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We define and study (derived) character maps of finite-dimensional representations of1–groups. As
models for1–groups we take homotopy simplicial groups, ie the homotopy simplicial algebras over
the algebraic theory of groups (in the sense of Badzioch (2002)). We introduce cyclic, symmetric and
representation homology for “group algebras” kŒ�� of such groups and construct canonical trace maps
(natural transformations) relating these homology theories. We show that, in the case of one-dimensional
representations, our trace maps are of topological origin: they are induced by natural maps of (iterated)
loop spaces known in stable homotopy theory. Using this topological interpretation, we deduce some
algebraic results on representation homology: in particular, we prove that the symmetric homology of
group algebras and one-dimensional representation homology are naturally isomorphic, provided the base
ring k is a field of characteristic zero. We also study the stable behavior of the derived character maps of
n–dimensional representations as n!1, in which case we show that these maps “converge” to become
isomorphisms.
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1 Introduction

If � is a finite group and k is a field of characteristic zero, every finite-dimensional k–linear representation
% W � ! GLn.k/ is semisimple and determined (up to equivalence) by its character: the trace function
hgi 7! TrnŒ%.g/� defined on the set h�i of conjugacy classes of elements of �; moreover, for each
n� 0, there are finitely many equivalence classes of such representations. These well-familiar facts from

© 2024 MSP (Mathematical Sciences Publishers). Distributed under the Creative Commons Attribution License 4.0 (CC BY).
Open Access made possible by subscribing institutions via Subscribe to Open.

http://msp.org
http://dx.doi.org/10.2140/agt.2024.24.4991
http://www.ams.org/mathscinet/search/mscdoc.html?code=18A25, 18G15, 19D55, 55N35, 14A30, 55P42
https://creativecommons.org/licenses/by/4.0/
https://msp.org/s2o/


4992 Yuri Berest and Ajay C Ramadoss

representation theory of finite groups generalize to arbitrary groups by means of algebraic geometry.
For any discrete group � , the set of all n–dimensional representations of � can be naturally given
the structure of an affine algebraic variety (more precisely, an affine k–scheme) Repn.�/ called the
representation variety of � . The equivalence classes of n–dimensional representations of � are classified
by the orbits of the general linear group GLn that acts algebraically on Repn.�/ by conjugation. The
classes of semisimple representations correspond to the closed orbits1 and are parametrized by the affine
quotient scheme

Repn.�/ ==GLn.k/ WD SpecOŒRepn.�/�
GLn

called the character variety of � . Now, the characters of representations assemble into a linear map

(1-1) Trn.�/ W kh�i !OŒRepn.�/�
GLn

defined on the k–vector space spanned by the conjugacy classes of elements of � . A well-known theorem
of C Procesi [59] asserts that the characters of � , ie the images of the map (1-1), generate OŒRepn.�/�

GLn

as a commutative k–algebra, and thus, by Nullstellensatz, detect the semisimple representations of �
when k is algebraically closed. In general, the equivariant geometry of Repn.�/ is closely related to
representation theory of � , the geometric structure of GLn–orbits in Repn.�/ determining the algebraic
structure of representations. Since the late 1980s this relation has been extensively studied and exploited
in many areas of mathematics, most notably in geometric group theory and low-dimensional topology;
see eg Lubotzky and Magid [50] and Sikora [66].

Derived algebraic geometry allows one to extend — and in some sense to complete — this beautiful
connection between representation theory and geometry. For any affine algebraic group G defined over
a commutative ring k (eg G D GLn.k/), the classical representation scheme RepG.�/ parametrizing
the representations of � in G admits a natural derived extension DRepG.�/ called the derived G–
representation scheme2 of � . This derived scheme is represented by a simplicial commutative k–algebra
OŒDRepG.�/� whose homotopy groups �iOŒDRepG.�/� are nonabelian homological invariants of � (or
its classifying space B�). Following [13; 14], we set

(1-2) HR�.�;G.k// WD ��OŒDRepG.�/�

and call (1-2) the representation homology of � with coefficients in G. By definition, HR�.�;G.k// is a
graded commutative algebra, whose degree zero part is canonically isomorphic to the coordinate ring of
RepG.�/:

(1-3) HR0.�;G.k//ŠOŒRepG.�/�:

1At least when � is finitely generated.
2The first construction of this kind, the derived moduli space RLocG.X / of G–local systems over a pointed connected space X ,
was introduced by Kapranov [43]. In recent years, several other constructions and generalizations of RLocG.X / have been
studied in derived algebraic geometry; most notably, in the work of Toën and Vezzosi [69], but see also Pridham [58], Pantev,
Toën, Vaquié and Vezzosi [55], Pantev and Toën [54] and Toën [68]. A brief review and comparison of these constructions can be
found in Berest, Ramadoss and Yeung [12, Appendix].
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Apart from groups, representation homology can be also defined for various kinds of algebras (eg associa-
tive and Lie algebras, see Berest, Ramadoss et al. [9; 11; 7; 8]) as well as for topological spaces [14; 13; 12].
What is surprising perhaps is that, in the case of discrete groups, the representation homology admits a
simple interpretation in terms of classical (abelian) homological algebra: namely, as shown in [14], there
is a natural isomorphism

(1-4) HR�.�;G.k//Š TorG� .kŒ��;O.G//;

where G is the (skeletal) category of f.g. free groups on which the group algebra kŒ�� of the group �
and the coordinate algebra O.G/ of the algebraic group G are represented by monoidal functors: G!
Modk (contravariant and covariant, respectively). In the present paper, we will use formula (1-4) to
define representation homology for homotopy simplicial groups, which are natural (“up to homotopy”)
generalizations of the usual (“strict”) simplicial groups; see Badzioch [4]. In addition, we will also define
cyclic and symmetric homology for such groups, extending the original approach of Connes [25] and
Fiedorowicz and Loday [31].

Now, returning to the classical character map (1-1), we observe that its domain can be identified with the
0th cyclic homology of the group algebra kŒ��:

(1-5) HC0.kŒ��/Š kh�i:

With identifications (1-3) and (1-5), we can rewrite (1-1) in the form

(1-6) Trn.�/ W HC0.kŒ��/! HR0.�;GLn.k//
GLn ;

which suggests that there might exist a natural extension of this map to higher cyclic homology with
values in representation homology of �:

(1-7) Trn.�/� W HC�.kŒ��/! HR�.�;GLn.k//
GLn :

The maps (1-7) do exist, and we call them the derived character maps of n–dimensional representations
of � . Our goal is to define and study such maps for an arbitrary homotopy simplicial group � and an
arbitrary affine algebraic group G; see Definition 3.15.

In the case of associative algebras, the derived character maps were originally constructed in [9], using
nonabelian homological algebra. This construction was extended to Lie algebras in [8], where it was
shown, among other things, that the derived character maps of Lie algebra representations are Koszul
dual (in an appropriate sense) to the classical Loday–Quillen–Tsygan maps [49; 70]. The case of groups
that we treat in this paper is special for several reasons. First, as mentioned above, the representation
homology of groups admits a natural interpretation in terms of functor homology that is parallel to
A Connes’ well-known interpretation of cyclic homology. We will show that behind this “parallelism”
there is actually a connection: a simple formula for the derived character maps (1-7) relating cyclic
homology to representation homology via standard homological algebra; see Section 3.4.

Algebraic & Geometric Topology, Volume 24 (2024)



4994 Yuri Berest and Ajay C Ramadoss

Second, the cyclic homology of group algebras has a natural topological realization that goes back to the
work of Goodwillie, Burghelea, Fiedorowicz and others (see Loday [47, Chapter 7]): specifically,

(1-8) HC�.kŒ��/Š H�.ES1
�S1 L.B�/I k/;

where the right-hand side is the S1–equivariant homology of the free loop space L.B�/ WDMap.S1;B�/

of the classifying space of � . In fact, the isomorphism (1-8) is just one on a list of several classical
isomorphisms relating the algebraic homology theories associated with so-called crossed simplicial groups
(see Fiedorowicz and Loday [31]) to (stable) homotopy theory:

(1-9)

HH�.kŒ��/Š H�.L.B�/I k/;

HC�.kŒ��/Š H�.ES1
�S1 L.B�/I k/;

HS�.kŒ��/Š H�.��1†1.B�/I k/;

HB�.kŒ��/Š H�.�2†.B�/I k/;

HO�.kŒ��/Š H�.E.Z=2/C ^Z=2��
1†1.B�/I k/;

where �, † and �1†1 denote the based loop, the (reduced) suspension, and the stable homotopy
functors, respectively. The first two of the above isomorphisms (for Hochschild and cyclic homology) are
well known: they were originally established in Goodwillie [33] and Burghelea and Fiedorowicz [20], and
their proofs appear in Loday’s textbook [47], see also his [48] for a nice self-contained exposition. The
last three (for the symmetric HS�, braided HB� and hyperoctahedral HO� homologies) are less known:
they were discovered by Fiedorowicz [30] in the early 1990s, but detailed proofs were published only
recently; see Ault [2] and Graves [37].

The second (and perhaps, the main) goal of this paper is to extend the above list of isomorphisms by adding
to it representation homology. To be precise, for any commutative ring k, let HR�.kŒ��/ WD HR�.�; k�/
denote the one-dimensional representation homology of � . We prove (see Lemma 4.1 and Theorem 4.2):

Theorem 1.1 For any homotopy simplicial group � , there is a natural isomorphism

(1-10) HR�.kŒ��/Š H�.�SP1.B�/I k/;

where SP1.B�/ denotes the Dold–Thom space of the classifying space of � .

Apart from the Hochschild and cyclic theories, most interesting on the list (1-9) is the symmetric homology
theory HS� introduced by Fiedorowicz [30] and studied by Ault [2; 3]. Roughly speaking, HS� is defined3

in the same way as HC�, with Connes’ cyclic category �C replaced by the symmetric category �S ,
where the family of the symmetric groups fSop

nC1
gn�0 is used instead of the cyclic groups fCnC1gn�0.

Now, the natural inclusions of groups CnC1 ,! SnC1 extend to a functor � W�C op ,! �S , which, in turn,

3See Sections 3.3 and 4.2 for precise definitions of HC�.kŒ��/ and HS�.kŒ��/ in the context of homotopy simplicial groups.
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induces a natural map HC�.kŒ��/!HS�.kŒ��/. It turns out that, with identifications (1-9), this last map
is induced (on homology) by a map of topological spaces

(1-11) CSB� WES1
�S1 L.B�/!��1†1.B�/:

The map (1-11) is actually defined as a natural transformation CSX on the (homotopy) category of all
pointed spaces; it was originally constructed by Carlsson and Cohen [21], and its relation to symmetric
homology was noticed in [30]. We will refer to (1-11) as the Carlsson–Cohen map for B� .

We can now state our second observation that provides a topological interpretation of the derived character
maps (1-7) for one-dimensional representations. To shorten notation we will write the maps (1-7) for
nD 1 as

(1-12) Tr.�/� W HC�.kŒ��/! HR�.kŒ��/:

The next theorem encapsulates the main results of Section 4.3 (see Proposition 4.8 and Corollary 4.10),
Section 5.2 (see Proposition 5.2) and Section 5.3 (see Proposition 5.3).

Theorem 1.2 With isomorphisms (1-9) and (1-10), the derived character maps (1-12) are induced on
homology by a natural map of topological spaces

(1-13) CRB� WES1
�S1 L.B�/!�SP1.B�/:

The map (1-13) factors (as a homotopy natural transformation) through the Carlsson–Cohen map (1-11):

(1-14) ES1
�S1 L.B�/ CSB�

���!��1†1.B�/
SRB�
���!�SP1.B�/;

where the induced map SR is the (looped once) canonical natural transformation �1†1! SP1 relating
stable homotopy to (reduced ) singular homology of pointed spaces.

Theorem 1.2 shows that, for any homotopy simplicial group � , the derived character map (1-12) factors
through symmetric homology, and the induced map

(1-15) SRB�;� W HS�.kŒ��/! HR�.kŒ��/

is determined by a map of spaces that is well known in topology. Using topological results, we then
conclude (see Corollary 5.5 and Remark 5.6):

Corollary 1.3 If k is a field of characteristic 0, the map (1-15) is an isomorphism , at least when B� is a
simply connected space.

The results stated above are all concerned with derived characters of one-dimensional representations.
For higher-dimensional representations (n> 1), the maps (1-7) are more complicated: in particular, they
do not seem to factor through HS�.kŒ��/, and in general, the relation between symmetric homology and
representation homology remains mysterious. However, when n!1, things become more tractable.
Assuming that k is a field of characteristic 0, we can naturally pass to the projective limit

HR�.�;GL1.k//GL1 WD lim
 ��

n

HR�.�;GLn.k//
GLn

Algebraic & Geometric Topology, Volume 24 (2024)
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and construct the stable character maps

(1-16) Tr1.�/� W HC�.kŒ��/! HR�.�;GL1.k//GL1 ;

where HC stands for the reduced cyclic homology. In this case, we have the following result, the proof of
which is parallel to [11] and outlined in the last section of the paper; see Theorem 6.2.

Theorem 1.4 Let � be a homotopy simplicial group such that B� is a simply connected space of finite
(rational ) type. Then the stable character maps (1-16) induce an algebra isomorphism

(1-17) ƒTr1.�/� Wƒk ŒHC�.kŒ��/�
�
�! HR�.�;GL1/GL1 ;

whereƒk ŒHC�.kŒ��/� is the graded symmetric algebra generated by the reduced cyclic homology of kŒ��.

We close this introduction by mentioning one application of stable character maps in derived Poisson
geometry. If � is a simplicial group model of a simply connected closed manifold X of dimension d

(so that X 'B�), then, by (1-9), we can identify HC�.kŒ��/ with the reduced S1–equivariant homology
HS1

� .L.X /I k/ of the free loop space of X . Thanks to the work of Chas and Sullivan, the latter is known
to carry the so-called string topology Lie bracket, making the symmetric algebra ƒk ŒHC�.kŒ��/� Š
ƒk ŒHS1

� .L.X /I k/� a graded Poisson algebra. On the other hand, the representation homology ring
HR�.�;GL1/GL1 acquires a .2�d/–shifted graded Poisson structure from the Poincaré duality pairing
on (the cohomology of) X . As an application of Theorem 1.4, we show that under the isomorphism (1-17),
these two Poisson structures agree, ie the map (1-17) is an isomorphism of graded Poisson algebras; see
Corollary 6.3.

The paper is organized as follows. In Section 2, we review basic facts from abstract homotopy theory
concerning homotopy colimits. The new result proved in this section is Proposition 2.6, which we refer
to as the “Shapiro Lemma for model categories”. This proposition provides a key step for proofs of
main theorems in Section 4 and may be of independent interest. In Section 3, after reviewing basic
theory of homotopy simplicial groups (Section 3.1), we define representation homology (Section 3.2),
and cyclic homology (Section 3.3) for such groups and construct the derived character maps relating the
two (Section 3.4). In Section 4, we prove Theorem 1.1 (Section 4.1) and then, after defining symmetric
homology for homotopy simplicial groups (Section 4.2), we prove part of Theorem 1.2 (see Proposition 4.8
and Corollary 4.10 in Section 4.3). The proof of Theorem 1.2 is completed in Section 6, where we
study the maps (1-13) and (1-14) in topological terms, using Goodwillie homotopy calculus and classical
operads; see Propositions 5.2 and 5.3. Finally, in Section 6, we describe the stabilization procedure for
the derived character maps as n!1 and sketch the proofs of Theorem 1.4 and Corollary 6.3. Each of
the six sections begins with a short introduction that provides more details about its contents.

