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Coherent sheaves on general complex manifolds do not necessarily have resolutions by finite complexes
of vector bundles. However, D Toledo and Y L L Tong showed that one can resolve coherent sheaves
by objects analogous to chain complexes of holomorphic vector bundles, whose cocycle relations are
governed by a coherent infinite system of homotopies. In modern language, such objects are obtained
by the co—sheafification of the simplicial presheaf of chain complexes of holomorphic vector bundles.
We define a Chern character as a map of simplicial presheaves, whereby the connected components of
its sheafification recover the Chern character of Toledo and Tong. As a consequence, our construction
extends O’Brian, Toledo and Tong’s definition of the Chern character to the settings of stacks and in
particular the equivariant setting. Even in the classical setting of complex manifolds, the induced maps on
higher homotopy groups provide new Chern—Simons, and higher Chern—Simons, invariants for coherent
sheaves.
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4940 Cheyne Glass, Micah Miller, Thomas Tradler and Mahmoud Zeinalian

1 Introduction

The celebrated Hirzebruch—-Riemann—Roch theorem (HRR) [Hirzebruch 1954] is a generalization of the
classical Riemann—Roch theorem for holomorphic line bundles on compact Riemann surfaces. In HRR,
the setting of a line bundle on a Riemann surface is generalized to an arbitrary holomorphic bundle £ on
a smooth projective variety X over the complex numbers. The main tool in proving HRR is a resolution
of the diagonal X — X x X, thought of as a coherent sheaf on X x X, by a finite chain complex of vector
bundles.

The Atiyah—Singer index theorem [1968], and the theory of elliptic and pseudoelliptic differential operators,
can further be thought of as a far-reaching generalization of HRR and other high-powered theorems, such
as the Gauss—Bonnet theorem, to a much vaster context. For example, using the Atiyah—Singer index
theorem one can readily extend HRR to holomorphic bundles on even compact complex manifolds that
are not necessarily algebraic (see for example [Freed 2021] for an exposition).

Unfortunately, such techniques, found in work by Atiyah, Bott and Patodi [1973] as well as by Gilkey
[1973], use differential geometric methods that heavily rely on an auxiliary choice of a Hermitian metric
on the manifold as well as the bundle. For example, one uses the metric to establish a heat flow and
smooth out the diagonal de Rham current X — X x X into a differential form (the heat kernel). However,
generally, in complex geometry choosing a metric can be thought of as unnatural and out of context
unless within the very specialized realm of Kéhler geometry.

Casting this as a deficiency is not only a matter of taste but concerns applications of these ideas to settings
where local automorphisms are involved, such as the equivariant as well as the “stacky” discussion. One
would therefore desire an intrinsic complex geometric discussion, whereby one establishes HRR, and
similar theorems, for general complex manifolds and holomorphic vector bundles outside metric geometry.

Toledo and Tong [1976; 1978a; 1978b; 1986] and O’Brian, Toledo and Tong [1981a; 1981b; 1981c] made
several remarkable conceptual breakthroughs by providing local Cech cohomological proofs of HRR
[1981b] and Grothendieck—Riemann—Roch (GRR) [1981a]. Through the modern lens, one may interpret
their work as a hands-on theory of infinity stacks, which only much more recently has been made into a
full-fledged mathematical theory. One of the key constructions by O’Brian, Toledo and Tong [1981c] is
that of the Chern class for a coherent analytic sheaf on a complex manifold. While their construction is
the one we focus on here, there is also another approach to calculating Chern classes for coherent analytic
sheaves, as shown in [Green 1980; Toledo and Tong 1986] and later formalized by Timothy Hosgood
[2020; 2023; 2024].

To get a taste for the type of math Toledo and Tong invented and utilized, consider the question of resolving
the diagonal X — X x X, or more generally an arbitrary coherent sheaf, on a complex manifold, by a
finite chain complex of vector bundles. One knows that when the complex manifold admits a positive line
bundle such resolutions always exist (see [Griffiths and Harris 1978, page 705]). While in the algebraic
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setting the canonical line bundle provides such a line bundle, general complex manifolds may not support
them. Toledo and Tong obviated such difficulties by resolving the problems in a homotopical setting
in which strict identities are replaced with a coherent infinite system of homotopies. For instance, as a
complex vector bundle is a bunch of transition functions satisfying the familiar cocycle conditions, they
showed that, by requiring the cocycle condition to hold up to an infinite system of homotopies, not only
could every coherent sheaf on a complex manifold be resolved by these more general objects, but also all
of the necessary complex geometric arguments would remain valid.

Let us be more specific and start with a coherent sheaf on a complex manifold. Choose a good Stein
cover for the manifold on which the coherent sheaf can be locally resolved by a chain complex of vector
bundles; such a cover always exists. By restricting these resolutions to double intersections, we obtain
two resolutions for the same coherent sheaf on that intersection which, by the uniqueness of resolutions
over Stein manifolds, are then related by a quasi-isomorphism. On triple intersections, the three relevant
quasi-isomorphisms may not fit to give you a chain complex of vector bundles, but the discrepancy
can be killed by a homotopy. These assigned homotopies to triple intersections may not satisfy the
required compatibilities on quadruple intersections but the discrepancy can be killed by a higher homotopy.
Repeating this pattern ad infinitum gives rise to an infinite system of homotopies.

Historically, the use of coherent infinite systems of homotopy in a different context was known to some
algebraic topologists almost 30 years prior but even there it was considered rather esoteric. Jim Stasheff
[1963a; 1963b] showed how the based loop space of a pointed space was an Ao monoid. Nowadays
these mathematical objects are inescapable and it is common knowledge among a large group of algebraic
topologists that A, algebras are just as good as differential associative algebras and have the same
homotopy theories [Lefevre-Hasegawa 2003]. Similarly, Toledo and Tong showed that these generalized
objects are just as good as chain complexes of vector bundles as far as coherent cohomologies were
concerned. While they did not make a formal claim about their corresponding homotopy theories, they
showed how Ext and Tor of such generalized objects can be defined, calculated and, subsequently, be
used to prove duality theorems a la Grothendieck and establish HRR and GRR.

Surprisingly, since their work very little has been done to formalize the homotopy theory of these objects.
For example, in Descente pour les n—champs, André Hirschowitz and Carlos Simpson [1998] write:

Dans les travaux de O’Brian, Toledo et Tong consacrés a une autre question issue de SGA 6, celle
des formules de Riemann—Roch, on trouve des calculs de Cech qui sont certainement un exemple
de situation de descente pour les complexes. Un meilleur cadre général pour ces calculs pourrait
contribuer a notre compréhension des formules de Riemann—Roch.

This roughly translates to the following:

In the work of O’Brian, Toledo and Tong devoted to another question arising from SGA 6 regarding
the Riemann—Roch formulas, one can find Cech calculations that are an example of descent for
complexes. A better general framework for these calculations could contribute to our understanding
of the Riemann—Roch formulas.
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Here we have taken the first step in providing a homotopy-theoretic framework for some of Toledo and
Tong’s mathematical objects. By simply finding the right homotopy-theoretic setting, their constructions
extend far beyond what they had intended and point to new and exciting advances. For example, their
construction of a Chern character for coherent sheaves in Hodge cohomology is easily generalized to the
equivariant setting, or even to the setting of stacks. In addition, secondary and higher Chern characters
are now an inseparable part of the discussion.

The inherent inclusion of these higher Chern characters points to the possibility of proving a version of
GRR as a commutative diagram of spaces such that, after applying ¢ to the diagram, one would obtain a
diagram of sets which is O’Brian, Toledo and Tong’s GRR. Note that classical objects such as K—groups
and cohomology groups are sets with additional algebraic structures.

In Section 2 we begin by defining the simplicial presheaves IVB and €2, which will be the domain and
codomain of our Chern map, respectively. For a fixed complex manifold U € CMan, we first consider
the dg-category Peer(U ) of finite chain complexes of holomorphic bundles with connection,! where
there is no requirement that morphisms be compatible with connections. Taking the maximal Kan
complex of the dg-nerve, we obtain a simplicial set Perf(U). Applying this construction objectwise over
CMan and noting that maps f € CMan®?(U, V') induce maps of Kan complexes Perf(U) EAN Perf(V)
via pullbacks, we obtain a simplicial presheaf Perf which is fibrant in the (global) projective model
structure. Since the simplices Perf(U), = sSet(A”, Perf(U)) lack the cyclic structure we will need later
on to construct our trace map, we define a weakly equivalent (see Proposition 2.10) simplicial presheaf
IVB(U),, := sSet(A", Perf(U)) given by mapping the cyclic sets A" into Perf(U). Here, A" is the
nerve of the category whose set of objects is Z/(n + 1)Z and all hom-sets have a single morphism (see
Example 2.8). Next, we define £ in the same way we did in our previous paper [2022]; more precisely,
Q(U) is the simplicial set whose k—simplices are decorations of all i—dimensional faces of the standard
k—simplex with sequences of forms, all even for i even, and all odd for i odd, in such a way that the
alternating sum of all forms sitting on the (i —1)—dimensional faces of any i—dimensional face add up
to 0.

The Chern map Ch: IVB —  is then defined in Section 3 as follows. An n—simplex in IVB(U ), consists
of n+1 dg-bundles with connection (&;, d;, V;), and a set of maps g = {(gq...ix) : Eirx — Sio)}(l.o ix)€An
satisfying the Maurer—Cartan condition (see Definition 3.3). First, in Definition 3.7, we define a trace

map Trg similar to that of O’Brian, Toledo and Tong [1981c, Proposition 3.2], satisfying the condition
(3-8) Trg o (§+ D +[g,—]) = 80 Trg.

Using this trace map, Ch is then defined (in Definition 3.13) by assigning to an n—simplex in IVB(U),,
as above decorations of the nondegenerate k—faces of A" given by the elements in 2 (U),

k k k
(3-11) Trg (4517 = Trg (V(d +9))F) 17 = Y (g V(d +8)- V(A +8) - V(d +8)a 17

IThe use of Perf" is meant to allude to the study of perfect complexes.
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for k > 0 and for k = 0 we assign the Euler characteristic. Our first main result is that this provides a
map of (objectwise Kan) simplicial presheaves:

Theorem 3.14 The Chern character Ch: IVB — Q defined above is a map of simplicial presheaves.

In Section 4 we construct what we call the Cech sheafification, Ch}r: IVB% — @ of the Chern map.
Given a simplicial presheaf F, the idea is that, for each open cover (U; — X);es, we can form the Cech
nerve simplicial presheaf, NU.,, and then compute the homotopy limit induced by the simplicial mapping
space sP_re(f\? U., F) =holim; [], oty F (Ugg...q;) by taking the totalization of the induced cosimplicial
simplicial set F (N U.) defined in (4-1). The Cech sheafification FT is then defined (Definition 4.1) by
taking the colimit over all covers:

(4-2) FT(X):= colim Tot(F(NU.)).
(U.—>X)e§

As the construction is functorial in simplicial presheaves and preserves Kan complexes, we obtain a
sheafified Chern map, Ch' :VIVBJr — Sljr, which is a map of Kan complexes. The rest of the section is
devoted to showing how Ch' is related to the Chern character map of O’Brian, Toledo and Tong [1981c],
which begins with Theorem 4.9, stating that the twisting cochains of [loc. cit.] include into the vertices
of IVBT. The full correspondence is given in Theorem 4.18, which shows that, if we restrict IVB to
the simplicial presheaf CohSh considering only nonpositively graded chain complexes whose homology
is concentrated in degree zero, then we fully recover the data from the Chern map in [loc. cit.] by the
connected components of our sheafified Chern map:

Theorem 4.18 For a given coherent sheaf, the formula for the Chern character (4-15) from [loc. cit.] is
given by the terms in the formula (4-14) of the Chern character map

. ¥ .
(4-16) {isomorphism classes of coherent sheaves} ~ 7o (CohSh') To(Ch), mo(R1) ~ @ H?(Q7)

p,q
p+q even

applied to the corresponding twisting cochain interpreted (by Theorem 4.9) as a O—simplex in Cthh%.

Section 5 upgrades the results from the previous section to statements about (hyper)sheaves. Recall that
a simplicial presheaf is a (hyper)sheaf if it is objectwise Kan and satisfies descent with respect to all
hypercovers. By restricting our attention to simplicial presheaves of finite homotopy type taking values in
Kan complexes, we prove in Proposition 5.2 that the aforementioned Cech sheafification construction
computes the (hyper)sheafification. In particular, Proposition 5.12 states that, if we restrict to complex
manifolds of bounded dimension, and restrict the homotopy type of IVB, then ChT IVBLn S efisa
map of hypersheaves. If instead we consider again CohSh, we see that its sheafification is a classifying
stack for coherent sheaves, RHom(X, CohSh) ~ CohSh':

Theorem 5.11 The simplicial presheaf CohSh is a classifying prestack for coherent sheaves.
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Once again restricting to manifolds of bounded dimension, Theorem 5.13 states that our sheafified Chern
map Ch': CohSh' — @ isa map of (hyper)sheaves whose connected components yields the Chern map
from [loc. cit.]. Finally, Remark 5.14 describes how our Chern character map generalizes to all stacks,
with an eye towards future work in the equivariant setting.

Notation 1.1 The simplicial category is denoted by A. It has objects [n] = {0, ...,n} for n € Ny, and
morphisms ¢ € A([k], [n]) that are nondecreasing maps ¢: [k] — [n], ie (i) < ¢(j) fori < j. The
morphisms are generated by face maps J; : [n] — [n + 1] (the injection that skips the element j in [ + 1])
and degeneracies o : [n] — [n — 1] (the surjection that maps j and j + 1 to j).

Simplicial objects in a category C are functors A°P — C, where the induced face and degeneracy morphisms
are denoted by d; and s;, respectively. We denote the category of simplicial sets by sSet = SetA™.
Cosimplicial objects in a category C are functors A — C.

Given an object X in a locally small category C, we can consider its representable presheaf yX :=C(—, X)
given by the Yoneda embedding. Further, given a presheaf F on C, we can consider its simplicially

constant presheaf ¢ F defined by cF(Y), := F(Y). When context is clear we may drop the “y” or “c”.
For example, for an object X we might write X for the simplicial presheaf defined by X(Y), :=C(Y, X).

Acknowledgements Tradler was partially supported by a PSC-CUNY grant. Glass would like to thank
the Max Planck Institute for Mathematics in Bonn, Germany, for their hospitality during his stay. Zeinalian
would like to thank Julien Grivaux and Tim Hosgood for insightful conversations about Toledo and Tong’s
work.

2 The simplicial presheaves IVB and €2

We define two simplicial presheaves on the site of complex manifolds; first, IVB: CMan®® — sSet is the
presheaf which will later give rise to infinity vector bundles (see Definition 4.4), and £ : CMan®® — sSet
is the presheaf of holomorphic forms. In the next section we will then define the Chern character map as
a map of simplicial presheaves Ch: IVB — €.

Let CMan be the category whose objects consist of complex manifolds, and morphisms are holomorphic
maps. Furthermore, denote by dgCat the category of differential graded categories, ie categories C such
that, for any two objects C1 and C; of C, the space of morphisms Hom(C;, C3) is a cochain complex,
with the composition being a cochain map and the identity morphisms being closed.

Definition 2.1 Let Perf: CMan®® — dgCat be given by setting Perf(U) to be the dg-category whose
objects £ = (E,,d, V) € Perf(U) are finite chain complexes of holomorphic vector bundles £, — U
over U with differential d: E, — E.4+1, and with a holomorphic connection V on E,. Morphisms
Hom(&, £’) consist of graded morphisms of vector bundles f: E, — E. which need not have any special

Algebraic € Geometric Topology, Volume 24 (2024)



Chern character for infinity vector bundles 4945

compatibility with respect to the connections V and V’. The dg structure on Hom(&, £’) is the induced
one by the differential and gradings on £ and £’; in particular, the differential of an f € Hom(&, &) is
defined to be D(f):= fod —(—D)I/ld’o f.

A holomorphic map ¢: U — U’ induces a functor Perf(¢): Perf(U’) — Perf(U) by pulling back bundles
via ¢.

Since Perf(U) is a dg-category, we can apply the dg-nerve dg M (Perf(U)), which gives a simplicial set.

