use Heegaard Floer TQFT to recover the knot Floer complex of
the knotification L of L together with the action of A* H; (#”_1 SZx S 1) on it. This result builds on
recent developments in the Heegaard Floer TQFT due to the third author as well as many others; see
[Hendricks et al. 2018; Juhdsz 2016; Zemke 2015; 2017; 2019¢; 2019b]. Our main result concerning
knotifications is Proposition 2.10, which describes the action of A* H (#"_1 S2x S 1) on the knot Floer

homology of a knotification in terms of a link diagram for L.

Using this general result, we compute the knot Floer complexes of the knotifications of the (2, 2n)—torus
link and of its mirror, as well as the action of H1(S? x S1). In particular, we are able to compute the
invariants V> and VP of these knots. To the best of our knowledge, these computations have not
appeared in the literature before. For the reader’s convenience, we present the precise result for the
knotification of the torus link 77 5. For more details about its mirror, see Proposition 2.41.
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Proposition 2.40 Let 7’;2,2,, be the knotification of the torus link T5 »,. The pair
(CFK™(S2x S', Tr2n). Ay)

has a model where CFK~(S? x S1, 7\“2,2,1) is equal to S”{% %} ® S"_l{—%, —%} and A, maps S"
to S"~1 on the chain level. Here we recall that {i, j} denotes a shift in the (gr,,, gr,)—grading by (i, j),

and 8™ and S"~! are the chain complexes in Definition 2.28.

Our main application is concerned with general curves in CP2. To generalize the results of [Bodndr et al.
2016; Borodzik et al. 2017] to the setting of complex curves C C CP? with noncuspidal singularities,
we take a precisely defined “tubular” neighborhood N of C. The boundary ¥ = dN can be described as
a surgery on a link L in #” $2 x S!, where L is a suitable connected sum of knotifications of links of
singularities and Borromean knots, and p can be expressed in terms of the topology of C. As in [Bodnar
et al. 2016; Borodzik et al. 2017], the manifold ¥ bounds a four-manifold X = CP?2 \ N with trivial
intersection form. Using Ozsvéth and Szabd’s d—invariant inequality in the version proved by Levine and
Ruberman [2014], we obtain restrictions on V,?(L) and VSbOt(L).

The main case we focus on is curves C with some finite number of cuspidal singularities as well as
singularities whose links are (2, 2n)—torus links. We obtain the following result:

Theorem 6.4 Let C be a reduced curve of degree d and genus g. Suppose that C has cuspidal singular
points py, ..., py whose semigroup counting functions are Ry, ..., R, respectively. Assume that, apart
from these v points, the curve C has, for eachn > 1, my, > 0 singular points whose links are (2, 2n)—torus
links and no other singularities. Define

o0 (o,]
Nt = Zmn and k4 = ann.
=1 n=1
Foranyk=1,...,d =2,

max  min  (R(kd +1—n4—2i =2j)+i+j) < 2k + D)k +2) +g.
0<j<g0<i<k4—n4

min  (R(kd +1-2j)+ j) = 3k + 1) (k +2).
0<j=<g+Kk4

Here R denotes the infimal convolution of the functions Ry, ..., R,.

Although complex curves cannot have singularities whose links are (nonalgebraic) (2, —2n)-torus links,
our techniques also obstruct smooth (nonalgebraic) surfaces with these singularities. See Theorem 6.8.

The technical statement in Theorem 6.4 is best understood by comparing the obstruction in the case of a
single transverse double point to the genus g = 1 obstruction from [Bodndr et al. 2016; Borodzik et al.
2017]. We do this in Proposition 6.14, which we now summarize. Let C be a degree d curve, and define
the quantity vy = %(k +1)(k+2)fork=1,...,d —2. Write R for the semigroup counting function.
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If C has genus 1, then the genus bound from [Bodnér et al. 2016; Borodzik et al. 2017] implies that, for
eachke{l,...,d -2},

(1.1 R(kd —1)e{vr—1,v} and R(kd +1) € {vg, v +1}.

In this case, the only constraint on R(kd) is that it lies between R(kd — 1) and R(kd + 1), and hence
R(kd) € {vp — 1, v, v + 1}.

On the other hand, our bounds from Theorems 6.4 and 6.8 give a slightly stronger obstruction than the
bound for genus 1 curves in (1.1), based on the value of R(kd). Since double points may be smoothed
topologically, (1.1) must also hold for genus O curves C with a single double point. If C is a genus 0
curve with a single positive double point, then our bound implies

R(kd) < vg.
If instead C is a smooth curve with a negative double point, then we prove that R(kd) > vy.

We compare our obstruction with known examples, focusing on the question of deforming a genus 1
surface into a surface with one double point. In Section 6.5 we provide concrete obstructions. For existing
curves (ie curves that we can construct), there are obstructions to trading genus for negative double points;
see Example 6.15.

We also compare our obstruction to the obstruction for genus 1 curves from [Borodzik et al. 2017]. In
[loc. cit., Theorem 9.1], there is a list of genus one curves with a singularity whose link is the (p, g)—torus
knot with p and g coprime. The curves in the list pass the obstruction provided in [loc. cit.], but it is not
known whether these complex curves exist. We apply our bound to this list of potential examples. There
is a remarkable case of a degree 27 curve with a (10, 73) singularity, where the genus cannot be traded
for either a positive or a negative double point; see Table 1. While the curve passes all known criteria, we
do not have a recipe to construct it.

1.3 Further applications and perspectives

There has been recent interest in the question of “trading genus for double points”. To be more precise,
given a surface of genus g, one can ask whether it is possible to deform it to a genus g — 1 surface with an
extra positive or negative double point. In the context of the surfaces in a four-ball with fixed boundaries,
this question is related to studying the difference between the clasp number and the smooth four-ball
genus; see [Daemi and Scaduto 2024; Feller and Park 2022; Juhasz and Zemke 2020; Kronheimer and
Mrowka 2021; Owens and Strle 2016]. We deal with a variation of this question, which concerns trading
genus of a closed surface in CP? for double points, while preserving the remaining singularities.

In Section 6.6, we consider another infinite family of higher genus curves constructed by Bodnar, Celoria
and Golla. We show that the genus cannot be traded for a negative double point for any member of the
family.
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As a perspective and a possibility for future research, we indicate that the methods can be used to study
line arrangements in CP2. The only missing ingredient is the computation of the Heegaard Floer chain
complex of the (d, d)—torus link for d > 2, and understanding the H;—action on the knotification of these
links.

Organization

Section 2 reviews Heegaard Floer theory. After recalling various known definitions and results, we show
how to obtain the knot Floer chain complex of the knotification of links, as well as the Hy /Tors—action.
A detailed construction of the Heegaard Floer chain complex of the Hopf link is presented in Section 2.5.
The generalization to knotifications of arbitrary (2, 2n)—torus links is given in Section 2.6. We conclude
Section 2 with Section 2.7, where we recall the computations of the Heegaard Floer chain complex of the
Borromean knot 5.

Section 3 is devoted to a detailed study of correction terms. We recall the Levine—Ruberman versions of
d—invariants and recall definitions of Vy—invariants.

Section 4 contains some important computations that happen behind a scene. We recall the computation
of the Heegaard Floer chain complex of L—space knots, and in particular of algebraic knots, in Section 4.2.
We show how to recover the Vs—invariant of a product of positive and negative staircases. A precise
statement is given in Proposition 4.18. We show that the assumptions in the second item of that proposition
are necessary in Section 4.4,

Next we consider tensor products of knot Floer chain complexes in manifolds with by > 0. It turns out
that most of the knots that we encounter share a property, which greatly facilitates our computations,
namely they have split towers; see Definition 4.29.

Section 5 constructs a tubular neighborhood N of a singular curve and presents the boundary Y of this
neighborhood as a surgery on a link L in #” S2 x S, where p is the first Betti number of C. We then
compute homological invariants of ¥, N and CP?\ N. In particular, we study which Spin® structures
on Y extend over CP2\ N. These computations are slight generalizations of calculations of [Bodnar
et al. 2016; Borodzik et al. 2017; Borodzik and Livingston 2014].

Section 6 contains the proofs of Theorems 6.4 and 6.8. The main technical result is Proposition 6.3,
which computes the d—invariants of Y in terms of the semigroup counting functions of knots of cuspidal
singularities. We also compare Theorems 6.4 and 6.8 with bounds for cuspidal curves of higher genus in
Section 6.4. Sections 6.5 and 6.6 provide explicit examples of curves for which our obstruction can be
applied.
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2 Review of Heegaard Floer theory

2.1 Heegaard Floer complexes with multiple basepoints

Definition 2.1 A multipointed Heegaard diagram for a 3—manifold Y is a quadruple (X, o, 8, w) where:

e X is a genus g surface, which splits ¥ into two genus g handlebodies, Uy and Ug, and w =
(w1, ..., wy) is a nonempty set of basepoints in X.

e a=(aq,...,0g4n—1) and B = (B1,..., Bg+n—1) are collections of simple closed curves on X,
where n = |w|. Each curve in & bounds a compressing disk in Uy, and each curve in 8 bounds a
compressing disk in Ug. Furthermore, the curves in « are pairwise disjoint, and similarly for 8.

e The curves & and B are transverse.

¢ The curves in « are linearly independent in H; (X \ w), and similarly for 8.

Let Ty, Tg C Sym# T7=1(%) be two half-dimensional tori
Ty =a1x---Xag4p—1 and Tg=PB1x---XBgin—1.
Ozsvith and Szabé [2004b, Section 2.6] describe a map
Sw: Te NTg — Spin“(Y).

Given a Heegaard diagram of Y with a Spin® structure s, we define a Floer chain complex CF™ (Y, w, s)
over F[Uy, ..., U], where F =Z/27. The chain complex is generated over F[Uj, .. ., U] by intersection
points in Ty N Ty satisfying 54 (x) = s.

For any x € Ty NTg, the differential is defined by

(2.2) ox = Z Z #(M((,b)/R)Ulnwl () . Ur:lwn(as)y‘
yeTaNTp pemz(x,y)
wu(g)=1

Here, 75 (x, y) denotes the set of homotopy classes of maps of a complex unit disk I to Sym& T"~1(%)
such that point —i is mapped to x, the point i is mapped to y, D N{Re(z) < 0} is mapped to T and
dD N{Re(z) > 0} is mapped to Ty. The quantity u(¢) is the Maslov index of the disk. The space M(¢) is
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the moduli space of Js—holomorphic disks representing ¢ (for some 1—parameter family of almost complex
structures Jg on Sym& 771 (X)). The condition that ;(¢p) = 1 implies that M(¢) /R is generically a finite
set of points. The integers 7y, (¢) are intersection numbers of {w; } x Sym&t"~2(%) c Sym& ™"~ 1(%)
with the image of ¢.

The homology group HF~ (Y, w, ) of CF™ (Y, w, 5) has the structure of an F[Uy, ..., U,]-module.

If ¢1(s) is torsion, then CF™ (Y, w, s) admits an absolute Q—valued grading, which we denote by gr,, .
The differential decreases the grading by 1, so the grading descends to HF™ (Y, w, s). Multiplication by
any of the U; decreases the grading by —2.

Formally inverting the variables Uy, ..., U, in CF (Y, w, s) gives a chain complex CF*° (Y, w, s) over
F[Uy, UL, ..., Uy, U; 1. The associated homology group is denoted by HF*° (Y, w, s).

2.2 The link Floer complex

For links in S3, Ozsvith and Szab6 [2008a] introduced the link Floer homology, which generalizes the
knot Floer homology defined separately in [Rasmussen 2003; Ozsvath and Szabd 2004a]. We presently
recall their construction.

Definition 2.3 An oriented multipointed link I. = (L, w, z) in a closed 3—manifold Y is an oriented
link L with two disjoint collections of basepoints w = {wy,...,w,} and z = {z1,..., z,} such that,
as one traverses L, the basepoints alternate between w and z. Furthermore, each component of L has
a positive (necessarily even) number of basepoints, and each component of Y contains at least one
component of L.

Analogously to Definition 2.1, we have the following:
Definition 2.4 A multipointed Heegaard link diagram for L = (L, w,z) in Y is a tuple (¥, «, 8, w, z)

satisfying the following:

e (X,a,8,w)and (X, a, B, z) are embedded Heegaard diagrams for (Y, w) and (Y, z), respectively,
in the sense of Definition 2.1.

e L NY¥ =wUz, and furthermore L intersects X positively at z and negatively at w.

e LNUy (resp. LN Up) is a boundary-parallel tangle in Uy (resp. Up).

Given a multipointed Heegaard link diagram (X, &, 8, w, z) for (Y, L), the link Floer chain complex is
defined as follows. Let
% =Flw,v], #°=Flw, 2 ', v,v7.
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Let 5 be a Spin® structure on Y. We define the chain complex CFL™ (X, a, B, w, z, 5) to be the free
2~ —module generated by x € Ty NTg with 54 (x) = 5. The differential is given by

@5  dx= )Y HME)RZ O @y @k @)y

yeToNTg pem2(x,y)
w(p)=1

extended #Z~ —equivariantly. The differential d squares to 0.

There is a larger version of the link Floer complex, which we call the full link Floer complex, denoted by
CFLy,(Y,LL,s). Asamodule, CFL (Y, 1L, s) is freely generated over the ring F %1, . . ., U, 1. - . ., V]
by Tq NTg. The differential is similar to (2.5), except we use the weight ny,; (¢) for the variable %,
and the weight of n, (¢) for the variable ;. In general, CFL; (Y, L, 5) is a curved chain complex, ie
0% = o, -id for some wy, € F[21, ..., %, 1. ..., Vy); see [Zemke 2017, Lemma 2.1].

2.3 Homological actions

Ozsvith and Szabé [2004b, Section 4.2.5] describe an action of A*(H;(Y)/Tors) on the homology
group HF™ (Y, w, 5). For a multipointed 3—-manifold (¥, w), there is an analogous action of the relative
homology group H;(Y,w) on CF™ (Y, w, s) [Zemke 2015]. In this section, we recall the construction
and describe some analogs on link Floer homology.

If (£, «, B, w) is a multipointed Heegaard diagram, and A is a path which connects two distinct basepoints
w1, wy € w, then there is a relative homology action Ay, which is an endomorphism of CF~ (Y, w, s)
and satisfies

(2.6) Apd+ 04, =U; + U,.
See [Zemke 2015, Lemma 5.1].

