
ATG

Algebraic & Geometric
Topology

msp

Volume 24 (2024)

Classifying spaces of infinity-sheaves

DANIEL BERWICK-EVANS

PEDRO BOAVIDA DE BRITO

DMITRI PAVLOV



msp

Algebraic & Geometric Topology 24:9 (2024) 4891–4937
DOI: 10.2140/agt.2024.24.4891
Published: 27 December 2024

Classifying spaces of infinity-sheaves

DANIEL BERWICK-EVANS

PEDRO BOAVIDA DE BRITO

DMITRI PAVLOV

We prove that the set of concordance classes of sections of an1–sheaf on a manifold is representable,
extending a theorem of Madsen and Weiss for sheaves of sets. This is reminiscent of an h–principle in
which the role of isotopy is played by concordance. As an application, we offer an answer to the question:
what does the classifying space of a Segal space classify?
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1 Introduction

Let F be an1–sheaf (alias homotopy sheaf; see Definition 2.15) on Man, the site of finite-dimensional
smooth manifolds without boundary and smooth maps. For a manifold M, an element of F.M �R/ is
called a concordance. Two elements �0 and �1 in F.M/ are said to be concordant (and we write �0�c �1)
if there exists a concordance whose restriction to M � fkg is �k for k D 0; 1.

Concordance is an equivalence relation, and a familiar one in many situations. Here are three examples.
When F D C1.�; N /, maps are concordant if and only if they are smoothly homotopic. For the
sheaf of closed differential n–forms, two sections (ie closed n–forms) are concordant if and only if
they are cohomologous. For the stack of vector bundles, a pair of vector bundles are concordant if and
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only if they are isomorphic. In these three cases, concordance classes have a well-known description
in terms of homotopy classes of maps into a space, namely the space underlying N, the Eilenberg–
Mac Lane space K.R; n/ and the space BO.n/, respectively. In this paper we generalize these classical
representability results: concordance classes of sections of any1–sheaf F is represented by a space BF,
which we call the classifying space of F.

We now assemble the ingredients to state our results precisely. We denote by An the smooth extended
simplex, that is, the subspace of RnC1 whose coordinates sum to one. By varying n, this defines a
cosimplicial object in Man. Define a presheaf

BF.M/ WD jŒk� 7! F.M �Ak/j

with values in spaces (ie simplicial sets), where j�j denotes the homotopy colimit of the simplicial space.
The construction B is a form of localization; it is the universal way to render the mapsF.M/!F.M�A1/

invertible for all M and F. It is a familiar construction in the motivic literature, for example in the work
of Morel and Voevodsky [1999] (who call it Sing), but it has also appeared in the context of geometric
topology in [Waldhausen 1985; Weiss and Williams 1995; Madsen and Weiss 2007]. The link between
BF and the concordance relation �c is the bijection �0BF.M/Š �0F.M/=�c .

Define the classifying space BF as a Kan complex replacement of BF.�/ and denote by SingM the
usual singular simplicial set of M. Our main result is:

Theorem 1.1 Let F be an1–sheaf on Man. There is an evaluation map

.BF /.M/!Rmap.SingM;BF /;

which is a natural weak equivalence of spaces for every manifold M.

It is not difficult to show — essentially by a variant of Brown’s representability theorem; see Section 2 —
that Theorem 1.1 is equivalent to the following:

Theorem 1.2 If F is an1–sheaf , then BF is an1–sheaf.

These statements may be regarded as analogues of the h–principle, where the usual relation of isotopy is
replaced by that of concordance. Here we have in mind the strand of the h–principle that gives conditions
(eg microflexibility) which guarantee that an isotopy-invariant functor (eg a sheaf) is an1–sheaf. The
relation of concordance is more severe than that of isotopy, and this explains why the hypotheses are less
restrictive than those of typical h–principles, eg there are no dimension restrictions, open versus closed
manifolds, etc.

Just as with the h–principle, the key step in our proof involves verifying certain fibration properties. As
such, a significant part of the paper is a study of weak lifting properties for maps of simplicial spaces.
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We introduce the notion of weak Kan fibration of simplicial spaces and simplicial sets. A crucial result
shows that weak Kan fibrations are realization fibrations (see Definition 3.14 and Theorem 3.17); this
implies that geometric realization is stable under homotopy pullback along weak Kan fibrations.

We emphasize that these results — and hence Theorem 1.2 — do not follow from formal considerations.
There are simple counterexamples in the category of schemes, as in the A1–homotopy theory of [Morel
and Voevodsky 1999, Section 3, Example 2.7]. The1–sheaf property is a homotopy limit condition
whereas B involves geometric realization, a homotopy colimit. Commuting these is a subtle issue. This
is where we use the weak Kan property to prove Theorem 1.2. The verification that BF is weak Kan and
certain restriction maps are weak Kan fibrations follows from a geometric argument about smooth maps
(Lemma 4.21). We also rely on the existence of partitions of unity.

Our main results improve on prior work of others, although the techniques we use differ. The �0–statement
of Theorem 1.1 is due to Madsen and Weiss [2007, Appendix A] when F is a sheaf of sets (or of discrete
categories). Although our theorem does extend the result of Madsen and Weiss from �0 to �n in the
case of sheaves of sets, the main objective of our work is to extend it from sheaves of sets to1–sheaves
of spaces. The argument of Madsen and Weiss shares some features with ours (in that certain locally
constancy conditions along simplices of a triangulation are enforced), but does not extend to1–sheaves.
Moreover, unlike theirs, our arguments apply in the topological or PL category too: Theorem 1.1 remains
true if we consider topological or PL manifolds instead of smooth manifolds. In fact, our arguments
simplify significantly in those cases (see Section 4 for explanations).

Bunke, Nikolaus and Völkl [2016, Section 7] have proved a version of Theorem 1.1 for1–sheaves on
compact manifolds with values in spectra. From the point of view of Theorem 1.2, this case is essentially
formal since, in a stable setting, homotopy pullback squares are homotopy pushout squares, and so (for
finite covers) the problem of commuting homotopy pullbacks with geometric realization disappears. It
has also been pointed out to us by John Francis that Ayala, Francis and Rozenblyum [2019, 2.3.16 and
2.4.5] gave related results that are proved in the context of stratified spaces. As we understand it, these
results are both more general (they apply to stratified spaces) and less general than ours and those of
Madsen and Weiss (they apply to a certain class of isotopy sheaves on groupoids). This restricted class
of sheaves is, from the point of view of Theorem 1.1, too severe as it excludes many1–sheaves, even
set-valued ones.

Applications of Theorem 1.1 abound. This stems from the fact that we not only prove abstract repre-
sentability, but also give a formula for the representing space. This formula can be identified with classical
constructions. Two illustrative examples, connecting back to the beginning of this introduction, are the
classical de Rham theorem and the classification of vector bundles (with or without connection). These are
obtained by applying the main theorem to the sheaf of differential n–forms and the stack of vector bundles
(sheaves of sets and stacks are examples of1–sheaves). In Section 6, we discuss a further application:
a classification of C –bundles, where C is a Segal space. More recently, Pavlov [2024, Theorem 13.8]
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proved a generalization of Theorem 1.1 for presheaves with values in model categories Quillen equivalent
to model categories of algebras over simplicial algebraic theories (such as chain complexes, connective
spectra, and various flavors of connective ring spectra).

We mention here another consequence of Theorem 1.1. Let D denote the full subcategory of Man spanned
by Rn with n � 0. The1–categories Sh.Man/ and Sh.D/ of1–sheaves on Man and D, respectively
(with respect to the usual open covers by codimension zero embeddings), are examples of1–toposes,
as are the slice1–categories Sh.Man/=F for an1–sheaf F on Man, and Sh.D/=F for an1–sheaf F
on D.

Proposition 1.3 The functor B from Sh.Man/ to spaces is homotopy left adjoint to the functor which
sends a space to the constant 1–sheaf on that space. Moreover , B is homotopy left adjoint to the
inclusion of the1–category of constant 1–sheaves on Man into Sh.Man/. These two statements also
hold if Man is replaced by D, in which case we can also formulate the adjunction using1–presheaves
instead of 1–sheaves. In particular , the inclusion �! D is a homotopy initial functor (hence also an
initial functor), ie the functor B computes the homotopy colimit over Dop.

Proof By a constant 1–sheaf, we mean the homotopy sheafification of a constant presheaf. Every
constant presheaf on D is an 1–sheaf, and, for a space K, the canonical functor from the constant
1–sheaf to the mapping space1–sheaf, constK !map.�; K/, is an objectwise weak equivalence. On
the other hand, a constant presheaf on Man is in general not an1–sheaf. However, since every open cover
can be refined by a good open cover, the homotopy sheafification of a presheaf on Man is determined by
its restriction to D. Therefore, constK !map.�; K/ is also a weak equivalence in Sh.Man/.

If F is a representable presheaf, represented by a manifold M, then BF 'M. From this it follows that

map.F; constK/'map.BF;K/

for F a representable, and, extending by colimits, the same is true for any presheaf F, and then for any
1–sheaf (the mapping space on the left is computed in the1–category of1–sheaves or, equivalently,
since constK is an1–sheaf, in the1–category of presheaves).

As for the second statement, we have by Theorem 1.1 that BF is a constant1–sheaf on Man for any
1–sheaf F. Then, by Yoneda, map.BF; constK/' map.BF;K/, which, by the first part, implies the
statement.

The argument for D remains valid for1–presheaves because the constant1–presheaf is an1–sheaf in
this case. This also implies the claim about homotopy initiality of �! D.

In other words, BF is the shape of Sh.Man/=F as in [Lurie 2009, Chapter 7], or, equivalently, the
fundamental 1–groupoid of F in the sense of [Schreiber 2013, Section 3.4], and BF is the shape
modality of F in the sense of [Schreiber 2013, Definition 3.4.4]. For a different proof, see also [Pavlov
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2024, Proposition 12.10]. The statement about the homotopy adjunction continues to hold if1–sheaves
on Man are replaced by1–presheaves on Man, and B precomposed with the associated1–sheaf functor
is weakly equivalent to B, ie the shape of the associated1–sheaf of an1–presheaf of F can be computed
as the shape of F [Pavlov 2024, Proposition 13.9].

The following formal consequence of Theorem 1.1 proved to be useful in applications. Sati and Schreiber
[2021, Theorem 3.3.53] proposed the name “smooth Oka principle” for Proposition 1.4, in analogy to
the Oka principle in complex geometry, and also gave an alternative derivation of Proposition 1.4 from
Theorem 1.1.

Proposition 1.4 Let F be an1–sheaf on Man. There is an evaluation map

BHom.M;F /!RHom.BM;BF /

which is a natural weak equivalence of 1–sheaves for every manifold M. Here Hom denotes the internal
hom of 1–sheaves , whereas RHom is the derived internal hom (Hom.M;�/ is automatically derived ).

Proof The left side BHom.M;F / is a concordance-invariant1–sheaf because B lands in concordance-
invariant presheaves by Corollary 2.11 and1–sheaves by Theorem 1.2. The right side Hom.BM;BF /
is a concordance-invariant1–sheaf because the left Bousfield localization that produces concordance-
invariant 1–sheaves is a cartesian localization (since open covers are closed under products with a
fixed manifold) and derived internal homs in cartesian left Bousfield localizations preserve local objects.
Therefore, the map under consideration is a map between concordance-invariant1–sheaves, so it is a
weak equivalence if and only if its evaluation at the point is a weak equivalence. Evaluating at the point
gives the map

.BF /.M/!Rmap.BM;BF /'Rmap.BM;BF /DRmap.SingM;BF /;

which is a weak equivalence by Theorem 1.1.

Another application of this work is a construction of classifying spaces of field theories. This has recently
been done in [Grady and Pavlov 2020]; see in particular Theorem 8.2.9 there. Stolz and Teichner [2011]
have conjectured that concordance classes of particular classes of field theories determine cohomology
theories. By Brown representability, this conjecture requires concordance classes of field theories to
define a representable functor. In brief, they define field theories as functors out of a category of bordisms
equipped with a smooth map to a fixed manifoldM. When the relevant bordism category is fully extended,
field theories are an1–sheaf evaluated on M. The main result of this paper then shows that concordance
classes of fully extended field theories are representable. Furthermore, we identify a formula for the
classifying space of field theories.

Algebraic & Geometric Topology, Volume 24 (2024)
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2 The concordance resolution is concordance-invariant

Notation 2.1 Throughout, space will mean simplicial set. The category of such is denoted by S. A
simplicial space is a simplicial object in spaces, and the category of such is denoted by sS. Of course, this
is the same as a bisimplicial set, though the terminology emphasizes that there is a preferred simplicial
direction. A simplicial set is often viewed as a simplicial discrete space, by regarding a set as a discrete
(or constant) simplicial set. We denote the diagonal of a bisimplicial set X by jX j; this is our preferred
model for homotopy colimits of simplicial spaces.

