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Instanton knot invariants with rational holonomy parameters
and an application for torus knot groups

HAYATO IMORI

There are several knot invariants in the literature that are defined using singular instantons. Such invariants
provide strong tools to study the knot group and give topological applications, for instance, the topology
of knots in terms of representations of fundamental groups. In particular, it has been shown that any
traceless representation of the torus knot group can be extended to any concordance from the torus knot to
another knot. Daemi and Scaduto proposed a generalization that is related to a version of the slice-ribbon
conjecture for torus knots. Our results provide further evidence towards the positive answer to this
question. We use a generalization of Daemi and Scaduto’s equivariant singular instanton Floer theory
following Echeverria’s earlier work. We also determine the irreducible singular instanton homology of
torus knots for all but finitely many rational holonomy parameters as Z=4–graded abelian groups.
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1 Introduction

1.1 Background

Floer homology is an infinite-dimensional analog of Morse homology. In the context of gauge theory,
instanton Floer homology (see Floer [14]), Heegaard Floer homology (see Ozsváth and Szabó [37]) and
monopole Floer homology (Kronheimer and Mrowka [30]) have provided strong topological invariants
for low-dimensional manifolds. Knot invariants have also been developed in Floer theories. This list of
knot invariants includes knot Floer homology introduced by Ozsváth and Szabó [36] and Rasmussen [40]
in Heegaard Floer theory, and Kronheimer and Mrowka [31] in monopole Floer theory. In the field of
instanton Floer theory, invariants of knots were constructed by Floer [15] and Braam and Donaldson [1]
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via framed surgery of knots. It is conjectured that their instanton knot invariants are related to knot
invariants in Ozsváth and Szabó [36] and Rasmussen [40] by Kronheimer and Mrowka [31]. Collin
and Steer [3] and Kronheimer and Mrowka [32] developed other type invariants for knots. While knot
invariants in [15; 1] are related to invariants of 3–manifolds via surgery along knots, knot invariants
in [3; 32] are related to 3–manifold invariants via branched covering.

The advantage of instanton invariants is that they are directly related to fundamental groups of the knot
complement. For example, Kronheimer and Mrowka [29] show that the knot group �1.S3 nK/ for a
nontrivial knot K � S3 admits nonabelian representation �1.S3 nK/! SU.2/. This is a refinement of
the result by Papakyriakopoulos [38] which states that K � S3 is unknot if only if �1.S3 nK/ is infinitely
cyclic. A concordance analog of the result of Kronheimer and Mrowka [29] was given by Daemi and
Scaduto [8] using a version of instanton Floer theory. Daemi and Scaduto [8] also show the following
statement which is specific to torus knots:

Theorem 1 [8, Theorem 8] Let S W Tp;q ! K be a given smooth concordance. Then any traceless
SU.2/–representation of �1.S3 nTp;q/ extends over the concordance complement.

Here Tp;q denotes the .p; q/–torus knot in S3, where p and q are positive coprime integers. An SU.2/–
traceless representation of �1.S3nK/ is an SU.2/–representation of �1.S3nK/ which sends a homotopy
class of meridian �K of K to a traceless element in SU.2/. The motivation of this theorem is related to a
version of the slice-ribbon conjecture. A concordance S WK!K 0 is called ribbon concordance if the
projection S3 � Œ0; 1�� S ! Œ0; 1� is a Morse function without any local maximums. Consider a knot
K which is concordant to the unknot U . The slice-ribbon conjecture proposed by Fox [16] states that
there is a ribbon concordance from U to K under this assumption. A generalization of the slice-ribbon
conjecture by Daemi and Scaduto [8] is:

Conjecture 2 [8, Question 2] Let K be a knot which is concordant to the .p; q/–torus knot Tp;q . Then
there is a ribbon concordance from Tp;q to K.

A necessary condition to show that a concordance S W K ! K 0 is ribbon can be stated in terms of
representations of knot groups. For a topological space X , we write R.X;SU.2// for the SU.2/–character
variety of X (ie the space of conjugacy classes of SU.2/–representations of �1.X/).

Theorem 3 (Gordon [21, Lemma 3.1] and Daemi, Lidman, Vela-Vick and Wong [7, Proposition 2.1])
Let S WK!K 0 be a ribbon concordance between two knots. Then the inclusion i W S3 nK! S3 � Œ0; 1�

induces a surjection i� WR.S3 � Œ0; 1� nS;SU.2//!R.S3 nK;SU.2//.

Hence Theorem 1 gives a piece of evidence towards Conjecture 2. The traceless condition on representa-
tions of �1.S3nTp;q/ arises from the specific type of knot invariants developed by Daemi and Scaduto [9].
In light of Theorem 3 and Conjecture 2, it is natural to ask the following question:

Question 4 Can we drop the traceless condition in Theorem 1?
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We will affirmatively solve this question. To explain our strategy, let us describe the technical background
of Daemi and Scaduto’s work. It mainly consists of three ingredients: singular gauge theory, equivariant
Floer theory and the Chern–Simons filtration.

Firstly, let us explain the notion of singular connections. Let K � Y be a knot in a 3–manifold. Roughly
speaking, an SU.2/–singular connection A is an SU.2/–connection defined over the knot complement
with the holonomy condition

(1-1) lim
r!0

Hol�.r/.A/�
�
e2�i˛ 0

0 e�2�i˛

�
;

where �.r/ is a radius-r meridian ofK � Y and ˛ is a fixed parameter in
�
0; 1
2

�
. Here� indicates that the

two matrices are conjugate in SU.2/. The parameter ˛ is called the holonomy parameter of the singular
connection A. In particular, a singular flat SU.2/–connection corresponds to an SU.2/–representation of
�1.Y nK/ which sends the meridian �K of knotK to an element which is conjugate to the matrix in (1-1).
Kronheimer and Mrowka developed a singular version of Yang–Mills gauge theory in [27; 28; 32]. These
Floer homology theories constructed via singular connections are called singular instanton homology.
Singular gauge theory has different features compared to nonsingular. In fact, singular Floer homology
cannot be defined over the coefficient ring Z for a general holonomy parameter ˛. To be more precise,
singular instanton Floer homology is defined over Z only for ˛ D 1

4
. This is called the monotonicity

condition. Most of the works in singular instanton homology including [9; 8] impose the monotonicity
condition. This is why the statement of Theorem 1 includes the traceless condition.

Next, we discuss the equivariant Floer theory. Frøyshov developed the homology cobordism invariant
in [18; 19] based on the equivariant Floer theory for integral homology 3–spheres, which was introduced
by Donaldson [10]. The equivariant Floer theory introduced by Daemi and Scaduto [9] produces invariants
for a knotK in an integral homology 3–sphere Y , and this can be regarded as the counterpart of Frøyshov’s
work in singular gauge theory. Daemi and Scaduto’s construction uses in a crucial way the U.1/–reducible
singular flat connection � which corresponds to the conjugacy class of the representation

�1.Y nK/!H1.Y nKIZ/! SU.2/

whose image of the meridian �K of K � Y is trace-free. Here �1.Y nK/ ! H1.Y nKIZ/ is the
abelianization. In this situation, the construction which is similar to Floer’s instanton homology [14]
produces a chain complex C�.Y;K/ for a knot in an integral homology 3–sphere. Its homology group
I�.Y;K/ can be interpreted as a categorification of the knot signature for the case Y D S3. Daemi and
Scaduto [9] also introduced chain complexes which have the form

zC�.Y;K/ WD C�.Y;K/˚C��1.Y;K/˚Z:

Such objects are called S–complexes. This can be interpreted as a version of S1–equivariant Floer theory.
Let B.Y;K/ be the configuration space of singular connections over .Y;K/ with a holonomy parameter
˛D 1

4
. Then there is a configuration space B.Y;K/0 of framed connections. The Chern–Simons functional
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on B.Y;K/ lifts to B.Y;K/0 in an equivariant way. An S–complex zC�.Y;K/ is related to the lifted
S1–equivariant Chern–Simons functional on B.Y;K/0.

Another feature of Daemi and Scaduto’s construction is the Chern–Simons filtration of S–complexes.
While the usual instanton Floer theory is the analog of Morse theory on the configuration space, its filtered
version can be seen the Morse theory on the universal covering of the configuration space. The Chern–
Simons filtration gives more refined structures on S–complexes. The counterpart idea in nonsingular
instanton Floer theory was used by Daemi [5] and Nozaki, Sato and Taniguchi [35], which provided
homology cobordism invariants.

Any of the above versions of singular instanton Floer theories can be extended to arbitrary holonomy
parameters if the integer coefficient ring is replaced with a Novikov ring ƒ by Echeverria’s work [12].
To be more precise, the holonomy parameter should satisfy the technical condition �.Y;K/.e4�i˛/¤ 0,
where �.Y;K/ is the Alexander polynomial for K � Y . One of the flavors of Echeverria’s Floer homology
is a categorification of the Levine–Tristram signature when Y DS3. For a knotK in an integral homology
3–sphere Y , the Levine–Tristram signature is given by

�˛.Y;K/ WD signŒ.1� e4�i˛/V C .1� e�4�i˛/V T �;

where V is a Seifert matrix form of K � Y . For the case Y D S3, we omit Y from the notation.

Our strategy to drop the traceless condition from Theorem 1 is constructing a family of S–complexes for
general holonomy parameters.

1.2 Summary of results

First we state our main theorem, which gives the positive answer to Question 4:

Theorem 1.1 For a given knot K and a smooth concordance S W Tp;q!K, any SU.2/–representation of
�1.S

3 nTp;q/ extends to an SU.2/–representation of �1..S3 � Œ0; 1�/ nS/.

The proof of Theorem 1.1 requires the special property that all generators of singular instanton homology
for torus knots have odd gradings. The outline of the proof is as follows. After extending the condition
of Daemi and Scaduto [9], we define analogous knot Floer theory of [9] for all ˛ 2 I, where I is a
dense subset of

�
0; 1
2

�
. This means that all SU.2/–representations of �1.S3 nTp;q/ with the holonomy

parameter ˛ 2 I extend to the concordance complement. The limiting argument shows that this extension
property is true for all SU.2/–representations of �1.S3 nTp;q/ with any holonomy parameter ˛ 2

�
0; 1
2

�
.

As described above, singular instanton knot homology (see Echeverria [12]) and its equivariant counterparts
are key tools for the proof, so we review the essential properties of these objects we use. We consider the
Novikov ring ƒZŒT�1;T �� which is given by

ƒZŒT�1;T ��
WD

�X
r2R

pr�
r
ˇ̌̌
pr 2 ZŒT �1; T ��; 8C > 0; #fpr ¤ 0gr>C <1

�
:
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Let ˛ be a parameter in
�
0; 1
2

�
. We introduce the subring R˛ of ƒZŒT�1;T ��

R˛ WD

�
ZŒ�˙1˛ �ŒŒ��1; �� if ˛ � 1

4
;

ZŒ�˙1�ŒŒ��1˛ ; �˛� if ˛ > 1
4
;

where �˛ D �2˛T 2. The geometric aspect of the subring R˛ is described in Section 3.2.

Theorem 1.2 Let S be an algebra over R˛. Let K � Y be an oriented knot in an integral homology
3–sphere. Choose a holonomy parameter ˛ 2 Q \

�
0; 1
2

�
so that �.Y;K/.e4�i˛/ ¤ 0. Then we can

associate a Z=4–graded module I˛� .Y;KI�S / over S to this parameter. Moreover , if S is an integral
domain , we can associate a Z=4–graded S–complex . zC ˛� .Y;KI�S /; Qd; �/ to a given triple .Y;K; ˛/
with �.Y;K/.e4�i˛/¤ 0, up to S–chain homotopy equivalence.

The precise definition of an S–complex can be seen in Section 3.1. We call I˛� .Y;KI�S / the irreducible
singular instanton knot homology over S with the holonomy parameter ˛. For the case Y D S3, we drop
Y from the notation. The difference between the construction of our Floer homology I˛� .Y;KI�S / and
I�.Y;K; ˛/ introduced by [12] is the choice of local coefficients. The construction of .C ˛� .Y;K/; d/ and
. zC ˛� .Y;K/;

Qd; �/ depends on additional data (metric and perturbation), however their chain homotopy
classes in the sense of S–complexes are independent of such choices.

Remark 1.3 To be more precise, we need to specify the choice of positive integer � 2 Z>0, called the
cone angle, to define the invariant I˛� .Y;K;�S /. The details are included in Remark 3.9. As conjectured
in [12], we expect that the invariant I˛� .Y;K;�S / does not depend on the choice of cone angle � 2Z>0,
and hence it is reasonable to drop � from the notation. Similar remarks are applied to the dependence
of invariants zC ˛� .Y;K;�S / and h˛S .Y;K/ which appear later. For a given holonomy parameter ˛, we
always assume that the cone angle � is a large enough integer.

Remark 1.4 For the coefficient S D R˛, we consider underlying groups of C ˛� .Y;KI�S / and
zC ˛.Y;K;�S / as Z–modules. Then if we fix the choice of auxiliary data, there exists a functional
giving the .Z�R/–bigraded structure on sets of generators of these underlying groups. Moreover, they
have a filtered structure induced from the R–grading. The precise descriptions of the .Z�R/–bigrading
and the filtered structure are contained in Sections 3.2 and 3.4.

The following statement describes the behavior of S–complexes under the connected sum:

Theorem 1.5 Let S be an integral domain over R˛ . Let K � Y and K 0 � Y 0 be two oriented knots in
integral homology 3–spheres. Fix a holonomy parameter ˛ 2Q\

�
0; 1
2

�
such that

�.Y;K/.e
4�i˛/�.Y 0;K0/.e

4�i˛/¤ 0:

Then there is a chain homotopy equivalence of S–complexes

zC ˛� .Y #Y 0; K #K 0I�S /' zC
˛
� .Y;KI�S /˝S

zC ˛� .Y
0; K 0I�S /:

Algebraic & Geometric Topology, Volume 24 (2024)
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The precise definition of a chain homotopy equivalence of S–complexes can be seen in Definition 3.3.
This is a generalization of the connected sum theorem by Daemi and Scaduto [9]. The method of the
proof of [9, Theorem 6.1] cannot be directly adapted to prove Theorem 1.5 since we have to deal with the
nonmonotonicity situation which arises for general holonomy parameters.

As described in [9], we can associate an integer-valued invariant which is called the Frøyshov type
invariant to a given S–complex. Our construction of S–complexes provides an integer-valued invariant
h˛S .Y;K/ for a knot in a homology 3–sphere .Y;K/. We call h˛S .Y;K/ the Frøyshov invariant for
.Y;K/ over S with the holonomy parameter ˛ . We drop Y from the notation when Y D S3. Note that
Echeverria [12] also introduced the Frøyshov type invariant denoted by h.Y;K; ˛/, which is constructed
from singular instanton Floer homology with a different local coefficient system from our setting. The
invariant h˛S .Y;K/ satisfies the following properties:

Theorem 1.6 Let .Y;K/ and .Y 0; K 0/ be two pairs of integral homology 3–spheres and knots. Assume
that ˛ 2Q\

�
0; 1
2

�
satisfies �.Y;K/.e4�i˛/¤ 0 and �.Y 0;K0/.e4�i˛/¤ 0. Then

h˛S .Y #Y 0; K #K 0/D h˛S .Y;K/C h
˛
S .Y

0; K 0/:

Moreover , if .Y;K/ and .Y 0; K 0/ are homology concordant , then

h˛S .Y;K/D h
˛
S .Y

0; K 0/:

Let us consider a knot in S3. It has been shown that the Frøyshov type invariant in [9] reduces to knot
signature (see Daemi and Scaduto [8, Theorem 7]). The invariant h˛S reduces to the Levine–Tristram
signature as follows:

Theorem 1.7 Let S be an integral domain over R˛ . For any knot K �S3 and for a holonomy parameter
˛ 2

�
0; 1
2

�
\Q with �K.e4�i˛/¤ 0, the following equality holds:

h˛S .K/D�
1
2
�˛.K/:

For a given knot K � S3 and integer l , we define a knot lK � S3 so that

lK WD

8<:
#lK if l > 0;
U (unknot) if l D 0;
#�l.�K/ if l < 0;

where �K is the mirror ofK with the reverse orientation. More strongly, S–complexes have the following
structure theorem:

Theorem 1.8 Let S be an integral domain over R˛. Then for a knot K in S3 and for a holonomy
parameter ˛ 2 Q \

�
0; 1
2

�
with �K.e

4�i˛/ ¤ 0, there is a two-bridge torus knot T2;2nC1 such that
�T2;2nC1.e

4�i˛/¤ 0, �˛.T2;2nC1/D�2 and the relation

zC ˛� .KI�S /' zC
˛
� .lT2;2nC1I�S /

holds , where l D�1
2
�˛.K/.

Algebraic & Geometric Topology, Volume 24 (2024)
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For the proof of Theorem 1.8, it is essential to observe behaviors of morphisms of S–complexes induced
from cobordisms between pairs .Y;K/ and .Y 0; K 0/. In [8], techniques demonstrated by Kronheimer [25]
are used to describe behaviors of morphisms of S–complexes for the case ˛D 1

4
. However, such techniques

do not directly adapt to prove Theorem 1.8 because of the lack of the monotonicity condition.

Theorems 1.5 and 1.8 imply the Euler characteristic formula

(1-2) �.I˛.K;�S //D
1
2
�˛.K/

(see Section 5.1). Since our grading convention of generators coincides with that of Echeverria [12], the
above argument also gives an alternative proof of the Euler characteristic formula in [12, Theorem 17] for
the case Y D S3.

Next, we focus on .p; q/–torus knot Tp;q in the 3–sphere. We always assume that p and q are positive
coprime integers. The following is a characteristic property of the torus knot and a key lemma for the
proof of Theorem 1.1. Let R˛.Y nK;SU.2// be the space of conjugacy classes of SU.2/–representations
of �1.Y nK/ with the holonomy parameter ˛. Let R�˛.Y nK;SU.2// be its irreducible part.

Theorem 1.9 For any ˛ 2
�
0; 1
2

�
with �Tp;q .e

4�i˛/¤ 0,

jR�˛.S
3
nTp;q;SU.2//j D �1

2
�˛.Tp;q/:

Here jS j for a set S denotes the size of this set. In [23], Herald introduced the signed count of elements
in the character variety R�˛.S3 nK;SU.2// for a general knot K with a fixed holonomy parameter. One
first perturbs R�˛.S3 nK;SU.2// into a discrete set R�;h˛ .S3 nK;SU.2// and then associates a sign to
each element of this set. The sum of these signs is Herald’s signed count of R�˛.S3 nK;SU.2//, which
we denote by #R�˛.S3 nK;SU.2//. In general:

#R�˛.S
3
nK;SU.2//D�1

2
�˛.K/:

See Herald [23, Corollary 0.2] and Lin [33] for the case ˛ D 1
4

. In the case K D Tp;q , the character
variety R�˛.S3 nTp;q;SU.2// is already discrete and one does not make any perturbation. Theorem 1.9
implies that all elements of R�˛.S3 nTp;q;SU.2// have positive signs.

Theorem 1.9 implies that C ˛� .Tp;qI�S / is supported only on the odd graded components. In particular,
its homology groups are isomorphic to chain complexes,

I˛� .Tp;qI�S /Š C
˛
� .Tp;qI�S /;

since all differentials of chain complexes are trivial. This can be interpreted as the counterpart of the
computation of instanton homology of Brieskorn homology 3–spheres; see Fintushel and Stern [13].

Theorem 1.7 implies that rankC ˛� .Tp;qI�S /D h
˛
S .Tp;q/, and by the definition of the invariant h˛S :

Algebraic & Geometric Topology, Volume 24 (2024)
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Theorem 1.10 Let S be an algebra over R˛. For ˛ 2
�
0; 1
2

�
\Q with �Tp;q .e

4�i˛/¤ 0, there is an
isomorphism

I˛� .Tp;qI�S /ŠS
d��˛.Tp;q/=4e

.1/
˚S

b��˛.Tp;q/=4c

.3/

as a Z=4–graded abelian group.

Theorem 1.10 describes the grading of generators of the Floer chain and it is independent of the choice
of local coefficient system. A similar structure theorem holds for singular instanton knot homology
introduced by Echeverria [12].

Theorem 1.8 implies that S–complexes for knots are determined by the Levine–Tristram signature without
the .Z�R/–grading structure. On the other hand, the R–grading from the Chern–Simons filtration can
be expected to have stronger information on the knot concordance. In upcoming work of Daemi, Sato,
Scaduto, Taniguchi and the author [6], relying on the results here, we will introduce a generalization of
the �–invariant of Daemi and Scaduto [9] for rational holonomy parameters, which can be regarded as a
gauge-theoretic refinement of the Levine–Tristram signature. Our techniques are also used in the future
work of Daemi and Scaduto to construct families of hyperbolic knots that are minimal with respect to the
ribbon partial order; see Gordon [21, Conjecture 1.1].

