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We describe a formula for the H1–action on the knot Floer homology of knotifications of links in S3.
Using our results about knotifications, we are able to study complex curves with noncuspidal singularities,
which were inaccessible using previous Heegaard Floer techniques. We focus on the case of a transverse
double point, and give examples of complex curves of genus g which cannot be topologically deformed
into a genus g� 1 surface with a single double point.
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1 Introduction

1.1 General context

Let C be a complex curve in CP 2. The curve C is called rational if C is irreducible and there exists a
continuous degree one map from S2 to C. The curve C is called cuspidal if all its singularities have one
branch (ie their links have one component).

Fernandez de Bobadilla, Luengo, Melle-Hernandez and Némethi [Fernández de Bobadilla et al. 2006]
indicated a connection between Seiberg–Witten invariants and rational cuspidal curves. As a consequence

© 2024 MSP (Mathematical Sciences Publishers). Distributed under the Creative Commons Attribution License 4.0 (CC BY).
Open Access made possible by subscribing institutions via Subscribe to Open.

http://msp.org
http://dx.doi.org/10.2140/agt.2024.24.4837
http://www.ams.org/mathscinet/search/mscdoc.html?code=14H50, 14B05, 57K18, 57R58
https://creativecommons.org/licenses/by/4.0/
https://msp.org/s2o/


4838 Maciej Borodzik, Beibei Liu and Ian Zemke

of these connections, they stated a conjecture binding coefficients of Alexander polynomials of singular
points of a rational cuspidal curve. A variant of this conjecture was proved in [Borodzik and Livingston
2014]; the proof used the relation of semigroups of singular points with Vs–invariants of knots together
with the Ozsváth–Szabó d–invariant inequality.

The methods of [Borodzik and Livingston 2014] were later generalized by Bodnár, Celoria and Golla
[Bodnár et al. 2016] and Borodzik, Hedden and Livingston [Borodzik et al. 2017] to the case of nonrational
cuspidal curves. Their result does not generalize immediately to the case where C has noncuspidal
singularities. In this case, the boundary of a suitably defined tubular neighborhood of C can be presented
as a surgery on a connected sum of links of cuspidal singularities and knotifications of links of noncuspidal
singularities of C.

Knotification is an operation described by Ozsváth and Szabó [2008a], which transforms an n–component
link L in S3 into a knot yL� #n�1 S2 �S1. The knot Floer homology HFK�.yL/ admits an action of
the exterior algebra over Z on n�1 generators, which is identified with ƒ�H1

�
#n�1 S2�S1

�
. To apply

the strategy of [Bodnár et al. 2016; Borodzik et al. 2017; Borodzik and Livingston 2014] to noncuspidal
singularities, one must compute explicitly the action of ƒ�H1

�
#n�1 S2�S1

�
on the knot Floer complex

of the knotification. Performing explicit computations is often challenging, since computing the action of
ƒ�H1

�
#n�1 S2 �S1

�
involves counting pseudoholomorphic curves in a symmetric product Symd .†/

of a surface † in a Heegaard decomposition of #n�1 S2 �S1, which is used to compute the knot Floer
complex. In this paper, we prove a general result which relates the homology action on the knotified link
to counts of pseudoholomorphic curves on a Heegaard diagram for the original link in S3. In many cases,
this is more practical, since it allows us to compute pseudoholomorphic curves in a symmetric product of
lower index d . For the links we consider, we are able to reduce the computations to Sym1.S2/, which is
completely combinatorial.

1.2 Main results

Given an n–component link L� S3, we use Heegaard Floer TQFT to recover the knot Floer complex of
the knotification yL of L together with the action of ƒ�H1

�
#n�1 S2 �S1

�
on it. This result builds on

recent developments in the Heegaard Floer TQFT due to the third author as well as many others; see
[Hendricks et al. 2018; Juhász 2016; Zemke 2015; 2017; 2019c; 2019b]. Our main result concerning
knotifications is Proposition 2.10, which describes the action of ƒ�H1

�
#n�1 S2 �S1

�
on the knot Floer

homology of a knotification in terms of a link diagram for L.

Using this general result, we compute the knot Floer complexes of the knotifications of the .2; 2n/–torus
link and of its mirror, as well as the action of H1.S2 �S1/. In particular, we are able to compute the
invariants V bot

s and V top
s of these knots. To the best of our knowledge, these computations have not

appeared in the literature before. For the reader’s convenience, we present the precise result for the
knotification of the torus link T2;2n. For more details about its mirror, see Proposition 2.41.

Algebraic & Geometric Topology, Volume 24 (2024)



Heegaard Floer homology, knotifications of links, and plane curves with noncuspidal singularities 4839

Proposition 2.40 Let yT2;2n be the knotification of the torus link T2;2n. The pair

.CFK�.S2 �S1; yT2;2n/; A
 /

has a model where CFK�.S2 � S1; yT2;2n/ is equal to Sn
˚
1
2
; 1
2

	
˚ Sn�1

˚
�
1
2
;�1

2

	
and A
 maps Sn

to Sn�1 on the chain level. Here we recall that fi; j g denotes a shift in the .grw ; grz/–grading by .i; j /,
and Sn and Sn�1 are the chain complexes in Definition 2.28.

Our main application is concerned with general curves in CP 2. To generalize the results of [Bodnár et al.
2016; Borodzik et al. 2017] to the setting of complex curves C �CP 2 with noncuspidal singularities,
we take a precisely defined “tubular” neighborhood N of C. The boundary Y D @N can be described as
a surgery on a link L in #� S2 �S1, where L is a suitable connected sum of knotifications of links of
singularities and Borromean knots, and � can be expressed in terms of the topology of C. As in [Bodnár
et al. 2016; Borodzik et al. 2017], the manifold Y bounds a four-manifold X D CP 2 nN with trivial
intersection form. Using Ozsváth and Szabó’s d–invariant inequality in the version proved by Levine and
Ruberman [2014], we obtain restrictions on V top

s .L/ and V bot
s .L/.

The main case we focus on is curves C with some finite number of cuspidal singularities as well as
singularities whose links are .2; 2n/–torus links. We obtain the following result:

Theorem 6.4 Let C be a reduced curve of degree d and genus g. Suppose that C has cuspidal singular
points p1; : : : ; p� whose semigroup counting functions are R1; : : : ; R� , respectively. Assume that , apart
from these � points , the curve C has , for each n� 1,mn � 0 singular points whose links are .2; 2n/–torus
links and no other singularities. Define

�C D

1X
nD1

mn and �C D

1X
nD1

nmn:

For any k D 1; : : : ; d � 2,

max
0�j�g

min
0�i��C��C

.R.kd C 1� �C� 2i � 2j /C i C j /�
1
2
.kC 1/.kC 2/Cg;

min
0�j�gC�C

.R.kd C 1� 2j /C j /� 1
2
.kC 1/.kC 2/:

Here R denotes the infimal convolution of the functions R1; : : : ; R� .

Although complex curves cannot have singularities whose links are (nonalgebraic) .2;�2n/–torus links,
our techniques also obstruct smooth (nonalgebraic) surfaces with these singularities. See Theorem 6.8.

The technical statement in Theorem 6.4 is best understood by comparing the obstruction in the case of a
single transverse double point to the genus g D 1 obstruction from [Bodnár et al. 2016; Borodzik et al.
2017]. We do this in Proposition 6.14, which we now summarize. Let C be a degree d curve, and define
the quantity �k D 1

2
.kC 1/.kC 2/ for k D 1; : : : ; d � 2. Write R for the semigroup counting function.
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If C has genus 1, then the genus bound from [Bodnár et al. 2016; Borodzik et al. 2017] implies that, for
each k 2 f1; : : : ; d � 2g,

.1.1/ R.kd � 1/ 2 f�k � 1; �kg and R.kd C 1/ 2 f�k; �kC 1g:

In this case, the only constraint on R.kd/ is that it lies between R.kd � 1/ and R.kd C 1/, and hence
R.kd/ 2 f�k � 1; �k; �kC 1g.

On the other hand, our bounds from Theorems 6.4 and 6.8 give a slightly stronger obstruction than the
bound for genus 1 curves in (1.1), based on the value of R.kd/. Since double points may be smoothed
topologically, (1.1) must also hold for genus 0 curves C with a single double point. If C is a genus 0
curve with a single positive double point, then our bound implies

R.kd/� �k :

If instead C is a smooth curve with a negative double point, then we prove that R.kd/� �k .

We compare our obstruction with known examples, focusing on the question of deforming a genus 1
surface into a surface with one double point. In Section 6.5 we provide concrete obstructions. For existing
curves (ie curves that we can construct), there are obstructions to trading genus for negative double points;
see Example 6.15.

We also compare our obstruction to the obstruction for genus 1 curves from [Borodzik et al. 2017]. In
[loc. cit., Theorem 9.1], there is a list of genus one curves with a singularity whose link is the .p; q/–torus
knot with p and q coprime. The curves in the list pass the obstruction provided in [loc. cit.], but it is not
known whether these complex curves exist. We apply our bound to this list of potential examples. There
is a remarkable case of a degree 27 curve with a .10; 73/ singularity, where the genus cannot be traded
for either a positive or a negative double point; see Table 1. While the curve passes all known criteria, we
do not have a recipe to construct it.

1.3 Further applications and perspectives

There has been recent interest in the question of “trading genus for double points”. To be more precise,
given a surface of genus g, one can ask whether it is possible to deform it to a genus g�1 surface with an
extra positive or negative double point. In the context of the surfaces in a four-ball with fixed boundaries,
this question is related to studying the difference between the clasp number and the smooth four-ball
genus; see [Daemi and Scaduto 2024; Feller and Park 2022; Juhász and Zemke 2020; Kronheimer and
Mrowka 2021; Owens and Strle 2016]. We deal with a variation of this question, which concerns trading
genus of a closed surface in CP 2 for double points, while preserving the remaining singularities.

In Section 6.6, we consider another infinite family of higher genus curves constructed by Bodnár, Celoria
and Golla. We show that the genus cannot be traded for a negative double point for any member of the
family.
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As a perspective and a possibility for future research, we indicate that the methods can be used to study
line arrangements in CP 2. The only missing ingredient is the computation of the Heegaard Floer chain
complex of the .d; d/–torus link for d > 2, and understanding the H1–action on the knotification of these
links.

Organization

Section 2 reviews Heegaard Floer theory. After recalling various known definitions and results, we show
how to obtain the knot Floer chain complex of the knotification of links, as well as the H1=Tors–action.
A detailed construction of the Heegaard Floer chain complex of the Hopf link is presented in Section 2.5.
The generalization to knotifications of arbitrary .2; 2n/–torus links is given in Section 2.6. We conclude
Section 2 with Section 2.7, where we recall the computations of the Heegaard Floer chain complex of the
Borromean knot B0.

Section 3 is devoted to a detailed study of correction terms. We recall the Levine–Ruberman versions of
d–invariants and recall definitions of Vs–invariants.

Section 4 contains some important computations that happen behind a scene. We recall the computation
of the Heegaard Floer chain complex of L–space knots, and in particular of algebraic knots, in Section 4.2.
We show how to recover the Vs–invariant of a product of positive and negative staircases. A precise
statement is given in Proposition 4.18. We show that the assumptions in the second item of that proposition
are necessary in Section 4.4.

Next we consider tensor products of knot Floer chain complexes in manifolds with b1 > 0. It turns out
that most of the knots that we encounter share a property, which greatly facilitates our computations,
namely they have split towers; see Definition 4.29.

Section 5 constructs a tubular neighborhood N of a singular curve and presents the boundary Y of this
neighborhood as a surgery on a link L in #� S2 �S1, where � is the first Betti number of C. We then
compute homological invariants of Y, N and CP 2 nN. In particular, we study which Spinc structures
on Y extend over CP 2 nN. These computations are slight generalizations of calculations of [Bodnár
et al. 2016; Borodzik et al. 2017; Borodzik and Livingston 2014].

Section 6 contains the proofs of Theorems 6.4 and 6.8. The main technical result is Proposition 6.3,
which computes the d–invariants of Y in terms of the semigroup counting functions of knots of cuspidal
singularities. We also compare Theorems 6.4 and 6.8 with bounds for cuspidal curves of higher genus in
Section 6.4. Sections 6.5 and 6.6 provide explicit examples of curves for which our obstruction can be
applied.
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2 Review of Heegaard Floer theory

2.1 Heegaard Floer complexes with multiple basepoints

Definition 2.1 A multipointed Heegaard diagram for a 3–manifold Y is a quadruple .†;˛;ˇ;w/ where:

� † is a genus g surface, which splits Y into two genus g handlebodies, U˛ and Uˇ , and w D
.w1; : : : ; wn/ is a nonempty set of basepoints in †.

� ˛D .˛1; : : : ; ˛gCn�1/ and ˇ D .ˇ1; : : : ; ˇgCn�1/ are collections of simple closed curves on †,
where nD jwj. Each curve in ˛ bounds a compressing disk in U˛, and each curve in ˇ bounds a
compressing disk in Uˇ . Furthermore, the curves in ˛ are pairwise disjoint, and similarly for ˇ.

� The curves ˛ and ˇ are transverse.

� The curves in ˛ are linearly independent in H1.† nw/, and similarly for ˇ.

Let T˛;Tˇ � SymgCn�1.†/ be two half-dimensional tori

T˛ D ˛1 � � � � �˛gCn�1 and Tˇ D ˇ1 � � � � �ˇgCn�1:

Ozsváth and Szabó [2004b, Section 2.6] describe a map

sw W T˛ \Tˇ ! Spinc.Y /:

Given a Heegaard diagram of Y with a Spinc structure s, we define a Floer chain complex CF�.Y;w; s/
over F ŒU1; : : : ; Un�, where FDZ=2Z. The chain complex is generated over F ŒU1; : : : ; Un� by intersection
points in T˛ \Tˇ satisfying sw.x/D s.

For any x 2 T˛ \Tˇ , the differential is defined by

.2.2/ @x D
X

y2T˛\Tˇ

X
�2�2.x;y/
�.�/D1

#.M.�/=R/U
nw1 .�/

1 � � �U
nwn.�/
n y:

Here, �2.x;y/ denotes the set of homotopy classes of maps of a complex unit disk D to SymgCn�1.†/
such that point �i is mapped to x, the point i is mapped to y , @D\fRe.z/ < 0g is mapped to Tˇ and
@D\fRe.z/>0g is mapped to T˛ . The quantity �.�/ is the Maslov index of the disk. The space M.�/ is
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the moduli space of Js–holomorphic disks representing � (for some 1–parameter family of almost complex
structures Js on SymgCn�1.†/). The condition that �.�/D 1 implies that M.�/=R is generically a finite
set of points. The integers nwi .�/ are intersection numbers of fwig �SymgCn�2.†/� SymgCn�1.†/
with the image of �.

The homology group HF�.Y;w; s/ of CF�.Y;w; s/ has the structure of an F ŒU1; : : : ; Un�–module.

If c1.s/ is torsion, then CF�.Y;w; s/ admits an absolute Q–valued grading, which we denote by grw .
The differential decreases the grading by 1, so the grading descends to HF�.Y;w; s/. Multiplication by
any of the Ui decreases the grading by �2.

Formally inverting the variables U1; : : : ; Un in CF�.Y;w; s/ gives a chain complex CF1.Y;w; s/ over
F ŒU1; U�11 ; : : : ; Un; U

�1
n �. The associated homology group is denoted by HF1.Y;w; s/.

2.2 The link Floer complex

For links in S3, Ozsváth and Szabó [2008a] introduced the link Floer homology, which generalizes the
knot Floer homology defined separately in [Rasmussen 2003; Ozsváth and Szabó 2004a]. We presently
recall their construction.

Definition 2.3 An oriented multipointed link L D .L;w; z/ in a closed 3–manifold Y is an oriented
link L with two disjoint collections of basepoints w D fw1; : : : ; wng and z D fz1; : : : ; zng such that,
as one traverses L, the basepoints alternate between w and z. Furthermore, each component of L has
a positive (necessarily even) number of basepoints, and each component of Y contains at least one
component of L.