Definition 2.2 We write �n for the representable simplicial set and �Œn� for the corresponding simplicial
discrete space. Similarly, we write @�n and ƒn

k
for the simplicial set boundary and kth horn, respectively,

and @�Œn� and ƒkŒn� for the corresponding simplicial spaces.

Definition 2.3 We denote by Man the (discrete) category of smooth manifolds (of any dimension) and
smooth maps, equipped with the Grothendieck topology of open covers.

Definition 2.4 A presheaf F W Manop
! S is concordance-invariant if, for all manifolds M, the map

F.M/! F.M �R/ induced by the projection M �R!M is a weak equivalence.

Definition 2.5 Set
A W�!Man; An D

n
x 2RnC1

ˇ̌ P
i

xi D 1
o
:

Given a presheaf F WManop
! S, denote by BF the presheaf

BF WManop
! S; BF.M/ WD jŒk� 7! F.M �Ak/j;

where j�j denotes the diagonal of a bisimplicial set.
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In this section we show that BF is always concordance-invariant. Furthermore, if BF is an1-sheaf,
then it is representable. The arguments are largely formal, so to make this structure more transparent
we begin the discussion for an arbitrary category enriched over S and later specialize to the category of
manifolds. These results are mostly a repackaging of [Morel and Voevodsky 1999]; see also [Herrmann
and Strunk 2011].

Notation 2.6 Let D0 be a discrete category with products and A� a cosimplicial object in D0. This
data defines a category enriched in spaces, denoted by D, by declaring the set of n–simplices of the
mapping space mapD.X; Y / to be homD0

.X �An; Y /. The example that will be of interest to us here is
D0 DMan.

In this setting it makes sense to talk about concordance-invariant presheaves on D0.

Definition 2.7 Given a category D0 as in Notation 2.6, a presheaf F WDop
0 ! S is concordance-invariant

if the map induced by the projection

F.X/! F.X �A1/

is a weak equivalence of spaces for all X 2D0.

A functor on D0 that can be enriched, ie lifted to a functor on D, necessarily sends smooth homotopies
to simplicial homotopies and smooth homotopy equivalences to simplicial homotopy equivalences. As
such, it is automatically concordance-invariant. In Proposition 2.13 below, we will prove the converse.

Definition 2.8 Given a category D0 as in Notation 2.6, the concordance resolution of a functor
F W .D0/

op! S is the functor

F.��A�/ W .D0/
op
! sS; X 7! F.X �A�/:

We denote the homotopy colimit of F.��A�/ by

BF.X/ WD hocolim
Œn�2�op

F.X �An/D jF.X �A�/j:

Here we use the diagonal of a bisimplicial set as a model for the homotopy colimit over �op.

For the case D0 DMan this definition of BF coincides with Definition 2.5.

Proposition 2.9 Given a category D0 as in Notation 2.6, for any presheaf F W Dop
0 ! S, the functor

F.��A�/ lifts to an enriched functor Dop! sS.

Proof We will define a simplicial map

map.X; Y /!map.F.Y �A�/; F .X �A�//:

Algebraic & Geometric Topology, Volume 24 (2024)
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Let g WX�An! Y be a morphism in D0. Given a morphism ˛ W Œk�! Œn� in �, consider the composition

F.Y �Ak/
F.g�idAk /
�������! F.X �An �Ak/

F.idX�A˛�idAk /
������������! F.X �Ak �Ak/

F.idX�d/
�������! F.X �Ak/;

where d WAk!Ak �Ak is the diagonal map. This is functorial in g and ˛ and so defines a map between
hom sets

.2.10/ hom.X �An; Y /! hom.F.Y �A�/��Œn�; F.X �A�//

for each n� 0. Therefore, F.��A�/ is enriched over spaces.

Corollary 2.11 Given a category D0 as in Notation 2.6, for any presheaf F WDop
0 ! S, the presheaf BF

is enriched over spaces and is concordance-invariant.

Proof To see that BF is enriched, and hence concordance-invariant, postcompose (2.10) with the
homotopy colimit functor (alias geometric realization or diagonal) and use the fact that it commutes with
products.

Remark 2.12 The functor B is homotopy left adjoint to the discretization functor

i� W PSh.D/! PSh.D0/;

given by the restriction along the inclusion i WD0!D. This follows from the fact that B is a left adjoint
functor whose value on a representable presheaf on X 2D0 is the representable presheaf on i.X/ 2D.

The following proposition implies that the category of enriched presheaves on D and the category of
concordance-invariant presheaves on D0 have equivalent homotopy theories:

Proposition 2.13 Given a category D0 as in Notation 2.6, a presheaf F W Dop
0 ! S is concordance-

invariant if and only if the map F.X/! i�BF.X/ is a weak equivalence for all X.

Proof If F is concordance-invariant then the simplicial object F.X �A�/ is homotopically constant
with value F.X/. For the converse, consider the diagram

F.X/ i�BF.X/

F.X �A1/ i�BF.X �A1/

The horizontal maps are weak equivalences by assumption. The vertical map on the right is a weak
equivalence since BF is concordance-invariant. Thus, by the two-out-of-three property, the left map is a
weak equivalence.

Algebraic & Geometric Topology, Volume 24 (2024)
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Corollary 2.14 The restriction functor

i� W PSh.D/! PSh.D0/

is a right Quillen equivalence , where PSh.D/ is equipped with the projective model structure and
PSh.D0/ is equipped with the A1–invariant projective model structure , ie the left Bousfield localization
of the projective model structure with respect to the map A1!A0.

2a Concordance-invariant 1–sheaves on manifolds are representable

Definition 2.15 A presheaf F W Manop
! S is an 1–sheaf if, for every manifold M and open cover

fUi !M gi2I , the canonical map from F.M/ to the homotopy limit (over �) of the cosimplicial spaceY
i02I

F.Ui0/
 
 
 

Y
i0;i12I

F.Ui0 \Ui1/� � � �

is a weak equivalence of spaces.

Any1–sheaf F satisfies F.¿/' �. This is implied by the descent condition for the empty cover of the
empty manifold.

Remark 2.16 A set-valued sheaf is an1–sheaf of sets, and conversely. Indeed, the (homotopy) limit of
a cosimplicial discrete space is, by initiality, computed by the limit of its truncation to its 1–coskeleton. A
stack is a groupoid-valued1–sheaf [Hollander 2008]. Common alternative terminologies for1–sheaves
include1–stacks and homotopy sheaves.

The following proposition is due to [Morel and Voevodsky 1999; Dugger 2001]:

Proposition 2.17 Given a presheaf F WManop
! S, the presheaf BF is an1–sheaf if and only if the

evaluation map
BF.M/!map.map.�;M/; BF /

is a weak equivalence for every M, where the evaluation map is the adjoint to the simplicial map

map.�;M/!map.BF.M/;BF.�//!map.BF.M/;BF /

gotten by the enrichment afforded by Corollary 2.11 and the map BF.�/! BF being the Kan complex
replacement of BF.�/. Here map.�;M/ is weakly equivalent to SingM, the singular simplicial set of M.

Proof Take a good open cover fUigi2I of M and let U� W�
op!Man denote its Čech nerve. There is a

commutative square

BF.M/ Rmap.SingM;BF.�//

holimn2�BF.Un/ holimn2�Rmap.Sing Un;BF.�//

Algebraic & Geometric Topology, Volume 24 (2024)
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where Sing denotes the singular simplicial set functor. The right-hand vertical arrow is an equivalence
since hocolimn2�Un 'M. The lower horizontal arrow is an equivalence since BF.V /' BF.�/ for
V contractible (by concordance-invariance of BF ). The statement now follows by the two-out-of-three
property.

2b Homotopy groups of BF

In this section, we explain how to compute the homotopy groups of BF. For a basepoint b in the
d–dimensional sphere Sd and x 2 F.�/, let BF.Sd /x denote the homotopy fiber of

BF.b/ WBF.Sd /!BF.�/

over the image of x in BF.�/.

Proposition 2.18 Let F WManop
! S be a presheaf satisfying the1–sheaf property with respect to finite

covers , and let x 2 F.�/. The map

�0BF.S
d /x! �d .BF.�/; x/D �d .BF; x/

is an isomorphism.

Proof Under the assumption on F, the conclusion of Theorem 1.1 holds for any compact manifold M.
This will be shown in Corollary 5.10. Therefore, the top map in the commutative square

BF.Sd / Rmap.Sd ;BF.�//

BF.�/ Rmap.�;BF.�//

BF.b/ Rmap.b;BF.�//

is a weak equivalence. The bottom map is a weak equivalence by construction. Thus the induced map of
vertical homotopy fibers over a point x 2 F.�/ is a weak equivalence. Taking �0 of the map between
homotopy fibers, we obtain the result.

Remark 2.19 Elements in �0BF.Sd /x are concordance classes of sections of F over Sd which restrict
to x on b 2 Sd . We postpone the explanation to Lemma 4.13.

Remark 2.20 In the special case when F is a concrete sheaf of sets, ie a diffeological space in the sense
of [Souriau 1980], Proposition 2.18 resolves in the affirmative a conjecture of [Christensen and Wu 2014,
Section 1] on the isomorphism of smooth homotopy groups of a diffeological space with the simplicial
homotopy groups of its smooth singular complex. Christensen and Wu [2014, Theorem 4.11] proved this
conjecture for projectively fibrant diffeological spaces, whereas Proposition 2.18 proves it for arbitrary
simplicial presheaves satisfying the1–sheaf property for finite covers, a much bigger class that includes
all sheaves of sets, in particular all diffeological spaces.

Algebraic & Geometric Topology, Volume 24 (2024)
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3 Weak Kan fibrations

As a warmup to the ideas in this section, we will prove that the concordance relation �c is an equivalence
relation when F is an1–sheaf. This generalizes the standard fact that smooth homotopy is an equivalence
relation, but the core of the argument is identical: gluing a pair of smooth maps along an open submanifold
yields a smooth map.

Lemma 3.1 If F WManop
! S is an1–sheaf , then �c is an equivalence relation on F.M/0, the set of

0–simplices in F.M/.

Proof Reflexivity and symmetry are obvious. To establish transitivity, suppose �0, �1 and �2 are such
that �0 �c �1 and �1 �c �2. Let ik denote the inclusion of M � fkg into M �A1 and pick sections �01
and �12 over M �A1 such that i�0 �01 D �0, i�1 �01 D i

�
0 �12 D �1 and i�1 �12 D �2. Take a smooth map

r WA1!A1 which fixes 0 and 1 and maps the complement of a small neighborhood of 1
2

to f0; 1g. The
sections r��01 and r��12 over M �A1 are such that the restriction of r��01 to an open neighborhood
of Œ1;1/ agrees with the restriction of r��12 to an open neighborhood of .�1; 0�. So, using the sheaf
property and reparametrizing, we may glue these sections to obtain a section �012 over M �A1 with
i�0 �012 D �0 and i�1 �012 D �2, ie �0 �c �2.

The fact that �c is an equivalence relation is a shadow of an important property possessed by the
concordance resolution: it is a 0–weak Kan complex (Definition 3.9). Informally, the weak nature can be
seen in the proof of transitivity at the point where sections �01 and �12 are replaced by r��01 and r��12.
This step is essential since sections cannot be glued along closed sets. The failure of gluing along closed
sets also means that concordance resolution does not satisfy the usual Kan condition as it does not have
the right lifting property with respect to ƒ21!�2. Similar features of smooth geometry allow us to show
that certain restriction maps for the concordance resolution have analogous weak fibrancy properties. The
key definition formalizing this property is that of a weak Kan fibration.

3a Kan fibrations and weak Kan fibrations of simplicial spaces

In this section, we define and investigate weak Kan fibrations of simplicial spaces (or sets). These
generalize Kan fibrations and are related to (and inspired by) Dold fibrations [1963] of topological spaces.
We refer the reader to the appendix for background on simplicial spaces.

The following definition is discussed by Lurie [2011; 2018, Definition A.5.2.1]. Our definition is
essentially the same, except that we formulate it for Reedy fibrant simplicial spaces, to avoid mentioning
Reedy fibrant replacements.

Definition 3.2 Let f WX! Y be a Reedy fibration between Reedy fibrant simplicial spaces. We say that
f is a Kan fibration if it has the right lifting property with respect to all horn inclusions (Definition 2.2).
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That is, for every solid square

ƒkŒn� X

�Œn� Y

f

there is a lift as pictured, where n� 1 and 0� k � n. Similarly, we say that f is a trivial Kan fibration if
it has the right lifting property with respect to @�Œn�!�Œn� for all n� 0.