The map A is defined via the formula

@7 M= Y Y adoM@mUum Y upe @y,
y€TaNTp pemz(x,y)
w(g)=1

Here a(A, ¢) € IF is a quantity determined as follows. Homotope the path A so that it is an immersed curve
in X, transverse to the o and B curves. We write D(¢) for the domain of the class ¢, which is a 2—chain
on X with boundary in @ U 8. We write dD(¢p) = 0y (¢p) + dg(¢). Then we set a(A, ¢) = #(dx () N A).
Compare [Zemke 2015, Section 5.1]. Up to chain homotopy, the map A only depends on the relative
homology class of A in Y, relative to its boundary. In particular, the map A, does not depend on the
choice of representative on the surface 3. See [Ni 2014, Lemma 2.4] for a proof in a related context, or
[Zemke 2015, Lemma 5.6] for a similar proof in the present context.
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If (2, a, B, w,z) is a multipointed Heegaard link diagram, and A connects two basepoints w; and ws,
there is an analogous map A, on the link Floer homology. In contrast to (2.6), we have

(2.8) A0+ 04, = U + Vs,

where 77 denotes the variable for the basepoint z; which immediately follows w; with respect to the
ordering of basepoints on the link, and similarly ¥5 is the variable for the basepoint z, which immediately
follows w;. The proof follows the same strategy as [Zemke 2015, Lemma 5.1]: One counts the ends of
index 2 families of holomorphic disks. There are two types of ends: pairs of index 1 holomorphic disks
as well as index 2 boundary degenerations. Pairs of index 1 holomorphic disks contribute to the left-hand
side of (2.8), while the count of boundary degenerations, weighted by a(A, ¢), constitutes the right-hand
side.

If z; € z, then there is an endomorphism of CFLy (Y, L, s) defined by

_ wq (@) wn z1(#) Zn
V=74 Y Y @) M@ Rz g @y @)y

yeTaNTg pema(x,y)
n(p)=1

We call ¥, the basepoint action of z;. Note that, since the contribution of each disk class ¢ is multiplied
by n;; (¢) in the sum, the additional factor of 7/i_1 never results in negative powers of ¥#;, and hence the
formula induces a well-defined endomorphism of CFL; (Y, L, 5).

Given w; € w, there is an analogous endomorphism ®,,,. The map W, satisfies
\I’zia + 8lIJZ,' = % + 62/]'4-1’

where w; and w; 4+ are the w basepoints adjacent to z; on the link. In particular, if we identify all of
the %; variables to a single %, then W, is a chain map. See [Sarkar 2011, Lemma 4.1] or [Zemke 2017,
Lemma 3.1]. Similarly, if z; is on a link component which has only one other basepoint, then W, is also
a chain map.

2.4 Heegaard Floer homology of a knotification

Definition 2.9 (knotification) Let L= L U---U L, be a null-homologous link in a 3—manifold Y.

(1) A partial knotification of L with respect to components L; and L; is a (n—1)—component null-
homologous link £;; in Y #§ 2 x S obtained by connecting L; and L ; with an oriented band
going across the §2 x S! summand.

(2) A knotification of L is a knot LinY ##" 152 x S obtained by consecutive partial knotifications.

The isotopy type £ does not depend on the feet of the bands [Ozsvéth and Szab6é 2004a, Proposition 2.1].

Suppose L = (£, w, z) is an n—component link in #”* S2 x S, equipped with 2n basepoints, and I’
is a multipointed link in #7182 % ST, obtained by knotifying the components L, and L, of L.
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Furthermore, we assume that the basepoints on the link components L1, ..., L,—5 are unchanged in I,
and on L) _, we have only the two basepoints w, and z,—1. There are two natural maps

F:cre (#" S2x S' L) — cre~(#"' $2x s1. 1),

G:cre~(#"T $2x S L) - crem(#" $2 x ST, L).
The map F is the link cobordism map for a 4—dimensional 1-handle, followed by a saddle which
crosses over the 1-handle. The decoration on the saddle consists of an arc, which connects the two link
components of IL.. Outside of the saddle region, the decoration consists of “vertical” arcs which connect IL

to L. See the left-hand side of [Zemke 2019a, Figure 5.1]. The map G is the map for the link cobordism
obtained by reversing the orientation and turning around the above cobordism for F.

The following is a key lemma which we use to compute the Hj—action for knotified links:

Proposition 2.10 Suppose L, I, F and G are as above. Let A be an arc in #™ S? x S! which connects
the w basepoints of Ly—1 and Ly. Let y be the unique element of Hy(#™"' S2 x S1) obtained by
Jjoining the ends of A across the 1-handle used in knotification. We have the following:

(a) F and G are homogeneously graded chain homotopy inverses.

(b) The map F satisfies

F(Ay+ U Dy,) ~ F(A) +VV,,)~ A, F.

Proof To simplify the notation, we will describe the case when £ is a link in §3 with two components
Ly and L,. We begin with claim (a). The proof is formally identical to the proof of [Zemke 2019a,
Proposition 5.1] and follows from two 4—-dimensional surgery relations [Zemke 2019a, Propositions 5.2
and 5.4].

‘We now move onto claim (b). We first show that
(2.11) F(Ay+7VV¥;,) ~ A, F.
By definition, we may take

2.12) F=S, , FYF,

w2,21

where F} is the 1-handle map, S is a quasidestabilization map, and Fg’ is a type-w saddle map; see

1;2 sZ1
[Zemke 2019c] for precise definitions of the relevant maps. Here B denotes the band (ie saddle) which

crossed over the 1-handle used in the knotification operation.
We now have
(2.13) Fir(Ay + 7 Wz,) = (A) + V' V¥2,) F1
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by the same argument as Ozsvath and Szabé’s proof that the 1-handle is a chain map [Ozsvath and Szab6
2006, Section 4.3]. Analogously, the computation of the quasistabilized differential in [Zemke 2017,

Proposition 5.3] implies that
AyS, =Su, 2 Ay

w2,Z1 w2,21
Hence, it is sufficient to show that

FY(Ay +7D;) = Ay FP.

We recall the definition of the map Fg’. We pick a Heegaard triple (X, e, 8, B’, w, z) subordinate to the
band [Zemke 2019c¢, Defintion 6.2]. The diagram (X, B, B/, w, z) contains two canonical intersection
points, @g B and @g g where O; Y is the top degree generator with respect to the gr,—grading for
o € {w, z}. By definition,

F;;"(x) = Fa,ﬂ,'g/(x, ®73,B’)'

Counting the ends of Maslov index 1 families of holomorphic triangles, weighted by a(A, ¥), we obtain
the relation

see [Zemke 2015, Lemma 5.2]. Here F f counts index 0 holomorphlc trlangles with an extra factor of
a(A,¥). Note that one might expect an extra term involving Fy g g/(x, Ay (®f3, ﬁ’)); however, this term
vanishes since A, weights disks based on their changes across the & curves and @2’ g € TgNTg. Since
8@?3 g = = 0, we obtain that

(2.14) Fg oA)y+ AjoFg ~0.
Similarly, counting the ends of index 1 families of holomorphic triangles, weighted by 7, (), we obtain
Fop.p (VW2 (x), ®3 ,3/) + Fypp(x, 7/‘1122(@)3 ,3/)) + Vs, (Fop.pr(x, 623 B’ )

= F'(0x, ®% ﬂ)+F(x 0% ﬁ)—i-aF(x 0% B)
where F' counts index 0 triangles weighted by a factor of n,, (). The above equation implies that
(2.15) Fg oV W,, + ¥ W;,0Fg ~ Fy g g(—7Vz, (@2’/3,)).
We claim now that the map Fy g g/ (—, 7'V, (@/23 ﬂ/)) is null-homotopic. To establish this, it is sufficient
to show that
(2.16) [“//\DZz (@lzg’ﬂ/)] =0

where the brackets denote the induced element of homology. Indeed, assuming the existence of an
neCFL™(X,B,B ', w,z) such that dn = 7V, (@)f3 ﬂ,), associativity of holomorphic triangles implies
that

Fop.p/(x. VW, (OF 5,)) = 0Fg,p.p/(x, 1) + Fopg,p(0x. 7).
SO

2.17) Fappr (= V92, (0% 4,) = 0.
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w
®ﬁ,ﬁ/

Z1

z
Ob p

Figure 1: An unknot with four basepoints. The dashed arc is A.

We will now demonstrate (2.16). We observe that the map W,, commutes with the homotopy equivalences
associated to changing Heegaard diagrams by [Zemke 2017, Lemma 3.2]. Furthermore, the homology
class [®/Z3, ﬂ,] is also preserved by these homotopy equivalences by [Zemke 2019c, Lemma 3.7], since it
is the unique generator in its grading. In particular, we may verify (2.16) for any convenient choice of
Heegaard diagram for an unknot with four basepoints. We perform the computation using the genus 0
Heegaard diagram shown in Figure 1. On this diagram, ¥, (@gg B/) =0.

Combining (2.14) and (2.15) with (2.17), we obtain
(2.18) FR(A)y+ VW) >~ (A) + V) Fp .

Next, consider a path A’ from w; to w,, which is a subarc of I.. We choose A’ so that it is oriented from

w1 to wy. There are two such subarcs of I/, and we pick the one so that the portion of A" nearest to wy is

in the beta-handlebody (equivalently, we pick the one which goes over the band B before arriving at a z

basepoint). Without loss of generality, we may assume that A’ crosses over z5. See Figure 2. We define
yi=AxA,

where * denotes concatenation.

On the Heegaard diagram, we may choose A’ to cross only the alpha curves between w; and z,, and only

the beta curves between z, and w,. Clearly,

a(X. @) = nu,($) —nz(9).

Figure 2: The configuration of the band B, the basepoints and the arc A’ C I,
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Hence, Ay = % ®y, + V¥, or, equivalently,

(2.19) VYV, = Ay + U Py,.

Combining (2.18) and (2.19), we obtain

(2.20) F(A;L—I—V/\IJZZ):S;LZI(A,{—FAW—I—&Z/CD,UZ)F&”FI
~ S,z (Ay + U Py, Fg Fi

~ AySy, 2 Fg Fy.
The second line of (2.20) follows from the relation A, >~ A; + A, . The final line follows from (2.13), as
well as the relation that S, , @y, ~ Sy, St . S, , ~0by [Zemke 2019c, Lemmas 4.11 and 4.13],

w2,21 w2,z1 T wW2,z1 T W2,2]

completing the proof of (2.11).

Finally, to see that
F(Ay, + % ®y,) ~ Ay F,

it is sufficient to show that ¥ W, ~ % ®,,, on CFL (L). To see this, we note that on a diagram for L,
we can consider a shadow of the link component L,. The arc L \ {w2, z2} contains two subarcs, one
of which intersects only the alpha curves, and one of which intersects only the beta curves. Hence
a(Ly,¢) = ny,(¢) —nz,(¢) for any class of disks ¢. On the other hand, this implies that the homology
action associated to 0 = [L,] € H1(S?) satisfies

OZALZ :%¢w2+%\D22. O

The homology action on full knotifications may be computed by iterating the above result, via the
following lemma:

Lemma 2.21 Let L, 1L, F and G be as in Proposition 2.10.
(1) Suppose that y € Hy (#m S2 x Sl). Write y also for the induced element of H; (#m+1 S2 x Sl).
Then A, commutes with F and G up to chain homotopy.

(2) If Aisanarcin #™ S? x S which connects two components of Ly, ..., L,_»>, then the relative
homology map A) commutes with F' and G up to chain homotopy.

(3) If w and z are basepoints on one of the link components L1, ..., Ly,—3, then ®,, and ¥, commute
with F' and G up to chain homotopy.

The proof of Lemma 2.21 is similar to the proof of Proposition 2.10 (though strictly easier), and hence
we omit it. We refer the reader to [Zemke 2015, Section 5; 2019¢, Section 4] for related results.

2.5 The Hopf link

Our next goal is to describe the CFL™—complexes for the (2, 2n)—torus links, denoted by 73 2., their
mirrors and their knotifications. As the calculations are rather involved, we begin by describing the Floer
chain complex for the link 73 » (ie. the positive Hopf link), leaving the general case to Section 2.6. While
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Figure 3: A genus 0 Heegaard diagram for the Hopf link. The thick (red) curve is the « curve, the
thin (blue) curve is the B curve. The dotted curve is used to compute the action of H;(S%x S!;Z)
on the knotification of the Hopf link.

the complex CFL™ (T3 ) is well known (it can be computed explicitly using a very simple diagram), to
the best of our knowledge, the calculation of the action of H1(S? x S!) on the knot Floer chain complex

of the knotification of 73 > is new.

As our main focus will eventually be the knotification of 73 5, we restrict our attention to the link Floer
complex over the ring #~ = F[%, 7], as opposed to the version with a variable for each basepoint.

Consider the diagram for the Hopf link, as in Figure 3. The complex CFL™ (T3,2) is generated over %~
by four elements, hgy, hy, he and hg, which correspond to the intersections of the o and 8 curves in
Figure 3. The gradings are

(g1 (ha). gtz (ha)) = (3. -3).  (gry (hp). grz(hp)) = (—5.—3)
(gry (he). grz (he)) = (=3.3).  (gry (ha). grz(h) = (—5.~3)-

The differential in the complex is computed by counting holomorphic disks of Maslov index 1. Counting

2.22)

bigons shows that
(2.23) ohg = 0he =0, 0hp =0hg =Uha+ Vhe.

The homology of CFL*(T> ) is a direct sum of two copies of #°°. One copy is spanned by [Ap + hg];
the other copy is spanned by %, or A.

We now describe the homology action 4, on C]-'IC_(?Q,Z), where fz,z denotes the knotification of 75 2,
and y is a generator of H;(S? x S!). We will use Proposition 2.10. The formula therein involves the
relative homology action A on CFL™ (T3 ), which we compute now. In our present case, the arc A has
only one intersection with an alpha curve, which occurs at a point labeled e in Figure 3. The map A,
counts holomorphic disks of Maslov index 1, with weights corresponding to changes along the alpha
boundary of a disk; see (2.7). Counting bigons with these weights, we obtain

(2.24) Ap(hag) =V (hp +hg), Ajlhp) =0, Ay(he) =% (hp+hg), Ap(hg) = Uh,.
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We recall that, in Section 2.4, we defined a knotification map
F:CFL™(T2,2) — CFK™ (Ta,2),
which is a homotopy equivalence. In Proposition 2.10, we showed that
F(A) +U®y,) = AyF.
Hence, as a model for the pair (C]-'IC_(@,Z), Ay), we may use (CFL (T2,2), Ay + % Py, ). Hereafter,
by a model for a chain complex (possibly with extra structure) defined up to chain homotopy equivalence,
we mean a concrete chain complex in the class of an appropriate (usually bifiltered) chain homotopy
equivalence. Abusing notation slightly, we will write A, for the endomorphism of CFL™ (7> 2) given by
Ay = A + U Dy,. One easily computes
q>w2 (hd ) = hq,
and ®,,, vanishes on the other generators. Hence,
(2.25)  Ay(ha) =7 (hp +ha), Ay(hp) =Uha, Ay(he) =U(hp+ha),  Ay(hg) = Uha.
With a change of basis 4/, = hj, + hg, we obtain the following presentation of (CFK™ (?2,2), Ay):

W u N
ha <57~ o
(2.26) 7 '
R, < “ hvc

In (2.26), the dashed arrows denote differentials, and the solid arrows denote the action of A4,,.