Analogously to Definition 2.1, we have the following:

Definition 2.4 A multipointed Heegaard link diagram for LD .L;w; z/ in Y is a tuple .†;˛;ˇ;w; z/
satisfying the following:

� .†;˛;ˇ;w/ and .†;˛;ˇ; z/ are embedded Heegaard diagrams for .Y;w/ and .Y; z/, respectively,
in the sense of Definition 2.1.

� L\†Dw[ z, and furthermore L intersects † positively at z and negatively at w.

� L\U˛ (resp. L\Uˇ ) is a boundary-parallel tangle in U˛ (resp. Uˇ ).

Given a multipointed Heegaard link diagram .†;˛;ˇ;w; z/ for .Y;L/, the link Floer chain complex is
defined as follows. Let

R� D F ŒU ;V �; R1 D F ŒU ;U �1;V ;V �1�:

Algebraic & Geometric Topology, Volume 24 (2024)
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Let s be a Spinc structure on Y. We define the chain complex CFL�.†;˛;ˇ;w; z; s/ to be the free
R�–module generated by x 2 T˛ \Tˇ with sw.x/D s. The differential is given by

.2.5/ @x D
X

y2T˛\Tˇ

X
�2�2.x;y/
�.�/D1

#.M.�/=R/U nw1 .�/C���Cnwn .�/V nz1 .�/C���Cnzn .�/ �y;

extended R�–equivariantly. The differential @ squares to 0.

There is a larger version of the link Floer complex, which we call the full link Floer complex, denoted by
CFL�full.Y;L; s/. As a module, CFL�full.Y;L; s/ is freely generated over the ring F ŒU1; : : : ;Un;V1; : : : ;Vn�

by T˛ \Tˇ . The differential is similar to (2.5), except we use the weight nwi .�/ for the variable Ui ,
and the weight of nzi .�/ for the variable Vi . In general, CFL�full.Y;L; s/ is a curved chain complex, ie
@2 D !L � id for some !L 2 F ŒU1; : : : ;Un;V1; : : : ;Vn�; see [Zemke 2017, Lemma 2.1].

2.3 Homological actions

Ozsváth and Szabó [2004b, Section 4.2.5] describe an action of ƒ�.H1.Y /=Tors/ on the homology
group HF�.Y;w; s/. For a multipointed 3–manifold .Y;w/, there is an analogous action of the relative
homology group H1.Y;w/ on CF�.Y;w; s/ [Zemke 2015]. In this section, we recall the construction
and describe some analogs on link Floer homology.

If .†;˛;ˇ;w/ is a multipointed Heegaard diagram, and � is a path which connects two distinct basepoints
w1; w2 2 w, then there is a relative homology action A�, which is an endomorphism of CF�.Y;w; s/
and satisfies

.2.6/ A�@C @A� D U1CU2:

See [Zemke 2015, Lemma 5.1].

The map A� is defined via the formula

.2.7/ A�.x/D
X

y2T˛\Tˇ

X
�2�2.x;y/
�.�/D1

a.�; �/ #.M.�/=R/U
nw1 .�/

1 � � �U
nwn .�/
n �y:

Here a.�; �/2F is a quantity determined as follows. Homotope the path � so that it is an immersed curve
in †, transverse to the ˛ and ˇ curves. We write D.�/ for the domain of the class �, which is a 2–chain
on † with boundary in ˛[ˇ. We write @D.�/D @˛.�/C @ˇ .�/. Then we set a.�; �/D #.@˛.�/\�/.
Compare [Zemke 2015, Section 5.1]. Up to chain homotopy, the map A� only depends on the relative
homology class of � in Y, relative to its boundary. In particular, the map A� does not depend on the
choice of representative on the surface †. See [Ni 2014, Lemma 2.4] for a proof in a related context, or
[Zemke 2015, Lemma 5.6] for a similar proof in the present context.
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If .†;˛;ˇ;w; z/ is a multipointed Heegaard link diagram, and � connects two basepoints w1 and w2,
there is an analogous map A� on the link Floer homology. In contrast to (2.6), we have

.2.8/ A�@C @A� D U1V1CU2V2;

where V1 denotes the variable for the basepoint z1 which immediately follows w1 with respect to the
ordering of basepoints on the link, and similarly V2 is the variable for the basepoint z2 which immediately
follows w2. The proof follows the same strategy as [Zemke 2015, Lemma 5.1]: One counts the ends of
index 2 families of holomorphic disks. There are two types of ends: pairs of index 1 holomorphic disks
as well as index 2 boundary degenerations. Pairs of index 1 holomorphic disks contribute to the left-hand
side of (2.8), while the count of boundary degenerations, weighted by a.�; �/, constitutes the right-hand
side.

If zi 2 z, then there is an endomorphism of CFL�full.Y;L; s/ defined by

‰zi .x/D V �1i

X
y2T˛\Tˇ

X
�2�2.x;y/
�.�/D1

nzi .�/ #.M.�/=R/U
nw1 .�/

1 � � �U
nwn .�/
n V

nz1 .�/

1 � � �V
nzn .�/
n �y:

We call ‰zi the basepoint action of zi . Note that, since the contribution of each disk class � is multiplied
by nzi .�/ in the sum, the additional factor of V �1i never results in negative powers of Vi , and hence the
formula induces a well-defined endomorphism of CFL�full.Y;L; s/.

Given wi 2w, there is an analogous endomorphism ˆwi . The map ‰zi satisfies

‰zi@C @‰zi D Uj CUjC1;

where wj and wjC1 are the w basepoints adjacent to zi on the link. In particular, if we identify all of
the Ui variables to a single U, then ‰zi is a chain map. See [Sarkar 2011, Lemma 4.1] or [Zemke 2017,
Lemma 3.1]. Similarly, if zi is on a link component which has only one other basepoint, then ‰zi is also
a chain map.

2.4 Heegaard Floer homology of a knotification

Definition 2.9 (knotification) Let LD L1[ � � � [Ln be a null-homologous link in a 3–manifold Y.

(1) A partial knotification of L with respect to components Li and Lj is a .n�1/–component null-
homologous link Lij in Y # S2 � S1 obtained by connecting Li and Lj with an oriented band
going across the S2 �S1 summand.

(2) A knotification of L is a knot yL in Y # #n�1 S2�S1 obtained by consecutive partial knotifications.

The isotopy type yL does not depend on the feet of the bands [Ozsváth and Szabó 2004a, Proposition 2.1].

Suppose L D .L;w; z/ is an n–component link in #m S2 � S1, equipped with 2n basepoints, and L0

is a multipointed link in #mC1 S2 � S1, obtained by knotifying the components Ln�1 and Ln of L.
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Furthermore, we assume that the basepoints on the link components L1; : : : ; Ln�2 are unchanged in L0,
and on L0n�1 we have only the two basepoints wn and zn�1. There are two natural maps

F W CFL�
�
#m S2 �S1;L

�
! CFL�

�
#mC1 S2 �S1;L0

�
;

G W CFL�
�
#mC1 S2 �S1;L0

�
! CFL�

�
#m S2 �S1;L

�
:

The map F is the link cobordism map for a 4–dimensional 1–handle, followed by a saddle which
crosses over the 1–handle. The decoration on the saddle consists of an arc, which connects the two link
components of L. Outside of the saddle region, the decoration consists of “vertical” arcs which connect L

to L0. See the left-hand side of [Zemke 2019a, Figure 5.1]. The map G is the map for the link cobordism
obtained by reversing the orientation and turning around the above cobordism for F.

The following is a key lemma which we use to compute the H1–action for knotified links:

Proposition 2.10 Suppose L, L0, F and G are as above. Let � be an arc in #m S2 �S1 which connects
the w basepoints of Ln�1 and Ln. Let 
 be the unique element of H1

�
#mC1 S2 � S1

�
obtained by

joining the ends of � across the 1–handle used in knotification. We have the following:

(a) F and G are homogeneously graded chain homotopy inverses.

(b) The map F satisfies

F.A�CU ˆwn/' F.A�CV ‰zn/' A
F:

Proof To simplify the notation, we will describe the case when L is a link in S3 with two components
L1 and L2. We begin with claim (a). The proof is formally identical to the proof of [Zemke 2019a,
Proposition 5.1] and follows from two 4–dimensional surgery relations [Zemke 2019a, Propositions 5.2
and 5.4].

We now move onto claim (b). We first show that

.2.11/ F.A�CV ‰z2/' A
F:

By definition, we may take

.2.12/ F D S�w2;z1F
w
B F1;

where F1 is the 1–handle map, S�w2;z1 is a quasidestabilization map, and Fw
B is a type-w saddle map; see

[Zemke 2019c] for precise definitions of the relevant maps. Here B denotes the band (ie saddle) which
crossed over the 1–handle used in the knotification operation.

We now have

.2.13/ F1.A�CV ‰z2/D .A�CV ‰z2/F1
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by the same argument as Ozsváth and Szabó’s proof that the 1–handle is a chain map [Ozsváth and Szabó
2006, Section 4.3]. Analogously, the computation of the quasistabilized differential in [Zemke 2017,
Proposition 5.3] implies that

A
S
�
w2;z1

D S�w2;z1A
 :

Hence, it is sufficient to show that

Fw
B .A�CV ˆz1/D A
F

w
B :

We recall the definition of the map Fw
B . We pick a Heegaard triple .†;˛;ˇ;ˇ0;w; z/ subordinate to the

band [Zemke 2019c, Defintion 6.2]. The diagram .†;ˇ;ˇ0;w; z/ contains two canonical intersection
points, ‚w

ˇ;ˇ 0
and ‚z

ˇ;ˇ 0
, where ‚o

ˇ;ˇ 0
is the top degree generator with respect to the gro–grading for

o 2 fw; zg. By definition,
Fw
B .x/D F˛;ˇ;ˇ 0.x; ‚

z
ˇ;ˇ 0/:

Counting the ends of Maslov index 1 families of holomorphic triangles, weighted by a.�;  /, we obtain
the relation

F˛;ˇ;ˇ 0.A�.x/;‚
z
ˇ;ˇ 0/CA�.F˛;ˇ;ˇ 0.x; ‚

z
ˇ;ˇ 0//DF

A
� .@x; ‚

z
ˇ;ˇ 0/CF

A
� .x; @‚

z
ˇ;ˇ 0/C@F

A
� .x; ‚

z
ˇ;ˇ 0/I

see [Zemke 2015, Lemma 5.2]. Here FA
�

counts index 0 holomorphic triangles with an extra factor of
a.�;  /. Note that one might expect an extra term involving F˛;ˇ;ˇ 0.x; A�.‚z

ˇ;ˇ 0
//; however, this term

vanishes since A� weights disks based on their changes across the ˛ curves and ‚z
ˇ;ˇ 0
2Tˇ \Tˇ 0 . Since

@‚z
ˇ;ˇ 0
D 0, we obtain that

.2.14/ Fw
B ıA�CA� ıF

w
B ' 0:

Similarly, counting the ends of index 1 families of holomorphic triangles, weighted by nz2. /, we obtain

F˛;ˇ;ˇ 0.V ‰z2.x/;‚
z
ˇ;ˇ 0/CF˛;ˇ;ˇ 0.x;V ‰z2.‚

z
ˇ;ˇ 0//CV ‰z2.F˛;ˇ;ˇ 0.x; ‚

z
ˇ;ˇ 0//

D F 0.@x; ‚z
ˇ;ˇ 0/CF

0.x; @‚z
ˇ;ˇ 0/C @F

0.x; ‚z
ˇ;ˇ 0/;

where F 0 counts index 0 triangles weighted by a factor of nz1. /. The above equation implies that

.2.15/ Fw
B ıV ‰z2 CV ‰z2 ıF

w
B ' F˛;ˇ;ˇ 0.�;V ‰z2.‚

z
ˇ;ˇ 0//:

We claim now that the map F˛;ˇ;ˇ 0.�;V ‰z2.‚
z
ˇ;ˇ 0

// is null-homotopic. To establish this, it is sufficient
to show that

.2.16/ ŒV ‰z2.‚
z
ˇ;ˇ 0/�D 0;

where the brackets denote the induced element of homology. Indeed, assuming the existence of an
� 2 CFL�.†;ˇ;ˇ0;w; z/ such that @�D V ‰z2.‚

z
ˇ;ˇ 0

/, associativity of holomorphic triangles implies
that

F˛;ˇ;ˇ 0.x;V ‰z2.‚
z
ˇ;ˇ 0//D @F˛;ˇ;ˇ 0.x; �/CF˛;ˇ;ˇ 0.@x; �/;

so

.2.17/ F˛;ˇ;ˇ 0.�;V ‰z2.‚
z
ˇ;ˇ 0//' 0:
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w1 z2
w2

z1

‚w
ˇ;ˇ 0

‚z
ˇ;ˇ 0

ˇˇ0

Figure 1: An unknot with four basepoints. The dashed arc is �.

We will now demonstrate (2.16). We observe that the map ‰z2 commutes with the homotopy equivalences
associated to changing Heegaard diagrams by [Zemke 2017, Lemma 3.2]. Furthermore, the homology
class Œ‚z

ˇ;ˇ 0
� is also preserved by these homotopy equivalences by [Zemke 2019c, Lemma 3.7], since it

is the unique generator in its grading. In particular, we may verify (2.16) for any convenient choice of
Heegaard diagram for an unknot with four basepoints. We perform the computation using the genus 0
Heegaard diagram shown in Figure 1. On this diagram, ‰z2.‚

z
ˇ;ˇ 0

/D 0.

Combining (2.14) and (2.15) with (2.17), we obtain

.2.18/ Fw
B .A�CV ‰z2/' .A�CV ‰z2/F

w
B :

Next, consider a path �0 from w1 to w2, which is a subarc of L0. We choose �0 so that it is oriented from
w1 to w2. There are two such subarcs of L0, and we pick the one so that the portion of �0 nearest to w1 is
in the beta-handlebody (equivalently, we pick the one which goes over the band B before arriving at a z
basepoint). Without loss of generality, we may assume that �0 crosses over z2. See Figure 2. We define


 WD ���0;

where � denotes concatenation.

On the Heegaard diagram, we may choose �0 to cross only the alpha curves between w1 and z2, and only
the beta curves between z2 and w2. Clearly,

a.�0; �/D nw2.�/�nz2.�/:

�0w1

z1

z2

w2

B

Figure 2: The configuration of the band B, the basepoints and the arc �0 � L0.
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Hence, A�0 D U ˆw2 CV ‰z2 , or, equivalently,

.2.19/ V ‰z2 D A�0 CU ˆw2 :

Combining (2.18) and (2.19), we obtain

.2.20/ F.A�CV ‰z2/' S
�
w2;z1

.A�CA�0 CU ˆw2/F
w
B F1

' S�w2;z1.A
 CU ˆw2/F
w
B F1

' A
S
�
w2;z1

Fw
B F1:

The second line of (2.20) follows from the relation A
 'A�CA�0 . The final line follows from (2.13), as
well as the relation that S�w2;z1ˆw2 'S

�
w2;z1

SCw2;z1S
�
w2;z1

' 0 by [Zemke 2019c, Lemmas 4.11 and 4.13],
completing the proof of (2.11).

Finally, to see that
F.A�CU ˆw2/' A
F;

it is sufficient to show that V ‰z2 ' U ˆw2 on CFL�.L/. To see this, we note that on a diagram for L,
we can consider a shadow of the link component L2. The arc L2 n fw2; z2g contains two subarcs, one
of which intersects only the alpha curves, and one of which intersects only the beta curves. Hence
a.L2; �/D nw2.�/�nz2.�/ for any class of disks �. On the other hand, this implies that the homology
action associated to 0D ŒL2� 2H1.S3/ satisfies

0' AL2 D U ˆw2 CV ‰z2 :

The homology action on full knotifications may be computed by iterating the above result, via the
following lemma:

Lemma 2.21 Let L, L0, F and G be as in Proposition 2.10.

(1) Suppose that 
 2H1
�
#m S2 �S1

�
. Write 
 also for the induced element of H1

�
#mC1 S2 �S1

�
.

Then A
 commutes with F and G up to chain homotopy.

(2) If � is an arc in #m S2 �S1 which connects two components of L1; : : : ; Ln�2, then the relative
homology map A� commutes with F and G up to chain homotopy.