Unfortunately, Definition 3.2 is not applicable in the situations of interest to us. In particular, none of
the maps in the crucial Propositions 4.1, 4.2 and 4.3 satisfy Definition 3.2, so a result like [Lurie 2018,
Theorem A.5.4.1] is not applicable. An explicit counterexample is provided by Example 4.10. Therefore,
we relax Definition 3.2 to Definition 3.8. First, we define an appropriate generalization of the right lifting
property.

Definition 3.3 Let f W X ! Y be a Reedy fibration between Reedy fibrant simplicial spaces. We say
that f has the weak right lifting property (weak RLP) with respect to a map i W A ,! B (and i has the
weak LLP with respect to f ) if for every commutative square

A X

B Y

ˇ

˛

i f
z̨

there is a lift z̨ as pictured, making the lower triangle commute strictly and the upper triangle commute
up to a specified vertical homotopy. Such a homotopy consists of a map of simplicial spaces

H W A��Œ1�!X

subject to the requirement that H0D ˇ, H1D z̨ı i and f ıH D ˛ ı i ı� , where � denotes the projection
of A��Œ1� onto A.

Remark 3.4 It will be useful to have some reformulations of Definition 3.3. Under the Reedy fibrancy
hypothesis above, the map f W X ! Y has the weak RLP with respect to i W A! B if and only if for
every commutative square in the background of

A X

M.i/

B Y

B

i f
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there exists a map from the mapping cylinder M.i/DBti .A��Œ1�/ to X making the diagram commute
strictly. Here the map in the foreground M.i/! B collapses A��Œ1� to A; we denote it by �.i/.

To put it differently, consider the category sSŒ1� D Fun.0! 1; sS/ whose objects are maps of simplicial
spaces and morphisms are commutative squares. Then the requirement above is that the map induced by
precomposition

map

 
M.i/
#

B

;
X
#

Y

!
!map

 
A
#

B

;
X
#

Y

!
(with the square on the left in the diagram above) is surjective on 0–simplices. Here map denotes the
space of morphisms in sSŒ1�.

The Reedy model structure appears in the previous definitions as an artifact that guarantees homotopy-
invariance with respect to degreewise weak homotopy equivalences of simplicial spaces. But it is possible
(and worthwhile) to formulate a more homotopical definition of the weak RLP.

Definition 3.5 A map f W X ! Y between arbitrary simplicial spaces satisfies the weak right lifting
property (weak RLP) with respect to a map i W A! B if

Rmap.�.i/; f /!Rmap.i; f /

is surjective on �0, where Rmap refers to the derived mapping space computed in the category sSŒ1� with
objectwise weak equivalences.

Remark 3.6 We emphasize the homotopy-invariance properties of this definition: a map f has the weak
RLP with respect to a map i if and only if it has the weak RLP with respect to any map (degreewise)
weakly equivalent to i . Also, if a map f has the weak RLP with respect to i , then so does any map
(degreewise) weakly equivalent to f.

Proposition 3.7 A Reedy fibration f satisfies the weak RLP in the sense of Definition 3.3 if and only if
it satisfies the weak RLP in the sense of Definition 3.5.

Proof Equip sS with the Reedy (= injective) model structure and, relative to it, also equip sSŒ1� with
the injective model structure. In this model structure on sSŒ1�, all objects are cofibrant. Cofibrations
are morphisms which are objectwise Reedy cofibrations of simplicial spaces, ie degreewise injections.
Fibrant objects are Reedy fibrations between Reedy fibrant simplicial spaces.

The morphism i ! �.i/, ie the commutative diagram

A M.i/

B B
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is a cofibration since the horizontal maps are degreewise injections. Also, the map f is a fibrant object
in sSŒ1�. Therefore, the induced map

map.�.i/; f /!map.i; f /

is a fibration between Kan complexes, which is weakly equivalent to

Rmap.�.i/; f /!Rmap.i; f /:

The result now follows, since a fibration of simplicial sets is surjective on �0 if and only if it is surjective
on 0–simplices.

Definition 3.8 A map X ! Y between simplicial spaces is a weak Kan fibration if it has the weak right
lifting property with respect to the maps

hi W Sdi .ƒkŒn�/ ,! Sdi .�Œn�/

for each i � 0, n� 1 and 0� k � n. Here the functor Sd W sS! sS is as in Definition A.12.

The definition also makes sense for maps X ! Y of simplicial sets by regarding them as simplicial
discrete spaces.

Note that every simplicial space is a weak Kan complex, in the sense that the map X ! � is a weak
Kan fibration. This may seem odd at first, but it makes sense in light of Section 3b, as every space is
tautologically quasifibrant. A more interesting variation is:

Definition 3.9 Given l � �1, a l-weak Kan complex is a simplicial space X such that the terminal map
X ! � is a weak Kan fibration in which the vertical homotopies preserve the l–skeleton of the horn
inclusions hi .

So a .�1/–weak Kan complex is simply a weak Kan complex, ie a simplicial space, and a1–weak Kan
complex is a Kan complex (in the usual sense, as in Definition 3.2). For a 0–weak Kan complex X, the
image of �0X1! �0X0 ��0X0 is an equivalence relation (cf Lemma 3.1). We will not make use of the
notion of l–weak Kan complex for l > 0, and for l D 0 we will use it in Lemma 5.13.

Example 3.10 A Kan fibration (Definition 3.2) is a weak Kan fibration. Of course, the usual definition
of a Kan fibration does not mention subdivisions; this is because a map satisfying the strict RLP against
all horn inclusions ƒkŒn�!�Œn� automatically satisfies the same property against all subdivisions of
those, since these subdivided horn inclusions can be presented using cobase changes and the strict LLP is
stable under cobase change, so the strict LLP for horn inclusions implies the strict LLP for subdivided
horn inclusions. The same is not true for the weak RLP, so we need to take subdivisions seriously.

Likewise, if X is a l–weak Kan complex and K ,!L is an inclusion of simplicial sets, it does not follow
automatically that XL!XK is a weak Kan fibration.
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Lemma 3.11 Kan’s Ex functor (see Definition A.12) preserves weak Kan fibrations and so does Ex1.

Proof The functor Ex is right adjoint to the subdivision functor, so we are investigating a square of the
form

.3.12/

SdiC1ƒkŒn� X

SdiC1�Œn� Y

Since f is a weak Kan fibration, there is a lift as shown, and a homotopy H W SdiC1ƒkŒn���Œ1�!X.
Since there is always a map from the subdivision of the product to the product of the subdivisions, we
can precompose H with

Sd.Sdi ƒkŒn���Œ1�/! SdiC1ƒkŒn��Sd�Œ1�! SdiC1ƒkŒn���Œ1�:

This gives the required homotopy for the upper triangle which is vertical over Y, proving the result. The
case of Ex1 follows automatically since a map from a finite-dimensional simplicial space to Ex1X
factors through some finite Exi X.

Remark 3.13 Weak Kan fibrations are stable under various operations. They are stable under homotopy
base change (with respect to degreewise weak equivalences of simplicial spaces). In other words, weak
Kan fibrations that are moreover Reedy fibrations between Reedy fibrant objects are stable under pullback.

Weak Kan fibrations are also stable under fiberwise homotopy retracts (that is, if g WW ! Y is a homotopy
retract over Y of a weak Kan fibration f WX ! Y then g is a weak Kan fibration). In particular, weak
Kan fibrations are stable under fiberwise homotopy equivalences. Moreover, if we allow subdivisions of
the vertical homotopies in the definition of the weak lifting property, ie if we replace �Œ1� by Sdi �Œ1�
for i � 0 in Definition 3.3, then a composition of two weak Kan fibrations is also a weak Kan fibration.
(Although, the resulting notion would presumably be weaker than the one we are using.) Since these
properties will not be used in what follows, and the proofs are not particularly difficult, we omit further
explanations.

3b Weak Kan fibrations are realization fibrations

Definition 3.14 [Rezk 2014] A map f W X ! Y of simplicial spaces is a realization fibration if for
every Z! Y the induced map

.3.15/ jX �hY Zj ! jX j �
h
jY j jZj

is a weak equivalence of spaces. The vertical bars refer to the diagonal simplicial set, which models the
homotopy colimit over �op.
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Remark 3.16 Realization fibrations are related to quasifibrations in the sense of [Dold and Thom 1958].
For example, if a map f WX ! Y between simplicial sets is a realization fibration, then the map (3.15)
with Z a point is identified with the inclusion of the fiber of f into the homotopy fiber. That is, f is a
quasifibration. On the other hand, not all quasifibrations are realization fibrations: realization fibrations
are stable under homotopy pullback, whereas quasifibrations need not be.

We now turn to the main technical result of the section.

Theorem 3.17 A weak Kan fibration is a realization fibration.

As we already emphasized, the subdivisions of simplices and horns in the definition of a weak Kan
fibration are important for a number of reasons. Lemma 3.11 is one such reason, that will be exploited
later on. Below is another.

Example 3.18 This is an example of a map which has the weak right lifting property against the
(nonsubdivided) map .h0/ but is not a realization fibration. Suppose X is the union of three nondegenerate
1–simplices as in the picture

� �

� �

and Y D�Œ1�. Let f WX! Y be the projection in the vertical direction. This is not a Kan fibration: there
are 2–horns ƒkŒ2� in X that cannot be filled. On the other hand, f has the weak right lifting property
with respect to the map .h0/. But f is not a quasifibration, since at one point the fiber is disconnected
while the homotopy fiber is not. Hence f cannot be a realization fibration. This is not a contradiction:
f is not a weak Kan fibration as it does not have the weak right lifting property for .h2/, the second
subdivision of the horn inclusion.

Proposition 3.19 Suppose f W X ! Y is a Reedy fibration between Reedy fibrant simplicial spaces.
Then f is a weak Kan fibration of simplicial spaces if and only if jf jW jX j ! jY j is a weak Kan fibration
of simplicial sets. The vertical bars denote the diagonal functor.

Proof Let us denote by � the map sdi ƒn
k
! sdi �n for i � 0. Write ı for the functor which sends

a simplicial set K to the corresponding simplicial discrete space Œn� 7! Kn. Recall the commutative
square of spaces � ! �.�/ where �.�/ is the projection of mapping cylinder M.�/ onto sdi �n. By
Definition 3.8, the map f is a weak Kan fibration if and only if

Rmap
�
ı.�.�//; f

�
!Rmap.ı.�/; f /

is surjective on �0.

The realization (ie diagonal) functor has a left adjoint dŠ W S! sS, and there is a natural transformation
dŠ! ı which is a weak equivalence (Lemma A.8). Therefore, f is a weak Kan fibration if and only if

Rmap.dŠ�.�/; f /!Rmap.dŠ�; f /
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is surjective on �0. Regarding sSŒ1� with the injective model structure, the map dŠ� ! dŠ�.�/ is a
cofibration between cofibrant objects (since dŠ sends monomorphisms to monomorphisms), and the
target f is fibrant by hypothesis. As such, the above holds if and only if the Kan fibration between Kan
simplicial sets

map.dŠ�.�/; f /!map.dŠ.�/; f /

is surjective. By adjunction, this holds if and only if jf j has the weak RLP with respect to �. (Note
that jf j, being a map between simplicial discrete spaces, is automatically a Reedy fibration between
Reedy fibrant objects, and so a fibrant object in sSŒ1�.)

Remark 3.20 The same proof, with � of the form ƒn
k
! �n and with �.�/ replaced by the identity

�n ! �n, shows that a Reedy fibration between Reedy fibrant simplicial spaces f is a (trivial) Kan
fibration if and only if jf j is a (trivial) Kan fibration.

In order to prove that weak Kan fibrations are realizations fibrations, we will use the following criterion:

Theorem 3.21 [Rezk 2014] A map f WX ! Y of simplicial spaces is a realization fibration if and only
if , for all maps �Œm�! Y and �Œ0�!�Œm�, the induced map on pullbacks

X �hY �Œ0�!X �hY �Œm�

is a weak equivalence after realization.

Proof of Theorem 3.17 Let f W X ! Y be a weak Kan fibration. We will verify that f satisfies the
condition in Theorem 3.21. We may assume, without loss of generality, that f is a Reedy fibration
between Reedy fibrant simplicial spaces. Then the homotopy pullbacks above become pullbacks. Using
the fact that realization and Ex1 commute with finite limits, our task is then to show that

Ex1 jX j �Ex1 jY j Ex1�0! Ex1 jX j �Ex1 jY j Ex1�m

is a weak equivalence of Kan complexes. Since f is a weak Kan fibration, the same can be said of jf j
by Proposition 3.19 and of Ex1 jf j by Lemma 3.11. To simplify the notation, let us write g W U ! V for
Ex1 jf jW Ex1 jX j ! Ex1 jY j.