Note 2.2 Explicitly, we can describe the simplicial structure of the dg-nerve dg V' (C) of a dg-category C
(for us, it will always be C = Perf(U)) as follows; see [Lurie 2017, 1.3.1.6; Faonte 2017, Definition 2.2.8]:

(1) A O0-simplex in dg N'(C)o consists of an object £ of C.

(2) A l-simplex in dg A (C); consists of (€1, o, go1), ie two objects £ and &£; of C and a morphism
go1: &1 — &o in C of degree 0, which is closed, ie Dgo; = 0, where we denoted the differential
in Home by D. (In the case of C = Perf(U), the internal differential D is given by the differentials
d and d’ on E and E’, respectively, via Df = fod — (=D)f1d@’ o £, so that Dgo; = 0 means that
go1 is a chain map of dg-vector bundles.)

(3) A 2-simplex in dg V' (C), consists of (€g, €1, 2, o1, €12, €02, £o12), i€ three objects £y, £1 and &>
of C, three morphisms g;;: £ — &; of degree 0, where i, j € {0, 1,2} with i < j, and another
morphism go12: &2 — & of degree —1 satisfying Dgo12 = go1 °g12 — go2-

(4) An n-simplex in dg V' (C), consists of n 4 1 dg-vector bundles &y, .. ., £, and morphisms

gio...ik . gik - Sio

of degree 1 — k for each sequence ig,...,i; €{0,...,n} withig <--- < i and k > 1 such that
k—1 . k—1 .
2-1) D(gigit) = Y (=1 " gigiy i + D (DT gy o g
ji=1 j=1

(5) For amorphism ¢: [n] — [m] in A, there is an induced map qﬁggN: dg N(C)m — dg N (C)n, given by
mapping (gi ) gio...ik)all indices € dgN(C)m to (5¢(i)» gio...ik)all indices € dg N(C)n, which is defined
by either gi,...ix = &¢(io)...6 i) if @ 1s injective on {iog, ..., g}, Or giyi; = idEdm'O) if ¢p(ip) = (1),
or gi,...ir = 01in all other cases, ie when k > 2 and ¢ (ip) = ¢(ip41) for some p =0,...,k—1.

In the later sections, we will use the dg-nerve of U as local building blocks of chain complexes of vector
bundles on a complex manifold. To obtain a reasonable gluing, we will want the chain maps g;,;, to be
homotopy equivalences. This can be achieved in a natural way by taking the maximal Kan subcomplex
dg N (Perf(U))° of dg N (Perf(U)); see [Joyal 2002, Corollary 1.5].

Definition 2.3 Let Perf: CMan°? — sSet be the simplicial presheaf given by Perf(U) :=dg N (Perf(U))°,
ie the maximal Kan subcomplex of the dg-nerve of Perf(U).
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We have the following characterization of the simplices of dg V' (Perf(U))° via [Joyal 2002, Theorem 2.2],
for example:

Lemma 2.4 An n—simplex in dg N (Perf(U))° consists precisely of an n—simplex in dg N (Perf(U)) as
described in Note 2.2(4) above, with the extra condition that all morphisms g;;, : £, — &, are homotopy
equivalences.

Now, all chain maps g;,i, on the edges of all simplices of dg A/ (Perf(U))° are homotopy equivalences.
In order to be able to define the Chern character below, we will need to find homotopy inverses of these
together with compatible higher homotopies. This can be achieved as follows. First, using the Yoneda
lemma for simplicial sets, we know that the n—simplices of a simplicial set X, are precisely the simplicial
set maps from A” := A(—, [n]) into X,, ie X, = X([n]) = Nat(A (—, [n]), X) = sSet(A”, X). Thus, we
define Perf®: CMan® — sSet by setting

(2-2) Perf® (U),, := dg N (Perf(U)); = sSet(A", dg N (Perf(U))°).

More generally, we define:

Definition 2.5 Let QO be a cosimplicial simplicial set, ie O : A — sSet. In more detail, we denote by
Q" = Q([n]) € sSet the image of [n] € A under Q, which is itself a simplicial set, Q7: A°P — Set,
0% = 0" ([k]) € Set. Then, define Perf¢ : CMan® — sSet by setting

(2-3) Perf? (U),, := sSet(Q", dg N (Perf(U))°).

Since {Q"}, is a cosimplicial object in sSet, this induces, for each (f: [n] — [m]) € A, a map
PerfC (U),, — Perf? (U),,, making Perf (U) into a simplicial set.

For a holomorphic map ¢: U — U’, the induced map Perf’ 0 U’y — Perf? (U) is given by composition
with the map Perf(U’) — Perf(U) from Definition 2.1, ie by pulling back via ¢.

We are mainly interested in the following Examples 2.6 and 2.8.

Example 2.6 Let A: A — sSet be given by A" := A(—, [n]) be the standard simplicial n—simplex given
by morphisms of A into [r], ie its k—simplices ¢ € A? = A ([k], [n]) are nondecreasing maps from [k]
to [n], ie if we set i; := ¢ (), these are sequences of indices (ip < --- <1iy) withip,... iy €1{0,...,n}.
Face maps are dj: A} — A} _, that remove the j" index i;, and degeneracies s, : Ay — Ay, that
repeat the j ™ index i;.

By Yoneda, any simplicial set map A” — X is completely determined by the image of its nondegenerate
n—simplex. Thus, by (2-2), Perf? (U) has n—simplices given as described precisely by Lemma 2.4, ie by
Note 2.2 with homotopy equivalences on edges.

Before we give our second main example for Perf<, we record a useful lemma about simplicial set maps
into the dg-nerve Perf 0 ).
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Lemma 2.7 Let X, be a simplicial set, and let C be a dg-category (for us, C = Perf(U)). Then a
simplicial set map X — dg N(C) is precisely given by the following data:

(1) For each O—simplex o € X, we have an object &y of C.

(2) For each nondegenerate k—simplex o € X with k > 1, there is a morphism gq : g (k) — Eg(0) Of
degree 1 — k satisfying the compatibility condition

k—1 k—1
(2-4) D(ga) = Y (=1 " a0ty + DD VT a0,y 0 ga.e)

Jj=1 Jj=1
Here, for a disjoint union decomposition {0, ..., k} = {io,...,ip} U{jo...., jq} Withip <ii <---<ip
and jo < j1 <--- < jq, we denote by a(iy, ...,ip) :=dj,0---odj, (a) € X, the face of a corresponding

to indices {ig, ...,ip} €{0,..., k}.

In particular, a simplicial set map X — dg N'(Perf(U))° has the same data as given above with the extra
condition that the maps go for o € X1 are homotopy equivalences.

Proof ILet F: X — dgN(C) be a map of simplicial sets and, for [ > 0, let « € X; be an /-simplex.
Thus, F(«) € dg N (C);, and, by Note 2.2, there are dg-vector spaces &, .. ., 81“, and for all ig,...,i; €

{0,...,1}, k > 1 with iy <--- < i, there are maps g;?(‘)___ik : Elf’]‘( — Slf'é satisfying (2-1). We claim that the

data of the highest maps ggm p for all nondegenerate p € X, is sufficient to recover all other maps g%_“ i
For @ € X; and ig,...,i; €{0,...,1} with iy <--- <ip with k <[, we use the commutative diagram for

¢: [k] = [1], $(p) :==ip, f
X; — dgN(C),

Xp —255 dg N (C)x

mapping the i <- - - < ip—component g;’(‘). of F;(«) under ¢§gN to go. k= gf(‘)'_.l.k (by Note 2.2(5), since

ik
¢ is injective). Now, ¢ = §;, o---08j, for {ig,....ix}U{jo..... jq} =10,... .k} with jo < j1 <--- < jg,

so that the left vertical map ¢§, maps ¢§-(O{) = dj, o---odj, (@) = alio,...,ix). Then, F; maps

this to the 0 < --- < k—component gg_(.l:z""’ik). By the commutativity of the diagram, we get that

o _ (x(i() .....
gio...ik - gO...k

implicit dg-vector spaces &, = Fo () for all O—simplices o € X give the complete data of the map of

i) This shows that the maps gq = g, ; forall o € X; for [ > 1 together with the

simplicial sets F: X — dg A'(C). Equation (2-1) for gq ; using a fixed « € X; becomes precisely (2-4)

Note moreover, by a similar argument, that degenerate simplices map to either the identity g, (o) = 1dE,
for & € Xo, or g, (@) =0 for @ € X; with [ > 1.

Finally, 7: X — dg NV (Perf(U))° lands in dg A (Perf(U))° precisely if all maps g4 given by F(«) for
o € X are homotopy equivalences by Lemma 2.4. O
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Example 2.8 Let A: A — sSet be given as follows. Let A" € sSet be the nerve of the category £ ZS‘L,

whose objects are elements of Z, 1 = Z/(n + 1)Z, and which has exactly one morphism between any
two objects. More explicitly, A" = EZpy1 = N(E de_‘ﬁl) has k—simplices given by a sequence of k
composable morphisms [[ig]] = [i1]] = --- — [ix]] where [[io]l, ..., [ix]] € Zn+1, or, more concisely, the

k—simplices ﬁz are sequences (ig, ..., ix) of indices ig,...,iy €{0,...,n}, ie &Z ~{0,... ,n}k. Face

n

%11 repeat the 7" index i;.

maps d; : ﬁz — 32_1 remove the j " index i 7, and degeneracies s; : ﬁg —A
For example, for the simplicial set Ala k—simplex consists of a sequence (g, ...,ix) of 0’s and 1’s; a
k—simplex is degenerate if and only if any two adjacent indices are equal, i; = i;y1; thus there are exactly
two nondegenerate k—simplices: (0,1,0,1,...) and (1,0, 1,0,...) for any k. The geometric realization
of Al is thus S.

By Lemma 2.7, any simplicial set map A" — dg NV (Perf(U)) is given by n + 1 holomorphic dg-vector bun-
dles with holomorphic connections &y, . . ., &, together with maps g;,. ., : Ei, — Ej, for a nondegenerate
k—simplex o = (ip,...,ix) € A" =10, ..., n}* without directly repeating indices, satisfying (2-4):

(2-5)  gig.ix od + (=¥ -dogiy i, = D(gio...i,)
k—1 . k—1 .
= Z(_l)J_lgio...ij...ik + Z(_l)k(]_l)—’_lgio...ij Ogij...ik-
=1 =1

Note furthermore that, for a degenerate simplex (ig, ..., i) of A" where the two consecutive indices
ij =ij41 are equal, we also have amap g;; = idEj or gio...jj...ix. =0 when k > 2 satisfying (2-5).

For a morphism ¢ : [n] — [m] in A we get an induced map of simplicial sets ¢, : ﬁﬁ’ — 3:" by mapping
Pk 32 — ﬁf, Pr o, - ... ix) = (¢(i0), ..., ¢(ix)). This gives the cosimplicial simplicial set A. In
particular, we can use Definition 2.5 to get the simplicial set Perf’ (U), whose n—simplices are precisely
Perf®(U), = sSet(ﬁ”, dg/\/(Perf(U))°), ie simplicial set maps from A" to dg NV (Perf(U))°, which
were described explicitly in the previous paragraph.

We note that, for the simplicial presheaf Perf”, the “maximal Kan” condition follows automatically.

Lemma 2.9 Simplicial set maps from A" to dg N (Perf(U)) take values in its maximal Kan subsimplex,
ie
(2-6) Perf? (U), = sSet(A”, dg N (Perf(U))°) = sSet(A", dg N (Perf(U))).

Proof Any edge g;,;, is automatically a homotopy equivalence with chain homotopy inverse g;,,.
since we have the homotopies gigijio ©d + d © gigiyig = Zigio — &ioir © &irio = 1AE;, — &igi1 © &iyip and
8ivioi; 0d +d ogi iviy = &iyiy — &8ivio ©&8igi; = idEi] —8iio ©&ioiy - The claim follows from Lemma 2.4. O

Note that there is a map of cosimplicial simplicial sets A — A, given by A7 — 3%, Ay = A([k], [n]) >
¢ (o,....ig) = ((0),...,¢0(k)) € ﬁ;{’ We thus get an induced map of simplicial sets Perf® (U) —
Perf® (V).
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Proposition 2.10 For an object U € CMan, the map of simplicial sets Perf3 U)— PerfA(U ) is a weak
equivalence.

Proof Since dg NV (Perf(U))° is (by definition) a Kan complex, and by Definition 2.5 both Perf3 U):=
sSet(ﬁ', dg NV (Perf(U))°) and Perf®(U) = sSet(A*, dg NV (Perf(U))®), the proposition follows from
Proposition A.1. a

In the later sections we mainly use Perf? for 0= A, and we therefore make the following definition:

Definition 2.11 Denote by IVB := Perfgz CMan®? — sSet, ie by (2-3),
(2-7) IVB(U), = Perf® (U), = sSet(A", dg N (Perf(U)))°).

For a motivation of this notation, see Definition 4.4.

The reason why we want to consider the cosimplicial simplicial set A is that it has an important additional
cyclic structure which A is lacking, as we will explain now.

Definition 2.12 Let AC be the cyclic category; see [Loday 1992, 6.1.1]. More precisely, AC has
the same objects [n] = {0,...,n} for n € Ng as A, and has morphisms generated by face maps §; and
degeneracy maps o; (as in A; see Notation 1.1), together with an additional cyclic operator 7, : [n] — [n];
see [Loday 1992, 6.1.1] for more details. It is convenient to represent morphisms ¢ € AC([k], [n]) by
set maps ¢ [k] — [n] such that there exists a nondecreasing function ¢: {0, ..., k} — Ny satisfying
¢(k) < $(0) +n and $(j) = $(j) (mod Zy).

Then a cyclic object in a category C is a functor X : AC° — C. Since AC = A C°P are isomorphic [Loday
1992, 6.1.11], cyclic objects in C are cocyclic objects in C and vice versa. We denote the category of cyclic
sets X : AC — Set by cSet. Note that there is functor A — A C, which makes every cyclic object into a
simplicial object by precomposition (A C°P X, C)— (AP —> AC®P X, C), and similarly every cocyclic
object is a cosimplicial object. In particular, every cosimplicial cyclic set is a cosimplicial simplicial set.

Remark 2.13 The canonical cyclic sets AC” := AC(—, [n]) assemble for various n to a cocyclic cyclic
set AC*: AC — cSet. In particular, this is also a cosimplicial cyclic set A — AC ACt, cSet, so
that we also have a third example of a simplicial presheaf Perf?C using our setup from Definition 2.5.
By Lemma 2.7, an n—simplex in Perf2C (U) is given by maps g;,..;, for any “cyclic set of indices”
io =¢(0),...,ir = ¢(k) for some ¢ € AC([k], [n]) (for example, for n = 9 we would have maps such
as g457034: E4 — E4). Unfortunately, the analog of Proposition 2.10 does not hold, ie Perf2€ (U) and
PerfA(U ) are in general not weakly equivalent. (For example, the nondegenerate simplices of AC! as
sequences of indices are (0), (1), (0, 1), (1,0), (0,1,0), (1,0, 1) but no higher ones due to cyclicity, so
that the geometric realization of AC! is the 2—sphere S2.)

Now, while A" is not a cyclic set, A" is a cyclic set, and we will need to use the additional cyclic structure
of A below to define our Chern character map.
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Lemma 2.14 The simplicial set A" as described in the first paragraph of Example 2.8, together with
the operator 1y, : ﬁz — ﬁz given by t (i, ..., ix—1,ik) = (ig,i0,...,Iix_1), makes A" into a cyclic set.
This, in turn, makes A into a cosimplicial cyclic set.

Proof One checks that ; has the correct compatibility (see [Loday 1992, 6.1.2(b)—(c)]) with the face
and degeneracy maps d; and s;. For a morphism ¢: [n] — [m] in A, the induced map of simplicial
sets @, : ﬁ’f — ﬁﬁ”, Ok ﬁz — ﬁ;{", o (o, - - X ir) = (¢(o),...,¢(r)), respects not only the face and
degeneracy maps, but also the #; operator, ie A: A — cSet is a cosimplicial cyclic set. |

We have thus defined the simplicial presheaf IVB = Perfg, which will be the domain of our Chern
character map for holomorphic dg-vector bundles over U with connection. As for the range of the Chern
character map, we use the same presheaf €2 that we used in our previous work [2022, Definition 2.3]
(for the Chern character map of holomorphic vector bundles that were not differential graded). For
completeness sake, we will briefly review the definition of £ : CMan®? — sSet.