Acknowledgements Berest was partially supported by NSF grant DMS 1702372 and the Simons
Collaboration grant 712995. Ramadoss was partially supported by NSF grant DMS 1702323.
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2 Shapiro Lemma for model categories

In this section, we prove one general result in abstract homotopy theory concerning homotopy colimits
that will provide a key step for our Theorem 1.1. We call this result (Proposition 2.6) the “Shapiro Lemma
for model categories” as it appears to be a nonabelian generalization of the classical Shapiro Lemma in
the context of model categories. We begin with a brief overview of the theory of homotopy colimits. The
standard reference for this material is the last two chapters of Hirschhorn’s book [39] but many results
that we mention are classical and go back to Bousfield and Kan [19] and Quillen [61]. Our exposition is
inspired by Cisinski’s beautiful paper [24] that treats homotopy colimits axiomatically by analogy with
derived direct image functors in algebraic geometry (unlike [24], however, we do not use the language of
Grothendieck derivators). With the exception of Proposition 2.6, which (to the best of our knowledge)
is new, all results in this section are known.

2.1 Notation and conventions

Throughout this section, M will denote a fixed model category which we assume to be cofibrantly
generated and having all small limits and colimits. Unless stated otherwise, A;B; C; : : : will denote small
categories that we will use to index diagrams in M. For a small category A, the category of A–diagrams
in M (ie all functors A!M) will be denoted by MA. As usual, Cat will stand for the category of all
small categories with morphisms being arbitrary functors.

2.2 Homotopy colimits

For any small category A, the category MA has a projective (aka Bousfield–Kan) model structure inherited
from M: the weak equivalences and fibrations are defined in this model structure objectwise, while the
cofibrations are determined by the lifting axiom of model categories (specifically, as morphisms having
the left lifting property with respect to fibrations which are also weak equivalences in MA). Since M
is cofibrantly generated, such a model structure on MA always exists and is cofibrantly generated; see
[39, Theorem 11.6.1].

Any functor f W A! B (a morphism in Cat) defines the pullback functor on the diagram categories
f � WMB!MA, which is obtained by restricting diagrams B!M along f . This pullback functor pre-
serves objectwise weak equivalences and fibrations and, since M has small colimits, admits a left adjoint

(2-1) f! WMA�MB
Wf �

defined on a diagram X W A!M as the left Kan extension f!.X / WD Lanf .X / of X along f . Thus,
the functors (2-1) form a Quillen pair between the model categories MA and MB. Then, by Quillen’s
adjunction theorem [39, Theorem 8.5.8], they admit total (left and right) derived functors

(2-2) Lf! W Ho.MA/� Ho.MB/ Wf �

that form an adjunction between the homotopy categories of diagrams induced by (2-1).

Algebraic & Geometric Topology, Volume 24 (2024)
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The derived pushforward functor Lf! is called the homotopy left Kan extension along f . It is a general-
ization of the classical homotopy colimit functor hocolimA W Ho.MA/! Ho.M/ that corresponds to the
trivial map A!�, where � denotes the one-point category (the terminal object in Cat). In this last case,
we will use the classical notation writing hocolimA.X / instead of L.A!�/!.X / for X WA!M. We
summarize the main properties of this construction in the following theorem.

Theorem 2.1 [24] Let M be a model category with all small limits and colimits.

(1) 2–Functoriality The pullback functors f � fit together to give a strict , weakly product-preserving
2–functor4 Catop

! CAT that takes a small category A 2 Cat to the homotopy category Ho.MA/.
By adjunction , this implies , in particular , the existence of natural weak equivalences

(2-3) L.fg/! 'Lf!Lg!

for any composable morphisms f and g in Cat.

(2) Reflexivity For any A2Cat, the functor i� W Ho.MA/! Ho.MAı / corresponding to the inclusion
of the underlying discrete subcategory Aı �A is conservative , ie reflects the weak equivalences
in MAı.

(3) Base change For any f WA! B and any object b 2 B, the 2–commutativity of the fiber square

f # b

p

��

�
// A

f

��

(

�
b

// B

induces a change-of-base natural transformation that is a natural weak equivalence

Lp!�
� �
�! b�Lf!:

For a diagram X WA!M, this simply says that

(2-4) Lf!X.b/' hocolimf #b.�
�X /;

where f # b is the comma category of the functor f WA! B over the object b 2 B.

Remark 2.2 In terminology of [24, Definition 1.6, pages 205–206], the properties (1)–(3) of Theorem 2.1
can be summarized by saying that the 2–functor Ho.M�/ W Catop

! CAT is a weak left derivator (un
dérivateur faible à gauche) associated to the model category M.

The properties of homotopy colimits listed in Theorem 2.1 are essentially formal. The next result —
called the cofinality theorem — gives a deeper property of homotopy-theoretic nature that is very useful

4Here, Catop stands for the opposite 2–category of small categories, while CAT denotes the “2–category” of all (not necessarily
small) categories.
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in computations. To state this result we recall that a functor f WA! B is right homotopy cofinal if its
comma category b # f under each object b 2B is (weakly) contractible, ie B.b # f /' pt. As an example,
we point out that every right adjoint functor is right homotopy cofinal: indeed, if f WA! B admits a left
adjoint, say g W B! A, then each comma-category b # f has an initial object (namely, .b; �b/, where
�b W b! fg.b/ is the unit of the adjunction evaluated at b 2 B), hence b # f is contractible for any b 2 B.

Theorem 2.3 (Cofinality) If f WA! B is right homotopy cofinal , then the natural map

hocolimA.f
�X / ��! hocolimB.X /

is a weak equivalence for any diagram X W B!M.

For the proof of Theorem 2.3 we refer to [39, Theorem 19.6.7]. As an application, we prove one simple
lemma that we will need for our computations. Given a functor f W A ! B, we recall that its fiber
category f �1.b/ over an object b 2 B is the subcategory of A consisting of all objects a 2A such that
f .a/D b and all morphisms ' 2HomA.a; a

0/ such that f .'/D Idb . Note that the fiber inclusion functor
i W f �1.b/ ,! A factors through the comma-category f # b over b:

(2-5)

f �1.b/

j

��

� � i
// A

f # b

�

<<

defining the “comparison” functor

(2-6) j W f �1.b/! f # b; a 7!
�
a; f .a/D b

Id
�! b

�
:

Recall that a functor f W A! B is precofibered if (2-6) has a left adjoint for every object b 2 B; see
[60, Section 1]).

Lemma 2.4 If f WA! B is precofibered , then , for any diagram X WA!M,

.Lf!X /.b/' hocolimf �1.b/.i
�X /:

Proof By assumption, the inclusion functor j W f �1.b/! f # b is right adjoint, hence right homotopy
cofinal. By the base change formula (2-4) and Cofinality Theorem 2.3, we conclude

.Lf!X /.b/' hocolimf #b.�
�X /' hocolimf �1.b/.j

���X /D hocolimf �1.b/..�j /�X /

D hocolimf �1.b/.i
�X /;

where the last identification follows from (2-5).

In practice, precofibered functors arise from the so-called Grothendieck construction; see [67]. Given a
functor F W C! Cat (ie a strict diagram of small categories), its Grothendieck construction is defined to
be the small category C s F with Ob.C s F / WD f.c;x/ j c 2 C;x 2 F.c/g and morphism sets

(2-7) HomC
R

F ..c;x/; .c
0;x0// WD f.'; f / j ' 2 HomC.c; c

0/; f 2 HomF.c0/.F.'/x;x
0/g:

Algebraic & Geometric Topology, Volume 24 (2024)
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The composition in C
R

F is given by .'; f / ı .'0; f 0/D .''0; fF.'/f 0/. The category C
R

F comes
equipped with a natural (forgetful) functor

p W C s F ! C; .c;x/ 7! c;

which is precofibered (in fact, cofibered) over C. Notice that p�1.c/D F.c/ for any object c 2 C. Hence,
by Lemma 2.4, for any functor X W C

R
F !M,

(2-8) .Lp!X /.c/' hocolimF.c/ŒX.c/�;

where X.c/ WD i�c X is the restriction of X to F.c/ via the inclusion functor

ic W F.c/! C s F; x 7! .c;x/; .x
f
�! x0/ 7! .Idc ; f /:

By 2–functoriality of homotopy Kan extensions (see (2-3)), equation (2-8) implies the weak equivalence

(2-9) hocolimC s F .X /' hocolimc2C
�
hocolimF.c/X.c/

�
;

which is known as Thomason’s formula for homotopy colimits over C
R

F ; see [23, Theorem 26.8].

An important special case arises when we apply the Grothendieck construction to a set-valued functor
F W C! Set, regarding sets as discrete categories (ie by embedding Set ,! Cat). In this case, the category
C
R

F is usually denoted by CF and called the category of elements of F as its object set Ob.CF / can
be identified with

`
c2C F.c/ (we will still write the objects of CF as pairs .c;x/, where c 2 C and

x 2 F.c/). The Hom-sets in CF are given by HomCF
..c;x/; .c0;x0//D f' 2HomC.c; c

0/ j F.'/x D x0g;
cf (2-7). If we take MD sSet to be the category of simplicial sets (equipped with standard Quillen model
structure) and apply Thomason’s formula (2-9) to the trivial diagram X W CF ! � in M, then for any
functor F W C! Set, we get

(2-10) hocolimC.F /ŠN�.CF /;

where N�.CF / denotes the simplicial nerve of the category CF . Formula (2-10) is known as the Bousfield–
Kan construction for homotopy colimits in sSet; see [19].

2.3 Homotopy coends

Homotopy coends are special kinds of homotopy colimits defined for bifunctors, ie the diagrams of the
form Cop�C!M. There is a broader range of techniques for manipulating with such homotopy colimits,
which makes them more accessible for computations. The homotopy coends are defined in terms of the
so-called twisted arrow category F.C/ introduced by Quillen [61]. It can be described as the category of
elements of the bifunctor Hom W Cop � C! Set of the given category C:

(2-11) F.C/ WD .Cop
� C/ s Hom:
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We will actually be dealing with the opposite category F.C/op which can be explicitly described as follows:
the objects of F.C/op are the morphisms f' W c! dg in C, and the Hom–sets are commutative squares

(2-12)
d d 0

ˇ
oo

c

'

OO

˛
// c0

'0

OO

ie HomF.C/op.'; '0/ consists of the pairs of morphisms .˛; ˇ/ in C such that 'Dˇ'0˛, with compositions
defined in the obvious way. Note that F.C/op 6' F.Cop/ in general. Now, there are two natural functors

sop
W F.C/op

! C; .c
'
! d/ 7! c;(2-13)

top
W F.C/op

! Cop; .c
'
! d/ 7! d;(2-14)

called the (opposite) source and target functors, respectively. We have:

Lemma 2.5 (Quillen) The functors (2-13) and (2-14) are both right homotopy cofinal.

Proof Since F.C/ is defined by Grothendieck construction (2-11), the canonical (forgetful) functor

s � t W F.C/! Cop
� C

is precofibered. It follows (cf [61, Example, page 94]) that both s W F.C/! Cop and t W F.C/! C are
precofibered. Hence the inclusions s�1.c/ ,! s # c and t�1.d/ ,! t # d induce weak equivalences of
classifying spaces

(2-15) B.s�1.c//' B.s # c/; B.t�1.d//' B.t # d/:

On the other hand, by inspection, s�1.c/ D c # C and t�1.d/ D .C # d/op are the slice and coslice
categories respectively. Since both c # C and .C # d/op have initial objects, they are contractible for all
c; d 2 C. To complete the proof it remains to note that .c # sop/D .s # c/op and .d # top/D .t # d/op,
where sop and top are the functors (2-13) and (2-14). Hence

B.c # sop/D B.s # c/op
' B.s # c/' B.s�1.c//' pt;

and similarly B.d # top/' pt. This shows that sop and top are right homotopy cofinal.

In view of Lemma 2.5, for any diagrams X W Cop!M and Y W C!M Theorem 2.3 gives two natural
weak equivalences

s� W hocolimF.C/op.s�Y / ��! hocolimC.Y /;(2-16)

t� W hocolimF.C/op.t�X / ��! hocolimCop.X /:(2-17)

These equivalences can be used to express arbitrary homotopy colimits over C and Cop as homotopy
coends which we introduce next. Set

�op
WD top

� sop
W F.C/op

! Cop
� C;
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and for a bifunctor D W Cop � C!M, define its homotopy coend by

(2-18)
Z c2C

L

D.c; c/ WD hocolimF.C/op.��D/;

where ��D WDD ı�op W F.C/op!M. This is indeed the (left) derived functor of the classical coend
functor, which is usually denoted by

(2-19)
Z c2C

D.c; c/ WD colimF.C/op.��D/:

The notation (2-18) is very convenient as it suggests the analogy with (definite) integrals in calculus. For
example, for a bifunctor D W .A�B/e!M defined on a product of two small categories .A�B/e WD
Aop �Bop �A�B there is a natural weak equivalenceZ .a;b/2A�B

L

D.a; bI a; b/'

Z a2A

L

Z b2B

L

D.a; bI a; b/;

which is analogous to the classical Fubini theorem in calculus (and thus called the Fubini theorem for
homotopy coends). Another useful formula that we will need is

(2-20)
Z c2C

L

LF ŒD.c; c/�'LF

� Z c2C

L

D.c; c/

�
;

where F is a left Quillen functor between model categories. This formula is a consequence of a more
general (well-known) result that the derived functors of left Quillen functors preserve homotopy colimits
(for a short proof, see eg [74, Proposition 3.15]).

We are now in a position to state the main result of this section.

Proposition 2.6 (Shapiro Lemma for model categories) Let M be a model category , C a small category,
and F W C! Set a set-valued functor on C. For any contravariant diagram X W Cop!M such that X.c/ is
cofibrant in M for all c 2 C, there is a natural weak equivalence

(2-21) hocolimCop
F
.p�X /'

Z c2C

L

X.c/˝F.c/;

where CF is the category of elements of F , and˝ denotes the natural (tensor) action5 of Set on M.

For the proof of Proposition 2.6, we need the following observation.

Lemma 2.7 For any set-valued functor F W C! Set, the functor F.p/op W F.CF /
op! F.C/op induced by

the canonical projection p W CF ! C is precofibered.

Proof The proof is by direct verification: we give some details in order to introduce notation and make a
few observations that we will use later. We set f WD F.p/op and describe first the fiber category f �1.'/

5That is,˝ is the bifunctor M�Set!M defined by A˝S D
`

S A, where
`

S A is the coproduct of copies of A indexed by
the elements of S .
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for .' W c! d/ 2 F.C/op. The objects of f �1.'/ are the morphisms in CF of the form .c;x/
'
�! .d;y/

such that y D F.'/.x/. We will write the object .c;x/ '
�! .d;F.'/.x// of F.CF /

op as .';x/. Thus,

Ob.f �1.'//D f.';x/ j x 2 F.c/g:

Further, the morphisms .';x/! .';y/ in f �1.'/ are precisely the morphisms in F.CF /
op, ie commuta-

tive diagrams of the form
.d;F.'/.x// .d;F.'/.y//

ˇ
oo

.c;x/

'

OO

˛
// .c;y/

'

OO

mapped to the identity by f . This last condition implies that ˛ D Idc and ˇ D Idd . Hence,

Homf �1.'/

�
.';x/; .';y/

�
D

�
fIdg if x D y;

¿ otherwise.

Hence, f �1.'/Š F.c/, where the set F.c/ is viewed as a discrete category.