(3) If w and z are basepoints on one of the link components L1; : : : ; Ln�2, then ˆw and ‰z commute
with F and G up to chain homotopy.

The proof of Lemma 2.21 is similar to the proof of Proposition 2.10 (though strictly easier), and hence
we omit it. We refer the reader to [Zemke 2015, Section 5; 2019c, Section 4] for related results.

2.5 The Hopf link

Our next goal is to describe the CFL�–complexes for the .2; 2n/–torus links, denoted by T2;2n, their
mirrors and their knotifications. As the calculations are rather involved, we begin by describing the Floer
chain complex for the link T2;2 (ie. the positive Hopf link), leaving the general case to Section 2.6. While
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˛

ˇ

ha
hb hc

hd

� e

w1 z2 z1 w2

Figure 3: A genus 0 Heegaard diagram for the Hopf link. The thick (red) curve is the ˛ curve, the
thin (blue) curve is the ˇ curve. The dotted curve is used to compute the action ofH1.S2�S1IZ/
on the knotification of the Hopf link.

the complex CFL�.T2;2/ is well known (it can be computed explicitly using a very simple diagram), to
the best of our knowledge, the calculation of the action of H1.S2 �S1/ on the knot Floer chain complex
of the knotification of T2;2 is new.

As our main focus will eventually be the knotification of T2;2, we restrict our attention to the link Floer
complex over the ring R� D F ŒU ;V �, as opposed to the version with a variable for each basepoint.

Consider the diagram for the Hopf link, as in Figure 3. The complex CFL�.T2;2/ is generated over R�

by four elements, ha, hb , hc and hd , which correspond to the intersections of the ˛ and ˇ curves in
Figure 3. The gradings are

.2.22/
.grw.ha/; grz.ha//D

�
1
2
;�3

2

�
; .grw.hb/; grz.hb//D

�
�
1
2
;�1

2

�
;

.grw.hc/; grz.hc//D
�
�
3
2
; 1
2

�
; .grw.hd /; grz.hd //D

�
�
1
2
;�1

2

�
:

The differential in the complex is computed by counting holomorphic disks of Maslov index 1. Counting
bigons shows that

.2.23/ @ha D @hc D 0; @hb D @hd D U haCV hc :

The homology of CFL1.T2;2/ is a direct sum of two copies of R1. One copy is spanned by ŒhbC hd �;
the other copy is spanned by ha or hc .

We now describe the homology action A
 on CFK�. yT2;2/, where yT2;2 denotes the knotification of T2;2,
and 
 is a generator of H1.S2 �S1/. We will use Proposition 2.10. The formula therein involves the
relative homology action A� on CFL�.T2;2/, which we compute now. In our present case, the arc � has
only one intersection with an alpha curve, which occurs at a point labeled e in Figure 3. The map A�
counts holomorphic disks of Maslov index 1, with weights corresponding to changes along the alpha
boundary of a disk; see (2.7). Counting bigons with these weights, we obtain

.2.24/ A�.ha/D V .hbC hd /; A�.hb/D 0; A�.hc/D U .hbC hd /; A�.hd /D U ha:
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We recall that, in Section 2.4, we defined a knotification map

F W CFL�.T2;2/! CFK�. yT2;2/;

which is a homotopy equivalence. In Proposition 2.10, we showed that

F.A�CU ˆw2/' A
F:

Hence, as a model for the pair .CFK�. yT2;2/; A
 /, we may use .CFL�.T2;2/; A�CU ˆw2/. Hereafter,
by a model for a chain complex (possibly with extra structure) defined up to chain homotopy equivalence,
we mean a concrete chain complex in the class of an appropriate (usually bifiltered) chain homotopy
equivalence. Abusing notation slightly, we will write A
 for the endomorphism of CFL�.T2;2/ given by
A
 WD A�CU ˆw2 . One easily computes

ˆw2.hd /D ha;

and ˆw2 vanishes on the other generators. Hence,

.2.25/ A
 .ha/D V .hbC hd /; A
 .hb/D U ha; A
 .hc/D U .hbC hd /; A
 .hd /D U ha:

With a change of basis h0
d
D hbC hd , we obtain the following presentation of .CFK�. yT2;2/; A
 /:

.2.26/
ha hb

h0
d

hc

V
U

U

V

U

In (2.26), the dashed arrows denote differentials, and the solid arrows denote the action of A
 .

We may obtain a simpler model of the homology action by replacing A
 with A
 C Œ@; F �, where F is
the R�–equivariant map which satisfies

F.ha/D ha and F.hb/D F.hc/D F.hd /D 0:

The resulting model for .CFK�. yT2;2/; A
 / is

.2.27/
ha hb

h0
d

hc

V

U

V

U

2.6 The torus link T2;2n

Before we start our computation of the Floer chain complex of the .2; 2n/–torus link and its knotification,
we introduce a family of complexes Sn for n 2 Z, which play a prominent role in the present paper.

Definition 2.28 Let n� 1. We write Sn for the complex generated by elements x0; y1; : : : ; y2n�1; x2n
with differential @.x2i /D 0 and

@.y2iC1/D U x2i CV x2iC2:
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The bigradings are given by .grw.xj /; grz.xj // D .�j; j � 2n/ if j is even. The same formula holds
for yj if j is odd.

The complex S�n is defined as the dual complex to Sn. More specifically, it is generated by elements
x0; y1; : : : ; y2n�1; x2n with differential @.y2iC1/D 0, @.x2i /D V y2i�1CU y2iC1, and the convention
that y�1 D y2nC1 D 0. For j even, the grading of xj is .j; 2n� j /, and an analogous formula holds for
the grading of yj if j is odd.

Remark 2.29 The complex Sn is the CFK�–complex of the positive torus knot T2;2nC1, while S�n

is the complex for the negative torus knot T2;�.2nC1/. Hence, we also call Sn a staircase complex. For
details of staircase complexes, see Section 4.1.

Recall that T2;2n � S3 denotes a 2–component .2; 2n/–torus link. In this subsection, we study the Floer
chain complex CFL�.T2;2n/ as an R�–module. This gives the Floer chain complex CFK�.S2�S1; yT2;2n/,
where yT2;2n is the knotification of T2;2n.

The Heegaard diagram of the link T2;2n in S3 is shown in Figure 4 and the Floer chain complex is in
Figure 5. The Heegaard diagram displayed therein is obtained from a doubly pointed open book whose
page is a disk and whose monodromy is 
n, where 
 denotes a Dehn twist parallel to the boundary.

x0

x1

x2

x3

x4

x5

x6

x7

w1 w2

Figure 4: A Heegaard diagram for T2;4 from a doubly pointed open book. The dashed line is an
arc � connecting w1 and w2.
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y1 y2 y3

y0 y4

y7 y6 y5

V

U

U

V

V

U

U

V

V

U

U

V U

V

V

U

U

V

V

U

y1 y2 y3 y4 y5

y0 y6

y11 y10 y9 y8 y7

V

U

U

V

V

U

U

V

V

U

U

V

V

U

U

V

V

U

U

V U

V

U

V

U

V

U

V

U

V

U

V

U

V

V
U

Figure 5: The chain complexes for T2;4 (top) and T2;6 (bottom).

It is easy to see that there are 4n generators y0; : : : ; y4n�1 of the complex CFL�.T2;2n/. By counting
bigons, one obtains formulas for the differential

.2.30/

@yi D @y4n�i D V .yi�1Cy4n�iC1/CU .yiC1Cy4n�i�1/ if 2� i � 2n� 2;

@y1 D @y4n�1 D V y0CU .y2Cy4n�2/;

@y2n�1 D @y2nC1 D U y2nCV .y2n�2Cy2nC2/;

@y0 D @y2n D 0:

A� D

y1 y2 y3 y4 y5

y0 y6

y11 y10 y9 y8 y7

U

U U U U

U

V

U
U U U U

V

ˆw2 D

y1 y2 y3 y4 y5

y0 y6

y11 y10 y9 y8 y7

1 1

1

1

1 1

1

1

1

Figure 6: Figure 5 continued. The map A� on the complex for T2;6 (top) and the map ˆw2 (bottom).
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It is convenient to do the following bigraded change of basis to the complex CFL�.T2;2n/. Namely we
consider the basis y1; : : : ; y2n�1; x0; : : : ; x2n, where

.2.31/ xi D yi Cy4n�i if 1� i � 2n� 1; x0 D y0; x2n D y2n:

With this change of basis, the differential takes the form

.2.32/ @yi D V xi�1CU xiC1 if 1� i � 2n� 1; @xi D 0:

The gradings of the generators in CFL�.T2;2n/ are summarized in the following lemma:

Lemma 2.33 If 1� i � 2n� 1, then

.grw.yi /; grz.yi //D .grw.xi /; grz.xi //D
�
1
2
� 2nC i; 1

2
� i
�
:

If i D 0 or i D 2n, then the same formula holds for xi .

Proof Recall that @ has .grw ; grz/–bigrading .�1;�1/, and that U and V have bigradings .�2; 0/
and .0;�2/, respectively. Using the description in Figure 6, it is easy to check that the formula holds up
to an overall additive constant. That is, the formula holds for the relative grw– and grz–gradings. Hence,
it is sufficient to show the absolute grw–grading is correct for one of the generators, and similarly for the
grz–grading. To check the absolute gradings, we note that, if we set V D 1 and U D 0, then we recover
the Heegaard Floer complex for �CF.S3; w1; w2/, which is homotopy equivalent to F1=2˚ F�1=2 as a
grw–graded chain complex. In this case, the complex has generators x2n�1 and x2n, which pins down
their grw–grading. A similar argument computes the grz–gradings.

We now compute the homology action A
 on the complex of the knotification of T2;2n. In order to use
Proposition 2.10, we need to compute A� and ˆw2 . For a choice of arc on the Heegaard surface as in
Figure 4, by counting bigons we obtain that A� has the form

.2.34/
A�.y0/D U .y1Cy4n�1/; A�.yi /D U yiC1 if 0 < i < 2n;

A�.y2n/D V .y2n�1Cy2nC1/; A�.yi /D U y4n�iC1 if 2nC 1 < i < 4n:

By (2.31), we have

.2.35/
A�.x0/D U x1; A�.xi /D U xiC1 if 0 < i < 2n� 1

A�.x2n/D V x2n�1; A�.x2n�1/D 0:

Next, we need to understand the map ˆw2 . Counting bigons on diagrams like those shown in Figure 4
implies that ˆw2 takes the form

.2.36/
ˆw2.y2i /D y2iC1 if 0 < i < n; ˆw2.y2i /D y4n�2iC1 if n < i < 2n;

ˆw2.y2iC1/D y2i Cy4n�2i if n < i < 2n; ˆw2.y2nC1/D y2n;

and ˆw2 vanishes on all other generators.
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Finally, we combine Proposition 2.10 with (2.35) and (2.36) to obtain the following formula for A
 '
A�CU ˆw2 on the knotified complex, which we write in terms of the basis from (2.31):

.2.37/

A
 .y2iC1/D U x2iC2CU y2iC2 if 0� i < n� 1;

A
 .y2i /D U x2iC1 if 0 < i < n� 1;

A
 .x2i /D U x2iC1 if 0� i < n;

A
 .x2n/D V x2n�1;

and A
 vanishes on all other generators. The example of T2;6 is shown below:

.2.38/ A
 D

y1 y3 y5

x0 x2 x4 x6

y2 y4

x1 x3 x5

V U

U

U

V

U

U

U

V

U

U

U U U

V

V

U

U V

U

U

The dashed lines denote the differential and the solid lines denote the A
–action. It is convenient to
modify the map A
 by a further chain homotopy, so that it takes one staircase summand to the other, with
no self-arrows, as follows. Define a function ı WN! F by

ı.n/D 1
2
n.n� 1/ mod 2:

Conceptually, it is easier to think of ı.n/ as the sequence 0; 0; 1; 1; 0; 0; 1; 1; : : : . We define a homotopy F
as follows. On the first staircase summand, we define F via

F.x2i /D ı.2i/ � x2i if 0� i � n; F.y2iC1/D ı.2i C 1/ �y2iC1 if 0� i < n:

On the second staircase summand, we define F via

F.x2iC1/D ı.2i/ � x2iC1 if 0� i < n; F.y2i /D ı.2i � 1/ �y2i if 0 < i < n:

Writing A0
 for A
 C Œ@; F �, we compute that

A0
 .x2i /D U x2iC1 if 0� i < n;

A0
 .y2iC1/D U y2iC2 if 0� i < n� 1;

A
 0.x2n/D V x2n�1:
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Continuing our running example of T2;6, (2.38) becomes

.2.39/ A
 C Œ@; F �D

y1 y3 y5

x0 x2 x4 x6

y2 y4

x1 x3 x5

V U

U

V U

U

V U

U U U

V

V U V U

We summarize the above computation as follows:

Proposition 2.40 The pair .CFK�.S2 �S1; yT2;2n/; A
 / has a model where CFK�.S2 �S1; yT2;2n/ is
equal to Sn

˚
1
2
; 1
2

	
˚ Sn�1

˚
�
1
2
;�1

2

	
and A
 maps Sn to Sn�1 on the chain level. Here , we recall that

fi; j g denotes a shift in the .grw ; grz/–grading by .i; j /, and Sn and Sn�1 are the chain complexes in
Definition 2.28.

We now consider the mirror of the .2; 2n/–torus link, which we denote by T2;�2n. We denote its
knotification by yT2;�2n. On the level of Floer complexes, taking the mirror amounts to replacing the link
Floer complex by the dual complex over the ring R�. In practice, this amounts to reversing all the arrows
in the differential and multiplying the .grw ; grz/–bigrading by an overall factor of �1. The homology
action on the mirror is also the dual. We summarize this as follows:

Proposition 2.41 The pair .CFK�.S2 �S1; yT2;�2n/; A
 / has a model where CFK�.S2 �S1; yT2;�2n/
is equal to S�n

˚
�
1
2
;�1

2

	
˚S�.n�1/

˚
1
2
; 1
2

	
and A
 maps S�.n�1/ to S�n on the chain level.

2.7 The Borromean knot B0

Let B0 � #2 S2 �S1 be the Borromean knot, that is, the knot obtained from the Borromean rings by a
zero-framed surgery on two of its components. The Heegaard Floer chain complex of B0 is described in
[Ozsváth and Szabó 2004a, Proposition 9.2]. We adapt the calculation of [Borodzik et al. 2017, Section 5;
Bodnár et al. 2016, Section 4] to the present context.

The chain complex CFK�.B0/ is homotopy equivalent to F4˝F R�, with vanishing differential. We
write 1, x, y and xy for the generators of F4, which we can think of as being generators of H�.T2/.
The bigradings are

.2.42/

.grw.1/; grz.1//D .1;�1/;

.grw.x/; grz.x//D .grw.y/; grz.y//D .0; 0/;

.grw.xy/; grz.xy//D .�1; 1/:
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Up to an overall grading-preserving isomorphism, the H1
�
#2 S2�S1

�
–module structure is uniquely

determined by the formal properties of the action. In detail, if we write x� and y� for the two generators
of H1

�
#2 S2 �S1

�
, then the module structure takes the form (up to overall isomorphism)

Ay� D

xy

x y

1

V U

VU

Ax� D

xy

x y

1

VU

V U

For the explicit description of the top and bottom towers of CFK�.B0/, see [Borodzik et al. 2017,
Section 5].

3 Correction terms

3.1 Generalized correction terms of Levine and Ruberman

Suppose Y is an oriented closed three-dimensional manifold. The module HF1.Y / is standard if, for
each torsion Spinc structure s,

HF1.Y; s/Šƒ�H 1.Y IZ/˝Z F ŒU; U�1�

as ƒ�.H1.Y IZ/=Tors/˝ZF ŒU �–modules. Any manifold Y for which the triple cup product vanishes
is standard; see [Lidman 2013] (and also [Levine and Ruberman 2014, Theorem 3.2]). In particular,
a connected sum of finitely many copies of S1 � S2 has standard HF1. Hence, a large surgery on a
null-homologous knot in # S1 �S2 has standard HF1; see [Ozsváth and Szabó 2003]. This means that
essentially all 3–manifolds we are going to consider have standard HF1.