Definition 2.15 For an object U € CMan, consider the (nonnegatively graded) cochain complex of
holomorphic forms 27 | (U) on U with zero differential d = 0. Let u be a formal variable of degree
|u| = —2, denote by 2} ,(U)[u] polynomials in u, and by 52}'1()1(U)[1,£]'50 its quotient by its positive
degree part Qp (U )[u]*>°. Applying the Dold—Kan functor to this chain complex gives a simplicial
abelian group DK (2} ,(U)[u]*=?), for which we consider its underlying simplicial set, denoted by an
underline, ie 2(U) = DK(2;,(U)[u]*=?):

Qp (D) [u]*=0
—_— s

DK
@ : CMan®? Ch=% = gSet.

Since holomorphic forms pull back via a holomorphic map ¢ : U — U’, this assignment defines a simplicial
presheaf £ : CMan® — sSet by € := DK(Q,(-)[u]*<%): CMan® — sSet.

Note 2.16 If C = (C*=°,dc) is a nonpositively graded chain complex, then the Dold—Kan functor
DK(C) € AbA” which is a simplicial abelian group, can be described as follows; see our previous work
[2022, Appendix B]. For n > 0, we may define DK(C), to be the abelian group (under addition) of
cochain maps from the normalized cells of the standard simplex A” to C, ie we may set

(2-8) DK(C), := Chain(N(ZA"), C).

Thus, this means that an element of DK(C),, is given by a labeling of the nondegenerate cells of the
standard simplex A" by elements of C in such a way that, for a k—cell o of A" whose boundary
(k—1)—cells are d; (), we have

k
(29) de (@) =Y (=1) -dj(@).
j=0
In the situation of Definition 2.15, the chain complex C = } (U )[1]°=? has a zero internal differential,

iedc =0.
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3 Chern character Ch: IVB —

We now define a map of simplicial presheaves Ch: IVB — 2, where IVB = Perf3 from Definition 2.11
and R is from Definition 2.15. We start by defining cochains on a simplicial set X with values in a
dg-category C (for us C = Perf(U)), and, in the case when X is a cyclic set, its trace map. The main
example to keep in mind for the following definitions is the cyclic set X = A",

Definition 3.1 A labeling of a simplicial set X by a dg-category C is a set map from the vertices of X to
the objects of C, L: Xo — Obj(C), ie a choice of an object & := L() of C for each o € Xj.

Definition 3.2 Let X be a simplicial set, let C be dg-category, and let L: Xo — Obj(C) be a labeling
such that we have a choice of objects &, for each o € Xo. We define the cochains on X with values in C
to be
(3-1) Cr(X.0):=[] [] Hom¢(Eap): Eaioy)-

p>la€X,
where we used notation from Lemma 2.7 to denote the first and last vertices of & € X, by «(0) and a(p),
respectively. In components, we will write f € C;(X,C) as f = { fu}acx, Where, fora € X and p > 1,
we have fo € Homg(Ey(p). Ea(0))-
Note that C; (X, C) is a dg-algebra:

(1) Acochain f of bidegree (p, q) assigns to a p—cell @ € X, adegree ¢ map fo € Homg (Ea( ) Ea(0))
and is zero elsewhere; in this case the total degree of f is |f| = p +q.

(2) A differential §: CLP(X, C) —> Cf“ (X, C) is induced by the face maps d; : X?+!1 — X2, so that
if e € Xp11is a (p+1)-simplex of X, then the deleted Cech differential of f, denoted by 5 f, s
defined by

N 4 . p .
(3-2) Gfa =D =D fa;@ =D (=1 fa@,.irp+1)-
i=1 i=1
Note that do and dj 4 are not used in the differential, which ensures the terms in the sum are all
maps in Homg (Ea(p+1) Ea(0))-

(3) An internal differential D: C; (X,C) — C; (X, () is induced by the dg structure on C, so that,
if o € X is a p—simplex and fy € Homg(ga(p),é'a(o)), then (Df)q := (=1)PT4T1L. D(f,) =
(—=1)?-(d o fo — (=1)9 - fy od) as a homomorphism in Hom? ™ (£,(,), Eu(0))-

(4) There is a product f - g on C;(X,C), which, for « € Xp4, is the extension of the maps
Hom¢ (Ex(p). Ea(0)) X HOM (Ea(p-+r): Ea(p)) = HOmE (Eq(ptr): Ea(0))-

(3-3) (foz(O ..... p): 8a(p,..., p-l—r)) = (f 'g)oc(O ..... p+r) = (_l)q-r : fa(o ..... p) °8a(p,....p+r)>
on the components of C; (X, C) to all of C} (X, C).
We note that, in particular, Df =d - f — (=) f-d =:[d, f]. It is well known (and straightforward to

check) that with these definitions the cochains on X with values in C, C I (X,C), becomes a dg-algebra.
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Definition 3.3 Given a simplicial set X, a dg-category C and a labeling L, we say an element g € C; (X, C)
is a Maurer—Cartan element if

(3-4) §¢+Dg+g-g=0

Definition 3.4 Let X, be a simplicial set, and let C be a dg-category. Then, by Lemma 2.7, a simplicial
set map F: X — dg N'(C) induces objects &, for each O-simplex a € Xo, and maps gy : €4 (p) = Ea(0)
for every o € X, with p > 1 (for degenerate simplices, we take go = idg,,, When o € X1, and go =0
when « € X, for p > 2). Thus, we can define a labeling L := Fp: Xo — dg N (C)o = Obj(C) of X
by C via L(x) := &, for « € Xo. Moreover, the g4 for @ € X, for p > 1, assemble to an element
g ={8ataex € C[(X,0).

Corollary 3.5 The element g € C; (X, C) from Definition 3.4 is a Maurer—Cartan element, ie g satisfies
(3-4). Moreover, g has components of bidegree (p, 1 — p) for p > 1, so that g is of total degree 1.

Proof Each g, for o € X, is of bidegree (p, 1 — p); see Lemma 2.7(2). For o« € X1, with p,r > 1,

we have g4(o,....p) * 8a(p,....p+r) = (_1)(1_p)(r_p)goz(0,...,p) °©8a(p,...,p+r)- and since (_1)(1—p)(r—p) =
(=) +P)(P=1)  we see that (3-4) becomes exactly (2-4). O

Now consider the case C = Perf(U). In this case, C} (X, C) becomes a direct product of holomorphic
sections, ie
C; (X Perf(U)) = [ | J] Thot(U. Hom(Eq(p). Ea(o))):
p>laeX,

since morphisms Hom¢ (€7, £2), which are bundle maps, are in correspondence with holomorphic
sections of the Hom(E1, E>)-bundle. Since we want to include higher holomorphic forms as well,
we will include this dg-algebra in a larger dg-algebra of all holomorphic forms C; (X, Perf(U)) —
C; (X, Q) ® Perf(U)), defined as follows.

Definition 3.6 Let X be a simplicial set and consider the dg-category Perf(U). Let L : X9 — Obj(Perf(U))
be a labeling as in Definition 3.2, ie &, = L(«). We define the dg-algebra

(3-5) Cr(X. Q) ®Perf(U)) :=[[ [] Qboi(U.Hom*(Ea(p). Ea(o)))-
p>0aeX,

where we again denoted the first and last vertices of & € X, by «(0) and a(p), respectively. In components,
we will write f € C; (X, Q(U) ® Perf(U)) as f = { fulacx, Where, for a € Xp, we have fy €
Qb1 (U, Hom*(Ey(p), Eq(0)))- Note that in (3-5) we included the O—simplices (p = 0) when compared
to (3-1).

The dg-algebra structure on C; (X, Q(U) ® Perf(U)) is defined as follows:

Algebraic € Geometric Topology, Volume 24 (2024)



Chern character for infinity vector bundles 4953

(1) feCr(X, Q(U)®Perf(U)) has triple degree (k, p, q) if it assigns to a p—cell a € X, aholomorphic
k—form with values in the appropriate Hom-bundle of degree ¢, f € Qﬁol(U JHom?(Ey(p). Eq(0)))
and vanishes elsewhere; in this case the total degree of f is | f| =k + p +g¢.

(2) A differential §: C; (X, 2(U)&Perf(U)) — C; (X,2(U)&Perf(U)), the deleted Cech differential,
is defined just as in Definition 3.2(2), ie for f € C; (X, Q(U) ® Perf(U)),

p p

(3-6) GLa= D (D fa,@ =D (D fa,ipt1)-

(3) A differential D: C; (X, Q(U) ® Perf(U)) — Cr (X, Q) ® Perf(U)), the internal differential,
is defined similarly to Definition 3.2(3), ie if f, € QﬁOI(U, Hom?(Eq(p). Ea(0)))- then (Df)q €
Q}’fo](Ui Homq+1 (E(X(p)» Ea(O)))a

(Df)a = (=17 (dag) © fa — (~1}F- fo 0dap)).
where d; denotes the differential of E;.
(4) There is a product f - g similar to Definition 3.2(4). More explicitly, consider the maps
(3-7) Q}ITOI(U: Hom? (Sa(p)v gfx(O))) X Q}lml(U: Hom? (5a(p+r)v goz(p)))
= Qi (U Hom (€ (p-+1). Ea(0)))-

where o denotes wedging forms and composing Hom-spaces, and extend them from the components

of C; (X,Q(U) ® Perf(U)) to the whole space.
We note that, again, Df =d- f —(—1)//| f.d =[d, f]. Just as in Definition 3.2, C; (X, QU)®Perf(U))
becomes a dg-algebra, and the inclusion C} (X, Perf(U)) — C; (X, Q(U) ® Perf(U)) is a dg-algebra
morphism. Note that this inclusion consists of two separate inclusions of holomorphic functions into
holomorphic forms, ' (—) < Qno1(—), as well as nonzero simplices into all simplices, szl (—) —
[1,=0(-). Note further, that Df =d - f — (=) f-d, where d = {dy}acx € C} (X.QU) ®Perf(V))
is given by the differentials do, = dg, for @ € X¢ and d, = 0 for all other .

Finally we remark that every Maurer-Cartan element in C; (X, Perf(U)) is also a Maurer—Cartan element
in the larger dg-algebra C} (X, Q(U) ® Perf(U)).

Now, for a vector bundle FE, there is a trace map tr: Hom(E, E) — C. Following ideas of O’Brian, Toledo
and Tong [1981c, page 238], we will define a trace map

[T [ Q. Hom" (Eagpy. Ea) = [T T] 2ha(U.C).

p=0aeX, p>0weX,

Note that the left-hand side is C} (X, Q(U) ®Perf(U)). We denote the right-hand side by C*(X, Qpoi(U)).
To fit this into our current setting, we need an additional cyclic structure on X.
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Definition 3.7 Let X be a cyclic set. Let o € X}, be a p—simplex, ie by our convention o« = (0, ..., p),
then, using the additional operator 7,: [p] — [p], we denote the induced map 7,: X, — X, by

a(p,0,....,p—=1):=1p(x).
Now let L: Xo — Obj(Perf(U)) be a labeling, and let g be a Maurer—Cartan element of C; (X, Perf(U)).
Then we define the trace map
Trg: C; (X, QU) ® Perf(U)) — C*(X, Qua(V)),
(Trg (Naex, = Y, DEDT R tr(eni5.0.d0) © fathnnd))-
0<k<lI<s

Note that the trace on the right makes sense, since it is applied to Hom(Ey (), Eq(1))-

The following proposition follows the arguments from [loc. cit., Proposition 3.2]:

Proposition 3.8 Let X be a cyclic set with labeling L, and let g be a Maurer—Cartan element in
C; (X, Perf(U)). Then the trace map Trg satisfies

(3-8) Trg 0 (8 + D + [g.—]) = 8 0 Trg.

where § is the (full) Cech differential including first and last term, ie (8f )¢ := Zp Jrl( 1)/ Ja0,.0.7 0 p+1)

foro € Xp+1

Proof Let f € C;(X,Q(U) ®Perf(U)), and let o € X,. Then

(8(Trg (1)), Z( 1)/ - Trg(fac....jo..) =A+B+C
Jj=0

equals the sum of the three terms

Z Z (— 1)/ FEFDE=DHA g oo k) © fatk, 5., )

O<k<l<sj=k+1

k-1
> Y DR (g0 150, fok) © Sl

0<k=<I<sj=0

S
DY () TEEDETOHE (g0 s.0,) © Sl
0<k<l<sj=I+1

The first term A in the above sum is equal to

= Y Z (=D TEDH gy, .50, K © Jalk...rj..., n)

O<k<l<sj=k+1

Y EDEEDHE (g 5.0,d) © B aths) = (Tre (B(F))),,-

0<k<l<s
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To evaluate B + C, note that
39 Y EDEIIT (B9 ety 5,0, k) © Salhonnd))

0<k<lI<s

s
= > Y DEEDTEI T (g Gs00k) © Saler)
O0<k<l=sj=I+1

0<k=<l<sj=0
=C+ B.

We claim that this is equal to (Trg(D( +1g -1(f )))a, which we evaluate now. By Definition 3.6, we
may write D(f)=d - f — (=) f-d =[d, f], where | f| denotes the total degree of f. Thus, if we
define g:=d + g, ie for o € X, go = dy, and for @ € X withk > 1, go, = g4, then D(f)+[g, —](f) =
[d +g. f1=[g. f1. With this, we write (Trg ([g. f])a = (Trg (g~ f — (-DIEVIf-8), = E+F,
which are given as follows. First,

E:i=Trg@ Nla= Y DY tr(gu, 0,0 @ NaG,d))

0<j<I<s

= Y ()UFDSHAFARAEDCED 1 (gg 1,150,001 © Balde) © Sathesnd)):

0<j<k<I<s

.....

second term, we get
F = Trg(_(_1)|§|'|f|f e
_ Z (_1)|f|+1+(k+1)s+j—k

= r(8a(j,....5,0,...k) © (f * &alk,.... /)

0<k<j<s

= Z (—1)|f|+1+(k+1)s+j_k+(|f|_l+k)(j_l)'tr(ga(j ..... 5,0,...k) © Ja(k,...1) © &a(l,...,j))

0<k<l<j<s
— Z (— )| 1G4 Ds ) =k A f ARG =D +(f 11—+ =D (A~ +])

0<k<i<j<s (..., ) © 8a(jys,0,k) © Jalle,...l))s
where we used that tr(h o k) = (—1)%? - tr(k o h) when the (Hom-degree) + (de Rham degree) =
(total degree) — (Cech degree) of 4 and k is a and b, respectively, and that the Cech-degree of any
ha(j,....s,0,..,1) 18 1 +s— j +[. With this, we obtain
3100 Y DI (@ Dans.0,d) © Sulhrnd))

O<k<l<s
= Y (~)EFEDSFATADUETIFO r(Zo 1 1) © Balsnnss,00mk) © Sarlhon]))

0<k<I<j<s

+ Z (— ) EFDsHE==DED tr(gh i 500 © Balond) © Suthn D))
0<j<k<l<s

=F+E,
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where we used that § = d + g and d - d = 0, and that the (de Rham, Cech, Hom)—triple degree of
ga(l,....s,0,...,;) 18 (0,1 +s—1+ j, I —s— j). Comparing the left-hand sides of (3-9) and (3-10), and
using that g is a Maurer—Cartan element, so that §g = —(Dg + g-g) = —g - &, we obtain that

B+C=(39=0G-100=E+F = (Trg([g, f]))a = (Ttg(D(f) + (8. =1(/)) - O

Remark 3.9 The trace map of O’Brian, Toledo and Tong [1981c, Section 3] satisfies some additional
properties which carry over to our trace map from Definition 3.7 . For example, following the algebraic
proof from [loc. cit., Proposition 3.8], Trg vanishes on graded commutators: for a Maurer—Cartan
element g and cocycles u,v € C; (X, Q(U) ® Perf(U)), Trg (4 -v) and Trg (v -u) are cohomologous (up
to sign) in C*(X, Qnpo(U)).