We may obtain a simpler model of the homology action by replacing 4, with 4, + [0, F], where F is
the #~—equivariant map which satisfies

F(hg)=hgs and F(hp)= F(he) = F(hg)=0.
The resulting model for (CFK™ (fz,z), Ay)is

hg <-%-- hy,
(2.27) kf/// 'y
b < “ he

2.6 The torus link T3 >,

Before we start our computation of the Floer chain complex of the (2, 2n)—torus link and its knotification,
we introduce a family of complexes S, for n € Z, which play a prominent role in the present paper.

Definition 2.28 Let n > 1. We write S” for the complex generated by elements xg, y1,..., Y2n—1, X2n
with differential d(x,;) = 0 and

0(V2i+1) = U X2i + V' X2i 2.
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The bigradings are given by (gr,, (x;), gr,(x;)) = (—J, j —2n) if j is even. The same formula holds
for y; if j is odd.

The complex S™" is defined as the dual complex to S”. More specifically, it is generated by elements
X0, Y1, .-, Y2n—1, X2, With differential 8(2)2,41) =0, d(x2;) = V' y2i—1+ % y2i+1, and the convention
that y_1 = y2n+1 = 0. For j even, the grading of x; is (j,2n — j), and an analogous formula holds for

the grading of y; if j is odd.

Remark 2.29 The complex S” is the CFKX™—complex of the positive torus knot 7% 2,41, while S™"
is the complex for the negative torus knot 7, _(2,41). Hence, we also call S” a staircase complex. For

details of staircase complexes, see Section 4.1.

Recall that 75 5, C S* denotes a 2—component (2, 21)—torus link. In this subsection, we study the Floer
chain complex CFL™ (72,2,) as an Z~ —module. This gives the Floer chain complex CFKX™ (S 2x ST, ?2,2,1),

where Tz,zn is the knotification of 75 »,.

The Heegaard diagram of the link 75 2, in S* is shown in Figure 4 and the Floer chain complex is in
Figure 5. The Heegaard diagram displayed therein is obtained from a doubly pointed open book whose
page is a disk and whose monodromy is y”, where y denotes a Dehn twist parallel to the boundary.

S~

X0

Figure 4: A Heegaard diagram for 73 4 from a doubly pointed open book. The dashed line is an
arc A connecting w; and w,.
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Figure 5: The chain complexes for 75 4 (top) and 73 ¢ (bottom).

It is easy to see that there are 4n generators Yo, ..., y4n—1 of the complex CFL™ (72,2,). By counting
bigons, one obtains formulas for the differential
dyi = 0yan—i =V (Vi—1 + Yan—i+1) + % (Yit1+ yan—i—1) if 2=<i=2n-2,
Oy1 = 0yan—1="7yo+ % (y2 + yan—2),
(2.30) " "
dy2n—1 = 0y2n+1 = % yan + ¥V (Y2n—2 + Y2n+2),

8y0 = 8y2n =0.

V2 V3

%\ %\y

J’n Y1o

Figure 6: Figure 5 continued. The map A on the complex for 75 ¢ (top) and the map @, (bottom).
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It is convenient to do the following bigraded change of basis to the complex CFL™ (72 ,2,). Namely we
consider the basis y1,..., Y2n—1, X0, - .., X2, Where

(2.31) Xj =Yi+ yan—i if 1<i<2n-1, X0 = Yo, Xopn = Y2n.

With this change of basis, the differential takes the form

(2.32) 0yi =V xi—1+Uxi+1 if 1<i<2n-1, dx; =0.

The gradings of the generators in CFL™ (772, ) are summarized in the following lemma:

Lemma 2.33 If1<i <2n-—1, then

(g (i), 812 (1) = (gry, (x0). grz (x0)) = (3 —2n +i. 53 —i).

If i =0 ori = 2n, then the same formula holds for x;.

Proof Recall that d has (gr,,, gr,)-bigrading (—1,—1), and that % and ¥ have bigradings (-2, 0)
and (0, —2), respectively. Using the description in Figure 6, it is easy to check that the formula holds up
to an overall additive constant. That is, the formula holds for the relative gr,,— and gr,—gradings. Hence,
it is sufficient to show the absolute gr,,—grading is correct for one of the generators, and similarly for the
gr,—grading. To check the absolute gradings, we note that, if we set ¥ = 1 and % = 0, then we recover
the Heegaard Floer complex for €F(S3, w1, wz), which is homotopy equivalent to ¥y, @ F_;/5 as a
gr,,—graded chain complex. In this case, the complex has generators x3,—1 and x2,, which pins down
their gr, —grading. A similar argument computes the gr,—gradings. a

We now compute the homology action 4, on the complex of the knotification of 75 7,. In order to use
Proposition 2.10, we need to compute A, and ®,,,. For a choice of arc on the Heegaard surface as in
Figure 4, by counting bigons we obtain that A, has the form
Ay(yo) =% (y1 + yan—1). A (i) = U yi+1 if 0<i <2n,
Ar(yv2n) =7 (yan—1+ y2n+1),  Ap(i) =% yan—i+1 if 2n+1<i <4n.
By (2.31), we have

(2.34)

Ay (x0) = U x1, Ay(xi)=Uxiy1 if 0<i<2n-—1
A (x2n) = Vx2n—1,  Apx(x2n-1) =0.

Next, we need to understand the map ®,,,. Counting bigons on diagrams like those shown in Figure 4

(2.35)

implies that ®,,, takes the form

2.36) Dy, (¥2i) = y2i+1 if 0<i<n, Dy, (¥2i) = yan—2i+1 if n <i <2n,
Dy, (¥2i41) = Y2i + Yan—2i if n <i <2n, Dy, (V2n+1) = Y2n,

and ®,,, vanishes on all other generators.

Algebraic € Geometric Topology, Volume 24 (2024)



Heegaard Floer homology, knotifications of links, and plane curves with noncuspidal singularities 4855

Finally, we combine Proposition 2.10 with (2.35) and (2.36) to obtain the following formula for 4, >~
Aj + % Py, on the knotified complex, which we write in terms of the basis from (2.31):

Ay(2i+1) = UX2i42+ U y2i42 if 0<i<n-—1,
A (yz-)z%xz~+1 if 0<i<n—1,
(2.37) yars :
Ay (x2i) = U X2i+1 if0<i<n,

Ay(x2n) = ¥ X2n-1,

and A, vanishes on all other generators. The example of 73 ¢ is shown below:

(2.38) A, =

Y

2 4
it N4 it AN
s K //, K
)_{/ 2 \}_{ \_{/ V \}_{
X1 X3 X5

The dashed lines denote the differential and the solid lines denote the A, —action. It is convenient to

y

modify the map A, by a further chain homotopy, so that it takes one staircase summand to the other, with
no self-arrows, as follows. Define a function §: N — [ by

8(n) = %n(n —1) mod 2.

Conceptually, it is easier to think of §(n) as the sequence 0,0,1,1,0,0, 1, 1,.... We define a homotopy F
as follows. On the first staircase summand, we define F via

F(x2i)=08Q2i)-xp; if 0<i<n, F(y2it1)=6Qi+ 1) -yri41 if 0<i <n.
On the second staircase summand, we define F' via

F(x2i41) =8Qi)-x2i41 if 0<i<n, F(y2i)=6Q2i—1)-y2; if 0<i <n.
Writing A4’, for Ay + [0, F], we compute that

Al (x2i) = Uxzi41 i 0<i <n,
A;,(yzi+1) =UYyri+2 f0<i<n-—1,

Ay (x2n) = V' X2n—1.
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Continuing our running example of 75 ¢, (2.38) becomes

(2.39) Ay +[0, F] =

We summarize the above computation as follows:

Proposition 2.40 The pair (CFKX™(S2 x S', T5.2,). Ay) has a model where CFK™(S2 x 81, T5 »y) is
equal to S"{%, %} oS! {—%, —%} and A, maps S" to S8™"1 on the chain level. Here, we recall that
{i, j} denotes a shift in the (gr,,, gr,)—grading by (i, j), and S" and S"~! are the chain complexes in

Definition 2.28.

We now consider the mirror of the (2,2n)—torus link, which we denote by 7> _»,. We denote its
knotification by 7A"2,_2n. On the level of Floer complexes, taking the mirror amounts to replacing the link
Floer complex by the dual complex over the ring %~ . In practice, this amounts to reversing all the arrows
in the differential and multiplying the (gr,,. gr,)-bigrading by an overall factor of —1. The homology
action on the mirror is also the dual. We summarize this as follows:

Proposition 2.41 The pair (CFK(S2 x S', T, _»p), Ay) has a model where CFK~(S2 x S1, T _pp)
is equal to S™" {—%, —%} &) S_(”_l){%, %} and A, maps S~(=1) to S~ on the chain level.

2.7 The Borromean knot 5

Let By C #2 52 x S! be the Borromean knot, that is, the knot obtained from the Borromean rings by a
zero-framed surgery on two of its components. The Heegaard Floer chain complex of By is described in
[Ozsvéth and Szab6 2004a, Proposition 9.2]. We adapt the calculation of [Borodzik et al. 2017, Section 5;
Bodnér et al. 2016, Section 4] to the present context.

The chain complex CFK~(Byp) is homotopy equivalent to F* @ %, with vanishing differential. We
write 1, x, y and xy for the generators of IF4, which we can think of as being generators of H*(T?).

The bigradings are
(gry, (1), gr (1) = (1. =1),

(242) (gry, (), grz (X)) = (gry, (), gr2(y)) = (0,0),
(gry, (xy), gr; (xy)) = (=1, 1).
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Up to an overall grading-preserving isomorphism, the H; (#2 S2xS 1)—module structure is uniquely
determined by the formal properties of the action. In detail, if we write x* and y* for the two generators
of Hy (#2 S§2x S8 1), then the module structure takes the form (up to overall isomorphism)

Xy Xy
N N,
1 1

For the explicit description of the top and bottom towers of CFK™(By), see [Borodzik et al. 2017,
Section 5].

Ay*

3 Correction terms

3.1 Generalized correction terms of Levine and Ruberman

Suppose Y is an oriented closed three-dimensional manifold. The module HF*°(Y') is standard if, for
each torsion Spin® structure s,

HF®(Y,s) = A*H\(Y;Z) @z F[U, U]
as A*(H1(Y;Z)/Tors)®zF[U]-modules. Any manifold Y for which the triple cup product vanishes
is standard; see [Lidman 2013] (and also [Levine and Ruberman 2014, Theorem 3.2]). In particular,
a connected sum of finitely many copies of S! x §2 has standard HF®. Hence, a large surgery on a
null-homologous knot in # S 1'% §2 has standard HF>; see [Ozsvith and Szabé 2003]. This means that
essentially all 3-manifolds we are going to consider have standard HF*®.
There is an action (up to homotopy) of A*(H7(Y)/Tors) on CF~ (Y, s). Expanding on work of Ozsvith
and Szabé [2003], Levine and Ruberman [2014] associate a d—invariant to any primitive subspace G
of Hy(Y)/Tors (recall that a primitive subspace is a free submodule whose quotient is free) and any
Spin® structure s on Y whose first Chern class is torsion as long as HF*°(Y) is standard. We denote this
invariant by d(Y, s, G). For our purposes, the two most important instances are the invariants

doo(Y,6) :=d(Y,s, Hi(Y)/Tors), dip(Y,5) :=d(Y,s,{0}),
which correspond approximately to the kernel and cokernel, respectively, of the H(Y)/Tors—action.

The key property of these invariants is the following inequality, generalizing the Ozsvath—Szabé inequality:

Theorem 3.1 [Levine and Ruberman 2014, Theorem 4.7] Suppose X is a connected four-manifold
such that b;r (X)=0and 0X =Y. Suppose s is a Spin® structure on Y that extends to a Spin® structure t
on X. Then

d(Y.s,G) = L(cf(t) + b5 (X)) + 1b1(Y) —1k G

if G contains the kernel of the inclusion map from Hq(Y)/Tors to H1(X)/Tors.
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3.2 V-invariants

The aim of this section is to gather several definitions of Vs—invariants. In the context of Heegaard Floer
theory, all these definitions lead to the same invariants.

The first definition recalls the classical Vs—invariant for knots. The assumptions on C, in Definition 3.2
are modeled on a knot Floer complex CFK™.

Definition 3.2 (Vi—invariants for complexes over F[U, U™!]) Suppose Cy is a filtered chain complex
of free IF [U]-modules (with multiplication by U decreasing the filtration level by 1 and the grading by 2)
such that the homology of the localized complex U ~!Cy is equal to F[U, U~!]. For s € Z, the invariant
Vs (Cy) is such that —2V(Cy) is the maximal grading of an element x € Cy at filtration level at most s
such that the class of U¥ x is nonzero in H, (Cx) for all k > 0.

Next we define the Vi—invariants of a bigraded #~—module, where Z~ = F[%, #]. The definition is
essentially taken from [Zemke 2019b, equation (10.3)]. Suppose Cy is a bigraded chain complex over %~
such that multiplication by % changes the grading by (—2, 0), multiplication by ¥ changes the grading
by (0, —2), and the differential changes the grading by (—1, —1). Let (gr,,, gr,) denote the bigrading. It
is not hard to see that the differential and multiplication by % ¥ preserves the difference gr,, — gr,.

Definition 3.3 (Vs—invariants over #~) Suppose C, is a chain complex over %~ such that
(3.4) (%, V)V Ho(Co) = 2™® =F|w, v, ', v

as bigraded groups. (Here (%,7)~!- denotes localization at the nonzero monomials of Z~.) We
write .«7; (Cx) for the subcomplex of Cx which has gr,, —gr, = 25. We can view <% (Cx) as a complex
over F[U], where U acts by % ¥. We define d(.<Z; (Cx)) for the maximal gr,,—grading of a homogeneously
graded, IF[U]-nontorsion element of Hy (7 (Cx)). We define

Vs (C*) = —%d(ﬁfs (C*))

Remark 3.5 Suppose M is a graded module over %~ such that (!, ¥ ~1). M = %> as bigraded
groups. We define Vs(M) to be Vi(Cy), with Cy the chain complex with the same underlying module
structure as M but trivial differential.