1.3 Outline

In Section 2, we review the background of SU.2/–singular gauge theory for rational holonomy parameters.
We also introduce the generalized definition of negative definite cobordism. In Section 3, we construct
Floer chain groups and S–complexes parametrized by holonomy parameters ˛, and introduce the Frøyshov
type invariant. The argument is almost parallel to [9; 8], however, we need a careful choice of local
coefficient system if we introduce the bigraded structure on the Floer chain complex. We also prove
Theorem 1.6. In Section 4, we prove the Levine–Tristram signature formula for torus knots (Theorem 1.9).
In the proof of Theorem 1.9, we use the correspondence of singular flat connections and nonsingular flat
connections over the branched covering space. We also use the pillowcase picture of the SU.2/–character
variety for the knot complement space. We prove Theorems 1.7, 1.8 and 1.10 in Section 5.1, and finally, we
give the proof of our main theorem (Theorem 1.1) in Section 5.2. The bigraded structure of S–complexes
plays an important role in the proof of the main theorem. The appendix consists of the proof of the
connected sum theorem (Theorem 1.5).

Acknowledgments The author would like to thank Aliakbar Daemi for his introduction to singular
instanton knot homology, helpful suggestions and answering many questions on papers [9; 8]. The author
would also like to thank Kouki Sato and Masaki Taniguchi for their helpful discussions. This work is
supported by JSPS KAKENHI grant JP21J20203.
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2 Background on singular instantons

In this section, we review singular gauge theory, mainly developed by Kronheimer and Mrowka [32].
We also give a generalization of the setting of singular SU.2/–gauge theory adopted by Daemi and
Scaduto [9; 8].

2.1 The space of singular connections

We review the construction of singular instantons over a closed pair of a 4–manifold and a surface. Let X
be a closed and oriented smooth 4–manifold and S be a closed and oriented embedded surface in X .
Let N be a tubular neighborhood of S in X . We identify N with a disk bundle over S and @N with
a circle bundle over S . Let � be a connection 1–form on a circle bundle @N . This means that � is
U.1/–invariant. We fix a decomposition of the SU.2/–bundle E!X over the embedded surface S as
EjS D L˚L

�, where L is a U.1/–bundle over S . This decomposition extends to N . We define two
topological invariants,

k D c2.E/ŒX� and l D�c1.L/ŒS�:

Here k is called the instanton number, and l is called the monopole number.

Next, we fix a connection A0 over X of the form

A0jN D

�
b 0

0 �b

�
:

Here b is a connection over L. This means that A0 reduces to a U.1/–connection over S . We give the
polar coordinates .r; �/ 2D2 on each fiber of N . Let � be a 1–form obtained by a pulled-back 1–form on
@N which coincides d� on each fiber, and  be a cutoff function supported on N . We define the singular
base connection A˛ by

A˛ D A0C i 

�
˛ 0

0 �˛

�
�;

where ˛ 2
�
0; 1
2

�
. Here ˛ is called the holonomy parameter. Recall that � is defined only on N nS , but

extends by 0 to X nS after cutting off by  . A˛ is a connection over X nS . Let gE be the adjoint bundle
of E. For a 2�1.X nS; gE /, A˛C a is called a singular connection.

Before defining the space of singular connections, we have to introduce functional spaces. We fix an
orbifold metric on X , which can be written in the form

g� D du2C dv2C dr2C
r2

�2
d�2

on N , where .u; v/ is a local coordinate of S . We say that this orbifold metric has cone angle 2�=�. Then
.X; g�/ has a local structure U=Z� near the singular locus S , where U is an open set in R4. The model
connection A˛ induces an SO.3/–adjoint connection on gE . We define the covariant derivative LrA˛ on
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the bundle ƒm˝ gE using the adjoint connection of A˛ and the Levi-Civita connection with respect to
the metric g� . Let F !X be an orbifold vector bundle. The Sobolev space LLpm;A˛ .X nS; F / is defined
as the completion of the space of smooth sections of F !X by the norm

ksk
p

LL
p

m;A˛

D

mX
iD0

Z
XnS

j LrA˛sj
p dvolg� :

If we use orbifold metrics, the “Fredholm package” works. Let dCA˛ W�
1.X nS; gE /!�C.X nS; gE / be

the linearized anti-self-dual operator defined by the metric g� , and d�A˛ W�
1.X nS; gE /!�0.X nS; gE /

be the formal adjoint of the covariant derivative for the metric g� . Consider the elliptic operator DA˛ D
�d�A˛ ˚ d

C

A˛ acting on the Sobolev space

(2-1) LL
p
m;A˛ .X nS;ƒ

1
˝ gE /! LL

p
m�1;A˛ .X nS; .ƒ

0
˚ƒC/˝ gE /:

Proposition 2.1 Let ˛ be a rational holonomy parameter of the form ˛ D p=q 2
�
0; 1
2

�
\Q. Choose a

cone angle 2�=� of orbifold metric so that 2�p=q 2 Z. Then the operator DA˛ and its formal adjoint are
Fredholm , and the Fredholm alternative holds.

Let A˛ad be the adjoint of the singular connection A˛ and � WU !U=Z� be an orbifold chart with respect
to the orbifold metric g� . If � 2 Z>0 is chosen as in Proposition 2.1, the lift of the adjoint connection of
��A˛ has the asymptotically trivial holonomy along a small linking of the singular locus. Thus ��A˛

extends smoothly over U . This means that A˛ad defines an orbifold connection. All analytical argument
reduces to the orbifold setting. From now on, we always fix � as in Proposition 2.1 for a given rational
holonomy parameter.

Assume that m> 2. The space of singular connections with a holonomy parameter ˛ 2
�
0; 1
2

�
is given by

A.X; S; ˛/D fA˛C a j a 2 LL2m;A˛ .X nS;ƒ
1
˝ gE /g:

This is an affine space as the nonsingular case. Notice that A.X; S; ˛/ is independent of the choice of the
base connection A˛. We also introduce the group of gauge transformations,

G.X; S/D fg 2 Aut.E/ j g 2 LL2mC1;A˛ .X nS;End.E//g:

There is the smooth action of G.X; S/ on A.X; S; ˛/, and we can take the quotient.

B.X; S; ˛/DA.X; S; ˛/=G.X; S/:

A singular connection with the 0–dimensional stabilizer for the action of G.X; S/ is called an irreducible
connection. A singular connection is called reducible if it is not irreducible. The quotient space B.X; S; ˛/
has a smooth Banach manifold structure except for orbits of reducible connections. The set of gauge
equivalence classes of solutions for the anti-self-dual equation

M ˛.X; S/D fŒA� 2 B.X; S; ˛/ j FCA D 0g
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is called the moduli space of singular anti-self-dual connections. M ˛.X; S/d denotes the subset of
M ˛.X; S/ with expected dimension d . For a generic orbifold metric with a fixed cone angle, the
irreducible part of M ˛.X; S/d is a smooth manifold of dimension d D ind.d�A ˚ d

C

A /, where ŒA� 2
M ˛.X; S/d . If M ˛.X; S/d consists of reducible connections, we modify the dimension of the moduli
space so that d D ind.d�A ˚ d

C

A /C dimH 0
A , where H i

A is an i thcohomology group of the deformation
complex. The index of the ASD-operator d�A ˚ d

C

A is given by

ind.d�A ˚ d
C

A /D 8kC 4l � 3.1� b
1
C bC/� 2.g.S/� 1/;

where g.S/ is the genus of the surface S . The index formula for the closed pair .X; S/ does not depend on
the holonomy parameter ˛. On the other hand, the energy integral �.A/DkFAk LL2 for an ASD-connection
A is given by

�.A/D kC 2˛l �˛2S �S:

We always assume that an integer � > 0 is chosen large enough for a fixed holonomy parameter ˛ 2
Q\

�
0; 1
2

�
, under the condition 2˛� 2Z. Such choice of � is related to the bubbling and compactification

of moduli spaces. The details are described in [27; 28].

2.2 The Chern–Simons functional

We discuss singular connections over 3–manifolds. Let Y be an oriented integral homology 3–sphere and
K be an oriented knot in Y . Let E be an SU.2/–bundle over Y . This is always topologically trivial. We
fix a reduction of E to a line bundle over K as EjK D L˚L�, and fix orbifold metric g� along K as in
Section 2.1. For a fixed ˛ 2Q\

�
0; 1
2

�
, we choose � as in Proposition 2.1. We can similarly define the

spaces of singular connections and gauge transformations:

A.Y;K;˛/DfA˛Ca ja2 LL2m;A˛ .Y nK;gE /g; G.Y;K/Dfg2Aut.E/ jg2 LL2mC1;A˛ .Y nK;End.E//g:

We define the quotient
B.Y;K; ˛/DA.Y;K; ˛/=G.Y;K/:

We use the notation Am.Y;K; ˛/ if we wish to emphasize that the space of singular connection is defined
by the completion of the Sobolev norm LL2m.

We describe the topology of G.Y;K/ and B.Y;K; ˛/. There are two other kinds of groups of gauge
transformations,

GK D fg 2 Aut.LjK/g and GK.Y;K/D fg 2 Aut.E/ j gjK D idg:

Then there is the exact sequence

1! GK.Y;K/! G.Y;K/! GK ! 1:

There is the map G.Y;K/ ! Z ˚ Z given by d.g/ D .k; l/, where k D deg.g W Y ! SU.2// and
l D deg.gjK WK! U.1//, and this map induces the isomorphism

�0.G.Y;K//Š Z˚Z:
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Using the homotopy exact sequence induced from the fibration G.Y;K/!A.Y;K; ˛/! B.Y;K; ˛/, we
also have the isomorphism

�1.B.Y;K; ˛//Š Z˚Z:

We define an L2–inner product on tangent spaces of A.Y;K; ˛/ as follows:

ha; bi D

Z
Y nK

� tr.a^�b/:

The �–operator is given by the orbifold metric g� . The Chern–Simons functional CS WA.Y;K; ˛/!R is
given by the formal gradient

grad.CS/A D
1

4�2
�FA

with respect to the aboveL2–inner product on TA.Y;K; ˛/. This uniquely determines CS up to a constant.
A 2A.Y;K; ˛/ is a critical point of CS if only if FA D 0. The critical point set of CS is a space of flat
connections on Y nK such that their holonomy along the meridian is conjugate to�

e2�i˛ 0

0 e�2�i˛

�
:

Let Crit be the critical point set of the Chern–Simons functional CS W A.Y;K; ˛/ ! R and Crit� D
Crit\A�.Y;K; ˛/. Let C.Y;K; ˛/ and C�.Y;K; ˛/ be images of Crit and Crit� by the natural projection
A.Y;K; ˛/! B.Y;K; ˛/. Then

C.Y;K; ˛/DR˛.Y nK;SU.2// and C�.Y;K; ˛/DR�˛.Y nK;SU.2//

by the holonomy correspondence of flat connections and representations of the fundamental group.

We have to perturb the Chern–Simons functional to achieve transversality. This is done by introducing a
cylinder function associated with a perturbation � 2 P

f� WA.Y;K; ˛/!R;

which we will construct in Section 2.4. Let Crit� be the critical point set of CSCf� and Crit�� D
Crit� \A�.Y;K; ˛/. Their orbits of gauge transformations are denoted by C�.Y;K; ˛/ and C��.Y;K; ˛/.

We define (perturbed) topological energy E�.
/ of a path 
 W Œ0; 1�!A.Y;K; ˛/ as

(2-2) E�.
/D 2f.CSCf�/.
.1//� .CSCf�/.
.0//g:

We also define the (perturbed) Hessian of A 2A.Y;K; ˛/ as

HessA;�.a/D �dAaCDV� jA.a/;

where V� is a gradient of f� , and DV� jA is its derivative at A.

For each A 2A.Y;K; ˛/, we can regard the Hessian as the operator,

HessA;� W LL2m;A˛ .Y nK;ƒ
1
˝ gE /! LL

2
m�1;A˛ .Y nK;ƒ

1
˝ gE /:

Definition 2.2 A 2 Crit�� is called nondegenerate if HessA;� jKer.d�A/
is invertible.
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This means that the Hessian is nondegenerate to the vertical direction of the gauge orbit. For irreducible
critical points of the unperturbed Chern–Simons functional, there is the following criterion for the
nondegeneracy condition:

Proposition 2.3 [32, Lemma 3.13] A critical point A 2 Crit� is nondegenerate if only if the kernel of
the map

H 1.Y nKI ad �/!H 1.�K I ad �/

is zero , where this map is induced by the natural embedding �K ,! Y nK and � W �1.Y nK/! SU.2/ is
the representation corresponding to the flat connection A.

We say that ŒA� 2 C� is nondegenerate if one of its representatives A 2 Crit� (and hence all) are
nondegenerate.

The nondegeneracy condition at the reducible critical point is given by a constraint on the holonomy
parameter. Let �˛ be the gauge equivalence class of the reducible flat connection corresponding to
the conjugacy class of an SU.2/–representation of �1.Y nK/ which factors through the abelianization
H1.Y nK;Z/ and has a holonomy parameter ˛. Since Y is an integral homology 3–sphere, such �˛
uniquely exists. The following is obtained as a corollary of [32, Lemma 3.13]:

Proposition 2.4 [12, Lemma 15] The unique flat reducible �˛ is isolated and nondegenerate if only if
�.Y;K/.e

4�i˛/¤ 0.

Let us fix the definition of the Chern–Simons functional. We fix a reducible flat connection Q�˛ which
represents �˛ and put the condition CS. Q�˛/D 0. Then the R–valued functional CS is determined up to
the choice of a representative of �˛. From now on, we fix a representative Q�˛ for each pair .Y;K/.

2.3 The flip symmetry

The flip symmetry is an involution that acts on a family of configuration spaces
S
˛2.0;1=2/\Q B.Y;K; ˛/.

The flip symmetry changes holonomy conditions as ˛ 7! 1
2
�˛. The 4–dimensional version is introduced

in [27], and the 3–dimensional version is similarly defined in [9]. We generalize the 3–dimensional version
of the flip symmetry as follows. Let � 2H 1.Y nK;Z2/Š Z2 be a generator. Since H 1.Y nK;Z2/D

Hom.�1.Y nK/;Z2/, we can regard � as a representation � W �.Y nK/! Z2. The representation �
satisfies �.�K/D�1, and forms a flat line bundle L� over Y nK with a flat connection corresponding
to �. Since L� is a trivial line bundle and there is an isomorphism EjY nK ŠEjY nK ˝L�, we regard a
connection A˝� on EjY nK˝L� as a connection on EjY nK . Thus the action of � 2H 1.Y nK;Z2/ onS
˛2.0;1=2/\Q B.Y;K; ˛/ is defined by

�ŒA�D ŒA˝��:
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This action is called the flip symmetry, and gives the identification

B.Y;K; ˛/Š B
�
Y;K; 1

2
�˛

�
:

In particular, it defines the involution on B
�
Y;K; 1

4

�
.

The flip symmetry can be restricted to the space
S
˛2.0;1=2/\Q R˛.Y nK;SU.2//. In this case, the action

of � 2 H 1.Y nK;Z2/ is simply described as �Œ�� D Œ� � �� where � � � W �1.Y nK/! SU.2/ is the
SU.2/–representation defined as .� ��/.g/ WD �.g/�.g/ for g 2 �1.Y nK/. If � satisfies

�.�K/�

�
e2�i˛ 0

0 e�2�i˛

�
;

then

.� ��/.�K/�

�
e2�i.1=2�˛/ 0

0 e�2�i.1=2�˛/

�
:

2.4 Holonomy perturbations

In this subsection, we review the construction and properties of the perturbation term of the Chern–Simons
functional introduced by Floer [14] and Braam and Donaldson [1], and here we follow the notation of
Kronheimer and Mrowka [32] and Daemi and Scaduto [9].

Let q W S1 �D2! Y nK be a smooth immersion of a solid torus. Then .s; z/ 2 S1 �D2 denotes its
coordinates, regarding S1 as R=Z and D2 as the unit disk in C. Let GE ! Y be the bundle of the
group whose sections are gauge transformations of E. This is defined by GE D P �SU.2/ SU.2/, where
P is the corresponding SU.2/–bundle, and SU.2/ acts in the obvious way on P and by conjugation
on the SU.2/–factor. Holq.A/ W D2 ! q�.GE / is a section of q�.GE / which assigns the holonomy
Holq.�;z/.A/ of connection A 2A.Y;K; ˛/ along the loop q.�; z/ W S1! Y nK to each z 2D2. Next,
we repeat the above constructions for an r–tuple of smooth immersions of solid tori

q D .q1; : : : ; qr/:

Assume that there is a positive number � > 0 such that

(2-3) qi .s; z/D qj .s; z/ for all .s; z/ 2 Œ��; ���D2:

Then there are identifications
q�i .GE /Š q

�
j .GE /

over Œ��; ���D2, and q�.GrE / denotes the fiber product of q�1 .GE /; : : : ; q
�
r .GE / over Œ��; ���D2.

Then we can construct a section Holq.A/ WD2! q�.GrE / which assigns

.Holq1.�;z/.A/; : : : ;Holqr .�;z/.A// 2 SU.2/r

for each z2D2. Next, we choose a smooth function on SU.2/r which is invariant under the diagonal action
of SU.2/ on SU.2/r by the adjoint action on each factor. This smooth function induces h W q�.GE /!R.
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Definition 2.5 Holq.A/ and h are as above. Let � be a 2–form on D2 such that
R
D2 �D 1. A smooth

function f WA.Y;K; ˛/!R of the form

f .A/D

Z
D2
h.Holq.A//�

is called a cylinder function.

Cylinder functions are determined by the choice of an r–tuple q and a function h. Note that the construction
of cylinder functions is gauge invariant. Let P be the space of perturbations; see [32] for details. For each
� 2 P , we can associate a cylinder function f� . We call f� the holonomy perturbation and CSCf� the
perturbed Chern–Simons functional.

Proposition 2.6 There is a residual subset of the Banach space of perturbations P 0 �P such that , for any
sufficiently small � 2 P 0, the perturbed Chern–Simons functional CSCf� has the nondegenerate critical
point set Crit�� and its image C�� in B�.Y;K; ˛/ is a finite point set. Moreover , the reducible critical point
�˛ is unmoved under the perturbation and is nondegenerate if �.Y;K/.e4�i˛/¤ 0.

Proof The finiteness property follows from a similar argument as in [32, Lemma 3.8]. The nondegeneracy
condition follows from the fact that f� is dense in C1.S/ for any compact finite-dimensional submanifold
S � B�.Y;K; ˛/; see [10, Section 5] for details. The argument in [9, Subsection 2.4] is adapted to show
that, for a suitable choice of an SU.2/–invariant smooth function h, the unique flat reducible �˛ is
unmoved under small perturbations. By Proposition 2.4, the unique flat reducible �˛ is still isolated and
nondegenerate for such perturbations under the condition �.Y;K/.e4�i˛/¤ 0.

2.5 The moduli space over the cylinder

We discuss trajectories for the perturbed gradient flow. Let .Z; S/DR� .Y;K/ be a cylinder equipped
with a product metric g�Y C dt . We introduce moduli spaces of instantons over the cylinder. E denotes
the pullback of the SU.2/–bundle E! Y by the projection R�Y ! Y . Consider a connection A on E

of the form AD B.t/CCdt , where B.t/ is a t–dependent singular connection on Y nK. Let ˇ0 and ˇ1
be elements in C�� , and let B0 and B1 be their representatives in gauge equivariant classes. Consider a
singular connection A0 over the cylinder .Z; S/ such that

A0j.Y nK/�ftg D B1 for t � 0 and A0j.Y nK/�ftg D B0 for t � 0:

A0 defines a path 
 WR! B.Y;K; ˛/ by sending t to ŒB.t/�, and z denotes its relative homotopy class in
�1.B.Y;K; ˛/Iˇ0; ˇ1/.