We have one further structure on C; (X, (U) ® Perf(U)) coming from the holomorphic connections V
of the objects £ of Perf(U). Note that there is an induced connection on the Hom-bundle Hom*(E, E’) of
two graded bundles E and E’ with connections, which we also denote by V: Qp (U, Hom*(E, E')) —
Q}'K’;l (U,Hom*(E, E’)), and which is a graded derivation with respect to the wedge composition o using
the total degree of Q7 (U, Hom*(E, E')).

Definition 3.10 Define V: C; (X, Q(U) ® Perf(U)) — C; (X, Q(U) ® Perf(U)) to be given in com-
ponents by the maps (—1)? - V: Qﬁol(U, Hom? (Eq(p). Ea(0))) — QEJI(U, Hom?(y(p). £a(0)))- More
explicitly, for f € C; (X, Q(U) QPerf(U)), f ={fulacx, we define V f = {(V f)a}laecx to be given
by (Vf)a :=(=1)?-V(fy) when o € Xj,.

One can check that Vo8 = —§ o V, and that V(f-g)=V(f)-g+ (=D f.V(g), where | f| is the
total degree of the triple grading.
Definition 3.11 Let X be a cyclic set and let 7: X — dg N (Perf(U)) be a simplicial set map. By
Definition 3.4, we get a labeling L: X¢ — Obj(Perf(U)), and a Maurer—Cartan element

g € C; (X, Perf(U)) = C; (X, Q(U) & Perf(U)).

For a vertex o € Xg, denote by dg, the internal differential of the chain complex of vector bundles &y,
out of which we build the element d = {dy}aecx € C; (X, Q2(U) ® Perf(U)), given by dy := dE,,, and
which has triple degree (0,0, 1). Thend + g € C; (X, Q(U) ® Perf(U)), and we call

A:=V(d +g) e C;(X,QU)&Perf(U))

the Atiyah class, which is concentrated in degrees (1,k, 1 —k) for k > 0.

Proposition 3.12 We have (§ + D + [g, —])(A) = 0, and thus
8(Trg (A¥)) =0 forall k > 0.
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Proof We apply V to the Maurer—Cartan equation (3-4), ie to § g+Dg+g-g=0. Using 2] g= 8V g,
and V(g-g)=Vg-g—g-Vg=—[g, Vg] together with

VDg=V(d-g+g-d)=Vd-g—d-Vg+Vg-d—g-Vd =—-D(Vg)—|[g,Vd],
we obtain
0=V@g+Dg+g-g) =—8(Vg)—D(Vg)—Ig,Vd]—[g, Vel = —(@ + D +[g, - (Vg + Vd).

In the last equality, we also used that § (Vd) = 0 (since the deleted Cech differential vanishes on 0—
simplices), and from d? = 0 it follows that 0 = V(d - d) = Vd -d —d -Vd = —D(Vd). This shows
that, for A = V(d + g), we have (§ + D + [g, —])(4) = 0.

Since (8 + D + [g,—]) is a derivation on C; (X, Q2(U) ® Perf(U)), the k™ powers of a also satisfy
&+ D +[g.—])(4¥) = 0. Thus,

8(Trg (4) "= Trg (B + D +[g. - (45) = 0. 0
We are now ready to define our Chern character map Ch: IVB — 2, which is a map of simplicial
presheaves, as shown in Theorem 3.14 below.

Definition 3.13 We define the Chern character as a map Ch:IVB — ; that is, for a complex manifold U
and k > 0, we define a map Ch(U),: IVB(U), — (U),.
For an n—simplex F e IVB(U ), = sSet(&” ,dg N(Perf(U))), we have (by Definition 2.5 and Example 2.8)

.....

satisfies the Maurer—Cartan equation by Corollary 3.5. To this we associate Ch(U), (F) € (U),, which
is a labeling of the nondegenerate cells of A” by elements in 27 ,(U)[u]*=<° (by Definition 2.15 and

Note 2.16). Consider a nondegenerate k—cell of A" given by the vertices iy, .. ., i of A" withig <---<if.
If k = 0, then we assign the Euler characteristic y(Ej,) to this cell. If kK > 0, then we use o = (ig, ..., ix) €
&Z to assign the following expression to this cell:

k uk k Mk Mk
(3-11) Trg(A )Q-F =Tr, ((V(d +g2)) )“-F = Z +tr(g-V(d+g)-Vd+g)---V(d +g))a-F.

For example, here are the assignments for simplicial degrees 0, 1 and 2:

n=0 A O-simplex F € IVB(U)y is just the data of one object £ = (E — U, V) of Perf(U). Then
Ch(U)o(F) is the labeling of the A® by Euler characteristic of &, denoted by y(E) € Q}?O](U Yu]*=0.

n=1 A l-simplex F € IVB(U); consists of bundles & and £; and sequences of morphisms go101...
and g1910...- Then Ch(U)(F) is the labeling of Al given by x(&;) on the vertices of Al and on the
edge of A! we place the labeling Trg (V(d + g))(0.1) - % € QL ;(U)[u]*=<0, where (0, 1) € Al

X(?o) Trg (V(d +8))0,1) - u X(?l)
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Explicitly, the trace has terms (using g; = dg; for the internal differential of E;)

Trg (V(d + g))0,1) =tr(g101Vg1 — go10VE&o + g10V&o1)

n =2 A 2-simplex F € IVB(U ), consists of bundles &y, £ and & and sequences of morphisms
ioiy...ip, for p > 1 and i; € {0, 1,2} for any 0 </ < p. Then, Ch(U)>(F) is the labeling of A? given
by x(&) € Q}?O](U)[u]’EO on the vertices, Trg (V(d + g))(,j) U € Qﬁol(U)[u]'SO on the edge of Al we
place the labeling Trg (V(d + g)-V(d + £))(0,1,2) u?/2 e Qﬁol(U )[1]°=° on the nondegenerate 2—cell,
where (0,1,2) € A2
x(E1)
[}

Trg (V(d + 8))(0,1) - u Trg(V(d +8))2) - u
Trg (V(d 4+ g)-V(d + £))(0,1,2) - u*/2!

1(Eo) Trg (V(d + £))02) - 2(E2)

Explicitly, we have (again using g; = dg, for the internal differential of E;)

Trg(V(d +g)-V(d +8))0,1,2) = tr(g20VgoVgo12 + 220Vg01Vg12 + g20V £012V £2)
—1tr(g201Vg1Vg12 + g201Vg12Vg2)
—tr(g120VgoVgo1 + g120Vg01Vg1)
+tr(82012Vg2Vg2 + 81201 V€1Vg1 + 80120 Vg0V g0).

Theorem 3.14 The Chern character Ch: IVB — Q defined above is a map of simplicial presheaves.

Proof We use the notation from Definition 3.13. First, we note that Ch(U ), (F) is a well-defined element
of &(U),, ie we still need to show that the labeling satisfies (2-9). Since the internal differential vanishes
for Qp (- )[1]*=?, this amounts to showing that, for each p—cell given by & = (ig, ..., ip), the sum of
the labelings on the boundary cells vanishes. This follows since
k . . uk k , . uk . uk

D1y (T D 7 ) = S T Aty i = BT (45) - S =0
j=0 Jj=0

using Proposition 3.12 for the last equality. Next, we show that Ch(U): IVB(U) — (U) is a map of
simplicial sets, ie that it respects the face and degeneracy maps. If §; : [n] — [n+ 1] is the j™ face map, then
dj:IVB(U),+1 — IVB(U), is given by precomposition with Al — APt {0,....nY 5 (g, ....ix)
(6 (io), ..., 8 (k) €40,....,n + 13X, Thus, for F € IVB(U),+ with corresponding Maurer—Cartan
element g, we have Ch(U);, o d; (F)|g=(ig<-<iy) = Trg (Ak)(gj (i0)<<8, (ix)) -u¥ /k!. This is equal to
taking Ch(U),,+1(F) € DK(C),+1 = Chain(N(ZA"*1), C), where C = Ql‘ml(U)[u]'fo, after applying
dj:DK(C),4+1 — DK(C), to it, and looking at the labeling of the cell ip < --- < i} of A”. Similarly, if
0j:[n] — [n—1] is the j™ degeneracy, and s; : IVB(U),—1 — IVB(U), is the induced map, then, for
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F € IVB(U),—1 with corresponding Maurer-Cartan element g, we get Ch(U ), 05, (F)lq=(ig<-<iz) =
Trg (Ak)((,j (i0)<<0; (ix)) -uk /k1. Now, if o is injective on {ig, . . . , ix }, then, by Note 2.2(5), this is equal
t0 Trg (A%) (5 (19)<-<a; (1)) - #¥ /K", which is the labeling of s; 0 Ch(U),—1(F) at ip < -+ < i. In the
case where o7 is not injective on {io, ..., ix }, we get that 8o, (io)...o; (i) 18 either the identity or zero, so,
in either case, Vgq, (ip)...o; (k) = 0, and thus Ch(U)p 0 5j (F)la=(ig<-<ir) = 0, which is equal to the
degeneracy s; : DK(C),—1 — DK(C), applied to Ch(U),—1(F) at the cell ig < --- <.

Finally, we show that Ch: IVB —  is a map of simplicial presheaves, ie that under a holomorphic map
¢: U — U, the following diagram commutes:

B Y 9w

IVB((p)l lﬂ (o)

vBw) — 29, 9w)
This follows, since both compositions are given by pullback via ¢, ie for 7' € IVB(U’) with induced
Maurer—Cartan element g’ and induced differential d’ on E/,, we have

k

Ch(U), cIVB, (‘P)(]:/)la=(i0<--~<ik) = Tr(p*g’((((/)*V)((p*(d/ + g/)))k)a . %

k u
= 9" (Trg (V' +80)) ) o
= Q(¢)no Ch(U,)n (}—/)la=(i0<---<ik)- o

4 A higher Chern character for coherent sheaves

In this section, we apply a construction, which we will call Cech sheafification, to the Chern character map
Ch: IVB — @ from Definition 3.13. More precisely, an endofunctor on simplicial presheaves F — F i
is defined as the colimit over all Cech covers of the totalization of the presheaf applied to the cover (see
Definition 4.1), and then an explicit interpretation is offered for the induced map ChJr IVBT = af.
Theorem 4.9 states that O—simplices of IVBT are twisting cochains (up to equivalence) in the sense
of O’Brian, Toledo and Tong [1981c], and Theorem 4.18 states that the induced Chern character Ch'
recovers the Chern character from [loc. cit.].

To fix some notation, let (U; — X);es be an open cover, which is a particular diagram in CMan. To this
cover we associate the augmented simplicial presheaf NU, — X whose p—simplices are coproducts of
representable presheaves given by (p+1)—fold intersections of the cover,

[\?Up: ]_[ in() ..... ip»

where y U denotes the Yoneda functor applied to U, ie yU : CMan®? — Set, V + CMan(V, U), interpreted
as a constant simplicial set. Given another simplicial presheaf F we abuse notation by writing F (]V U.)
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for the cosimplicial simplicial set with

4-1) F(NU), = [] FWip,...it)p:

Definition 4.1 Given a simplicial presheaf F : CMan® — sSet, define its Cech sheafification on a test
manifold X € CMan to be the simplicial set given by
(4-2) FY'(X):= colim _Tot(F(NU.)),

(Ue—X)eS
where S is the category of all Cech covers, and Tot is the totalization, which is reviewed in Appendix B.
(For further details about the totalization, see our previous paper [2022, Appendix D.1] and [Hirschhorn
2003, Definition 18.6.3]; specific examples of Tot are worked out in Note 4.5 below, as well as in our
previous paper [2022, Proof of Proposition 3.16].)

While F may not be a hypersheaf in general, Section 5 discusses the sheaf property and there the above
definition is justified.

Proposition 4.2 If F is a simplicial presheaf which takes values in Kan complexes, then its Cech
sheafification is a Kan complex.

Proof By Proposition C.1, for an open cover U, of X, Tot(IVB(N U,)) is a Kan complex. Now, since
our colimit over Cech covers is directed once we pass to simplicial presheaves NU., one can check by
hand that the colimit in IVB' (X) sends a diagram of projectively fibrant objects to a projectively fibrant
object (ie IVB' takes values in Kan complexes). a

Definition 4.3 The Cech shedfified Chern character map Ch%: IVB% = @ is the map obtained by
applying Cech sheafifications to the Chern character map from Definition 3.13.

4.1 Cech sheafification of IVB as twisting cochains

In this subsection, the vertices of the simplicial presheaf, IVB%, are examined and shown in Theorem 4.9
to be precisely the twisting cochains of O’Brian, Toledo and Tong [1981c] up to equivalence. We thus
define:

Definition 4.4 An infinity vector bundle over a complex manifold X is a O—simplex of IVBJr (X).

The following note looks at the k—simplices of IVBJVF(X ) in general, before focusing more specifically on
the O—simplices:
Note 4.5 Fix a complex manifold X. Definition 4.1 applied to F = IVB yields

(4-3) IVBY(X) = colim Tot(IVB(NL)).
Ue—X)eS
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Now fix a Cech cover, U, — X, and denote by K 2 the cosimplicial simplicial set whose /—cosimplices
are given by
K! :=TIVB(NU;) = Perf® (NU).

Following (B-2), a k—simplex in Tot(K) consists of a collection {x ¥/ )}120 with

x®D ¢ Set(A% x Al K1) = sSet(AF x Al Perf® (N14))

) sSet(AF x Al sSet(A, dg N (Perf(N4;))°))

= sSet( colim ﬁp,dgN(Perf(]\\?Lll))c’),
AP —AKxAl

where in the last equality the calculation from (B-8) is used. Thus, according to Appendix B, page 4985,
these are given by p—cells

(4-4) x(fo’l.). o € dg NV (Perf(N Z/{l));
5]
for certain paths [%°| || in the (k + 1) x (I + 1) grid (ie for any path within the indices of a
paths [§0] 7] g y P
P ~
nondecreasing path). Given such a path [%g |7 Zﬁ ], and a choice of a component iy, ....i; € N

describing an (/4 1)—fold intersection, the p—cell (4-4) decorates each index [Z’ ] with a bundle-with-
J

connection
E (k,0)

ag |- ap | o], .
FE

and decorates subpaths [%g } - { %"] of these indices with maps between them. To be precise, before
q

taking into account any simplicial or coherence conditions, the p—cell (4-4) is itself (by Example 2.8 and
Lemma 2.9) given by the data

(4-5) x ) = {x(k’l) },
[l 3]
where we vary over the components iy, ..., i; of JVZ/II and
A P 1 IS FIE S
gD gD N );
[gg;;j;ﬂ;[gjjjg_ﬂ;io ‘‘‘‘‘ i [gg;;;gﬂ;[gﬂ;io ‘‘‘‘ i [gg;;jgz];[gﬂ;io ,,,, i

here the g’s are associated to any subsequence [%2 ‘ } %Z] for g > 0, of the indices from [%g ‘ } %ﬁ ]
Moreover, these g’s satisfy the relations from (2-5). Since the simplices of x*!) fit together via the
simplicial set relations, the above data (4-5) does not depend on the chosen p—cell determined by
[%g - } zﬁ ], and thus x %D ig given by the data

46 xD — ( ERD Ly ykD D gD gD )
[T T i

s 8r~ - : _
m;io ,,,, i m:io ,,,,, i [%Z%‘f}zo ..... il |:%q:|;i0 ..... i
q q
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For example, for k =2 and [ = 0, 1, some of this data is visualized below, where both the nablas and the
open set indices iy, ..., i; are suppressed for better readability:

on Uj, for each fixed ig on Uj, ;, for each fixed ip and iy

£2.0 £ £

i A e
(2,5 / \ gl //

“Ta) g\t B e
[0‘0] @.1) g(Z,l) [1H
£C20) E@D g Loh) / 2.1
[1] [1] HOH 8ro|1|2
0 @0 o b /o e\ fen Pl
. g[o‘lﬂ g[o‘z] ¢« — g[l‘l] .
0[0]0 0(0 01

\ ,-\p
\ g@D @.1)

2.1
g
(2,0) g(lzgl) [GM [(Il‘: 2] \g(]2;1) [(1) ﬂ
Enp ol i
[f3) @.1)
N\ B <
) [ g[zzé]l) N .
E@O E@D o1 @D

] ]
Now, by the compatibility relations (B-7) in Tot(K), the data given by the right-hand side of (4-6) is
determined by the lowest / for which a given set of indices [%2 ! - ‘ g«"] can be obtained via a face map.
For example, ’

E(k;Hll) ‘ B0 (component of dj(x(k’l))) = E(f’l? o |Uio
|:8j(/3)j|:10 ,,,,, 41 /3 7/ P Liseoos 41
where d/ acts by pulling back a bundle to a subset (by Definitions 2.5 and 2.1), ie by restricting the
vector bundle to this subset. In particular,

gl
[g};io,...,n m;iﬂ

and similar statements apply to the g’s.