Next, for .' W c! d/ 2 F.C/op, the objects of f # ' are given by

Ob.f # '/D fŒ W k! l; z; ˛; ˇ� j . ; z/ 2 F.CF /
op; .˛; ˇ/ 2 HomF.C/op. ; '/g;

while the morphisms Œ ; z; ˛; ˇ�! Œ 0; z0; ˛0; ˇ0� in f # ' are the commutative diagrams in CF of the
form

.l;F. /.z// .l 0;F. 0/.z0//
ı

oo

.k; z/

 

OO


// .k 0; z0/

 0

OO

such that

l l 0
ı

oo

d
ˇ

cc

ˇ0

;;

k

˛ ##

 

OO


// k 0

˛0zz

 0

OO

c

'

OO

commutes in C. In particular, a morphism Œ ; z; ˛; ˇ�! Œ';x; Idc ; Idd � in f # ' is represented by

.l;F. /.z// .d;F.'/.x//
ˇ
oo

.k; z/

 

OO

˛
// .c;x/

'

OO

Such a diagram exists if and only if x D F.˛/.z/, in which case it is unique. Hence,

Homf #'.Œ ; z; ˛; ˇ�; Œ';x; Idc ; Idd �/D

�
f.˛; ˇ/g if x D F.˛/.z/;

¿ otherwise,

where .˛; ˇ/ is viewed as a morphism . ; z/! .';x/ in F.CF /
op (rather than F.C/op).

Now, consider the assignment

ˆ W f # '! f �1.'/; Œ ; z; ˛; ˇ� 7! .';F.˛/.z//:
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If .; ı/ W . ; z/! . 0; z0/ is a morphism in f # ', then z0 D F. /.z/ and ˛0 ı  D ˛. Hence, letting ˆ
map .; ı/ to the identity on .';F.˛/.z// makes ˆ a functor. We then note that

Homf �1.'/.ˆ.Œ ; z; ˛; ˇ�/; .';x//D Homf �1.'/..';F.˛/.z//; .';x//D

�
fIdg if x D F.˛/.z/;

¿ otherwise.

Hence, there is a natural bijection

Homf �1.'/.ˆ.Œ ; z; ˛; ˇ�/; .';x//Š Homf #'.Œ ; z; ˛; ˇ�; Œ';x; Idc ; Idd �/;

showing that ˆ is left adjoint to the canonical inclusion

f �1.'/ ,! f # '; .';x/ 7! Œ';x; Idc ; Idd �:

This shows that f is precofibered, as desired.

Proof of Proposition 2.6 By formula (2-17) (applied to the category CF ), there is a natural weak
equivalence

t� W hocolimF.CF /op.t�p�X / ��! hocolimCop
F
.p�X /;

where
t�p�X W F.CF /

op top
�! Cop

F

pop
�! Cop X

�!M:

On the other hand, by definition (2-18),Z c2C

L

X.c/˝F.c/D hocolimF.C/op Œ��.X ˝F /�;

where
��.X ˝F / W F.C/op �op

�! Cop
� C X�F
��!M�Set ˝�!M:

To prove the desired proposition we thus need to show that

(2-22) hocolimF.CF /op.t�p�X /' hocolimF.C/op Œ��.X ˝F /�:

By Theorem 2.1(1) (see (2-3)), it suffices to show that there is an weak equivalence of F.C/op–diagrams

(2-23) Lf!.t
�p�X /' ��.X ˝F /;

where f W F.CF /
op! F.C/op is the functor induced by the canonical projection p W CF ! C . Thanks

to Lemma 2.7, we can use Lemma 2.4 to evaluate the homotopy Kan extension in (2-23) in terms of
homotopy colimits over fiber categories. Specifically, for any ' 2 F.C/op, we have

Lf!.t
�p�X /.'/' hocolimf �1.'/.i

�t�p�X /;

where i W f �1.'/ ,! F.CF /
op. In the proof of Lemma 2.7, we have described the fiber category f �1.'/:

namely, f �1.'/ is isomorphic to the discrete category F.c/ for any .' W c! d/ 2 F.C/op. Now, since
i�t�p�X D i�f �t�X D .f i/�t�X D t�X.'/DX.d/ and since X is objectwise cofibrant in M, we have

hocolimf �1.'/.i
�t�p�X /'

La
F.c/

X.d/'
a
F.c/

X.d/;
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which is precisely the value of ��.X ˝F / at '. Thus, Lf!.t
�p�X /' ' ��.X ˝F //' in M for all

' 2 F.C/op. By Theorem 2.1(2), this implies (2-23). Summing up, we have constructed the pullback–
pushforward diagram

hocolimF.CF /op.t�p�X /

t�

vv

Lf!

))

hocolimCop
F
.p�X / hocolimF.C/op Œ��.X ˝F /�

each arrow in which is a weak equivalence. This shows that the objects in both sides of (2-21) are weakly
equivalent in M, as claimed by the proposition.

Remark 2.8 The proof of Proposition 2.6 shows that the additional assumption on the diagram X to be
objectwise cofibrant in M is not needed if the coproducts in M preserve weak equivalences, eg if M is a
cofibrant model category such as the category sSet of simplicial sets with Quillen model structure.

In the special case, if we take M D Ch.Modk/ to be the category of chain complexes of k–modules
equipped with standard projective model structure (see [40, Theorem 2.3.11]), Proposition 2.6 implies the
following classical result in homological algebra.

Corollary 2.9 (Shapiro Lemma) Let k be a commutative ring , C a small category, and Modk.Cop/ the
(abelian) category of Cop–diagrams of k–modules. Then , for any functor F W C! Set, and for any module
X 2Modk.Cop/ such that X.c/ is k–projective for all c 2 C, there is a natural isomorphism

TorCF
� .p

�X; k/Š TorC�.X; kŒF �/;

where kŒF � W C F
�! Set

kŒ–�
��!Modk is the k–linear functor generated by F .

The Shapiro Lemma appears in [47, Appendix C.12], where it is proven in the special case X D k (the
constant Cop–diagram valued at k); in the general form, the result of Corollary 2.9 is stated, for example,
in [26].

As another immediate consequence of Proposition 2.6, we get a derived version of the classical “coend
formula” for left Kan extensions; see [51, Theorem X.4.1].

Corollary 2.10 Let f WA! B be a functor between small categories. Let X WA!M be an A–diagram
in a model category M such that X.a/ is cofibrant for all a 2A. Then , for all objects b 2 B,

(2-24) Lf!.X /.b/'

Z a2A

L

HomB.f .a/; b/˝X.a/:

Proof To apply Proposition 2.6 take C D Aop and F D HomB.f .�/; b/ W C! Set. Then Cop
F
Š f # b

and the equivalence (2-24) is obtained as a combination of (2-4) and (2-21).

The result of Corollary 2.10 must be well known to experts, although we could not find an exact reference
in the literature.
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3 Representation and cyclic homology of homotopy simplicial groups

In this section, we define representation homology of groups with coefficients in a commutative Hopf
algebra H, following the approach of [13; 14]. Taking HDO.G/, where G is an affine algebraic group,
we then construct the derived character maps for G–representations of � . In the case when G D GLn,
these maps specialize to the character maps (1-7) announced in the Introduction. Unlike in [13; 14], we
will work here with homotopy simplicial groups (in the sense of Badzioch [4]), which are more general
and flexible objects than the usual (strict) simplicial groups. In Section 3.1, we define the classifying
spaces for such groups, and in Section 3.3, the cyclic bar construction and cyclic homology, both of
which may be of independent interest. We begin by reviewing the main results of [4] specializing to the
algebraic theory of groups.

3.1 Homotopy simplicial groups

LetG be the small category whose objects hni are the finitely generated free groups FnDFhx1;x2; : : : ;xni,
one for each n� 0 (with convention that h0i is the trivial group), and the morphisms are arbitrary group
homomorphisms. Every discrete group � defines a contravariant functor � WGop! Set, hni 7! �n, which
is simply the restriction of the Yoneda functor Hom.–; �/ W Grop

! Set to G� Gr. More generally, every
simplicial group � 2 sGr (ie a simplicial object in Gr) defines a functor

(3-1) � WGop
! sSet; hni 7! �n;

where �n denotes the product of n copies of the underlying simplicial set of � . The functors (3-1) can be
characterized by the property of being product-preserving. To make it precise, observe that the category G

carries a (strict) monoidal structure
`
WG�G!G given by the coproduct (free product) of free groups:

hni
`
hmi D hnCmi. The opposite category Gop is thus equipped with the dual monoidal structure,

which we simply denote by… WGop�Gop!Gop. Every object hnio 2Gop comes equipped with n natural
projections

(3-2) pn;k W hni
o
! h1io for 16 k 6 n

that correspond to the canonical inclusions in;k W h1i ,!hni given by x1 7! xk in G. We say that a functor
F WGop! sSet is product-preserving if the maps induced by (3-2),

(3-3) F.pn/ WD

nY
kD1

F.pn;k/ W Fhni ! .Fh1i/n;

are isomorphisms in sSet for all n> 0. It is easy to show that assigning to a simplicial group � 2 sGr the
functor (3-1) defines an equivalence of categories

(3-4) sGr ��! sSetG
op

˝ ;
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where sSetG
op

˝ denotes the full subcategory of product-preserving functors in the diagram category sSetG
op

.
We will use (3-4) to identify sGr D sSetG

op

˝ , thus regarding the simplicial groups as functors of the
form (3-1). Now, the homotopy simplicial groups are obtained by replacing the assumption that the
maps (3-3) are isomorphisms in sSet with that of being weak equivalences, which is a more natural
condition from the point of view of homotopy theory. Precisely:

Definition 3.1 (Badzioch [4]) A homotopy simplicial group is a functor F WGop! sSet that is weakly
product-preserving in the sense that the maps (3-3) are weak equivalences in sSet for all n> 0 (with the
convention that Fh0i ' pt).

The category of homotopy simplicial groups (ie the full subcategory of all weakly product-preserving
functors in sSetG

op
) does not carry any model structure as it is not closed under colimits. Instead, as

suggested in [4], one can put a new model structure on the diagram category sSetG
op

in which the homotopy
simplicial groups are exhibited as fibrant objects; cf [4, Proposition 5.5]. We call this model structure the
Badzioch model structure and denote it by sGrh. To be precise, sGrh is defined by localizing (ie taking
the left Bousfield localization of) the standard projective model structure on sSetG

op
with respect to the

set of maps

S D

�
in W

na
kD1

HomG.–; h1i/! HomG.–; hni/
�

n�0

induced by the natural inclusions in;k W h1i ! hni in G. By definition, the underlying category of sGrh is
that of sSetG

op
but its class of weak equivalences is larger: in addition to all weak equivalences of sSetG

op

(which are objectwise equivalences of diagrams of simplicial sets), the weak equivalences of sGrh include
the set S and are thus called the S–local weak equivalences. There is a canonical localization functor
LS W sSetG

op
! sGrh that takes a diagram � 2 sSetG

op
to its functorial fibrant replacement in the model

structure sGrh. In this way, one can make any diagram in sSetG
op

a homotopy simplicial group. On the
other hand, the model category of (strict) simplicial groups sGr is related to sGrh by a Quillen adjunction

(3-5) K W sGrh� sGr WJ

which is obtained by localizing (at S ) the Quillen adjunction K W sSetG
op � sGr WJ between sGr and the

model category of all diagrams sSetG
op

. In particular, the right adjoint functor in (3-5) is given by the
inclusion J.�/D � (see (3-1)), while the left adjoint — called the rigidification functor — is described
explicitly in Lemma 3.5 below. Now, the main result of [4] reads:

Theorem 3.2 (Badzioch) The adjunction (3-5) is a Quillen equivalence.

Remark 3.3 Theorem 3.2 was proved in [4, Theorem 6.4] for an arbitrary one-sorted algebraic theory.
It was extended to all multisorted theories in [17], and further to limit theories and to diagrams in model
categories other than sSet in [63].
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Next, recall that there is a classical adjunction, called the Kan loop group construction [42], that relates
the model category sGr of (strict) simplicial groups to that of (reduced) simplicial sets:

(3-6) G W sSet0� sGr WW :

The left adjoint G is called the Kan loop group functor, and the right adjoint W is the classifying complex
functor on simplicial groups. The properties of these functors are well known and discussed in detail, for
example, in [32, Chapter V]; see also [14, Section 2.2]. Here, we mention only two important facts: first,
the pair (3-6) is a Quillen equivalence, both G and W being homotopy invariant functors; see [32, V.6.4].
Second, for any reduced simplicial set X , there is a weak homotopy equivalence (see [32, V.5.11])

(3-7) jG.X /j '�jX j;

where �jX j is the (Moore) based loop space of the geometric realization of X . The equivalence (3-7)
clarifies the topological meaning of the Kan loop group functor G (and justifies its name). Combining
now Badzioch’s theorem (Theorem 3.2) with Kan’s construction, we get natural equivalences of homotopy
categories

(3-8) Ho.sGrh/
LK
��! Ho.sGr/ W

�! Ho.sSet0/
j– j
��! Ho.Top0;�/

induced by the above indicated functors. This leads us to the following definition.

Definition 3.4 For a homotopy simplicial group � 2 sGrh, we define its classifying space B� by

(3-9) B� WD jW LK.�/j

where LK W Ho.sGrh/! Ho.sGr/ is the derived rigidification functor; see (3-11).

Note that if � is a (strict) simplicial group, ie � D J.�/, then B� Š jW �j, since LK ıJ Š Id. Thus
the above definition is a natural extension of Kan’s definition of classifying spaces for simplicial groups
(which is, in turn, an extension of the classical definition of B� for ordinary discrete groups).

We conclude this section by giving a simple formula for the Badzioch rigidification functor that did not
seem to appear explicitly in [4].

Lemma 3.5 The functor K W sGrh
! sGr in (3-5) is given by the coend

(3-10) K.�/D

Z hni2G
�hni˝Fhni;

where F WG ,! sGr given by hni 7! Fn is the natural inclusion functor , and˝W sSet� sGr! sGr is the
standard simplicial tensor action on the category of simplicial groups.

It follows from Lemma 3.5 that the derived functor LK can be written as the homotopy coend

(3-11) LK.�/D

Z hni2G
L

�hni˝Fhni:
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For the proof of Lemma 3.5 and formula (3-11) (in the general setting of [4]) we refer to our forthcoming
paper [10].

3.2 Representation homology

Let k be a commutative ring. Recall that, for a small category C, we denote by Modk.C/ and Modk.Cop/

the categories of all covariant and contravariant functors from C to Modk , respectively. It is well known
that these are abelian categories with sufficiently many projective and injective objects. Recall also (see
eg [47, Appendix C.10]) that there is a natural biadditive functor

–˝C – WModk.Cop/�Modk.C/!Modk

called the functor tensor product. Explicitly, for M W C!Modk and N W Cop!Modk , it is defined by

(3-12) N ˝C M WD
�M

c2C

N .c/˝k M.c/

�
=R

where R is the k–submodule spanned by elements of the form N .'/x˝y�x˝M.'/y for all x 2N .c0/,
y 2M.c/ and ' 2 HomC.c; c

0/. The functor (3-12) is right exact (with respect to each argument),
preserves sums, and is left balanced. Its classical (left) derived functors with respect to each argument
are canonically isomorphic and their common value is denoted by TorC�.N ;M/. More generally, we
can extend the bifunctor (3-12) to chain complexes of C–modules, ie the categories Ch.Modk.Cop// and
Ch.Modk.C//, and define

(3-13) TorC�.N ;M/ WD H�.N ˝L
C M/

for any N 2Ch.Modk.Cop// and M2Ch.Modk.C//. Note that N˝L
C;kM is an object in the (unbounded)

derived category D.k/DD.Modk/ of k–modules, and (3-13) is just the usual hyper-Tor functor on chain
complexes. Next, observe that there is a natural functor

(3-14) sSetC
op kŒ–�
��! sModk.Cop/

N
,�! Ch.Modk.Cop//

transforming the Cop–diagrams in sSet (simplicial presheaves on C) to chain complexes over Modk.Cop/.
Here N stands for the classical Dold–Kan normalization functor that identifies simplicial objects in
Modk.Cop/ with nonnegatively graded chain complexes in Ch.Modk.Cop//. Abusing notation, we will
write the functor (3-14) simply as kŒ–�.