Then we define the space of singular connection indexed by z:

Az.Z; S IB0; B1/D fA j A�A0 2 LL2m;A0.Z nS;ƒ
1
˝ gE/g:
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We also define the group of gauge transformations:

Gz.Z; S/D fg 2 Aut.E/ j rkA0g 2
LL2.Z nS;End.E//; k D 1; : : : ; mC 1g:

The group Gz.Z; S/ acts on Az.Z; S/. Taking the quotient gives the configuration space Bz.Z; S Iˇ0; ˇ1/.
We introduce the moduli space of (perturbed) instantons over the cylinder associated with the perturbed
Chern–Simons functional CSCf� . This is the moduli space of solutions of the perturbed ASD-equation

M�
z .ˇ0; ˇ1/D fŒA� 2 Bz.Z; S Iˇ0; ˇ1/ j F

C

A C
yV�.A/D 0g:

Here yV� is a term arising from the perturbation f� . The perturbed version of the ASD-complex is given by

�0.Z nS; gE/
dA��!�1.Z nS; gE/

d
C

A CD
yV�

�������!�C.Z nS; gE/:

We consider the Fredholm operator

DA;� W LL
2
m;A0

.Z nS;ƒ1˝ gE/! LL
2
m�1;A0

.Z nS; .ƒ0˚ƒC/˝ gE/

given by DA;� D�d�A ˚ .d
C

A CD
yV�/ and define the relative Z–grading for ˇ0; ˇ1 2 C��.Y;K; ˛/ as

grz.ˇ0; ˇ1/D ind.DA;�/;

where z is a path represented by A. Note that indDA;� is independent of the choice of perturbation �
since the term D yV� is a compact operator. The following proposition gives the well-defined mod-4
grading on the critical point set:

Proposition 2.7 [32, Lemma 3.1] Let z 2 �1.B.Y;K; ˛// be a homotopy class represented by a path
which connects B and g�.B/, where ˇ D ŒB� and d.g/ D .k; l/. For ˇ 2 C� and a homotopy class
z 2 �1.B.Y;K; ˛/Iˇ/, we have

grz.ˇ; ˇ/D 8kC 4l:

The mod-4 value of the Z–grading is independent of the choice of the homotopy class z, and hence we
can write

gr.ˇ0; ˇ1/� grz.ˇ0; ˇ1/ mod 4:

We also define the absolute Z–grading by

grz.ˇ; �˛/D ind.DA;� W � LL2m! � LL2m�1/;

where � LL2m is a weighted Sobolev space with a weight function � which agrees with e�ıjt j over two ends
of the cylinder. Here ı > 0 is chosen to be small enough. Similarly, we can define the mod-4 grading

gr.ˇ/� grz.ˇ; �˛/ mod 4:

The moduli spaceM�
z .ˇ0; ˇ1/ is called regular if the operatorDA;� is surjective for all ŒA�2M�

z .ˇ0; ˇ1/.
For a generic choice of perturbation, the moduli space M�

z .ˇ0; ˇ1/ is a regular and smooth manifold
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of dimension grz.ˇ0; ˇ1/. We explicitly write M�
z .ˇ0; ˇ1/d if the moduli space M�

z .ˇ0; ˇ1/ has
dimension d , and write MM�

z .ˇ0; ˇ1/d�1DM
�
z .ˇ0; ˇ1/d=R. The argument in [10, Section 5] is adapted

to our situation, and we have the following properties:

Proposition 2.8 Let ˛ 2
�
0; 1
2

�
be a holonomy parameter with �K.e4�i˛/¤ 0 and �0 2 P 0 be a small

perturbation such that C�0 D f�˛g tC
�
�0

consists of finitely many nondegenerate points. Then there is a
small perturbation � 2 P 0 such that

(i) f� D f�0 in a neighborhood of C�0 ,

(ii) C� D C�0 ,

(iii) M�
z .ˇ1; ˇ2/ is regular for all homotopy classes z and critical points ˇ1 and ˇ2.

Proof First, we fix a perturbation �0 2 P as in Proposition 2.6. Then for each homotopy class z, we can
find a perturbation �z 2 P which is supported away from critical points and the corresponding moduli
space is regular. This essentially follows from the argument in [10, Section 5]. Since the subset Pz of
regular perturbations as above forms an open dense subset in P , we can find a desired perturbation � in
the countable intersection

T
z Pz .

From now on, we assume that the perturbation � 2 P always satisfies the properties in Proposition 2.8
and we drop � from the notation M�

z .ˇ1; ˇ2/.

2.6 Compactness

Consider a relative homotopy class z 2 �1.B.Y;K; ˛/; ˇ1; ˇ2/. If ˇ1 D ˇ2 then we assume that z is a
nontrivial homotopy class. Elements in MMz.ˇ1; ˇ2/ are called unparametrized trajectories.

Definition 2.9 A collection .ŒA1�; : : : ; ŒAl �/ 2 MMz1.ˇ1; ˇ2/� � � � �
MMzl .ˇl�1; ˇl/ of unparametrized

trajectories is called an unparametrized broken trajectory from ˇ1 to ˇl . If the composition of paths
z1 ı � � � ı zl is contained in the homotopy class z, then MMCz .ˇ1; ˇl/ denotes the space of unparametrized
broken trajectories from ˇ1 to ˇl .

The compactness property of moduli spaces is as follows; see also [32, Proposition 3.22].

Proposition 2.10 Let ˇ1; ˇ2 2 C� and assume that dimMz.ˇ1; ˇ2/ < 4. Then the space of un-
parametrized broken trajectories MMCz .ˇ1; ˇ2/ is compact.

We can assign the energy E�.z/ to a homotopy class z. In singular gauge theory for general holonomy
parameters, the counting #

S
z
MMz.ˇ1; ˇ2/ with grz.ˇ1; ˇ2/ D 1 can be infinite. Instead, we use the

following finiteness result:

Proposition 2.11 [32, Proposition 3.23] For a given constant C > 0, there are only finitely many
critical points ˇ1 and ˇ2 and homotopy classes z 2 �1.BIˇ1; ˇ2/ such that the moduli space Mz.ˇ1; ˇ2/

is nonempty and E�.z/ < C .
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Thus [
z

E� .z/<C

MMz.ˇ1; ˇ2/0

is a finite point set for any C > 0.

The gluing formula of the index tells us

(2-4) grz.ˇ0; �˛/C 1C grz0.�˛; ˇ1/D grz0ız.ˇ0; ˇ1/

since �˛ has a stabilizer S1. From this relation, we conclude that any broken trajectories in MCz .ˇ0; ˇ1/d
do not factor through �˛ if the dimension of Mz.ˇ0; ˇ1/d is less than 3.

2.7 Cobordisms

Let .W; S/ be a pair of an oriented 4–manifold and an embedded oriented surface such that @W DY 0t.�Y /
and @S DK tK 0. We call .W; S/ the cobordism of pairs and write .W; S/ W .Y;K/! .Y 0; K 0/. Set

.W C; SC/ WDR�0 � .Y;K/[ .W; S/[R�0 � .Y
0; K 0/:

We fix a metric onW CnSC with a cone angle 2�=� and cylindrical forms on each end. Let ˇ2B.Y;K; ˛/
and ˇ02B.Y 0; K 0/ be given connections and choose a singular SU.2/–connectionA0 on .W C; SC/which
has a limiting connection ˇ or ˇ0(up to gauge transformations) on each end of .W C; SC/. Here z denotes
the homotopy class of A. We define the space of connections and the group of gauge transformations as
follows:

Az.W; S Iˇ; ˇ0/ WD fA j A�A0 2 LL2m�1;A0.W
C
nSC; gE ˝ƒ

1/g;

Gz.W; S/ WD fg 2 Aut.E/ j riA0g 2
LL2.W C nSCIEnd.E//; i D 1; : : : ; mg:

We also define the quotient

Bz.W; S Iˇ; ˇ0/ WDAz.W; S Iˇ; ˇ0/=Gz.W; S/:

B.W; S Iˇ; ˇ0/ denotes the union of Bz.W; S Iˇ; ˇ0/ for all paths. The perturbed ASD equation on .W; S/
has the form FCA CU�W D 0 where U�W is a t–dependent perturbation. More concretely this can be
described as the following (the argument is based on [32]): Let �; �0 2PY be two holonomy perturbations
on R� .Y;K/. The perturbed ASD equation on R�0 � .Y;K/ has the form

FCA C .t/
yV� C 0.t/ yV�0 D 0;

where  .t/ is a smooth cutoff function such that  .t/D 1 if t < �1 and  .t/D 0 at t D 0. Then  0
is a smooth function supported on .�1; 0/ � Y . We choose � 2 P so that C� satisfies properties in
Propositions 2.6 and 2.8. The perturbation term can be described similarly on another end. For generic
choices of �0 and � 00 2 PY 0 , the irreducible part of the perturbed ASD-moduli space

Mz.W; S Iˇ; ˇ
0/� Bz.W; S Iˇ; ˇ0/
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is a smooth manifold. Consider the ASD-operator

(2-5) DA D�d
�
A ˚ d

C

A W �
LL2m;A0.W nS; gE ˝ƒ

1/! � LL2m�1;A0.W nS; gE ˝ .ƒ
0
˚ƒC//;

where � is a weight function. If a limiting connection of A0 is irreducible then we choose � � 1 on
that end of .W C; SC/. If A0 has a reducible limiting connection then we choose � D e�ıjt j on that end,
where ı > 0 is small enough. M.W; S Iˇ; ˇ0/d denotes the union of the moduli spaces Mz.W; S Iˇ; ˇ

0/

with indDA D d .

Definition 2.12 We define the topological energy of A 2 B.W; S Iˇ; ˇ0/ as

�.A/ WD
1

8�2

Z
WCnSC

Tr.FA ^FA/

and the monopole number of A as

�.A/ WD
i

�

Z
SC

�� 2˛S �S;

where

FAjSC D

�
� 0

0 ��

�
:

For the cylinder .W; S/D Œ0; 1�� .Y;K/ and the trivial perturbation � D 0, the topological energy � is
related to the energy E of the Chern–Simons functional as 2�.A/D E.A/. Consider an SU.2/–connection
B on .Y;K/, a connection A over the cylinder R� .Y;K/ which is asymptotic to B at �1, and a fixed
reducible flat connection Q�˛ such that CS. Q�˛/D 0 at1. Then CS.B/D �.A/ by construction.

Similarly we define an R–valued function holK WA.Y;K; ˛/!R as follows:

Definition 2.13 Let A be an SU.2/–connection over the cylinder Œ0; 1�� .Y;K/ as above. We define
holK.B/ WD ��.A/.

If z is a path on .W; S/ which is represented by a connection A, then we write �.z/ for �.A/ and �.z/
for �.A/ since these numbers are independent of the choice of A.

Let .X;†/ be a pair of a 4–manifold and an embedded surface with boundary @X DY and @†DK where
K is an oriented knot in an oriented integral homology 3–sphere Y . We assume that Œ†�D 0. Let ‚˛ be
a singular flat reducible connection with a holonomy parameter ˛ D n=m and whose lift to the m–fold
cyclic branched covering zXm is the trivial connection. We write H i .X n†I‚˛/ for the i th cohomology
of X n† with the local coefficient system twisted by ‚˛. Let HC.X n†I‚˛/ and H�.X n†I‚˛/ be
the space of self-dual and anti-self-dual harmonic 2–forms on X n† twisted by ‚˛, respectively.

Lemma 2.14 We define �.X n†I‚˛/D
P
i .�1/

i dimH i .X n†I‚˛/ and

�.X n†I‚˛/D dimHC.X n†I‚˛/� dimH�.X n†I‚˛/:

Then
�.X n†I‚˛/D �.X/��.†/ and �.X n†I‚˛/D �.X/C �˛.Y;K/:
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Proof Consider a rational holonomy parameter of the form ˛ D n=m 2Q. We take an m–fold branched
covering � W zXm!X whose branched locus is †. The pullback of singular flat connection ‚˛ extends
as the trivial flat connection over zXm. Let � W zXm! zXm be a generator of covering transformations. Then
its induced action Q� on the pulled-back bundle C is multiplication by e4�in=m. The index of the twisted
de Rham operator

d‚˛ C d
�
‚˛
W�even.X n†I‚˛/!�odd.X n†I‚˛/

coincides with the index of

(2-6) d C d� W�even. zXmIC/
Q�
!�odd. zXmIC/

Q� ;

where ��. zXmIC/Q� D f! 2��. zXmIC/ j !.�.x//D Q�.!.x//g. The index of (2-6) is given by �.X/�
�.†/. This can be seen by taking cell complex C�. zXm/ of zXm in �–equivariant way. Then there are
decompositions of the underlying groups of the chain complex

C�. zXm/D C�.†/˚C�. zXm n†/; C�. zXm n†/D

nM
iD1

Ci ;

where each Ci is isomorphic to a copy of C�.X n†/. Since �� acts as the identity on C�.†/ and in a
cyclic way on C�. zXm n†/D

Ln
iD1 Ci , all eigenspaces of the action �� on C�. zXm n†/ are isomorphic.

On the other hand, there is the identity �. zXm/Dm�.X/� .m� 1/�.†/. Thus the �–invariant index of
the de Rham operator is given by �.X/��.†/.

Similarly, the index of the signature operator twisted by the local coefficient ‚˛ coincides with the index
of the signature operator over zXm which is restricted to e4�in=m–eigenspaces. This signature is equal to
�.X/C �n=m.Y;K/ by the formula in [41].

Proposition 2.15 Let .W; S/ W .Y;K/! .Y 0; K 0/ be a cobordism of pairs and ŒA� be an element of
B.W; S I �˛; � 0˛/. Then the index of the ASD operator DA is given by

indDAD 8�.A/C2.4˛�1/�.A/� 32.�.W /C�.W //C�.S/C8˛
2S �SC�˛.Y;K/��˛.Y

0; K 0/�1:

Proof Let X be a compact 4–manifold with @X D Y and † � Y be a Seifert surface of the knot K.
Pushing † into the interior of X , we obtain a pair .X;†/ whose boundary is .Y;K/. Moreover Œ†�D 0
in H2.X IZ/. Similarly we can construct another pair .X 0; †0/ such that .@X 0; @†0/D .Y 0; K 0/.

Set
.W ; S/ WD .X;†/[.Y;K/ .W; S/[.Y 0;K0/ .X

0; †0/:

Then .W ; S/ is a closed pair of a 4–manifold and an embedded surface. Let A1 and A2 be singular
flat reducible connections over .X;†/ and .X;†0/ which are extensions of �˛ and � 0˛, respectively.
Let A be a connection which represents an element of B.W; S I �˛; � 0˛/. We consider the connection
A0 D A1 #�˛ A #� 0˛ A2 over .W ; S/ obtained by the gluing.

Using the gluing formula for the index, we have

indDA0 D indDA1 C indDAC indDA2 C 2;
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where A0 is a singular connection on the closed pair .W ; S/ obtained by gluing A1, A2 and A. Since A1 is
reducible, there is the decomposition A1D 1˚B˛ with respect to the decomposition of the adjoint bundle
R˚L˝2, where 1 denotes the trivial connection. The deformation complex for DA1 decomposes into

(2-7) �0.X/ d�!�1.X/ d
C

��!�C.X/

and

(2-8) �0.X n†I adB˛/
dB˛���!�1.X n†I adB˛/

d
C

B˛���!�C.X n†I adB˛/:

The index of (2-7) is given by �1
2
.�.X/C�.X//� 1

2
. On the other hand, the index of (2-8) is given by

��.Xn†IB˛/��.Xn†IB˛/. Using two formulae �.Xn†IB˛/D�.X/C�˛.Y;K/ and �.Xn†;B˛/D
�.X/��.†/ in Lemma 2.14, we obtain

indDA1 D�
3
2
.�.X/C�.X//� �˛.Y;K/C�.†/�

1
2
:

Similarly, we have

indDA2 D�
3
2
.�.X 0/C�.X 0//C �˛.Y

0; K 0/C�.†0/� 1
2

since �˛.�Y 0; K 0/D��˛.Y 0; K 0/. The index formula for a closed pair in [27] gives

indDA D 8�.A/C 2.4˛� 1/�.A/�
3
2
.�.W /C�.W //C�.S/C 8˛2S �S C 2:

Hence we have the desired formula:

indDAD8�.A/C2.4˛�1/�.A/� 32.�.W /C�.W //C�.S/C8˛
2S �SC�˛.Y;K/��˛.Y

0; K 0/�1:

Remark 2.16 (i) The index formula in Proposition 2.15 recovers [9, Lemma 2.26] when ˛ D 1
4

.

(ii) For a cobordism of pairs .W; S/ W .Y;K/! .Y 0; K 0/, we define the integers

k.L/D�c1.L/
2ŒW � and l.L/D�c1.L/ŒS�:

Then the Chern–Weil formula gives us another expression of the index formula in Proposition 2.15 as

indDAL D 8k.L/C 4l.L/�
3
2
.�.W /C�.W //C�.S/C �˛.Y;K/� �˛.Y

0; K 0/� 1:

Assume that the cobordism of pairs .W; S/ satisfies b1.W /D bC.W /D 0. Then there exists a unique
singular reducible instanton AL corresponding to a decomposition E D L˚L�.

Definition 2.17 We call AL minimal if it minimizes indDAL among all line bundles L.

Our definition of minimal reducible coincides with [8, Subsection 2.3] if ˛ D 1
4

.

Let us describe relations between CS and �, and � and holK over cobordisms. Consider a connection
A over a cobordism .W; S/ W .Y;K/! .Y 0; K 0/ whose limiting connections are B on .Y;K/ and B 0 on
.Y 0; K 0/. Then the following statement holds:

Lemma 2.18 Fix a reducible connection AL over .W; S/. Then there exist k; l 2 Z such that

�.A/� �.AL/D CS.B/�CS.B 0/C kC 2˛l and �.A/� �.AL/D holK0.B 0/� holK.B/� 2l:
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Proof Recall that R–valued functions CS and hol are fixed by choosing reducible flat connections Q�˛ and
Q� 0˛ over pairs .Y;K/ and .Y 0; K 0/. If we choose a reducible connection AL0 so that it has two reducible
limits Q�˛ and Q� 0˛, then we have

�.A/CCS.B 0/D CS.B/C �.AL0/ and �.A/� holK0.B 0/D� holK.B/C �.AL0/

by construction. If we change AL to other homotopy classes of reducible connections, terms kC2˛l and
�2l appear by gauge transformations.

For a cobordism of pairs .W; S/ and a fixed holonomy parameter ˛, we introduce real values �0.W; S; ˛/
and �0.W; S; ˛/ as follows:

Definition 2.19 We define

�0.W; S; ˛/ WD minf�.AL/ j AL minimal reducibleg;

�0.W; S; ˛/ WD

�
�.AL/; where AL is a minimal reducible with �0 D �.AL/ if ˛ ¤ 1

4
;

minf�.AL/ j AL is a minimal reducibleg if ˛ D 1
4
:

Note that the homotopy class of the path z W �˛ ! � 0˛ represented by a minimal reducible AL with
�0D �.AL/ is uniquely determined when ˛¤ 1

4
. If ˛D 1

4
then homotopy classes of paths represented by

minimal reducibles are not unique, but only finitely many exist. In particular, �0.W; S; ˛/ is well defined.

Remark 2.20 If the cobordism of pairs .W; S/ has a flat minimal reducible with a holonomy parameter ˛,
then �0.W; S; ˛/D �0.W; S; ˛/D 0.

We write �0 D �0.W; S; ˛/ and �0 D �0.W; S; ˛/ for short.

Definition 2.21 Let .W; S/ W .Y;K/! .Y 0; K 0/ be a cobordism of pairs where K and K 0 are oriented
knots in integral homology 3–spheres Y and Y 0. Let S be an integral domain over R˛ . A cobordism of
pairs .W; S/ is called negative definite over S if

(1) b1.W /D bC.W /D 0,

(2) the index of the minimal reducibles is �1,

(3) we have the nonzero element in S

�˛.W; S/ WD
X

AL minimal

.�1/c1.L/
2

��0��.AL/T �.AL/��0 :

Remark 2.22 Our definition of the negative definite cobordism coincides with that of [8] when ˛ D 1
4

,
since instantons have minimal energy if only if they have minimal index.

Let .W1; S1/ W .Y1; K1/! .Y 0; K 0/ and .W2; S2/ W .Y 0; K 0/! .Y2; K2/ be negative definite cobordisms.
Note that their composition .W2ıW1; S2ıS1/ W .Y1; K1/! .Y2; K2/ is also a negative definite cobordism.
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Figure 1: Positive (left) and negative (right) crossings of a knot.

A cylinder Œ0; 1� � .Y;K/ and a homology concordance .Y;K/! .Y 0; K 0/ are examples of negative
definite cobordisms. The following is also a basic example of negative definite cobordisms. Let KC be a
knot in S3 which has at least one positive crossing. Let K� be a knot which is obtained by replacing one
positive crossing in the knot KC by one negative crossing; see Figure 1.

Since S3 is simply connected, KC and K� are homotopic. Approximating homotopy from K� to KC
by a smooth map, we get a smoothly immersed surface S � Œ0; 1�� S3 such that S \ f0g � S3 D KC
and S \ f1g � S3 D KC. Furthermore, we assume that S has a transverse self-intersection point. Let
S 0 W KC ! K� be an inverse cobordism of S . S has a positive self-intersection point in Œ0; 1� � S3.
Blowing up this self-intersection point, we obtain a new cobordism of pairs

(2-9) .CP2 # .Œ0; 1��S3/; S/ W .S3; K�/! .S3; KC/:

S is an embedded surface in CP2 # .Œ0; 1��S3/ obtained by resolving the self-intersection of S , and it
represents a homology class

2e 2H 2.CP2IZ/ŠH 2.CP2 # .Œ0; 1��S3/IZ/;

where e is an element represented by the exceptional curve. Similarly, we obtain a cobordism of pairs

(2-10) .CP2 # .Œ0; 1��S3/; S 0/ W .S3; KC/! .S3; K�/:

Cobordisms of pairs .W; S/ W .S3; K�/! .S3; KC/ and .W 0; S 0/ W .S3; KC/! .S3; K�/ constructed as
above are called the cobordism of positive/negative crossing change, respectively.

Proposition 2.23 Fix a holonomy parameter ˛ 2
�
0; 1
2

�
\Q with �KC.e

4�i˛/¤ 0 and �K�.e
4�i˛/¤ 0.

Let S be an integral domain over R˛. We assume that �˛.KC/ D �˛.K�/. Then the cobordism of
positive and negative crossing change are negative definite over S .