Remark 3.6 If C, is the chain complex CFL™(S3, K) for a knot K C §3, V5(Cy) is the classical
V—function of the knot K. In this case, we also denote it by V5(K) if the context is clear. See [Zemke
2019b, Section 1.5] for translating between the chain complex CF£~(S3, K) and CFK™(S3, K).

Suppose Cy is as in Definition 3.3. Let a, b € Z. The chain complex Cy{a, b} is defined as the chain
complex equal to Cx, but with grading shifted by (a, b). That is, if x € Cyx has bigrading (c, d), then
x € Cyl{a, b} has bigrading (a +c,b +d).
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Lemma 3.7 Suppose Cy is a bigraded chain complex over #~ and let Dy« = Cx{a, b} be the chain
complex with shifted grading. Then Vyy (4—py/2(Dx) = Vs(Cx) — %a.

Proof We use the fact that &/ (Cx) = Fsq (a—p)/2(Dx). m|

In our computations, we will need to show that Vs—invariants of locally equivalent complexes are the
same. We recall the relevant definition:

Definition 3.8 Two chain complexes Cyx and D are locally equivalent if there exist grading-preserving,
%~ —equivariant chain maps f: C« — D, g: Dy« — Cy such that both f and g induce the identity map
on (%, V) V- Cx = (%,¥V) ' Dy.

As an example, we quote the following result of Hedden, Kim and Livingston (note that v T —equivalence
is equivalent to local equivalence; see [Hom 2017, Proposition 3.11]):

Proposition 3.9 [Hedden et al. 2016, Theorem B.1] The tensor product S ® St is locally equivalent
to S¥*¢ for any integers k and I.

For the following result, see [Zemke 2019a, Section 2], [Hom 2017] or [Kim and Park 2018, Section 3]:

Proposition 3.10  (a) If Cx is locally equivalent to D, then Vs(Cy) = Vs (D) for all s.

(b) If Cy is locally equivalent to Dy and E is locally equivalent to F, then Cyx ® E4 is locally
equivalent to Dy ® Fi.

We now extend Definition 3.3 to the case of chain complexes with a group action. Suppose Cy is a
bigraded chain complex over Z~ and H is a free abelian group such that the ring A* H acts on H«(Cx),
and the action of H has degree (—1, —1). Let Tors C H«(Cx) denote the Z~ —torsion submodule. Define

H'P = coker(H ® (Hx«(Cx)/Tors) — (Hx(Cx)/Tors)),
HPot = ﬂ ker(y: (H«(Cy)/Tors) — (H*(C*)/Tors)).

yeH
By analogy with (3.4), we require that
%, V) V1P =™ = (w,y) L 1O

as relatively bigraded #~—modules. Let HP (resp. H?Ot) denote the F[U]-submodule generated by

homogeneously graded elements x € H'°P (resp. x € H") such that gr,, (x) — gr,(x) = 2s (recall
U acts by 7). We define dsmp(C*) to be the maximal gr,,—grading of a homogeneously graded,
F [U]-nontorsion element of HP, and we define d b0(C,) analogously.

Definition 3.11 We set
VsP(Cy) i= —1d™(Cx) and  V°U(Cy) = —1d2(Cy).
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Remark 3.12 If K is a null-homologous knot in a closed, oriented connected 3—manifold ¥ with
standard HF*® (Y)), for simplicity we write «Z (K) for 7 (CFL™(Y, K)), and V;*(K) = —%d P(K) and
VEUK) = —1dP(K) for Vi (CFL™(Y, K)) and VPU(CFL™ (Y, K)), respectively.

3.3 Large surgery formula

To set up the notation, we recall the large surgery formula [Ozsvath and Szabé 2004b, Section 4] and
relate the d—invariants of the surgery on a knot to its Vs—invariants. We first recall the description of
Spin® structures on a surgery.

Definition 3.13 Suppose Y is a closed 3—manifold and K C Y is a null-homologous knot. Let s €
Spin(Y) and g € Z~¢. For any m € [—%q, %q) NZ we denote by s, the unique Spin® structure on Y, (K)
such that s,, extends to a Spin® structure t,, on W uniquely characterized by the properties that t,,,|y = s
and (c1(ts), F) + g = 2m, where W is the trace of the surgery on K and F is the generator of H, (W)
obtained by gluing a Seifert surface for K with the core of the two-handle.

With this notation, we state Ozsvath and Szabd’s large surgery theorem [2004b, Theorem 4.1]:

Theorem 3.14 Suppose K C Y is a null-homologous knot in a closed 3—manifold. Suppose q > 2g3(K)
is an integer. For a Spin® structure s,, on Y as in Definition 3.13, there exists a quasi-isomorphism
between CF~ (Y4 (K), 5,n) and %y, where <y, is the F[U]-subcomplex of CFL™ (Y, K, s) of elements
x with grading gr,,(x) — gr,(x) = 2m. If s is torsion, then the quasi-isomorphism shifts the grading
(Maslov grading on CF~(Y,;(K), s,) and gr,,—grading on <4,) by ((¢ —2m)? —q)/4q.

From this theorem we obtain the following well-known equalities:

Theorem 3.15 Suppose K C Y is as in Theorem 3.14 and g > 2g3(K).

(a) IfY is arational homology sphere, then d(Y4(K), sm) = ((q —2m)? —q)/4q — 2Viu(K);
(b) If b1(Y) >0 and HF*®(Y) is standard, then d'P(Y4(K), 5m) = ((q —2m)* —q)/4q — 2V P (K)
and d*'(Yq(K). sm) = ((q —2m)* —q)/4q =2V, (K).

4 Staircase complexes and their tensor products

In this section, we introduce staircase complexes. Next we compute the correction terms of certain tensor
products of staircase complexes.

4.1 Staircase complexes

A positive staircase complex P is a bigraded chain complex over #~ with generators xg, y1, X2, ...,
Yan—1, Xan for some n > 0 with differential given by dyzj+1 = Z% - x2; + yBi “ X2i42, 0xz; =0,
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extended equivariantly over %, for some positive integers o; and B;. We assume that d, %7 and ¥ have
bigradings (—1,—1), (—2,0) and (0, —2), respectively. We assume that o; = 8,,—;—1. Furthermore, we
assume the gradings are normalized so that Hy«(P/(%Z — 1)) = F[¥] has generator with gr,—grading 0,
and H«(P/(¥ — 1)) = F[%] has generator with gr, —grading 0. A negative staircase complex is the dual
complex of a positive staircase complex.

Example 4.1 The complex S” of Definition 2.28 is a positive staircase complex for all n > 0. Itis a
negative staircase complex if n < 0.

Lemma 4.2 Suppose that P = (P; — Py) is a positive staircase complex, viewed as a complex of free
%~ —modules, where P is spanned by y; and Py is spanned by x; .

(1) H«(P) is torsion-free as an %~ —module.
(2) There is a (gr,,, gr,)—grading-preserving chain map
F:P—>%

which sends #~ —nontorsion cycles to %~ —nontorsion cycles. Furthermore, F may be taken to
map each generator of Py to a nonzero monomial in %~ , and vanish on Pj.

Proof For the first claim, using the grading properties of P it is sufficient to show that %% ¥/ - [x] # 0
if [x] # 0 € H«(P) when x is a homogeneously graded cycle in P. Since the map from P; to Py
is injective, there are no cycles with a nonzero summand in P;. Hence, it is sufficient to see that, if
x € Py and %'/ . x € im(Py), then x € im(P;). To see this, suppose that y € P; is homogeneously

graded and not a multiple of % or ¥. We may write y as an %~ linear combination of yi,..., y2s—1.
Let m (resp. M) be the minimal (resp. maximal) index which is supported by y. Hence, we may write
Yy=amYm+---+apmym foray,,...,apy € Z. We observe that

4.3) gry (i) = gry (vi+2) and  grp(yi) <gr,(yi+2)

for all i. Since y is homogeneously graded, it follows that a,, is not a multiple of ¥: if it were, then
all other a; would need to be a multiple of ¥ for y to be homogeneously graded, which contradicts
our assumption. Similarly, aps is not a multiple of %. We write a,, = %/ and ap = ¥/M for some
jms jm € N. Then % Jm+em—v/2x, | and ¥/m+Ba+1/2x,, . | are summands of d(y), and hence it
is not a multiple of any element of %™ .

For the second claim, if x; € Py is a generator, we define F(x;) to be the unique nonzero element
of %~ in the same homogeneous grading as x. It follows from our normalization of the gradings of
H.(P/(% — 1)) = F[¥] and H«(P/(¥ — 1)) = F[%] as well as (4.3) that each generator of P has
(gr, . gr,)-bigrading in Z=% x Z=9, so this map is well defined. We leave it to the reader to verify that
this map is a chain map and sends % —nontorsion cycles to %~ —nontorsion cycles. O
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Definition 4.4 We call a complex P a positive multistaircase if it is the tensor product of a nonzero
number of positive staircase complexes. We call N a negative multistaircase if it is the tensor product of
a nonzero number of negative staircases.

The dual of a positive multistaircase is a negative multistaircase, and vice versa.

By construction, a positive staircase P has a Z-filtration with two levels, and we write P = (P; — Py).
Hence, a positive multistaircase with n factors has a Z—filtration with n + 1 nontrivial levels, for which
we write

(4.5) P=(Pn—>Pn_1—>—)P1—>P0)

IfP = (P, —---— Pp) is a positive multistaircase, we say that P is an exact multistaircase if the
following sequence is exact:

0— P, —>---— Py.

In particular, an exact multistaircase is a free resolution of its homology.

Remark 4.6 In general, the sequence in (4.5) will not be exact. As a concrete example, consider
C =CFK™(T3,3) and the tensor product P =CRC®C. Write P = (P3 — P, — P1 — Py). Following our
conventions, write xg, y1 and x5 for the generators of the left-most factor of C, where d(y1) = % xo+ ¥ x>.
One easily computes that

yilx2]xo + x2|y1|xo + x2[x0|y1 + xo|x2|y1 + y1l|xo|x2 + X0|y1]x2 € P1

is a cycle. In the above, bars denote tensor products. It is not a boundary, since the differential has image
inim(%) +im(¥).

Lemma 4.7 (1) Every positive staircase is exact.

(2) The tensor product of two positive staircases is exact.

Proof Exactness of a positive staircase P = (P; — Pp) amounts to the claim that the map P; — Py is
injective, which is easy to verify.

Next suppose P = (P; — Py) and D = (D1 — D) are staircases. We claim that their tensor product
is also exact. Let £ = (E», — E1 — Ey) denote this tensor product. Clearly the map E, — Ej is
injective, so it is sufficient to show that H;(£) = 0. The homology H.(€) decomposes as the direct sum
H>(E)® H1(E) D Ho(E). Since every £~ —nontorsion element contains a nonzero summand of Hy (&), it
follows that H(€) consists only of %~ —torsion elements. Since £ is bigraded, each element [x] € H1(E)
satisfies %' ¥/ -[x] = 0 for some i and j. In particular, if x € E is a cycle, then %' ¥/ .x €im(E; — E)
for some 7, j. In order to show that H1(€) = 0 it is sufficient to show that, if ¥/ .x € im(E, — E),
then x € im(E, — E1). We argue as follows. Note first that the map from E5 to E; is the sum of the
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maps P ® D1 — P1 ® Do and P; ® D1 — Py ® Dj. Suppose that wivi.x e im(E, — E1). Write
'y . x = d(y). We may assume that x and y are homogeneously graded. Write x = X0,1 + X1,0,
where x1,0 € P1 ® Do and x9,1 € Po ® D1. Then Wiy -X0,1 €im(P; — Py) ® D;. Since P is exact
and D is free, we conclude that xo,; € im(P; — Py) ® D1. Hence there is some y’ € P; ® D; such
that the map from P; ® D; to Py ® D1 maps y’ to x¢,1. Since the map from P; ® Dy to Py ® Dj is
injective, we conclude that %i”f/jy/ =y,s09(y) =x0,1 +x1,0 and xo,1 + x1,0 €im(E, - E1). O

4.2 The staircase complexes for L-space knots

Aknot K C S3 is called an L-space knot if there is a positive integer ¢ such that S 5’ (K) is an L—space, ie
HF~ (S (;’ (K),s) = F[U] for each s € Spin®(S ;(K )). All algebraic knots are L—space knots; see [Hedden
2009, Theorem 1.10].

There is a simple description of Floer chain complexes of L—space knots, due to Ozsvith and Szabé
[2005, Theorem 1.2]. (Note that, therein, only Pﬁ;K(K ) is described, but the algorithm actually produces
a description of CFK*°(K).) We describe their algorithm presently. Let K be an L-space knot. Ozsvath
and Szab6 prove that the Alexander polynomial of K, which we denote by Ak (¢), has the form

4.8) Ag (1) =190 — 90 4. 41927,

where 0 = ag < a; < --- < ap,; that is, we use the normalization of A starting at degree 0. Define the
gap function
Bi=ai—aj—

forl <i <2r.
We now describe the complex CFK™ (K) over the ring Z~. The complex CFKX™ (K) is freely generated
over #~ by elements

X05 V1, X2, - -5 V2r—1,X2r-
The differential takes the form

(4.9) d(x2i) =0 and d(yaip1) = ZPitixy + ¥ Poit2xy; s,

The (gr,,. gr,)-bigradings are determined by the normalization that gr,, (x9) = 0 and gr,(x2,) = 0.
Recall that the variable % has bigrading (—2, 0) and the variable ¥ has bigrading (0, —2).

The gradings can be expressed in the following way. Write
Ag =14+ -1 +---+1™)

for some positive integers m < --- < mg. Note that the integers §; compute the number of consecutive
integers or consecutive gaps (depending on i) of the sequence m1, ..., my; see [Borodzik and Livingston
2014, Lemma 4.2]. Define Sk = Z>¢ \ {m1,...,my}, and

(4.10) Ri(t) =#Sg N[0,1) if 1t €Z.
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With this notation, the gradings of the generator xp; are gr, (x2;) = —2Rg(az;) and gr,(x2;) =
2Rk (az;) —2g3(K); compare [Borodzik and Livingston 2014, Section 4]. Note that, with our nor-
malization, 2g3(K) = az, = ms + 1. If the context is clear, we sometimes write R instead of Rg to
simplify the notation.