In view of Proposition A.1 (and Corollary A.2 and Example A.5), we will show that for every solid
diagram

@�n U �V �
0

@�n ��1 t@�n�f1g�
n

ƒnC1 U �V Ex1�m

ƒnC1 ��1 tƒnC1�f1g�
nC1

i
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there are dashed maps as pictured. Let us write A! B for the middle vertical arrow. Consider the map

.3.22/ ƒnC1 t@�n�f0gA! Ex1�m

determined by the lower horizontal map in the diagram above and by the map A!�0!Ex1�m. Since
the terminal map Ex1�m!�0 is a trivial Kan fibration, the map (3.22) extends along the inclusion

ƒnC1 t@�n�f0gA ,! B:

Next, we want to define a map B! U which is compatible with the composition

B! Ex1�m! V

of the map we have just constructed. This will give us the lower dashed map in the diagram above.
Consider the diagram

ƒnC1 U

�nC1 V

g

where the lower map is the composition �nC1! B! Ex1�m! V. Since g is a weak Kan fibration,
we obtain a lift and vertical homotopy, ie the required map B! U. Therefore, we have defined a map
B! U �V Ex1�m, whose restriction to A factors through U �V �0.

4 Weak Kan fibrancy of the concordance resolution

Let F WManop
! S be an1–sheaf. In this section and the next, we apply the general theory developed

in the previous sections to prove Theorem 1.2. The goal of this section is to prove the following three
propositions:

Proposition 4.1 For any1–sheaf F WManop
! S, the simplicial space Œn�! F.An/ is a 0–weak Kan

complex.

Proposition 4.2 For any1–sheaf F WManop
! S, the map of simplicial spaces

F.A� �A1/! F.A� � @A1/

is a weak Kan fibration. Here @A1 DA0 tA0 is the disjoint union of two points.

Proposition 4.3 Let � ,! Sn be an inclusion of a basepoint into the smooth n–dimensional sphere. For
any1–sheaf F WManop

! S, the induced map of simplicial spaces

F.A� �Sn/! F.A�/

is a weak Kan fibration.
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We use these to prove Theorem 1.2 in Section 5, and the reader may wish to jump directly to that section
to see these propositions in action. In fact, in that section and in the remainder of the paper, we will only
need Propositions 4.2 and 4.3. We include Proposition 4.1 because its proof anticipates much of the proof
of the other two propositions.

The proofs of these propositions are based on the following simple observation. If one were to try to prove
that F.A�/ is a Kan complex in the sense of Definition 3.2, an obvious approach would be to construct a
deformation retraction from the simplex An to its horn. This is possible in the topological and PL settings,
but not possible smoothly, and a rigorous proof of this is provided in Example 4.10. However, the basic
idea can be salvaged if one only asks for F.A�/ to be 0-weak Kan, which roughly translates into asking
for a retraction up to a suitable homotopy. This parallels the proof that concordance is an equivalence
relation (Lemma 3.1): we modify smooth maps between manifolds (via homotopies) to achieve certain
constancy properties. A relative version of this line of reasoning applies to the maps in Propositions 4.2
and 4.3.

4a The sheaf associated to a simplicial set

Definition 4.4 Denote by
k�kpre W sS! PSh.Man; S/

the simplicial left adjoint functor that sends �Œn� to the representable presheaf of An, hom.�;An/. The
corresponding simplicial right adjoint functor is

PSh.Man; S/! sS; F 7! .n 7! F.An//:

For a simplicial space K, the presheaf kKkpre WManop
! S is given by the coend

Kn˝Œn�2� hom.�;An/:

If K is a simplicial set (ie a simplicial discrete space), then kKkpre is a presheaf of sets.

Remark 4.5 The adjunction of Definition 4.4 is Quillen if both categories are equipped with the projective
model structure or with the injective model structure. Therefore, there is a weak equivalence

Rmap.kKkpre; F /!Rmap.K; F.A�//

natural in the simplicial space K and the presheaf F.

Remark 4.6 Note that kKkpre is usually not a sheaf of sets. For a simple example illustrating this, take
kƒ21k which is the pushout

hom.�;A1/thom.�;A0/ hom.�;A1/

and pick an open cover of R1 by two open sets and compatible sections over each that do not lift to a
section over R1.
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Definition 4.7 Given a simplicial set K, denote by kKk the associated sheaf of sets of kKkpre.

Recall that, for presheaves of sets, the notions of a sheaf and1–sheaf coincide (Remark 2.16). For such
presheaves, sheafification and1–sheafification also agree. A reference is Dugger, Hollander and Isaksen
[2004, Proposition A.2]. (One can also prove this directly by comparing the usual sheafification formula,
given by the so-called plus construction, to its1–counterpart applied to a presheaf of sets.) If we tried to
define kKk for simplicial spaces K, we would have had to use1–sheafification from the start.

Remark 4.8 Since sheafification is left adjoint to the inclusion of sheaves into presheaves, for F an
1–sheaf the weak equivalence above lifts to a weak equivalence

Rmap.kKk; F / '�!Rmap.K; F.A�//

natural in the simplicial space K and the1–sheaf F.

Remark 4.9 To be more concrete, suppose K is the simplicial set associated to a simplicial complex
with vertex set V and take X to the union of affine subspaces spanned by the simplices of K. Then
kKk.M/ is the set of smooth maps M !RV that land in X.

Example 4.10 Consider the sheaf of sets F D kƒ1Œ2�k. The simplicial object n 7! F.An/ is not a Kan
complex in the sense of Definition 3.2. Indeed, consider the horn ƒ1Œ2�! .n 7! F.An// given by the
adjoint map of the identity map on F. This horn does not admit a filling by �Œ2�. Indeed, such a filling has
to be a section s 2F.A2/ that restricts to the identity map on kƒ1Œ2�k. Since kƒ1Œ2�k is the sheafification
of the sheaf of sets kƒ1Œ2�kpre, in some neighborhood of the vertex 1 2 A2, the section s must factor
through one of the two 1–dimensional faces ofƒ1Œ2�. However, possessing such a factorization means that
s cannot restrict to the identity map on any neighborhood of the vertex 1 in kƒ1Œ2�k. Thus, n 7! F.An/

is not a Kan complex in the sense of Definition 3.2.

Proposition 4.11 Let F be an injectively fibrant object of PSh.Man; S/. Then the maps in Propositions
4.2 and 4.3 are Reedy fibrations between Reedy fibrant simplicial spaces.

Proof We show that the map in Proposition 4.2 is a Reedy fibration. The argument for the one in
Proposition 4.3 is similar. Let A! B be a trivial Reedy cofibration of simplicial spaces, ie a map of
simplicial spaces which is a degreewise monomorphism and a degreewise weak equivalence. Using the
adjunction of Definition 4.4, denote by Q the pushout of presheaves

.4.12/

kAkpre � @A1 kBkpre � @A1

kAkpre �A1 Q
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By adjunction, F.A� �A1/! F.A� � @A1/ has the right lifting property with respect to A! B if and
only if every solid diagram of presheaves

Q F

kBkpre �A1

has a lift as pictured. The existence of this lift is part of the so-called pushout–product axiom, which
holds for the category of presheaves on Man. But we’ll provide a short argument here. The top horizontal
map in square (4.12) is a trivial cofibration since k�kpre is a left Quillen functor. Since trivial cofibrations
are stable under cobase change, the lower horizontal map is also a trivial cofibration. But the composition

kAkpre �A1!Q!kBkpre �A1

is also a trivial cofibration by hypothesis, and so, by two-out-of-three, the right-hand map is a weak
equivalence. The right-hand map is also an injective cofibration, as can be checked directly. Since F is
injectively fibrant, we conclude that the dashed map exists.

Lemma 4.13 Let F WManop
! S be a presheaf satisfying the1–sheaf property with respect to finite

covers and let x 2 F.�/. Let F.Sd /x denote the homotopy fiber over x of the map F.Sd /! F.�/

induced by a choice of basepoint in the d–sphere Sd . There is a canonical isomorphism

.�0F.S
d /x/=�! �0BF.S

d /x;

where � is the equivalence relation of concordance and BF.Sd /x is the homotopy fiber of BF.Sd /!

BF.�/ as in Proposition 2.18. Therefore , the quotient of �0F.Sd /x by the equivalence relation of
concordance is isomorphic to �d .BF.�/; x/.

Proof By Proposition 4.3, the map induced by a choice of basepoint in Sd ,

F.A� �Sd /! F.A�/;

is a weak Kan fibration. Applying the homotopy colimit functor to this map and then taking its homotopy
fiber over x 2 F.A0/ yields the space BF.Sd /x , by definition.

Let Z� WD hofiberx.F.A� �Sd /! F.A�//. The canonical map

jZ�j !BF.Sd /x

is a weak equivalence since weak Kan fibrations are realization fibrations (Theorem 3.17). Moreover, weak
Kan fibrations are stable under base change, so Z� is a 0–weak Kan complex and, as such, the relation on
�0Z0 determined by the faces �0Z1! �0Z0 ��0Z0 is an equivalence relation (cf Lemma 3.1). This
equivalence relation is the concordance relation on �0Z0 D �0F.Sd /x .

The second statement follows from Proposition 2.18.
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4b Closed simplices

Definition 4.14 Denote by �n WManop
! Sets the subsheaf of the representable sheaf of sets hom.�;An/

consisting of sections X !An whose image is contained in the closed simplex RnC1
�0 \An �An.

Definition 4.15 Given a simplicial set K, denote by kKkWManop
! Sets the subsheaf of sets of kKk

consisting of smooth maps U ! M that factor locally through some closed simplex of K in M. In
formulas,

kKk D L.kKkpre/D L.Kn˝Œn�2��n/;

where �n is as in Definition 4.14, L.W / denotes the associated sheaf of a presheaf of sets W, and kKkpre

denotes the left adjoint functor of F 7!map.��; F / applied to the simplicial set K.

Concretely, if K is a triangulation of a smooth manifold N, a section of kKk over a manifold M is a
smooth map M !N which factors locally through some simplex of the triangulation.

Lemma 4.16 Let K be a simplicial set for which faces of nondegenerate simplices are nondegenerate.
Then the sheaf kKk weak deformation retracts onto kKk. That is , there is a map h W kKk�A1!kKk

whose restriction to kKk� f0g is the identity, whose restriction to kKk� f1g factors through kKk, and
h.kKk�A1/� kKk. Moreover , for any subcomplex L of K, h restricts to a weak deformation retraction
of kLk onto kLk.

Proof Consider a homotopy
�n WAn � Œ0; 1�!An

that in barycentric coordinates is constructed as follows. Fix c W A1! Œ0;1/ a smooth function with
c � 0 on .�1; 0� and strictly increasing on Œ0;1/. Then we set

�n..x0; : : : ; xn/; t/D .y0=Ct ; : : : ; yn=Ct /;

where yi D tc.xi /C .1� t /xi and Ct D
Pn
iD0 yi . Extend �n to An �A1 by precomposing �n with

id� f W An �A1! An � Œ0; 1�, where f is a smooth function which takes value 0 on a neighborhood
of .�1; 0� and 1 on a neighborhood of Œ1;1/. This gives a weak deformation retraction h WAn�A1!An

of An onto the subsheaf �n for each fixed n.

The map � is functorial with respect to injections Œm�! Œn�. And we may replace the category � in the
coend defining kKkpre with the subcategory �inj of injective maps. To see this, we can express the coend
over � (respectively �inj) as a colimit over the category simp.K/ of simplices of K (respectively the
subcategory ndsimp.K/ of nondegenerate simplices). The inclusion ndsimp.K/! simp.K/ is terminal
(alias final) under the assumption that each face of a nondegenerate simplex ofK is nondegenerate. Hence,
� defines a weak deformation retraction h W kKkpre �A1!kKkpre of kKkpre in kKkpre.

Algebraic & Geometric Topology, Volume 24 (2024)



Classifying spaces of infinity-sheaves 4913

Now, composing h with the sheafification we obtain a map kKkpre �A1!kKk which, by the universal
property, factors through kKk �A1. This factorization is the required weak deformation retraction of
kKk onto kKk.

Proposition 4.17 For any manifold M and any presheaf F WManop
! S, the restriction map

Rmap.M �A�; F /!Rmap.M ���; F /

is a weak equivalence after realization.