We are now in a position to define representation homology of homotopy simplicial groups with coefficients
in commutative Hopf algebras. We recall the well-known fact (see eg [62, Proposition 14.1.6]) that every
such algebra H defines a covariant functor (a left G–module) by the rule

(3-15) H WG!Modk ; hni 7!H˝n:

In particular, if G is an affine algebraic group (eg G D GLn.k/) with coordinate ring HDO.G/, then
(3-15) can be written in the form hni 7!OŒRepG.hni/�, which makes the functoriality clear.
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Definition 3.6 The representation homology of a homotopy simplicial group � 2 sGrh with coefficients
in H is defined by

HR�.�;H/ WD TorG� .kŒ��;H/;

where kŒ�� and H are viewed as chain complexes of G–modules and Tor stands for the hyper-Tor functor
over G defined by (3-13).

In the special case when G is an affine algebraic group over k and HDO.G/, we simply write HR�.�;G/
instead of HR�.�;O.G//.

The next lemma shows that the above definition agrees with the Badzioch model structure on sGrh.

Lemma 3.7 If two homotopy simplicial groups � and � 0 are weakly equivalent in sGrh, then

(3-16) HR�.�;H/Š HR�.� 0;H/

for any commutative Hopf algebra H.

Proof By [4, Proposition 5.6], if two homotopy simplicial groups � and � 0 are S–locally weakly
equivalent, then their underlying diagrams are, in fact, weakly equivalent in sSetG

op
. It therefore suffices

to show that (3-16) holds for any objectwise weak equivalent diagrams �; � 0 WGop! sSet. To this end,
observe that the linearization functor

(3-17) kŒ–� W sSetG
op
! sModk.G

op/

is left Quillen with respect to the projective model structures (its right adjoint is the forgetful functor).
Since the weak equivalences in sSetG

op
are defined objectwise and the model structure on sSet is cofibrant,

being left Quillen, the functor (3-17) is actually homotopy invariant: ie it maps weakly equivalent
objects in sSetG

op
to weakly equivalent objects in sModk.G

op/, which, in turn, are transformed by the
normalization functor N to quasi-isomorphic complexes in Ch.Modk.G

op//. Thus if � ' � 0 in sSetG
op
,

then kŒ��˝L
G;k

H' kŒ� 0�˝L
G;k

H in D.k/, which implies (3-16).

Remark 3.8 Recall that the category sGrh is obtained from sSetG
op

via a left Bousfield localization: its
objects are arbitrary diagrams of simplicial sets � WGop! sSet (not just homotopy simplicial groups).
The result of Lemma 3.7 does not hold for arbitrary diagrams in sGrh, since the functor (3-17) does not
map all S–local weak equivalences to objectwise weak equivalences in sSetG

op
. This last fact can be

easily seen by evaluating (3-17) on representable simplicial presheaves on G.

An important consequence of Lemma 3.7 is that the representation homology of a homotopy simplicial
group � depends only on the homotopy type of its classifying space B� (Definition 3.4). In fact, we have

(3-18) HR�.�;H/Š HR�.B�;H/;
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where the HR on the right-hand side stands for representation homology of topological spaces as defined
in [14], using a (nonabelian) derived representation functor. Indeed, by Badzioch [4, Theorem 3.1], every
homotopy simplicial group � is weakly equivalent to a strict one, say � 0; hence

(3-19) B� ' B� 0 'W � 0:

On the other hand, by [14, Theorem 4.2], HR�.� 0;H/Š HR�.W � 0;H/, which together with (3-19) and
the isomorphism (3-16) of Lemma 3.7 implies (3-18).

We conclude this section by briefly explaining how our approach (Definition 3.6) relates to derived
algebraic geometry (DAG). For a model of DAG, we will take the simplicial presheaf model developed
in [69]. Given a homotopy simplicial group � 2 sGrh and an affine algebraic group (scheme) G over k

with coordinate algebra HDO.G/, we introduce the derived representation scheme of � in G:

(3-20) DRepG.�/ WD RSpec.kŒ��˝L
G O.G//:

Here, RSpec denotes the Toën–Vezzosi derived Yoneda functor that assigns to a (homotopy) simplicial
commutative algebra A — a derived ring in terminology of [69] — the simplicial presheaf (prestack)

RSpec.A/ W dAffop
k
WD sCommk ! sSet; B 7!Map.QA;B/;

where QA is a cofibrant replacement of A and Map is the simplicial mapping space (function complex)
in sCommk . The prestack RSpec.A/ satisfies the descent condition for étale hypercoverings and hence
defines a derived stack (which is a derived affine scheme in the sense of [69]). On the other hand, for
any pointed space (simplicial set) X , we can define the pointed mapping stack Map�.X;BG/ to be the
homotopy fiber of the canonical map in the (homotopy) category of derived stacks:

(3-21) Map�.X;BG/ WD hofibŒMap.X;BG/! BG�;

where Map.X;BG/ stands for the (unpointed) derived mapping stack defined in [69, 2.2.6.2]. This last
mapping stack is a basic object of derived algebraic geometry that plays an important role in applications;
see eg [55]. Now, its relation to representation homology is clarified by the following:

Proposition 3.9 [12] There is a (weak ) equivalence of derived stacks

DRepG.�/'Map�.B�;BG/:

For a detailed proof of Proposition 3.9 and more explanations we refer to [12, Appendix A.1].

3.3 Cyclic homology

We now define cyclic homology for homotopy simplicial groups. To this end, we will associate to each
� 2 sGrh a cyclic module kŒBcyc�� that generalizes the classical cyclic bar construction C�.kŒ��/ when
� is an ordinary discrete group. We begin by recalling basic definitions.
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Let � denote the (co)simplicial category whose objects are finite ordered sets Œn�D f0< 1< � � �< ng and
morphisms are (nonstrictly) order-preserving maps. The category � is generated by two families of maps,

d i
n W Œn� 1�! Œn� for 06 i 6 n and n> 1;

sj
n W ŒnC 1�! Œn� for 06 j 6 n and n> 0;

called the (co)face and (co)degeneracy maps, respectively. These maps satisfy the standard (co)simplicial
relations listed, for example, in [47, Appendix B.3]. Connes’ cyclic category �C is a natural extension
of � that has the same objects and is generated by the morphisms of � and the cyclic maps �n W Œn�! Œn�,
n> 0, satisfying �nC1

n D Id; see [47, 6.11]. Formally, the category �C can be characterized by the two
properties

(Cyc1) For each n> 0, Aut�C .Œn�/Š CnC1, where CnC1 D Z=.nC 1/Z, and

(Cyc2) any morphism f W Œn� ! Œm� in �C can be factored uniquely as f D g ı ', where g 2

Hom�.Œn�; Œm�/ and ' 2 Aut�C .Œn�/.

These show that it is a crossed simplicial category associated to the family of cyclic groups fCnC1gn>0;
see [47, 6.3.0]. Recall that a cyclic set (resp. a cyclic module) is defined to be a contravariant functor on
�C , ie �C op! Set (resp. �C op!Modk), while a cocyclic set (resp. a cocyclic module) is a covariant
functor �C ! Set (resp. �C !Modk).

Now, if � is an ordinary discrete group, there is a natural functor

(3-22) B
cyc
� � W�C op

! Set

called the cyclic bar construction of � that has the property that kŒB
cyc
� ��Š C�.kŒ��/, where C�.kŒ��/

is the standard cyclic module associated to kŒ�� as an associative k–algebra. Explicitly, the functor (3-22)
is defined (see [47, 7.3.10]) by

di.g0; : : : ;gn/D

�
.g0; : : : ;gi�1;gigiC1; : : : ;gn/ if 06 i < n;

.gng0;g1; : : : ;gn�1/ if i D n;

sj .g0; : : : ;gn/D .g0; : : : ;gj ; 1;gjC1; : : : ;gn/;

tn.g0; : : : ;gn/D .gn;g0;g1; : : : ;gn�1/;

where .g0; : : : ;gn/ 2 �
nC1. Clearly, � 7! B

cyc
� � gives a functor B

cyc
� W Gr! Set�C op

. If we identify
GrD SetG

op

˝ as in (3-4), then it turns out that B
cyc
� coincides with the pullback functor for a certain natural

map ‰cyc W�C !G in Cat. Specifically,

(3-23) ‰cyc W�C !G

is defined on objects by

‰cyc.Œn�/ WD hnC 1i D Fhx0; : : : ;xni;
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and on morphisms by the formulas

(3-24)

‰cyc.d
i
n/ W hni �! hnC 1i;

.x0;x1; : : : ;xn�1/ 7!

�
.x0; : : : ;xi�1;xixiC1; : : : ;xn/ if 0� i < n;

.xnx0;x1; : : : ;xn�1/ if i D n;

‰cyc.s
j
n / W hnC 2i �! hnC 1i; .x0; : : : ;xnC1/ 7! .x0; : : : ;xj ; 1;xjC1; : : : ;xn/;

‰cyc.�n/ W hnC 1i �! hnC 1i; .x0;x1; : : : ;xn/ 7! .xn;x0;x1; : : : ;xn�1/:

where .x0;x1; : : : ;xn/ is an ordered sequence of generators of the free group Fhx0; : : : ;xni.

Lemma 3.10 For any discrete group � there is a natural isomorphism of cyclic sets

Bcyc� Š‰�cyc.�/;

where � WGop! Set is the functor corresponding to � under the identification (3-1).

Proof Straightforward.

Remark 3.11 The functor (3-23) was defined in [16] on a slightly larger — the so-called epicyclic —
category �‰, which is an extension of �C describing the Adams operations on cyclic modules.

Lemma 3.10 motivates the following definition.

Definition 3.12 For a homotopy simplicial group � 2 sGrh, we define its cyclic bar construction by

(3-25) Bcyc� WD‰�cyc.�/ W�C op
! sSet;

and its cyclic homology by

(3-26) HC�.kŒ��/ WD Tor�C op

� .k; kŒBcyc��/Š Tor�C
� .kŒBcyc��; k/:

The same argument as in (the proof of) Lemma 3.7 shows that HC�.kŒ��/ depends only on the homotopy
type of � in the Badzioch model category sGrh, and hence, on the homotopy type of its classifying
space B� . In view of Lemma 3.10, the above definition of HC�.kŒ��/ for � an ordinary discrete group
coincides with the classical (Connes’) definition of cyclic homology of group algebras; see [47, 6.2.8].

3.4 Derived character maps

Next, we will construct a family of natural transformations relating the cyclic homology to representation
homology of a homotopy simplicial group � . In the special case when HDO.GLn/, this family contains
a distinguished element determined by the usual trace Trn, that gives the derived character map (1-7)
announced in the introduction. With our current definitions of representation and cyclic homology the
construction is actually very simple. It is based on two lemmas. The first one is a standard result of
homological algebra that simply exhibits the naturality of derived tensor products (3-13).
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Lemma 3.13 Let f WA!B be a functor between small categories. For any complexes N 2Ch.ModkBop/

and M 2 Ch.ModkB/, there is a natural map f �N ˝L
A;k f

�M! N ˝L
B;k M in the derived category

D.k/ of k–modules that induces

f � W TorA� .f
�N ; f �M/! TorB�.N ;M/:

To apply this lemma in our situation we recall that every commutative Hopf k–algebra H defines the
covariant functor H W G!Modk by formula (3-15). Restricting this functor via the morphism (3-23)
gives rise to a cocyclic k–module that we denote by

BcycH WD‰�cyc.H/ W�C !Modk :

On the other hand, by Definition 3.12, ‰�cyc.kŒ��/D kŒBcyc.�/� for any homotopy simplicial group � .
Thus, by Lemma 3.13, the functor ‰cyc induces a canonical map

(3-27) ‰�cyc W Tor�C
� .kŒBcyc��;BcycH/! TorG� .kŒ��;H/:

The target of this map is precisely HR�.�;H/ (see Definition 3.6), while the domain differs from
HC�.kŒ��/ in the second argument of Tor (cf Definition 3.12). To connect the two Tors we will use the
following lemma, which we state in the language of affine algebraic groups.

Lemma 3.14 Let G be an affine algebraic group defined over k, and let O.G/ be its coordinate algebra.
There is a natural isomorphism

(3-28) HomModk.�C /.k;BcycŒO.G/�/ŠO.G/G ;

where O.G/G denotes the invariant subalgebra of O.G/ under the adjoint G–action.

Proof For m�0, denote by �m W Œ0�! Œm� the composition of maps d0
md0

m�1
� � � d0

1
in�C . It follows from

(3-24) that‰cyc.�m/ W h1i!hmC1i is the homomorphism of groups taking the generator x of Fhxi to the
product of generators x0x1 : : :xm in Fhx0; : : : ;xmi. The corresponding map ŒBcycO.G/�.�m/ WO.G/!
O.G/˝.mC1/ can thus be identified with the m–fold coproduct in O.G/,

(3-29) �
.m/
G
WO.G/!O.GmC1/; P 7! Œ.g0;g1; : : : ;gm/ 7! P .g0g1 � � �gm/�:

Now, it is easy to check that, for a fixed P 2O.G/G , the maps �.m/
G
.P / W k!O.GmC1/ taking 1 2 k

to �.m/
G
.P / assemble to a morphism of cocylic modules �G.P / W k! BcycŒO.G/�, the commutativity

with cyclic operators �m being a consequence of the G–invariance of P . We claim that the assignment
P 7!�G.P / defines a k–linear isomorphism

(3-30) �G WO.G/G �
�! HomModk.�C /.k;BcycŒO.G/�/:

The inverse of (3-30) can be constructed as follows. Let ' 2 HomModk.�C /.k;BcycŒO.G/�/. Note that,
for all Œm� 2 �C , its components 'Œm� W k ! O.G/˝.mC1/ Š O.GmC1/ are k–linear maps. Define
T ' WD 'Œ0�.1/ 2O.G/, where 1 2 k. Since ' is a natural transformation,

'Œm�.1/D fŒBcycO.G/�.�m/g.'Œ0�.1//D fŒBcycO.G/�.�m/g.T '/D�
m.T '/;
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where �m is defined in (3-29). Similarly, applying BcycŒO.G/� to the cyclic operators �m in �C , we have

'Œm�.1/D fŒBcycO.G/�.�m/g.'Œm�.1//;

from which it follows that T '.g0 � � �gm/DT '.gmg0 � � �gm�1/ for all g0; : : : ;gm2G. This is equivalent
to the assertion that T ' 2O.G/G . Thus T defines a k–linear map

HomModk.�C /.k;BcycŒO.G/�/!O.G/G ; ' 7! T ':

It is clear from its construction that the above map is the inverse of (3-30).

We can now make the following definition.

Definition 3.15 Let � 2 sGrh be a homotopy simplicial group. For an affine algebraic group G and an
Ad G–invariant polynomial P 2O.G/G , we define the derived G–character map of � associated to P by

(3-31) �G;P .�/� W HC�.kŒ��/
.�GP/�
�����! Tor�C

� .kŒBcyc��;BcycŒO.G/�/
‰�cyc
���! HR�.�;G/;

where .�GP /� is a linear map induced by the map of cocyclic modules �GP W k ! BcycŒO.G/� (see
(3-29) and (3-30)), and ‰�cyc is the map (3-27) defined for HDO.G/.

Explicitly, if we choose a projective resolution Q �
�! kŒ�� of kŒ�� in the (abelian) category Modk.G

op/,
applying the functor‰�cyc gives a projective resolution‰�cycQ

�
�!kŒBcyc�� of the cyclic module kŒBcyc��

in Modk.�C op/. The map (3-31) is then induced by a map of chain complexes

(3-32) �G;P .�/� W .‰
�
cycQ/˝�C k!Q˝G O.G/

which, in turn, is induced by the following map (see (3-12))

(3-33)
M

Œm�2�C

QhmC 1i !
M
hni2G

Qhni˝O.G/˝n; vmC1 7! vmC1˝�
.m/
G
.P /;

where vmC1 2QhmC 1i and �.m/
G
.P / 2O.G/˝.mC1/ is defined by (3-29).