There is an action (up to homotopy) of ƒ�.H1.Y /=Tors/ on CF�.Y; s/. Expanding on work of Ozsváth
and Szabó [2003], Levine and Ruberman [2014] associate a d–invariant to any primitive subspace G
of H1.Y /=Tors (recall that a primitive subspace is a free submodule whose quotient is free) and any
Spinc structure s on Y whose first Chern class is torsion as long as HF1.Y / is standard. We denote this
invariant by d.Y; s; G/. For our purposes, the two most important instances are the invariants

dbot.Y; s/ WD d.Y; s;H1.Y /=Tors/; dtop.Y; s/ WD d.Y; s; f0g/;

which correspond approximately to the kernel and cokernel, respectively, of the H1.Y /=Tors–action.

The key property of these invariants is the following inequality, generalizing the Ozsváth–Szabó inequality:

Theorem 3.1 [Levine and Ruberman 2014, Theorem 4.7] Suppose X is a connected four-manifold
such that bC2 .X/D 0 and @X D Y. Suppose s is a Spinc structure on Y that extends to a Spinc structure t
on X. Then

d.Y; s; G/� 1
4
.c21.t/C b

�
2 .X//C

1
2
b1.Y /� rkG

if G contains the kernel of the inclusion map from H1.Y /=Tors to H1.X/=Tors.
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3.2 V –invariants

The aim of this section is to gather several definitions of Vs–invariants. In the context of Heegaard Floer
theory, all these definitions lead to the same invariants.

The first definition recalls the classical Vs–invariant for knots. The assumptions on C� in Definition 3.2
are modeled on a knot Floer complex CFK�.

Definition 3.2 (Vs–invariants for complexes over F ŒU; U�1�) Suppose C� is a filtered chain complex
of free F ŒU �–modules (with multiplication by U decreasing the filtration level by 1 and the grading by 2)
such that the homology of the localized complex U�1C� is equal to F ŒU; U�1�. For s 2 Z, the invariant
Vs.C�/ is such that �2Vs.C�/ is the maximal grading of an element x 2 C� at filtration level at most s
such that the class of U kx is nonzero in H�.C�/ for all k � 0.

Next we define the Vs–invariants of a bigraded R�–module, where R� D F ŒU ;V �. The definition is
essentially taken from [Zemke 2019b, equation (10.3)]. Suppose C� is a bigraded chain complex over R�

such that multiplication by U changes the grading by .�2; 0/, multiplication by V changes the grading
by .0;�2/, and the differential changes the grading by .�1;�1/. Let .grw ; grz/ denote the bigrading. It
is not hard to see that the differential and multiplication by U V preserves the difference grw � grz .

Definition 3.3 (Vs–invariants over R�) Suppose C� is a chain complex over R� such that

.3.4/ .U ;V /�1 �H�.C�/ŠR1 D F ŒU ;V ;U �1;V �1�

as bigraded groups. (Here .U ;V /�1� denotes localization at the nonzero monomials of R�.) We
write As.C�/ for the subcomplex of C� which has grw � grz D 2s. We can view As.C�/ as a complex
over F ŒU �, where U acts by U V . We define d.As.C�// for the maximal grw–grading of a homogeneously
graded, F ŒU �–nontorsion element of H�.As.C�//. We define

Vs.C�/D�
1
2
d.As.C�//:

Remark 3.5 Suppose M is a graded module over R� such that .U �1;V �1/ �M Š R1 as bigraded
groups. We define Vs.M/ to be Vs.C�/, with C� the chain complex with the same underlying module
structure as M but trivial differential.

Remark 3.6 If C� is the chain complex CFL�.S3; K/ for a knot K � S3, Vs.C�/ is the classical
V –function of the knot K. In this case, we also denote it by Vs.K/ if the context is clear. See [Zemke
2019b, Section 1.5] for translating between the chain complex CFL�.S3; K/ and CFK�.S3; K/.

Suppose C� is as in Definition 3.3. Let a; b 2 Z. The chain complex C�fa; bg is defined as the chain
complex equal to C�, but with grading shifted by .a; b/. That is, if x 2 C� has bigrading .c; d/, then
x 2 C�fa; bg has bigrading .aC c; bC d/.
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Lemma 3.7 Suppose C� is a bigraded chain complex over R� and let D� D C�fa; bg be the chain
complex with shifted grading. Then VsC.a�b/=2.D�/D Vs.C�/� 1

2
a.

Proof We use the fact that As.C�/D AsC.a�b/=2.D�/.

In our computations, we will need to show that Vs–invariants of locally equivalent complexes are the
same. We recall the relevant definition:

Definition 3.8 Two chain complexes C� and D� are locally equivalent if there exist grading-preserving,
R�–equivariant chain maps f W C�!D�, g WD�! C� such that both f and g induce the identity map
on .U ;V /�1 �C� Š .U ;V /�1 �D�.

As an example, we quote the following result of Hedden, Kim and Livingston (note that �C–equivalence
is equivalent to local equivalence; see [Hom 2017, Proposition 3.11]):

Proposition 3.9 [Hedden et al. 2016, Theorem B.1] The tensor product Sk˝S` is locally equivalent
to SkC` for any integers k and l .

For the following result, see [Zemke 2019a, Section 2], [Hom 2017] or [Kim and Park 2018, Section 3]:

Proposition 3.10 (a) If C� is locally equivalent to D�, then Vs.C�/D Vs.D�/ for all s.

(b) If C� is locally equivalent to D� and E� is locally equivalent to F�, then C� ˝ E� is locally
equivalent to D�˝F�.

We now extend Definition 3.3 to the case of chain complexes with a group action. Suppose C� is a
bigraded chain complex over R� and H is a free abelian group such that the ring ƒ�H acts on H�.C�/,
and the action of H has degree .�1;�1/. Let Tors�H�.C�/ denote the R�–torsion submodule. Define

Htop
D coker

�
H ˝ .H�.C�/=Tors/! .H�.C�/=Tors/

�
;

Hbot
D

\

2H

ker
�

 W .H�.C�/=Tors/! .H�.C�/=Tors/

�
:

By analogy with (3.4), we require that

.U ;V /�1 �Htop
ŠR1 Š .U ;V /�1 �Hbot

as relatively bigraded R�–modules. Let Htop
s (resp. Hbot

s ) denote the F ŒU �–submodule generated by
homogeneously graded elements x 2 Htop (resp. x 2 Hbot/ such that grw.x/ � grz.x/ D 2s (recall
U acts by U V ). We define d top

s .C�/ to be the maximal grw–grading of a homogeneously graded,
F ŒU �–nontorsion element of Htop

s , and we define d bot
s .C�/ analogously.

Definition 3.11 We set

V
top
s .C�/ WD �

1
2
d

top
s .C�/ and V bot

s .C�/D�
1
2
d bot
s .C�/:
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Remark 3.12 If K is a null-homologous knot in a closed, oriented connected 3–manifold Y with
standard HF1.Y /, for simplicity we write As.K/ for As.CFL�.Y;K//, and V top

s .K/D�1
2
d

top
s .K/ and

V bot
s .K/D�1

2
d bot
s .K/ for V top

s .CFL�.Y;K// and V bot
s .CFL�.Y;K//, respectively.

3.3 Large surgery formula

To set up the notation, we recall the large surgery formula [Ozsváth and Szabó 2004b, Section 4] and
relate the d–invariants of the surgery on a knot to its Vs–invariants. We first recall the description of
Spinc structures on a surgery.

Definition 3.13 Suppose Y is a closed 3–manifold and K � Y is a null-homologous knot. Let s 2
Spinc.Y / and q 2Z>0. For anym2

�
�
1
2
q; 1
2
q
�
\Z we denote by sm the unique Spinc structure on Yq.K/

such that sm extends to a Spinc structure tm on W uniquely characterized by the properties that tmjY D s

and hc1.tm/; F iC q D 2m, where W is the trace of the surgery on K and F is the generator of H2.W /
obtained by gluing a Seifert surface for K with the core of the two-handle.

With this notation, we state Ozsváth and Szabó’s large surgery theorem [2004b, Theorem 4.1]:

Theorem 3.14 Suppose K � Y is a null-homologous knot in a closed 3–manifold. Suppose q > 2g3.K/
is an integer. For a Spinc structure sm on Y as in Definition 3.13, there exists a quasi-isomorphism
between CF�.Yq.K/; sm/ and Am, where Am is the F ŒU �–subcomplex of CFL�.Y;K; s/ of elements
x with grading grw.x/� grz.x/ D 2m. If s is torsion , then the quasi-isomorphism shifts the grading
(Maslov grading on CF�.Yq.K/; sm/ and grw–grading on Am) by ..q� 2m/2� q/=4q.

From this theorem we obtain the following well-known equalities:

Theorem 3.15 Suppose K � Y is as in Theorem 3.14 and q > 2g3.K/.

(a) If Y is a rational homology sphere , then d.Yq.K/; sm/D ..q� 2m/2� q/=4q� 2Vm.K/;

(b) If b1.Y / > 0 and HF1.Y / is standard , then d top.Yq.K/; sm/D ..q� 2m/
2� q/=4q� 2V

top
m .K/

and d bot.Yq.K/; sm/D ..q� 2m/
2� q/=4q� 2V bot

m .K/.

4 Staircase complexes and their tensor products

In this section, we introduce staircase complexes. Next we compute the correction terms of certain tensor
products of staircase complexes.

4.1 Staircase complexes

A positive staircase complex P is a bigraded chain complex over R� with generators x0; y1; x2; : : : ,
y2n�1; x2n for some n > 0 with differential given by @y2iC1 D U ˛i � x2i C V ˇi � x2iC2, @x2j D 0,
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extended equivariantly over R�, for some positive integers ˛i and ˇi . We assume that @, U and V have
bigradings .�1;�1/, .�2; 0/ and .0;�2/, respectively. We assume that ˛i D ˇn�i�1. Furthermore, we
assume the gradings are normalized so that H�.P=.U � 1//Š F ŒV � has generator with grz–grading 0,
and H�.P=.V � 1//Š F ŒU � has generator with grw–grading 0. A negative staircase complex is the dual
complex of a positive staircase complex.

Example 4.1 The complex Sn of Definition 2.28 is a positive staircase complex for all n > 0. It is a
negative staircase complex if n < 0.

Lemma 4.2 Suppose that P D .P1! P0/ is a positive staircase complex, viewed as a complex of free
R�–modules , where P1 is spanned by yi and P0 is spanned by xi .

(1) H�.P/ is torsion-free as an R�–module.

(2) There is a .grw ; grz/–grading-preserving chain map

F W P!R�

which sends R�–nontorsion cycles to R�–nontorsion cycles. Furthermore , F may be taken to
map each generator of P0 to a nonzero monomial in R�, and vanish on P1.

Proof For the first claim, using the grading properties of P it is sufficient to show that U iV j � Œx�¤ 0

if Œx� ¤ 0 2 H�.P/ when x is a homogeneously graded cycle in P. Since the map from P1 to P0
is injective, there are no cycles with a nonzero summand in P1. Hence, it is sufficient to see that, if
x 2 P0 and U iV j � x 2 im.P1/, then x 2 im.P1/. To see this, suppose that y 2 P1 is homogeneously
graded and not a multiple of U or V . We may write y as an R� linear combination of y1; : : : ; y2n�1.
Let m (resp. M ) be the minimal (resp. maximal) index which is supported by y. Hence, we may write
y D amymC � � �C aMyM for am; : : : ; aM 2R�. We observe that

.4.3/ grw.yi /� grw.yiC2/ and grz.yi /� grz.yiC2/

for all i . Since y is homogeneously graded, it follows that am is not a multiple of V : if it were, then
all other ai would need to be a multiple of V for y to be homogeneously graded, which contradicts
our assumption. Similarly, aM is not a multiple of U. We write am D U jm and aM D V jM for some
jm; jM 2N. Then U jmC˛.m�1/=2xm�1 and V jMCˇ.MC1/=2xMC1 are summands of @.y/, and hence it
is not a multiple of any element of R�.

For the second claim, if xi 2 P0 is a generator, we define F.xi / to be the unique nonzero element
of R� in the same homogeneous grading as x. It follows from our normalization of the gradings of
H�.P=.U � 1// Š F ŒV � and H�.P=.V � 1// Š F ŒU � as well as (4.3) that each generator of P has
.grw ; grz/–bigrading in Z�0 �Z�0, so this map is well defined. We leave it to the reader to verify that
this map is a chain map and sends R�–nontorsion cycles to R�–nontorsion cycles.
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Definition 4.4 We call a complex P a positive multistaircase if it is the tensor product of a nonzero
number of positive staircase complexes. We call N a negative multistaircase if it is the tensor product of
a nonzero number of negative staircases.

The dual of a positive multistaircase is a negative multistaircase, and vice versa.

By construction, a positive staircase P has a Z–filtration with two levels, and we write P D .P1! P0/.
Hence, a positive multistaircase with n factors has a Z–filtration with nC 1 nontrivial levels, for which
we write

.4.5/ P D .Pn! Pn�1! � � � ! P1! P0/:

If P D .Pn ! � � � ! P0/ is a positive multistaircase, we say that P is an exact multistaircase if the
following sequence is exact:

0! Pn! � � � ! P0:

In particular, an exact multistaircase is a free resolution of its homology.

Remark 4.6 In general, the sequence in (4.5) will not be exact. As a concrete example, consider
CD CFK�.T2;3/ and the tensor product PD C˝C˝C. Write PD .P3!P2!P1!P0/. Following our
conventions, write x0, y1 and x2 for the generators of the left-most factor of C, where @.y1/DU x0CV x2.
One easily computes that

y1jx2jx0C x2jy1jx0C x2jx0jy1C x0jx2jy1Cy1jx0jx2C x0jy1jx2 2 P1

is a cycle. In the above, bars denote tensor products. It is not a boundary, since the differential has image
in im.U /C im.V /.

Lemma 4.7 (1) Every positive staircase is exact.

(2) The tensor product of two positive staircases is exact.

Proof Exactness of a positive staircase P D .P1! P0/ amounts to the claim that the map P1! P0 is
injective, which is easy to verify.

Next suppose P D .P1! P0/ and D D .D1!D0/ are staircases. We claim that their tensor product
is also exact. Let E D .E2 ! E1 ! E0/ denote this tensor product. Clearly the map E2 ! E1 is
injective, so it is sufficient to show that H1.E/D 0. The homology H�.E/ decomposes as the direct sum
H2.E/˚H1.E/˚H0.E/. Since every R�–nontorsion element contains a nonzero summand of H0.E/, it
follows that H1.E/ consists only of R�–torsion elements. Since E is bigraded, each element Œx� 2H1.E/
satisfies U iV j �Œx�D 0 for some i and j. In particular, if x 2E1 is a cycle, then U iV j �x 2 im.E2!E1/

for some i; j. In order to show that H1.E/D 0 it is sufficient to show that, if U iV j � x 2 im.E2!E1/,
then x 2 im.E2! E1/. We argue as follows. Note first that the map from E2 to E1 is the sum of the
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maps P1˝D1! P1˝D0 and P1˝D1! P0˝D1. Suppose that U iV j � x 2 im.E2!E1/. Write
U iV j � x D @.y/. We may assume that x and y are homogeneously graded. Write x D x0;1C x1;0,
where x1;0 2 P1˝D0 and x0;1 2 P0˝D1. Then U iV j � x0;1 2 im.P1! P0/˝D1. Since P is exact
and D1 is free, we conclude that x0;1 2 im.P1! P0/˝D1. Hence there is some y0 2 P1˝D1 such
that the map from P1˝D1 to P0˝D1 maps y0 to x0;1. Since the map from P1˝D1 to P0˝D1 is
injective, we conclude that U iV jy0 D y, so @.y0/D x0;1C x1;0 and x0;1C x1;0 2 im.E2!E1/.

4.2 The staircase complexes for L–space knots

A knot K � S3 is called an L–space knot if there is a positive integer q such that S3q .K/ is an L–space, ie
HF�.S3q .K/; s/Š F ŒU � for each s 2 Spinc.S3q .K//. All algebraic knots are L–space knots; see [Hedden
2009, Theorem 1.10].