Proof Firstly, we show that (2-9) is a negative definite pair. Put W D CP2 # .Œ0; 1� � S3/. Then it
is clear that W satisfies Definition 2.21(1) since H 1.W IZ/ D 0 and H 2.W IZ/ D Z. Let Am be a
U.1/–reducible instanton corresponding to an element m 2 ZDH 2.W IZ/. Then

N�.Am/D�.c1.Lm/C˛S/
2
D .mC 2˛/2;

where Lm is a line bundle such that c1.Lm/Œe�D�m. We also have

�.Am/D 2c1.Lm/ŒS�D�4m:
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The index computation yields that

ind.DAm/D 8.mC 2˛/
2
C 2.4˛� 1/.�4m/� 32˛2C �˛.KC/� �˛.K�/� 1

D 8m.mC 1/C �˛.K�/� �˛.KC/� 1:

Thus m D 0;�1 minimize indDAm , and this means that A0 and A�1 are minimal reducibles. Since
�˛.KC/D �˛.K�/ by our assumption, the index for minimal instantons is �1 for the first case. Thus
.W; S/ satisfies Definition 2.21(2). Since N�.Am/Dm2C 4˛mC 4˛2, we have

�˛.W; S/D

�
1��4˛�1T 4 if ˛ � 1

4
;

�1�4˛T �4� 1 if ˛ > 1
4
:

Since 1� �4˛�1T 4 is invertible when ˛ ¤ 1
4

and nonzero when ˛ D 1
4

by assumption, �˛.W; S/ is
nonzero in S . Hence .W; S/ satisfies Definition 2.21(3) and .W; S/ is a negative definite pair.

It is also obvious that .W; S 0/ satisfies Definition 2.21(1). Since S 0 has the trivial homology class in
H2.W IZ/, minimal reducibles are only trivial with index �1. Hence �˛.W; S 0/D 1¤ 0 2S .

Next, we discuss the transversality of moduli spaces at reducibles. Following [26; 4], we introduce the
perturbation supported on the interior of the cobordism. Let I be an infinite countable set of indexes and
consider the following data:

� a collection of embedded 4–balls fBigi2I in W C nSC,

� a collection of submersions qi W S1 �Bi !W C nSC such that qi .1; � / is the identity,

� for any x 2W nS , the set fqi;x j i 2 I; x 2 Big is a C 1–dense subset in the space of loops based
at x 2W nS .

For each i 2 I, consider a self-dual 2–form !i on Bi with supp.!i /�Bi . These self-dual 2–forms !i can
be regarded as self-dual 2–forms onW CnSC. We define V!i WAz.W; S Iˇ; ˇ0/!�C.W CnSCI su.2// as

V!i .A/ WD �.!i ˝Holqi .A//;

where � W SU.2/! su.2/ is a map given by g 7! g� 1
2

tr.g/1. The argument similar to [26] shows that
there are constants Kn;i and differentials of V!i which satisfy the inequality

kDnV!i j .a1; : : : ; an/k LL2m;A0
�Kn;ik!kC l

nY
iD1

kaik LL2m;A0
;

where A0 is a singular connection which represents the homotopy class z and l � 3. We choose a family
of positive constants fCig so that

Ci � supfKn;i j 0� n� ig:

Consider a family of self-dual 2–forms f!ig such that
P
i2I Cik!ikC l converges. For such a choice

of f!ig, V! WD
P
i2I V!i!i defines a smooth map

Az.W; S Iˇ; ˇ0/! � LL2m.W
C
nSC; ƒC˝ su.2//

between Banach manifolds.
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We define J WD f.i; j / 2 I � I j i ¤ j; Bi;j WD Bi \Bj ¤∅g and qi;j W Bi;j !W C nSC by

qi;j jfxg�S1 WD qi;x � qj;x � q
�1
i;x � q

�1
j;x

for each .i; j / 2 J . We choose a family of constants fCi;j g.i;j /2J as before. Let !i;j be a self-dual
2–form on Bi;j . We introduce a Banach space W which consists of sequences of self-dual 2–forms
! D f!igi2I [f!i;j g.i;j /2J with the following weighted l1–norm:

k!kW WD
X
i2I

Cik!ikC l C
X

.i;j /2J

Ci;j k!i;j kC l :

For each ! 2W , we define a perturbation term

V!.A/ WD
X
i2I

V!i .A/˝!i C
X

.i;j /2J

V!i;j .A/˝!i;j

which defines a smooth map V! WAz.W; S Iˇ; ˇ0/! LL2m;�.W C nSC; ƒC˝ su.2//. We call

FCA CU�W .A/CV!.A/D 0

the secondary perturbed ASD-equation over the cobordism of pairs .W; S/ W .Y;K/! .Y 0; K 0/. Then
M�W ;!.W; S Iˇ; ˇ0/ denotes the moduli space of solutions for the secondary perturbed ASD-equation.

Proposition 2.24 Let .W; S/ be a cobordism of pairs such that b1.W /D bC.W /D 0. Assume that the
perturbation �W is chosen so that the perturbed ASD-equation

FCA CU�W .A/D 0

cuts out the irreducible part of the moduli space transversely. Let Aad D 1˚B be the adjoint connection
of abelian reducible ASD connection ŒA� 2 M.W; S I �˛; � 0˛/2dC1 with ind.d�B ˚ d

C

B / � 0. Then for
a small generic perturbation ! 2 W , the secondary perturbed ASD-equation cuts out the irreducible
part of the moduli space transversely. Moreover , M�W;! .W; S I �˛; �

0
˛/2dC1 is regular at ŒA� and has a

neighborhood of ŒA� which is homeomorphic to a cone on˙CPd .

Proof For each connected componentM�W ;!
z .W; S Iˇ; ˇ0/ of moduli spaces, the argument [4, Section 7]

is adapted to our case and reducible points are regular for generic perturbations. Taking countable
intersections of these subsets of regular perturbations in W , we can find a generic perturbation ! 2W
such that the statement holds. The claim about local structures around reducibles can be refined using the
standard argument; see [11, Proposition 4.3.20], for example.

Essentially the same argument is used in [8]. From now on, we assume that perturbations over the
cobordism of pairs .W; S/ are chosen so that they satisfy the statement of Proposition 2.24.

2.8 Orientation

We see the orientation of moduli spaces over the cylinder based on [32; 9]. Consider a reference connection
A0 on .W C; SC/ as described in Section 2.7 and the ASD-operator (2-5). If the weight function � has
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the form e�ıjt j on one end, the functional space � LL2m;A0 consists of exponential decaying functions on
that end. On the other hand, if the weight function � has the form eıjt j on one end, the functional space
� LL2m;A0 allows exponential growth functions. The index of the operator DA depends on these choices
of weighted functions. To distinguish these two situations, �˛;˙ denote reducible flat limits �˛ with
weighted functions e˙ıjt j. Let z be a path along .W; S/ between two critical limits ˇ and ˇ0 on .Y;K/
and .Y 0; K 0/. The family index of DfAg defines a trivial line bundle det ind.DA/ on each Bz.W; S; ˇ; ˇ0/.
Let OzŒW; S Iˇ0; ˇ1� be the two-point set of the orientation of the determinant line bundle det ind.DfAg/.
Then OzŒW; S Iˇ; ˇ

0� is the set of orientation of the moduli space M ˛
z .W; S Iˇ; ˇ

0/. There is a transitive
and faithful Z2–action on OzŒW; S Iˇ; ˇ

0�. For a composition of cobordisms .W2; S2/ ı .W1; S1/, there
is a pairing

ˆ W Oz1 ŒW1; S1Iˇ; ˇ
0�˝Z2 Oz2 ŒW2; S2Iˇ

0; ˇ00�! Oz2ız1 ŒW2 ıW1; S2 ıS1Iˇ; ˇ
00�

which is induced from the gluing formula of the index. If we consider the gluing operation along the
reducible connection �˛ , we choose ˇ0 D �˛;C at the first component and �˛;� at the second component.
Since there is a natural isomorphism between OzŒW; S Iˇ; ˇ

0� and Oz0 ŒW; S Iˇ; ˇ
0�, we omit z from the

above notation. We call an element of OŒW; S I �˛C; �
0
˛�� a homology orientation of .W; S/. For a given

knot in an integral homology 3–sphere .Y;K/, we use the notation

OŒˇ� WD OŒY � I;K � I Iˇ; �˛��

if ˇ is irreducible, and
OŒ�˛� WD OŒY � I;K � I I �˛C; �˛��:

There is an isomorphism

OŒW; S I �˛;C; �˛;��jŒA0� Šƒ
top.H 1.W /˚HC.W //;

and an element oW 2 OŒW; S I �˛;C; �˛;�� is called a homology orientation.

Now we describe how the orientation of the moduli space M.W; S Iˇ; ˇ0/ is defined. Let oW 2
OŒW; S I �˛;C; �˛;�� be a given homology orientation for .W; S/. We fix elements oˇ 2 OŒˇ� and
oˇ 0 2 OŒˇ0�. Then the orientation o.W;S Iˇ;ˇ 0/ 2 OŒW; S Iˇ; ˇ0� is fixed so that

ˆ.oˇ ˝ oW /Dˆ.o.W;S Iˇ;ˇ 0/˝ oˇ 0/:

The moduli space MMz.ˇ0; ˇ1/ is oriented in the following way. First, we fix orientations oˇ0 2 OŒˇ0�

and oˇ1 2 ƒŒˇ1�. Then the orientation of M.ˇ0; ˇ1/ is determined as above. Note that there is an
R–action on Mz.ˇ1; ˇ2/. Let �s.t; y/ D .t � s; y/ be the transition on the cylinder .Y;K/�R. Then
the R–action on M.ˇ0; ˇ1/ is given by the pullback ŒA� 7! Œ��A�. Finally, we orient MM.ˇ1; ˇ2/ so that
R� MM.ˇ1; ˇ2/DM.ˇ1; ˇ2/ is orientation preserving.

The boundary of moduli spaces is oriented so that the outward normal vector sits in the first place in the
tangent space.
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3 S–complexes and Frøyshov type invariants

In this section, we extend the construction of S–complexes zC�.Y;K/ for .Y;K/ in [9] to general holonomy
parameters. We also introduce Z�R–bigrading of S–complexes with rational holonomy parameters for
the specific choice of coefficient and its filtered subcomplex based on [35].

3.1 A review on S–complexes and Frøyshov invariants

The S–complex and Frøyshov type invariant introduced by [9; 8] are defined using purely algebraic objects:

Definition 3.1 Let R be an integral domain, and zC� be a finitely generated and graded free R–module.
The triple . zC�; Qd; �/ is called an S–complex if

(1) Qd W zC�! zC� is a degree �1 homomorphism,

(2) � W zC�! zC� is a degree C1 homomorphism,

(3) Qd and � satisfy
� Qd2 D 0, �2 D 0, and Qd�C� Qd D 0,
� Ker.�/= Im.�/ŠR.0/, where R.0/ is a copy of R in zC0.

If .C�; d / is a given chain complex with the coefficient ring R, we can form an S–complex

(3-1) zC� D C�˚C��1˚R; Qd D

24d 0 0

v �d ı2
ı1 0 0

35 ; �D

240 0 01 0 0

0 0 0

35 ;
where ı1 W C� ! R, ı2 W R ! C��1 and v W C� ! C��2. Since there are conditions on Qd and � in
Definition 3.1, the components in Qd and � have to satisfy the following relations:

(3-2) ı1d D 0; dı2 D 0 and dv� vd � ı2ı1 D 0:

Conversely, if the S–complex . zC ; Qd; �/ is given then there is a decomposition zC� D C�˚C��1˚R.
The reader can find the details in [9, Section 4.1].

There is also the notion of an S–morphism, which is a morphism of S–complexes.

Definition 3.2 Let . zC�; Qd; �/ and . zC 0�; Qd
0; �0/ be S–complexes. Fix decompositions zC�DC�˚C��1˚R

and zC 0 D C 0�˚C
0
��1˚R. A chain map zm W zC�! zC 0� is called an S–morphism if it has the form

(3-3) zmD

24m 0 0

� m �2
�1 0 �

35 ;
where �¤ 0 2R.

The condition that zm is a chain map is equivalent to the following relations:

md � dmD 0; �1d C �ı1� ı
0
1mD 0; d 0�2� ı

0
2�Cmı2 D 0;

�d Cmv��2ı1� v
0mC d 0�� ı02�1 D 0:
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Definition 3.3 Let zm; zm0 W zC� ! zC 0� be two S–morphisms. An S–chain homotopy of zm and zm0 is a
degree 1 map Qh W zC�! zC 0� such that

Qd 0 QhC Qh Qd D zm� zm0; �0 QhC Qh�D 0:

Two S–complexes zC� and zC 0� are called S–chain homotopy equivariant if there are S–morphisms
zm W zC�! zC

0
� and zm0 W zC 0�! zC� such that zm zm0 and zm0 zm are S–chain homotopic to the identity.

Remark 3.4 Consider S–morphisms zm W zC�! zC 0� and zm0 W zC 0�! zC�. If there are unit elements c and c0

in the coefficient ring R, and two S–chain homotopies

zm0 zm� c id zC� and zm zm0 � c0 id zC 0� ;

then the two S–complexes zC� and zC 0� are S–chain homotopy equivalent since both c�1 zm and c0�1 zm are
S–chain homotopic to the composition c�1c0�1 zm zm0 zm.

The Frøyshov type invariant, defined from an S–complex, assigns an integer h. zC�/ to each S–complex zC�.

Definition 3.5 [9, Proposition 4.15] � h. zC�/ > 0 if and only if there is an element ˇ 2 C� such that
dˇ D 0 and ı1ˇ ¤ 0.

� If h. zC�/D k > 0 then k is the largest integer such that there exists ˇ 2 C� satisfying

dˇ D 0; ı1v
k�1.ˇ/¤ 0; ı1v

iˇ D 0 for i � k� 2:

� If h. zC�/D k � 0 then there are elements a0; : : : ; a�k 2R and ˇ 2 C� such that

dˇ D

�kX
iD0

viı2.ai /:

The followings are basic properties of the Frøyshov type invariant:

Proposition 3.6 [9, Corollary 4.14] If there is an S–morphism zm W zC�! zC 0� then h. zC�/� h. zC 0�/.

Given two S–complexes . zC�; Qd; �/ and . zC 0�; Qd
0; �0/, the product S–complex . zC˝� ; Qd

˝; �˝/ is defined as

zC˝� D
zC�˝ zC

0
�;

Qd˝ D Qd ˝ 1C �˝ Qd 0 and �˝ D �˝ 1C �˝�0;

where � W zC 0� ! zC
0
� is given by �.ˇ0/ D .�1/deg.ˇ 0/ˇ0 on elements of homogeneous degree. Let d˝,

v˝, ı˝1 and ı˝2 be components of Qd˝ with respect to the splitting zC˝ D C˝� ˚C
˝
��1˚R. Using the

decomposition C˝� D .C ˝C
0/�˚ .C ˝C

0/��1˚C�˚C
0, these maps are represented by

d˝ D

2664
d ˝ 1C �˝ d 0 0 0 0

��v˝ 1C �˝ v0 d ˝ 1� �˝ d 0 �˝ ı02 �ı
0
2˝ 1

�˝ ı01 0 d 0

ı01˝ 1 0 0 d 0

3775 ; v˝ D

2664
v˝ 1 0 0 ı2˝ 1

0 v˝ 1 0 0

0 0 v 0

0 ı1˝ 1 0 v0

3775 ;
ı˝1 D Œ0; 0; ı1; ı

0
1�; ı˝2 D Œ0; 0; ı2; ı

0
2�

T:

The Frøyshov type invariant behaves additively for the product of S–complexes:
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Proposition 3.7 [9, Corollary 4.28] h. zC˝� /D h.
zC�/C h. zC

0
�/.

3.2 Floer homology groups with local coefficients

In this subsection, we construct the summand C� in an S–complex as a Floer chain group with local
coefficients. Let .Y;K/ be an oriented knot in an integral homology 3–sphere. We fix a holonomy
parameter ˛ so that �.Y;K/.e4�i˛/ ¤ 0 to isolate the unique flat reducible connection �˛. We assign
an abelian group �ŒB� for each elements ŒB� in the configuration space B.Y;K; ˛/ and an isomorphism
�z W �ŒB0� ! �ŒB1� for each homotopy class z 2 �1.B.Y;K; ˛/; ŒB0�; ŒB1�/. If this assignment is
functorial, a Floer chain complex with the local coefficient � is defined as follows:

C ˛� .Y;K;�/D
M

ˇ2C�� .Y;K;˛/

�ˇOŒˇ� and hd.ˇ0/; ˇ1i D
X

z W ˇ0!ˇ1

X
Œ MA�2 MMz.ˇ0;ˇ1/

�.Œ MA�/˝�z :

The Z=4–grading of C ˛� .Y;K;�/ is defined by mod-4 grading for critical points. Consider a subring R˛

in the Novikov ring ƒZŒT�1;T ��, which is introduced in Section 1.2.

Lemma 2.18 enables us to define a local coefficient system �D�R˛ as follows:

�R˛;ŒB� WDR˛�
CS.B/T holK.B/ and �R˛;z WD # MMz.ˇ; ˇ1/0�

��.z/T �.z/:

Note that this definition is independent of choices of representatives of ŒB� and �˛ . Write C ˛� .Y;KI�R˛ /

for a chain complex with the local coefficient system over R˛ . For any algebra S over R˛ , we can extend
the above construction to the coefficient S .

Definition 3.8 Let .Y;K/ be an oriented knot in an integral homology 3–sphere and S be an algebra
over R˛. Fix ˛ 2

�
0; 1
2

�
\Q so that �.Y;K/.e4�i˛/ ¤ 0. The homology group of the Z=4–graded

chain complex .C ˛� .Y;KI�S /; d/ is denoted by I˛� .Y;KI�S /. We call I˛� .Y;KI�S / the irreducible
singular instanton knot homology over the local coefficient S with the holonomy parameter ˛.

Let .W; S/ W .Y;K/! .Y 0; K 0/ be a negative definite cobordism over S . We define an induced morphism
mDm.W;S/ W C

˛
� .Y;KI�S /! C ˛� .Y

0; K 0I�S / by

m.ˇ/D
X

ˇ 02C�.Y;K;˛/

X
z W ˇ!ˇ 0

#Mz.W; S Iˇ; ˇ
0/0�

�0��.z/T �.z/��0ˇ0:

Counting the boundary of 1–dimensional moduli space MCz .W; S Iˇ; ˇ
0/1 for each homotopy class z, we

obtain the relation
dm�md 0 D 0:

We remark that:

� For a composition of negative definite cobordisms .W; S/ WD .W0; S0/ ı .W1; S1/, there is a map �
such that

d� ��d Dm.W1;S1/ ım.W0;S0/�m.W;S/;

where metrics and perturbation data on .W; S/ are given by the composition of those of .W0; S0/ and
.W1; S1/.

Algebraic & Geometric Topology, Volume 24 (2024)



5074 Hayato Imori

� If m.W;S/ and m0
.W;S/

are defined by different perturbations and metric data on an interior domain of
.W; S/, they are chain homotopic.

� If .W; S/D Œ0; 1�� .Y;K/ then m.W;S/ is chain homotopic to the identity map.

Thus C ˛� .Y;KI�S / is an invariant of .Y;K/ up to chain homotopy. We write I˛� .Y;KI�S / for its
homology group, and this is an invariant for .Y;K/.

Remark 3.9 The above argument shows that the chain homotopy type of C ˛� .Y;K;�S / is independent
of the choice of orbifold metric with the same cone angle � 2 Z>0. Hence, more precisely, the module
I˛� .Y;K;�S / should be denoted by I˛� .Y;K; �;�S /. We implicitly assume that the cone angle � is
chosen as a large enough number so that gauge theory on the orbifold setup described in Section 2 works.

Next, we introduce the filtered construction for the Floer chain complex based on Nozaki, Sato and
Taniguchi [35]. For the filtered construction, we have to introduce the lift of critical points. Let G.0;0/ be
a normal subgroup of the gauge group G.Y;K/ which is given by

G.0;0/ WD fg j k.g/D l.g/D 0g:

Consider the quotient of the space of singular connections

zB.Y;K; ˛/ WDA.Y;K; ˛/=G.0;0/:

The Chern–Simons functional descends on zB.Y;K; ˛/ as an R–valued function, and we still use the
same notation. The normal subgroup G.0;0/ is a connected component of the full gauge group G.Y;K/
which corresponds to .0; 0/ 2 Z˚ZŠ �0.G.Y;K//. Thus there is an action of �0.G.Y;K//Š Z˚Z

on zB.Y;K; ˛/ as a covering transformation, and hence zB.Y;K; ˛/ is a covering space over B.Y;K; ˛/
with a fiber Z˚Z.