Proof We can assume F to be injectively fibrant, so Rmap can be replaced with map. By replacing F
with map.M;F / we can assume M DR0. We will verify the conditions of Proposition A.9 and show
that every square

@�Œn� Ex1 F.A�/

�Œn� Ex1map.��; F /

admits a lift making the upper and lower triangles commute up to homotopy, and such that these two
homotopies are compatible on @�Œn�. For a finite-dimensional simplicial compact space K, ie having a
compact space of nondegenerate simplices, a map K! Ex1 Y factors through some finite stage, and so
it corresponds to a map Sdi K! Y. Then, by adjunction, the square above amounts to a map P ! F,
where

P WD kSdi @�Œn�kt
kSdi @�Œn�k

kSdi �Œn�k:

By Lemma 4.16, there is a self-homotopy H of kSdi �Œn�k such that H0 D id, H1 factors through

kSdi �Œn�k! kSdi �Œn�k

and H preserves kSdi @�Œn�k, kSdi @�Œn�k and kSdi �Œn�k. This defines a map

kSdi �Œn�k! P ! F

and a self-homotopy of P, giving the lift and homotopies that were needed.

4c Smooth maps with prescribed constancy conditions

Let K be a subdivision of the standard n–simplex; that is, K is an ordered (locally finite) simplicial
complex, jKj D�n �An and every simplex of K is contained (affinely) in a simplex of �n. We have a
map

j W kKk!An

that is linear on each simplex. Note, however, that j is not induced by a simplicial map. The map j is
not an inclusion but its restriction to kKk is, and its image is �n.
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Proposition 4.18 The inclusion of sheaves j W kKk ,!�n admits a weak deformation retraction. More
precisely, there is a map r W�n!kKk and a smooth homotopy

fht WA
n
!Angt2Œ0;1�

which restricts to a homotopy �n �A1!�n between the identity and jr , and to a homotopy

kKk�A1!kKk

between the identity and rj.

This is a consequence of the lemma below:

Lemma 4.19 Given a subdivision K of the n–simplex �n as in Proposition 4.18, there exists a smooth
homotopy fht WAn!Angt2Œ0;1� such that

(i) h0 is the identity,

(ii) ht maps each closed simplex �n � kKk to itself for all t , and

(iii) each closed simplex �n � kKk �An has a neighborhood in An which gets mapped to that same
simplex by h1.

Proof We use the following terminology during this proof: for a simplex � of K, a homotopy of maps
.ft W An! An/t2Œc;d� satisfies property (iii)� if � has a neighborhood in An which gets mapped to �
by fd .

Fix some k with �1 � k � n and suppose per induction that we have already constructed a smooth
homotopy .ht WAn!An/t2Œ0;a� for some a<1 satisfying conditions (i), (ii) and (iii)� for every simplex �
of dimension at most k.

We want to extend this to a smooth homotopy .ht WAn!An/t2Œ0;b�, where b > a, that satisfies conditions
(i), (ii) and (iii)� for every simplex � of dimension at most kC 1.

For a closed k–simplex � , let W� be a neighborhood of � in An which gets mapped to � by ha. This
exists by the inductive assumption. We shall define a homotopy

.gt WA
n
!An/t2Œ0;b�a�;

where g0 D id, gt maps each simplex of kKk to itself for all t , and gb�a maps an appropriate subset of
the interior of each .kC1/–simplex in An to that same simplex. Appropriate means it should be large
enough so that its union with the W� , over all boundary faces � � � , contains � , and small enough so
that the various open subsets for different .kC1/–simplices are disjoint. Once the homotopy gt is given,
we can simply define .ht /t2Œ0;b� as the concatenation of .ht /t2Œ0;a� and .gt�aha/t2Œa;b�. (In order for
the concatenation to be smooth, we may arrange so that the homotopy .ht /t2Œ0;a� is stationary for t close
to a and the homotopy .gt / is stationary for t close to 0.)
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To describe gt we first choose, for each .kC1/–simplex � , a small tubular neighborhood U.�/ of int.�/
in An such that, for each point x 2 int.�/ and every closed simplex � of kKk, the intersection U.�/x \ �
is a linear cone in An. That is, there exist linearly independent vectors v1; : : : ; vl such that points in
U.�/x \ � are of the form c0v0C c1v1C � � �C clvl with ci � 0. By shrinking if necessary, we may also
assume that U.�/\U.� 0/ is empty if � and � 0 are distinct .kC1/–simplices.

Pick an open subset V.�/ of the interior of each .kC1/–simplex � , with compact closure, whose union withS
face � W� \� is the closed simplex � . Then use the linear coordinates on the tubular neighborhood U.�/

to obtain a map
 W U.�/! U.�/

over int.�/ satisfying the following conditions: for x close to the boundary of � ,  x is the identity; for x
in V.�/,  x.v/D 0 for v 2 U.�/x and jvj small and  x.v/D v for jvj large. Extend by the identity to
obtain a map g�1 W A

n! An. Linearly interpolate between the identity and g�1 to get a homotopy .g�t /
and concatenate the .g�t / for all � , to obtain the homotopy .gt /.

Proof of Proposition 4.18 The lemma gives us a smooth homotopy h on An. Condition (ii) implies that
h restricts to a homotopy fht W kKk! kKkg. Condition (iii) gives the required factorization of h1 as

�n r
�! kKk

j
�!�n

in the category of sheaves of sets, where the factorization of h1 through kKk defines r .

Remark 4.20 Lemma 4.19 admits a more general version which applies to arbitrary manifolds M
equipped with a suitable triangulation, though we will not require that level of generality. This is claimed
in [Madsen and Weiss 2007, Appendix A.1].

An inclusion of simplicial complexes L ,!K is called a relative horn inclusion if K is obtained from L

by attaching a simplex along a horn in L (we assume that the horn is embedded in L). The following
lemma will be crucial to the proof of Proposition 4.1:

Lemma 4.21 Let B be a subdivision of �n. Given a sequence of relative horn inclusions

AD A0 ,! A1 ,! � � � ,! Al ;D B;

there exists a weak deformation retraction of kBk onto kAk. That is , a homotopy H W kBk�A1!kBk

such that H restricts to a homotopy kAk�A1!kAk, H0 D id and H1 factors through kAk.

We introduce some terminology in preparation for the proof of this lemma. Let 0 < k � l . A homotopy

H .k/
W kBk�A1!kBk

is said to have property .�k/ if H .k/ restricts to a homotopy kAkk�A1!kAkk, H0D id and H1 factors
through kAkk.
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Proof Before tackling the lemma in full generality, we prove it for the easy case of A0 ,! A1 D B

for a single horn inclusion ƒ ,! �n. Choose a subdivision T of �n which is the simplicial cone on
a subdivision of �n�1. For concreteness, we take T to be the simplicial cone of sd�n�1, the first
barycentric subdivision of �n�1. (That is, T is the nerve of the category obtained by adjoining a terminal
object v to the poset of nondegenerate simplices of the standard .n�1/–simplex.) We refer to T as the
cone-subdivision of the n–simplex. Here is a picture for nD 3:

�
�

�

�
c �

�

v

By Proposition 4.18, we have a weak deformation retraction

h W�n �A1!�n

of �n onto kT k. Let T 0 be the simplicial complex obtained from T by discarding the vertex c 2 T
corresponding to the top simplex in �n�1. (To obtain a simplicial complex, we must also discard all the
simplices in T that have c as a face.) Then T 0 is a subdivision of the n–dimensional horn and h restricts
to a weak deformation retraction of kƒk onto kT 0k.

The inclusion i W T 0 ,! T admits a retraction r W T ! T 0, essentially given by collapsing c onto v. This is
a simplicial map; it is the application of the appropriate degeneracy map on each simplex of T. Moreover,
we can construct a homotopy on each simplex of T between the identity and said degeneracy map. This
can be done by linear interpolation, for example. Thus we obtain a deformation retraction

h0 W kT k�A1!kT k

of kT k in kT 0k. Clearly, the composition (concatenation) of h and h0 gives a homotopy H satisfying the
conditions of the lemma, ie having property .�0/.

With this special case in hand we proceed to the general one, arguing by induction. Suppose we have
constructed a homotopy H .k/ having property .�k/. We now construct a homotopy H .k�1/ having
property .�k�1/ as follows. Firstly, take a subdivision K of Ak (and hence a subdivision of Ak�1) that
restricts to the cone triangulation on the simplex attached to Ak�1. Lemma 4.19 gives us a homotopy
on �n that restricts to a homotopy

f W kAkk�A1!kAkk

with f0 D id and which factors through kKk at time 1.
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Now, by collapsing the cone subdivision of the attached simplex to the (subdivided) horn using the
simplicial map from the case of a single horn inclusion, we obtain a homotopy

g W kKk�A1!kKk � kAkk

with g0 D id and which factors through kAk�1k at time 1. Compose (concatenate) the homotopies f
and g to obtain a homotopy h on kAkk. Then define H .k�1/ to be composition of H .k/ and h. For this
composition to be smooth, we emphasize that it is important to first apply Lemma 4.19 to the whole
of kAkk, not just the on the simplex that we are collapsing. This completes the induction.

Corollary 4.22 The extended-simplices version of Lemma 4.21 holds. Namely, under the conditions of
that lemma , kBk weak deformation retracts onto kAk. That is , there exists a homotopy G W kBk�A1!

kBk such that G restricts to a homotopy kAk�A1!kAk, G0 D id and G1 factors through kAk.

Proof Starting from the homotopy H W kBk�A1!kBk of Lemma 4.21, we obtain a homotopy

zH W kBk�A1 �
�! kBk�A1 H

�! kBk i
�! kBk;

where i is the inclusion and � is the map constructed in Lemma 4.16. It is clear that zH restricts to a
homotopy on kAk, zH0 D �i and zH1 factors through kAk. Now define G as the concatenation of the
homotopy on kBk from Lemma 4.16 (between the identity and �i ) with the homotopy zH.

4d Proof of Propositions 4.1, 4.2 and 4.3

For concreteness, we assumeF to be injectively fibrant (by replacing it if necessary) so that Proposition 4.11
applies.

Proof of Proposition 4.1 Let I W A ,! B denote the map

hi W Sdi .ƒkŒn�/ ,! Sdi .�Œn�/

with i � 0, n� 1 and 0� k� n, as in Definition 3.8. We write �DkIkpre. By adjunction of Definition 4.4,
it suffices to find weak liftings

kAkpre F

kBkpre

f

�
z̨

together with a homotopy H W kAkpre�k�
1kpre!F between z̨� and f. Indeed, this gives us the required

homotopy A��Œ1�! F.A�/ by precomposing H with kA��1kpre!kAkpre �k�
1kpre and applying

the adjunction again. It also suffices to solve the above problem with k�kpre replaced by k�k everywhere.
This is allowed since F is an1–sheaf and the map k�kpre!k�k is by definition a sheafification.
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The strategy is to find a homotopy retraction of �, ie a map r W kBk ! kAk together with a homotopy
kAk � k�1k ! kAk between r� and the identity. In fact, we construct this homotopy on kAk as the
restriction of a homotopy on kBk. (We will need this stronger statement in the proof of Proposition 4.2.)
This is achieved by a direct application of Corollary 4.22. More precisely, we choose a sequence of
relative horn inclusions from AD sdi ƒn

k
to B D sdi �n for each i � 0, n > 0 and 0� k � n, and apply

Corollary 4.22. (A proof that such a sequence exists can be found in [Moss 2020, Proposition 19].) That
the resulting homotopy preserves the 0–simplices of each horn follows directly from its construction.

Proof of Proposition 4.2 We keep the notation I W A ,! B for the map hi as in Definition 3.8. As
in the proof of Proposition 4.1, we use the adjunction of Definition 4.4 and the natural transformation
k�kpre!k�k to reduce the problem to constructing certain maps of sheaves of sets.

Let P denote the pushout of sheaves of sets

kAk�A1 tkAk�@A1 kBk� @A
1:

To verify the weak RLP with respect to kIk, it suffices to prove that, for any map ˛ W P ! F, there is a
dashed map z̨ as in

P F

kBk�A1

˛

�
z̨

making the diagram commute up to a homotopyH WP �A1!F from ˛ to z̨� which is fixed on kBk�@A1

pointwise. Being fixed pointwise means that the restriction of H to .kBk � @A1/�A1 factors as the
projection to kBk� @A1 followed by ˛. The result now follows from the lemma below.

Lemma 4.23 Suppose I W A ,! B is the map hi as in Definition 3.8 and P is the pushout of sheaves
of sets kAk �A1 tkAk�@A1 kBk � @A

1. Then kBk �A1 weak deformation retracts onto P, relative to
kBk� @A1.

Proof We need to show that there is a homotopy H W .kBk�A1/�A1!kBk�A1 such that

(1) H restricts to a homotopy P �A1! P which fixes kBk� @A1 pointwise;

(2) H0 is the identity and H1 factors through P.