There is a simple description of Floer chain complexes of L–space knots, due to Ozsváth and Szabó
[2005, Theorem 1.2]. (Note that, therein, only bHFK.K/ is described, but the algorithm actually produces
a description of CFK1.K/.) We describe their algorithm presently. Let K be an L–space knot. Ozsváth
and Szabó prove that the Alexander polynomial of K, which we denote by �K.t/, has the form

.4.8/ �K.t/D t
a0 � ta1 C � � �C ta2r ;

where 0D a0 < a1 < � � �< a2r ; that is, we use the normalization of � starting at degree 0. Define the
gap function

ˇi WD ai � ai�1

for 1� i � 2r .

We now describe the complex CFK�.K/ over the ring R�. The complex CFK�.K/ is freely generated
over R� by elements

x0; y1; x2; : : : ; y2r�1; x2r :

The differential takes the form

.4.9/ @.x2i /D 0 and @.y2iC1/D U ˇ2iC1x2i CV ˇ2iC2x2iC2:

The .grw ; grz/–bigradings are determined by the normalization that grw.x0/ D 0 and grz.x2r/ D 0.
Recall that the variable U has bigrading .�2; 0/ and the variable V has bigrading .0;�2/.

The gradings can be expressed in the following way. Write

�K D 1C .t � 1/.t
m1 C � � �C tms /

for some positive integers m1 < � � �<ms . Note that the integers ˇi compute the number of consecutive
integers or consecutive gaps (depending on i ) of the sequence m1; : : : ; ms; see [Borodzik and Livingston
2014, Lemma 4.2]. Define SK D Z�0 n fm1; : : : ; msg, and

.4.10/ RK.t/D #SK \ Œ0; t/ if t 2 Z:
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With this notation, the gradings of the generator x2i are grw.x2i / D �2RK.a2i / and grz.x2i / D
2RK.a2i / � 2g3.K/; compare [Borodzik and Livingston 2014, Section 4]. Note that, with our nor-
malization, 2g3.K/ D a2r D ms C 1. If the context is clear, we sometimes write R instead of RK to
simplify the notation.

Example 4.11 If K is the .2; 2nC1/–torus knot, then the above procedure produces the complex Sn of
Definition 2.28.

Remark 4.12 If K is an algebraic knot, the set SK turns out to be a semigroup (note that, if K is only
an L–space knot, SK need not be a semigroup). In fact, this is the semigroup of that singular point. The
function RK is the semigroup counting function. See [Wall 2004, Section 4] for details on semigroups.

The next corollary is a compilation of [Borodzik and Livingston 2014, Proposition 5.6 and Lemma 6.2]:

Corollary 4.13 The Vs–invariants of an L–space knot satisfy V�g3.K/Cj .K/DRK.j /� j Cg3.K/.

The Künneth formula for the knot Floer chain complex allows us to compute the Vj –invariants of a
connected sum of L–space knots. The following result is given in [Borodzik and Livingston 2014,
formula (6.3)]:

Proposition 4.14 Let K1; : : : ; Kn be L–space knots. Set K DK1 # � � � #Kn and let g D g3.K/. Then

Vj .K/C j DRK.gC j /;

where RK DRK1 ˘ � � � ˘RKn is the infimal convolution of RK1 ; : : : ; RKn .

We recall that, if I; J W Z! Z are two functions bounded from above, their infimal convolution is given
by I ˘J.m/DminiCjDm I.i/CJ.j /.

4.3 Vs–invariants of tensor products of staircases

In this subsection, we compute the Vs–invariants of certain tensor products of staircases. We wish to
understand the Vs–invariants of tensor products of staircases where some factors are positive and some
negative. Of course, we may group factors and write such a complex as a tensor product of N ˝P, where
N is a negative multistaircase and P is a positive multistaircase. Clearly,

N ˝P Š HomR�.N_;P/;

where HomR�.N
_;P/ denotes the chain complex of R�–module homomorphisms from N_ to P. In

particular, to understand the Vs–invariants of arbitrary tensor products of positive and negative staircases,
it is sufficient to understand the morphism complex between two positive multistaircases.
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It is also helpful to note that, if N and P are multistaircases (of either sign), then a cycle � 2
HomR�.N_;P/ is R�–nontorsion as a morphism if and only if � maps R�–nontorsion cycles to
R�–nontorsion cycles.

The following result is by now classical (see [Borodzik and Livingston 2014, Proposition 5.1]):

Proposition 4.15 Let P D .Pn! � � � ! P0/ be a positive multistaircase and let s 2 Z. Then

Vs.P/D min
x2G.P0/

max.˛.x/; ˇ.x/� s/;

where ˛.x/ D �1
2

grw.x/, ˇ.x/ D �
1
2

grz.x/ and G.P0/ denotes the set of homogeneously graded
generators of P0.

Proof Lemma 4.2 implies that a homogeneously graded element x 2 P is an R�–nontorsion cycle
if and only if its summand in P0 may be written as an R�–linear combination of an odd number of
distinct elements in the generating set G.P0/ with nonzero, homogeneously graded coefficients in R�.
In particular, the individual elements of G.P0/ determine the correction terms Vs . The expression
�2max.˛.x/; ˇ.x/ � s/ is the maximal grw–grading of an element of the form U mV nx such that
m; n� 0 and x 2 As . Taking the minimum over all x 2 G.P0/ gives the result.

We now pass to studying Vs–invariants of products of positive and negative multistaircases. We begin
with the following statement, where we write H0.P/ for P0=imP1 for a multistaircase:

Proposition 4.16 Suppose that P D .Pm! � � � ! P0/ and Q D .Qn! � � � !Q0/ are two positive
multistaircases.

(1) In general , Vs.HomR�.P;Q//� Vs
�
HomR�.H�.P/;H�.Q//

�
D Vs

�
HomR�.H0.P/;H0.Q//

�
.

(2) If Q is exact , then Vs.HomR�.P;Q//D Vs
�
HomR�.H�.P/;H�.Q//

�
.

Proof There is a grading-preserving map of R�–modules

H�HomR�.P;Q/! HomR�.H0.P/;H0.Q//;

which sends R�–nontorsion elements to R�–nontorsion elements. Then the inequality of part (1) follows
since the map sends R�–nontorsion elements in As.HomR�.P;Q// to R�–nontorsion elements in
As
�
HomR�.H0.P/;H0.Q//

�
. The equality in part (1) follows since H�.P/ decomposes as a direct sum

nM
sD0

.ker.Pi ! Pi�1/=im.PiC1! Pi //;

and H0.P/D P0=imP1 is the only summand which contains R�–nontorsion elements.
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We now consider the second claim. Suppose that Q is exact. We will show

.4.17/ Vs
�
HomR�.H0.P/;H0.Q//

�
� Vs.HomR�.P;Q//:

Suppose � WH0.P/!H0.Q/ is an R�–module homomorphism which maps R�–nontorsion elements
to R�–nontorsion elements. It suffices to extend � to obtain a commutative diagram

Pm � � � P2 P1 P0 H0.P/

� � � Q2 Q1 Q0 H0.Q/

�2 �1 �0 �

since this extension gives an R�–nontorsion element in As.HomR�.P;Q// corresponding to any R�–
nontorsion element in As

�
HomR�.H0.P/;H0.Q//

�
. The construction of the maps �i follows from the

same procedure as in [Weibel 1994, Theorem 2.2.6] and the discussion below it. We briefly summarize
the construction. The map �0 may be chosen since P0 is free, and hence projective, and Q0!H0.Q/
is surjective. Having constructed �0, we next construct �1. Using exactness of Q, we may factor
�0 ı .P1! P0/ into im.Q1!Q0/. Using the fact that P1 is projective and Q1! im.Q1!Q0/ is
surjective, we obtain a map �1. We repeat this process until we exhaust P. This gives (4.17).

Proposition 4.18 Suppose N D .N0!� � �!Nn/ is a negative multistaircase , and PD .Pm!� � �!P0/

is a positive multistaircase. Write G.Pi / for the generators of Pi , and similarly for G.Ni /.

(1) In general ,

.4.19/ Vs.N ˝P/� �1
2

min
x2G.N0/

max
y2G.P0/

min.grw.x/C grw.y/; grz.x/C grz.y/C 2s/:

(2) If P D .P1! P0/ is a positive staircase , then (4.19) is an equality.

Proof We dualize, and consider the isomorphism N ˝P Š Hom.N_;P/. For the first claim, suppose
� 2 Hom.N_;P/ is an R�–nontorsion cycle which is of homogeneous grading .d; d � 2s/, where
d D d

�
As.Hom.N_;P//

�
. Note � 2 As.Hom.N_;P//. For each x_ 2 G.N_0 /, �.x

_/ is an R�–
nontorsion cycle, and hence must contain a summand of the form f � y for some nonzero monomial
f 2R� and y 2 G.P0/. By the definition of the grading of a morphism, we have

grw.y/� grw.x
_/C grw.f /D d and grz.y/� grz.x

_/C grz.f /D d � 2s:

Since grw.f /� 0 and grz.f /� 0, and .grw.x
_/; grz.x

_//D .�grw.x/;�grz.x//, for each x,

d
�
As.Hom.N_;P//

�
� max
y2G.P0/

min.grw.x/C grw.y/; grz.x/C grz.y/C 2s/:

Taking the minimum over x 2 G.N0/ gives the statement.

We now consider the second claim. Suppose that PD .P1!P0/ is a positive staircase. Using Lemma 4.7
and Proposition 4.16, we know that

Vs.N ˝P/D Vs
�
HomR�.H0.N_/;H0.P//

�
:
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Fix s � 0. Let ıs denote the right-hand side of (4.19) without the factor of �1
2

. For each x_ in G.N_0 /,
we pick a yx 2 G.P0/ so that

grw.yx/� grw.x
_/� d and grz.yx/� grz.x

_/� d � 2s:

We set �0 WN_0 ! P0 to be the map which takes x_ to fx �yx , where fx 2R� is the unique monomial
such that �0 has bigrading .d; d � 2s/. By composition, we obtain a map �0 WN_0 !H0.P/.

Claim The map �0 vanishes on im.N_1 /.

Given the claim, we quickly conclude the proof. In fact, we obtain a map � from H0.N / to H0.P/.
Hence, we may use the second part of Proposition 4.16 to conclude that

d
�
As.Hom.N_;P//

�
� ıs;

which completes the proof modulo the claim.

It remains to prove the claim. Let y1 2N_1 . We consider the element v D @.y1/ 2N_0 . We can write v
as a sum

P
x_2G.N_0 /

fx �x
_, where each fx is a monomial. Tensoring the maps from the second part of

Lemma 4.2, we obtain a chain map from N_ to R�, which is nonzero only on N_0 and, furthermore,
maps each generator of N_0 to a monomial. Using the fact that this map is a chain map, we see that the
number of x_ 2 G.N_0 / where fx is nonzero is even. It follows immediately that �0.v/ is an R�–torsion
cycle. By Lemma 4.2, H�.P/ is torsion-free, so Œ�0.v/�D 0 2H�.P/D P0=im.P1/. This proves the
claim and completes the proof of Proposition 4.18.

4.4 A counterexample

We give an example indicating that the second statement of Proposition 4.18 need not hold if P is a
product of more than one positive staircase, even if P is exact.

Let P1 and P2 be the staircases of torus knots T6;7 and T4;5, respectively. As described in Section 4.2, the
generators of P1 are at bigradings .�30; 0/, .�30;�2/, .�20;�2/, .�20;�6/, .�12;�6/, .�12;�12/,
.�6;�12/, .�6;�20/, .�2;�20/, .�2;�30/ and .0;�30/. We denote these generators by x0;y1; : : : ;x10.
We have @x2iD0 and @y2iC1DU ˛ix2iC2CV ˇix2i , where ˛i and ˇi are nonnegative integers determined
by the condition that @ preserve the grading. In particular, the generators with odd index generate P11 ,
while the generators with even index span P10 .

Likewise, there are generators x00; y
0
1; : : : ; x

0
6 for P2 with bigradings .�12; 0/, .�12;�2/, .�6;�2/,

.�6;�6/, .�2;�6/, .�2;�12/ and .0;�12/.

Lemma 4.20 Let P D P1˝P2. The only elements x in P such that grw.x/D grz.x/ > �18 are linear
combinations of U iV jx4˝x

0
4 with .i; j /D .0; 1/; .1; 2/ and U i 0V j 0x6˝x

0
2 with .i 0; j 0/D .1; 0/; .2; 1/.

Proof This is by direct inspection.
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Now let N be the negative staircase complex of the mirror of the trefoil. It is generated by elements
c0, c1 and c2 at bigradings .2; 0/, .2; 2/ and .0; 2/, respectively. The differential is given by @c0 D V c1,
@c2 D U c1 and @c1 D 0. That is, c0; c2 2N0 and c1 2N�1.

Lemma 4.21 There is no cycle z 2 A0.N ˝P/ such that grw.z/� �12 and z ¤ 0.

Proof Any such cycle would be a linear combination of elements of type U iV j � xk ˝ x
0
`
˝ cm. By

Lemma 4.20, unless .k; `/ D .4; 4/ or .6; 2/, the grw–grading of such a combination is at most �14.
Hence, if z 2 A0.N ˝P/ and z ¤ 0 has grw.z/� �12, then z has to be a linear combination of

x4˝4˝c0 and x6˝ x
0
2˝ c2:

But then z is not a cycle.

Corollary 4.22 We have V0.N ˝P/� 7.

The following result shows that the right-hand side of (4.19) is strictly smaller than 7:

Lemma 4.23 The expression

�
1
2

min
x2G.N0/

max
y2G.P0/

min.grw.x/C grw.y/; grz.x/C grz.y//

is equal to 6.

Proof For x D c0, the expression

.4.24/ max
y2G.P0/

min.grw.x/C grw.y/; grz.x/C grz.y//

is equal to �12 with the equality attained at yD x4˝x04. For xD c2, (4.24) attains its maximal value �12
for y D x6˝ x02.

4.5 More on the Vs–invariants of tensor products of staircases

In this subsection, we highlight some special cases of Propositions 4.15 and 4.18 which will be useful for
our purposes.

Corollary 4.25 Suppose P is a positive multistaircase and , for i 2 f1; : : : ; rg, let Sni denote the staircase
complex of Definition 2.28 with

P
ni � 0. Then

Vs.P˝Sn1 ˝ � � �˝Snr /D min
0�j�

P
ni

.VsC2j�
P
ni .P/C j /:

Proof By Proposition 3.9, we know that Sn1 ˝ � � �˝Snr is locally equivalent to Sn, where nD
P
ni ,

so, by Proposition 3.10, it suffices to prove the result when i D 1. Write a1; : : : ; am for the generators
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of C0, and write x0; x2; : : : ; x2n for the generators of Sn0 . Then ai˝x2j forms a basis of homogeneously
graded elements of .P˝Sn/0. By Proposition 4.16,

Vs.P˝Sn/D min
1�i�m
0�j�n

max.˛.ai /C˛.x2j /; ˇ.ai /Cˇ.x2j /� s/:

We note that ˛.x2j /D j and ˇ.x2j /D n� j, so we conclude that

Vs.P˝Sn/D min
1�i�m
0�j�n

max.˛.ai /C j; ˇ.ai /Cn� j � s/

D min
0�j�n

min
1�i�m

�
max.˛.ai /; ˇ.ai /Cn� 2j � s/C j

�
D min
0�j�n

.VsC2j�n.P/C j /:

We have the following corollary of Proposition 4.18:

Corollary 4.26 Suppose P is a positive staircase and , for i 2 f1; : : : ; rg, let Sni denote the staircase
complexes of Definition 2.28. Assume

P
ni < 0. Then

Vs.P˝Sn1 ˝ � � �˝Snr /D max
0�j�n

.Vs�2jCn.P/� j /;

where nD�
P
ni .

Remark 4.27 In contrast to Corollary 4.25, where P was allowed to be a positive multistaircase (ie a
tensor product of positive staircases), in Corollary 4.26 we require that P be a positive staircase.