In the special case when G D GLn.k/ and P D Trn 2 O.GLn/ is the usual trace function on .n� n/–
matrices, we denote the map (3-31) by

(3-34) Trn.�/� W HC�.kŒ��/! HR�.�;GLn.k//;

and call it the derived character map of n–dimensional representations of � . In the rest of the paper, we
will study the maps Trn.�/� in two extreme cases: nD 1 and nD1. In the first case, we will give a
topological realization of Tr.�/� WD Tr1.�/� by showing that this map is induced on homology by a
natural map of topological spaces; in the second case, we will show that Tr1.�/� WD lim

 ��
Trn.�/� extends

to an isomorphism between the graded symmetric algebra generated by HC�.kŒ��/ and the GL1–invariant
subalgebra of the stable representation homology HR�.�;GL1.k//. We close this section with a general
remark linking the above construction to earlier work.
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Remark 3.16 If � is an ordinary discrete or (strict) simplicial group, then kŒ�� is naturally a simplicial
associative k–algebra. By (a monoidal version of) the classical Dold–Kan correspondence (see [64]), we
can therefore view kŒ�� as a differential-graded (DG) associative k–algebra. For such algebras (defined
over a field k of characteristic 0), the derived character maps of n–dimensional representations were
constructed in [9]. One can show that these maps agree with (3-34) in the case of group algebras, although
the comparison is not entirely trivial as the methods used in [9] and the present paper are quite different.
We will address this question in our forthcoming paper [10] in greater generality.

4 Topological realization of derived character maps

In this and the next sections, we will prove our main results (Theorems 1.1 and 1.2) stated in the
introduction. Here we will construct the required spaces and maps simplicially: in terms of homotopy
colimits of small diagrams of simplicial sets and associated natural maps. Then, in the next section, we will
reproduce these maps in topological terms, using Goodwillie homotopy calculus and topological operads.
The connection between the two approaches seems instructive and deserves a further investigation.

4.1 The space X�

Recall that G denotes the skeleton of the category of finitely generated free groups. There is a natural
abelianization functor

(4-1) Z WG! Set; hni 7! Zn;

that takes the free group hni D Fn to (the underlying set of) its abelianization hniabDZn. As in Section 2,
we can form the category of elements of (4-1), using the Grothendieck construction

(4-2) GZ WDG s Z:

The objects of GZ are given explicitly by

Ob.GZ/D f.hniI k1; : : : ; kn// j hni 2G; .k1; : : : ; kn/ 2 Zn
g

and the morphism sets are

HomGZ..hniI k1; : : : ; kn/; .hmiI l1; : : : ; lm//D f' 2 HomG.hni; hmi/ j 'ab.k1; : : : ; kn/D .l1; : : : ; lm/g:

Note that the abelianized map 'ab W Zn ! Zm above is represented by an integral .m � n/–matrix,
'ab 2Mm�n.Z/, and its action on n–tuples of integers is simply given by matrix multiplication. The
category (4-2) comes together with the canonical (forgetful) functor

(4-3) p WGZ!G; .hniI k1; : : : ; kn/ 7! hni:

Given a homotopy simplicial group � WGop! sSet, we now define

(4-4) X� WD jhocolimG
op
Z
.p��/j;

where p� is the pullback functor sSetG
op
! sSetG

op
Z associated to (4-3). The relation of the space (4-4) to

representation homology becomes clear from the following observation.
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Lemma 4.1 For any � and any commutative ring k, there is a natural isomorphism

(4-5) H�.X� ; k/Š HR�.�; k�/;

where k� D GL1.k/ denotes the multiplicative group of the ring k.

Proof We have the sequence of natural isomorphisms

H�.X� ; k/Š Tor
G

op
Z
� .k; kŒp���/Š TorGZ

� .kŒp���; k/D TorGZ
� .p�kŒ��; k/Š TorG� .kŒ��; kŒZ�/;

where the first two are standard (see eg [47, Appendix C.10]) and the last one follows from the classical
Shapiro Lemma (see Corollary 2.9). To complete the proof it remains to note that kŒZ� can be identified
with OŒk�� as a commutative Hopf algebra.

As in the introduction, we shorten notation for one-dimensional representation homology, writing

(4-6) HR�.kŒ��/ WD HR�.�; k�/:

Our next goal is to identify the homotopy type of the space X� in terms of the classifying space of � .
The following theorem is one of the main results of the present paper.

Theorem 4.2 For any homotopy simplicial group � , there is a weak equivalence in Top�:

(4-7) X� '�SP1.B�/;

where B� is the classifying space of � (Definition 3.4).

Before proving this theorem, we recall a few basic facts about the Dold–Thom space and related
constructions; see eg [38, Chapter 4.K]. For any pointed connected CW complex X , the Dold–Thom
space SP1.X / is defined as the infinite symmetric product: namely,

(4-8) SP1.X /D lim
��!

n

SPn.X /;

where SPn.X / WDX n=Sn with Sn acting on X n the natural way (by permuting the factors). The maps
SPn.X /! SPnC1.X / along which the inductive limit (4-8) is taken are induced by the natural inclusion

X n ,!X nC1; .x1; : : : ;xn/ 7! .x1; : : : ;xn;�/;

where � stands for the basepoint of X . The Dold–Thom Theorem asserts that, for all i � 1, there are
isomorphisms of abelian groups

�i ŒSP1.X /�ŠHi.X;Z/

that are natural in pointed connected CW complexes X . In fact, this classical theorem provides a
topological realization for the Hurewicz homomorphisms, in the sense that the natural map of spaces

(4-9) X D SP1.X / ,! SP1.X /

induces the homomorphisms of groups: �i.X /! Hi.X;Z/ for all i > 1.
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Now, let FX denote the homotopy fiber of the inclusion map (4-9) so that we have a homotopy fibration
sequence

(4-10) FX !X ! SP1.X /:

There is an alternative way to obtain this fibration sequence, using Kan’s simplicial group model G.X /

of the space6 X . Namely (see eg [5, Section 7]), (4-10) arises from the short exact sequence of simplicial
groups

(4-11) 1!G2.X /!G.X /!A.X /! 1

by applying the classifying space functor B D jW .–/j. Here G2.X / WD ŒG.X /;G.X /� denotes the
commutator subgroup of the Kan loop group G.X / and A.X / its abelianization:

(4-12) A.X / WD .GX /ab WDG.X /=G2.X /

Thus, we have SP1.X /' BA.X /D jW A.X /j, which, by Kan’s theorem (see (3-7)), implies

(4-13) �SP1.X /'�jW A.X /j ' jGW A.X /j ' jA.X /j:

Note that for any reduced simplicial set X , A.X /Š zZŒX � is just the reduced free simplicial abelian group
generated by X . After these preliminary remarks we can proceed with:

Proof of Theorem 4.2 As a first step we apply Proposition 2.6 to express the homotopy colimit (4-4) as
a homotopy coend:

(4-14) hocolimG
op
Z
.p��/'

Z hni2G
L

�hni �Zn:

Next, observe that the bifunctor

(4-15) � �Z WGop
�G! sSet; .hni; hmi/ 7! �hni �Zm;

that appears in the homotopy coend (4-14) can be factored as

Gop
�G

�˝F
���! sGr .– /ab

���! sAb forget
���! sSet

where the first arrow is precisely the bifunctor � ˝ F that appears in formula (3-10) of Lemma 3.5,
expressing the rigidification functor K. This last bifunctor takes an object .hni; hmi/ 2Gop �G to the
simplicial group

`
�hni Fm, which is given, in each simplicial degree, by a free product of copies of the

free group Fm indexed by the components of the simplicial set �hni. Hence � ˝ F is an objectwise
cofibrant diagram in sGr, and therefore

(4-16) L.�˝F/ab ' .�˝F/ab Š � �Z;

6Abusing notation, we will use the same symbol X for a (pointed connected) space and its (reduced) simplicial set model.
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where L. – /ab stands for the (left) derived functor of the abelianization functor . – /ab W sGr! sAb. Since
the abelianization functor is left Quillen, its derived functor commutes with homotopy coends; see (2-20).
Hence, combining (3-11) with (4-16), we get

(4-17) LŒLK.�/�ab '

Z hni2G
L

L.�hni˝Fhni/ab '

Z hni2G
L

.�hni˝Fhni/ab '

Z hni2G
L

�hni �Zn:

On the other hand, LŒLK.�/�ab ' ŒGW LK.�/�ab DA.W LK.�//, hence, by (4-13), we have

(4-18) jLŒLK.�/�abj ' jA.W LK.�//j '�SP1.B�/:

Combining now (4-14), (4-17) and (4-18), we get the desired equivalence X� '�SP1.B�/.

Note that Theorem 4.2 combined with Lemma 4.1 implies Theorem 1.1 stated in the introduction.

4.2 Symmetric homology

In Section 3.3, we defined cyclic homology of homotopy simplicial groups by associating to each � 2 sGrh

a cyclic bar construction Bcyc� W �C op ! sSet; see Definition 3.12. In this section, we introduce an
analogue of this construction for symmetric groups. Recall that the symmetric crossed simplicial category
�S is defined to be an extension of � that has the same objects as � (and �C ) with morphisms
characterized by the two properties (cf [47, 6.1.4]):

(Sym1) For each n> 0, Aut�S .Œn�/Š S
op
nC1

, where SnC1 is the .nC 1/th symmetric group.

(Sym2) Any morphism f W Œn�! Œm� in �S can be factored uniquely as the composite f D g ı � with
g 2 Hom�.Œn�; Œm�/ and � 2 Aut�S .Œn�/Š S

op
nC1

.

There is an inclusion functor (a morphism in Cat)

(4-19) � W�C op �
�!�C ,!�S;

where the first arrow is an isomorphism of categories (called Connes’ duality) and the second one is
induced by the natural inclusion of groups CnC1 ,! SnC1(cf [47, 6.1.11]). Explicitly, the functor (4-19)
is given on objects by �.Œn�/D Œn� and on generators by the following formulas

(4-20)

�.dn
i /D

�
si
n�1

if 0� i < n

s0
n�1
ı .n; 0; 1; : : : ; n� 1/ if i D n;

�.sn
j /D d

jC1
nC1

;

�.tn/D .n; 0; 1; : : : ; n� 1/;

where dn
i W Œn�! Œn�1�, sn

j W Œn�! ŒnC1� and tn W Œn�! Œn� denote the generators of �C op dual (opposite)
to the generators d i

n, s
j
n and �n of �C , respectively.
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Lemma 4.3 The functor ‰op
cyc W�C op!Gop defined by (3-23) and (3-24) extends through �, giving a

commutative diagram of small categories

(4-21)
�C op ‰

op
cyc
//

_�

�
��

Gop

�S
‰sym

;;

Proof In order to construct the functor ‰sym it is convenient to use the following notation for morphisms
in �S ; cf [2, Section 1.1]. Any morphism f W Œn�

�
�! Œn�

g
�! Œm� in �S can be written uniquely as

a “tensor product” of mC 1 noncommutative monomials X0;X1; : : : ;Xm in nC 1 formal variables
fx0;x1; : : : ;xng:

(4-22) f DX0˝X1˝ : : :˝Xm;

where each Xi is the product xi1
xi2

: : :xir
of r D jf �1.i/j variables whose indices ik occur in the fiber

f �1.i/ and that are ordered in the same way as numbers in f�.0/; : : : ; �.n/g, ie �.i1/<�.i2/< � � �<�.ir /.
For example, if f W Œ4�! Œ3� is given by the composition g ı� in �S , where g 2Hom�.Œ4�; Œ3�/ is defined
by g.0/D g.1/D 0, g.2/D g.3/D 1 and g.4/D 3 and � 2 Aut�S .Œ4�/D S

op
5

is the permutation

� D

�
0 1 2 3 4

1 0 4 2 3

�
then f is represented by x1x0˝x3x4˝ 1˝x2. The composition of morphisms f1 ı f2 is defined by a
natural substitution rule: for example, if f1 W Œ3�! Œ3� and f2 W Œ4�! Œ3� in �S are represented by

f1 D 1˝x0˝ 1˝x3x2x1; f2 D x2x1˝x4˝ 1˝x0x3;

then f1 ıf2 W Œ4�! Œ3� can be computed as

f1 ıf2 D .1˝X0˝ 1˝X3X2X1/ ı .

X0‚…„ƒ
x2x1 ˝

X1‚…„ƒ
x4 ˝

X2‚…„ƒ
1 ˝

X3‚…„ƒ
x0x3 /

D 1˝x2x1˝ 1˝ .x0x3/ � 1 � .x4/D 1˝x2x1˝ 1˝x0x3x4:

With this notation, we define the functor

(4-23) ‰sym W�S !Gop

on objects by
‰sym.Œn�/D hnC 1i;

and on morphisms by the following formula: if f 2 Hom�S .Œn�; Œm�/ is represented by

f D .xi1
: : :xir

/˝ � � �˝ .xk1
: : :xks

/;

then

(4-24) ‰sym.f / W hmC 1i ! hnC 1i; X0 7! xi1
� � �xir

; : : : ; Xm 7! xk1
� � �xks

;

where
hmC 1i D FhX0; : : : ;Xmi and hnC 1i D Fhx0; : : : ;xni:
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Note that the maps (4-20) can be rewritten in this tensor notation as

�.dn
i /D

�
x0˝ : : :˝xi�1˝xixiC1˝xiC2˝ : : :˝xn if 0� i < n;

xnx0˝x1˝ : : :˝xn�1 if i D n;

�.sn
j /D x0˝ : : :˝xj ˝ 1˝xjC1˝ : : :˝xn;

�.�n/D xn˝x0˝x1˝ : : :˝xn�1:

The commutativity of (4-21) can now be checked by a trivial calculation that we leave to the reader.

With the functor ‰sym W�S !Gop in hand, we can now define a symmetric bar construction in the same
way as we defined the cyclic bar construction in Definition 3.12.

Definition 4.4 For a homotopy simplicial group � 2 sGrh, its symmetric bar construction is the functor

(4-25) Bsym� WD‰
�
sym� W�S ! sSet;

and its symmetric homology is defined by

(4-26) HS�.kŒ��/ WD Tor�S
� .k; kŒBsym��/:

Remark 4.5 The same argument as (in the proof of) Lemma 3.7 shows that HS�.kŒ��/ depends only on
the homotopy type of � in sGrh and hence on the homotopy type of the space B� .

Remark 4.6 For � an ordinary discrete group, the definition (4-25) agrees with Fiedorowicz’s original
definition of the symmetric bar construction; see [30] and also [2]. In this case, formula (4-26) defines
the symmetric homology of the group algebra kŒ��. Note that, unlike Bcyc� (see (3-25)), the functor
Bsym� W�S ! sSet is covariant on �S (which we emphasize by writing sym as a subscript).

Remark 4.7 To study symmetric homology it is often convenient to work with the augmented symmetric
category �SC, which is defined by adding to �S the initial object Œ�1� and morphisms Œ�1�! Œn�, one
for each n> �1; see [2]. It is easy to see that the map ‰sym defined in Lemma 4.3 extends to �SC,

(4-27) ‰sym;C W�SC!Gop;

by letting ‰sym;C.Œ�1�/ WD h0i. Now, the category �SC is isomorphic to the category of so-called finite
associative sets, F.as/, introduced in [57]; see also [62, Section 15.4] for a detailed discussion. The latter
is known to be a permutative category (PROP) that describes the associative unital algebras; see [56] and
also [62]. Its opposite category F.as/op describes the coassociative counital coalgebras. If we identify
�SC D F.as/, the restriction functor ‰�sym;C WModk.G/!Modk ŒF.as/op� associated to the opposite of
(4-27) takes commutative Hopf algebras viewed as functors (3-15) on G to the underlying coassociative
coalgebras viewed as functors on F.as/op. In other words, the morphism ‰

op
sym;C is isomorphic to a

morphism of PROPs, F.as/op!G, that “forgets” the algebra structure on commutative Hopf algebras.
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4.3 Symmetric homology vs representation homology

Recall that in Section 3.4, we constructed the derived character map Tr.�/� relating the cyclic homology
of � to its (one-dimensional) representation homology:

(4-28) Tr.�/� W HC�.kŒ��/! HR�.kŒ��/:

On the other hand, as a consequence of Lemma 4.3, we have a restriction map

(4-29) �� W HC�.kŒ��/D Tor�C op

� .k; kŒBcyc��/! Tor�S
� .k; kŒBsym��/D HS�.kŒ��/

induced by the isomorphism of cyclic spaces

(4-30) Bcyc� Š ��Bsym�:

The next proposition shows that the derived character map (4-28) factors through (4-29), thus relating
representation homology to symmetric homology.