Thus, the data of a k—simplex in Tot(K) is given by (suppressing the tildes)

(k,0) (k,0)

AN

(1) chain complexes of holomorphic vector bundles Eq;; := E; -
for any index [‘(’)‘] onthe (k + 1) x (0+ 1) grid; M‘l

ka

*:0) on Eg;i;

HE

RN (. ))
;Z]:io ,,,,, i '_g[gz
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for / > 1 and for any B’s which include all the indices from 0 to /, ie for {Bo, ..., B4} =1{0,....,1};

this is because if there was a j €{0, ..., [} with j ¢ {Bo, ..., B4}, then the map g(fo’l) al.
would, according to (B-7), just be the restriction [ﬁo ﬁq] SHosee e ijaee sl
(k,1—1)
g|:om qu:l.i i i ’Ui() ..... ij """" i/’
Yl | va 10,y Greees i /
(k,i—1)

where B; = §;(y;) for all 7, and so the data could be recovered from the map g

ag| .. A .
q] | 1) PN Ljyeuns i
Yaq

o
via restriction. [Vo

. . o -l . . .
Of course, as before, the sequence of indices [ ,38 ‘ ‘ ﬂq] has to come from a nondecreasing set of indices
q

ona (k+1)x (Il +1) grid (see Section B.3). Sometimes we simply write g[ao

aq} when the context of
Bo

Bq

the open set Uj,....;, is clear.
In particular note that:

¢ Using the fact that we land in the maximal Kan subcomplex dg N (Perf(U))° of dg N (Perf(U)),
for ¢ = 1, the maps on 1—cells g[

ag | o

] ~ are all quasi-isomorphisms.
slos 11

Bo |1
* Finally, these maps satisfy the relations from (2-5) on Uj,,....;:
4-7 w0+ |ag o 17 g4, wol- - | g
D 1 I A P
q—1 qg—1
=3 D T g e T D DI g 0 g et
VT o 2 FEA

The above note is applied below to the case of O—simplices, in order to relate them to twisting cochains
defined by O’Brian, Toledo and Tong [1981c, Definition 1.3], which we now briefly review.

Note 4.6 Let (U; — X);es be a given cover, and let £ — U; be graded holomorphic vector bundles
over U;. Then, according to [loc. cit.], a is a twisting cochain if a = ijo a’ 177 with a/177 €
C/(U,Hom!'™/ (E, E)), which is given by a collection of bundle morphisms on intersections of open

sets, a/»1=/ = {aio,...i; - Ei |Ui0 """ i Eio|U,0 """ i Yio,....i; €1 » satisfying conditions [loc. cit., (1.5)] on
each Uj,...,i,
q—1 q
A = Yo i
(4-8) Yo Way, gy, + Y (DD Dy oay i, =0,
=1 j=0

Note that, compared to the data of a Ig—simplex in IVB% (X) (see Note 4.5(1)—(3)), there is a priori no
chosen connection. A version of IVBT(X ) is also provided then without connection. Recall from (2-7)
that IVB(U),, = sSet(A”, dg ' (Perf(U))°).

Definition 4.7 Define Perf: CMan® — dgCat by setting ﬁgﬁf(U ) to be the dg-category of finite chain
complexes of holomorphic vector bundles, just as in Definition 2.1, but with the difference that we do not
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choose any connection on E,. Analogously to IVB from Definition 2.11, define IVB: CMan® — sSet
by setting IVB(U),, := sSet(A”, dg N (Perf(U))°).

For a Cech cover (U, — X), Note 4.5 can be repeated to obtain an explicit description of Tot(IVfi(f\7 u,)).
Indeed the data of a k—simplex of Tot(ﬁl/i (]V U,)) is given by the data of chain complexes of holomorphic
vector bundles Ey;; as in (1) together with maps g[ao aq} " as in (3), but without any connections
as stated in (2). Pol-+1Pa

The following lemma relates the above definition to the one with connections:

Lemma 4.8 The dg-functor Perf — Perf that forgets the connection induces a map of simplicial
presheaves IVB — IVB, which after applying the Cech sheafification (Definition 4.1) yields an iso-
morphism of simplicial sets IVBT(X) => IVBT(X).

Proof For a fixed cover (U, — X), the forgetful map Tot(IVB(N Uu,)) — Tot(ﬁf}(ﬁ U,)) forgets the
information of the con{lections as sta}ted in (2) in Note 4.5. Taking colimit over covers, this descends to a
well-defined map IVBT (X ) — IVET(X ) which is surjective, since every complex manifold has a (Stein)
open cover such that, for every open set of the cover, there exists a connection on the corresponding
bundles.

It remains to check injectivity. Assume that two k—simplices x, x” € IVB}r(X )k are mapped, respectively,
to X,X’ € ve' (X )i by forgetting the connections, and that these are equal, ie X = X’. This means that
there is a zigzag of refinements and extensions with respect to the colimit over covers which connects
X and X’ in IVBJr (X)g. Since every k—simplex in IVBT(X ) has a refinement which is in the image of
IVBT (X) under the forgetful functor, (ie it has a choice of connections on the bundles for each open set,)
it is enough to consider the case where ¥ and X’ are both refinements of y € VB* (X)k, where y may
not be in the image of the forgetful functor. In order to prove injectivity, it is enough to show that there
exists a Z for which both X and X’ are refinements, and which is in the image of the forgetful functor,
so that taking a preimage z of Z shows that x and x’ are equal in IVB' (X)g. To this end, note that, if
x and x’ are represented on fixed covers U, and U/, respectively. Then we define Z represented on the
cover U, LI U/ as follows. To define the bundle data (1) for Z, if V' is an open set in the cover U, or U/
pick the bundle for that open set from X or X/, respectively, which we note to be equal to bundles from j
appropriately restricted. To define the maps g from (3) for Z, if V7, ..., V; are open sets from U, U U/, we
have bundles over V; coming from the data y, and so we take the maps of bundles as provided by y. Note
that X and X’ both extend Z, and, moreover, Z is in the image of the forgetful functor by the extension z
of x and x/, since there are connections on each of the bundles coming from the data (2) provided by x
and x’. ]

With this definition, the main theorem of this section is stated below.
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Theorem 4.9 The equivalence classes of O’Brian, Toledo and Tong [1981c] of twisting cochains inject
into the vertices of IVBT (X).

Proof By Lemma 4.8, we may forget about the connections, and simply inject twisting cochains into
vertices of IV]?WVL(X ). By Note 4.6, a twisting cochain on a cover (U; — X);ey with holomorphic vector
bundles E7 — U; is given by a cqllection a ={ai,...., i }io,..-,ij el,j>o0 satisfying (4-8). To this, we assign
the data of a O—simplex in IVBT(X ) as stated in (1) and (3) from page 4962 as follows. First, the
Eo.; — U; from (1) are just the given E;. As for the g’s in (1) and (3), define

k,l
(4-9) gE ) = aiﬁo ..... By

0] 0]'1_ ;
ﬁq 10s ey 1

Bo
Note that the twisting cochain equations (4-8) imply (4-7). Moreover, the equivalence of twisting cochains

is generated by refinements and extensions (see [loc. cit., page 232, above Proposition 1.10]), which
identifies the corresponding infinity vector bundles (due to the colimit in (4-3)).

To check injectivity, we give a map in the opposite direction, which is a left-inverse to the above map.
Explicitly, for a O—simplex in IVBf (X) represented by a cover (U; — X); and bundles E; with maps g
as in (1) and (3), we define the twisting cochain

k,l
(4-10) aio,...,ij = g(() 0) 0 ?

[0‘1‘.~ ‘/]iﬂ ol
which preserves the twisting cochain equations (4-8) due to (4-7). The colimit construction implies
equivalence of twisting cochains. The composition of these two constructions, which maps twisting
cochains to IVBT (X)o via (4-9) and then back to twisting cochains via (4-10), is the identity on twisting
cochains.

As a final remark, we note that there are different (nonequivalent) choices for a left-inverse other than (4-10).
In fact, equation (4-9) assigns the same homotopy a;, ..., ;, to any

(4'1 1) g[(xo
Bo

o). . With ig = jo,....ig, = Jg,

while in VBT (X)o these maps (4-11) may generally be different. Therefore, any choice (consistent
within the Maurer—Cartan equation (4-7)) may thus be used as a left-inverse for (4-9). O

To end this subsection, consider the restriction of the simplicial presheaf IVB to the one which only
utilizes chain complexes of vector bundles whose homology is concentrated in degree zero. Below we
show that the associated simplicial presheaf contains (after sheafification) all of the data of isomorphism
classes of coherent sheaves in its vertices.

Note 4.10 For the reader’s convenience, we review here a construction from [Toledo and Tong 1978a,
Section 2]. Let X € CMan and a, be a twisting cochain for a cover (U, — X) with holomorphic vector
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bundles E; (see O’Brian, Toledo and Tong [1981c] or Note 4.6 above). Consider the locally defined
sheaf of Ox-modules, H; := H.(I'(E}), a;), given by the homology of sections of E} with differential
a; over U;. Since each a; ; gives a quasi-isomorphism on the level of complexes, there is an induced
isomorphism of sheaves on homology a; ;: Ui jly; = Ui,j|3;. Taking the colimit? of the H; over the
diagram induced by these a;; produces a sheaf on X which we will call the homology sheaf and denote
by #. This construction further produces a map? of simplicial presheaves

@-12) VBT 25 \/(ShO*),

where N denotes the nerve, and ShO® is the category of sheaves of graded Ox-modules (without
differential) with morphisms given by isomorphisms. The relevance of this construction to coherent
sheaves is recorded in the following definition and proposition.

Definition 4.11 The simplicial presheaf CohSh < IVB is the subsimplicial presheaf defined by consider-
ing the full subpresheaf of dg-categories, Perf.,, < Perf utilizing only chain complexes of bundles whose
homology is concentrated in degree zero and then taking CohSh(X), := sSet(ﬁ”, dg N (Perf.on (U ))°).

Lemma 4.12 Given a manifold M and a coherent sheaf F, there exists an open cover by relatively
compact Stein open submanifolds on which F is locally resolved by a chain complex of vector bundles.

Proof M admits a cover {U;};e; by Stein open subsets. For each Stein submanifold Uj;, it admits
an open cover by relatively compact open sets {V; ;}ier, jes;- Now, for each relatively compact open
submanifold V;, j, we cover it one final step further by open Stein sets W; ; . As each W; ; 1 is a subset of
a relatively compact open Stein manifold Uj;, then, by [Field 1982, Theorem 7.2.6], F admits a resolution
by vector bundles on W; ; 1. O

Proposition 4.13  The set of isomorphism classes of coherent sheaves on X is in bijective correspondence
with the connected components of CohSh' (X).

Proof Recall the map H: IVB% (X) — N(ShO%) from Note 4.10. But, since CohSh requires the local
chain complex’s homology to be concentrated in degree zero, the map’s image lands in N'(ShOx) —
N (ShO%), where N'(Sh Ox) is the nerve of the category of sheaves of Ox—modules (concentrated in
degree 0). Since the image of our map is precisely an Ox which satisfies the properties of a coherent
sheaf, then the map factors through the nerve of the groupoid of coherent sheaves with isomorphisms,
#: CohSh'(X) — N (CohSh Ox) <> N(ShOx) which in turn is well defined as a map which sends con-
nected components of CohSh' to connected components of A/(CohSh Oy), ie precisely the isomorphism
classes of CohSh Oy.

2Here we mean the concrete set-theoretic colimit given by a coproduct of 7{; and then mod out by the equivalence generated by
aj,jonUj ;.

3Which, importantly, is not coming from a map of complexes or even graded modules.
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To observe injectivity, we consider the image of two vertices x, y € Cthh}r (X)o, represented by cocycle
data on some common refinement by a Stein cover, (U, — X'), whose images H(x), H(y) e N (CohSh Ox)
are connected by an edge. In particular, this means that the global homology sheaves for x and y are
isomorphic as O-modules. In order to construct an edge z € CohSh' (X)1 connecting x and y, we
first need local quasi-isomorphisms connecting the local resolutions for the chain complexes of bundles
x and y, respectively. These maps are given by recalling that these complexes over a Stein space are
projective resolutions [Forstneri¢ 2011, Corollary 2.4.5] and so maps on homology induce chain maps
between the complexes [Hilton and Stammbach 1971, Theorem 4.1]. So far, these quasi-isomorphisms
produce the edge data for z on U;, and the 1—skeleton of the edge data for z on higher intersections. To
move up to the 2—skeleton, say on U; ;, we see that we now have two quasi-isomorphisms between the
complexes for x and y: one restricted from the quasi-isomorphism over U; and the other from U;. Again
appealing to [Hilton and Stammbach 1971, Theorem 4.1] we now know these two quasi-isomorphisms are
chain-homotopic and this provides all of the data for z on U;’s, U; ;’s, and the 2—skeleton of the data on
higher intersections. Now, by O’Brian, Toledo and Tong [1981c, Lemma 1.6] and the ensuing discussion
there, one uses an inductive argument for how our higher homotopies of z would be constructed to satisfy
the Maurer—Cartan equation and since their constructions include into ours (see our proof of Theorem 4.9),
one indeed can construct an edge z connecting x and y to prove injectivity.

For surjectivity, applying Lemma 4.12 and then following [Toledo and Tong 1978a, Propsoition 2.4], for
a coherent sheavf F there exists a Stein open cover (U; — X);ey, so we can choose a twisting cochain
class in CohSh’ (X)o by locally/projectively resolving the coherent sheaf by a complex of vector bundles,
coherent on intersections U; j up to quasi-isomorphisms, and further coherent on Uj,,, .., by higher
homotopies which again exist by virtue of Lemma 1.6 of O’Brian, Toledo and Tong [1981c] and the
discussion which follows it. It follows that the map # is surjective on connected components since in the
proof of Theorem 4.9, we show how their constructions include into ours. |

4.2 Cech sheafification of the Chern map Ch

This section continues the study of the Cech sheafified Chern character map Ch’l : IVBWVL - of (where
F %(X ) = colim(U. S X)es Tot(F (]V U.)) was defined in (4-2)). In Theorem 4.9 twisting cochains a la
[loc. cit.] were already interpreted as O—simplices of IVBT. Next, in Note 4.16, 2T is explicitly described
as well as the map Chf for the case of O—simplices. Comparing the formulas for the Cech sheafified
Chern character map Ch' with the Chern character map from [loc. cit.] for a coherent sheaf (which is
reviewed in 4.17), shows, that these are given by precisely the same formulas. This result is stated in

Theorem 4.18.
The following note reviews Tot(€2 (]V U,)):

Note 4.14 Fix a Cech cover (U, — X). Then Tot(£ (1\\7 U,)) is the totalization of the cosimplicial
simplicial set €2 (]V U,) = ]l((Ql'ml(N U)[u]*=%). Recall from Note 2.16 that the n—simplices of Dold
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and Kan applied to the chain complex £2p (V) [u]*=0 for some open set V, are decorations of the standard
n—simplex, ie they assign to each /—simplex, polynomials a € QEOI(V)[M]'fo of total degree —I,

Z;'io a2l yl/2+J when [ is even,

Y92 pa Tl T2 when [ is odd,

where a? € Qf o1(V). The condition (2-9) imposed for these decorations is that the alternating sum of the

(4-13) a=

faces of a /-simplex agrees with applying the chain complex’s differential to the data of the /—simplex:

l
0=dc(@) =Y (-1)/d;(a).

j=0
where C is the complex C = Q}'ml(V)[u]'50 with zero differential dc = 0, (see Definition 2.15).