Proof of Corollary 4.26 As in the proof of Corollary 4.25, Sn1 ˝� � �˝Snr is locally equivalent to S�n

for some n > 0, so it is sufficient to consider the case when i D 1. Write a1; : : : ; aq for the generators
of C0, and Qx0; Qx2; : : : ; Qx2n for the generators of the 0–level of S�n. According to Proposition 4.18,

.4.28/ Vs.P˝S�n/D max
0�i�n

min
1�j�q

max.˛.aj /C˛. Qx2i /; ˇ.aj /Cˇ. Qx2i /� s/

D max
0�i�n

min
1�j�q

max.˛.aj /� i; ˇ.aj /�nC i � s/

D max
0�i�n

min
1�j�q

�
max.˛.aj /; ˇ.aj /�nC 2i � s/� i

�
D max
0�i�n

.Vs�2iCn.P/� i/:

4.6 Knots with split towers

We now introduce the notion of a knot complex with split towers. The correction terms of a knot complex
with split towers have a relatively simple form. An important example of a knot with split towers is
connected sums of knotifications of positive and negative .2; 2n/–torus links.
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Definition 4.29 (split towers) Let K be a knot in Y D #m S2 � S1, and let C be a chain complex
which is free and finitely generated over R� and is homotopy equivalent to CFK�.Y;K; s0/, where s0

is the trivial Spinc structure on Y. We say that C has split towers if there exists a basis 
1; : : : ; 
m of
H1
�
#m S2 � S1IZ

�
and subcomplexes CI� � C, indexed over subsets I � f
1; : : : ; 
mg, such that the

following are satisfied:

(a) C D
L
I�f
1;:::;
mg

CI.

(b) If 
i … I, then A
i takes H�.CI / to H�.CI[f
i g/, and becomes an isomorphism after inverting U

and V . If 
i 2 I, then A
i vanishes on H�.CI /, after inverting U and V .

Abusing notation slightly, we say a knot K has split towers if there is a representative of CFK�.Y;K/
which has split towers. Note that, in many of our examples, the homology action actually respects the
splitting on the chain level, ie A
i maps CI to CI[f
i g if 
i … I, and A
i vanishes on CI if 
i 2 I.

Example 4.30 � Any knot K in S3 has split towers (trivially).

� The knotification of the .2; 2n/–torus link has split towers. See Proposition 2.40.

� The Borromean knot does not have split towers.

Lemma 4.31 If K and K 0 have split towers , then K #K 0 has split towers.

Proof This is a direct consequence of the Künneth formula.

Proposition 4.32 Suppose K is a knot in #m S2 �S1 with split towers. Write

Ctop
D C∅ and Cbot

D C
1;:::;
m :
Then

V
top
s .K/D Vs.Ctop/ and V bot

s .K/D Vs.Cbot/:

Suppose , additionally, that n > 0 and B0 is the Borromean knot. Then

V
top
s

�
K # #n B0

�
D�

1
2
nC min

0�j�n
.VsC2j�n.Ctop/C j /;

V bot
s

�
K # #n B0

�
D�

1
2
nC max

0�j�n
.VsC2j�n.Cbot/C j /:

Proof We consider first the proof that V top
s .K/D Vs.Ctop/. It is sufficient to show that

.4.33/ d
top
s .K/D d.Ctop

s /;

where Ctop
s denotes the subcomplex of Ctop in Alexander grading s, and these d–invariants are defined

in Definitions 3.3 and 3.11. By definition, d top
s .K/ is the maximal grading of a homogeneously graded

element of H�.As.K// which maps to an element of U�1H�.As.K// having nontrivial image in Htop.
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Since K has split towers, by Definition 4.29 the cokernel Htop is spanned by U�1H�.C
top
s /, and H�.CIs /

has trivial image for I ¤∅, equation (4.33) follows.

The claim about d bot is similar. In this case, d bot
s .K/ is defined as the maximal grading of a homogeneous

element in H�.As.K//=Tors which is in the image of Hbot. This is clearly d.Cbot
s /.

We pass now to the second part of the proof. An analogous argument appeared in [Bodnár et al. 2016;
Borodzik et al. 2017]; we recall it for completeness. The complex CFK�.B0/ is described in Section 2.7.
Since CFK�.B0/ has vanishing differential, we obtain

H�.CFK�.K/˝ CFK�.B0/˝n/ŠHFK�.K/˝F B˝n;

where B is the 4–dimensional vector space spanned by 1, x, y and xy, whose bigradings are shown
in (2.42).

We first consider the claim about V bot
s . Using the H1–action on CFK�.B0/ described in Section 2.7,

one easily obtains the following: a cycle x 2 As
�
K # #n B0

�
is of homogeneous grw–grading d , is

F ŒU �–nontorsion, and maps to the kernel of the H1–action in U�1H�.As.K #B#n// if and only if it has
the form X

fa1;:::;ang2f�1;1gn

xa1;:::;an ˝ �a1 ˝ � � �˝ �an ;

where ��1 D 1 2 B and �1 D xy 2 B with grw D 1 and �1, respectively. Moreover, each

xa1;:::;an 2 C
bot
sC

P
ai
.K/

is an F ŒU �–nontorsion cycle of homogeneous grw–grading d C
P
ai . Noting that

P
ai can be any

integer of the form n� 2j for 0� j � n, we obtain that

d bot�As�K # #n B0
��
D min
0�j�n

.d.Cbot
sCn�2j /�nC 2j /:

Multiplying by �1
2

and switching j to n� j yields the statement.

The proof for d top is analogous. The cokernel of the H1–action on U�1H�
�
As
�
K # #n B0

��
is spanned

by any element of the form x ˝ �a1 ˝ � � � ˝ �an where �ai are as above and x 2 Ctop
sC

P
ai
.K/ is a

homogeneously graded, F ŒU �–nontorsion element. Furthermore, any homogeneous element generating
U�1H�

�
As
�
K # #n B0

��
is a sum of an odd number of such elements. The same argument as before

shows that

d top�As�K # #n B0
��
D max
0�j�n

.d.Ctop
sCn�2j /�nC 2j /:

Multiplying by �1
2

and switching j to n� j yields the statement.
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5 Topology of complex curves and their neighborhoods

In this section we give a precise definition of the notion of a tubular neighborhood of a possibly singular
curve in CP 2. We describe the boundary of this neighborhood in terms of the surgery on a link. We
perform several helpful algebrotopological computations.

As the main focus of our article is on algebraic curves, we present the construction using the language of
complex geometry. In Section 5.4 we will show how to generalize our results to the smooth category.

5.1 “Tubular” neighborhood of a complex curve

Let C �CP 2 be a reduced complex curve of degree d . We do not insist that C be irreducible. We write
C1; : : : ; Ce for the irreducible components of C and let d1; : : : ; de (resp. g1; : : : ; ge) denote their degrees
(resp. genera). Hereafter, by the genus g.C / of a complex curve, we mean the genus of its normalization,
that is, the geometric genus. From the topological perspective, the geometric genus of a singular curve
is the sum of genera of connected components of the smooth locus of the curve, regarded as an open
surface. We set g D g1C � � �Cge.

We denote by p1; : : : ; pu the singular points of C. For each such singular point pi , we denote by ri the
number of branches. Here, recall that a branch of C at pi is a connected component of Bi \ .C n fpig/
for a sufficiently small ball Bi �C2 centered at pi . We write Li for the link of singularity at pi , whose
components are Li1; : : : ; Liri . We choose once and for all pairwise disjoint closed balls B1; : : : ; Bu with
centers p1; : : : ; pu, respectively, and such that C \ @Bi is the link Li and C \Bi is homeomorphic to a
cone over Li .

As the curve C is not smoothly embedded at its singular points, the notion of a tubular neighborhood
of C requires some clarification. The following is an extension of the construction of [Borodzik and
Livingston 2014].

Take a tubular neighborhood N0 in CP 2 n .B1[ � � � [Bu/ of the smooth part C0 WD C n .B1[ � � � [Bu/.
Note that all components C1; : : : ; Ce intersect each other; hence, C is connected. On the other hand, the
balls B1; : : : ; Bu contain all the intersection points between various curves C1; : : : ; Ce . Hence, C0 has e
connected components, which are Ci n .B1 [ � � � [Bu/ for i D 1; : : : ; e. We define N to be the union
of N0 and B1; : : : ; Bu. With g D g1C � � �Cge, set

.5.1/ �D 2g� eC 1C

uX
iD1

.ri � 1/D b1.C /D dimH1.C IQ/:

To see that dimH1.C IQ/D �, we consider the normalization C 0 of C. It is a surface of genus g with
e connected components. So �.C 0/D 2e � 2g. Next, C arises from C 0 by gluing ri–tuples of points
(corresponding to singular points of C ) for i D 1; : : : ; u. Hence �.C /D 2e�2g�

P
.ri �1/. Now C is

connected, and dimH2.C IQ/D e. From this, we recover the formula for dimH1.C IQ/.
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Observe thatC0 arises from the normalizationC 0 by removing
P
ri disks. The first disk for each connected

component of C 0 kills an element in H2, and all of the subsequent disks create a basis element in H1.
That is to say, dimH1.C0IQ/D 2gC

P
ri �eD �Cu�1. By duality, dimH1.C0; @C0IQ/D �Cu�1.

We now provide a surgery-theoretical description ofN and its boundary Y. We first define a 3–manifoldZ
containing a link L, as follows. We begin with the disjoint union L0 WDL1t� � �tLu inZ0 WDS3t� � �tS3.
Next, we pick a collection of pairwise disjoint and properly embedded arcs �1; : : : ; ��Cu�1 on C0 which
form a basis of H1.C0; @C0/. Such a collection of arcs cuts C0 into a union of e disks, one for every
connected component of C0. We let Z D #� S2 �S1 be the boundary of the 4–manifold � obtained by
attaching �Cu�1 4–dimensional 1–handles to @.B1[� � �[Bu/DZ0, each containing a 2–dimensional
band (corresponding to a �i ), which we attach to L0. We let L�Z be the resulting link. By construction,
L is a link inside of the connected sum of � copies of S1 �S2. Furthermore, each component of L is
null-homologous. The number of components of L is the number of disks C0 n .�1 [ � � � [ ��Cu�1/.
That is, L has e components, denoted henceforth by L1; : : : ; Le , corresponding to connected components
of C0, ie to irreducible components of the complex curve C.

We have the following (compare [Borodzik et al. 2017, Theorem 3.1; Bodnár et al. 2016, Lemma 3.1]):

Proposition 5.2 The 3–manifold Y D @N is the surgery on L�Z with surgery coefficients .d21 ; : : : ; d
2
e /.

The 4–manifold N is obtained by attaching e 2–handles to the boundary connected sum of � copies
of D3 �S1.

Proof The fact that N is obtained by attaching e 2–handles to � along L follows from the fact that the
complement C0 n .�1; : : : ; ��Cu�1/ is a collection of disks C 01; : : : ; C

0
e (we know that this complement

has e components). The thickening of C 0i is a 2–handle in N. Upon renumbering, we may and will assume
that C 0i is a subset of Ci and @C 0i D Li , the component of L. In particular, we know that N is the effect
of a surgery on L. It remains to determine the framing.

In order to do this, we recall that, if a 2–handle A is attached to B4 along a knot K � S3 D @B4, the
framing of the 2–handle is determined as a self-intersection number of the surface F obtained by capping
the core C of the 2–handle with a Seifert surface for K. We note that the self-intersection number does
not depend on the choice of the Seifert surface. Moreover, instead of a Seifert surface, we can take any
smooth compact surface in B4 whose boundary is K.

The same procedure applies for surgeries on null-homologous knots in #� S2�S1. In the present context,
when we calculate the surgery coefficient at Li , the role of the surface F is played by the union of C 0i and
a surface in � D #� B3 �S1 bounding Li . A possible choice for F is then a smoothing of Ci , which
essentially replaces Ci \ � by a smooth compact surface in � with boundary Li . That is to say, the
self-intersection number of F is exactly the self-intersection number of Ci , which is d2i .

Remark 5.3 If e D 1, L is a knot. This knot can be obtained as a connected sum of yL1; : : : ; yLu and g
copies of the Borromean knot. Here the hat denotes knotification.
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5.2 Algebraic topology

In this section, we describe some basic algebrotopological facts about the tubular neighborhood N, and
its boundary Y. Our description of Spinc structures is similar to that in [Manolescu and Ozsváth 2010,
Section 11.1].

Recall that, if N is a manifold obtained by gluing e handles along a null-homologous link to a four-
manifold � with H2.�IZ/D 0, we can speak not only of a framing of handles, but of a framing matrix.
An argument using the Mayer–Vietoris sequence reveals that H2.N IZ/DZe is generated by the cores of
the handles capped by Seifert surfaces of the components of the link. The framing matrix, denoted by „,
is the matrix of the intersection form H2.N IZ/�H2.N IZ/! Z. In particular, the diagonal entries are
surgery coefficients. The off-diagonal terms are linking numbers of the corresponding links (these are
well defined as long as the components are null-homologous).

In the present situation, by Proposition 5.2, the surgery coefficients are .d21 ; : : : ; d
2
e /. The same argument

shows that the off-diagonal terms are given by the intersection number of Ci with Cj . That is, the framing
matrix has the form

„D fdidj g
e
i;jD1:

Note that this construction in particular reveals that lk.Li ; Lj /Ddidj . We letWƒ.L/ denote the 2–handle
cobordism from Z to Y. Recall that N is the union of the 1–handlebody � and Wƒ.L/.

There is a map

.5.4/ F WH 2.Wƒ.L//! Ze˚H 2.Z/;

given by
F.c/D .hc; Œ yF1�i; : : : ; hc; Œ yFe�i; cjZ/:

Here yFi is the surface obtained by capping a Seifert surface for Li in Z with the core of the 2–handle.
An easy argument involving the Mayer–Vietoris sequence on the handle attachment regions in Z shows
that F is an isomorphism.

Dually, we may view Wƒ.L/ as being obtained by attaching 2–handles to a link L� in Y. We consider the
Mayer–Vietoris sequence obtained by viewing Wƒ as the union of Œ0; 1��Y and e 2–handles. A portion
of this exact sequence reads

H 1.L�/!H 2.Wƒ.Y //!H 2.Y /! 0:

In particular, H 2.Y / is the quotient of H 2.Wƒ.Y // by the image of H 1.L�/. Furthermore, from the
definition of the coboundary map in the Mayer–Vietoris exact sequence, an element of H 1.L�/ acts by
the Poincaré duals of the cores of the 2–handles attached along L. Using the isomorphism F from (5.4),
we thus obtain

.5.5/ H 2.Y /Š .Ze=im.„//˚H 2.Z/:
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There are analogous descriptions for Spinc structures on Y and Wƒ.L/, as follows. Consider the map

.5.6/ TW W Spinc.Wƒ.L// ,!Qe
�Spinc.Z/;

given by

TW .s/D
�
1
2
.hc1.s/; Œ yF1�i � Œ yF � � Œ yF1�/; : : : ;

1
2
.hc1.s/; Œ yFe�i � Œ yF � � Œ yFe�/; sjZ

�
;

where Œ yF � is the sum of the Œ yFi �. Similar to the argument for cohomology, an easy application of
Mayer–Vietoris shows that TW is an isomorphism onto its image. Since c1.s/ is a characteristic
vector, hc1.s/; Œ yFi �i � Œ yFi �2 is even as well. Using this, it is not hard to identify the image of TW
as H.L/�Spinc.Z/, where H.L/ is the affine lattice in Qe generated by tuples .a1; : : : ; ae/ where

ai �
1
2

lk.Li ;L nLi / 2 Z for all i:

The linking number is computed as

.5.7/ lk.Li ;L nLi /D di .d1C d2C � � �C de/� d2i :

A similar argument as for cohomology implies Spinc.Y / is isomorphic to the quotient of Spinc.Wƒ.L//
by the action of the Poincaré duals of the cores of the 2–handles attached to L. This translates into the
isomorphism

.5.8/ TY W Spinc.Y /Š .H.L/=im.„//�Spinc.Z/:

With respect to the isomorphisms F and TW , the Chern class map takes the simple form

c1.s1; : : : ; se; t/D .2s1C Œ yF � � Œ yF1�; : : : ; 2seC Œ yF � � Œ yFe�; c1.t//:

Since Z D #� S2 � S1 bounds the 1–handlebody � � N, we know that ı.H 1.Z// D f0g � H 2.N /.
Hence, a Mayer–Vietoris argument identifies Spinc.N / with the set of Spinc structures on Wƒ.L/ which
extend over � , or equivalently the ones which have torsion restriction to Z. Hence,

Spinc.N /ŠH.L/:

The following is helpful for understanding H 2.Y /:

Lemma 5.9 Suppose „ D faij gei;jD1 is a matrix such that aij D didj , for some nonzero integers di .
Then Ze=im.„/Š Ze�1˚Z=�2, where � D gcd.d1; : : : ; de/.