Proposition 4.8 For any homotopy simplicial group � 2 sGrh, there is a natural map

(4-31) z‰�sym W HS�.kŒ��/! HR�.kŒ��/

such that

(4-32)

HC�.kŒ��/

�� ''

Tr.�/�
// HR�.kŒ��/

HS�.kŒ��/
z‰�sym

77

Proof As our notation suggests, the map (4-31) is actually induced by a morphism z‰sym in Cat. We
construct z‰sym by lifting the functor ‰sym of Lemma 4.3 to the (opposite) category of elements of the
abelianization functor (4-1):

(4-33)

G
op
Z

pop

��

�C op �
// �S

z‰sym
::

‰sym
// Gop

The existence of such a lifting is a consequence of the following observation. Consider the composition
of functors

(4-34) �Sop ‰
op
sym

���!G
.–/ab
���! Ab

that takes an object Œn� 2�S to the abelian group ZnC1. If we represent a morphism f W Œn�! Œm� in �S

using the tensor notation (4-22), then ‰op
sym.f /ab WZmC1!ZnC1, the value of (4-34) on f , is represented

by an integral .nC1/� .mC1/–matrix whose rows are indexed by 06 i 6 n and columns by 06 j 6m,
and the j th column consists entirely of 0s and 1s, with the 1s occurring in positions indicated by the
elements of f �1.j /.
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For example, if f W Œ4� ! Œ3� in �S is represented by the product x1x0 ˝ x3x4 ˝ 1 ˝ x2, then
‰

op
sym.f /ab W Z4! Z5 is given by

‰op
sym.f /ab D

0BBBBB@
1 0 0 0

1 0 0 0

0 0 0 1

0 1 0 0

0 1 0 0

1CCCCCA:

Observe that for any morphism f in �S , the matrix ‰op
sym.f /ab thus defined has exactly one nonzero

entry in each row and that entry is 1. Hence ‰op
sym.f /ab maps the vector .1; 1; : : : ; 1/t 2 ZmC1 to the

vector .1; 1; : : : ; 1/t 2 ZnC1. This shows that there is a well-defined functor

(4-35) z‰sym W�S !G
op
Z ; Œn� 7! .hnC 1iI 1; 1; : : : ; 1/;

that makes the diagram (4-33) commutative. It follows from (4-33) that

kŒBsym��D‰
�
sym.kŒ��/D

z‰�sym.kŒp
���/:

Hence, by Lemma 3.13, the functor (4-35) induces a natural map

(4-36) HS�.kŒ��/D Tor�S
� .k; kŒBsym��/

z‰�sym
��! Tor

G
op
Z
� .k; kŒp���/:

We claim that if the target of the map (4-36) is identified with the representation homology of kŒ�� via the
Shapiro isomorphism (see Corollary 2.9), then the required factorization property (4-32) holds. To verify
this we fix a projective resolution Q �

�! kŒ�� of kŒ�� in Modk.G
op/. Then p�.Q/ ��!p�kŒ��D kŒp���

gives a projective resolution of kŒp��� in Modk.G
op
Z /, and the Shapiro isomorphism

TorGZ
� .kŒp���; k/ ��! TorG� .kŒ��;p!.k//

is induced by the composition

p�.Q/˝GZ k
id˝"k
���! p�.Q/˝GZ p�p!.k/

p�
�!Q˝G p!.k/;

where the first map is given by the adjunction unit " W id! p�p! and the second is the restriction map
via p. Explicitly, using the definition (3-12) of functor tensor products, we can represent the above
composite map as

(4-37)
M

.hniIk1;:::;kn/2GZ

Qhni!
M
hni2G

Qhni˝kŒZn�; .vn/.hniIk1;:::;kn/2GZ
7! .vn˝.k1; : : : ; kn//hni2G;

where vn 2Qhni and the subscripts denote the indices of the corresponding components of direct sums.
Now, using the same resolution Q, we can write explicitly the composition of maps (4-29) and (4-36):

‰�cyc.Q/˝�C k
��
�!‰�sym.Q/˝�Sop k

z‰�sym
��! p�.Q/˝GZ k:
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At the level of chain complexes, this last composition is induced by the map

(4-38)
M

Œm�2�C

QhmC 1i !
M

Œm�2�Sop

QhmC 1i !
M

.hniIk1;:::kn/2GZ

Qhni;

.vmC1/Œm�2�C 7! .vmC1/Œm�2�Sop 7! .vmC1/.hmC1iI1;1;:::;1/2GZ
:

Combining (4-37) and (4-38), we see that the resulting mapM
Œm�2�C

QhmC 1i !
M
hni2G

Qhni˝ kŒZn�; .vmC1/Œm�2�C 7! .vmC1˝ .1; 1; : : : ; 1//hmC1i2G;

coincides exactly with the map (3-33) representing the derived character �GL1;Tr1
.�/� D Tr.�/�. This

finishes the proof of the proposition.

Remark 4.9 The proof of Proposition 4.8 shows that, apart from (4-35), any functor of the form

(4-39) z‰.m/sym W�S !G
op
Z ; Œn� 7! .hnC 1iIm;m; : : : ;m/;

where m 2Z is a fixed integer, satisfies the lifting property (4-33). It is easy to see that there are no other
solutions to this lifting problem. Among (4-39) the functor z‰.0/sym corresponding to mD 0 is the only one
that factors through Gop: z‰.0/sym D sop ı‰sym, where s WG ,! GZ is the zero section of p.

Next, we observe that the linear maps factoring Tr.�/� in (4-32) arise (on homology) from the natural
maps of topological spaces induced by the functors (4-19) and (4-35) (cf Lemma 4.1):

(4-40) jhocolim�C op.Bcyc�/j
��
�! jhocolim�S .Bsym�/j

z‰�sym
��! jhocolimG

op
Z
.p��/j:

(Here, abusing notation, we denote these topological maps by the same symbols as the corresponding
linear maps.) By Theorem 4.2, we know that

(4-41) jhocolimG
op
Z
.p��/j '�SP1.B�/:

On the other hand, by theorems of Goodwillie (see [47, Theorem 7.2.4]) and Fiedorowicz [30] (see
[2, Section 5.3]),

jhocolim�C op.Bcyc�/j 'ES1
�S1 L.B�/;(4-42)

jhocolim�S .Bsym�/j '��
1†1.B�/;(4-43)

where L.B�/ WD Map.S1;B�/ and �1†1.B�/ WD hocolimn!1�
n†n.B�/ denote the free loop

space and the infinite loop space of B� , respectively.

Combining (4-40) with equivalences (4-41)–(4-43), we can thus refine the result of Proposition 4.8 as
follows:
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Corollary 4.10 The derived character map

Tr.�/� W HC�.kŒ��/
��
�! HS�.kŒ��/

z‰�sym
��! HR�.kŒ��/

is induced on homology by a natural map of topological spaces in Ho.Top�/:

(4-44) ES1
�S1 L.B�/ CSB�

���!��1†1.B�/
SRB�
���!�SP1.B�/:

In the next section, we will describe the maps CS and SR in topological terms in two ways: using the
classical “little cubes” operads and the Goodwillie calculus of homotopy functors.

4.4 Generalization to monoids

All results of this section generalize naturally to (simplicial) monoids. We briefly outline this generalization
as we will need it in Section 5.3. Instead of G, we start with the category M�Mon whose objects are
finitely generated free monoids7 hni, one for each n� 0. In this case, the abelianization functor reads

N WM! Set; hni 7!Nn;

where N is the set of natural numbers, ie the underlying set of the free abelian monoid of rank one.
The associated category of elements MN WDM s N has an explicit description similar to that of GZ:
its objects are .hniI k1; : : : ; kn//, where hni is the free monoid on n generators and .k1; : : : ; kn/ 2Nn.
Any simplicial monoid M gives a functor M W Mop ! sSet that restricts to M

op
N via the canonical

projection p WMN !M. The analogue (generalization) of Theorem 4.2 says:

Proposition 4.11 For any simplicial monoid M , there is a weak equivalence in Top�:

(4-45) jhocolimM
op
N
.p�M /j '�SP1.BM /;

where BM is the classifying space of M.

Proof The same argument as in the proof of Theorem 4.2 — based on Proposition 2.6 — shows

hocolimM
op
N
.p�M /'L.M /ab;

where L.� /ab denotes the derived abelianization functor on simplicial monoids. To compute this
last functor, instead of the Kan loop group, we will use the 2–sided (simplicial) bar resolution (5-22):
B�.C1; C1;M / ��!M in sSet�, where C1 is the monad associated to the (simplicial analogue of) little
1–cube operad; see (5-24). Since .C1.X //ab D C0.X /, we have

jL.M /abj ' jB�.C1; C1;M /abj ' jB�.C0; C1;M /j '�SP1.BM /;

where the last equivalence is a result of Lemma 5.4 below; see (5-27).

7Abusing notation, we will use the same symbols to denote the objects of M and G.
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The relation between monoids and groups is determined by the canonical (group completion) functor
l WM!G. This last functor extends naturally to a functor zl WMN!GZ, and the maps ‰sym W�S!Gop

and z‰sym W �S ! G
op
Z defined by (4-23) and (4-35) factor through l and zl respectively, giving the

commutative diagram

(4-46)
M

op
N

p

��

zl
// G

op
Z

p

��

�C op �
// �S

z‰sym
::

‰sym
// Mop l

// Gop

As a consequence of Proposition 4.11, we get:

Corollary 4.12 For any homotopy simplicial group � 2 sGrh, there is a weak equivalence

jhocolimM
op
N
.p�l��/j '�SP1.B�/:

Proof Apply Proposition 4.11 to the simplicial group LK.�/ viewed as a simplicial monoid.

Remark 4.13 Corollary 4.12 can be also deduced from Theorem 4.2 if we notice that the natural map

hocolimM
op
N
.p�l��/ ��! hocolimG

op
Z
.p��/

is a weak equivalence for any � . This last fact follows from Theorem 2.3, the assumptions of which hold
thanks to the known properties of the group completion functor; cf [14, Lemma 3.2].

5 Topological character maps via Goodwillie calculus and operads

In this section, we will describe the maps CS and SR explicitly in topological terms, using Goodwillie
calculus and classical operads. The latter approach is based on ideas of Fiedorowicz [30] that were
developed by Ault in [2]. The former is inspired by results of Biedermann and Dwyer that appeared
in [18]. The interpretation in terms of Goodwillie derivatives leads to a natural nonlinear (polynomial)
generalization of topological character maps that deserves a further study; see Section 5.4.

5.1 Goodwillie homotopy calculus

Goodwillie calculus provides a universal approximation (“Taylor decomposition”) of arbitrary homotopy
functors in terms of polynomial homotopy functors. This method, introduced by T Goodwillie in the
series of papers [34; 35; 36], has been studied extensively in recent years and has found many interesting
applications; see eg the survey papers [1] and [45].

Recall that by a homotopy functor we mean a functor on topological spaces that preserves weak homotopy
equivalences. A homotopy functor F W Top�! Top� is called n–excisive (or polynomial of degree � n) if
it takes any strongly co-Cartesian .nC 1/–dimensional cubical diagram in Top� to a Cartesian diagram;
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see [1, Definition 1.1.2]. For nD 0, this simply means that F is homotopically constant: ie F.X /'F.�/

for any X 2 Top�. For nD 1, this is the usual Mayer–Vietoris property: a functor F is 1–excisive if and
only if it maps homotopy pushout squares to homotopy pullback squares in Top�; see [1, Example 1.1.4].
For n > 1, F enjoys a higher-dimensional version of the Mayer–Vietoris property that reduces to the
usual one inductively in n.

The main construction of Goodwillie calculus can be described as follows (cf [36, Theorem 1.8]).

Theorem 5.1 (Goodwillie) For any homotopy functor F W Top�! Top� on pointed spaces , there exists
a natural tower

(5-1)

:::

p3

��

P2F.X /

p2

��

P1F.X /

p1

��

F.X /

ı2

BB

ı1

99

ı0
// P0F.X /

of functors (fibrations) under F , satisfying the following properties: for all n� 0,

(1) PnF W Top�! Top� is an n–excisive functor , and

(2) ın W F ! PnF is the universal weak natural transformation to an n–excisive functor.

The last property needs an explanation. By a weak natural transformation ı W F ! P one means a
pair (“zig-zag”) of natural transformations F

ı0
�! G

ı00

 � P , where ı00 is a natural weak equivalence,
ie ı00

X
WG.X / � �P .X / is a weak homotopy equivalence for all spaces X 2Top�. Note that if F and P are

homotopy functors, a weak natural transformation ı WF!P induces a well-defined natural transformation
between the corresponding functors on the homotopy category Ho.Top�/. Property (2) of Theorem 5.1
then says that the weak natural transformation ın W F ! PnF is homotopically initial among all natural
transformations from F to n–excisive functors.

Given a homotopy functor F W Top�! Top�, we define its nth layer to be the homotopy fiber

(5-2) DnF.X / WD hofibfPnF.X /
pn
�! Pn�1F.X /g;

where pn is the canonical projection at the nth stage of the Goodwillie tower (5-1). A remarkable fact
discovered in [36] (see [1, Example 1.2.4]) is that all layers of a homotopy functor F are naturally infinite
loop spaces. More precisely, for each n> 0, there is a spectrum @nF equipped with a (naïve) action of
the symmetric group Sn such that

(5-3) DnF.X /'�1.@nF ^ .†1X /^n/hSn
;
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where .†1; �1/ are the suspension spectrum and the infinite loop space functors, respectively. The
spectrum @nF is called the nth Goodwillie derivative of F (at the basepoint �).

5.2 The map CS

Recall that, by Corollary 4.10, the derived character map Tr.�/� is induced by the composition of natural
maps in Ho.Top�/:

(5-4) ES1
�S1 L.X /

CSX
�!��1†1.X /

SRX
�!�SP1.X /;

where X DB� . Since the classifying space functor on homotopy simplicial groups induces an equivalence
Ho.sGrh/Š Ho.Top0;�/, the maps (5-4) are defined on (the homotopy types of) all pointed connected
spaces. To analyze these maps we introduce the notation

‚.X / WDES1
�S1 L.X /DES1

�S1 Map.S1;X /;

and define x‚ W Top�! Top� by

(5-5) x‚.X / WD‚.X /=‚.�/ŠES1
�S1 L.X /=BS1

ŠES1
C ^S1 L.X /:

Note that (5-5) is a reduced homotopy functor, so that P0
x‚.X /' x‚.�/D f�g and P1

x‚.X /ŠD1
x‚.X /

for any space X 2 Top�; see (5-2).

The next proposition shows that the natural transformation CS in (5-4), relating cyclic to symmetric
homology, essentially coincides with the first Goodwillie layer of the functor (5-5). We deduce this from
results of Carlsson and Cohen [21] by elaborating on a remark of Fiedorowicz [30].