Definition 3.10 A lift of ŒB� 2 B.Y;K; ˛/ to the covering space zB.Y;K; ˛/ is called a lift of ŒB�, and
denoted by fŒB�.
For a fixed lift fŒB� of ŒB� 2 B.Y;K; ˛/, the fiber of the projection zB.Y;K; ˛/! B.Y;K; ˛/ over a point
ŒB� can be described as

LŒB� WD fg
�.fŒB�/ 2 zB.Y;K; ˛/ j g 2 �0.G.Y;K//g:

The fiber LŒB� can be seen as the set of lifts of the element ŒB�. There is another description of lifts:
Let Q�˛ be a lift of reducible flat connections �˛. Then a lift Q̌ of ˇ 2 C�� is fixed by choosing a path
z W ˇ! �˛ of connections over the cylinder whose endpoint is Q�˛.

We again choose the coefficient ring R˛ and fix a lift Q̌ for each critical points ˇ 2 C�.Y;K; ˛/.

Then we modify the local coefficient system �R˛ so that

�R˛;ˇ DR˛�
CS. Q̌/T holK. Q̌/
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with the same map �R˛;z . Once we fix an orientation of ˇ, each summand �ˇOŒˇ� in the chain complex
is generated (over Z) by the elements of the form �k�l˛

Q̌ D �kC2˛lT 2l Q̌ where .k; l/ 2 Z˚Z. The
action of �k�l˛ corresponds to the action of the gauge transformation with d.g/D .k; l/. Such elements
can be identified with the set of lifts Lˇ of the critical point ˇ. Hence the chain complex C ˛� .Y;KI�R˛ /

can be seen as a Z–module generated by the all lifts of C�.Y;K; ˛/ under the modification as above.

Once we fix lifts of generators, the chain complex C ˛� .Y;KI�R˛ / admits a .Z�R/–bigrading as in [8],
that is we can associate a pair of values which is defined as follows:

For a lift Q̌ of the critical point ˇ 2 C� , we define degZ.
Q̌/ WD grz.ˇ/ where z is a path corresponding to

the lift Q̌. Then we extend degZ as

degZ.�
i�j˛
Q̌/D 8i C 4j C degZ.

Q̌/:

Next we define degR. For a lift Q̌ of a critical point ˇ 2 C� , we define degR.
Q̌/ WD CS. Q̌/. This extends

to elements of the form �i�
j
˛
Q̌ as

(3-4) degR.�
i�j˛
Q̌/D i C 2 j̨ C degR.

Q̌/:

In general, an element 
 2 C ˛� .Y;K; ˛/ has the form 
 D
P
i ai
i where 
i 2

S
ˇ2C�

Lˇ . This is
possibly an infinite sum. We define

degR.
/DmaxfdegR.
i / j ai ¤ 0g

for 
 ¤ 0 and degR.0/D�1.

In summary, we have the following proposition:

Proposition 3.11 Once we fix lifts of critical points of the Chern–Simons functional , the chain complex
.C ˛� .Y;K;�R˛ /; d/ admits the .Z�R/–bigrading.

We write C ˛� .Y;KI�R˛ /
Œ�1;1� for the chain complex C ˛� .Y;KI�R˛ / with the .Z�R/–bigrading.

Let C � �R be a subset defined by C � WD CS.Crit�/. For R 2R nC �, we define a subset

C ˛� .Y;KI�R˛ /
Œ�1;R�

WD f
 2 C ˛� .Y;KI�R˛ /
Œ�1;1�

j degR.
/ < Rg:

This defines a subcomplex of C ˛� .Y;KI�R˛ /
Œ�1;1�. For two numbers R0; R1 2 .RnC �/[f˙1g such

that R0 �R1, we define a quotient complex as follows:

C ˛� .Y;KI�R˛ /
ŒR0;R1� WD C ˛� .Y;KI�R˛ /

Œ�1;R1�=C ˛� .Y;KI�R˛ /
Œ�1;R0�:

Definition 3.12 For R0; R1 2 R [ f˙1g such that R0 � R1 and R0; R1 … C � [ C 0
�, we call

C ˛� .Y;KI�R˛ / a ŒR0; R1�–filtered chain complex.

Consider a negative definite cobordism .W; S/ W .Y;K/! .Y 0; K 0/ with �0D 0. A cobordism mapm.W;S/
on C ˛� .Y;KI�R˛ / induces a map

C ˛� .Y;KI�R˛ /
Œ�1;R�

! C ˛� .Y
0; K 0I�R˛ /

Œ�1;R�
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degZ

degR

U�1

degZ D i � 4 degZ D i degZ D i C 4

U
Z
Q̌

Z�1

Q�˛

Figure 2: Dots represent lifts of the irreducible flat connection ˇ and squares represent lifts of the
reducible flat connection �˛ .

by the restriction, and hence this induces a map

(3-5) m
ŒR0;R1�

.W;S/
W C ˛� .Y;KI�R˛ /

ŒR0;R1�! C ˛� .Y
0; K 0I�R˛ /

ŒR0;R1�:

As described before, the covering transformation on zB.Y;K; ˛/ is generated by multiplications of elements
�˙1and �˙1˛ . We also introduce other generators which fit the .Z�R/–bigrading on C ˛� .Y;KI�R˛ /. Let
us introduce two operators on C ˛� .Y;KI�R˛ /

Œ�1;1�,

(3-6) Z˙1 WD .�1�4˛T �4/˙1 and U˙1 WD .�2˛T 2/˙1:

These operators change the .Z�R/–bigrading as

degZ.Z
i Q̌/D degZ.

Q̌/ and degR.Z
i Q̌/D degR.

Q̌/C .1� 4˛/i for the operator Z;(3-7)

degZ.U
i Q̌/D degZ.

Q̌/C 4i and degR.U
i Q̌/D degR.

Q̌/C 2˛i for the operator U:(3-8)

See Figure 2 for the case ˛ < 1
4

. Since � D ZU 2, actions of the two operations Z and U (and their
inverses) on lifted critical points generate C ˛� .Y;KI�R˛ /

Œ�1;1�.
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3.3 Maps ı1, ı2,�1 and�2

We introduce operators which are defined by counting instantons on a cylinder or a cobordism with the
reducible limit. We remark that the sign convention of counting moduli spaces in this subsection is the
same as that of [9]. Let .Y;K/ and .Y 0; K 0/ be two knots in integral homology 3–spheres. Let S be an
integral domain over R˛ . In this subsection, we assume that the holonomy parameter ˛ is chosen so that
�.Y;K/.e

4�i˛/¤ 0 and �.Y 0;K0/.e4�i˛/¤ 0.

Definition 3.13 We define S –linear chain maps ı1 WC ˛� .Y;KI�S /!S and ı2 WS !C ˛
�2.Y;KI�S /

as follows.

For ˇ 2 C��.Y;K; ˛/,
ı1.ˇ/ WD

X
z W ˇ!�˛

# MMz.ˇ; �˛/0�
��.z/T �.z/

and
ı2.1/ WD

X
ˇ2C�� .Y;K;˛/

gr.ˇ/�2

X
z W �˛!ˇ

# MMz.�˛; ˇ/0�
��.z/T �.z/ˇ:

Since the compactified 1–dimensional moduli space MMCz .ˇ; �˛/1 has oriented boundaries[

2C��

gr.
/�1

[
z1;z2

z1ız2Dz

MMz1.ˇ; 
/0 �
MMz2.
; �˛/0;

it is straightforward to check that d ı ı1 D 0. Similarly, ı2 ı d D 0 holds.

Next, we define �1 W C ˛� .Y;KI�S / ! S and �2 W S ! C ˛� .Y
0; K 0I�S / for a cobordism of pairs

.W; S/ W .Y;K/! .Y 0; K 0/:

Definition 3.14 We have

�1.ˇ/ WD
X
z

#Mz.W; S Iˇ; �
0
˛/0�

�0��.z/T �.z/��0 ;

�2.1/ WD
X

ˇ 02C�� .Y 0;K0;˛/

X
z

#Mz.W; S I �˛; ˇ
0/0�

�0��.z/T �.z/��0ˇ0:

Proposition 3.15 Let m D m.W;S/ W C ˛� .Y;KI�S /! C ˛� .Y
0; K 0I�S / be a cobordism map induced

from the negative definite pair .W; S/ W .Y;K/! .Y 0; K 0/. Then the relations

(i) �1 ı d C �ı1� ı
0
1 ımD 0,

(ii) d 0 ı�2� ı
0
2�Cm ı ı2 D 0,

hold , where �D �˛.W; S/ and 0 denotes corresponding maps for the pair .Y 0; K 0/.
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Proof The relation (i) is given by counting the ends of each component of the 1–dimensional moduli
space Mz.W; S Iˇ; �

0
˛/1 as in [9, Proposition 3.10]. The boundary components of Mz.W; S Iˇ; �

0
˛/1 with

the induced orientation are given by

�

[
ˇ12C

�
�

[
z1;z2

z1ız2Dz

MMz1.ˇ; ˇ1/0 �Mz2.W; S Iˇ1; �
0
˛/0;(a)

[

 02C0��

[
z1;z2

z1ız2Dz

Mz1.W; S Iˇ; ˇ
0/0 � MMz2.ˇ

0; �˛/0;(b)

�

[
z1;z2

z1ız2Dz

MMz1.ˇ; �˛/0 �Mz2.W; S I �˛; �
0
˛/0:(c)

Note that product orientations of MMz1.ˇ; 
/0 �Mz2.W; S I 
; �
0
˛/0 and MMz0.ˇ; �˛/0 �M.W; S I �˛; �

0
˛/0

are opposite to orientations induced as the boundaries of Mz.W; S Iˇ; �˛/1. The signed counting of
the boundary components of types (a) and (b) contribute to ��1 ı d.ˇ/ and ı01 ım.ˇ/, respectively.
Since M.W; S I �˛; � 0˛/0 consists of minimal reducible elements, the counting of (c) gives ��ı1.ˇ/. This
proves (i). The relation (ii) can be similarly proved considering the ends of the 1–dimensional moduli
space Mz.W; S I �˛; ˇ

0/1.

3.4 Maps v and �

In this subsection, we introduce maps induced from the cobordism of pairs .W; S/ with an embedded
curve 
 � S . Our assumptions for the choice of holonomy parameter ˛ and the coefficient S are the
same as the previous subsection. We remark that the sign convention of moduli spaces in this subsection
is also the same as that of [9]. In particular, if f WM !N is a smooth map between oriented manifolds
then f �1.y/ for a regular value y 2N is oriented so that

TxM DNxf
�1.y/˚Txf

�1.y/

is orientation preserving, where Nxf �1.y/ is a fiber of the normal bundle for f �1.y/ and its orientation
is induced from that of N . The mapping degree deg.f / is defined by using this orientation.

Assume that 
 W Œ0; 1�! S is a smoothly embedded loop. Fix a regular neighborhood N
 .�/ of 
 in W
with radius � > 0 and fix a basepoint x0 2 @N
 .�/. We take a Seifert framing z
� � @N
 .�/ of 
 so that it
passes through the basepoint x0. The bundle decomposition E D L˚L� over S �W extends to N
 .�/,
and the holonomy of the adjoint connection of ŒA� 2 B.W; S Iˇ; ˇ0/ yields Holz
� .A

ad/ 2 S1. Put

h



ˇˇ 0
.A/ WD lim

�!0
Holz
� .A

ad/:

The construction above gives a map

(3-9) h



ˇˇ 0
W B.W; S; ˛Iˇ; ˇ0/! S1:

Note that this map itself depends on the choice of the Seifert framing of 
 and orientations of K and S .
However, such dependence on auxiliary data can be ignored to define the following map:

Algebraic & Geometric Topology, Volume 24 (2024)



Instanton knot invariants with rational holonomy parameters and an application for torus knot groups 5079

Definition 3.16 Let ˇ and ˇ0 be irreducible critical points of the (perturbed) Chern–Simons functional on
.Y;K/ and .Y 0; K 0/, respectively. We define a map �D�.W;S;
/ WC ˛� .Y;KI�S /!C ˛� .Y

0; K 0I�S / by

�.ˇ/D
X

ˇ 02C�� .Y;K;˛/

X
z W ˇ!ˇ 0

deg.h

ˇˇ 0
jMz.W;S Iˇ;ˇ 0/1/�

�0��.z/T �.z/��0ˇ0

for each ˇ 2 C��.Y;K; ˛/.

The map � satisfies the following relation:

Proposition 3.17 d 0 ı��� ı d D 0:

Proof Consider the compactified 2–dimensional moduli space MCz .W; S Iˇ; ˇ
0/2 which has oriented

boundary of the types

�

[
ˇ12C

�
� .Y;K;˛/

[
z0ız00Dz

MMCz0 .ˇ; ˇ1/i�1 �M
C
z00.W; S Iˇ1; ˇ

0/2�i ;

[
ˇ 012C

�
� .Y 0;K0;˛/

[
z0ız00Dz

MCz0 .W; S Iˇ; ˇ
0
1/2�i �

MMCz00.ˇ
0
1; ˇ
0/i�1;

where i D 1 or 2. Count the boundary of the 1–dimensional submanifold .h

ˇˇ 0
/�1.s/�MC.W; S Iˇ; ˇ0/

for a regular value s 2 S1. Since the closed loop 
 is supported on a compact subset of S , .h

ˇˇ 0
/�1.s/

intersects faces of the boundary of MCz .W; S Iˇ; ˇ
0/ with i D 1. Thus

#..h

ˇˇ 0
/�1.s/\ @MCz .W; S Iˇ; ˇ

0/2/D d
0
ı��� ı d D 0:

We consider the case when .W; S/ D R� .Y;K/ and 
 � S is a curve R� fy0g where y0 is a fixed
basepoint in K. Taking holonomy along 
 , we obtain a map

hˇ1ˇ2 W B.Y;K; ˛Iˇ1; ˇ2/! S1

similarly to (3-9), where ˇi for i D 1; 2 are irreducible critical points of the Chern–Simons functional.

The holonomy map hˇ1ˇ2 is modified to extend broken trajectories as in [10]. Such modification of hˇ1ˇ2
near the broken trajectories gives the map

Hˇ1ˇ2 W
MM.ˇ1; ˇ2/d ! S1

with the following properties:

(i) Hˇ1ˇ2 D hˇ1ˇ2 on the complement of a small neighborhood of @ MMC.ˇ1; ˇ2/d .

(ii) Hˇ1ˇ3.ŒA1�; ŒA2�/DHˇ1ˇ2.ŒA1�/Hˇ2ˇ3.ŒA2�/ on unparametrized broken trajectories

MMC.ˇ1; ˇ2/i�1 � MM
C.ˇ2; ˇ3/d�i ;

where ˇ2 is irreducible.

(iii) Hˇ1ˇ2 D 1 if dim MM.ˇ1; ˇ2/D 0.
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Definition 3.18 We define the v–map v W C ˛� .Y;KI�S /! C ˛� .Y;KI�S / by

v.ˇ1/D
X
ˇ22C

�
�

X
z W ˇ1!ˇ2

deg.Hˇ1ˇ2 j MMz.ˇ1;ˇ2/1/�
��.z/T �.z/ˇ2:

The v–map does not commute with the differential of the chain complex. However, the following relation
holds:

Proposition 3.19 dv� vd � ı2ı1 D 0:

Proof We consider the 1–dimensional moduli space

MM
;z.ˇ1; ˇ2/1 WD MMz.ˇ1; ˇ2/2\ .Hˇ1ˇ2/
�1.s/

for a generic s 2 S1 n f1g. As in the argument in the proof of [9, Proposition 3.16], the boundary of
MMz.ˇ1; ˇ2/ consists of unparametrized broken trajectories of the form

aD .ŒA1�; ŒA2�/;

and there are the following cases:

(I) a 2
S
z0ız00Dz

MMz0.ˇ1; ˇ3/0 � MMz00.ˇ3; ˇ2/1 where ˇ3 2 C��.Y;K; ˛/,

(II) a 2
S
z0ız00Dz

MMz0.ˇ1; ˇ3/1 � MMz00.ˇ3; ˇ2/0 where ˇ3 2 C��.Y;K; ˛/,

(III) ŒA� 2 MMz.ˇ1; ˇ2/ factors through the reducible critical point �˛.

For (I), the corresponding oriented boundary components of .Hˇ1ˇ2/
�1.s/\ MMCz .ˇ1; ˇ2/2 are

.Hˇ1ˇ2/
�1.s/\�

� [
ˇ32C

�
� .Y;K;˛/

[
z0ız00Dz

MMz0.ˇ1; ˇ3/0 � MMz00.ˇ3; ˇ2/1

�
D�

[
ˇ32C

�
� .Y;K;˛/

[
z0ız00Dz

MMz0.ˇ1; ˇ3/0 � .Hˇ3ˇ2/
�1.s/\ MMz00.ˇ3; ˇ2/1;

since Hˇ1ˇ3 D 1. This contributes the term �hvd.ˇ1/; ˇ2i. For (II), the similar argument shows that this
contributes to the term hdv.ˇ1/; ˇ2i. Case (III) requires gluing theory at the reducible. Let U be an open
subset of MM.ˇ1; ˇ2/ which is given by

U D fŒA� 2 MM.ˇ1; ˇ2/ j kA��
��˛kL21..�1;1/�.Y nK//

< �g:

Uz denotes the restriction of U to Mz.ˇ1; ˇ2/. There is the “ungluing” map

MMz.ˇ1; ˇ2/� Uz
 
�! .0;1/�

[
z0ız00Dz

MMz0.ˇ1; �˛/0 �S
1
� MMz00.�˛; ˇ3/0:

For T > 0 large enough, consider a subset Uz;T D  �1.f.t; ŒA1�; s; ŒA2�/ 2 Uz j t > T g/ of Uz . Then

 .Mz.ˇ1; ˇ2/\Uz;T /D .T;1/�
[

z0ız00Dz

MMz0.ˇ1; �˛/� fsg � MMz00.�˛; ˇ2/:
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Thus corresponding boundaries of 1–manifold H�1
ˇ1ˇ2

.s/\ MMC.ˇ1; ˇ2/2 with induced orientations are
given by

�

[
z0ız00Dz

MMz0.ˇ1; �˛/0 � MMz00.�˛; ˇ2/0:

The sign counting of this contributes to the term �hı2ı1.ˇ1/; ˇ2i. Finally, we obtain the relation
h.dv� vd � ı2ı1/.ˇ1/; ˇ2i D 0.

Next, we consider a negative definite pair .W; S/ W .Y;K/! .Y 0; K 0/with an embedded curve 
 W Œ0; 1�!S

such that 
.0/D p 2K and 
.1/D p0 2K 0. We identify 
 with its image. We define


C D .�1; 0�� fpg[ 
 [ Œ0;1/� fp0g � SC:

Assume that ˇ 2 C��.Y;K; ˛/ and ˇ0 2 C��.Y
0; K 0; ˛/. For each A 2A.W; S Iˇ; ˇ0/, taking the holonomy

of Aad along the path 
C, we obtain a map

h



ˇˇ 0
W B.W; S Iˇ; ˇ0/! S1;

and its modification
H



ˇˇ 0
WMC.W; S Iˇ; ˇ0/d ! S1

so that H 


ˇˇ 0
D 1 on 0–dimensional unparametrized broken trajectories.

Definition 3.20 We define a map �D �.W;S;
/ W C ˛� .Y;KI�S /! C ˛� .Y
0; K 0I�S / by

�.ˇ/D
X

ˇ 02C�� .Y 0;K0;˛/

X
z W ˇ!ˇ 0

deg.H 


ˇˇ 0
jMz.W;S Iˇ;ˇ 0/1/�

�0��.z/T �.z/��0ˇ0:

Proposition 3.21 Let .W; S/ W .Y;K/! .Y 0; K 0/ be a negative definite pair , and let m and � denote its
corresponding maps as above. Then

d 0�C�d C�2ı1� ı
0
2�1� v

0mCmv D 0;

where the prime denotes corresponding maps for the pair .Y 0; K 0/.

Proof Consider a 2–dimensional moduli space MCz .W; S Iˇ; ˇ
0/2 and its codimension 1 faces. Firstly,

there are two types of ends of Mz.W; S Iˇ; ˇ
0/2 in which ŒA� 2M.W; S Iˇ; ˇ0/2 is broken at irreducible

critical points,

MMCz0 .ˇ; ˇ1/i�1 �M
C
z00.W; S Iˇ1; ˇ

0/2�i ;(I)

MCz0 .W; S Iˇ; ˇ
0/2�i � MM

C
z00.ˇ1; ˇ

0/1�i ;(II)

where i D 1; 2. Since

.H



ˇˇ 0
/�1.s/\

[
ˇ1

[
z0ız00Dz

MMz.ˇ; ˇ1/0 �M
C
z00.W; S Iˇ1; ˇ

0/1

D

[
ˇ1

[
z0ız00

MMz0.ˇ; ˇ1/0 � .H



ˇ1ˇ 0
/�1.s/\Mz00.W; S Iˇ1; ˇ

0/1;
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the signed counting of points in @..H 


ˇˇ 0
/�1.s/\MC.W; S Iˇ; ˇ0/2/which are contained in codimension 1

faces of type (I) with i D 1 contributes to the term �h�d.ˇ/; ˇ0i. Next, we consider the case of type (I)
with i D 2. Since

.H



ˇˇ 0
/�1.s/\

[
ˇ1

[
z0ız00Dz

MMz0.ˇ; ˇ1/1 �Mz.W; S Iˇ1; ˇ
0/0

D

[
ˇ1

[
z0ız00Dz

.Hˇˇ1/
�1.s/\ MMz0.ˇ; ˇ1/1 �M.W; S Iˇ1; ˇ

0/0;

the signed counting of points in @..H 


ˇˇ 0
/�1.s/\MC.W; S Iˇ; ˇ0/2/which are contained in codimension 1

faces of type (I) with i D 2 contributes to the term �hmv.ˇ/; ˇ0i. Similarly, a collection of codimension 1
faces of type (II) contributes to the term �hd 0�.ˇ/; ˇ0i if i D 1 and hv0m.ˇ/; ˇ0i if i D 2. Finally, we
consider the ends of Mz.W; S Iˇ; ˇ

0/2 which break at reducibles. Such ends are described as in the poof
of Proposition 3.19 and contribute to the term �h.�2ı1� ı2�1.ˇ/; ˇ0i.