Example 4.11 If K is the (2, 2n+1)—torus knot, then the above procedure produces the complex S” of
Definition 2.28.

Remark 4.12 If K is an algebraic knot, the set Sk turns out to be a semigroup (note that, if K is only
an L—space knot, Sk need not be a semigroup). In fact, this is the semigroup of that singular point. The
function Ry is the semigroup counting function. See [Wall 2004, Section 4] for details on semigroups.

The next corollary is a compilation of [Borodzik and Livingston 2014, Proposition 5.6 and Lemma 6.2]:
Corollary 4.13 The Vy—invariants of an L—space knot satisty V_g,(k)+;(K) = Rx(j) — j + g3(K).

The Kiinneth formula for the knot Floer chain complex allows us to compute the V;—invariants of a
connected sum of L—space knots. The following result is given in [Borodzik and Livingston 2014,
formula (6.3)]:

Proposition 4.14 Let K,,..., K, be L-space knots. Set K = K1 #---# K,, and let g = g3(K). Then

Vi(K)+ ] = Rg(g+j),

where Rx = Rk, ¢ -+ ¢ Rk, is the infimal convolution of Rk, ..., Rg,,.

n

We recall that, if I, J : Z — Z are two functions bounded from above, their infimal convolution is given
by I oJ(m) =min; 4 j=m I(i)+ J(j).

4.3 V,—invariants of tensor products of staircases

In this subsection, we compute the Vi—invariants of certain tensor products of staircases. We wish to
understand the Vy—invariants of tensor products of staircases where some factors are positive and some
negative. Of course, we may group factors and write such a complex as a tensor product of A' ® P, where
N is a negative multistaircase and P is a positive multistaircase. Clearly,

N ® P =~ Homg- (N, P),

where Homy— (N Y, P) denotes the chain complex of %2~ -module homomorphisms from A to P. In
particular, to understand the V—invariants of arbitrary tensor products of positive and negative staircases,
it is sufficient to understand the morphism complex between two positive multistaircases.
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It is also helpful to note that, if A/ and P are multistaircases (of either sign), then a cycle ¢ €
Homg— (NVVY,P) is Z —nontorsion as a morphism if and only if ¢ maps % —nontorsion cycles to
%~ —nontorsion cycles.

The following result is by now classical (see [Borodzik and Livingston 2014, Proposition 5.1]):

Proposition 4.15 Let P = (P, — --- — Py) be a positive multistaircase and let s € 7. Then

Vs(P) = xengl?}l’o) max(a(x), B(x) —s),

where a(x) = —% gr, (x), B(x) = —% gr,(x) and G(Py) denotes the set of homogeneously graded
generators of Py.

Proof Lemma 4.2 implies that a homogeneously graded element x € P is an # —nontorsion cycle
if and only if its summand in Py may be written as an %~ —linear combination of an odd number of
distinct elements in the generating set G(Py) with nonzero, homogeneously graded coefficients in %~ .
In particular, the individual elements of G(Py) determine the correction terms V. The expression
—2max(a(x), B(x) —s) is the maximal gr,—grading of an element of the form %" %" x such that
m,n >0 and x € . Taking the minimum over all x € G(Py) gives the result. O

We now pass to studying Vi—invariants of products of positive and negative multistaircases. We begin
with the following statement, where we write Hy(P) for Po/im P; for a multistaircase:

Proposition 4.16 Suppose that P = (Py, — --- — Py) and Q = (@, — --- — Qo) are two positive
multistaircases.

(1) In general, Vy(Homg- (P, Q) > Vi (Homy— (H«(P), H«(Q))) = Vs(Homy— (Ho(P), Ho(Q))).
(2) If Qs exact, then Vs(Homy,— (P, Q)) = Vs (Homy— (H«(P), Hx(Q))).

Proof There is a grading-preserving map of %~ —modules
Hy Homy— (P, Q) — Homg— (Ho(P). Ho(Q)),

which sends ™~ —nontorsion elements to %~ —nontorsion elements. Then the inequality of part (1) follows
since the map sends %~ —nontorsion elements in «%(Homg- (P, Q)) to Z~ —nontorsion elements in
s (Hom,@—(HO (P), HO(Q))). The equality in part (1) follows since H(P) decomposes as a direct sum

P (ker(Pi > Pi_y)/im(Pit1 — P,)).
s=0

and Hy(P) = Py/im Pq is the only summand which contains 2~ —nontorsion elements.
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We now consider the second claim. Suppose that Q is exact. We will show
(4.17) Vs(Homg—(Ho(P), Ho(Q))) = Vs(Homy— (P, Q).

Suppose ¢: Ho(P) — Ho(Q) is an Z~—module homomorphism which maps %~ —nontorsion elements
to Z~ —nontorsion elements. It suffices to extend ¢ to obtain a commutative diagram

P, S .. > Py > P > Po » HO(P)
| 1 !

o 1 #1 190 l‘ﬁ
v e v

> 02 > 01 > Qo » Ho(Q)

since this extension gives an % —nontorsion element in .« (Homg— (P, Q)) corresponding to any Z~ —

nontorsion element in .7 (Hom%f (Ho(P), HO(Q))). The construction of the maps ¢; follows from the
same procedure as in [Weibel 1994, Theorem 2.2.6] and the discussion below it. We briefly summarize
the construction. The map ¢o may be chosen since Py is free, and hence projective, and Q¢ — Ho(Q)
is surjective. Having constructed ¢g, we next construct ¢p;. Using exactness of Q, we may factor
¢o o (P1 — Po) into im(Q1 — Qp). Using the fact that P; is projective and Q1 — im(Q1 — Qp) is
surjective, we obtain a map ¢. We repeat this process until we exhaust P. This gives (4.17). |

Proposition 4.18 Suppose N' = (No — - --— Np) is a negative multistaircase, and P = (P, — - - — Py)
is a positive multistaircase. Write G(P;) for the generators of P;, and similarly for G(Nj;).
(1) In general,

(4.19) Vs(W®P)>—3 min  max min(gr, (x) + gr,, (y), gr; (x) + gr, (») +29).
x€G(No) y€G(Po)

N

(2) If P = (P1 — Py) is a positive staircase, then (4.19) is an equality.

Proof We dualize, and consider the isomorphism A’ ® P =~ Hom(N", P). For the first claim, suppose
¢ € Hom(NVY,P) is an Z —nontorsion cycle which is of homogeneous grading (d,d — 2s), where
d = d (e (Hom(\"Y,P))). Note ¢ € o (Hom(N",P)). For each x¥ € G(Ny), ¢(xV) is an #~—
nontorsion cycle, and hence must contain a summand of the form f -y for some nonzero monomial
fe% and y € G(Py). By the definition of the grading of a morphism, we have

gry () —gry (x") +gr, (f)=d and gr (y) —gr,(x¥) +gr,(f) =d —2s.
Since gr,, (f) <0and gr,(f) <0, and (gr,, (x"), gr,(x")) = (—gr, (x), —gr,(x)), for each x,
d (/s (Hom(\"Y, P))) < max | min(gry, (x) + gry (), g7 () + g1 () +25).
y 0
Taking the minimum over x € G(Nyp) gives the statement.

We now consider the second claim. Suppose that P = (Py — Py) is a positive staircase. Using Lemma 4.7
and Proposition 4.16, we know that

V(N ® P) = Vs(Homg— (Ho(NY), Ho(P))).
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Fix s > 0. Let 85 denote the right-hand side of (4.19) without the factor of —%. For each x" in G(Ny'),
we pick a yx € G(Pp) so that

gry,(yx) —gry,(xV)>=d and gr,(yx)—gr,(x¥)>d—2s.

We set ¢o: Ny’ — Py to be the map which takes xV to fx - yx, where fy € #Z~ is the unique monomial
such that ¢ has bigrading (d, d — 2s). By composition, we obtain a map ¢’: Ny’ — Ho(P).

Claim The map ¢’ vanishes on im(N,’).

Given the claim, we quickly conclude the proof. In fact, we obtain a map ¢ from Hy(N) to Ho(P).
Hence, we may use the second part of Proposition 4.16 to conclude that

d (/s (Hom(NY, P))) > s,
which completes the proof modulo the claim.

It remains to prove the claim. Let y; € N,". We consider the element v = 9(y1) € N’. We can write v
asasum » XVEG(NY) fx-xV, where each fy is a monomial. Tensoring the maps from the second part of
Lemma 4.2, we obtain a chain map from NV to %#~, which is nonzero only on N(;/ and, furthermore,
maps each generator of Ny’ to a monomial. Using the fact that this map is a chain map, we see that the
number of x¥ € G(N,) where fy is nonzero is even. It follows immediately that ¢o(v) is an %~ —torsion
cycle. By Lemma 4.2, H,(P) is torsion-free, so [¢g(v)] = 0 € H«(P) = Po/im(P1). This proves the
claim and completes the proof of Proposition 4.18. |

4.4 A counterexample

We give an example indicating that the second statement of Proposition 4.18 need not hold if P is a
product of more than one positive staircase, even if P is exact.

Let P! and P? be the staircases of torus knots T6,7 and T4 5, respectively. As described in Section 4.2, the
generators of P! are at bigradings (—30, 0), (=30, —2), (=20, —2), (=20, —6), (=12, —6), (=12, —12),
(—6,—12), (—6,—20), (—=2,—20), (—2,—30) and (0, —30). We denote these generators by x¢, y1,...,X10-
We have dxp; =0and 0yo; 41 = %% x2i 42+ Bi x5, where o and Bi are nonnegative integers determined
by the condition that d preserve the grading. In particular, the generators with odd index generate 7311,
while the generators with even index span P&.

Likewise, there are generators x,, y},...,xg for P> with bigradings (—12,0), (=12, -2), (—6,-2),
(_6’ _6)7 (_21 _6)9 (_27 _12) and (01 _12)

Lemma 4.20 Let P = P! ® P2. The only elements x in P such that gr,,(x) = gr,(x) > —18 are linear
combinations of %' ¥7 x4®x} with (i, j) = (0, 1), (1,2) and %" ¥/ x¢®@x}, with (i’, j') = (1,0), (2, 1).

Proof This is by direct inspection. O
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Now let \V be the negative staircase complex of the mirror of the trefoil. It is generated by elements
co, c1 and ¢, at bigradings (2, 0), (2,2) and (0, 2), respectively. The differential is given by dco = ¥'c1,
dco = % cy and dc; = 0. That is, ¢, c2 € Ny and ¢1 € N_1.

Lemma 4.21 There is no cycle z € < (N ® P) such that gr,,(z) > —12 and z # 0.

Proof Any such cycle would be a linear combination of elements of type %' ¥/ - x; ® xé ® cm. By
Lemma 4.20, unless (k,£) = (4,4) or (6,2), the gr, —grading of such a combination is at most —14.
Hence, if z € @ (N ® P) and z # 0 has gr,,(z) > —12, then z has to be a linear combination of

X4 ®4®co and X6 ® X3 ® C2.
But then z is not a cycle. O
Corollary 4.22 We have Vo(N Q P) > 7.

The following result shows that the right-hand side of (4.19) is strictly smaller than 7:

Lemma 4.23 The expression

min max min(gr,, (x T ,or. (x r
coDin, | dnax | (gry, (X) + 81y, (), gr; (x) + gr;(»))

=

is equal to 6.

Proof For x = cg, the expression

4.24) max min(gry, (x) + gry, (), gr; (x) + gr,(y))
Y€G(Po)

is equal to —12 with the equality attained at y = x4 ® x,. For x = ¢3, (4.24) attains its maximal value —12
for y = x6 @ x5. O

4.5 More on the Vi—invariants of tensor products of staircases

In this subsection, we highlight some special cases of Propositions 4.15 and 4.18 which will be useful for
our purposes.

Corollary 4.25 Suppose P is a positive multistaircase and, fori € {1, ..., r}, let S"i denote the staircase
complex of Definition 2.28 with ) _n; > 0. Then

Vi(PRS" ®-+-®8") = min  (Vsqpj_ypn,(P)+J).
n;

0<j<y>"

Proof By Proposition 3.9, we know that S”! ® --- ® S"" is locally equivalent to S”, where n = ) _ n;,
so, by Proposition 3.10, it suffices to prove the result when i = 1. Write ay, ..., a,, for the generators
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of Co, and write xo, X2, ..., X2, for the generators of Sj. Then a; ® x5; forms a basis of homogeneously
graded elements of (P ® S")¢. By Proposition 4.16,

V(P@S") = min max(@(a;) +alx). @)+ Bx2) — ).
0</=<n
We note that a(x2;) = j and B(x2;) =n — j, so we conclude that
Vs(P®S") = min max(a(a;)+ j,B(ai) +n—j—s)
1<i<m
0<j=<n

= min min (max(a(a;),B(a;)+n—2j—s)+j)

0<j=<nl<i<m

= min (Vs42j-n(P) + j). O
0<j=<n

We have the following corollary of Proposition 4.18:

Corollary 4.26 Suppose P is a positive staircase and, for i € {1,...,r}, let S" denote the staircase
complexes of Definition 2.28. Assume ) _n; < 0. Then

Vs(PRS" ®---@8") = max (Vs—2j4n(P)—J),
0<j=n

wheren = —) n;.

Remark 4.27 In contrast to Corollary 4.25, where P was allowed to be a positive multistaircase (ie a
tensor product of positive staircases), in Corollary 4.26 we require that P be a positive staircase.

Proof of Corollary 4.26 As in the proof of Corollary 4.25, S"!' ® --- ® S"" is locally equivalent to S™"

for some n > 0, so it is sufficient to consider the case when i = 1. Write ay, ..., a4 for the generators
of Cy, and Xg, X3, ..., X2, for the generators of the 0-level of S™". According to Proposition 4.18,
(4.28) Vs(P®S™) = max min max(x(a;)+a(X2;), B(a;) + P(X2:) —s)

O0<i=nl=<j=q

= max min max(a(a;)—i,B(aj)—n+i—s)
0<i<nl1<j=q

_ . N B —n 42 —s)—i
Oréllaénlgnjygq(max(a(a]) Blaj)—n+2i—s)—i)

= maxn(Vs—zi-f-n (P) —1i). U

0<i<

4.6 Kbnots with split towers

We now introduce the notion of a knot complex with split towers. The correction terms of a knot complex
with split towers have a relatively simple form. An important example of a knot with split towers is
connected sums of knotifications of positive and negative (2, 2n)—torus links.
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Definition 4.29 (split towers) Let K be a knotin ¥ = #™ S2 x S, and let C be a chain complex
which is free and finitely generated over Z~ and is homotopy equivalent to CFX™ (Y, K, s¢), where s¢
is the trivial Spin¢ structure on Y. We say that C has split towers if there exists a basis y1,..., Ym of
H; (#m S2x St Z) and subcomplexes C,{ C C, indexed over subsets I C {y1,...,Vm}, such that the
following are satisfied:

.....