Proposition 5.2 The map CS in (5-4) is represented by

ES1 �S1 L.X /
CSX

// ��1†1.X /

o

��

‚.X /
can

// // x‚.X /
ı1;X

// D1
x‚.X /

where the right vertical arrow is a natural weak equivalence and ı1 is the first layer of the functor (5-5).

Proof As noticed in [30, Remark 1.4], the map CSX factors in the homotopy category as

(5-6) ES1
�S1 L.X / can

��!ES1
C ^S1 L.X /

fX
�!��1†1.X /;

where fX is a certain natural map constructed in [21]. We review the construction of fX and compare it
to a well-known general formula for the first Goodwillie layer of a reduced homotopy functor.

First, we recall a standard stabilization construction due to Waldhausen [72]. For a pointed space X ,
denote by CX DX^I and†X DX^S1 the reduced cone and the reduced suspension of X , respectively.
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The latter can be obtained by gluing two copies of the former along a common base which is identified
with X : this yields the natural pushout square in Top�:

(5-7)

X

��

// CX

j0

��

CX
j1
// †X

Applying the given functor F to (5-7) and taking the homotopy pullback along the maps j0 and j1 induces
a natural map

(5-8) F.X /! holimŒF.CX /! F.†X / F.CX /�:

Since the functor F is homotopic and reduced, we have F.CX /' F.�/' f�g, which implies that the
homotopy colimit in (5-8) is equivalent to �F.†X /. Thus we get a natural map s W F.X /!�F.†X /.
This last map can be iterated any number of times:

(5-9) sn W F.X /!�nF.†nX /; n� 0;

and eventually stabilized, defining the map

(5-10) s1 W F.X /! lim
��!

n

�nF.†nX /D�1F†1.X /:

In particular, (5-10) exists for our functor F D x‚; see (5-5).

Next, for each n> 0, define †nX ! x‚†n.†X / to be the composition of the natural maps

†nX
"
�!�†.†nX /D�.†nC1X / ,! L.†nC1X /'ES1

�L.†nC1X /

�ES1
C ^S1 L.†nC1X /D x‚†n.†X /;

where " W id!�† is the adjunction unit of .†;�/. Looping n times yields an inductive system of maps

(5-11) in W�
n†nX !�n x‚†n.†X / for all n� 0;

which, by [21, Lemma 4.1], induce in the limit a homotopy equivalence

(5-12) i1 W�
1†1X �

�!�1 x‚†1.†X /:

Finally, we note the canonical identifications

(5-13) �1 x‚†1.X / WD lim
��!

n

�n x‚†n.X /D lim
��!

n

�nC1 x‚†nC1.X /D lim
��!

n

�Œ�n x‚†n.†X /�

Š� lim
��!

n

Œ�n x‚†n.†X /�D��1 x‚†1.†X /:

The Carlsson–Cohen map fX that appears in (5-6) can now be represented by the zig-zag of natural
transformations

(5-14) x‚.X /
s1
�!�1 x‚†1.X /

(5-13)
Š ��1 x‚†1.†X /

�i1
 �����1†1.X /;
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where the leftmost arrow is the Waldhausen stabilization map (5-10) for x‚ and the rightmost arrow is
a natural weak equivalence induced by (5-12). To complete the proof we note that P1.F /'�

1F†1

for any reduced homotopy functor F , and the universal natural transformation ı1 W F ! P1F DD1F

coincides (up to homotopy) with the stabilization map (5-10); see eg [45, Example 5.3].

5.3 The map SR

We now turn to the second map SRX in (5-4) that relates symmetric homology to representation homology.
In this section, we construct this map topologically by a method similar to that of Proposition 5.2; its
relation to Goodwillie calculus will be discussed in Section 5.4. Our starting point is the well-known
fact that the Dold–Thom functor SP1 W Top�! Top� factors through the category of abelian topological
monoids — in fact, SP1.X / is the free abelian topological monoid generated by the space X ; see eg [53].
This implies that SP1 is a linear (ie 1–excisive) functor. The latter can be seen directly as follows.
Consider the natural maps (5-9) for the functor F D SP1 constructed in the proof of Proposition 5.2:

(5-15) sn W SP1.X /!�nSP1†n.X / for n� 0:

The maps (5-15) are all weak equivalences, which follows immediately from the commutative diagrams

�iSP1.X /
�i .sn/

//

o
��

�i�
nSP1†n.X /

o
��

zHi.X /
�

// zHiCn.†
nX /

where the vertical arrows are isomorphisms by the Dold–Thom theorem. Thus, in the limit, we get

(5-16) s1 W SP1.X / ��!�1SP1†1.X /;

showing that SP1 ' P1.SP1/'D1.SP1/, whence the linearity of SP1.

On the other hand, for all n� 0, we have canonical maps †nX ! SP1.†nX / inducing the Hurewicz
homomorphisms; see (4-9). Applying loop functors to these maps yields an inductive system of maps

(5-17) in W�
n†n.X /!�nSP1†n.X / for n� 0

which, in the limit, induces

(5-18) i1 W�
1†1.X /!�1SP1†1.X /:

Unlike the analogous map (5-12) for the functor x‚, (5-18) is not a weak equivalence in general. Never-
theless, looping it once and combining with (5-16), we get the pair of natural transformations

(5-19) ��1†1.X /
�i1
��!��1SP1†1.X /

�s1
 ���SP1.X /;

where the rightmost one is a natural weak equivalence. Our goal is to prove the following analogue of
Proposition 5.2.
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Proposition 5.3 The map SR is represented by the weak natural transformation (5-19). Thus , in the
homotopy category, SRX is equivalent to the map

(5-20) .�s1/
�1.�i1/ W��

1†1.X /!�SP1.X /

which is the (once looped ) canonical natural transformation relating stable homotopy to (reduced ) singular
homology of pointed spaces.

To prove this proposition we will reinterpret the map (5-20) in terms of (topological) operads. The
standard reference for the background material that we need is [52] (for a brief introduction, see also
[62, Chapter 12]).

Recall that an operad C in Top� is a collection of pointed spaces fC.j /gj�0 with C.0/ WD f�g such that
each C.j / carries a right Sj –action and there are composition laws

C.k/� C.j1/� � � � � C.jk/! C.j1C � � �C jk/

satisfying natural associativity and unitality conditions. If C is an operad, a C–space is a pointed space X

equipped with an action of C, which is given by a sequence of Sj –equivariant maps �j W C.j /�X j !X ,
with �0 W C.0/ ,! X being the basepoint inclusion, that satisfy associativity and unitality conditions
compatible with those of C. Every operad C determines a monad C on Top� (ie a monoid with respect to ı
in the category of endofunctors Top�! Top�) in such a way that the notion of a C–space is equivalent to
that of C–algebra. Explicitly, given an operad C, the corresponding monad C W Top�! Top� is defined by

(5-21) C.X / WD
a
j�0

.C.j /�Sj X j /=�

where the equivalence relation is of the form

.c;x1; : : : ;xi�1;�;xiC1; : : : ;xj /� .�i.c/;x1; : : : ;xi�1;xiC1; : : : ;xj /

for certain natural maps �i W C.j /! C.j � 1/; see [52, Construction 2.4]. A C–algebra is then defined
to be a space A 2 Top� with an action map � W C.A/! A satisfying natural associativity and unitality
conditions. Opposite to the notion of a C–algebra is that of a C–functor, which is a functor F on Top�
equipped a morphism F ı C ! F defining a right action of C on F . Associated to a triple .F; C;A/,
there is a two-sided bar construction B.F; C;A/ defined as the geometric realization of a simplicial space
B�.F; C;A/ 2 sTop� with components

(5-22) Bn.F; C;A/ WD FCn.A/ for n� 0;

where the faces di W Bn! Bn�1 and degeneracies sj W Bn! BnC1 are determined by the structure maps
of A and F ; see [52, Construction 9.6].

Now, our main examples will be the so-called little cubes operads fC0; C1; C2; : : :g originally introduced
by Boardman and Vogt; see [52, Section 4]. The C0 and C1 are discrete operads8 defined by C0.j / WD f�g

8These operads are denoted in [52] by N and M, respectively.
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and C1.j / WD Sj for all j � 0, with the Sj –action being trivial in the former case, and induced by
multiplication in Sj in the latter. A C0–space is just an abelian monoid in Top�, and the monad associated
to C0 is precisely the Dold–Thom functor

(5-23) C0.X /Š SP1.X /:

A C1–space is just a monoid in Top� (ie an associative H–space with 1), and the monad associated to C1

yields the classical James functor

(5-24) C1.X /Š J.X /;

where J.X /D .
`

n�0 X n/=� is the free topological monoid generated by X . For n� 2, the operad Cn

is not discrete: for j � 1, the space Cn.j / can be represented by the j –tuples of “little n–cubes” (ie linear
embeddings In ,! In with parallel axes and disjoint interiors) with the natural (permutation) Sj –action.
Thus, for n� 2, each Cn.j / is homotopy equivalent to confj .Rn/, the configuration space of unordered j –
tuples of points in Rn equipped with the canonical free Sj –action. Natural inclusions of cubes In ,! InC1

induce the embeddings of spaces Cn.j / ,! CnC1.j /, and hence the maps of operads Cn ,! CnC1 for
all n� 2. This allows one to define the operad C1 WD lim

��!n
Cn. Since �i ŒCn.j /�Š �i Œconfj .Rn/�D 0 for

i � n� 2, each component C1.j / of C1 is contractible, and as the Sj –action on C1.j / (induced from
Cn.j /) is free, C1 is an E1–operad. Finally, we recall May’s approximation theorem [52, Theorem 2.7],
that asserts that the natural map of monads ˛n W Cn.X /! Cn�

n†n.X /!�n†n.X / gives a homotopy
equivalence

(5-25) Cn.X /'�
n†n.X / for all nD 1; 2; : : : ;1;

whenever X is connected.

We can now state the following result, which is probably well known to experts.

Lemma 5.4 (cf [30]) For any topological monoid M , there are natural homotopy equivalences

B.C1; C1;M /'��1†1.BM /;(5-26)

B.C0; C1;M /'�SP1.BM /;(5-27)

and the map (5-20) for X D BM is equivalent to the map

(5-28) B.C1; C1;M /! B.C0; C1;M /

induced by the canonical (unique) morphism of operads C1! C0.

Proof The equivalence (5-26) was originally proved by Fiedorowicz (see [30, Proposition 1.7] and also
[2, Lemma 39]); the proof of (5-27) is similar. We describe these equivalences in both cases. First,

B.C1; C1;M /' B.�1†1; C1;M /' B.��1†1†; C1;M /'��1†1B.†; C1;M /

'��1†1.BM /;
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where the first equivalence is induced by (5-25), the second is obvious, the third is a formal property of
the bar construction (see [52, Lemma 9.7]), and the last one follows from a theorem of Fiedorowicz (see
[29, Corollary 9.7]) that yields B.†; C1;M /' BM for any topological monoid M . Similarly,

B.C0; C1;M /Š B.SP1; C1;M /' B.�SP1†; C1;M /'�SP1B.†; C1;M /'�SP1.BM /;

where the first identification follows from (5-23), the second is induced by the equivalence (5-15), which
is a consequence of the Dold–Thom theorem, the third follows from [52, Lemma 9.7], and the last one is
[29, Corollary 9.7]. The last statement of the lemma is now deduced by comparing the above equivalences
with the construction of the map (5-20) given in the beginning of Section 5.3.

Proof of Proposition 5.3 For any topological monoid M , consider the diagram of spaces

(5-29)

jhocolim�SC.BsymM /j
f1
//

z‰�sym
��

B.C1; C1;M /

can
��

(5-26)
// ��1†1.BM /

(5-20)
��

jhocolimM
op
N
.p�M /j

f0
// B.C0; C1;M /

(5-27)
// �SP1.BM /

In this diagram all horizontal maps are natural weak equivalences: f1 is the equivalence constructed by
Fiedorowicz in [30] (see [2, Theorem 38]), f0 is the equivalence (4-45) of Proposition 4.11, and (5-26)
and (5-27) are the equivalences described in Lemma 5.4. The map z‰�sym is induced by the functor z‰sym

defined in (4-46). To prove the proposition we need to show that the diagram (5-29) commutes. By
Lemma 5.4, we already know that the rightmost square of (5-29) commutes; thus it suffices to prove the
commutativity of the leftmost square. For this, we shall describe the maps f1 and f0 explicitly.

The map f1 is explicitly constructed in the proof of [2, Lemma 36]. As in loc. cit. we let N WTop�!Top�
denote the functor defined as the coend

N .X / WD
Z Œn�2�SC

N.Œn� #�SC/�BsymJ.X /Œn�:

By [2, Lemma 36], there is an equivalence of functors ‚ WN ' C1, inducing an equivalence of bar con-
structions B.N ; C1;M /' B.C1; C1;M /. The identification jhocolim�SC.BsymM /j ' B.N ; C1;M /

by [52, Lemma 9.7] then yields f1.

The map f0 can be constructed in a similar way. Let P W Top�! Top� denote the functor

P.X / WD
Z .hniIk1;:::;kn/2M

op
N

N..hniI k1; : : : ; kn/ #M
op
N /�p�J.X /.hniI k1; : : : ; kn/:

Identifying J.X /.hni/D HomMon.hni;J.X // and recalling that C0.X /D SP1.X / is the abelianization
of J.X /, we note that the mapa

N..hniI k1; : : : ; kn/ #M
op
N /�p�J.X /.hniI k1; : : : ; kn/! C0.X /D SP1.X /;

y �' 7! 'ab.k1; : : : ; kn/;
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descends to the coend to yield a natural equivalence

ƒ W P.X /' C0.X /;

which, in turn, yields an equivalence of bar constructions

B.P; C1;M /' B.C0; C1;M /:

Composing this with the identification jhocolimM
op
N
.p�M /j ' B.P; C1;M / by [52, Lemma 9.7] yields

the map f0.

It can be easily verified that the diagram

N

z‰�sym
��

‚
// C1

can
��

P ƒ
// C0

commutes. It follows that the first square in the diagram (5-29) commutes. Finally, we note that in the
case when M D � , a simplicial group, the map z‰�sym in the diagram (5-29) may be identified with the
corresponding map in (4-40) by Corollary 4.12 (also see Remark 4.13). This completes the proof of the
desired proposition.

Corollary 5.5 Let � be a (homotopy) simplicial group such that X D B� has homotopy type of a
simply connected CW complex which is of (locally) finite rational type. If k is a field of characteristic
zero , then the map SRX induces an isomorphism

HS�.kŒ��/Š HR�.kŒ��/:

Proof As mentioned above, the natural map i1 W�
1†1.X /! SP1.X /, defined by composing (5-18)

with the inverse of (5-16) in Ho.Top�/, is not an equivalence in general. However, it is known that for
any connected CW complex X , this map induces an isomorphism of cohomology rings

(5-30) i�1 WH
�.SP1.X /; k/ ��!H�.�1†1.X /; k/

provided the coefficients are taken in a field k of characteristic zero; see eg [22, Section 7.3]. Now, under
our assumption on X , both SP1.X / and �1†1.X / are simply connected spaces of finite rational
type. Hence, there is a natural (Cotor) spectral sequence with E2–term E

�;�
2
.Z/D Ext�H �.Z;k/.k; k/

that converges to H�.�Z; k/ for any simply connected space Z; see eg [22, Section 5.5, (5.13)].
By naturality, the map (5-30) induces an isomorphism E

�;�
2
.�1†1X / ��! E

�;�
2
.SP1X / of such

spectral sequences for Z D�1†1.X / and Z D SP1.X /. This last isomorphism is compatible with
the map �i1 WH�.��

1†1.X /; k/!H�.�SP1.X /; k/ which, by Proposition 5.3, coincides with
SRX W HS�.kŒ��/! HR�.kŒ��/ for X D B� . Thus, by the Comparison Theorem for spectral sequences
(see [73, Theorem 5.2.12]), we conclude that SRX is an isomorphism.