Corollary 3.22 We have . zC ˛� .Y;KI�S /; Qd; �/, where

zC ˛� .Y;KI�S /DC
˛
� .Y;KI�S /˚C

˛
��1.Y;KI�S /˚S ; Qd D

24d 0 0
v �d ı1
ı2 0 0

35 and �D

240 0 0
1 0 0
0 0 0

35
form an S–complex. Moreover , if .W; S/ W .Y;K/! .Y 0; K 0/ is a given negative definite cobordism and
˛ satisfies �.Y;K/.e4�i˛/�.Y 0;K0/.e4�i˛/¤ 0, then

zm.W;S/ D

24m 0 0
� m �2
�1 0 �

35
defines an S–morphism zm.W;S/ W zC ˛� .Y;KI�S /! zC

˛
� .Y

0; K 0I�S /.

Proof The arguments in Section 3.3 and Proposition 3.19 show that . zC ˛� .Y;KI�S /; Qd; �/ is an S–
complex. For a generic perturbation, moduli spaces over the negative definite pair .W; S/ are regular at
reducible points by Proposition 2.24, and hence the counting of reducibles �D �˛.W; S/ is well defined.
The arguments in Section 3.2 and Propositions 3.15, and 3.21 show that zm.W;S/ is an S–morphism.

The S–complex zC ˛� .Y;KI�S / itself depends on the choices of metric and perturbation. However, the
standard argument (see [9, Theorem 3.33]) shows that its S–chain homotopy class is a topological invariant
of pairs .Y;K; p/ with �.Y;K/.e4�i˛/ ¤ 0, where K � Y is an oriented knot in an integer homology
3–sphere and p 2 K is a basepoint. The S–chain homotopy type of an S–complex itself depends on
the choice of basepoint, however, there is a canonical isomorphism between two homology groups of
S–complexes which are defined by different choices of basepoints.

Definition 3.23 We call
h˛S .Y;K/ WD h.

zC ˛� .Y;KI�S //

the Frøyshov invariant for .Y;K/ over S with a holonomy parameter ˛.
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The S–complex zC ˛� .Y;KI�S / admits the following connected sum theorem:

Theorem 3.24 Let .Y;K/ and .Y 0; K 0/ be two oriented knots in integral homology spheres and ˛ be a
holonomy parameter such that �.Y;K/.e4�i˛/�.Y 0;K0/.e4�i˛/¤ 0. Then

zC ˛� .Y #Y 0; K #K 0I�S /' zC
˛
� .Y;KI�S /˝S

zC ˛� .Y
0; K 0I�S /;

where' denotes an S–chain homotopy equivalence.

The strategy of proof (found in the appendix) is essentially the same as [9, Section 6].

The following corollary gives the proof of Theorem1.6:

Corollary 3.25 Let .Y;K/ and .Y 0; K 0/ be knots in integral homology 3–spheres and ˛ be a holonomy
parameter such that �.Y;K/.e4�i˛/�.Y 0;K0/.e4�i˛/¤ 0. Then

h˛S .Y #Y 0; K #K 0/D h˛S .Y;K/C h
˛
S .Y

0; K 0/:

Moreover , if there are two negative definite cobordisms

.W; S/ W .Y;K/! .Y 0; K 0/ and .W 0; S 0/ W .Y 0; K 0/! .Y;K/;

then
h˛S .Y;K/D h

˛
S .Y

0; K 0/:

Proof The first statement follows from Theorem 3.24 and Proposition 3.7. The second follows from
Corollary 3.22 and Proposition 3.6.

The filtered construction can be applied to an S–complex for the coefficient R˛. A fixed lift Q�˛ of a
reducible flat connection can be identified with 1 2R˛ , and R˛ itself can be identified with the set of all
lifts of �˛. We extend the R–grading to zC ˛� .Y;KI�R˛ /. First, we define

degR.ı/D

�
maxfr j ar ¤ 0g if ı ¤ 0;
�1 if ı D 0;

for ıD
P
r ar�

r 2R˛ , ar 2ZŒT �1; T ��. Then for .ˇ; 
; ı/2C ˛� .Y;KI�R˛ /˚C
˛
��1.Y;KI�R˛ /˚R˛ ,

we define
edegR.ˇ; 
; ı/ WDmaxfdegR.ˇ/; degR.
/; degR.ı/g:

Obviously, we have the following proposition:

Proposition 3.26 If we fix a lift of each critical point of the Chern–Simons functional , then the S–
complex zC ˛� .Y;KI�R˛ / admits the .Z�R/–grading.

Note that the R–grading of S–complexes extends to tensor products of S–complexes in a natural way.

The filtered S–complex zC ˛� .Y;KI�R˛ /
ŒR0;R1� for R0; R1 2 .R[ f˙1g/ n C � with R0 < R1 can be

defined as follows. Put zC ˛� .Y;KI�R˛ /
Œ�1;R� WD f.ˇ; 
; ı/ 2 zC ˛� .Y;KI�R˛ / j

edegR.ˇ; 
; ı/ < Rg and

zC ˛� .Y;KI�R˛ /
ŒR0;R1� WD zC ˛� .Y;KI�R˛ /

Œ�1;R1�= zC ˛� .Y;KI�R˛ /
Œ�1;R0�

for R0 <R1.
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3.5 Cobordism maps for immersed surfaces

Let .W; S/ W .Y;K/! .Y 0; S 0/ be a cobordism of pairs where S is possibly immersed. Blowing up all
double points of S , we obtain a cobordism of pairs .W ; S/ where S is an embedded surface.

Definition 3.27 We say .W; S/ is negative definite if its blowup .W ; S/ is negative definite. We define a
cobordism map for a negative definite cobordism .W; S/ where S is possibly immersed surface as

zm.W;S/ WD zm.W ;S/:

We describe the relation between operations on immersed surface cobordisms and induced S–morphisms:

Proposition 3.28 Let S be an integral domain over the ring R˛. Assume that .W; S/ is a negative
definite pair over S where S is a possibly immersed surface. Let S� be a surface obtained from S by a
positive or negative twist move , or a finger move. Then zm.W;S�/ is S–chain homotopic to zm.W;S/ up to
the multiplication of a unit element in S .

The definition of positive twist, negative twist and finger moves can be found in [17].

Proof Since the monotonicity condition cannot be assumed in our setting, we have to modify the
argument in [25].

(i) (positive twist move) Consider the blowup at the positive self-intersection point .W ; S�/ D
.W; S/ # .CP2; S2/, where S2 is an embedded sphere whose homology class is �2e 2 H2.CP2IZ/.
Note that R˛.S3 n S1;SU.2//D f�˛g for ˛ 2

�
0; 1
2

�
. Assume that .W; S�/ has a metric gT such that

.S3; S1/ has a neighborhood which is isometric to Œ�T; T �� .S3; S1/, where T > 0 is large enough.
Let AT be an instanton on f.W; S�/; gT g which is contained in the 0–dimensional moduli space. A1
denotes the limiting instanton of AT with respect to T !1, and A1 and A2 denote its restriction to
components obtained by attaching cylindrical ends on .W; S/ and .CP2; S2/, respectively. Then we have

indDA1 C 1C indDA2 D indDA1 � 0:

The last inequality essentially follows from [27, Corollary 8.4] and our assumption. The index formula
for the closed pair .CP2; S2/ shows that indDA2 � �1 mod 4, and we have indDA2 D �1. By the
perturbation, the instantonA2 on CP2 satisfiesH 1

A2
DH 2

A2
D0, and the gluing along R˛.S3nS1/Df�˛g

is unobstructed. The moduli space M.W; S�Iˇ; ˇ0/0 is diffeomorphic to

M.W; S Iˇ; ˇ0/0 �M
˛.CP2; S2/0:

Note that there is a diffeomorphism M ˛.CP2 nD4; S2 nD2I �˛/0 ŠM ˛.CP2; S2/0 by the removable
singularity theorem. Since indDA2 D�1, A2 is a minimal reducible. Moreover, minimal reducibles on
.CP2; S2/ define elements in M ˛.CP2; S2/0. Counting elements in the moduli space M.W; S Iˇ; ˇ0/0
defined by the limiting metric limT!1 gT contributes the relation

h zm1
.W ;S�/

ˇ; ˇ0i D �˛.CP2; S2/h zm.W;S/ˇ; ˇ
0
i:
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Since

�˛.CP2; S2/D

�
1��4˛�1T 4 if ˛ � 1

4
;

�1�4˛T �4� 1 if ˛ > 1
4
;

�˛.CP2; S2/ is a unit in S . Considering the 1–parameter family of moduli spaces gives an S–chain
homotopy between zm1

.W ;S�/
and zm.W ;S�/. In particular, �˛.CP2; S2/ has the top term 1, and hence the

statement follows.

(ii) (negative twist move) In this case, we change S2 in the above argument to an embedded sphere S0
whose homology class is trivial. Thus we obtain �˛.CP2; S0/D 1.

(iii) (finger move) Consider the decomposition .W; S/D .W1; S1/[ .W2; S2/ where W2 DD4 and
S2 DD

2 tD2. Let .W ; S�/D .W1; S1/[ .W 02; S
0
2/ be the double blowup of .W; S�/. In this case, W2

is a 4–manifold obtained by removing a disk from CP2 # CP2 and S2 is two disjoint disks. Note that
R˛ WDR˛.S3n.S1tS1/;SU.2//Š Œ0; �� for fixed ˛2

�
0; 1
2

�
, the interior of R˛ consists of irreducible flat

connections and two endpoints are reducible. Moreover, the endpoint map r1 WM.W1; S1Iˇ; ˇ0/0!R˛
has its image in the irreducible part of R˛. See [25, Lemma 3.2] for details.

We claim that the counting of the two moduli spaces M.W1; S1Iˇ; ˇ0/0 and M.W; S Iˇ; ˇ0/0 can be
identified up to multiplication by a unit element in S . Firstly, we define an S–morphism zm.W1;S1/ as

hm.W1;S1/ˇ; ˇ
0
i D

X
z

#Mz.W1; S1Iˇ; ˇ
0/��0��.z/T �.z/��0ˇ0;

and similarly for other components in zm.W1;S1/. Here �.z/, �0, �.z/ and �0 are similarly defined as
in Section 2.7. We have to modify the argument in [25] which is related to the unobstructed gluing
along the pair .S3; S1 t S1/. For � 2 R˛ which is in the image of r1, we take its extension A� to
.D4;D2 tD2/. Consider the double .S4; S2 tS2/D .D4;D2 tD2/[.S3;S1/ .D

4;D2 tD2/. Then
indDA�#A� D 2 indDA�C1 by the gluing formula. Consider the pair of connected sum .S4; S2tS2/D

.S4; S2/ #.S3;∅/ .S
4; S2/. Then indDA�#A� D 2 indDA�#A� j.S4;S2/C 3 and the left-hand side is equal

to 1. Hence we have indDA� D 0. Thus the relation

indDA� C dimH 1
� D� dimH 0

A�
C dimH 1

A�
� dimH 2

A�

tells us that H 2
A�
D 0 since dimH 0

A�
D 0 and dimH 1

A�
D 1. Here H 1

� is the cohomology with the local
coefficient system associated with the flat connection �. Thus the Morse–Bott gluing of instantons over
.W1; S1/ and .W2; S2/ is unobstructed. For a metric on .W; S/ with a long neck along the cylinder
Œ0; 1�� .S3; S1 tS1/, we have the diffeomorphism,

M.W; S Iˇ; ˇ0/0 ŠM.W1; S1Iˇ; ˇ
0/0 r�r 0M

˛.D4;D2 tD2/1

where
r WM.W1; S1Iˇ; ˇ

0/0!R˛
and

r 0 WM ˛.D4;D2 tD2/1!R˛
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are restriction maps. For simplicity, we consider the case ˛ � 1
4

. Since flat connections on .S3; S1tS1/
uniquely extend to .D4;D2 tD2/, the induced cobordism map has the form

zm.W;S/ D

�
1C

X
k>0

ckZ
�k

�
zm.W1;S1/;

where ck 2 Z and Z D �1�4˛T �4. Thus zm.W;S/ and zm.W1;S1/ differ by the multiplication of a unit
element in S .

Assume that the cobordism of pairs .W ; S�/ is equipped with a metric such that .W ; S�/ has a long
neck along .S3; S1 tS1/. Then the moduli space M.W ; S�Iˇ; ˇ0/0 decomposes into a union of fiber
products

M.W1; S1; ˇ; ˇ
0/d r1�r2M

˛.W 02IS
0
2/d 0

with d C d 0 D 1, where

r1 WM.W1; S1; ˇ; ˇ
0/d !R˛ and r2 WM

˛.W 02; S
0
2/d 0 !R˛

are restriction maps. Since d 0 � 1 mod 4 by the index formula, we have d D 0 and d 0 D 1. Thus there is
the coefficient c 2S such that zm.W ;S�/ D c zm.W;S/. Consider the special case of a finger move which is
the composition of one positive twist move and one negative twist move. In this case, the coefficient c
turns out to be 1��4˛�1T 4 for ˛ � 1

4
and �1�4˛T �4� 1 for ˛ > 1

4
by the argument above. Finally, we

conclude that there is a unit element c 2S such that zm.W;S�/ and c zm.W;S/ are S–chain homotopic.

4 Nondegeneracy of the representation variety

In this section we will discuss conjugacy classes of representations

� W �1.Y nK/! SU.2/;

with the condition

�.�K/�

�
e2�i˛ 0

0 e�2�i˛

�
:

We write Œ�� for its conjugacy class to distinct elements in Hom.�1.Y nK/;SU.2// and R.Y nK;SU.2//.
Firstly, we introduce the method of taking cyclic branched coverings. Considering a knot in an integral
homology 3–sphere .Y;K/, we can take a cyclic branched covering zYr.K/ over Y branched along K. Let
N.K/ be a tubular neighborhood of K � Y , and V D Y n int.N.K// be its exterior. zV denotes the r–fold
unbranched covering over V with �1. zV / being a kernel of �1.Y nK/!H1.Y nK;Z/!Z=rZ. N.K/
and zV have a torus boundary, and let h W @N.K/! @ zV be a gluing map which sends �K a meridian of K
to its lift Q�K . Then the r–fold cyclic branched covering over Y is defined by

zYr.K/DN.K/[h zV :
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Let � W zYr! zYr be a covering transformation. We define an induced action of �1. zYr ; p/ with a basepoint p
missing the fixed point set of the �–action on zYr . For this, we fix another basepoint q inside the fixed point
set and a path connecting p and q. Such a choice of path defines a (noncanonical) isomorphism between
�1. zYr ; p/ and �1. zYr ; q/. Since � induces a natural action on �1. zYr ; q/, we define an induced action ��
on �1. zYr ; p/ via the above isomorphism. The �–action induces the action �� on Hom.�1. zYr ; p/;SO.3//
by ��.�/ D � ı ��. This also defines an action on R�. zYr ;SO.3// by ��Œ�� D Œ��.�/�. We define the
following subsets:

R�;� . zYr ;SO.3//D fŒ�� 2R�. zYr ;SO.3// j ��Œ��D Œ��g;

R�;� . zY ;SU.2//D fŒ�� 2R�. zY ;SU.2// j AdŒ�� 2R�;� . zY ;SO.3//g:

Since a different choice of basepoints of fundamental groups induces a canonical isomorphism on
R�. zYr ;SO.3//, we may omit the choice of basepoints and a path between them from the notation here.

The aim of Section 4.1 is giving the construction of the lifting map

… W
G

1�l�r�1

R�l=.2r/.Y nK;SU.2//!R�;� . zYr ;SU.2//;

which sends singular flat connections to nonsingular flat connections on a cyclic branched covering of the
knot K � Y . We will see that the lifting map … satisfies the following proposition.

Proposition 4.1 Assume that the r–fold cyclic branched covering zYr of a knot K in an integral homology
3–sphere Y is an integral homology 3–sphere. Then the lifting map … gives a two-to-one correspondence

… W
G

1�l�r�1

R�l=.2r/.Y nK;SU.2//!R�;� . zYr ;SU.2//:

This is a generalization of the argument in [2].

LetX.K/ be the complement of a tubular neighborhood of the knotK�S3. Its boundary @X.K/ is a torus.
In Section 4.2, we will show that the restriction map r WR�.S3 nTp;q;SU.2//!R.@X.Tp;q/;SU.2// is
a smooth immersion of a 1–manifold without any perturbation of flat connections, using the setting of
gauge theory by Herald [22] and computations of the group cohomology of �1. In Section 4.3, we will
give a proof of Theorem 1.9 using the results in Section 4.1.

4.1 The construction of the lifting map

We assign the second Stiefel–Whitney class w 2H 2.Y;Z2/ to Œ�� 2R.Y;SO.3//. We can construct a
flat bundle E D zY �� R3 from an SO.3/–representation � and define w.Œ��/ WD w2.E/ 2 H 2.Y;Z2/,
where w2.E/ is the second Stiefel–Whitney class of E. If w.�/D 0 then the SO.3/–bundle E lifts to an
SU.2/–bundle F . Let P and Q be the corresponding principal bundles of E and F , respectively. The
natural map p WQ! P is a fiberwise double covering map. Let �� be a connection form on P which
corresponds to the flat connection �. Then p��� defines a flat connection on Q. Thus each element of
R.Y;SO.3// lifts to R.Y;SU.2// if its second Stiefel–Whitney class vanishes.

Algebraic & Geometric Topology, Volume 24 (2024)



5088 Hayato Imori

Proposition 4.2 Let X be Y or Y nK. Then there is an action of H 1.X;Z2/ on R.X;SU.2// and the
map Ad WR.X;SU.2//!R0.X;SO.3// induces a bijection

R.X;SU.2//=H 1.X;Z2/ŠR0.X;SO.3//:

Here R0.X;SO.3// denotes the set of conjugacy classes of SO.3/–representations whose second Stiefel–
Whitney class vanishes.

Proof Let � W �1.X/! SO.3/ be a representation whose second Stiefel–Whitney class vanishes and
Q� W �1.X/! SU.2/ be its SU.2/–lift. Consider another lift Q�0 W �1.X/! SU.2/. Then there is a map
� W �1.X/! f˙1g such that Q�0.g/ D �.g/ Q�.g/ for any g 2 �1.X/. We can directly check that � is
a homomorphism and determine an element � 2 Hom.�1.X/;Z2/ D H 1.X;Z2/. Conversely, two
SU.2/–representation �1; �2 W �.X/! SU.2/ such that there exists � 2 Hom.�1.X/;Z2/ and satisfying
�1.g/D �.g/�2.g/ for any g 2 �1.X/ induces the same SO.3/–representation. We define an action of
H 1.X;Z2/ on Hom.�1.X/;SU.2// by � 7! � � � , where .� � �/.g/ D �.g/�.g/ for g 2 �1.X/. The
action of � commutes with the conjugacy action and descends to R.X;SU.2//.

Note that the action of H 1.Y nK;Z2/ coincides with the flip symmetry. From Proposition 4.2, we get
the following corollary:

Corollary 4.3 For an integral homology 3–sphere Y , all elements in R.Y;SO.3// have a unique lift in
R.Y;SU.2//.

Proof Since H 2.Y;Z2/D 0, the second Stiefel–Whitney class of Œ�� 2 R.Y;SO.3// vanishes, and �
lifts to an SU.2/–representation. By Proposition 4.2, this lift is unique since H 1.Y;Z2/D 0.

If Œ�� 2R.Y nK;SU.2// satisfies

�.�K/�

�
e2�i˛ 0

0 e�2�i˛;

�
then the induced SO.3/–representation satisfies

(4-1) Ad �.�K/�

241 0 0

0 cos.4�˛/ �sin.4�˛/
0 sin.4�˛/ cos.4�˛/

35 :
Let R˛.Y n K;SO.3// be a subset of R.Y n K;SO.3// whose elements are represented by SO.3/–
representations of �1.Y nK/ such that their images of �K are conjugate to the right-hand side of (4-1).

Before proceeding with the argument, we introduce the orbifold fundamental group of Y nK. (It appears
in [2; 3], for example.)

Definition 4.4 The orbifold fundamental group of Y nK is �V1 .Y;KI r/ WD �1.Y nK/=h�
r
Ki.