Proof Recall that

„D

0BBB@
d1d1 d1d2 � � � d1de
d2d1 d2d2 � � � d2de
:::

:::
: : :

:::

ded1 ded2 � � � dede

1CCCA :
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It is clear that im.„/ is the span of �.d1; : : : ; de/T, by considering the image of the standard basis in Rn.
By module theory over a principal ideal domain, Ze=im.„/Š Ze�1˚Tors.Ze=im.„//. By definition,
Tors.Ze=im.„// is generated by the set of vectors v in Ze such that nŒv�DmŒ�.d1; : : : ; de/T � for some
integers n and m. Clearly, Tors.Ze=im.„// is generated by the vector .d1=�; : : : ; de=�/T, which has
order �2.

Combining Lemma 5.9 with (5.5), we conclude that

.5.10/ b1.Y /D e� 1C b1.Z/D e� 1C �:

If j 2 2ZC 1, let cj denote the Spinc structure on CP 2 which satisfies

.5.11/ hc1.cj /; Ei D j;

where E is a complex line. In terms of the isomorphism in (5.8),

.5.12/ TY .cj jY /D
�
1
2
.jd1� d1.d1C � � �C de//; : : : ;

1
2
.jde � de.d1C � � �C de//; 0

�
:

We now let X denote the complement of the interior of N in CP 2.

Lemma 5.13 (1) X has trivial intersection form.

(2) Suppose s is a torsion Spinc structure on Y. Then s extends over X if and only if it extends
over CP 2.

Proof The proof follows arguments identical to those in [Borodzik et al. 2017, Sections 3 and 4]; therefore,
we provide only a sketch. Claim (1) follows from the fact that the inclusion map H2.X/!H2.CP 2/

vanishes, since all elements of H2.X/ are disjoint from C.

Claim (2) is proven as follows. A Spinc structure on Y always extends over Wƒ.L/. Furthermore, the iso-
morphisms in (5.6) and (5.8) are clearly compatible with the natural restriction maps from Spinc.Wƒ.L//
to Spinc.Y / and Spinc.Z/. A Spinc structure on Wƒ.L/ extends over N if and only if it restricts to the
torsion Spinc structure on Z. Hence, a Spinc structure on Y extends over N if and only if the Spinc factor
on Spinc.Z/ in (5.8) is torsion. In particular, any torsion Spinc structure on Y extends over N. Since a
Spinc structure on Y extends over CP 2 if and only if it extends over both X and N, the claim follows.

5.3 d–invariant inequalities for the neighborhood of C

We are now in position to prove an inequality for the d–invariants of boundaries of neighborhoods of
complex curves in CP 2 as in Section 5.1. With the notation from that subsection, we have the following
result:

Proposition 5.14 For any Spinc structure s on Y that extends over X and whose first Chern class is
torsion ,

dbot.Y; s/� �
1
2
.�C e� 1/; dtop.Y; s/�

1
2
.�C e� 1/:
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Proof By (5.10), we know that b1.Y /D �Ce�1. The intersection form on X is trivial by Lemma 5.13.
From Theorem 3.1, we obtain

dbot.Y; s/D d.Y; s;H1.Y /=Tors/� �1
2
.�C e� 1/;

since the terms involving c21 and b�2 .X/ vanish.

Since the intersection form on X vanishes, we may reverse the orientation of X and Y and appeal to the
same argument to get that

.5.15/ dbot.�Y; s/D d.�Y; s;H1.Y /=Tors/� �1
2
.�C e� 1/:

It follows from [Levine and Ruberman 2014, Proposition 4.2] and the fact that d�.Y; s;H1.Y /=Tors/D
dtop.Y; s/ (see [loc. cit., page 6]) that

dbot.�Y; s/D�dtop.Y; s/:

Combining this with (5.15), we conclude that

dtop.Y; s/�
1
2
.�C e� 1/:

5.4 Singular curves in smooth category

The methods we use in this article work in a smooth category. The term “smooth surface with singularities”
might be misleading; therefore, we make precise our terminology. The definition we give is quite general.

Definition 5.16 A singular curve in the smooth category C �CP 2 is a closed subset of CP 2 such that
there exist finitely pairwise disjoint closed ballsB1; : : : ;Bu in CP 2 such that, withC0DC n.B1[� � �[Bu/,

� C is connected;

� the subset C0 is a smoothly embedded surface whose boundary belongs to B1[ � � � [Bu;

� the intersection Bi \C is a link (we call it Li ).

The definition means that we do not have to control any possible pathological behavior of C inside balls.
We let C01; : : : ; C0e be the connected components of C0. The quantity e plays the same role as the
number of irreducible components of an algebraic curve.

Choose j D 1; : : : ; e. For any i D 1; : : : ; u such that Lij WD Bi \C0j ¤∅, let Sij be a minimal genus
surface in Bij whose boundary is Lij . Let zCj be a closed surface obtained by removing Bi \ C0j ,
gluing Sij and possibly smoothing corners. The surface zCj is called a smooth model of C0j .

Note that zCj determines a class in H2.CP 2IZ/. If Sij and S 0ij are two choices of minimal genus surfaces
for Lij , then Sij [�S 0ij is homologically trivial (as a surface in the ball Bij ). Hence, the class of zCj does
not depend on the particular choice of Sij . We let dj be the integer such that Œ zCj �D dj �1 2H2.CP 2IZ/,
where we write 1 for the class of a line. We call dj the smooth degree of Cj .

Definition 5.17 A singular curve is the smooth category is called adjunctive if, for all j D 1; : : : ; e, we
have g. zCj /D 1

2
.dj � 1/.dj � 2/.
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Definition 5.18 Let C be an adjunctive singular curve in the smooth category.

� C is of algebraic type if all links Li are algebraic links.

� C is of weakly algebraic type if all links Li are either algebraic links or their mirrors.

Remark 5.19 The distinction between the requirements that Li be an algebraic link or an L–space
link is motivated by applications in algebraic geometry. In our paper, we never use the fact that the
links Li are algebraic links, instead of merely L–space links. We note that there are some nontrivial
differences between L–space knots and algebraic knots. For example, the set SK defined in Section 4.2
is not necessarily a semigroup if K is merely an L–space knot. We recall that SK is used to define the
function RK , which is referred to as the semigroup counting function. In our theory, we never need SK to
be a semigroup, so the mathematical part of the theory goes through.

We now define the analogs of �, Y and N from Section 5.1 in the case of a singular curve in the smooth
category. First set gj to be the genus ofC0j (not of zCj ). Set gDg1C� � �Cge and �D2g�eC1C

P
.ri�1/,

where ri is the number of components of Li .

We now repeat the procedure from Section 5.1, omitting the proofs if they are the same as in that
subsection. We pick �1; : : : ; ��Cu�1 to be arcs on C0 which form a basis of H1.C0; @C0IZ/. We let �
be the 4–manifold obtained by attaching �Cu� 1 4–dimensional 1–handles to @.B1[ � � � [Bu/ as in
Section 5.1. We set Z D @�; then Z D #� S2 �S1. Finally, LD C \Z. This is an e–component link.
The set C n� is a disjoint union of e disks C 001; : : : ; C

0
0e. Reindexing these disks if necessary, we may

and will assume that C 00i is a subset of C0i . Let N be the handlebody � with attached 2–handles whose
cores are C 001; : : : ; C

0
0e. The manifold Y D @N is the surgery on L with framings equal to d21 ; : : : ; d

2
e .

With these definitions, the results of Sections 5.2 and 5.3 hold for singular curves in smooth category.

6 Nonrational noncuspidal complex curves

6.1 General estimates

We now pass to the main applications of our paper. Suppose C �CP 2 is a degree d curve. We mostly
focus on the case where C is complex curve, but also consider the case where C is only a smooth surface,
embedded away from a finite set of singular points, as in Definition 5.16. We further assume that the
singularities of C are restricted to the following:

� There are � cuspidal (unibranched) singular points p1; : : : ; p� . We write K1; : : : ; K� for their
links, and set K DK1 # � � � #K� .

� There are mn singular points whose link is T2;2n.

� There are mn singular points whose link is �T2;2n.
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Define
�C D

X
n

nmn; �� D
X
n

nmn; �C D
X
n

mn; �� D
X
n

mn:

Additionally, we assume that the curve is adjunctive (see Definition 5.17); that is, its genus g is given by

.6.1/ g D g.C /D 1
2
.d � 1/.d � 2/�g3.K/� .�CC ��/:

For algebraic curves, �� D 0 and (6.1) is the adjunction formula. If C is a singular curve in the smooth
category of algebraic type (ie �� D 0; see Definition 5.18), the adjunction inequality implies that g.C / is
greater than or equal to the right-hand side of (6.1). If C is of weak algebraic type (see Definition 5.18),
the relation between g.C / and the right-hand side of (6.1) can be more involved, so the condition (6.1) is
a significant restriction on g.C /.

We define

.6.2/ KC DK # #nmn yT2;2n; K� D#nmn yT2;�2n; zK DKC #K�; yK D zK # #g B0;
where yT2;2n denotes the knotification of the torus link T2;2n and yT2;�2n denotes the knotification of its
mirror.

Since the knots K1; : : : ; K� are algebraic knots and so, in particular, L–space knots, their knot Floer
complexes are staircase complexes, which we denote by C.Ki /. In particular,

CFK�.K/D C.K1/˝ � � �˝ C.K�/

is a positive multistaircase complex. Note that, by Proposition 2.40 and Example 4.30, the knots KC, K�
and zK have split towers. The following relations follow from Proposition 2.40, the Künneth theorem for
connected sums, and Proposition 3.9, where we write Š for homotopy equivalence of chain complexes
and 'loc for local equivalence, and the brackets denote an overall grading shift:

Ctop.KC/Š Ctop.K/˝
O
n

.Sn/˝mn
˚
1
2
�C;

1
2
�C
	
;

Cbot.KC/Š Cbot.K/˝
O
n

.Sn�1/˝mn
˚
�
1
2
�C;�

1
2
�C
	
;

Ctop.K�/Š
O
n

.S�.n�1//˝mn
˚
1
2
��;

1
2
��
	
;

Cbot.K�/Š
O
n

.S�n/˝mn
˚
�
1
2
��;�

1
2
��
	
;

Ctop. zK/Š Ctop.KC/˝ Ctop.K�/'loc C.K/˝S�C�.�����/
˚
1
2
.�CC ��/;

1
2
.�CC ��/

	
;

Cbot. zK/Š Cbot.KC/˝ Cbot.K�/'loc C.K/˝S�C��C���
˚
1
2
.�CC ��/;

1
2
.�CC ��/

	
:

We set
ı1 WD �C� .��� ��/; ı2 WD .�C� �C/� ��:
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Whether the staircases in Ctop. zK/ and Cbot. zK/ are positive or negative depends on the signs of ı1 and ı2.
The following proposition is the main tool towards Theorems 6.4 and 6.8:

Proposition 6.3 Suppose K, zK and yK are as above and let R D RK be the infimal convolution of the
semigroup counting functions for knots K1; : : : ; K� .

(a) If ı1 � 0, then

V
top
s . zK/D�1

4
.�CC ��/C min

0�j�ı1
.VsC2j�ı1.K/C j /;

V
top
s . yK/D�1

2
g� 1

4
.�CC ��/C min

0�j�ı1Cg
.VsC2j�ı1�g.K/C j /

D�
1
2
g� 1

4
.�CC ��/C min

0�j�ı1Cg

�
R.g3.K/C sC 2j � ı1�g/� .sC j � ı1�g/

�
:

(b) If ı2 � 0, then

V bot
s . zK/D 1

4
.�CC��/C min

0�j�ı2
.VsC2j�ı2.K/Cj /;

V bot
s . yK/D 1

4
.�CC��/�

1
2
gC max

0�i�g
min

0�j�ı2
.VsC2jC2i�g�ı2.K/CiCj /

D�
1
2
gC1

4
.�CC��/C max

0�i�g
min

0�j�ı2

�
R.g3.K/CsC2jC2i�g�ı2/�.sCiCj�g�ı2/

�
:

(c) If ı1 < 0 and C.K/ is a positive staircase (not just a positive multistaircase), then

V
top
s . zK/D�1

4
.�CC��/C max

0�j��ı1
.Vs�2j�ı1.K/�j /;

V
top
s . yK/D 1

2
g�1

4
.�CC��/C min

0�i�g
max

0�j��ı1
.Vs�2j�2iCg�ı1.K/�i�j /

D
1
2
g�1

4
.�CC��/C min

0�i�g
max

0�j��ı1

�
R.g3.K/Cs�2j�2iCg�ı1/�.s�i�jCg�ı1/

�
:

(d) If ı2 < 0 and C.K/ is a positive staircase , then

V bot
s . zK/D 1

4
.�CC ��/C max

0�j��ı2
.Vs�2j�ı2.K/� j /;

V bot
s . yK/D 1

2
gC 1

4
.�CC ��/C max

0�j�g�ı2
.Vs�2jCg�ı2.K/� j /

D
1
2
gC 1

4
.�CC ��/C max

0�j�g�ı2

�
R.g3.K/C s� 2j Cg� ı2/� .s� j Cg� ı2/

�
:

Proof The proof is similar in all cases and consists of gathering Corollaries 4.25 and 4.26, Propositions
4.32 and 4.14, and Lemma 3.7. For the reader’s convenience, we present details of the computations of
V top for cases (a) and (c).

If ı1 � 0, then by Corollary 4.25 and Lemma 3.7,

V
top
s . zK/D�1

4
.�CC ��/C min

0�j�ı1
.VsC2j�ı1.K/C j /:

Combining this with Proposition 4.32, we obtain

V
top
s . yK/D�1

2
g� 1

4
.�CC ��/C min

0�j�ı1Cg
.VsC2j�ı1�g.K/C j /:
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By Proposition 4.14,

V
top
s . yK/D�1

2
g� 1

4
.�CC��/C min

0�i�g
max

0�j��ı1

�
R.g3.K/Cs�2j �2iCg�ı1/�.s�i�jCg�ı1/

�
:

This proves item (a). If ı1 < 0 and C.K/ is a positive staircase, then, by Corollary 4.26,

V
top
s . zK/D�1

4
.�CC ��/C max

0�j��ı1
.Vs�2j�ı1.K/� j /:

Combining Propositions 4.32 and 4.14, we have

V
top
s . yK/D 1

2
g� 1

4
.�CC��/C min

0�i�g
max

0�j��ı1
.Vs�2j�2iCg�ı1.K/� i�j /

D
1
2
g� 1

4
.�CC��/C min

0�i�g
max

0�j��ı1

�
R.g3.K/Cs�2j �2iCg�ı1/�.s� i�j Cg�ı1/

�
:

This proves item (c).

Proposition 6.3 allows us to express the d–invariants of the boundary Y D @N of the tubular neighborhood
of C in terms of the RK–functions of singular points. In our applications, we will focus on two cases:

(1) Algebraic case We assume that C has only algebraic singularities; that is, mn D 0 for all n > 0.
This corresponds to items (a) and (b) of Proposition 6.3.

(2) Single knot case We assume that � D 1, so K is a positive staircase and mn D 0 for all n > 0.
We will use items (c) and (d) of Proposition 6.3.

The first case is considered in Section 6.2. The second is addressed in Section 6.3.

6.2 Curves with no negative double points

For the reader’s convenience, we repeat the statement from the introduction of the next result.