Remark 5.6 We expect that the result of Corollary 5.5 holds for any homotopy simplicial group � ,
including the usual (discrete) groups, for which B� is a K.1; �/–space, ie certainly not simply connected.
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5.4 Polynomial extensions

There is a natural way to describe and generalize the map SR via Goodwillie calculus. As we have seen
above, the Dold–Thom functor SP1 is 1–excisive, hence there is a canonical (up to homotopy) natural
transformation ˇ1 W P1.id/! SP1, where P1.id/DD1.id/ is the first layer of the functor id. The latter
is known to be the stable homotopy functor P1.id/'�1†1 and ˇ1 ' i1. Thus SR'�ˇ1. It turns
out that the map ˇ1 can be extended naturally to higher layers — and in fact, to the entire Goodwillie
tower of the functor id. This is based on results of the paper [18] that compares the Goodwillie tower of
the identity with the lower central series of the Kan loop group.

Recall that, for any connected space X , we can identify SP1.X /' BŒA.X /�, where A.X / WDG.X /ab

is the abelianization of the Kan loop group G.X / of (a reduced simplicial set representing) X ; see (4-12).
Now, instead of just abelianization, consider the lower central series of G.X /,

� � � !G.X /=GnC1.X /!G.X /=Gn.X /! � � � !G.X /=G2.X /DA.X /;

where Gn.X / are the simplicial subgroups of G.X / defined inductively by

G1.X / WDG.X / and GnC1.X / WD ŒG.X /;Gn.X /� for n� 1:

It is shown in [18] that the functor X 7! BŒG.X /=GnC1.X /� is n–excisive for each n � 1, and there
exists a canonical (up to homotopy) morphism of towers

(5-31)

� � � // Pn.id/.X /

ˇn

��

// Pn�1.id/.X /

ˇn�1

��

// � � � // P1.id/.X /

ˇ1

��

:::

� � � // BŒG.X /=GnC1.X /� // BŒG.X /=Gn.X /� // � � � // BŒA.X /�

where the rightmost vertical arrow is precisely the map ˇ1 W P1.id/! SP1. This morphism induces
natural maps on the layers of the Goodwillie tower

(5-32) ˇn WDn.id/.X /! BŒGn.X /=GnC1.X /� for n� 1;

that we can describe in explicit terms. First of all, by a theorem of B Johnson [41] (cf [1, Example 1.2.5]),
all Goodwillie derivatives of the identity functor are known: for n� 1, the spectrum @n.id/ is equivalent
to a wedge of .n�1/! copies of the .1�n/–sphere spectrum S1�nD†1�n.S0/. Hence, by formula (5-3),
we have

(5-33) Dn.id/.X /'�1
� _
.n�1/!

†1�n.†1X /^n

�
hSn

:

On the other hand, the Kan simplicial group G.X / is (degreewise) free for any X . Hence, by classic
PBW Theorem (see eg [65, I.4.3]), for all n � 1, there are natural isomorphisms of simplicial abelian
groups

(5-34) Gn.X /=GnC1.X /Š Lien.AX /;
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where Lien denotes (the simplicial extension of) the degree n graded component of the free graded Lie
algebra functor Lie�.A/D

L
n�1 Lien.A/ on abelian groups A. Thus, with identifications (5-33) and

(5-34), the morphism of towers (5-31) (looped once) induces on layers natural maps

(5-35) SR.n/
X
W��1

� _
.n�1/!

†1�n.†1X /^n

�
hSn

! jLien.AX /j for n� 1:

These can be viewed as nonlinear (polynomial) extensions of our topological trace map SR: in fact, for
nD 1, the map (5-35) coincides with (5-20) under identification (4-13):

SR.1/
X
W��1†1.X /! jA.X /j '�SP1.X /;

while for nD 2, it reads

SR.2/
X
W��1†�1.†1X ^†1X /hZ2

! jLie2.AX /j

since the Z2–action on the spectrum @2.id/'S�1 is known to be trivial; see [1, Example 1.2.5]. It would
be interesting to see whether the maps (5-35) for n� 2 can be naturally represented by homotopy colimits
(similar to SRB� '

z‰�sym for nD 1, see (4-40)), and, in particular, whether the induced maps SR.n/
B�;�

can
be described in terms of functor homology (extending the result of Corollary 4.10). The existence of such
a description might lead to an interesting link between Goodwillie calculus and homological algebra of
polynomial functors (as developed recently in [26; 28; 27; 71]).

6 Stable character maps and derived Poisson brackets

In this section, we study the behavior of the derived character maps (1-7) in the limit as n!1. We show
that, on simply connected spaces, these maps stabilize, inducing an isomorphism between the graded
symmetric algebra generated by the S1–equivariant homology of the free loop space of X DB� and the
invariant part of the representation homology in the projective limit lim

 ��
HR�.�;GLn/

GLn . This result
is a topological counterpart of a stabilization theorem proved for representation homology of algebras
in [11]. In case when X represents a closed manifold, so that its S1–equivariant homology carries the
Chas–Sullivan bracket, we show that the stable character map is an isomorphism of Lie algebras, where
the Lie bracket on representation homology is induced by a natural derived Poisson structure on the
Quillen model of X .

6.1 Stabilization of derived character maps

For this section, let k be a field of characteristic 0. The (homotopy) group homomorphisms � ! f1g
and f1g ! �) induce morphisms of cyclic modules kŒBcyc��! kŒBcycf1g�D k and k D kŒBcycf1g�!

kŒBcyc��, respectively. In this way, the trivial cyclic module k is a direct summand of kŒBcyc�� yielding
a direct sum decomposition

kŒBcyc��Š k˚ kŒBcyc��:
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The reduced cyclic homology HC�.kŒ��/ is defined by

HC�.kŒ��/ WD Tor�C
� .kŒBcyc��; k/;

so that
HC�.kŒ��/Š HC�.k/˚HC�.kŒ��/:

On the other hand, the homomorphism of group schemes GLn ,! GLnC1 (given by padding with 1 on
the bottom right corner) induces a morphism of commutative Hopf algebras O.GLnC1/!O.GLn/, and
hence, a morphism of left G–modules O.GLnC1/!O.GLn/. This induces a morphism on representation
homologies

(6-1) �nC1;n W HR�.�;GLnC1/D TorG� .kŒ��;O.GLnC1//! HR�.�;GLn/D TorG� .kŒ��;O.GLn//:

It is not difficult to verify that (6-1) restricts to a morphism on the invariant part of the representation
homologies

(6-2) �nC1;n W HR�.�;GLnC1/
GLnC1 ! HR�.�;GLn/

GLn :

Lemma 6.1 The following diagram commutes for all n:

HC�.kŒ��/

Trn.�/ ))

TrnC1.�/
// HR�.�;GLnC1/

GLnC1

�nC1;n

��

HR�.�;GLn/
GLn

Proof Since any homotopy simplicial group is weakly equivalent to a cofibrant strict simplicial group,
we may assume without loss of generality that � is a cofibrant strict simplicial group. Continuing to
denote the map kŒ��˝�C k! kŒ��˝G O.GLn/ induced by �GLn

tr by Trn.�/, we then need to verify
that the following diagram commutes

(6-3)

kŒ��˝�C k

Trn.�/ ))

TrnC1.�/
// kŒ��˝G O.GLnC1/

�nC1;n

��

kŒ��˝G O.GLn/

By (the proof of) [44, Theorem 4.1], Trn.�m/ is induced (in each simplicial degree m) by the composite
map

�m
�n
�! GLn.OŒRepn.�m/�/ ,!Mn.OŒRepn.�m/�/

Tr
�!OŒRepn.�m/�Š kŒ�m�˝G O.GLn/;

where �n denotes the universal n–dimensional representation. A similar argument shows that the diagram

�m

�nC1
//

�n

��

GLnC1.OŒRepnC1.�m/�/

�nC1;n

��

GLn.OŒRepn.�m/�/
� � // GLnC1.OŒRepn.�m/�/
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commutes. Here, the lower horizontal arrow is given by padding by 1 on the bottom right. It follows that

Trn.�m/.h i � 1/D �nC1;n ıTrnC1.�m/.h i � 1/

for every conjugacy class h i in �m. This shows commutativity of the diagram (6-3) in every simplicial
degree, proving the desired lemma.

By Lemma 6.1, the family of maps fTrn.�/gn>1 yields a k–linear map

(6-4) Tr1.�/ W HC�.kŒ��/! HR�.�;GL1/GL1 WD lim
 ��

n

HR�.�;GLn/
GLn ;

where the inverse limit is taken along the maps (6-2). The map Tr1.�/, which we call the stable character
map, induces a morphism of graded commutative k–algebras

(6-5) ƒTr1.�/ Wƒk ŒHC�.kŒ��/�! HR�.�;GL1/GL1 :

Next, recall that a simplicial group � is said to be a simplicial group model of a pointed, connected
topological space X if � maps to X under (3-8), ie jW .�/j is weakly equivalent to X . In this case, it is
well known that

(6-6) HC�.kŒ��/Š HS1

� .LX I k/;

where LX is the free loop space of X , and the representation homology HR�.�;G/, which is an invariant
of (the homotopy type of) X by Lemma 3.7 is denoted by HR�.X;G/. The isomorphism (6-6) restricts
to an isomorphism of graded k–modules

(6-7) HC�.kŒ��/Š HS1

� .LX I k/:

Here, HS1

� .LX I k/ stands for the reduced S1–equivariant homology of LX , ie

H
S1

� .LX I k/ WD KerŒ�� W HS1

� .LX /! HS1

� .pt/�:

The map �� is induced on S1–equivariant homology by the map LX ! pt. The derived character map
Trn.X / WD Trn.�/ is thus a morphism of graded k–vector spaces

(6-8) Trn.X / W HS1

� .LX I k/! HR�.X;GLn/
GLn ;

and the stable character map becomes

(6-9) Tr1.X / W HS1

� .LX I k/! HR�.X;GL1/GL1 :

The following theorem is the main result of this section.

Theorem 6.2 Let X be a simply connected space of finite (rational ) type. The stable character map (6-9)
induces an isomorphism of graded commutative algebras

ƒTr1.X / Wƒk ŒH
S1

� .LX I k/� ��! HR�.X;GL1/GL1 :

Algebraic & Geometric Topology, Volume 24 (2024)
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If, moreover, X is a simply connected manifold of dimension d then HS1

� .LX I k/ is equipped with the
Chas–Sullivan bracket (also called the string topology bracket), a graded Lie bracket of (homological)
degree 2�d . This Lie bracket arises out of a derived Poisson structure (in the sense of [15, Section 3.1]) on
an algebra weakly equivalent to kŒ��. On the other hand, the representation homologies HR�.X;GLn/

GLn

are equipped with graded, (.2�d/–shifted) Poisson structures arising from the Poincaré duality pairing
on the cohomology of X . Passing to the inverse limit, one obtains a graded (.2�d/–shifted) Poisson
structure on HR�.X;GL1/GL1 . As an application of Theorem 6.2, we obtain the following corollary
which allows us to express the Chas–Sullivan bracket in terms of a graded Poisson bracket.

Corollary 6.3 The map

ƒTr1.X / Wƒk ŒH
S1

� .LX I k/� ��! HR�.X;GL1/GL1

is an isomorphism of graded .2�d/–shifted Poisson algebras.

6.2 Proofs of Theorem 6.2 and Corollary 6.3

The shortest way to prove Theorem 6.2 and Corollary 6.3 is to apply the results of the paper [11] that deals
with stabilization of representation homology and derived character maps for (augmented) associative
algebras. These results being applicable in our case follows from Remark 3.16. In what follows we
outline key steps and necessary modifications of the arguments of [11], leaving details for interested
readers.

Sketch of proof of Theorem 6.2 Let LX denote a (cofibrant) Quillen model of X . Since X is of finite
rational type, LX may be chosen to be semifree, and finitely generated in each homological degree. By
Remark 3.16, if suffices to prove the assertions of this theorem working with ULX instead of kŒ��. Further,
since X is simply connected, the generators of LX are in positive homological degree. Theorem 6.2
follows from (a minor modification of the proof of) [11, Theorem 7.8]. Indeed, since RD ULX is freely
generated by finitely many generators in each homological degree, and since all its generators are in
positive homological degree, the arguments of [11, Section 7.4] go through to show that for each k > 0,
the map

(6-10) z�nC1;n WR
GL;6k
nC1

!RGL;6k
n

is an isomorphism for n sufficiently large (ie for all n>N.k/, for some N.k/ which possibly depends
on k). Here RGL

n is the representation DG algebra as in [11, formula (2.10)], whose homology is
isomorphic to HR�.R; n/GLn Š HR�.X;GLn/

GLn and R
GL;6k
n stands for the (brutal) truncation of RGL

n

to homological degrees 6 k. The map (6-10) is defined as in [11, Section 4] (where it is denoted by
�nC1;n). On homologies, (6-10) induces the map �nC1;n W HR�.X;GLnC1/

GLnC1 ! HR�.X;GLn/
GLn .

As in the proof of [11, Theorem 7.8] (see also [11, Proposition 7.5], which is the crux thereof), it then
follows that the map

ƒTr1.X / Wƒk ŒH
S1

� .LX I k/�! H�ŒRGL
1 �
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is an isomorphism of graded commutative algebras, where RGL
1 D lim

 ��n
RGL

n . The desired verification
is thus complete once we check that H�ŒRGL

1 � Š lim
 ��n

H�ŒRGL
n �. By (6-10), the inverse system fRGL

n g

is Mittag-Leffler. Equation (6-10) further implies that for each k, the inverse system fHkC1.R
GL
n /g

stabilizes, ie becomes constant for large n, and is thus Mittag-Leffler. It follows that lim1
n HkC1.R

GL
n /D 0.

That H�ŒRGL
1 � Š lim

 ��n
H�ŒRGL

n �, as desired, then follows from [73, Theorem 3.5.8]. This outlines the
proof of Theorem 6.2.

Sketch of proof of Corollary 6.3 Moreover (see [15, Section 4.2] for example), LX may be chosen
so that its universal enveloping algebra ULX is equipped with a derived Poisson structure inducing the
Chas–Sullivan bracket on its (reduced) cyclic homology (which is isomorphic to HS1

� .LX I k/). More
precisely, LX may be chosen to be Koszul dual to the (graded linear dual of) the Lambrechts–Stanley
model of X (see [46]), which is equipped with a cyclic pairing. Now, if � is a simplicial group model of X ,
then kŒ�� is weakly equivalent to ULX . By Remark 3.16, if suffices to prove the assertions of this theorem
working with ULX instead of kŒ��. In this setting, it follows immediately from [15, Theorem 5.1] (also
see [6, Theorems 2 and 3.1]) that the cyclic pairing on (the graded linear dual of) the Lambrechts–
Stanley model of X yields a graded (.2�d/–shifted) Poisson structure on HR�.X;GLn/

GLn such
that the derived character map Trn W HS1

� .LX I k/! HR�.X;GLn/
GLn is a homomorphism of graded

Lie algebras. Moreover, the maps �nC1;n W HR�.ULX ; nC 1/GLnC1 ! HR�.ULX ; n/
GLn are easily

seen to be homomorphisms of graded Poisson algebras in the setting of [15, Section 5]. Hence,
HR�.X;GL1/GL ŠHR�.ULX ;1/

GL acquires the structure of a graded Poisson algebra. It follows that
Tr1.X / W HS1

� .LX I k/! HR�.X;GL1/GL1 is a homomorphism of grade Lie algebras, which implies
that ƒTr1.X / Wƒk ŒHS1

� .LX I k/�!HR�.X;GL1/GL1 is a homomorphism of graded Poisson algebras,
where the Poisson structure in the left-hand side is obtained by extending the Chas–Sullivan bracket using
the Leibniz rule. That it is an isomorphism of graded Poisson algebras then follows from Theorem 6.2.
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