Now, from Sections B.1 and B.2, O—simplices of the totalization Tot(£2 (f\? U,))o consist of coherent
decorations of the standard n—simplex by data coming from €2 (]V Un):

¢ on each U;, a O-simplex in Il((ﬂhol(Ui)[u]'fo), ie a polynomial a; as in (4-13) with [ = 0:
o 00 2j
aj _Zj=0ai ‘u,
e on each Uj ;,, a 1-simplex in DK(Q} ;(Ui,i; )[u]*=?), ie a polynomial a;, ;, as in (4-13) with
2j+1
I=1:aigi =Y 7200, /T

e on each U;, i, asin (4-13).

..........

These polynomials satisfy the conditions

l l
0= Z(_l)]dj (@ig,...iy) = Z Uig.....is |ai0 ..... Pjoenip?

=0 =0
where the last equality follows from (B-5) and Example B.1.

Recall from [Grothendieck 1966] that the Hodge cohomology B, , H” (X, Q7) is given by a sum over
the p" sheaf cohomology of the sheaf of holomorphic ¢ forms (see also “Hodge theory” or “Hodge
decomposition” [Frolicher 1955]). O’Brian, Toledo and Tong [198vlc, Section 4] defined the Chern
character as an element in @, H k(x, ). Below we see how our T relates to the Hodge cohomology.

Proposition 4.15 The set of connected components of SNVL(X ) forms a ring which is isomorphic to the
even part of the Hodge cohomology ring,

@)~ @ HP(X.Q9).

p.q
p+q even

Proof The proof follows first from a direct observation that the vertices of Tot(£2 (]V U,)) are precisely
(since the differentials are all zero) a direct sum of Cech I—cocycles of holomorphic forms (even degree
forms for / even and odd degree forms for / odd), and then from the observation that edges in Tot(£2 (]V U,))
correspond to Cech coboundaries. O
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We next illustrate our sheafified Chern map Ch}r.

Note 4.16 Consider a Cech cover (U, — X), and a vertex in Tot(IVB(]V U))o as provided by Note 4.5,
ie the data of holomorphic bundles Ey;; with

o differentials d = gm ~from (1);
0 N

e connections Vo; from (2); and

e maps g[o

07 ~ from (3).
,BO ],lo ..... 123

Bq

Then our sheafified Chern character map IVB% LS.UN Qf simply applies the Chern character Ch:IVB — €2
from Definition 3.13 locally to the data in our vertex by allowing the indices from that definition to be
given by the indices of the open cover. To clarify, the vertex above gets mapped to the following vertex in
Tot(R (NU))o:

e On each U;, assign the Euler characteristic of Ey.;, denoted by y(Eo;;) - u e ngl(Ui)[u]'fo.

.....

e Oneach U, ;,, using g = {g[o

‘ 0]‘1,0 il}(ﬂO B,)eAl> assign the monomial
Bo o

Trg (V(d +8))0,1) U € o (Uig,i )ul™=’
and restrict the Euler characteristic above on the vertices (see Definition 3.13):

Uio,il |X(E0;i0) Tl‘g(V(d + g))((),]) iz UiOsil |X(E0:i1)
. .

e For each Uj, ;,,....i;, using g = {gLgO - ‘ﬂ:io.il.....il (Bor..By AL assign the monomial
l
u L]
(4-14) Trg (V(d + ) o1ty 7S ot Ui i) 1]

to the top cell and to each face assign appropriate restrictions of the monomials defined for lower
intersections.

The above formula is now compared to the one provided by O’Brian, Toledo and Tong for the Chern
character map of a coherent sheaf.

Note 4.17 O’Brian, Toledo and Tong [1981c] construct characteristic classes for coherent sheaves via

the following four steps:

(i) Given a coherent sheaf, a twisting cochain a is constructed using [loc. cit., below Lemma 1.6].
This construction is well defined with respect to equivalences of twisting cochains; see [loc. cit.,
Proposition 1.10].

(i) Connection data is chosen for a so that we obtain a twisting cochain with holomorphic connection
data; see [loc. cit., above Proposition 4.4].
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(iii) The Atiyah class is represented by the class Va in [loc. cit., Proposition 4.4].

(iv) The Chern character is defined [loc. cit., above Proposition 4.5] using the trace map 7, to be given
by

1
(4-15) ch:= Z chy = Z ﬁra((Va)k).
k>0 k>0
Note that the trace map 7, from [loc. cit., above Proposition 3.2] is defined in the same way as our
trace map Trg in Definition 3.7.

Comparing the formulas (4-14) and (4-15) for the Chern character, these involve the same trace terms,
and so we obtain the following theorem:

Theorem 4.18 For a given coherent sheaf, the formula for the Chern character (4-15) from [loc. cit.] is
given by the terms in the formula (4-14) of the Chern character map

70(Ch') T o (QT)N @ HP(Q)
D.q
p+q even

(4-16) {isomorphism classes of coherent sheaves} >~ 1 (CthhT)

applied to the corresponding twisting cochain interpreted (by Theorem 4.9) as a O—simplex in CohSh'.

Proof A twisting cochain a defines the Maurer—Cartan element via (4-9). With this, the terms in the
traces in (4-14) and (4-15) coincide. (We note that the additional factor ul in (4-15) does not add any
extra information, as the power [/ is precisely the “Cech degree” given by the number of intersections
,,,,, i;-). Finally, the left and right isomorphisms in (4-16) are given by Propositions 4.13 and 4.15,

respectively. O

Note, in particular, that our sheafified Ch' provides not only a Chern character to resolutions of coherent
sheaves but also provides invariants for morphisms and higher homotopies between these resolutions.

Remark 4.19 A version of the Chern—Simons invariant for the straight line path between connections
is computed by m; (ChT) as we outline here. In the case where Vect <— CohSh is the full subcategory
of vector bundles, a loop representing a class in m; (VectWVL) is given by a vector bundle £ — X and
locally chosen connections {(E; — Uj, V;)}, along with a bundle automorphism f: E — E. Then
Ch' sends the vertex of this loop to the Chern character Ch' ({(E,-, Vi, gi j)}) and the edge induced
by f is sent to an odd Cech—-Hodge form, which we denote by Ch'(f), whose differential is the
difference between ChT({(E, , Vi, gij)}) and ChT({(E,, f*Vi,gij)}). Since Chf({(El,v,, gij)}) =
ChT ({(E,, f*Vi, gi J)}) f is sent to a closed odd form in the Cech—Hodge complex. Moreover, if two
loops f and f in Vect! are homotopic, then the difference between ChT (f) and ChT (f’) is exact, and
so 771(Ch") indeed computes a higher invariant.
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5 The induced map on classifying stacks

In this section we show that the previously considered Cech sheafified Chern character map (Definition 4.3)
is a map of simplicial sheaves when we restrict IVBT (see Definition 4.1 and Note 4.5) to the subsimplicial
sheaf IVB;n which considers complexes of vector bundles of a fixed length, n (see Definition 5.4).
Moreover, each of these simplicial presheaves contains a subsimplicial presheaf which considers complexes,
CohSh' and Cthh;n respectively (see Definition 4.11), whose homology is concentrated in degree
zero, yielding the commutative diagram

CohSh,, + CohSh
CohSh%, < CohSh'
: !

IVBL, —— 1VBT

L \v

IVB, > IVB

(see Proposition 4.13 for a justification of our notation CohSh). As such we offer in Theorem 5.13 an
upgrade on the statement of Theorem 4.18 to a statement about sheaves.

5.1 Sheaves in the local projective model structure

This section’s main goal is to sort out which of the (maps of) presheaves in this paper are in fact (maps
of) sheaves.

Given the Verdier site a la Dugger, Hollander and Isaksen [2004, Section 9] of complex manifolds
and holomorphic maps, CMan, the category of simplicial presheaves sPre(CMan) has multiples model
structures. One particular choice is the (global) projective model structure whose weak equivalences are
objectwise weak equivalences of simplicial sets and whose fibrations are objectwise fibrations of simplicial
sets [Blander 2001, Theorem 1.5]. Further this model structure forms a (proper simplicial cellular)
simplicial model category when we use the simplicial mapping space sPre(X, Y), := sPre(X ® A", Y).
After localizing this simplicial category over the class of maps induced by hypercovers, we further obtain
the local projective (proper simplicial cellular) model structure sPre(CMan)pyoj,10¢ [l0c. cit., Theorem 1.6].
The relevant criteria in this structure for us is that an object in sPre(CMan) o 10c is fibrant if it is fibrant
in the projective model structure and satisfies descent with respect to any hypercover thanks to Dugger,
Hollander and Isaksen [2004]. Such an object is referred to below as a (hyper)sheaf.

In presenting a classifying stack (ie classifying hypersheaf) for coherent sheaves, one could produce a
simplicial presheaf, F € sPre(CMan), and prove (at the very least) that for any manifold X € CMan, the
set of equivalence classes of coherent sheaves coincides with the connected components of the derived
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mapping space, RHom(X, F). Since we are working with the local projective simplicial model category
of simplicial presheaves this mapping space can be computed by cofibrantly approximating X with X—>X
(which in this case is the identity since X is representable and thus cofibrant), fibrantly approximating
F by F — F, and defining the right derived mapping space (ie the homotopy function complex from
[Hirschhorn 2003, Section 17]) as the simplicial mapping space on the replacements:

(5-1) RHom(X, F) := sPre(X, F) = sPre(X, F).

Thus F would provide a more concrete description of this classifying stack and any map of simplicial
presheaves F — S provides cohomological invariants by inducing a map between fibrant replacements
F—>Q; offering more explicit, cocycle-level cohomological invariants.

It is not immediate that our Cech sheafification computes the fibrant replacement. Below we first show
that if F is already a hypersheaf then F T is again a hypersheaf, even though this result is not used in this

paper.

Proposition 5.1 If F is a hypersheaf, then F tis a hypersheaf and the natural map F — F t is an
objectwise weak equivalence.

Proof By construction, we have already shown in the proof of Proposition 5.2 that Cech sheafification
preserves objectwise fibrancy without any assumptions on the homotopy type of F. To see that there is
an objectwise weak equivalence, we compute
FT'(X)= colim sPre(W, F),
W—X)esS

where S is a full subcategory of the overcategory CMan/ X, whose objects are hypercovers W — X.
Since F already satisfies descent, ie sPre(W, F) <= sPre(X, F),

FT(X) <= colim sPre(X,F) <= sPre(X, F) = F(X).
W—X)eSs

Now, to show that the Cech sheafification preserves hyperdescent, we choose a hypercover ¢/ — X and
argue that the natural map sPre(X, F T) — sPre(Ud, F T) is a weak equivalence of simplicial sets. On the

one hand, we have 3 y
sPre(X, FT) = FT(X) <= F(X),

while, on the other hand, we have

Pre(d. F 1) = sPre( hocolim | [ U; .. FT
sPre(U, )—>S_re( OiCGOAlml];I i,0 )

= holim [ | sPre(Ur g F
olim [ | sPre(Ui ;. F)

1,07

ol YU, ) <= holi Ry ~

= holim [ [ F' (Vi) <= holim [ [ F (Vi) = sPre. F) <= F (X).
L, 1,00
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where the last weak equivalence follows from F already satisfying descent. After repeated application of
the two-out-of-three property for weak equivalences, we see that F T satisfies descent as well. a

Under a modest boundedness condition on a simplicial presheaf F which takes values in Kan complexes,
its Cech sheafification (Definition 4.1) is a sheaf; this result is key to the rest of this paper.

Proposition 5.2 Let F € sPre(CMan) be a projectively fibrant simplicial presheaf whose homotopy
groups are all trivial above level n. Then F 1 is a fibrant approximation of F in the local projective model
structure of simplicial presheaves on complex manifolds.

Proof Given a projectively fibrant simplicial presheaf F € sPre(CMan) we can consider its fibrant
replacement in the local projective model structure F —> F’ € sPre(CMan)jo.. By [Lurie 2017, Remark
6.2.2.12], we see that in general we can compute this fibrant replacement on a test manifold X € CMan
with the hypersheafification of F, written F T, by taking a homotopy colimit of the simplicial mapping
space sPre(U, F) over all hypercovers ({ — X). Below, as is standard, we identify the manifold X
with its representable simplicial presheaf, ie with the functor ¥ +— CMan(Y, X), postcomposed by the
functor which sends sets to simplicially constant simplicial sets. Thus, if S denotes the category of all

hypercovers,

FT(X):= hocolim sPre(U4, F).
U—>X)es

More formal references for this fact include [Anel and Subramaniam 2020, Example 3.4.9; Low 2015,
Proposition 6.6]. We can now follow a series of steps to rewrite the above sheafification up to weak
equivalence: Starting with

(5-2) FT(X) := hocolim sPre(i/, F) = hocolim sPi:(hocolimZ/{i, F),
U—X)eS U—X)eS ieA

pulling the homotopy colimit out as a homotopy limit, and then using the fact that F is of bounded

homotopy type so F — cosk, F with both of these projectively fibrant,

FT(X) = hocolim holimsPre(l;, F) => hocolim holim sPre(t/;, cosk, F).
U—X)eS ieA U—>X)eS i€eA

Now, using the skeleton—coskeleton adjunction and then that we can change the indexing set of hypercovers
to also be n—skeletal,

FT(X)=> hocolim holim sPre(sknl4;, F) = hocolim holim sPre(sk,lf;, F).
U—X)eS ieA U—>X)eS<, i€A

Now, since Cech covers are cofinal in bounded hypercovers on a paracompact manifold [Schreiber 2013,
Proposition 3.6.63], denoting by S the category of Cech covers,

hocolim holim sPre(sk,lf;, F) <= hocolim holim sl’i:(sknﬁ U;, F)

U—>X)eS<n icA (NUes—X)eS €A
= hocolim _holim sPre(N U;, cosk, F) <= hocolim _holim sPre(N U;, F).
(NUs—X)eS i€A (NUs—X)eS i€A
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Next we apply a simplicial Yoneda lemma and then use the fact that Tot computes holim when the
cosimplicial simplicial set is Reedy fibrant [Hirschhorn 2003, Theorem 18.7.4] to obtain
_hocolim _holim sPre(N Ui, F) = hocolim _holim 1—[ F (Uy,....a;)
(NUs—X)eS €A (NUe—»X)eS 1 o0
> hocolim _Tot(F (NU.)),
(NUe—X)eS
and finally we use the fact that the colimit over Cech covers is a filtered colimit to compute hocolim with
a colim to obtain
hocolim _Tot(F (NU )) = _colim _Tot(F (]V U,)) = F%(X).

(NU.—>X)€S (NUe—>X)eS
By Proposition 4.2, F f is already globally projectively fibrant (ie takes values in Kan complexes). Now
it remains to show that F T satisfies hyperdescent. Given a hypercover, i — X, we use the commutative

square
sPre(X, FT) = FT(X) — sPre, FY)

l |

sPre(X, FT) = FT(X) —— sPre(, FT)

where the equalities are given by Yoneda. Since F T satisfies descent, the top horizontal map is a weak
equivalence by definition of descent. The left vertical map was proven to be an equivalence above. With
U projectively cofibrant it follows that the simplicial mapping spaces preserve the weak equivalence
FT =5 FT between projectively fibrant objects and so the right vertical map is a weak equivalence.
Thus, by the two-out-of-three property afforded to our model category, we have shown that the bottom
horizontal map is a weak equivalence. Since we have shown that F f is projectively fibrant, satisfies
hyperdescent, and that F = FT, t then FT is a fibrant replacement of F in the local projective model
structure. |

Lemma 5.3 Let Ch=C(A) be the dg—category of nonpositively graded chain complexes over some
additive category A, where the hom-complex Ch*(E, E’) consists of chain maps and (higher) chain
homotopies from E to E', and let Q <> Ch=°(A) be a full subcategory which only considers complexes
of height at most m for some fixed m € N. Then the simplicial set dg N (Q) ~ cosk,,+1 dg N (Q) is
(m+1)—coskeletal.

Proof For any two objects in Q and for an integer k > m + 1, we have OK(E,E’) = 0 due to the
restricted height of all complexes in our dg-category. Thus the only way to decorate a k—simplex with
k > m + 1 is to have the boundary data all satisfy the condition $ g + g+ g = 0 and then uniquely assign
a O—homotopy to the (m-+1)-simplex. But recall that, whenever each decorated boundary simplex has
a unique filler, this means the simplicial set is isomorphic to its coskeleton, so in our case we have
dg N (Q) =~ cosk,,+1 dg N (Q), as required. O
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Definition 5.4 Define Perf<,: CMan® — dgCat by setting Perf<, (U) to be the dg-category of finite
chain complexes of holomorphic vector bundles just as in Definition 2.1, but with the difference that we
require the complexes to be trivial above level n. Analogously to IVB from Definition 2.11, we then
define IVB<;, : CMan® — sSet by setting IVB<,,(U), := sSet(ﬁ”, dg N (Perf<, (U))°).