Choose a bump function c WA1! Œ0; 1��A1 with c � 0 in an open neighborhood of .�1; 0�[ Œ1;1/,
and c � 1 in a open neighborhood J of 1

2
, c.t/ increasing for t � 1

2
and decreasing for t � 1

2
. Then

choose a function f WA1!A1 with f .t/� 0 when c ¤ 1 and t � 1
2

and f .t/� 1 when c ¤ 1 and t > 1
2

.
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Let HB W kBk�A1!kBk be the weak deformation retraction constructed in the proof of Proposition 4.1.
Define maps R1; R2 W .kBk�A1/�A1!kBk�A1 as

R1.x; t; s/D
�
HB.x; s � c.t//; t

�
and R2.x; t; s/D .x; s �f .t/C .1� s/t/

for x 2 kBk and t; s 2A1. Then define H as

.x; t; s/ 7!

�
R1.x; t; 2s/ for s � 1

2
;

R2.R1.x; t; 1/; 2s� 1/ for s > 1
2
:

Now R1 and R2 separately satisfy condition (1), so H does as well. As for property (2), we have that
H.x; t; 1/D .x0; t 0/, where x0 DHB.x; c.t// and t 0 D f .t/. If t 2 J then c D 1 and so x0 2 kAk, and if
t … J then f .t/ 2 @A1. Therefore, H1 factors through P.

Proof of Proposition 4.3 The proof is of the same sort as that of Proposition 4.2, using the adjunction
of Definition 4.4 and the natural transformation k�kpre! k�k to reduce the problem to constructing
certain maps of sheaves of sets. Let I W A ,! B be the map hi as in Definition 3.8. Consider the pushout

P WD Sn �kAkt��kAk ��kBk:

The same manipulations as before show that, to verify the weak RLP with respect to i , it suffices to prove
that, for any map ˛ W P ! F, there is a map z̨ as in

P F

Sn �kBk

˛

�
z̨

making the diagram commute up to a homotopy P �A1! F from ˛ to z̨� which is fixed on ��kBk
pointwise. The result now follows from a lemma analogous to Lemma 4.23, below.

Lemma 4.24 Suppose I W A ,! B is the map hi as in Definition 3.8 and P is the pushout of sheaves of
sets Sn �kAkt��kAk ��kBk. Then kB �Snk weak deformation retracts onto P, relative to kBk��.

Proof As before, we need to show that there is a homotopy H W .kBk�Sn/�A1!kBk�Sn such that

(1) H restricts to a homotopy P �A1! P which fixes kBk�� pointwise;

(2) H0 is the identity and H1 factors through P.

Let �2D� �Dı �Sn be open disk neighborhoods of radii � and ı with � < ı. Choose a smooth function
c W Sn! Œ0; 1��A1 such that cjSnnD� � 0 and c.�/D 1. For example, we can choose c to be a bump
function with support in D� that is 1 at the basepoint.

Also choose a homotopy h WA1�Sn!Sn such that h.1;�/jD� is constant to �2Sn and h.t;�/jSnnDı D
id. In words, this homotopy collapses a neighborhood of the basepoint to itself.
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Let HB W kBk�A1!kBk be the map constructed in the proof of Proposition 4.1. We construct H as
the composition of two homotopies. Define

R1 W S
n
�kBk�A1! Sn �kBk; R1.z; x; t/D

�
z;HB

�
x; t.1� c.z//

��
;

and

R2 W S
n
�kBk�A1! Sn �kBk; R2.z; x; t/D .h.t; z/; x/:

The first homotopy collapses Sn�kBk onto Sn�kAk outside a neighborhood N �D� of the basepoint.
The second collapses D� �kBk to ��kBk. The composition of these homotopies satisfies the claimed
properties.

5 The shape functor preserves the 1–sheaf property

In this section we assemble the previous results to prove Theorem 1.2. Our approach uses the following
characterization of1–sheaves:

Theorem 5.1 A presheaf F WManop
! S is an1–sheaf if and only if F.¿/' � and

(1) for all manifolds M and open covers of M with two elements fU; V g, the commutative square

F.M/ F.V /

F.U / F.U \V /

is a homotopy pullback square; and

(2) if M is a (possibly infinite) disjoint union of submanifolds Ui , then F.M/!
Qh
i F.Ui / is a weak

equivalence.

This is probably well known and is similar to a special case of [Weiss 1999, Theorem 5.2; Boavida de
Brito and Weiss 2013, Theorem 7.2]. For completeness, we provide a proof below. In preparation, we
record the following:

Lemma 5.2 A presheaf F WManop
! S is an1–sheaf if and only if , for every open cover fUigi2I , the

canonical map

F.M/! holim
S�I

F.US /

is a weak equivalence , where the homotopy limit ranges over all finite , nonempty subsets S � I and US
is notation for

T
i2S Ui .
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Proof For the duration of this proof we will write n for the set f0; : : : ; ng to distinguish it from the total
ordered set Œn� WD f0� � � � � ng.

We need to show that

.5.3/ holim
Œn�2�

Y
i0;:::;in2I

F.Ui0 \ � � � \Uin/' holim
S�I

F.US /:

First suppose that I is finite and pick a total order on I. We can then replace the homotopy limit on the left
by replacing the product over sequences i0; : : : ; in with the product over ordered sequences i0 � � � � � in.
To see this, view the left-hand side of the display as a homotopy limit of a (covariant) functor from D to
spaces, where D is the category whose objects are sequences i0; : : : ; in and morphisms are induced by �
and correspond to merging repeated elements or adding new ones. More precisely, an object is a map
i W n! I and a morphism from t Wm! I to i W n! I is an order-preserving map � Wm! n such that
t D � i .

Let D0 be the full subcategory of D consisting of ordered sequences i0 � � � � � in, ie functors Œn�! I.
There is a canonical functor o WD!D0 that orders each sequence. Namely, for a sequence i0; : : : ; in, ie
a map i W n! I, precompose with the unique bijection f W n! n such that if is order-preserving and
the restriction of f to .if /�1.j / is order-preserving for each j 2 I. Given a morphism � in D from
t Wm! I to i W n! I, its image under o is the morphism from o.t/D gt to o.i/D if in D0 given by
f �1�g W Œm�! Œn� (this is indeed order-preserving since g reverses the order of two elements if and only
if f does).

We claim that this functor o, sending i to if, is homotopy initial. That is, for each ordered sequence Œi � WD
.i0�� � �� in/, the comma category o=Œi � is contractible. To prove this, we show that the identity map on the
classifying space of o=Œi � is null-homotopic by considering functorsA; const Wo=Œi �!o=Œi �. The functorA
sends an object in o=Œi �, ie a morphism o.a0; : : : ; ak/! Œi � inD0, to the object o.i0; : : : ; in; a0; : : : ; ak/!
Œi � which merges all repetitions. The functor const sends all objects to the identity o.i0; : : : ; in/! Œi �.
For each object o.a0; : : : ; ak/! Œi �, there are morphisms in o=Œi �,

o.a0; : : : ; ak/! o.i0; : : : ; in; a0; : : : ; ak/ o.i0; : : : ; in/;

induced by faces in �, ie adding new elements. These define natural transformations id) A( const,
proving the claim.

Secondly, given an ordered sequence, we can forget its ordering and view it as a finite subset of I. This
construction defines a functor � from D0 to the category of nonempty subsets of I. Then, for each S � I,
the comma category �=S is contractible since it is the category of simplices of the nerve of S (viewed
as a poset with respect to the total ordering induced from the inclusion S � I ). In other words, � is
homotopy initial.

We have shown that, for a finite set I, the map induced by �o gives a weak equivalence (5.3). It is clear
that this is natural with respect to inclusions of finite sets I 0 � I. So, to prove (5.3) for a general indexing
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set I, we can reduce to the finite case by taking the homotopy limit of weak equivalences (5.3) over all
finite subsets of I. In more detail, we have a commutative square

holimS�I F.US / holimJ�I holimS�J F.US /

holimi W n!I F.Ui0 \ � � � \Uin/ holimJ�I holimi W n!J F.Ui0 \ � � � \Uin/

where the first homotopy limits in the right column run over finite subsets J � I. We have shown that
the right-hand map is a weak equivalence. The horizontal maps are also weak equivalences, which we
can see by identifying the double homotopy limits with a single homotopy limit over a Grothendieck
construction (Thomason’s homotopy colimit theorem). We will explain this briefly for the lower map; the
upper one is similar and almost identical to an argument in the proof of Theorem 5.1. In that case, the
double homotopy limit is identified with the homotopy limit over the category whose objects are pairs
n! J � I with J finite, and morphisms are maps of such. The forgetful functor from this category
to D, sending a pair n! J � I to its composite n! I, is homotopy initial since the relevant comma
categories have a terminal object.

Proof of Theorem 5.1 If F is an 1–sheaf then conditions (1) and (2) are immediate in view of
Lemma 5.2.

To show the converse, suppose first that M is a compact manifold and take an open cover fUigi2I of M.
For every finite subcover fUj gj2J with J � I of fUigi2I , the homotopy limit

holim
S�J

F.US /

is indexed over a finite category (a cube) and so it is equivalent to an iterated homotopy pullback.
Condition (1) applied inductively shows that this iterated homotopy pullback is F.M/. Then consider the
square

F.M/ holimJ�I F.M/

holimS�I F.US / holimJ�I holimS�J F.US /

'

'

'

where the outer homotopy limits in the right column are indexed by finite refinements, ie finite subsets
J � I such that fUj gj2J is still a cover. The right-hand map is a weak equivalence by the observation
just made. The poset of finite refinements is filtered, and hence contractible, and so the top horizontal
map in the square is also a weak equivalence. As for the lower horizontal map, one can, by Thomason’s
homotopy colimit theorem, express the double homotopy limit as a homotopy limit over the category —
call it P — whose objects are pairs S � J � I and morphisms are inclusions of such. The forgetful map
� from P to the poset of finite, nonempty subsets S � I is homotopy initial since, for each S � I, the
overcategory �=S is the filtered poset of all refinements J containing S.
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To prove the noncompact case, we will assume for the moment that F satisfies the following condition,
which implies condition (2):

(20) For any manifold M and an open cover fVigi�0 by a nested sequence of open sets with Vi � ViC1,
the canonical map

F.M/D F

�[
i

Vi

�
! holim

i
F.Vi /

is a weak homotopy equivalence.

Assuming F satisfies (1) and (20), we will now prove that it satisfies the 1–sheaf condition for any
noncompact manifold. So let M be a noncompact manifold, and take an exhaustion of M by interiors of
compact manifolds V0 � V1 � � � � with M D

S
Vi . Such an exhaustion can be obtained by picking a

smooth proper map f WM ! R and setting Vi to be the interior of f �1..�1; i �/. Then, for an open
cover fUi !M gi2I ,

.5.4/ holim
S�I

F.US /' holim
S�I

holim
j�0

F.Vj \US /

by (20) applied to the covers fUS \Vj ! USgj for each S. Now commute the homotopy limits and use
that the cover fVj \Ui ! Vj gi (for a fixed j ) has a finite subcover to conclude, using (1), that (5.4) is
weakly equivalent to

holim
j�0

F.Vj /:

By invoking (20) again, this homotopy limit is weakly equivalent to F.M/.

We are left to show that conditions (1) and (2) jointly imply condition (20). Suppose fVig is an open
cover as in (20). Let W0 be the disjoint union of VkC2 nVk , taken over k even, and let W1 be the disjoint
union of VkC2 nVk , taken over k odd. Then W0 and W1 form an open cover of M so, by (1), we have an
equivalence

F.M/! holim.F.W0/! F.W0\W1/ F.W1//:

By (2), the target is equivalent to

holim
�
holim
i

F.W0\Vi /! holim
i

F.W0\W1\Vi / holim
i

F.W1\Vi /
�
;

which, by commuting homotopy limits and using (1), is equivalent to holimi F.Vi /.

Remark 5.5 In a previous iteration of this paper, Theorem 5.1 had a stronger condition (2). The referee
kindly pointed out to us that our proof implied the new (weaker) statement and suggested the simple
argument of the last paragraph of the proof.

Remark 5.6 The same proof works for topological manifolds. The main observation for the noncompact
case is that there exists a proper map M ! R for M a topological manifold (the requirement is that
partitions of unity exist). For generalizations of these statements, see [Pavlov 2022].
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We shall tackle properties (1) and (2) for BF separately below. We call them the finite and noncompact
cases, respectively.

5a The finite case

Theorem 5.7 Let F WManop
! S be an1–sheaf and M a smooth manifold with U and V two open

subsets of M such that U [V DM. Then the commutative square

BF.M/ BF.V /

BF.U / BF.U \V /

is homotopy cartesian.