Theorem 6.4 Let C be a reduced curve with degree d and genus g. Suppose that C has cuspidal singular
points p1; : : : ; p� whose semigroup counting functions are R1; : : : ; R� , respectively. Assume that , apart
from these � points , the curve C has , for each n � 1, mn � 0 singular points whose links are T2;2n
(A2n�1 singular points) and no other singularities. Define

�C D
X
n

mn and �C D
X
n

nmn:

For any k D 1; : : : ; d � 2,

.6.5/
max
0�j�g

min
0�i��C��C

.R.kd C 1� �C� 2i � 2j /C i C j /�
1
2
.kC 1/.kC 2/Cg;

min
0�j�gC�C

.R.kd C 1� 2j /C j /� 1
2
.kC 1/.kC 2/:

Here R denotes the infimal convolution of the functions R1; : : : ; R� .

Proof Let Y be the boundary of a tubular neighborhood of C. Then Y is the result of a d2–surgery on
yK � #� S2 � S1 obtained as in Section 6.2, where we readily compute from (5.1) that � D 2gC �C.

Note that, by (6.1), the genus g3.K/ is less than or equal to 1
2
.d � 1/.d � 2/ < 1

2
d2. Hence, the surgery
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coefficient is greater than twice the genus of K. In particular, the large surgery formula can be applied
[Ozsváth and Szabó 2008b, Theorem 4.10].

Let sj for j 2
�
�
1
2
d2; 1

2
d2
�
\Z denote the Spinc structures on Y as in Definition 3.13. By Lemma 5.13,

sj extends to CP 2nN if and only if sj is a restriction of ch for some h, where ch is as in (5.11). By (5.12),
we infer that this holds if and only if j Dmd withm2Z if d is odd andm2 1

2
CZ if d is even. Compare

with [Borodzik and Livingston 2014, Lemma 3.1].

By Proposition 5.14, for any md 2
�
�
1
2
d2; 1

2
d2
�

such that mC 1
2
.d � 1/ is an integer,

.6.6/ dbot.Y; smd /� �
1
2
�C�g; dtop.Y; smd /�

1
2
�CCg:

By Theorem 3.15, (6.6) translates to the inequalities

.6.7/
V

top
md
. yK/� 1

8
.d � 2mC 1/.d � 2m� 1/� 1

4
�C�

1
2
g;

V bot
md .
yK/� 1

8
.d � 2mC 1/.d � 2m� 1/C 1

4
�CC

1
2
g:

We compute V top
md

and V bot
md

from Proposition 6.3. Using g3.K/D 1
2
.d � 1/.d � 2/�g� �C, we rewrite

the equations of Proposition 6.3(a)–(b) as

V
top
md
. yK/D�1

2
g� 1

4
�CC min

0�j��CCg

�
R
�
1
2
.d �1/.d �2/CmdC2j �2�C�2g

�
�.mdCj ��C�g/

�
;

V bot
md .
yK/D�1

2
gC 1

4
�CC max

0�i�g
min

0�j��C��C

�
R
�
1
2
.d � 1/.d � 2/Cmd C 2j C 2i � 2g� 2�CC �C

�
� .md C i C j �g� �CC �C/

�
:

Comparing this with (6.7), we obtain

min
0�j��CCg

R
�
1
2
.d�1/.d�2/CmdC2j �2�C�2g

�
�.mdCj ��C�g/�

1
8
.d�2mC1/.d�2m�1/

and

max
0�i�g

min
0�j��C��C

R
�
1
2
.d�1/.d�2/CmdC2iC2j�2.�C��C/��C�2g

�
�.mdCj��CC�C�2g/

�
1
8
.d � 2mC 1/.d � 2m� 1/Cg:

With a change j 7! �CCg� j in the first inequality and i 7! g� i and j 7! �C��C� j in the second,
we obtain

min
0�j��CCg

R
�
1
2
.d�1/.d�2/Cmd�2j

�
�mdCj � 1

8
.d�2mC1/.d�2m�1/;

max
0�i�g

min
0�j��C��C

R
�
1
2
.d�1/.d�2/Cmd�2i�2j ��C

�
�mdCj � 1

8
.d�2mC1/.d�2m�1/Cg:

With mD k� 1
2
.d � 3/, after straightforward calculations we obtain

min
0�j�gC�C

.R.kd C 1� 2j /C j /� 1
2
.kC 1/.kC 2/;

max
0�j�g

min
0�i��C��C

.R.kd C 1� �C� 2i � 2j /C i C j /�
1
2
.kC 1/.kC 2/Cg:
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6.3 Negative double points

We now specialize to the case where C is a surface which has a single algebraic singularity and mn � 0
singular points whose links are .2;�2n/–torus links (which are not algebraic).

Theorem 6.8 Suppose C is a genus g degree d singular curve in the smooth category as in Section 5.4
with a cuspidal singular point p, mn singularities whose link is �T2;2n for each n � 1, and no other
singular points. Suppose further that C is adjunctive.

Then , for any k D 1; : : : ; d � 2,

max
0�j�gC��

.R.kd C 1� 2j /C j /� 1
2
.kC 1/.kC 2/CgC ��;

min
0�i�g

max
0�j������

.R.kd C 1� 2i � 2j � ��/C i C j /�
1
2
.kC 1/.kC 2/C ��� ��;

where R is the semigroup counting function for the singular point p and �� D
P
mn and �� D

P
mnn.

Remark 6.9 With the assumptions on the singularities of C, the condition that C be adjunctive (spelled
out in Definition 5.17) is equivalent to saying that the genus of C is given by (6.1).

Proof The beginning of the proof is exactly the same as in the proof of Theorem 6.4. The boundary Y of
the tubular neighborhood ofC is a result of a surgery with coefficient d2 on the knot yK in #2gC�� S2�S1.
In particular, (6.7) holds with �� replacing �C:

.6.10/
V

top
md
. yK/� 1

8
.d � 2mC 1/.d � 2m� 1/� 1

4
���

1
2
g;

V bot
md .
yK/� 1

8
.d � 2mC 1/.d � 2m� 1/C 1

4
��C

1
2
g:

With g3.K/D 1
2
.d � 1/.d � 2/�g� ��, the equations of Proposition 6.3(c)–(d) take the form

V
top
md
. yK/D 1

2
g� 1

4
��C min

0�i�g
max

0�j������

�
R
�
1
2
.d � 1/.d � 2/Cmd � 2j � 2i � ��

�
� .md � i � j CgC ��� ��/

�
;

V bot
md .
yK/D 1

2
gC 1

4
��C max

0�j�gC��

�
R
�
1
2
.d � 1/.d � 2/Cmd � 2j

�
� .md � j CgC ��/

�
:

Comparing this with (6.10), after changes analogous to in Section 6.2, we arrive at

max
0�j�gC��

.R.kd C 1� 2j /C j /� 1
2
.kC 1/.kC 2/CgC ��;

min
0�i�g

max
0�j������

.R.kd C 1� 2i � 2j � ��/C i C j /�
1
2
.kC 1/.kC 2/C ��� ��:

6.4 Special cases of Theorems 6.4 and 6.8

The bounds in Theorems 6.4 and 6.8 are fairly general, but clarity is the price. To illustrate these bounds,
we provide several special cases.
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Corollary 6.11 (a) Suppose C is a genus g, degree d curve with singular points p1; : : : ; p� and �C
positive double points. Assume also that C has no other critical points. Then , for k D 1; : : : ; d �2,

max
0�j�g

.R.kd C 1� �C� 2j /C j /�
1
2
.kC 1/.kC 2/Cg;

min
0�j�gC�C

.R.kd C 1� 2j /C j /� 1
2
.kC 1/.kC 2/;

where R denotes the infimal convolution of the functions RK1 ; : : : ; RK� .

(b) Suppose C is a genus g, degree d curve with a singular point p and �� negative double points.
Assume that C has genus as in (6.1). Then , for k D 1; : : : ; d � 2,

max
0�j�gC��

.R.kd C 1� 2j /C j /� 1
2
.kC 1/.kC 2/CgC ��;

min
0�j�g

.R.kd C 1� ��� 2j /C j /�
1
2
.kC 1/.kC 2/;

where R is the semigroup counting function for the singular point p.

Proof Items (a) and (b) follow from Theorems 6.4 and 6.8, respectively, noting that �C D �C and
�� D ��.

Specifying further �C D 0 in Corollary 6.11(a) recovers the following result of [Bodnár et al. 2016;
Borodzik et al. 2017]:

Corollary 6.12 Suppose C is a cuspidal curve of genus g and degree d . Let R be the convolution of
semigroup counting functions of the singular points of C. Then

.6.13/
max
0�j�g

.R.kd C 1� 2j /C j /� 1
2
.kC 1/.kC 2/Cg;

min
0�j�g

.R.kd C 1� 2j /C j /� 1
2
.kC 1/.kC 2/:

We now compare the cases g D 0 and �C D 1, g D 0 and �� D 1, and g D 1 and �C D �� D 0.

Proposition 6.14 Let C be a degree d curve with one cuspidal singular point , whose semigroup counting
function is denoted by R. Assume C has at most one ordinary double point (�CC �� � 1) and no other
singularities. For all k D 1; : : : ; d � 2, set �k D 1

2
.kC 1/.kC 2/.

(a) If g D 1 and �C D �� D 0, then R.kd � 1/ 2 f�k � 1; �kg and R.kd C 1/ 2 f�k; �kC 1g.

(b) If g D 0 and �C D 1, then R.kd � 1/ 2 f�k � 1; �kg and R.kd C 1/ 2 f�k; �kC 1g, but also

R.kd/� �k :

(c) If g D 0 and �� D 1, then R.kd � 1/ 2 f�k � 1; �kg and R.kd C 1/ 2 f�k; �kC 1g, but also

R.kd/� �k :
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Proof Item (a) is an immediate consequence of (6.13).

For item (b), note that Corollary 6.11(a) implies thatR.kd/��k andR.kdC1/��k , R.kd�1/��k�1.
Since R.j C 1/�R.j / 2 f0; 1g for all j, the statement follows trivially.

The proof of item (c) is analogous. Corollary 6.11(c) implies that R.kd C 1/� �kC 1, R.kd � 1/� �k
and R.kd/� �k . Again, the statement follows trivially.

Proposition 6.14 can be interpreted as follows. Suppose C is a genus one curve with a single cusp-
idal singular point. Then the semigroup counting function R satisfies the constraints of item (a) of
Proposition 6.14. If, for some k D 1; : : : ; d � 2, we have R.kd/D �kC 1, then the function R does not
satisfy the constraints of item (b). That is, C cannot be deformed to a curve with genus 0 and the same
(topological type of) cuspidal singularity. That is, we cannot “trade genus for a positive double point”.

If, for some k, we have R.kd/D �k � 1, then the same argument shows that we cannot “trade genus for
a negative double point”.

6.5 Unicuspidal curves of genus 1

We will now check, for concrete examples, whether the genus can be traded for double points.

Example 6.15 Let �0 D 0, �1 D 1, �n D �n�1 C �n�2 be the Fibonacci sequence. Borodzik et al.
[2017, Proposition 9.12], based on a construction of Orevkov [2002], constructed a family of genus 1
cuspidal curves Cn of degree �4n with a single singularity whose link is the .�4n�2; �4nC2/–torus knot
for nD 2; 3; : : : .

By Proposition 6.14(c), we deduce that the genus cannot be traded for negative double points. Indeed, a
classical identity on Fibonacci numbers, �k�2C�kC2D3�k , shows that the semigroup generated by �4n�2
and �4nC2 has precisely nine elements in the interval Œ0; 3�4n/: 0; �4n�2; : : : ; 7�4n�2 and �4nC2. In
fact, 7�4n�2 < 3�4n < 8�4n�2 (we leave the proof of this to the reader) and �4nC2C�4n�2 D 3�4n.

In particular, R.3�4n/D 9 < 10D �3 D 1
2
.3C 1/.3C 2/.

Borodzik et al. [2017, Theorem 9.1] gave a complete list of candidates for curves of genus 1 with one
singularity whose link is a torus link Tp;q . The list contains one infinite family (Orevkov curves) and a
finite list of special cases. We apply our obstructions to these curves and obtain the following result:

Proposition 6.16 Suppose C is a genus one , degree d curve , having a single singularity, whose link is a
.p; q/–torus knot. Then either C is the Orevkov curve (of Example 6.15), or the values of .p; q/ and d
are one of

(a) d D 4 and .p; q/D .2; 5/;

(b) d D 5 and .p; q/D .2; 11/;
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case .d; p; q/ positive negative existence

(a) .4; 2; 5/ passes passes exists
(b) .5; 2; 11/ passes passes exists
(c) .6; 3; 10/ passes k D 1

(d) .15; 6; 37/ passes k D 2

(e) .24; 9; 64/ passes k D 3

(f) .27; 10; 73/ k D 12 k D 8

(g) .33; 12; 91/ k D 7 k D 8

(h) .3p; p; 9pC 1/ passes fails if p � 3

Table 1: Curves of Proposition 6.16 and the criteria of Proposition 6.14. “Positive” refers to
item (b) of the proposition, “negative” refers to item (c). If the curve does not pass the criteria, we
indicate the minimal k for which R.kd/ > �k (case (b)) or R.kd/ < �k (case (c)).

(c) d D 6 and .p; q/D .3; 10/;

(d) d D 15 and .p; q/D .6; 37/;

(e) d D 24 and .p; q/D .9; 64/;

(f) d D 27 and .p; q/D .10; 73/;

(g) d D 33 and .p; q/D .12; 91/;

(h) d D 3p and .p; q/D .p; 9pC 1/ for p D 2; : : : ; 11.

By definition, all cases satisfy the statement of Proposition 6.14(a). We applied the criteria of Proposition
6.14(b)–(c). The results are in Table 1. We indicate that some of the examples predicted by Proposition 6.16
have not been either effectively constructed or obstructed by other means.

6.6 Generalized Orevkov curves

Bodnár et al. [2016] constructed a family of curves generalizing Orevkov’s construction. Their work can
be regarded as a generalization of the construction of [Borodzik et al. 2017, Proposition 9.12]. To begin
with, fix k � 2. The Lucas sequence is the sequence Lki defined recursively via Lk0 D k � 1, Lk1 D 1,
LkiC1 D L

k
i CL

k
i�1. Here i is allowed to take all integer values.

Theorem 6.17 (BCG family; see [Bodnár et al. 2016, Theorem 1.7]) For any i � 2, there exists a genus
1
2
k.k� 1/ curve of degree Lk4i�1 with precisely one singularity whose link is the .Lk4i�3; L

k
4iC1/–torus

knot.

For any j � 1, there exists a genus 1
2
k.k�1/ curve of degree �Lk

�4j�1 with singularity whose link is the
.�Lk

�4jC1;�L
k
�4j�3/–torus knot.
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Now we apply Corollary 6.11.

Proposition 6.18 None of the curves of the BCG family can be transformed into a curve with genus one
less and one negative double point.

Proof We follow the same strategy as in Example 6.15. We begin with the first family. Suppose i � 2.
Let S be the semigroup associated with the .Lk4i�3; L

k
4iC1/–torus knot, and letR be the counting function

for it. The recursive formula for Lucas numbers implies that Lks CL
k
sC4 D 3L

k
sC2 for all s. Moreover,

.6.19/ LksC4 D L
k
sC3CL

k
sC2 D 2L

k
sC2CL

k
sC1 D 3L

k
sC1C 2L

k
s D 5L

k
s C 3L

k
s�1 < 8L

k
s

as long as s � 0. In particular, 3LksC1 < 9L
k
s . Therefore, all possible elements in S \ Œ0; 3Lk4j�1� are

0; : : : ; 8Lk4j�3 and Lk4jC1. Hence, R.3Lk4j�1/� 9, violating the second inequality in Corollary 6.11(b).

As for the second family, write zLki D .�1/
iC1Lk

�i for i > 0 and note that zLkiC1D zL
k
i C
zLki�1. Moreover,

for i > 0, zLki is an increasing sequence of positive numbers. We have zLksC4C zL
k
s D 3

zLksC2 and, for s
odd, zLksC4 < 8zL

k
s by the same argument as in (6.19). We conclude as in the first case.

It is unknown whether it is possible to trade genus for positive double points in any curves in the BCG
family.
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