Proposition 4.5 The orbifold fundamental group �V1 .Y;KI r/ admits the split short exact sequence

1! �1. zYr/! �V1 .Y;KI r/! Z=r! 1:
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Proof Let zK � zYr be the branched locus. Then there is the exact sequence

1! �1. zYr n zK/! �1.Y nK/! Z=r! 1:

since zYr n zK! Y nK is a regular covering. Applying the van Kampen theorem to zYr n intN. zK/[N. zK/,
we have �1. zYr/D �1. zYr n zK/=h� zKi. Since �1. zYr n zK/! �1.Y nK/ maps � zK to �rK , this induces 1!
�1. zYr/!�V1 .Y;KI r/. Since �1.Y nK/!Z=r maps �rK to 1, this induces �V1 .Y;KI r/!Z=r which
sends �K to a generator of Z=r . The spitting Z=r! �V1 .Y;KI r/ sends a generator of Z=r to �K .

Lemma 4.6 There is a natural one-to-one correspondence

R�.�V1 .Y;KI r/;SO.3//Š
r�1G
lD1

R�l=.2r/.Y nK;SO.3//:

Proof Let � W �1.Y nK/! SO.3/ be a representation with Œ�� 2R�
l=.2r/

.Y nK;SO.3//. Then it factors
through �V1 .Y;KI r/. Conversely, any representation � W �V1 .Y;KI r/! SO.3/ satisfies

�.�K/�

241 0 0

0 cos.4�˛/ �sin.4�˛/
0 sin.4�˛/ cos.4�˛/

35 ;
where ˛ D l=.2r/ for some 0 < l < r . Thus � defines the desired representation of �1.Y nK/.

Proposition 4.7 There is a bijection
r�1G
lD1

R�l=.2r/.Y nK;SO.3//ŠR�;� . zYr ;SO.3//:

Proof Since there is the natural one-to-one correspondence in Lemma 4.6, we only have to construct

R�.�V1 .Y;KI r/;SO.3// Š�!R�;� . zYr ;SO.3//:

This is induced from �1. zYr/
i
�! �V1 .Y;KI r/ in the short exact sequence in Proposition 4.5. We claim that

if � W �V1 .Y;KI r/! SO.3/ is irreducible then � ı i is also irreducible. Since zYr is an integral homology
sphere, any reducible SO.3/–representation of �1. zYr/ is the trivial representation. If �ı i is trivial, then �
factors through �V1 .Y;KI r/=i.�1. zYr//Š Z=r , and hence is reducible. This is a contradiction.

We will construct the inverse correspondence of the above. Let � be an SO.3/–representation of �1. zYr/
which represents an element in R�;� . zYr ;SO.3//. Since the conjugacy class of � is fixed by the induced
action of � , there is a matrix A 2 SO.3/ such that

���.u/D A�.u/A�1

for any u 2 �1. zYr/. A is uniquely determined since � is irreducible and has the trivial stabilizer f1g in
SO.3/, and A is conjugate to the matrix of the form

(4-2)

241 0 0

0 cos.2�l=r/ �sin.2�l=r/
0 sin.2�l=r/ cos.2�l=r/

35 :
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Since � has order r , we get the relation

�.u/D Ar�.u/A�r

for any u 2 �1. zYr/, and we get Ar D 1 using the irreducibility of � . Thus we can assign a unique order-r
element A� 2 SO.3/ for each � . Finally, we assign a representation

(4-3) N� W �V1 .Y;KI r/Š �1.
zYr/ÌZ=r! SO.3/; .u; tk/ 7! �.u/ �Ak� ;

to a given representation � , where t 2 Z=r is a generator. This satisfies N�.�K/ D A� . The above
construction gives the inverse of R�.�V1 .Y;KI r/;SO.3// 3 Œ�� 7! Œ� ı i � 2R�;� . zYr ;SO.3//.

We write

…0 W

r�1G
lD1

R�l=.2r/.Y nK;SO.3// Š�!R�;� . zYr ;SO.3//

for the bijection constructed above.

Definition 4.8 Let K be a knot in an integral homology 3–sphere Y , and assume that zYr is also an
integral homology 3–sphere. Then … W

Fr�1
lD1R

�
l=.2r/

.Y nK;SU.2//!R�;� . zYr ;SU.2// is given by the
following composition:

r�1G
lD1

R�l=.2r/.Y nK;SU.2// Ad
�!

r�1G
lD1

R�l=.2r/.Y nK;SO.3// …
0

��!R�;� . zYr ;SO.3// Ad�1
���!R�;� . zYr ;SU.2//:

We call ….Œ��/ a lift of Œ��.

An SU.2/–representation that factors through Pin.2/ subgroups is called a binary dihedral representation.
An SO.3/–representation that factors through O.2/ subgroups is called a dihedral representation. Note
that O.2/ is embedded in SO.3/ as �

A 0

0 detA

�
2 SO.3/;

where A2O.2/. The adjoint representation of a binary dihedral representation is a dihedral representation.
In the proof of Proposition 4.1, which is an important property of the lift …, we use the following lemma:

Lemma 4.9 [39] The fixed point set of the H 1.Y nK;Z2/–action on R.Y nK;SU.2// consists of
conjugacy classes of binary dihedral representations.

Proof Let Œ�� 2R.Y nK;SU.2// be a fixed point of the action of H 1.Y nK;Z2/. We regard this as a
representation � W �1.Y nK/! SU.2/ such that there exists A 2 SU.2/ and .� � �/.u/D A�.u/A�1 for
any u 2 �1.Y nK/. Here � 2H 1.Y nK/ is a generator. Since � has order 2, �.u/D A2�.u/A�2. If
� is reducible then its image is contained in a circle in SU.2/ and is a binary dihedral representation.
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Assume that � is irreducible and consider two cases, A2 D 1 and A2 D �1. We regard SU.2/ as the
unit sphere in the quaternions. Then Pin.2/ D S1 [ jS1. If A2 D 1 then A D ˙1 and ��.u/ D �.u/
for some u 2 �1.Y nK/. This cannot happen in SU.2/. If A2 D �1 then we can assume that A D i
after a conjugation, and then �.u/ D ˙i�.u/i�1 for any u 2 �1.Y n K/. If �.u/ D i�.u/i�1 then
�.u/ 2 S1 D faC big. If �.u/ D �i�.u/i�1 then �.u/ 2 jS1 D fcj C dkg. Thus the image of � is
contained in S1[ jS1.

Lemma 4.10 Let r 2 2Z. If � W �V1 .Y;KI r/! SO.3/ is a dihedral representation , then its pullback
�1. zYr/! SO.3/ by the orbifold exact sequence in Proposition 4.5 is a reducible representation.

Proof Since � factors through O.2/, we have a representation �0 W �V1 .Y;KI r/! O.2/. Composing
with det W O.2/! Z=2, we have a representation det ı�0 W �V1 .Y;KI r/! Z=2. Since det ı�0 factors
through the abelianization �V1 .Y;KI r/D �1.Y nK/=h�K

ri
Ab
�! ZŒ�K �=h�Kri, we have the diagram

�1. zYr/
i
// �V1 .Y;KI r/

�0
//

Ab

%%

O.2/
det
// Z=2

Z=r

<<

where �1. zYr/
i
�! �V1 .Y;KI r/ is the inclusion map in the orbifold exact sequence. By construction, Ab

coincides with the map �V1 .Y;KI r/! Z=r in the orbifold exact sequence. Thus Ab ıi is the trivial
representation, and hence det ı�0 ı i is also the trivial representation. This implies that the image of �0 ı i
is contained in SO.2/. Thus � ı i W �1. zYr/! SO.3/ factors through SO.2/, and this means that � ı i
is reducible.

The following proposition gives the proof of Proposition 4.1:

Proposition 4.11 Let K � Y be a knot in an integral homology 3–sphere whose r–fold cyclic branched
covering zYr is also an integral homology 3–sphere. For each Œ�� 2R�;� . zY ;SU.2//, …�1.Œ��/ consists of
two elements which correspond to each other by the flip symmetry.

Proof Applying Proposition 4.2 to the 3–manifold Y nK, we have a bijection

(4-4) R.Y nK;SU.2//=H 1.Y nK;Z2/ŠR.Y nK;SO.3//:

Note that R.Y nK;SO.3//DR0.Y nK;SO.3// sinceH 2.Y nK;Z2/D0. We restrict this correspondence
to elements with holonomy parameter ˛ D l=.2r/ for l D 1; : : : ; r � 1. Note that H 1.Y nK;Z2/ acts on
R�˛.Y nK;SU.2//[R�

1=2�˛
.Y nK;SU.2// since the flip symmetry changes the holonomy parameter as

˛ 7! 1
2
�˛, and the bijection (4-4) is restricted to

(4-5)
� r�1G
lD1

R�l=.2r/.Y nK;SU.2//
�.

H 1.Y nK;Z2/Š
r�1G
lD1

R�l=.2r/.Y nK;SO.3//:
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Fix Œ�� 2R�;� . zYr ;SU.2//. The compositionG
0<l<r

R�l=.2r/.Y nK;SO.3// …
0

��!R�;� . zYr ;SO.3// Ad�1
���!R�;� . zYr ;SU.2//

is bijective. Thus we have a unique element Œ�0� 2
F
0<l<r R

�
l=.2r/

.Y nK;SO.3// which corresponds
to Œ��. …�1.Œ��/ is the inverse image of Œ�0� by the map

r�1G
lD1

R�l=.2r/.Y nK;SU.2// Ad
�!

r�1G
lD1

R�l=.2r/.Y nK;SO.3//:

Finally, we prove that Ad�1.Œ�0�/ consists of two elements. Let Œ�� 2 Ad�1.Œ�0�/ be an element
contained in R�

l=.2r/
.Y n K;SU.2//. If r is odd then l=.2r/ ¤ 1

2
� l=.2r/, and thus Œ�� ¤ �Œ�� inF

0<l<r R
�
l=.2r/

.Y nK;SU.2// since � and �� have different holonomy parameters, where � is a generator
of H 1.Y nK;Z2/ŠZ2. This means that the H 1.Y nK;Z2/–action on

S
0<l<r Rl=.2r/.Y nK;SU.2//

is free and Ad�1.Œ��/ consists of two elements. If r is even and 2l ¤ r , then Ad�1.Œ��/ consists of two
elements by the same reason. If 2l D r thenH 1.Y nK;Z2/ acts on R�

1=4
.Y nK;SU.2//. The fixed points

of the H 1.Y nK;Z2/–action on R�
1=4
.Y nK;SU.2// are binary dihedral representations by Lemma 4.9.

We show that …�1.Œ��/ does not contain a binary dihedral representation. Let � 0 W �1.Y nK/! SU.2/
be a binary dihedral representation with holonomy parameter ˛ D 1

4
. Then Ad � 0 defines a dihedral

representation �V1 .Y;KI r/! SO.3/. Then the induced representation Ad � 0 ı i W �1. zYr/! SO.3/ is
reducible by Lemma 4.10 and its SU.2/–lift is also reducible. This means that …�1.Œ��/ does not contain
any binary dihedral representation. Thus H 1.Y nK;Z2/ acts freely on …�1.Œ��/, and hence …�1.Œ��/
consists of two elements which are related by the flip symmetry.

4.2 Nondegeneracy results

The purpose of this subsection is to associate the nondegeneracy property of the critical point set C
of the singular Chern–Simons functional and the transversality of the moduli space of irreducible flat
connections R�.Y nK;SU.2//. Let us recall the setting of the gauge theory used in [22; 23] to deal with
the “pillowcase picture” of perturbed flat connections. In this subsection, Y denotes a (general) oriented
closed 3–manifold and K is a knot in Y . Let E be an SU.2/–bundle over X D Y nN.K/. We fix a
Riemannian metric on X . We introduce the space of SU.2/–connections over X and @X D T 2 as follows:

AX D L22.X; su.2/˝ƒ
1/; AT 2 D L

2
3=2.T

2; su.2/˝ƒ1/:

Here we fix a trivialization of the SU.2/–bundle over X and @X , and identify the trivial connection to
zero elements in each functional space. We also introduce spaces of gauge transformations:

GX D fg 2 Aut.E/ j g 2 L23g; GT 2 D fg 2 Aut.EjT 2/ j g 2 L
2
5=2g:

The action of gauge transformations on connections and su.2/–valued p–forms are given in obvious
ways. GX and GT 2 have Banach Lie group structures and act smoothly on AX and AT 2 , respectively. A
connection whose stabilizer of gauge transformations is f˙1g is called irreducible. A�X denotes the subset
of irreducible connections.
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We introduce the following spaces of p–forms with boundary conditions:

�p� .X; su.2//D f! 2�
p.X; su.2// j �!j@X D 0g; �p� .X; su.2//D f! 2�

p.X; su.2// j !j@X D 0g:

We define the L2–inner product on �p.X; su.2// by the formula

ha; bi D �

Z
X

tr.a^�b/:

For each A 2AX , the slice of the action of GX on AX is given by

XA D ACKer d�A \L
2
2�

1
�.X; su.2//:

For each flat connection A 2A, the space of harmonic p–forms is given by

Hp.X I adA/D f! 2�p� .X; su.2// j dA! D 0; d
�
A! D 0g;

Hp.X; @X I adA/D f! 2�p� .X; su.2// j dA! D 0; d
�
A! D 0g:

The holonomy perturbation h defines a compact perturbation term Vh WAX!�1.X; su.2// and a perturbed
flat connection can be defined as a solution of the equation

(4-6) �FACVh D 0:

R�;h.X;SU.2// denotes gauge equivalence classes of irreducible solutions for (4-6). Consider the
restriction map r WR�;h.X;SU.2//!R.T 2;SU.2//. For a generic perturbation h, R�;h.X;SU.2// is a
smooth 1–manifold. Moreover, the restriction map r is a smooth immersion of R�;h.X;SU.2// to the
smooth part of the pillowcase. The detailed argument is contained in [22]. Put

S˛ WD f� 2R.T 2;SU.2// j tr �.�K/D 2 cos.2�i˛/g:

This is a vertical slice in the pillowcase. Note that R˛.X;SU.2// D r�1.S˛/\R.X;SU.2// and we
define R�;h˛ .X;SU.2// WD r�1.S˛/\R�;h.X;SU.2//.

Proposition 4.12 Let K � Y be a knot in a closed 3–manifold , and ˛ be an arbitrary holonomy
parameter in

�
0; 1
2

�
. Assume that Œ�� 2 R�˛.Y n K;SU.2// is a nondegenerate critical point. We

also assume that the image of R�.Y nK;SU.2// by the restriction map r is contained in the smooth
part of the pillowcase. Then R�.Y n K;SU.2// is smooth near Œ��. Moreover , the restriction map
r WR�.Y nK;SU.2//!R.T 2;SU.2// is an immersion to the smooth part of the pillowcase at Œ��.

For the proof of Proposition 4.12, we need gauge theory on 3–manifolds with the boundary described above.

Lemma 4.13 Let B0 be an abelian SU.2/–flat connection on a torus T 2. Then the su.2/–valued harmonic
form h 2H1.T 2I adB0/ has the diagonal form

hD

�
ai 0

0 �ai

�
;

where a 2�1.T 2/.
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Proof Since B0 is an abelian flat connection, it defines a splitting of the SU.2/–bundle E over T 2 into
EDL˚L�, whereL is the trivial line bundle. Then the adjoint bundle ofE has a splitting gE DR˚L˝2.
Let dB0 D d ˚ dC be the covariant derivative induced on �p.T 2; gE /D�p.T 2;R/˚�p.T 2; L˝2/.
Any section ! 2�p.T 2; gE / has the form

! D

�
ai b

�Nb �ai

�
;

where a 2 �p.T 2/ and b 2 �p.T 2; L˝2/. The space of harmonic forms Hp.T 2I adB0/ splits into
Hp.T 2IR/˚Hp.T 2IL˝2/ with respect to the decomposition of .�p.T 2; gE /; dB0/. Let us compute
H1.T 2I adB0/ usingH 1.�1.T

2/I ad �/, where � is an abelian SU.2/–representation corresponding toB0.
Let � and � be canonical generators of �1.T 2/. Then the space of 1–cocycles consists of the element

 W �1.T

2/! su.2/ŠR3 such that

.1�Ad�.�//
.�/D .1�Ad�.�//
.�/;

since � and � commute. Let F WR3˚R3!R2 be a linear map given by

F.x1; x2/D .1�A�/x1� .1�A�/x2;

where A� WD Ad�.�/ and A� WD Ad�.�/. Since A� and A� are SO.3/–linear transformations acting
on R3, they have 1–dimensional axes of rotation R� and R�, respectively. Let C� and C� be their
orthogonal complement spaces. Then Im.1 � A�/ D C� and Im.1 � A�/ D C�, and hence F is
surjective. Thus the space of 1–cocycles is isomorphic to R4. On the other hand, the space of 1–
coboundaries is spanned by Im.1�Ad�.g// for all g 2 �1.T 2/, and this is 2–dimensional since � is
reducible. Thus H1.T 2I adB0/ Š H 1.�1.T

2/I ad �/ Š R2. Therefore H 1.T 2IL˝2/ vanishes since
H1.T 2IR/ Š H 1.T 2IR/ Š R2. This means that if ! 2 �1.T 2; gE / is a harmonic form then b D 0.
Thus h 2H1.T 2I adB0/ has only diagonal components.

Since B0 is a reducible connection with U.1/–stabilizer, H0.T 2I adB0/ D Ker dB0 Š R. We fix a
generator 
0 2H0.T 2I adB0/.

Lemma 4.14 There is a GT 2–invariant neighborhood NB0 of B0 2 AT 2 and GT 2–invariant map
� WNB0 !�0.T 2; su.2// such that

(1) �.B0/D 
0,

(2)
R
T 2 tr.FB ^ �.B//D 0 for all B 2NB0 .

Proof Take a small neighborhood of B0 in the slice of the action of GT 2 on AT 2 as

XB0;� D fB0C b j b 2 L
2
3=2�

1.T 2; su.2//; d�B0b D 0; kbkL23=2
< �g;

where � > 0 is small enough. Firstly, we define an �0.T 2; su.2//–valued map � on the slice XB0;� and
then extend it to a gauge-invariant neighborhood. For B D B0C b 2XB0;�, define

�.B/ WD 
0:
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Then Z
T 2

tr.FB ^ 
0/D
Z
T 2

tr..dB0bC b ^ b/^ 
0/D
Z
T 2

tr.dB0b ^ 
0/C
Z
T 2

tr.b ^ b ^ 
0/:

Using Stokes’ theorem and the condition dB0
0 D 0,Z
T 2

tr.dB0b ^ 
0/D
Z
T 2
d tr.b ^ 
0/D 0:

Thus

(4-7)
Z
T 2

tr.FB ^ �.B//D
Z
T 2

tr.b ^ b ^ 
0/:

Since d�B0b D 0, we have h 2H1.T 2I adB0/ and ! 2�2.T 2; su.2// such that

(4-8) b D hC d�B0!:

Using (4-7) and (4-8),Z
T 2

tr.FB ^ �.B//

D

Z
T 2

trŒ.hC d�B0!/^ .hC d
�
B0
!/^ 
0�

D

Z
T 2

tr.h^ h^ 
0/C
Z
T 2

tr.d�B0! ^ h^ 
0/C
Z
T 2

tr.h^ d�B0! ^ 
0/C
Z
T 2

tr.d�B0! ^ d
�
B0
! ^ 
0/:

Note that,Z
T 2

tr.�dB0 �! ^ h^ 
0/D
Z
T 2

tr.dB0 �! ^�h^ 
0/

D�

Z
T 2

tr.�! ^ dB0 � h^ 
0/C
Z
T 2

tr.�! ^�h^ dB0
0/D 0:

Here we use Stokes’ theorem at the second equality. Similarly,Z
T 2

tr.h^ d�B0! ^ 
0/D�
Z
T 2

tr.dB0 � h^�! ^ 
0/�
Z
T 2

tr.�h^�! ^ dB0
0/D 0;Z
T 2

tr.d�B0! ^ d
�
B0
! ^ 
0/D�

Z
T 2

tr.d2B0 �! ^�! ^ 
0/�
Z
T 2

tr.dB0 �! ^�! ^ dB0
0/D 0:

Hence Z
T 2

tr.FB ^ �.B//D
Z
T 2

tr.h^ h^ 
0/:

Since 
0 2H0.T 2I adB0/ is an element of the Lie algebra of the stabilizer of B0, Stab.B0/D U.1/ and
it has the pointwise form


0.x/D

�
ri 0

0 �ri

�
2 su.2/;

where r 2R. Similarly, h 2H1.T 2I adB0/ has the form

h.x/D

�
ai 0

0 �ai

�
by Lemma 4.13. By the pointwise computation of tr.h^ h^ 
0/, we obtain

tr.h^ h^ 
0/.x/D tr
��

ai0

0� ai

�
^

�
ai0

0� ai

�
^

�
ri0

0� ri

��
D tr

�
�ra^ ai0

0ra^ ai

�
D 0:
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Thus � W XB0;� ! �0.T 2; su.2// satisfies
R
T 2 tr.FB ^ �.B// D 0 for all B 2 XB0;�. Define NB0 WD

GT 2 �XB0;� and extend � to NB0 in a gauge-equivariant way (ie �.g�.B//D g�1�.B/g).