Corollary 5.5 The fibrant replacement of IVB<,, in the local projective model structure can be computed
by its Cech sheafification, IVB<, = IVB;n.

Proof By construction, IVB, is still (globally) projectively fibrant, while combining Lemma 5.3 and
Proposition A.1 gives us that IVB,, is (globally) a homotopy-(n+1) type. |

Lemma 5.6 Let Ch=C°(A) be the dg—category of nonpositively graded chain complexes over some
additive category A, where the hom-complex Ch*(E, E’) consists of chain maps and (higher) chain
homotopies from E to E’, and let Q — Ch=°(A) be a full subcategory which only considers complexes
with homology concentrated in degree zero. Then the (Kan replacement of the) simplicial set dg N'(Q) is

a 1-type.

Proof If necessary, first replace dg A/(Q) with its maximal Kan subcomplex which only uses quasi-
isomorphisms on edges. We will prove that 7, (dg N (Q)) is trivial for n > 2. A class in m, consists of
an n—simplex in dg V'(Q) whose entire boundary is in the image of a single vertex. Thus the vertices
are given by the same chain complex, Eg = E, ..., E, = E, the quasi-isomorphisms on the edges are
the identity maps, and any homotopy decorating a k < n face is the zero homotopy. By the definition
of dg N (Q), this data satisfies the condition $ (g) + Dg + g - g = 0 using the notation of Definition 3.3.
Since in this case § (g) + g - g is an alternating sum of compositions of 0O—homotopies and/or identity
maps, one can show that the above condition reduces to Dg = 0. However, since E is a complex whose
homology is concentrated in degree zero and g € Q™" (E, E) with n > 2, g is exact. From here we can
fill this n—sphere with a higher homotopy and kill the class representing g in 7. a

By a similar argument for Corollary 5.5 we can use the above lemma to see that CohSh is a 1-type and
thus CohSh' is a sheaf, but without needing to further restrict the height of any chain complexes.

Corollary 5.7 The simplicial presheaf CohSh is a 1-type and its fibrant replacement in the local
projective model structure can be computed by its Cech sheafification, CohSh —~> CohSh'.

Remark 5.8 Now that under the right circumstances the Cech sheafification can act as a fibrant replace-
ment functor, we can briefly present a different argument for Lemma 4.8 which makes use of equivalences
being preserved under the various constructions we use to pass from the dgCat-valued presheaf Perf"
to the simplicial presheaf IVBT. The main idea used in the proof for Lemma 4.8 is that for a complex
manifold X, and a point x € X, there exists an (Stein) open subset x € U C X on which we have an
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equivalence of dg-categories, Perf¥ (U) => I;E;fV(U ), where the tilde again means we forget connection
data. Since the dg-nerve construction preserves (weak) equivalences, we then obtain an equivalence
of simplicial sets, IVB(U) = fﬁS(U ). We claim this then says that we have a weak equivalence for
each stalk IVB, — I/\7]/3x and thus a local weak equivalence of simplicial presheaves a la Jardine,
IVB = IVB. The local weak equivalences for the local projective model structure happen to coincide
with those of Jardine and thus we obtain a weak equivalence in the local projective model structure
which is necessarily preserved under our (Cech) fibrant replacement functor if we restrict appropriately:

IvBL, =~ IVBL,.

Remark 5.9 At this point, we’d like to take stock and summarize the relationships amongst some
of the different constructions involving IVB. By the functoriality of our constructions, we obtain two
commutative cubes of simplicial presheaves which actually fit together to form a commutative hypercube
via the inclusion CohSh «— IVB:

; __;
IVBL, > IVB_,,
o P n

n I
! & /

IVB<, < IVB,

[ [

IVB — = 5 IVB

IVB' « ~ > IVBT
Cohshl,, ~ » CohSh._,,

n K'\./x /\o

CohSh., —— CohSh.,

| [

CohSh ——— CohSh

N\ x/%
Yook o /_\"_/V
CohSh' « ~ s CohSh'

where the hypersheaves are highlighted with boxes; we used ~ to denote a global projective (ie objectwise)
weak equivalence and ~,. to denote a local projective weak equivalence. Recall that the global weak
equivalences are preserved in the local model structure.
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Recall that in Proposition 4.13 we showed that CthhJr stands a chance of classifying coherent sheaves
since the correspondence is bijective on connected components. We know, however, that N'(Sh 0% ) is
a 1-type and so, if we knew that CthhJr was also a 1-type, then it would only remain to prove the

correspondence on 7.

Lemma 5.10 Given F € sPre(CMan) which is objectwise an n—type (ie F = cosky, F for some n),
F1 is again an n—type.

Proof We begin by noting that, if F = cosk, F, then
Fi(X)= colim sPre(NU..F)=> colim _sPre(NU., cosky, F)

(Ue—X)eS (Ue—X)eS
~>  colim _Tot(cosk, F (N U,)) = colim _cosk, Tot(F (f\7 U.,)),
(U.—>X)€S Ue—X)eS

where we used that Tot computes the homotopy limit in this case and then we commuted the right adjoint
cosk,, across this concrete limit, and now again using that Tot computes the holim,
colim _cosk, Tot(F(NU,)) <= colim _cosky, sPre(NU., F).
(Ue—X)eS (Ue—X)eS
While we would love to commute this coskeleton across the colimit, we must proceed differently. Recall
that filtered colimits commute with finite limits, and, since each homotopy group can be written as a finite
limit, we have, for m > n,

er(F}r(X)) ~ 7tm( colim _cosk, sPre(NU,, F))

(Ue—X)eS
~ colim my(cosky sPre(N U.,,F))= colim 0=0. |
(U.—>X)€S (Ue—X)eS

Theorem 5.11 The simplicial presheaf CohSh is a classitying prestack for coherent sheaves.

Proof Recall from [Hirschhorn 2003, Section 17] that the derived mapping space RHom(A4, B) in a
simplicial model category C can be computed by considering the simplicial mapping space C (Z ,B"),
where we use the cofibrant replacement A = of A and the fibrant replacement B = B’ of B. Then,
since Corollary 5.7 tells us that CohSh is a 1-type whose (local projective) fibrant replacement is given
by its Cech sheafification, we can compute the (local projective) derived mapping space from a manifold
X € CMan (via its cofibrant representable presheaf) into CohSh as

RHom(X, CohSh) := sPre(X, CohSh’) ~ sPre(X, CohSh') = CohSh'(X).

After combining Proposition 4.13 and Lemma 5.10, it remains to be shown that the map # : Cthh;r (X)—
N (Sh Oy) is an isomorphism of fundamental groups. The ideas used to prove this fact are analogous
to those of Proposition 4.13 but we will summarize them here for ease of reading. Given a vertex £ =
(U,,E., g.) € CthhT(X )o and the coherent sheaf F := H (&) € N (CohSh Oy ), we want to prove that

there is an isomorphisms of based homotopy groups, nl(CthhT(X ), &) —— mG), 71 (N (CohSh Oy), F).
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To prove injectivity, if two loops in Cthh:r (X)1, de, be: € — £ have connected images in N (CohSh Oy),
then by definition of the nerve of a groupoid, we have a commutative square of isomorphisms in CohSh Ox
where all four corners are the coherent sheaf 7. Lifting this commutative square to a homotopy in
CohSh' (X)1 once again uses the fact that chain maps which induce the same map on homology are
homotopic [Hilton and Stammbach 1971, Theorem 4.1] (and then the discussion of O’Brian, Toledo
and Tong [1981c, near Lemma 1.6]). To prove surjectivity, a loop f: F = H(E) — F = H(E) in
N (CohSh Oy)y is lifted to a loop in CohSh' (X) on € by using the fact that an isomorphism on homology
lifts to a quasi-isomorphism of chain complexes [Hilton and Stammbach 1971, Theorem 4.1] (and then,
again, the discussion of O’Brian, Toledo and Tong [1981c, near Lemma 1.6]). O

If we knew that £ somehow used complexes of bounded height, then our Cech sheafified Chern map
from Definition 4.3 could be seen to restrict to a map of sheaves ChJr IVBJLn ~ @Foutof infinity vector
bundles of bounded complex height. One way to resolve this is by restricting our site as recorded below:

Proposition 5.12 On the site CMan<,, of complex manifolds of dimension at most n, the Cech sheafifi-
cation of the restricted Chern map, 5
ch:1vBel, - @,

is a map of hypersheaves.

Proof By Corollary 5.5, IVBTS,, is already a sheaf. Now that we have restricted the site to CMan<,
? only makes use of chain complexes of length at most n and so it is coskeletal and, by Proposition 5.2,
its sheafification is a hypersheaf. a

By different application of the same ideas above, we end with an upgrade on Theorem 4.18:

Theorem 5.13  On the site CMan, of complex manifolds of dimension at most n, the Cech sheafification
of the Chern map restricted to coherent sheaves,

Ch: Cohshf — @,

is a map of hypersheaves which restricts on g to the Chern character (4-15) from O’Brian, Toledo and
Tong [1981c].

Proof By Theorem 5.11, Cthh;r is already a sheaf. Now that we have restricted the site to CMan<,,
2 only makes use of chain complexes of length at most n and so it is coskeletal and, by Proposition 5.2,
its sheafification is a hypersheaf. The fact that on g it recovers the Chern map from O’Brian, Toledo and
Tong [1981c] was already recorded in Theorem 4.18. O

Remark 5.14 For an arbitrary stack (ie hypersheaf) F, recall as in (5-1) that the right derived mapping
space
RHom(F, G) :=sPre(F, G)
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for a simplicial model category can be computed by taking the simplicial mapping space between a cofibrant
replacement of F and a fibrant replacement of G. Letting G; = IVB and G, = 2, Proposition 5.12 says
that our presheafified Chern map Ch: IVB — £ from Definition 3.13 induces a map of fibrant (ignoring
the restrictions of sites and homotopy types for the moment) replacements Ch': 1VB' — er’ and thus a
map of right derived mapping spaces:

(5-4) RHom(F, IVB) = sPre(F, TVBT) ', spre(F, @) =: RHom(F , @).

When F = X is the representable simplicial presheaf for a complex manifold, the above is explicitly
calculated using Note 4.16. However, (5-4) suggests a reasonable definition for a generalized Chern
character map. In a sequel to this paper, we will study this map for the case when a Lie group G acts on
the complex manifold X and F,, = X x G*" (see our previous paper [2022, Definition 5.1]), extending
this paper to the equivariant setting.

Appendix A A weak equivalence sSet(Z', K) — sSet(A°, K)

In this appendix, we prove Proposition A.1:

Proposition A.1 If K is a Kan complex, then there exists a weak equivalence F #. sSet(ﬁ‘, K) —>
sSet(A*, K).

In order to define F*, we first establish some notation. Recall from Example 2.6 that A" is the simplicial
set whose k—simplices are nondecreasing sequences (ip < --- < i) with ig,...,i € {0,...,n}, and
recall from Example 2.8 that A" is the simplicial set whose k—simplices are any sequences (io, .. ., i)
with ig, ..., €{0,...,n}. Both A" and A" have face maps d; given by removing the j index i;, and
degeneracy maps s; given by repeating the j t index i . Furthermore both A*® and A® are cosimplicial
simplicial sets, so that for ¢ [n] — [m] in A we get an induced map of ¢, : A” — A™ via ¢y : Zz — Z’,?,
or(o,...,ig) = (d(io),...,¢(ir)), where A® is either A® or A®. Thus, there is an induced map of
cosimplicial simplicial sets F*: A® — A°, (ip <--- <ig)+ (ig,...,ix). For any simplicial set X, both
X =sSet(A®, X) and X:= sSet(ﬁ', X) are simplicial sets, and there is an induced map F*: X—>x by
precomposition with F.

Our first step towards proving Proposition A.1 is to show that K is also a Kan complex:
Proposition A.2 If K is a Kan complex, then K is a Kan complex.
To begin with, here is a useful lemma:

LemmaA.3 Amapc: A" — K= sSet(ﬁ’, K) is determined by the element ¢ =c(0<---<n): A" > K.
Then §; (c) =co8;: A"~ 1 =§; (A" 1) C A" -5 K is determined by §; (¢) = c 0§; : A1~ 8,-(&”_1) C

A" 5 K.
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Proof Note that §; (A1) C A" are sequences that do not include i, which are generated by the (n—1)—
simplex (0 <---<i—1<i+1=<---n)=d;(0=<---<n)e A}_,. Thus §;(c) is determined by the
image of the simplex d; (0 <---<n). Now ¢(d;(0<---<n))=di(c(0<---<n))=d;(C) =co0d;. O

Proof of Proposition A.2 Denote by A} :={J;,; §; A"~ the i™ horn of A", which is a subsimplicial
set of A”. Similarly, denote by K;’ = i 6j A1 ,t\he i™ horn of A", which is a subsimplicial set
of A". As noted before, a simplicial set map A" — K is the same as an element K, ie a simplicial
set map A" - K. Similarly, a simplicial set map A} — K is given by n maps J; A" I?, ien
maps Al K (see Lemma A.3), which are compatible at their common boundary, ie whose induced
common boundary maps A""2 5 K coincide, and thus this is the same as a simplicial set map /A\f — K.
Thus, the Kan condition for K (left side of (A-1)) becomes equivalent to lifting a horn IA\? — X to a map
A" = X (right side of (A-1)):

A?—)I? /A\?—>K
A A
(A-1) l e J = l 7 l
V N /
A" —— % A" —— %

Since K is a Kan complex, we have such a lift if IA\:’ — A" is an trivial cofibration, ie if this map is
injective and a weak equivalence. Clearly, /A\;’ — A" is injective, and the weak equivalence follows
since both /A\l” and A" are contractible, ie they have zero homotopy groups. First, it is well known that
EG for any group G is contractible, since it has an extra degeneracy s—i(go, ..., &%) = (e, go,-- -, &k);
see for example [Goerss and Jardine 1999, Lemma II1.5.1 and Example II1.5.2]. Thus, A" =E Zin+1
is contractible, and, from the explicit extra degeneracy, we can see that it preserves /A\’g Thus, /A\’(} is
contractible as well. Now, there is a Z;+1—action on EZ,1, which, in particular, can be used to map
/’ig isomorphically to any other /K:l, showing that indeed all /AX;' are contractible. (Or, alternatively, one
obtains that the extra degeneracy s—j (ig, . .., ix) = (i, g, ..., i) of A" preserves IA\;’) |

In order to prove Proposition A.1, we need one more ingredient. Denote by ©” := (U ;0 3”_1)UA” the

subsimplicial set of A" generated by all A1 boundary components, together with A” >~ F"(A") C A",
Lemma A.4 ©" is contractible.

Proof For a subset A C {0,...,n}, denote by Y% := (Ujead; A"=1) U A" the subsimplicial set
?X C A", given by A" with “thickened” boundary components determined by A. In particular, f?} = A"

and Y?O,...,n} = ©". (Note that ?Z may be explicitly described to have p—simplices given by sequences
(io,...,ip) €{0,...,n}? such that either iy < --- < ip, or there exists an element i € A such that
ip #1,...,ip # 1, or both.) We show that the |?g| are contractible for all n and A. Since all |?Z| are

CW-complexes, this is equivalent to showing that the |?:1‘| are connected and have zero homotopy groups.

We will repeatedly use the fact that, if X, ¥, X NY and X UY are CW—complexes, and X, Y and X NY
are contractible, then X U Y is also contractible (which follows since X UY is certainly connected, has
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vanishing 71 due to van Kampen, vanishing homology groups due to Mayer—Vietoris, and thus vanishing
homotopy groups due to Hurewicz).

When 1 = 1, using that A® = A°, we have for any 4 C {0, 1} that T! = A!, and |A!] is contractible.