(b) Ify; ¢ I, then Ay, takes Hy (1) to Hy(CTYi}), and becomes an isomorphism after inverting %
and 7. If y; € I, then A,, vanishes on H (cT), after inverting % and V.

Abusing notation slightly, we say a knot K has split towers if there is a representative of CFKX™ (Y, K)
which has split towers. Note that, in many of our examples, the homology action actually respects the
splitting on the chain level, ie 4,, maps C to cIVYitif y; ¢ I, and Ay, vanishes on C! if y; € I.

Example 4.30 o Any knot K in S3 has split towers (trivially).
¢ The knotification of the (2, 2n)—torus link has split towers. See Proposition 2.40.

¢ The Borromean knot does not have split towers.
Lemma 4.31 If K and K’ have split towers, then K # K’ has split towers.
Proof This is a direct consequence of the Kiinneth formula. |

Proposition 4.32 Suppose K is a knot in #™ S? x S with split towers. Write

Ctop — C@ and Cbot — C)/l ..... Ym .
Then
Vi (K) = Vg(C'P) and  V*U(K) = Vy(C*).

Suppose, additionally, that n > 0 and By is the Borromean knot. Then
Vs P (K##" Bo) = —in+ min (Vyq2;—n(C'P) + ),
0<j=<n

Vsbot(K##n BO) = —%n + max (Vs+2j-n (Cbm) +Jj)-
0<j=n

Proof We consider first the proof that V;®*(K) = V;(C'°P). It is sufficient to show that
(4.33) ds"(K) = d(Cs™).

where Cy* denotes the subcomplex of C'P in Alexander grading s, and these d—invariants are defined
in Definitions 3.3 and 3.11. By definition, dy ¥ (K) is the maximal grading of a homogeneously graded
element of H, (<7 (K)) which maps to an element of U ! H, (7 (K)) having nontrivial image in #'°P.
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Since K has split towers, by Definition 4.29 the cokernel 7{'°P is spanned by U~ H, (C;Op), and H (CSI )
has trivial image for / # &, equation (4.33) follows.

The claim about "' is similar. In this case, d**'(K) is defined as the maximal grading of a homogeneous
element in Hy (<% (K))/Tors which is in the image of 7. This is clearly d(C>).

We pass now to the second part of the proof. An analogous argument appeared in [Bodnér et al. 2016;
Borodzik et al. 2017]; we recall it for completeness. The complex CFX ™ (Bp) is described in Section 2.7.
Since CFK™ (Bp) has vanishing differential, we obtain

H.(CFK™(K) ® CFK™ (B9)®") = HFK™ (K) QF B®",

where B is the 4-dimensional vector space spanned by 1, x, y and xy, whose bigradings are shown
in (2.42).

We first consider the claim about V°!. Using the H;-action on CFK ™ (Bo) described in Section 2.7,
one easily obtains the following: a cycle x € o/ (K # #" Bo) is of homogeneous gr,,—grading d, is
IF [U]-nontorsion, and maps to the kernel of the Hj—action in U ! H, (<7 (K # B*")) if and only if it has
the form

E Xay,..an, ®€a; & - Q¢€gq,,
{a1,....an}te{—1,1}"

where e_1 =1 € B and €; = xy € B with gr,, =1 and —1, respectively. Moreover, each

.....

an < C.l:?ffzal (K)

is an F[U]-nontorsion cycle of homogeneous gr,,—grading d + >_a;. Noting that ) _a; can be any
integer of the form n —2j for 0 < j <n, we obtain that

b n _ . b .
d ot(%(K## BO)) = Ognj;rﬁln(d(cs?ﬁn_zj) —n+2j).

Multiplying by —% and switching j to n — j yields the statement.

The proof for d'°P is analogous. The cokernel of the Hj—action on U ™! H, (,Q{s (K #H#" BO)) is spanned
by any element of the form x ® €;;, ® --- ® €4, where €, are as above and x € C;?Za»(l() is a
homogeneously graded, [F [U]-nontorsion element. Furthermore, any homogeneous element generating

U 'H, (,mfs (K ##" Bo)) is a sum of an odd number of such elements. The same argument as before

shows that
n _ top .
dtOp(%(K## Bg)) = Orﬁnjagn(d(cﬁn_zj) —n+2j).
Multiplying by —% and switching j to n — j yields the statement. O
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S Topology of complex curves and their neighborhoods

In this section we give a precise definition of the notion of a tubular neighborhood of a possibly singular
curve in CP2. We describe the boundary of this neighborhood in terms of the surgery on a link. We
perform several helpful algebrotopological computations.

As the main focus of our article is on algebraic curves, we present the construction using the language of
complex geometry. In Section 5.4 we will show how to generalize our results to the smooth category.

5.1 “Tubular” neighborhood of a complex curve

Let C C CP? be a reduced complex curve of degree d. We do not insist that C be irreducible. We write
Cy,...,C, for the irreducible components of C and let dy, ..., de (resp. g1, ..., ge) denote their degrees
(resp. genera). Hereafter, by the genus g(C) of a complex curve, we mean the genus of its normalization,
that is, the geometric genus. From the topological perspective, the geometric genus of a singular curve
is the sum of genera of connected components of the smooth locus of the curve, regarded as an open
surface. We set g = g1 + -+ + ge.

We denote by p1, ..., py the singular points of C. For each such singular point p;, we denote by r; the
number of branches. Here, recall that a branch of C at p; is a connected component of B; N (C \ {p;})
for a sufficiently small ball B; C C? centered at p;. We write £; for the link of singularity at p;, whose

components are L;1, ..., L;r,. We choose once and for all pairwise disjoint closed balls By, ..., By, with
centers pi,..., pu, respectively, and such that C N dB; is the link £; and C N B; is homeomorphic to a
cone over L;.

As the curve C is not smoothly embedded at its singular points, the notion of a tubular neighborhood
of C requires some clarification. The following is an extension of the construction of [Borodzik and
Livingston 2014].

Take a tubular neighborhood Ng in CP?\ (B; U---U By) of the smooth part Co := C \ (B; U---U By).
Note that all components Cq, ..., C. intersect each other; hence, C is connected. On the other hand, the
balls By, ..., By, contain all the intersection points between various curves Cq, ..., Ce. Hence, Cp has e
connected components, which are C; \ (B U---U By) fori = 1,...,e. We define N to be the union
of Ng and By,..., By. With g = g1 +--- + ge, set

u
(5.1) p=2g—e+1+Y (r;—1)=b(C)=dimH(C;Q).
i=1
To see that dim H(C; Q) = p, we consider the normalization C” of C. It is a surface of genus g with
e connected components. So y(C’) = 2e —2g. Next, C arises from C’ by gluing r;—tuples of points
(corresponding to singular points of C) fori =1,...,u. Hence y(C) =2e—2g—) (ri —1). Now C is
connected, and dim H,(C; Q) = e. From this, we recover the formula for dim H;(C; Q).
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Observe that Cy arises from the normalization C’ by removing Y r; disks. The first disk for each connected
component of C’ kills an element in H», and all of the subsequent disks create a basis element in Hj.
That is to say, dim H;(Co; Q) =2g+ > ri —e = p+u—1. By duality, dim H;(Co, 9Co; Q) = p+u—1.

We now provide a surgery-theoretical description of N and its boundary Y. We first define a 3-manifold Z
containing a link £, as follows. We begin with the disjoint union Lo := L1 U---ULy, in Zg := S34---u83.
Next, we pick a collection of pairwise disjoint and properly embedded arcs A1, ..., Ay4y—1 on Co which
form a basis of H1(Cyp, dCp). Such a collection of arcs cuts Cyp into a union of e disks, one for every
connected component of Co. We let Z = #” 52 x S! be the boundary of the 4-manifold I' obtained by
attaching p + u — 1 4—dimensional 1-handles to d(ByU---U By,) = Z, each containing a 2—dimensional
band (corresponding to a A;), which we attach to Lo. We let £ C Z be the resulting link. By construction,
L is a link inside of the connected sum of p copies of S! x S2. Furthermore, each component of £ is
null-homologous. The number of components of £ is the number of disks Co \ (A1 U---U Ap1y—1).
That is, £ has e components, denoted henceforth by L1, ..., L., corresponding to connected components
of Cy, ie to irreducible components of the complex curve C.

We have the following (compare [Borodzik et al. 2017, Theorem 3.1; Bodnér et al. 2016, Lemma 3.1]):

Proposition 5.2 The 3—manifold Y = N is the surgery on £ C Z with surgery coefficients (d2, ..., d?2).
The 4-manifold N is obtained by attaching e 2—handles to the boundary connected sum of p copies
of D3 x S1.

Proof The fact that N is obtained by attaching e 2-handles to I" along £ follows from the fact that the
complement Cy \ (A1, ...,Ap4yu—1) is a collection of disks Cj,..., C, (we know that this complement
has e components). The thickening of C/ is a 2-handle in N. Upon renumbering, we may and will assume
that C/ is a subset of C; and dC/ = L;, the component of £. In particular, we know that N is the effect
of a surgery on L. It remains to determine the framing.

In order to do this, we recall that, if a 2-handle A is attached to B* along a knot K C S 3 = 9B*, the
framing of the 2-handle is determined as a self-intersection number of the surface F obtained by capping
the core C of the 2-handle with a Seifert surface for K. We note that the self-intersection number does
not depend on the choice of the Seifert surface. Moreover, instead of a Seifert surface, we can take any
smooth compact surface in B4 whose boundary is K.

The same procedure applies for surgeries on null-homologous knots in #” S x S1. In the present context,
when we calculate the surgery coefficient at L;, the role of the surface F is played by the union of C; and
a surface in I' = #” B3 x S! bounding L;. A possible choice for F is then a smoothing of C;, which
essentially replaces C; N I" by a smooth compact surface in I' with boundary L;. That is to say, the
self-intersection number of F is exactly the self-intersection number of C;, which is dl.z. |

Remark 5.3 If e =1, £ is a knot. This knot can be obtained as a connected sum of 21, el Zu and g
copies of the Borromean knot. Here the hat denotes knotification.
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5.2 Algebraic topology

In this section, we describe some basic algebrotopological facts about the tubular neighborhood N, and
its boundary Y. Our description of Spin® structures is similar to that in [Manolescu and Ozsvath 2010,
Section 11.1].

Recall that, if N is a manifold obtained by gluing e handles along a null-homologous link to a four-
manifold I with H>(I"; Z) = 0, we can speak not only of a framing of handles, but of a framing matrix.
An argument using the Mayer—Vietoris sequence reveals that H>(N; Z) = Z° is generated by the cores of
the handles capped by Seifert surfaces of the components of the link. The framing matrix, denoted by &,
is the matrix of the intersection form H,(N;Z) x Ha(N; Z) — Z. In particular, the diagonal entries are
surgery coefficients. The off-diagonal terms are linking numbers of the corresponding links (these are
well defined as long as the components are null-homologous).

In the present situation, by Proposition 5.2, the surgery coefficients are (d2, ..., a’ez). The same argument
shows that the off-diagonal terms are given by the intersection number of C; with C;. That is, the framing
matrix has the form

&= {dl'dj}ijzl-
Note that this construction in particular reveals that1k(L;, L;) = d;d;. We let W (L) denote the 2-handle
cobordism from Z to Y. Recall that N is the union of the 1-handlebody I and W (£).

There is a map
(5.4) F:H?*(WA(L)) — Z° @ H*(Z),
given by

Fle) = (c.[F1]),.... {c. [Fel).c|z).

Here Fj is the surface obtained by capping a Seifert surface for L; in Z with the core of the 2—handle.
An easy argument involving the Mayer—Vietoris sequence on the handle attachment regions in Z shows
that F is an isomorphism.

Dually, we may view Wy (£) as being obtained by attaching 2-handles to a link £* in Y. We consider the
Mayer—Vietoris sequence obtained by viewing Wy as the union of [0, 1] X Y and e 2-handles. A portion
of this exact sequence reads

HY(L*) — H?>(WA(Y)) - H*(Y) — 0.

In particular, H?(Y) is the quotient of H2(Wu (Y)) by the image of H!(£*). Furthermore, from the
definition of the coboundary map in the Mayer—Vietoris exact sequence, an element of H!(£*) acts by
the Poincaré duals of the cores of the 2—handles attached along £. Using the isomorphism F from (5.4),
we thus obtain

(5.5) H?*(Y) =~ (2¢/im(B)) ® H*(Z).

Algebraic € Geometric Topology, Volume 24 (2024)



Heegaard Floer homology, knotifications of links, and plane curves with noncuspidal singularities 4875

There are analogous descriptions for Spin® structures on Y and Wy (L), as follows. Consider the map
(5.6) Tw : Spin€ (W (L)) — Q¢ x Spin(Z),
given by

Tw (5) = (3((c1(&). [F1]) = [F]-[F1])..... 3(e1(s). [Fel) = [F) - [Fe]). slz).

where [ﬁ ] is the sum of the [13,] Similar to the argument for cohomology, an easy application of
Mayer—Vietoris shows that 7y is an isomorphism onto its image. Since c¢j(s) is a characteristic
vector, (c1(s), [F;]) — [F;]? is even as well. Using this, it is not hard to identify the image of Ty
as HI(L) x Spin®(Z), where H (L) is the affine lattice in Q¢ generated by tuples (ay, ..., d,) Where

ai — 3 K(Li, L\ L;) € Z forall i.
The linking number is computed as
(5.7) IK(Li. L\ L) = di(dy +dp+---+de) —d}.

A similar argument as for cohomology implies Spin®(Y') is isomorphic to the quotient of Spin(Wy (£))
by the action of the Poincaré duals of the cores of the 2-handles attached to £. This translates into the
isomorphism

(5.8) Ty : Spin‘(Y) = (H(L)/im(E)) x Spin®(Z).
With respect to the isomorphisms F and Ty, the Chern class map takes the simple form
C1(51,. .o Sest) = 2s1 +[F]-[Fi],....28¢ + [F]- [Fe], c1(b)).

Since Z = #” S? x S! bounds the 1-handlebody I" C N, we know that §(H'(Z)) = {0} C H?>(N).
Hence, a Mayer—Vietoris argument identifies Spin® (/N) with the set of Spin® structures on W (£) which
extend over I', or equivalently the ones which have torsion restriction to Z. Hence,

Spin®(N) = H(L).
The following is helpful for understanding H?(Y):

Lemma 5.9 Suppose E = {a;; }szl is a matrix such that a;; = d;d;, for some nonzero integers d;.
Then Z¢ /im(E) = Z¢~ ! @ Z /02, where 6 = gcd(dy, . .., d,).