Proof The (homotopy) pullback

.BF.U /�BF.V //�map.@�1;BF.U\V // map.�1;BF.U \V //

is identified with

.5.8/ .BF.U /�BF.V //�h
BF.U\V�@A1/BF.U \V �A1/

since BF is concordance-invariant. By Proposition 4.2, we may commute the homotopy pullback with
geometric realization, and thus (5.8) is identified with the geometric realization of the simplicial space

.5.9/ .F.U �A�/�F.V �A�//�h
F .U\V�@A1�A�/ F.U \V �A1 �A�/:

To prove that the map from F.M �A�/ to (5.9) is a weak equivalence after realization, we first refine the
cover in a convenient way using a partition of unity subordinate to fU; V g. So let fU WM ! Œ0; 1� and
fV WM ! Œ0; 1� with fU C fV � 1, and supp.fU /� U and supp.fV /� V. Take U 0 D f �1U

�
2
3
; 1
�

and
V 0 D f �1V

�
2
3
; 1
�
. Notice that U 0\V 0 D∅, and fU 0; V 0; U \V g covers M. Let c WA1!A1 be a cutoff

function with cj.�1;1=3/ � 0 and cj.2=3;1/ � 1, and define f WD c ıfV jU\V , so that f W U \V !A1.

Rearrange (5.9) as an iterated homotopy pullback and consider the maps

F.U �A�/�h
F .U\V�A�/ F.U \V �A1 �A�/�h

F .U\V�A�/ F.V �A�/

F.U 0 �A�/�h
F .U 0\V�A�/ F.U \V �A1 �A�/�h

F .U\V 0�A�/ F.V
0 �A�/

F.U 0 �A�/�h
F .U 0\V�A�/ F.U \V �A�/�h

F .U\V 0�A�/ F.V
0 �A�/

res

pr� f �

The restriction map from F.M � A�/ to the last space is a weak equivalence since fU 0; U \ V; V 0g
coversM and F is an1–sheaf. Similarly, the map res is a levelwise weak equivalence since fU 0; U \V g
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covers U and fV 0; U \V g covers V. The arrow pr� is induced by the projection pr W .U \V /�A1!U \V.
We obtain a map U \ V ! .U \ V /�A1 from f W U \ V ! A1, defined in the previous paragraph.
By construction, f jU 0\V D 0 and f jU\V 0 D 1, which is precisely the compatibility condition required
to extend to a map on sections in the fibered product, which we denote by f �. Notice that, since
pr ı .idU\V ; f /D idU\V , we have .idU\V ; f /� ı pr� D id. It remains to show that pr� ı .idU\V ; f /�

is homotopic to the identity.

We consider the interpolation h W ..U \ V / �A1/ �A1 ! A1 between f ı pr and the projection map
q W .U \V /�A1!A1, given by

h.t/D .1� t / � qC t � .f ı pr/

and extend it to a smooth homotopy

H D .idU\V ; h/ W ..U \V /�A1/�A1! ..U \V /�A1/:

Since F.��A�/ sends smooth homotopies to simplicial homotopies (Proposition 2.9) and the mapH fixes
.U \V /� @A1 pointwise, the map H induces the required simplicial homotopy from pr� ı .idU\V ; f /�

to id.

Corollary 5.10 Let F be a presheaf on Man which satisfies the1–sheaf condition with respect to finite
covers. Then the evaluation map

BF.M/!map.SingM;BF /

is a natural weak equivalence of spaces for every compact manifold M.

Proof This follows from Theorem 5.7 and the proof of Proposition 2.17 applied to a finite good open
cover of M.

The beginning of the proof of Theorem 5.7 has the following obvious generalization, which is just a
consequence of Proposition 4.2:

Definition 5.11 For a diagram F !G H of1–sheaves, define the geometric homotopy pullback to
be the1–sheaf whose value at a manifold M is the homotopy pullback of the diagram

G.M �A1/

F.M/�H.M/ G.M/�G.M/

endpoints

Then, by Proposition 4.2, the classifying space functor B sends geometric homotopy pullbacks of
1–sheaves to homotopy pullbacks of spaces.
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5b The noncompact case

Theorem 5.12 Let fUigi�0 be a collection of manifolds (possibly noncompact). For an 1–sheaf
F WManop

! S, the natural map

BF

�G
i

Ui

�
!

Y
i

hBF.Ui /

is a weak equivalence.

We deduce this from the lemma below, by setting Fi D F.Ui ��/:

Lemma 5.13 Let fFigi2I be a collection of 1–sheaves indexed over a possibly infinite set I. Then the
map

.5.14/

ˇ̌̌̌Y
i

h Fi .A
�/

ˇ̌̌̌
!

Y
i

h
jFi .A

�/j

is a weak equivalence of spaces. In other words , the functor B preserves small homotopy products.

We use the symbol
Q
h for the homotopy product, ie the derived functor of the product. This has a

different meaning in simplicial spaces (with degreewise weak equivalences) and simplicial sets (with the
usual weak equivalences). In the simplicial space case, it means: replace each factor by a degreewise
fibrant simplicial space and then compute the product; in the simplicial set case, it means: replace each
factor by a Kan complex and then compute the product. The homotopy product (of spaces or of simplicial
spaces) agrees with the nonderived product when the indexing set is finite. In general, they do not agree
when the set is infinite but Lemma 5.13 says they agree for the concordance resolution.

Proof of Lemma 5.13 The following elegant argument was suggested to us by a referee. Without loss of
generality, we can assume Fi to be injectively fibrant, by performing an injective fibrant replacement
if necessary. Thus, Fi is valued in Kan complexes and the homotopy product

Q
i
h Fi can be computed

as the ordinary product
Q
i Fi . It then suffices to show that the map (5.14) induces an isomorphism on

homotopy groups for all degrees and basepoints.

We have
�n

�Y
i

jFi .A
�/j; x

�
Š

Y
i

�n.jFi .A
�/j; xi /Š

Y
i

�0Fi .S
n/xi=�;

where Fi .Sn/xi is the fiber Fi .Sn/! Fi .�/ over xi and � is the equivalence relation of concordance.
The second isomorphism follows from Lemma 4.13. On the other hand, appealing again to Lemma 4.13
but now for the1–sheaf

Q
i Fi , we have that

�n

�ˇ̌̌̌Y
i

Fi .A
�/

ˇ̌̌̌
; x

�
Š �0

�Y
i

Fi .S
n/xi

�.
�Š

�Y
i

�0Fi .S
n/xi

�.
�;
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where in this case � is the equivalence relation of componentwise concordance. The canonical mapY
i

�0Fi .S
n/xi=�!

�Y
i

�0Fi .S
n/xi

�.
�

is indeed a bijection since, in the category of Sets, infinite products commute with taking quotients by
equivalence relations.

6 What does the classifying space of an 1–category classify?

In this section, we suggest an answer to the question in the title. This expands on earlier questions and
earlier answers in [Moerdijk 1995; Weiss 2005]. Even earlier results on concordance classification of
C –bundles on manifolds (or paracompact spaces) for a topological category C (or even just a simplicial
space) are due to [Segal 1978; Stasheff 1972]. Our point of view is particularly close to Segal’s.

Throughout this section, we will take C to be a Segal space, although the discussion holds more generally
for any simplicial space. For convenience, we assume that C is Reedy fibrant as a simplicial space;
otherwise, the mapping spaces below need to be derived. (For definitions and more explanations, see
[Rezk 2001].) For example, C could be the (Reedy fibrant replacement of the) nerve of a (topological)
category. Informally, the following data should produce something deserving the name of a C –bundle on
a manifold M :

� an open cover UD fUig of M and a total order on its indexing set I,

� maps f�i W Ui ! C0 D ob.C /g,

� maps f�i<j W Ui \Uj ! C1 Dmor.C /g,

� etc.

These data are then required to satisfy compatibility conditions; eg for a point x 2 Ui \Uj , �i<j .x/ is a
morphism in C from �i .x/ to �j .x/. As everywhere else in this paper, space means simplicial set, so in
the above a map from Ui is taken to mean a map of simplicial sets from the singular simplices of Ui to a
given simplicial set.

We make the above informal description a C –bundle precise, as follows:

Definition 6.1 A C –bundle is an open cover UD fUi !M gi2I (we stress that here we do not require
that I be totally ordered) with a simplicial space map NU! C, where NU denotes the nerve of the
following topological poset. The space of objects isG

¿¤S�I

US ;
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where the coproduct runs over nonempty finite subsets S of I and US WD
T
s2S Us . Given objects .R; x/

and .S; y/ with x 2 UR and y 2 US , there is a morphism .R; x/! .S; y/ if and only if R � S (so that
US � UR) and x D y. Therefore, the space of morphisms isG

¿¤R�S

US :

We view NU as a simplicial space. Since NU is Reedy cofibrant, the mapping space map.NU;C /

agrees with the derived mapping space Rmap.NU;C /.

Remark 6.2 The informal description can be viewed as a special case of the definition by setting the
images of certain morphisms — prescribed according to the ordering of I — to be identities. Conversely,
given a C –bundle, it is sometimes possible to construct a C –bundle as in the informal description above
by adding to the collection U all finite intersections of open sets in the original cover and choosing a total
ordering on the resulting collection.

We now build a space of C –bundles. First, a definition:

Definition 6.3 For a manifold M, we define a simplicially enriched category Cov.M/ of open covers U

of M and their refinements. Recall that a refinement U! V is a choice of function ˛ W I ! J between
the indexing sets of the covers such that Ui � V˛.i/ for each i 2 I. We define a k–simplex in the space of
morphisms of Cov.M/,

map.U;V/;

to be a .kC1/–tuple of refinements ˛0; : : : ; ˛k WU! V. The face and degeneracy maps are clear.

The space map.U;V/ may of course be empty. If it is nonempty, it is the nerve of a groupoid, and for
every pair of objects ˛0; ˛1 there is by construction a unique morphism ˛0! ˛1. It follows that every
k–sphere in map.U;V/ has an unique filler for every k � 0. Therefore, map.U;V/ is either empty or
contractible. As such, Cov.M/ is equivalent (as a simplicially enriched category) to the preorder of open
covers U of M with order relation U� V if U refines V.

The assignment U 7!NU defines a simplicially enriched functor from Cov.M/ to the category of simplicial
spaces, since map.U;V/ is a subspace of the space map.NU; NV/ of simplicial space maps. Indeed,
each refinement U! V defines a map of simplicial spaces NU! NV. For each pair of refinements
˛0; ˛1 WU! V, the relations Ui � V˛0.i/ and Ui � V˛1.i/ imply that Ui � V˛0.i/\V˛1.i/ and, as such,
define a simplicial map NU��Œ1�!NV. More generally, a choice of refinements ˛0; : : : ; ˛k WU! V

implies the relation Ui � V˛0.i/\ � � � \V˛k.i/ and so defines a map NU��Œk�!NV.

Definition 6.4 The1–sheaf of C –bundles is the functor which to a manifold M associates the space

C .M/ WD hocolim
U!M

map.NU;C /
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given by the homotopy colimit of the enriched functor U 7!map.NU;C / on Cov.M/. This functor is
indeed enriched since, on morphisms, it is the restriction of the canonical map of spaces

map.NU; NV/!mapS.map.NV;C /;map.NU;C //

to mapCov.M/.U;V/.

The formula in this definition applies even if M has corners. So we may view C as a functor on the
larger category of manifolds with corners and smooth maps. In this setting, the subsheaf of sets �n �An

of Section 4b is representable.

Proposition 6.5 There is a canonical weak equivalence of simplicial spaces Ex1C ! C .��/.

Proof Let Cov denote the category Cov.�n/ of open covers of �n and refinements. Let Covsd be the full
subcategory of Cov spanned by open covers by open stars of the vertices of some barycentric subdivision
of �n �An. The set of objects of Covsd is therefore identified with the nonnegative integers: for each
i � 0, the corresponding open cover U.i/ of �n is indexed by the set of vertices of the i th barycentric
subdivision of �n. The simplicial space NU.i/ is degreewise weakly equivalent to the simplicial discrete
space SdiC1�Œn�. To see this, note that, for a subset S � Sdi �Œn�0, the space US is the open star of
the unique nondegenerate simplex in Sdi �Œn� with vertex set S, if that simplex exists, and otherwise is
empty; and the 0–simplices of SdiC1�Œn� are by definition the nondegenerate simplices of Sdi �Œn�.

For each i � 0, there is a contractible choice of morphisms U.i C 1/!U.i/ in Covsd. Among these, we
are interested in a specific morphism, namely the one whose underlying function between indexing sets
SdiC1�Œn�0D Sd.Sdi �Œn�/0! Sdi �Œn�0 is the last vertex map. The corresponding functor N!Covsd

that selects these morphisms is an equivalence of simplicial categories.