Now, for n > 1, assume by induction, that the |?§| are contractible for all k < n and all B C {0, . k}.
We perform a second induction on the number of elements of A C {0, ..., n}. First, note that Tg’} = A",

and |A"| is contractible. Thus, assume by induction that all |T”| with |A| < [ are contractible. Now, let
={i1,...,i;} C{0,...,n} be an [—element set with, say, i; <--- < i;. Writing

"W =" . An—1
T{il,---,iz} - T{il,...,il_l} U 811 A s

we know by induction that |T{ll 0 | is contractible, and also |, An—1 | ~ |A" 1] is contractible (which
}mal,A “l=g;, Yr! -~

sli=1 {i1senii—1} =
}| N |8,,A” =17 {11 }| is contractible as well.

was reviewed in the proof of Proposmon A.2). Furthermore, T{l .
?{’zl_l ST and, by the first induction, |T i
Thus, by the above fact, |T B ll}| |T{l1 il 1}| U [6;, A" 1 is also contractlble |

We are now ready to prove Proposition A.1.

Proof of Proposition A.1 Since both K and K are Kan complexes, it suffices to show that F' #. KK
induces isomorphisms on all simplicial homotopy groups (since these coincide with the homotopy groups
of their geometric realizations; see [May 1967, Theorems 16.1 and 16.6]).

First, for n = 0, F induces a map JT()(K) — 1o (K) which is onto since A% = A® and thus Ko = Kp.
To see that the induced map JT()(K ) = mo(K) is one-to-one, assume a, b € K¢ are equivalent a ~ b in
mo(K). Since K is a Kan complex, this means that (instead of a sequence of 1-simplices) there exists
a single ¢ € Kj such that do(¢) = a and di(c) = b. We need to check that a ~ b in nO(E), ie there
exists a ¢ € K1 with do(&) = a and dy (&) = b. Thus we need a simplicial set map Al — K, ie a map
Al > K making the following diagram commute:

Ol = Al US AL U A0 —cYavb

K
*

A

Note that the top arrow is well defined, and, since the left map is a trivial cofibration (ie injective and a
weak equivalence) and K is a Kan complex, it follows that it lifts to a map A! - K, as needed.

Now, for n > 1, F induces a map 7, (I?, *) — 1, (K, *) which is onto: if ¢ € K, with d;(c) = = for all i,
represents an element of 7, (K, *), then we want to produce a ¢ € K, ie ¢: A" — K, with d; (¢) = *
for all i and which restricts to ¢ under F. Thus, we need to find a lift making the following diagram
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commute:
O" = A" U§A"1 U U S, AP I LK
An =~ *

Again, the top arrow is well defined, since c restricts trivially to its boundaries. Just as before, we can
find a lift, because ©" — A" is a trivial cofibration and K is a Kan complex. Finally, we need to check
that F' induces a map 7, (Ir(\ , *) = 1, (K, %), which is one-to-one. Since this map is a map of groups,
it suffices to check that the kernel is trivial. More explicitly, we need to show that if ¢ € K, with
d;(¢) = * for all i represents a class of 7, (Ir(\, ), which maps to ¢ = ¢ o F"": A" E" A E5 K which
is trivial in 7, (K, *), then ¢ is trivial in nn(l?, x). For ¢ to be trivial in (K, *) means that there is an
(n+1)-simplex ¢ € K41 such that do(g) = ¢ and d;(q) = * for all i > 1. We thus have the setup for

the diagram
qU CUxU--Ux

O+l = AMTLU§ AT US AP U--- U §, A" — K
gn—i—l//// Jk/

Since ©"*! — A"t is a trivial cofibration and K is a Kan complex, there exists a lift g € K n+1
with do(q) = ¢ and d;(g) = * for all i > 1. This shows that ¢ does indeed represent the trivial class
in 7, (K, *). O

Appendix B Explicit description of totalization
We now review the notion of totalization of a cosimplicial simplicial set.

B.1 Totalization

We recall from our previous work [2022, Definition D.1] and [Hirschhorn 2003, Definition 18.6.3]]
the definition of totalization. Let K*: A — sSet be a cosimplicial simplicial set, ie K/ := K([{]) is a
simplicial set K/ = K f Then, the totalization Tot(K?) of K is defined as the simplicial set, which is the
equalizer of the maps

(B-1) To(K) =[] (KI)AI%; [T &

[[]eObj(A) p: [n]—>[m]

Here, by definition, (K?)2? is the simplicial set whose n—simplices are simplicial set maps ((K?)2"), =
sSet((A" x A?),, KP). Then a k—simplex in the totalization is given by some collection

(B-2) {x(k’l)}lzo, where x&P ¢ sSet(Ak x AL, Kl),
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satisfying the coherence condition that they are in the above equalizer. Explicitly, for a fixed j =
0,...,01 4+ 1 the map §;: [/] — [l + 1] which skips j induces the maps

(B-3) x®IFD ¢ Sep(AR x AIFL K1+ iy sSer(AF x Al KT,
(B-4) x®D e sSer(AF x AL KDY 4L sSet(AR x AL K1),

Then, for x®/+1 and x*-!) as above,
(B-5) dj (x(k,l+l)) — dj(x(k’l))_

Thus, a k—simplex, {x(k’l)}l=0,1,.__, in the totalization of a cosimplicial simplicial set, Tot(K}) is given
by maps x®D e sSet((A¥ x Al),, Kf) for each [ = 0,1, ..., which can be thought of as a coherent
“decoration” of the simplicial sets A*x Al forl =0,1,..., by simplices in Kf.

B.2 Simplices of A* x A!

We now recall that there is a nice book-keeping device for the simplices of A¥ x Al. In fact, the p—
simplices of A¥ 5 Al can be described by nondecreasing paths with p + 1 verticesina (k + 1) x (I + 1)
grid; we also call this a p—path. For example, the maximally nondegenerate (4+7)—simplices of A% x A7
can be labeled by paths* through a (4 + 1) x (7 4+ 1) grid, necessarily starting from [g] and ending at [‘;]
For example, the following path of labels, which we denote by [g ! (1) } ‘ ; } ; | g ! g ‘ g ‘ : } g | g ! ‘;], labels an
element of (A*x A7)1:

(B-6) 3]

GIRGIALEI AT A A )
We can apply x@7 esSet(A* x A7, K7) to this path, which will give an element

L@
O[1|1|1]2|3(4]|4/4|4(4]4
010/1|2]2]2|2|3|4|5|6|7

(note the simplicial degree 11 comes from the 11—path with 12 vertices). Note that, just as the simplices of

7
€ K{;

the standard n—simplex have direction, these paths must be nondecreasing in both directions. Additionally,
the faces of a p—simplex of Ak x Al given by a path would consist of subsequences of that path, eg
[(1) ‘ ; ‘ % } g ! 1 ‘ g] describes a 5—simplex in (A% x A7)s which is a lower face of the above 11-simplex.
Degenerate simplices are described by paths where at least one of the indices is repeated, eg [ ; ! % ‘ g ‘ g } 2].

“#Informally, this path might be referred to as a “taxi-cab”path as it only moves in a rectangular fashion.
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Using this notation, the coherence condition (B-5) can be stated more precisely as follows. Let K
be a cosimplicial simplicial set and let §; : [[] — [/ + 1] be the map that skips j. We have the coface
maps, d/: K! — KI*1 as well as the maps d; in (B-3) given by precomposition with AL — A+1,
Then we can explicitly describe the k—simplices of the totalization, Tot(K?), as collections {(x®D ¢
sSet(AF x Al Kf)}lz()’l , which, applied to p—simplices of A¥ x A’ labeled by the paths [%g | - ‘ ZZ]

geee

withO <o <---<ap <kand0<Bo <--- < B, <[ as described above, assign elements x acl e € K;,,
satisfying [ﬂo &J
(B-7) wolth - =dlah ekl

[ﬂo Z]

For example, for k = 2, we have the assignments, for / = 0, 1,

[0l s3]
3j(Bo) 8j(Bp)

(2,0) (2,1) (2,1)
i W en i
. gEh Ve
N\
[ém x(2;1) \ ol1]1 x(ozl,l)

(2,0) 2,1) x(z’l) x[(‘)zi]l) y

x& 2 / ppy x&:D)
B o @0 L e N\ ey T[]
12 * ]

1
[g 0 (7)] [02 ) 0 i] 1
\
@D @.1) \ @D
L@
112

7]

X
.0 X RNl
0(0

x[(l,m \x(f;x\ [IM
N [ofo/1] o\

) (2,0) (2,1)
1

As an example, for 8¢ : [0] — [1], equation (B-7) yields x

— o
—
[——]

@1 — g0(x%9 ), which relates the cells for

01(2 01(2
different [’s. [1 ‘ ! ‘ '} [0‘0‘0]
Note that, for a fixed k and /, the
(k1) l
x[ao ap} €K,
Bo|---|Bp
are in fact determined by the maximal paths
(k1) l
[ o] € Kiyo
Bol|-+ | Br+i
since each p—path is a subpath of a maximal path and so the p—cell is in the image of some face map

Kll<+l — Kll, for some map [p] — [k +1].
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Example B.1 For example, for a simplicial presheaf F : CMan®? — sSet, and an open cover i ={U, }; ez
of X € CMan, we take

10y..-5i] €T

In this case a p—cellinx € K Il, is given by x = {X;,,....;, }» where, for each (/4 1)—fold intersection Uj, ... ;,,
Xig,..ij € Fp(Uj,,...i;) is @ p—cell Note that the map d” : K! — K't! in (B-4) and (B-7) is induced by
105eesljyeees i[41 as Fp(iﬂCl)i FP(Ui() ) - Fp(Ulo ..... ll+l) In
particular, continuing the example from the figure above, x(g’lo)z and x g’l ‘2 have components

the inclusions incl: U,

(2 0) G F>(U;), x(z 1) . E F3(Uiyiy).

respectively and the compatibility of (B-7) now yields,

2,1 0 (20)
Xrol1)21.. . =d (x Uzoll| (20)
o = A

000 1

B.3 Totalization for the case K = sSet(K , K )

We are interested in the totalization of K Perf8 (]V U) = sSet(ﬁ Perf(ﬁ U)). Thus, assume now
that we have a cosimplicial simplicial set K, which is of the form K, I — sSet(ﬁp k! ) for some other
cosimplicial simplicial set K J. By rewriting simplicial sets as cohmlts of their simplices, and using
continuity of the hom-functor in the category sSet, we see that

(B-8) sSet(A¥ x Al Ky =sSet( colim AP, K')= lim  sSet(AP,K')
AP — Ak XAl AP Ak xAl
= lim K,= lim sSet(A? K')
AP > Ak x Al AP > Ak x Al
:sSet( colim ﬁp,lzl).
AP > Ak xAl

We see from the above identification that decorations of simplicial sets A¥ x Al by simplices in K, f is
equivalent to first gluing the simplicial sets A" along the corresponding A” sitting inside A* x Al and
then decorating this colimit made of various A" by simplices in K. Using the description of A from
Example 2.8, it now follows that the k—simplices of Tot(K}) are in fact given by

(k,0)

(ool o]

where this time the path described by [%g ‘ } z” ] is now permitted to move horizontally and vertically in
)2

%)
X GKP,

each direction in the grid, ie possibly decreasing, but within the indices of a nondecreasing path. For
example, in the (2 + 1) x (3 + 1) grid of vertices, take the 5—cell given by the map A < A? x A3
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whose nondecreasing path is [8 ‘ ? } g ! ; ‘ ; ‘ g] Then, for the corresponding A, there is a nondegenerate
9—simplex

(2,3) 3
(B-9) x0010010212€K9’
BHEHHEHREE

D . . . . o 00101127 : A2 3
which is both increasing and decreasing using the indices of the 5—path [0‘ 1 }2 | 2 ] 3 ‘ 3] in A< x A°.
Thus, in the totalization Tot(K), a 2-simplex x = {x2})} needs to assign such an element in ES’ to the
9-path from (B-9). However, note that there is no assignment to the path [8 ‘ (1) (1) } }] because every map
A" — AR Al s necessarily nondecreasing in both components and so one can never obtain both [(1)]
and [(1)] in the same path. To summarize, a cell in Tot(K) has to assign elements in K exactly to any

path which uses the indices of a nondecreasing path.

Finally, note that the coherence condition on these simplices of the totalization is the same as expressed
in (B-7).

Appendix C Totalization and fibrant objects

The purpose of this appendix is to prove Proposition C.1.

Proposition C.1 If F is a projectively fibrant simplicial presheaf (such as F = IVB) then Tot(F (]V U.))
is a Kan complex.

We start with the following lemma:

AOP
)A

Lemma C.2 The totalization functor (see Appendix B) Tot: (Set — Set®” isa right adjoint.

Proof We prove this directly by defining the left adjoint L. For any simplicial set X *, let L(X*) be the
cosimplicial simplicial set n — X* x A", where A" is the standard n—simplex.

To show that these functors form an adjoint pair, let X* be a simplicial set and Y be a cosimpli-
cial simplicial set. Since Set®” is a simplicial model category (under the usual Quillen structure),
Set®” (X x A", Y™M) is in bijection with Set®” (X, (Y)2"). Since Tot(Y?) = (Y?)2, we have our
bijection. O

Lemma C.3 The functors (L, Tot) form a Quillen adjunction between the Reedy model structure
[Hirschhorn 2003, Section 15] of cosimplicial simplicial sets and the usual Quillen model structure on
simplicial sets.

Proof It is enough to show that L preserves cofibrations and trivial cofibrations. Suppose f: X* — Y*
is a cofibration of simplicial sets, ie a levelwise monomorphism. By [Hirschhorn 2003, Theorem 15.9.9],
to show that L(f) is a Reedy cofibration, it is enough to show that L(f) is a monomorphism that
takes the maximal augmentation of L(X*) isomorphically onto the maximal augmentation of L(Y*).
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Since L(f) = f xId and f is a levelwise monomorphism, L( f) is a monomorphism. The maximal
augmentation of L(X*) and L(Y*) are empty. So L preserves cofibrations.

Suppose f: X* — Y* is a trivial cofibration. We need to show that L(f): L(X°®) — L(Y*) is a Reedy
weak equivalence. Since L(f) = f x1Id, then L, F: X°* x A" — Y* x A" is a weak equivalence. O

Lemma C.4 Let X be a Reedy fibrant cosimplicial simplicial set. Then Tot(X) is a Kan complex.

Proof Since Tot is a right adjoint, it preserves fibrations and terminal objects. So Tot preserves fibrant
objects. a

Lemma C.5 Let V be a manifold and U, be an open cover of V. Let F be a simplicial presheaf that
takes values in Kan complexes. Then F (]V U): A — Set®” (see (4-1)) is a Reedy fibrant cosimplicial
simplicial set.

Proof This proof uses some conventions from [Hirschhorn 2003, Section 15] for the Reedy model
structure and is analogous to that of Block, Holstein and Wei [2017, Proposition 4.3]. We need to show
that the matching map F (N Uy) > M, (F (N U,)) is a fibration for each n, where

and apply F to get

l_[ F (Ui,..., in)Xkl_[( l—[ F (Ui,..., in))-
=1

.l'(),.._.,l'n . A iO""al:n .
1 #1j+1 Ljy =jy A1 seeokjg =g +1

First note that the right side of this cartesian product is the matching object at n, M, F (]V U). This is

seen directly by showing that this product is the terminal object in the category of cones under F (]V U)
restricted to the matching category d([n] | 5) (see [Hirschhorn 2003, Definition 15.2.3.2]). The product

ﬁ ( T F (Uj,..., in))

ij, =ij1+1,...,i/-k =ijk+1

F(NUy—1) — F(NUyp_3) F(NU;y) — F(NU)
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is a cone under F(]VU), where F(]VUn_j) = ]_[io’.
projections.

erbney F(Uio,...,i,,_j) and the vertical maps are

Now, suppose we have a cone under F (]V U):

Y
1) % f\f)

F(NUp—1) — F(Ny—3) —— - —— F(NU;) —— F (N Up)
Then, to define the map Y into the product, send y to (f1(¥), f2(¥),..., fa(»)).

Finally, we see that the matching map F (N Uy) X My, (N U) > M, (JV U) is the projection onto the
second factor. Since F (]V U, ) is a Kan complex, the projection is a fibration. O

Applying Lemma C.4 to Lemma C.5 proves Proposition C.1.
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