Proof Recall that
didy didy --- did,
drdy dadr -+ dad,

dedl ded2 M dede

Algebraic € Geometric Topology, Volume 24 (2024)



4876 Maciej Borodzik, Beibei Liu and lan Zemke

It is clear that im(E) is the span of 8(d, . .., d.)T, by considering the image of the standard basis in R”.
By module theory over a principal ideal domain, Z¢/im(E) = Z¢~! @ Tors(Z¢/im(E)). By definition,
Tors(Z¢ /im(Z)) is generated by the set of vectors v in Z€ such that n[v] = m[6(d;, ..., d.)T] for some
integers n and m. Clearly, Tors(Z¢/im(E)) is generated by the vector (dy/6, ...,d./6)T, which has
order 02. m|

Combining Lemma 5.9 with (5.5), we conclude that

(5.10) biY)=e—14+b1(Z)=e—1+p.

If j €27 + 1, let ¢; denote the Spin® structure on CP? which satisfies

(5.11) (c1(¢)). E) = .

where E is a complex line. In terms of the isomorphism in (5.8),

G12)  Tr(ly) = A(di—dildi+-+do)), ..., L(jde —de(dr + -+ o)), 0).

We now let X denote the complement of the interior of N in CP?2.

Lemma 5.13 (1) X has trivial intersection form.

(2) Suppose s is a torsion Spin® structure on Y. Then s extends over X if and only if it extends
over CP2.

Proof The proof follows arguments identical to those in [Borodzik et al. 2017, Sections 3 and 4]; therefore,
we provide only a sketch. Claim (1) follows from the fact that the inclusion map H,(X) — H,(CP?)
vanishes, since all elements of H5(X) are disjoint from C.

Claim (2) is proven as follows. A Spin® structure on Y always extends over W (£). Furthermore, the iso-
morphisms in (5.6) and (5.8) are clearly compatible with the natural restriction maps from Spin®(Wy (£))
to Spin€(Y') and Spin€(Z). A Spin¢ structure on Wy (£) extends over N if and only if it restricts to the
torsion Spin® structure on Z. Hence, a Spin structure on Y extends over N if and only if the Spin factor
on Spin®(Z) in (5.8) is torsion. In particular, any torsion Spin® structure on Y extends over N. Since a
Spin® structure on Y extends over CP?2 if and only if it extends over both X and N, the claim follows. O

5.3 d-invariant inequalities for the neighborhood of C

We are now in position to prove an inequality for the d—invariants of boundaries of neighborhoods of
complex curves in CP? as in Section 5.1. With the notation from that subsection, we have the following
result:

Proposition 5.14 For any Spin structure s on Y that extends over X and whose first Chern class is
torsion,
door(Y.5) = —3(p+e—1). dip(Y.5) < (p+e—1).
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Proof By (5.10), we know that b1 (Y') = p+ e — 1. The intersection form on X is trivial by Lemma 5.13.
From Theorem 3.1, we obtain

dpot(Y,8) =d(Y,s, H (Y)/Tors) > —%(p +e—1),
since the terms involving 012 and b5 (X)) vanish.

Since the intersection form on X vanishes, we may reverse the orientation of X and Y and appeal to the
same argument to get that

(5.15) door(—Y.5) =d(~Y,s, Hi(Y)/Tors) > —3(p+e—1).

It follows from [Levine and Ruberman 2014, Proposition 4.2] and the fact that d *(Y, s, H;(Y)/Tors) =
diop(Y, 5) (see [loc. cit., page 6]) that

dpor (=Y, 5) = —diop(Y. 5).
Combining this with (5.15), we conclude that

diop(Y.5) < 2(p+e—1). o
5.4 Singular curves in smooth category

The methods we use in this article work in a smooth category. The term “smooth surface with singularities”
might be misleading; therefore, we make precise our terminology. The definition we give is quite general.

Definition 5.16 A singular curve in the smooth category C C CP? is a closed subset of CP? such that
there exist finitely pairwise disjoint closed balls By, ..., B, in CP 2 such that, with Co = C \(B1U---UBy),

e (C is connected;
¢ the subset Cy is a smoothly embedded surface whose boundary belongs to By U---U By;

¢ the intersection B; N C is a link (we call it £;).

The definition means that we do not have to control any possible pathological behavior of C inside balls.
We let Coi, ..., Cpe be the connected components of Cy. The quantity e plays the same role as the
number of irreducible components of an algebraic curve.

Choose j =1,...,e. Forany i =1,...,u such that £;; := B; N Cp; # @, let S;; be a minimal genus
surface in B;; whose boundary is £;;. Let C i be a closed surface obtained by removing B; N Co;,
gluing §;; and possibly smoothing corners. The surface C ' is called a smooth model of Co; .

Note that C 7 determines a class in H,(CP?%, 7). If S; ; and Sl./j are two choices of minimal genus surfaces
for £;;, then S;; U —Sl.’j is homologically trivial (as a surface in the ball B;;). Hence, the class of C; does
not depend on the particular choice of S;;. We let d; be the integer such that [5 1=d;-1€ Hy(CP?;7),
where we write 1 for the class of a line. We call d; the smooth degree of C;.

Definition 5.17 A singular curve is the smooth category is called adjunctive if, for all j =1,...,e, we
have g(C;) = 2(d; — 1)(d; —2).
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Definition 5.18 Let C be an adjunctive singular curve in the smooth category.

e ( is of algebraic type if all links £; are algebraic links.

e ( is of weakly algebraic type if all links £; are either algebraic links or their mirrors.

Remark 5.19 The distinction between the requirements that £; be an algebraic link or an L—space
link is motivated by applications in algebraic geometry. In our paper, we never use the fact that the
links £; are algebraic links, instead of merely L—space links. We note that there are some nontrivial
differences between L—space knots and algebraic knots. For example, the set S defined in Section 4.2
is not necessarily a semigroup if K is merely an L—space knot. We recall that Sk is used to define the
function Rg, which is referred to as the semigroup counting function. In our theory, we never need Sk to
be a semigroup, so the mathematical part of the theory goes through.

We now define the analogs of p, Y and N from Section 5.1 in the case of a singular curve in the smooth
category. First set g; to be the genus of Cy; (not of (~?j). Setg=g1+---+geand p=2g—e+1+> (r;i—1),
where r; is the number of components of £;.

We now repeat the procedure from Section 5.1, omitting the proofs if they are the same as in that
subsection. We pick A1,...,Ay4y—1 to be arcs on Co which form a basis of H1(Cy, dCo; Z). We let I'
be the 4-manifold obtained by attaching p + u — 1 4—dimensional 1-handles to d(B; U---U By,) as in
Section 5.1. We set Z = dI'; then Z = #” $2 x S!. Finally, £ = C N Z. This is an e~component link.
The set C \ T is a disjoint union of e disks Cj,, ..., Cg,. Reindexing these disks if necessary, we may
and will assume that Céi is a subset of Cp;. Let N be the handlebody I' with attached 2—handles whose

cores are Cj,, ..., C},. The manifold Y = 9N is the surgery on £ with framings equal to d7, ..., d2.

With these definitions, the results of Sections 5.2 and 5.3 hold for singular curves in smooth category.

6 Nonrational noncuspidal complex curves

6.1 General estimates

We now pass to the main applications of our paper. Suppose C C CP? is a degree d curve. We mostly
focus on the case where C is complex curve, but also consider the case where C is only a smooth surface,
embedded away from a finite set of singular points, as in Definition 5.16. We further assume that the
singularities of C are restricted to the following:

e There are v cuspidal (unibranched) singular points py,..., py. We write K1, ..., K,, for their
links, and set K = K1 #---#K,,.

e There are m, singular points whose link is 7% 2.

e There are m, singular points whose link is —7% 2.
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Define

K+:Z”mn» K—=Z”mn, 77+:Zmn» U—=Zmn-
n n n n

Additionally, we assume that the curve is adjunctive (see Definition 5.17); that is, its genus g is given by

(6.1) g=28(C) = 3(d —1)(d —2) — g3(K) — (k4 +K-).

For algebraic curves, k— = 0 and (6.1) is the adjunction formula. If C is a singular curve in the smooth
category of algebraic type (ie k— = 0; see Definition 5.18), the adjunction inequality implies that g(C) is
greater than or equal to the right-hand side of (6.1). If C is of weak algebraic type (see Definition 5.18),
the relation between g(C) and the right-hand side of (6.1) can be more involved, so the condition (6.1) is
a significant restriction on g(C).

We define
(6.2) Ky =K## mpTron, Ko =#'maTo 20, K=Ki#K_, K=K##* B,

where @,2,1 denotes the knotification of the torus link 73 », and Tz,_zn denotes the knotification of its

mirror.

Since the knots K1, ..., K, are algebraic knots and so, in particular, L—space knots, their knot Floer
complexes are staircase complexes, which we denote by C(K;). In particular,

CFK (K)=C(K;)®---®C(K,)

is a positive multistaircase complex. Note that, by Proposition 2.40 and Example 4.30, the knots K4, K_
and K have split towers. The following relations follow from Proposition 2.40, the Kiinneth theorem for
connected sums, and Proposition 3.9, where we write 2 for homotopy equivalence of chain complexes
and ~o for local equivalence, and the brackets denote an overall grading shift:

CP(K +) = CP(K) ® RS ®™ {50+, 31+ ),
n
CPM(K4) = C™(K) ® QS HE™ {—J 114 51+
n
CP(K-) = @S D)®m i, In-},
n
CP(K-) = QST EM {—In-, —5n-},
n

CP(K) = C'P(K4) ® CP(K_) i C(K) @ S+ ® =102 (ny + 1), Ly + )}
CPH(K) == C*(K+) ® C™(K-) ~ioe C(K) @ ST {2 (04 + 1), 5 (4 + 1)}

We set

$1:=k4 —(k=—1n-), 82:= (Kt —1M4) —K—.
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Whether the staircases in C*°P(K) and C"'(K) are positive or negative depends on the signs of §; and &,.
The following proposition is the main tool towards Theorems 6.4 and 6.8:

Proposition 6.3 Suppose K, K and K are as above and let R = R x be the infimal convolution of the
semigroup counting functions for knots K1, ..., K,.

(a) If 81 >0, then

Vi (K) = =34 + 1)+ min (Vopaj_s, (K) + ),
0<j<6;
VtOp KA :_l _1 . V . _ K .
s (K) 1g— 1y +n- )+0<}218I11+g( s+2/—8—g(K)+ )
=—1g— L+ +1- )+ _min (R(g3(K)+s+2j—81—g)—(s+j—81—g)).
0<j<b1+g

(b) If 85 > 0, then

VEUR) =L +n-)+ pmin (V-5 (K)+J).
VoUK) =Ly 4no)—1 st max min (Vojioimg—s, (K)+i+))
<i<g0<j<
2g—|— L4 )+ max mm (R(g3(K)+s42j+2i—g—82)—(s+i+j—g—52)).

<g0<j<é2
(¢c) If 6y <0 and C(K) is a positive staircase (not just a positive multistaircase), then

Vs P(K)=—%(n++n-)+ o 2%, (Ve—aj—8,(K)—J),
- 1

VsP(K)=Lg—L(np4n- )+ min  max  (Vioajaitg—s (K)=i—j)

0<i<g 0<j<-— —81

= 38— (n4+n-)+ min  max (R(g3(K)+s—2j—2i+g—81)—(s—i—j+g—b1)).

0<i<g 0<j<-4;

(d) If 2 <0 and C(K) is a positive staircase, then
VPR = 40 o) + | max (Vo) (K) = ).

VPR = g+ 40+ max (Vi (K) =)

=38+ 3(+ 1)+ _max  (R(gs(K)+s5=2j +g—82)—(s—j +8—52).

Proof The proof is similar in all cases and consists of gathering Corollaries 4.25 and 4.26, Propositions

4.32 and 4.14, and Lemma 3.7. For the reader’s convenience, we present details of the computations of
VP for cases (a) and (c).

If §; > 0, then by Corollary 4.25 and Lemma 3.7,
Vs®(K) = =g+ + 1)+ min (Vegoj—5,(K) + j).
0</<8;
Combining this with Proposition 4.32, we obtain

ViP(K) =—3g— 3+ +1-)+  min - (Veyaj5-¢(K)+ ).

0<j<61+g
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By Proposition 4.14,
Ve (K) =—3g—5(n++1- )+ min  max (R(g3(K)+5—2j =2i +g—81)~(s—i—j +g—51)).

<i<g 0<j<—6;

This proves item (a). If 67 < 0 and C(K) is a positive staircase, then, by Corollary 4.26,
Vi (K) = =3 (1 +n)+  max  (Vo_gjg, (K) = ).
0<j<-0;
Combining Propositions 4.32 and 4.14, we have

ViP(K)=Lteg—1s+n)+ min - max  (Vieaj—nitg—s,(K)—i—Jj)
0<i<g 0<j<-6,

= 38— (N +71-)+ min max (R(g3(K)+5—2j =2i+g—81)—(s—i—j +g—b1)).

0<i<g 0<j<-68;

This proves item (c). O
Proposition 6.3 allows us to express the d—invariants of the boundary ¥ = dN of the tubular neighborhood
of C in terms of the Rx—functions of singular points. In our applications, we will focus on two cases:

(1) Algebraic case We assume that C has only algebraic singularities; that is, m, = 0 for all n > 0.
This corresponds to items (a) and (b) of Proposition 6.3.
(2) Single knot case We assume that v = 1, so K is a positive staircase and m, = 0 for all n > 0.

We will use items (c) and (d) of Proposition 6.3.

The first case is considered in Section 6.2. The second is addressed in Section 6.3.
6.2 Curves with no negative double points
For the reader’s convenience, we repeat the statement from the introduction of the next result.

Theorem 6.4 Let C be a reduced curve with degree d and genus g. Suppose that C has cuspidal singular
points p1, ..., py whose semigroup counting functions are Ry, ..., Ry, respectively. Assume that, apart
from these v points, the curve C has, for each n > 1, m, > 0 singular points whose links are T >,
(Azn—1 singular points) and no other singularities. Define

Ny = Zmn and k4 = ann.
n n
Foranyk =1,...,d —2,

max  min  (R(kd +1—n4—2i =2j)+i+j) <2k + 1)k +2)+g,
0</j<g 0<i<Kk4—n4

(6.5) | o
min  (R(kd +1-2j)+ j) = 3k + 1)(k +2).
0<j<g+K4
Here R denotes the infimal convolution of the functions R, ..., R,.