Write j W Covsd ,! Cov for the inclusion. Clearly, every open cover of �n can be refined by one in Covsd.
That is to say, for every open cover V of �n, the comma category j=V is nonempty. The category j=V

is equivalent to the discrete category (preorder) of open covers U.i/ in Covsd such that U.i/� V with
refinement relation �. Clearly, U.i/ �U.i 0/ if and only if i � i 0. From this description it is clear that
j=V is contractible. This shows that j is homotopy final, ie that the homotopy colimit defining C .�n/

may be indexed by the smaller Covsd.

To summarize, we have weak equivalences

hocolim
i>0

map.Sdi �Œn�;C /! hocolim
U2Covsd

map.NU;C /
j�
�! C .�n/

which are functorial in n, and so the result follows.

Theorem 6.6 For every smooth manifold M, the natural map

BC .M/!Rmap.M;BC /

is a weak equivalence. Here BC denotes the classifying space of C, ie the geometric realization of C

viewed as a simplicial space , and BC is the functor B applied to the1–sheaf in Definition 6.4.
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Proof This is immediate from Theorem 1.1, together with the identification of jC .��/j with jEx1C j

from Proposition 6.5, and jEx1C j with BC D jC j from Proposition A.13.

Remark 6.7 Clearly, if C ! D is a map inducing a weak equivalence between classifying spaces
BC ! BD, then BC .M/!BD.M/ is a weak equivalence for every manifold M. This is the case, for
example, if C !D is a Dwyer–Kan equivalence of Segal spaces.

Appendix Technical lemmas on simplicial sets and spaces

This appendix contains characterizations of weak equivalences in simplicial sets and simplicial spaces
in the form that is needed in the paper. For simplicial sets, this is classical but we could not find the
statements that we need in the literature (Examples A.5 and A.6). For simplicial spaces, this is less
standard, although it may well be known.

Aa Special criteria for simplicial weak equivalences

Proposition A.1 [Dugger and Isaksen 2004, Proposition 4.1] A map f WX!Y between Kan complexes
is a weak equivalence if and only if for every n� 0 and every commutative square

@�n X

�n Y

f

there is a lift as pictured making the upper triangle commute and the lower triangle commute up to a
homotopy H W�n ��1! Y which is fixed on @�n.

In Dugger and Isaksen’s terminology, a map f solving the lifting problem of this proposition is said to
have the relative homotopy lifting property (RHLP) with respect to @�n!�n.

It will be useful to think of these lifting properties in the following way. Let SŒ1� denote the category
whose objects are maps of simplicial sets and morphisms are commutative squares. Let � denote the
morphism in SŒ1�

@�n �n

�n �n ��1 t@�n��1 @�
n

i j

(with source i and target j ). Proposition A.1 then reads: a map f between Kan complexes is a weak
equivalence if and only if �� Wmap.j; f /!map.i; f / is a surjection.
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Corollary A.2 Let � 0 W i 0! j 0 be a commutative square weakly equivalent to � . (That is , � 0 is related to
� by a zigzag of weak equivalences of squares.) A map f WX! Y of simplicial sets is a weak equivalence
if and only if

Rmap.j 0; f /!Rmap.i 0; f /

is a surjection on �0, where Rmap refers to the homotopy function complex in SŒ1� relative to objectwise
weak equivalences.

Proof Since derived mapping spaces are invariant by weak equivalences by definition or construction, it
suffices to prove that f is a weak equivalence if and only if

.A.3/ Rmap.j; f /!Rmap.i; f /

is a surjection on �0. To interpret the derived mapping spaces, let us equip SŒ1� with the projective model
structure. In this model structure, an object (ie map) is fibrant if source and target are Kan simplicial sets.
Without loss of generality, we may assume that f is fibrant. Cofibrant objects are simplicial maps that
are cofibrations (between cofibrant objects, which is no condition here). Cofibrations are commutative
squares

A A0

B B 0

i j

(with source i and target j ) where the top map and the map

A0 tAB! B 0

are cofibrations of simplicial sets. It is not difficult to see that the morphism � is then a cofibration
between cofibrant objects. It follows that

�� Wmap.j; f /!map.i; f /

is identified with (A.3) and is a Kan fibration. Since a Kan fibration is surjective if and only if it is
surjective on �0, the result follows.

Below are three examples which give rise to equivalent lifting problems:

Example A.4 Let � 0 be the morphism in SŒ1�

@�n @�n ��1 t@�n�f1g�
n

�n �n ��1

i 0 j 0

Then � 0 is weakly equivalent to � and is a projective cofibration.
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Example A.5 Let � 0 be the morphism in SŒ1�

@�n @�n ��1 t@�n�f1g�
n

ƒnC1 ƒnC1 ��1 tƒnC1�f1g�
nC1

i 0 j 0

Then � 0 is weakly equivalent to � and is a projective cofibration.

Example A.6 Let D be the simplicial set defined as the quotient �2=d0 where d0 W�1!�2 is the face
that misses 0. The two remaining faces d1; d2 give two inclusions �1! D. Let � 0 be the morphism
in SŒ1�

@�n �n t@�n @�
n ��1

�n �n ��1 t@�n��1 @�
n �D

i 0 j 0

Then � 0 is weakly equivalent to � and is a projective cofibration.

So, in view of the previous result, a map f WX ! Y between Kan complexes is a weak equivalence if
and only if

.� 0/� Wmap.j 0; f /!map.i 0; f /

is surjective for � 0 W i 0! j 0 as in the examples above.

Ab Criteria for realization weak equivalences

Definition A.7 A simplicial space is a contravariant functor from � to spaces (alias simplicial sets).

A simplicial space Œm� 7!Xm may be viewed as a bisimplicial set, ie a contravariant functor from ���

to Sets. However, the two � directions play different roles and it is important to distinguish them.

A map X ! Y between simplicial spaces is a (degreewise) weak equivalence if, for each m � 0, the
map Xm ! Ym is a weak equivalence of spaces. We write Rmap.X; Y / for the homotopy function
complex with respect to degreewise weak equivalences. This may be computed as map.Xc ; Y f / in
a model structure on simplicial spaces with levelwise weak equivalences, for a cofibrant replacement
Xc!X and a fibrant replacement Y ! Y f. There are two canonical choices for such a model structure:
the Reedy (= injective) model structure and the projective model structure.

The diagonal functor d W sS! S has a left adjoint dŠ which is the unique colimit-preserving functor with
dŠ.�

n/D�n˝�Œn�. (For a simplicial set K and a simplicial space X, the tensor K˝X is the simplicial
space with n–simplices K �Xn.)
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There is another colimit-preserving functor ı W S! sS defined by ı.�n/D�Œn�, ie pullback along the
projection onto the first factor ���!�. The projection �n˝�Œn�!�0˝�Œn� induces a natural
transformation dŠ! ı.

Lemma A.8 For each simplicial set X, the natural map dŠ.X/! ı.X/ is a degreewise weak equivalence
of simplicial spaces.

Proof For representables, this is clear. A general simplicial setX is a filtered colimit of finite-dimensional
simplicial sets Xi and filtered colimits of simplicial spaces are homotopy colimits, so it is enough to prove
the statement for finite-dimensional simplicial sets. Suppose that we have proved the statement for all
simplicial sets of dimension < n. We want to prove the statement for a simplicial set X of dimension n.
Let skn�1X denote the .n�1/th skeleton of X, so that we have a pushoutF

Xn
@�n skn�1X

F
Xn
�n X

Since dŠ and ı are colimit-preserving, the result follows by induction and the case of representables.

Proposition A.9 Let f W X ! Y be a map between Reedy fibrant simplicial spaces which satisfy the
Kan condition. Then jf jW jX j ! jY j is a weak equivalence if and only if every square

@�Œn� X

�Œn� Y

has a lift as pictured making the lower triangle commute up to a given homotopy �Œn���Œ1�! Y and
making the upper triangle commute up to a given homotopy @�Œn���Œ1�!X. These two homotopies
are required to be homotopic as maps @�Œn� � �Œ1� ! Y and the homotopy should be constant on
@�Œn�� @�Œ1�.

Proof Since X and Y are Kan complexes and d preserves Kan fibrations (Remark 3.20), jX j and jY j
are Kan complexes. In view of Proposition A.1, Example A.6 and the remarks that follow it, jf j is a
weak equivalence if and only if the map

� 0
�
Wmap.i 0; jf j/!map.j 0; jf j/

is surjective (using the notation from Example A.6). By adjunction, this is equivalent to saying that

.A.10/ .dŠ�
0/� Wmap.dŠi 0; f /!map.dŠj 0; f /
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is surjective. Since f is a map between Reedy fibrant simplicial spaces, it is a fibrant object in sSŒ1� with
the projective model structure on the category of functors Œ1�! sS, where sS is equipped with the Reedy
model structure. Since dŠ preserves monomorphisms, dŠ� is a cofibration between cofibrant objects in
that same model structure (see the proof of Corollary A.2). Therefore, the map (A.10) is a fibration and
as such it is surjective if and only if it is surjective on �0. These considerations also lead us to identify
(A.10) with the map on derived mapping spaces

.dŠ�
0/
�
WRmap.dŠi 0; f /!Rmap.dŠj 0; f /;

which by Lemma A.8 is identified with

ı.� 0/� WRmap.ı.i 0/; f /!Rmap.ı.j 0/; f /:

Since ı.� 0/ is also a cofibration between cofibrant objects, this map is identified with

ı.� 0/� Wmap.ı.i 0/; f /!map.ı.j 0/; f /:

The surjectivity of this last map is equivalent to the existence of the lift in the statement of the proposition.

Corollary A.11 Let f W X ! Y be a map between Reedy fibrant simplicial spaces. Suppose that for
every j � 0 and every square

Sdj @�Œn� X

Sdj �Œn� Y

there is a lift as pictured making the lower triangle commute up to a given homotopy Sdj �Œn���Œ1�! Y

and making the upper triangle commute up to a given homotopy Sdj @�Œn� ��Œ1�! X. These two
homotopies are required to be homotopic as maps Sdj @�Œn���Œ1�! Y and the homotopy should be
constant on Sdj @�Œn�� @�Œ1�. Then jf jW jX j ! jY j is a weak equivalence.

Proof Apply Proposition A.9, replacing X and Y by the simplicial spaces Ex1X and Ex1 Y, which
satisfy the Kan condition by Proposition A.13.

Ac Properties of subdivisions of simplicial spaces

Recall the simplicial subdivision sd�n, ie the nerve of the poset of nonempty subsets of Œn�D f0; : : : ; ng.

Definition A.12 Denote by
Sd W sS! sS

the simplicial left adjoint functor that sends �Œn� to sd�n viewed as a simplicial discrete space. Denote
by

Ex W sS! sS

the simplicial right adjoint functor of Sd.
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Every simplicial discrete space is Reedy cofibrant, so, replacing X by a Reedy fibrant simplicial
space Xf, we may write the right derived functor of Ex evaluated at X as the (honest) mapping space
map.Sd�Œn�; Xf /.

There is a natural map 
 W Sd�Œn�!�Œn�, sending a subset fi0; : : : ; ikg � Œn� to ik (the last vertex). The
colimit

X 
�
�! ExX 
�

�! Ex2X ! � � �

is denoted by Ex1X. The map 
 has a section �Œn�! Sd�Œn� so if X is Reedy fibrant, all the maps in
the tower are degreewise cofibrations and so the colimit computes the homotopy colimit.

We collect the important properties of the Ex1 endofunctor below. These parallel (or, rather, include) the
well-known ones for simplicial sets.

Proposition A.13 For a simplicial space X :

(1) Ex1X is a Kan simplicial space.

(2) X ! Ex1X is a weak equivalence after geometric realization.

(3) For each i , including i D 1, Exi preserves (trivial ) Kan fibrations , zero simplices and finite
homotopy limits

Proof By construction, the functor Exi for 0� i �1 sends weak equivalences of simplicial spaces to
weak equivalences. If X is Reedy fibrant then

map.Sd�Œn�; X/!map.Sd @�Œn�; X/

is a fibration (since Sd @�Œn�! Sd�Œn� is a degreewise monomorphism, hence a cofibration). Therefore,
ExX is Reedy fibrant. By standard compactness arguments, it follows that Ex1X is also Reedy fibrant.
Hence, in proving .1/, .2/ and .3/, we may assume from the outset that X is Reedy fibrant.

The arguments to prove .1/ and .3/ are identical to the classical ones for simplicial sets, so we do not
reproduce them here. As for .2/, take a trivial Kan fibration X 0!X, where X 0 is a simplicial set (see
[Lurie 2011, Proposition 7]), and consider the square

X 0 ExX 0

X ExX

Since the diagonal preserves trivial Kan fibrations, the vertical maps are weak equivalences after applying
the diagonal (for the right-hand one, use part .3/). The top horizontal map is a weak equivalence; see eg
[Goerss and Jardine 1999, Chapter III, Theorem 4.6]. We conclude that the diagonal of the lower map is
a weak equivalence.
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