Proof Let Y be the boundary of a tubular neighborhood of C. Then Y is the result of a d >—surgery on
K C #” 52 x S obtained as in Section 6.2, where we readily compute from (5.1) that p = 2g + n4.
Note that, by (6.1), the genus g3(K) is less than or equal to %(d —1)(d-2)< %d 2. Hence, the surgery
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coefficient is greater than twice the genus of K. In particular, the large surgery formula can be applied
[Ozsvath and Szab6 2008b, Theorem 4.10].

Lets; for j e[— %dz, %dz) N Z denote the Spin® structures on Y as in Definition 3.13. By Lemma 5.13,
5; extends to CcP? \ NV if and only if s; is a restriction of ¢;, for some &, where ¢, is as in (5.11). By (5.12),
we infer that this holds if and only if j =md withm € Z if d is odd and m € % + 7 if d is even. Compare
with [Borodzik and Livingston 2014, Lemma 3.1].

By Proposition 5.14, for any md € [—3d?, 3d?) such that m + 1(d — 1) is an integer,

©© doorlY,5ma) = =301+ =&, dop(Y.5ma) < 304+ 2.
By Theorem 3.15, (6.6) translates to the inequalities
VI (K) > 4(d —2m +1)(d —2m—1) — Iny — Lg,

6.7) bot By — 1,7 o 1 1
Vad(K) < g(d—=2m+1)(d —=2m—1)+ zn+ + 58.

We compute Vr:?dp and VrE‘zlt from Proposition 6.3. Using g3(K) = %(d —1)(d —2) — g — k4, we rewrite
the equations of Proposition 6.3(a)—(b) as

VP (K)=—3g—tns+ min  (R(3(@—1)(d—2)+md +2j -2k —2g)—(md + j —k4 —g)).
0<j<k4++g

bot 2y — _ 1 1 : leg _ ; T P
Vpa(K)=—3g+ 10+ +Or§nia§xg Osjgclf—nJr(R(z(d D(d—-2)+md +2j +2i —2g —2x4 + n+)
—(md +i+j =g =K+ +14).

Comparing this with (6.7), we obtain

min ~ R(3(d—1)(d —2)+md +2j —2k4 —2g)—(md + j —k4—g) > §(d —2m+1)(d —2m—1)
0<j<k++g
and
max  min  R(3(d—=1)(d=2)+md +2i+2j =2(c+ —1+) =04+ —28)—(md + j —k 1 + 1+ —2g)
0<i<g 0<j=<Kk4—7+

<id-2m+1)d-2m—1)+g.

With a change j +— k4 4+ g — j in the first inequality and i — g —i and j — k4 —n4 — j in the second,
we obtain
min  R(3(d—1)(d —2)+md —2j)—md +j > £(d —2m+1)(d —2m—1),
0<j=<k4++g

max min R(%(d—l)(d—2)+md—2i—2j—n+)—md+j E%(d—2m+l)(d—2m—1)+g.
0<i<g 0<j=<Kk4+—n4+
Withm =k — %(d —3), after straightforward calculations we obtain

min  (R(kd +1-2j)+j) = 3(k + 1)(k +2),
0<j<g+Ky+
max  min  (R(kd +1—n4—2i =2j)+i+j) <2k + )k +2) +g. o
0</=g 0=i=Kk4{—-1n+
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6.3 Negative double points

We now specialize to the case where C is a surface which has a single algebraic singularity and m, >0
singular points whose links are (2, —2n)—torus links (which are not algebraic).

Theorem 6.8 Suppose C is a genus g degree d singular curve in the smooth category as in Section 5.4
with a cuspidal singular point p, my singularities whose link is —T> >, for each n > 1, and no other
singular points. Suppose further that C is adjunctive.

Then, foranyk =1,...,d —2,

max (R(kd +1-2j)+j) <2k + D)k +2)+ g +«_,
0<j=<g+k—

min  max (Rkd +1-2i—2j —n_)+i+j)> 2k +1)(k+2)+x-—n_,

0<i<g 0<j<k—_—7-

where R is the semigroup counting function for the singular point p and n— =) my and k— =Y _ myun.

Remark 6.9 With the assumptions on the singularities of C, the condition that C be adjunctive (spelled
out in Definition 5.17) is equivalent to saying that the genus of C is given by (6.1).

Proof The beginning of the proof is exactly the same as in the proof of Theorem 6.4. The boundary Y of
the tubular neighborhood of C is a result of a surgery with coefficient 2 on the knot Kin #%67T7- 52xS1.
In particular, (6.7) holds with n_ replacing 1 :
610 VR(K) = Hd—-2m+1)(d-2m—1)—1n_—1g,

' VIR < Md—2m 4+ 1)(d —2m—1) + dn_ + Lg.

With g3(K) = %(d —1)(d —2) — g — k_, the equations of Proposition 6.3(c)—(d) take the form
Py — 1, 1 i Leg — _ I, T,
Voa(K)=3g—3n- —|—Or5nl_12g ijrﬁn’?z(_n_ (R(z(d D(d—-2)+md —2j —2i r)_)

—(md—i—j +g+K——n—)),

VIUR)=1g+ Ly +0<J_rr<lgx+x_(1e(%(d —1)(d —2)+md —2j) — (md — j + g +K_)).

Comparing this with (6.10), after changes analogous to in Section 6.2, we arrive at

max (R(kd +1-2j)+j) < 3(k+ D)k +2)+ g +k_,
0<j=<g+k-

min  max (Rkd +1-2i—2j —n_)+i+j)> 2k +1)(k+2)+x-—n—. O
0<i<g 0<j=<Kk—_—n—

6.4 Special cases of Theorems 6.4 and 6.8

The bounds in Theorems 6.4 and 6.8 are fairly general, but clarity is the price. To illustrate these bounds,
we provide several special cases.

Algebraic € Geometric Topology, Volume 24 (2024)



4884 Maciej Borodzik, Beibei Liu and lan Zemke

Corollary 6.11 (a) Suppose C is a genus g, degree d curve with singular points py, ..., py and 74
positive double points. Assume also that C has no other critical points. Then, fork =1,...,d —2,

max (R(kd +1—-n4—2j)+j) <3+ 1)k +2)+g,

0=j=g
min  (R(kd +1-2j)+ j) = 2k + 1)(k +2),
0=j=g+n+
where R denotes the infimal convolution of the functions Rk, ..., Rk, .

(b) Suppose C is a genus g, degree d curve with a singular point p and n— negative double points.
Assume that C has genus as in (6.1). Then, fork =1,...,d —2,

max (R(kd +1-2j)+j) < 3k + )k +2) +g +n-.
0<j=g+n-

min (R(kd +1—n-—2j)+ j) > 3k + D (k +2),
0<j=<g

where R is the semigroup counting function for the singular point p.

Proof Items (a) and (b) follow from Theorems 6.4 and 6.8, respectively, noting that k+ = 14+ and
K—=n_. O

Specifying further n- = 0 in Corollary 6.11(a) recovers the following result of [Bodnar et al. 2016;
Borodzik et al. 2017]:

Corollary 6.12 Suppose C is a cuspidal curve of genus g and degree d. Let R be the convolution of
semigroup counting functions of the singular points of C. Then

max (R(kd +1-2j)+ j) <1k +1)(k+2)+g.
0<j=g

(6.13) _ 1
mmg(R(kd +1=2j)+j) =5k + Dk +2).

0<j=<
We now compare the cases g =0andny =1, g =0andn— =1,and g =1 and n4 =n— =0.
Proposition 6.14 Let C be a degree d curve with one cuspidal singular point, whose semigroup counting

function is denoted by R. Assume C has at most one ordinary double point (n4+ + n— < 1) and no other
singularities. Forall k = 1,...,d —2, set vy = %(k + 1) (k +2).

(@) If g=1and ny =n— =0, then R(kd —1) € {vg — 1, v} and R(kd + 1) € {vg, vg + 1}.

(b) If g=0and ny =1, then R(kd —1) € {uyp — 1, v} and R(kd + 1) € {vg, vg + 1}, but also
R(kd) < vg.

(¢) If g=0and n— =1, then R(kd — 1) € {vr — 1, vr} and R(kd + 1) € {vg, v + 1}, but also
R(kd) > vy.
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Proof Item (a) is an immediate consequence of (6.13).

For item (b), note that Corollary 6.11(a) implies that R(kd) <vj and R(kd +1) > v, R(kd —1) > v, —1.
Since R(j + 1) — R(j) € {0, 1} for all j, the statement follows trivially.

The proof of item (c) is analogous. Corollary 6.11(c) implies that R(kd + 1) < vr + 1, R(kd — 1) < vy
and R(kd) > vg. Again, the statement follows trivially. |

Proposition 6.14 can be interpreted as follows. Suppose C is a genus one curve with a single cusp-
idal singular point. Then the semigroup counting function R satisfies the constraints of item (a) of
Proposition 6.14. If, for some k = 1,...,d —2, we have R(kd) = v + 1, then the function R does not
satisfy the constraints of item (b). That is, C cannot be deformed to a curve with genus 0 and the same
(topological type of) cuspidal singularity. That is, we cannot “trade genus for a positive double point”.

If, for some k, we have R(kd) = vi — 1, then the same argument shows that we cannot “trade genus for
a negative double point”.

6.5 Unicuspidal curves of genus 1

We will now check, for concrete examples, whether the genus can be traded for double points.

Example 6.15 Let ¢9 =0, ¢1 = 1, ¢ = ¢n—1 + Pn—2 be the Fibonacci sequence. Borodzik et al.
[2017, Proposition 9.12], based on a construction of Orevkov [2002], constructed a family of genus 1
cuspidal curves C,, of degree ¢4, with a single singularity whose link is the (¢45—2, P4n+2)—torus knot
forn=2,3,....

By Proposition 6.14(c), we deduce that the genus cannot be traded for negative double points. Indeed, a
classical identity on Fibonacci numbers, ¢x—» +@x 42 = 3¢, shows that the semigroup generated by ¢4, —2
and ¢4, +2 has precisely nine elements in the interval [0, 3¢45): 0, Pan—2, ..., TPan—> and Pan42. In
fact, 7¢an—2 < 3¢an < 8¢pan—> (we leave the proof of this to the reader) and ¢an+42 + Pan—2 = 3Pan.

In particular, R3¢an) =9 <10 =v3 = 23+ 1)(3+2).

Borodzik et al. [2017, Theorem 9.1] gave a complete list of candidates for curves of genus 1 with one
singularity whose link is a torus link 7} 4. The list contains one infinite family (Orevkov curves) and a
finite list of special cases. We apply our obstructions to these curves and obtain the following result:

Proposition 6.16 Suppose C is a genus one, degree d curve, having a single singularity, whose link is a
(p, g)—torus knot. Then either C is the Orevkov curve (of Example 6.15), or the values of (p,q) and d
are one of

(@) d =4and (p,q) =(2,5);
(b) d =5and (p,q) =(2,11);
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case d, p.q) positive negative existence
(a) 4,2,5) passes passes exists
(b) (5,2,11) passes passes exists

(©) (6,3,10) passes k=1
(d) (15,6,37) passes k=2
(e) (24,9, 64) passes k=3
(f) (27,10,73) k=12 k=8
(2) (33,12,91) k=17 k=8
(h) @Bp,p,9p+1) passes failsif p>3

Table 1: Curves of Proposition 6.16 and the criteria of Proposition 6.14. “Positive” refers to
item (b) of the proposition, “negative” refers to item (c). If the curve does not pass the criteria, we
indicate the minimal k for which R(kd) > vy (case (b)) or R(kd) < vi (case (c)).

(¢c) d ==6and (p,q) = (3,10);

(d) d=15and (p,q) = (6,37);

() d =24 and (p,q) = (9,64);

(f) d =27 and (p,q) = (10,73);

(g) d=33and (p,q) = (12,91);

(hy d =3pand (p,q)=(p,9p+1)forp=2,...,11.

By definition, all cases satisfy the statement of Proposition 6.14(a). We applied the criteria of Proposition
6.14(b)—(c). The results are in Table 1. We indicate that some of the examples predicted by Proposition 6.16
have not been either effectively constructed or obstructed by other means.

6.6 Generalized Orevkov curves

Bodndr et al. [2016] constructed a family of curves generalizing Orevkov’s construction. Their work can
be regarded as a generalization of the construction of [Borodzik et al. 2017, Proposition 9.12]. To begin
with, fix k > 2. The Lucas sequence is the sequence L{? defined recursively via LK =k — 1, L’f =1,

Lk

i1 = Lf.‘ + Lf.‘_l. Here i is allowed to take all integer values.

Theorem 6.17 (BCG family; see [Bodnar et al. 2016, Theorem 1.7]) For anyi > 2, there exists a genus
%k(k — 1) curve of degree L’j ;1 with precisely one singularity whose link is the (L{,fl._y L’Zi 4 1)—torus

knot.

For any j > 1, there exists a genus %k(k —1) curve of degree —L* 4j—1 With singularity whose link is the
(_L]i4j+1 s _L]i4j_3)—tOI'US knot.
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Now we apply Corollary 6.11.

Proposition 6.18 None of the curves of the BCG family can be transformed into a curve with genus one
less and one negative double point.

Proof We follow the same strategy as in Example 6.15. We begin with the first family. Suppose i > 2.
Let S be the semigroup associated with the (L]ji_3, L’ji 1)-torus knot, and let R be the counting function
for it. The recursive formula for Lucas numbers implies that L’Sc + Llsc 14 = 3L’SC 12 for all s. Moreover,

(6.19) Liya =L+ L, =205 + L = 3L +2L§ =515 + 3L, <8L

as long as s > 0. In particular, 3L’s‘ 1 < 9L’s‘. Therefore, all possible elements in .S N [0, 3L’j j—l] are
o,..., 8L"§j_3 and Lljj_H. Hence, R(3Lljj_1) <9, violating the second inequality in Corollary 6.11(b).

As for the second family, write Zf‘ =(—1)t! Lk ; for i > 0 and note that Zf‘ 1= Zf‘ + Zf.‘_l. Moreover,
fori >0, Zf‘ is an increasing sequence of positive numbers. We have le‘ 4t le‘ = 3]7; 4 and, for s
odd, Z’s‘ 14 < 8Z’s‘ by the same argument as in (6.19). We conclude as in the first case. a

It is unknown whether it is possible to trade genus for positive double points in any curves in the BCG
family.
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