Let A0 be a flat irreducible SU.2/–connection on X . We can assume that A0jT 2 is a noncentral flat
connection on T 2 by the assumption of Proposition 4.12, and we write A0jT 2 D B0. Let UA0 be a gauge
invariant neighborhood of A0 in A�X . We define Q� W UA0 ! �0.X; su.2// as a smooth extension of �
which satisfies

Q�.A/j@X D �.Aj@X /:

Here we assume that the extension Q� satisfies dA0 Q�.A0/ 2 H1.X; @X I adA0/; this is possible by the
following lemma:

Lemma 4.15 For � 2H0.T 2I adB0/ there is an extension Q� on X such that dA0 Q� 2H1.X; @X I adA0/.

Proof For � 2H0.T 2; adB0/, we take an arbitrary smooth extension Q� to X . Then

dA0 Q� 2 Ker dA0 j�1� .X;su.2// D dA0�
0
� .X; su.2//˚H1.X; @X I adA0/:

Let dA0 Q� be the dA0�
0
� .X; su.2//–component of dA0 Q�. Then dA0. Q� � Q�/ 2 H1.X; @X I adA0/ with

. Q�� Q�/j@X D �. Hence we can choose an extension Q� of � as dA0 Q� 2H1.X; @X I adA0/.

We define a map
ˆ W UA0 �L

2
2�

0
� .X; su.2//�R! L21.X; su.2/˝ƒ

1/

by ˆ.A; �; t/D �FAC dA�C tdA Q�.A/. The linearized operator of ˆ at .A0; 0; 0/ has the form

Dˆ.A0;0;0/.a; �; t/D �dA0aC dA0�C tdA0 Q�.A0/:

CokerDˆ.A0;0;0/ is H1.X; @X I adA0/\ .dA0 Q�.A0//
? by the Hodge decomposition.

Lemma 4.16 ˆ.A; �; t/D 0 if only if FA D 0, � D 0 and t D 0.

Proof Assume that ˆ.A; �; t/D 0. Then

kFAk
2
L2
D�

Z
X

tr.FA ^�FA/D
Z
X

tr.FA ^ dA�/C t
Z
X

tr.FA ^ dA Q�.A//:

Using Stokes’ theorem and the Bianchi identity,Z
X

tr.FA ^ dA�/D
Z
X

d tr.FA ^ �/�
Z
X

tr.dAFA ^ �/D
Z
T 2

tr.FAj
T2
^ �jT 2/:

The last term vanishes by the boundary condition on �. Consider the remaining term

(4-9)
Z
X

tr.FA ^ dA Q�.A//:

Using Stokes’ theorem and the Bianchi identity, this is equal toZ
T 2

tr.FB ^ �.B//;
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where B D AjT 2 . By Lemma 4.14, this is equal to zero and we have FA D 0. Thus 0 D �FA D
�dA.� C t Q�.A// by our assumption. Since A is an irreducible connection, dA has trivial kernel and
� D�t Q�.A/. Restricting this to the boundary T 2, we have the relation t�.B/D 0. Since �.B/D 
0 is a
generator of H0.T 2I adB0/, we have �.B/¤ 0. Hence t D 0 and � D 0 follow.

Conversely, if we assume that FA D 0, � D 0 and t D 0, then clearly ˆ.A; �; t/D 0.

Lemma 4.16 means that the two equations FA D 0 and ˆ.A; �; t/ D 0 have the same zero set near an
irreducible flat connection A0. Hence ˆD 0 defines the space of flat connections near A0.

Proof of Proposition 4.12 Natural embeddings �K ,! @X ,!X induce maps on cohomology groups
with a local coefficient system,

(4-10) H 1.X I ad �/ j�!H 1.@X I ad �/!H 1.�K I ad �/:

The nondegeneracy condition on Œ�� is equivalent to the condition that the composition (4-10) is injective
by Proposition 2.3. This implies that j is also injective. Thus the restriction map R�.X;SU.2//!
R.T 2;SU.2// to the pillowcase is an immersion at Œ�� if we show that R�.X;SU.2// has a smooth
manifold structure near Œ��. Next, we show that R�.X;SU.2// is a smooth manifold near Œ��. Consider
the long exact sequence of cohomology with local coefficient associated to the pair .X; @X/,

� � � !H 0.@X I ad �/ @�!H 1.X; @X I ad �/!H 1.X I ad �/ j�!H 1.@X I ad �/! � � � :

The cokernel of the connecting homomorphism @ is zero since j is injective. Using the harmonic
representative of the cohomology with local coefficient, the connecting homomorphism @ is given
by 
0 7! dA0 Q�.A0/, where A0 is an SU.2/–flat connection corresponding to �. Thus Coker @ D
H1.X; @X I adA0/ \ .dA0 Q�.A0//

? D 0. This means that the equation ˆ.A; �; t/ D 0 has a surjective
linearization map at .A0; 0; 0/. Thus there is a neighborhood VA0 of A0 2ˆ�1.0/ which has a smooth
structure by the implicit function theorem. Since A0 is irreducible, the quotient singularity by gauge
transformations GX does not occur. Thus R�.X;SU.2// has a smooth manifold structure near Œ��.

By Proposition 2.3, the following shows that the singular Chern–Simons functional for a .p; q/–torus
knot has nondegenerate irreducible critical points without perturbations:

Proposition 4.17 For any Œ�� 2R�.S3 nTp;q;SU.2//, the natural map

(4-11) H 1.S3 nTp;qI ad �/!H 1.�Tp;q I ad �/

is injective.

Proof Firstly, we compute H 1.S3 nTp;qI ad �/ using the group cohomology of �1.Y nK/. Since the
fundamental group �1.S3nTp;q/ has a presentation hx; y jxpDyqi, 1–cocycles 
 W�1.S3nTp;q/! su.2/

satisfy the relation

.I CAxC � � �CA
p�1
x /
.x/D .I CAy C � � �CA

q�1
y /
.y/
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where Ax WDAd�.x/ and Ay WDAd�.y/. Since Ax and Ay are SO.3/–linear transformation acting on R3,
they have 1–dimensional axis of rotation Rx and Ry , respectively. Let Cx and Cy denote their orthogonal
complement spaces. Then Im.I � Ax/ D Cx and Im.I � Ay/ D Cy . Note that �.x/ and �.y/ are
contained in different great circles in SU.2/Š S3 since � is an irreducible SU.2/–representation. Thus
� satisfies �.x/p D �.y/q D˙1 and hence Apx D A

q
y D I . Thus Ker.I CAxC � � �CA

p�1
x /DCx and

Ker.I CAy C � � �CA
q�1
y /DCy . Since � is irreducible, Rx and Ry are independent in R3. Consider a

linear map L WR3˚R3!R3 defined by

L.x1; x2/D .I CAxC � � �CA
p�1
x /x1� .I CAy C � � �CA

q�1
y /x2:

This has rank 2, and the space of 1–cocycles has dimension 4. On the other hand, the space of 1–
coboundaries is a subspace of R3 spanned by Im.I �Ad�.g// for all g 2�1.S3nTp;q/, and this coincides
with R3 itself. Therefore H 1.S3 nTp;qI ad �/ŠR4=R3 ŠR.

Next we compute H 1.�Tp;q I ad �/. Here the space of 1–cocycles is isomorphic to R3 since its elements
are determined by choosing 
.�/ 2 su.2/ŠR3. The space of 1–coboundaries is Im.I �Ad�.�//ŠC.
Thus H 1.�I ad �/ŠR3=C ŠR.

Finally, we prove that the map (4-11) is surjective. If 
 W�1.S3nTp;q/!su.2/ represents a nonzero element
inH 1.S3nTp;qI ad �/ then 
.g/… Im.I�Ad�.g// for any g2�1.S3nTp;q/. Thus 
.�/… Im.I�Ad�.�//
for the meridian � 2 �1.S3 n Tp;q/, and this means that the image of Œ
� 2 H 1.S3 n Tp;qI ad �/ in
H 1.�Tp;q I ad �/ is a nonzero element.

Consider a knotK in S3. Note that the image of the restriction map r WR�.S3nK;SU.2//!R.T 2;SU.2//
is contained in the smooth part of the pillowcase. By Propositions 4.17 and 4.12 we get the following
statement:

Corollary 4.18 The natural restriction map R�.S3 nTp;q;SU.2//!R.T 2;SU.2// to the smooth part
of the pillowcase is an immersion of a smooth 1–manifold.

In fact, it is known that the irreducible representation variety R�.S3 nTp;q;SU.2// is a disjoint union of
1
2
.p� 1/.q� 1/ segments; see [24].

4.3 Levine–Tristram signature and representation variety

The following statement relates the size of the set of singular flat connections over S3 nTp;q and the set
of flat connections over the cyclic branched covering.

Lemma 4.19 Let p, q and r be relatively coprime positive integers and †.p; q; r/ be a Brieskorn
homology sphere. Then

2jR�.†.p; q; r/; SU.2//j D
r�1X
lD1

jR�l=.2r/.S
3
nTp;q;SU.2//j:
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Proof We apply Proposition 4.1 to the r–fold cyclic branched covering †.p; q; r/ of Tp;q � S3. Note
that the covering transformation � induces the trivial action on R�.†.p; q; r/; SU.2// by [2], and hence
there is a two-to-one correspondenceG

l

R�l=.2r/.S
3
nTp;q;SU.2// Š�!R�.†.p; q; r/; SU.2//:

The nondegeneracy condition at irreducible critical points can be interpreted in the pillowcase as follows:

Lemma 4.20 Let ˛ 2
�
0; 1
2

�
be a fixed holonomy parameter. Assume that Œ�� 2R�˛.S3 nK;SU.2// is

nondegenerate. Then S˛ and the image of R�.S3 nK;SU.2// by the restriction map

r WR�.S3 nK;SU.2//!R.T 2;SU.2//

intersect transversely at r.Œ��/.

Proof Consider the natural map p W R.T 2;SU.2// ! R.�K ;SU.2// induced from the embedding
�K ,! T 2. Let Œ�� 2R.�K ;SU.2// be an element such that tr.�.�K//D 2 cos.2˛�/. Then p�1.Œ��/D
S˛ �R.T 2;SU.2// by definition. Note that S˛ is contained in the smooth part of the pillowcase, and
Œ�� is also contained in the smooth part of R.�K ;SU.2// since the quotient singularity by the conjugacy
action of SU.2/ does not happen when ˛ ¤ 0; 1

2
. Thus the kernel of the map

dpŒ� 0� W TŒ� 0�R.T 2;SU.2//DH 1.T 2I ad �/! TŒ��R.�K ;SU.2//DH 1.�K I ad �/

induced on their tangent spaces is TŒ��S˛, where Œ� 0�D r.Œ��/. Note that R�.S3 nK;SU.2// is smooth
near Œ�� by Proposition 4.12. The composition of the natural maps

(4-12) TŒ��R.S3 nK;SU.2//DH 1.S3 nKI ad �/ j�!H 1.T 2I ad �/!H 1.�K I ad �/

is injective by our nondegeneracy assumption. Thus the image of H 1.S3 nKI ad �/ in H 1.T 2I ad �/
is independent of Ker.H 1.T 2I ad �/!H 1.�K I ad �//. This means that r.R�.S3 nK;SU.2/// and S˛
intersect transversely at r.Œ��/.

There is a relation between �˛.K/ and R�˛.S3 nK;SU.2//. We use the following inequality in the proof
of Proposition 4.22:

Lemma 4.21 Let K be a knot in S3. Assume that R�˛.S3 nK;SU.2// is nondegenerate. Then

j�˛.K/j � 2jR�˛.S
3
nK;SU.2//j

for ˛ 2
�
0; 1
2

�
with �K.e4�i˛/¤ 0.

Proof By Proposition 4.12, R�.S3 nK;SU.2//!R.T 2;SU.2// is an immersion to the smooth part
of the pillowcase. By Proposition 4.17 and Lemma 4.20, the immersed image of R�.S3 nK;SU.2//
intersects transversely to S˛. After taking a small perturbation, the image of R�;h.S3 n K;SU.2//
intersects to S˛ transversely and the number of intersection points do not change,

(4-13) jR�.S3 nK;SU.2//\ r�1.S˛/j D jR�;h.S3 nK;SU.2//\ r�1.S˛/j:
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If �K.e4�i˛/¤ 0 and the perturbation h is chosen so that it satisfies the conditions in [23, Lemma 5.1]
then the signed counting #R�;h˛ .S3 nK;SU.2/// can be defined, and

#R�;h˛ .S3 nK;SU.2//D�1
2
�˛.K/

holds by [23, Corollary 0.2]. On the other hand, the left side of (4-13) is just the size of the set
R�˛.S3 nK;SU.2// by definition.

Since K D Tp;q satisfies the assumption of Lemma 4.21, j�˛.Tp;q/j � 2jR�˛.S3 nTp;q;SU.2//j holds for
˛ 2

�
0; 1
2

�
with �Tp;q .e

4�i˛/¤ 0.

Proposition 4.22 Let p, q and r be positive and relatively coprime integers. The formula

�
1
2
�l=.2r/.Tp;q/D jR�l=.2r/.S

3
nTp;q;SU.2//j

holds for 1� l � r � 1 with �Tp;q .e
2�il=r/¤ 0.

For the proof we use the similar argument as in the proof of [2, Theorem 3.4].

Proof Consider a 4–ball B4 and a torus knot in its boundary Tp;q �S3D @B4, and take a Seifert surface
S for Tp;q as S � B4 and S \ @B4 D @S . The r–fold cyclic branched covering of B4 branched along S
is the Milnor fiber

M.p; q; r/D f.z1; z2; z3/ j z
p
1 C z

q
2 C z

r
3 D �g\B

6
�C3;

where � >0 is small enough. Furthermore, @M.p; q; r/D†.p; q; r/ is an r–fold cyclic branched covering
of @B4 D S3, branched along Tp;q . There is the following formula (see [13, Corollary 2.9]):

�
1
4
�.M.p; q; r//D jR�.†.p; q; r/; SU.2//j:

Using the signature formula in [41], Lemma 4.19 and decomposition of �.M.p; q; r// into the equivariant
signature �.M.p; q; r/I i

r
/, we have

�
1

2

r�1X
lD1

�l=.2r/.Tp;q/D

r�1X
lD1

jR�l=.2r/.S
3
nTp;q;SU.2//j:

Note that �l=.2r/.Tp;q/� 0 since Tp;q is a positive knot. If we assume that the inequality in Lemma 4.21
is strict for some l , then �1

4
�.M.p; q; r// < jR�.†.p; q; r//j, and this is a contradiction.

Proof of Theorem 1.9 When ˛ D 0 or 1
2

, �Tp;q D 0 and R�˛.S3 n Tp;q;SU.2// is empty. So we
consider the case ˛ 2

�
0; 1
2

�
with �Tp;q .e

4�i˛/ ¤ 0. Since the image of R�.S3 n Tp;q;SU.2// in the
pillowcase intersects S˛ transversely, there is a small � > 0 such that for any ˛0 2 .˛� �; ˛C �/ we have
�Tp;q .e

4�i˛/¤ 0 and

jR�.S3 nTp;q;SU.2//\ r�1.S˛/j D jR�.S3 nTp;q;SU.2//\ r�1.S˛0/j:
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Thus jR�˛.S3 n Tp;q;SU.2//j D jR�˛0.S
3 n Tp;q;SU.2//j. The Levine–Tristram signature is piecewise

constant and jumps at the roots of the Alexander polynomial. Hence �Tp;q .e
4�i˛/ D �Tp;q .e

4�i˛0/ if
� > 0 is small enough. We can find a positive integer r which is coprime to p and q, and a positive integer
l such that l=.2r/ 2 .˛� �; ˛C �/. Then

�
1
2
�l=.2r/.Tp;q/D jR�l=.2r/.S

3
nTp;q;SU.2//j

by Proposition 4.22. Thus we have

�
1
2
�˛.Tp;q/D jR�˛.S

3
nTp;q;SU.2//j:

5 Properties of instanton knot invariants and their applications

In this section, we give the proof of Theorem 1.1, our main theorem. The important consequence of
Section 5.1 is that the Floer chain C ˛� .Tp;qI�S / is supported only on the odd graded part. The key
argument is that the Frøyshov invariant of a knot K � S3 for an appropriate choice of coefficient S

reduces to the Levine–Tristram signature. This is a generalization of the corresponding result in [8] and
the argument is parallel. Section 5.2 gives the proof of Theorem 1.1 using this specific property of the
Floer chain complex zC ˛� .Tp;qI�S / and the Frøyshov knot invariant.

5.1 The Frøyshov knot invariant and the structure theorem

LetW be a compact oriented smooth 4–manifold with b1.W /D bC.W /D 0, whose boundary @W DY is
an integral homology 3–sphere. LetK�Y be an oriented knot and S�W be an embedded oriented surface
with @S DK. Throughout this subsection, we assume that S is an integral domain over R˛ . We define

K.A/ WD �.A/C
�
˛� 1

4

�
�.A/C˛2S �S and d˛.W; S/ WD 4K.Amin/�g.S/�

1
2
�˛.Y;K/� 1

for each holonomy parameter ˛ 2
�
0; 1
2

�
\Q. Here Amin is a minimal reducible, and note that K.Amin/ is

independent of the choice of minimal reducibles. Moreover d˛.W; S/ is an integer by the index theorem.
The value of the Frøyshov knot invariant is evaluated by the following proposition:

Proposition 5.1 Let .W; S/ and .Y;K/ be as above and ˛ 2
�
0; 1
2

�
\Q satisfy �.Y;K/.e4�i˛/¤ 0. If

d WD d˛.W; S/� 0 then there is a cycle c˛.W; S/ 2 C ˛
2dC1

.Y;KI�S / satisfying

ı1v
j .c˛.W; S//D

�
0 if 0� j < d;
�˛.W; S/ if j D d:

Proof We define c˛.W; S/ 2 C ˛
2dC1

.Y;KI�S / by

hc˛.W; S/; ˇi D
X

ŒA�2M.W;S Iˇ/0

�.A/��0��.A/T �.A/��0 ;

where M.W; S; ˇ/0 is a zero-dimensional moduli space. Since dc˛.W; S/ corresponds to the counting
of the boundary of the 1–dimensional moduli space M ˛.W; S Iˇ0/C1 , we have dc˛.W; S/ D 0. Let
M.W; S; �˛/2dC1 be the moduli space of instantons A over .W; S/ which are asymptotic to �˛ and
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satisfy �.A/D �.Amin/. If d � 0 then we can perturb the ASD equation so that each reducible connection
in Mz.W; S I �˛/2dC1 has a neighborhood which is homeomorphic to the cone of CPd . Removing
small .2dC1/–balls of each reducible point from Mz.W; S I �˛/2dC1, we get a .2dC1/–manifold M 0z
whose boundary is

F
.˙CPd /, where the sign˙ is determined by the orientation of each reducible point.

Cutting downM 0z by codimension 2 divisors fVig1�i�d associated to d points in S ,M 0z\V1\� � �\Vd is a
1–manifold with boundary. Then

P
z #@.M 0z\V1\� � �\Vd /�

�0��.z/T �.z/��0 D �˛.W; S/. On the other
hand,M 0z\V1\� � �\Vd has ends arising from the sliding end of instantons. Define  2C1.Y;KI�S / by

hˇ; i D
X
z

X
ŒA�

�.ŒA�/��0��.A/T �.A/��0 ;

where ŒA� runs through all elements in #.Mz.W; S Iˇ/2d \ V1 \ � � � \ Vd / for each z. Then  and
vdc˛.W; S/ are homologous. Since ı1 D �˛.W; S/, we have ı1vdc˛.W; S/ D �˛.W; S/. If j < d ,
Mz.W; S I �˛/2jC1 does not contain reducible points and we have ı1vj c˛.W; S/D 0.

Before the proof of Theorem 1.8, we state Lemma 5.2 and Proposition 5.3 related to two-bridge torus knots.

Lemma 5.2 For any ˛ 2
�
0; 1
2

�
there exists an integer k > 0 such that �˛.T2;2kC1/ D �2 and

�T2;2kC1.e
4�i˛/¤ 0.

Proof Consider the case ˛ � 1
4

. By [34, Proposition 1], �˛.T2;2kC1/ is given by

�˛.T2;2kC1/D n1�n2;

where n1 is the number of lattice points
˚
.1;m/ j

�
kC 1

2

�
.1C 4˛/ < m < 2kC 1

	
and n2 is the number

of lattice points
˚
.1;m/ j 0 < m <

�
kC 1

2

�
.1C 4˛/

	
. Thus �˛.T2;2kC1/D�2 if only if 1=.8kC 4/ <

˛ < 3=.8kC 4/. Moreover, note that the interval .1=.8kC 4/; 3=.8kC 4// does not contain any root of
�T2;2kC1.t/. Thus, for any ˛� 1

4
, we can find k>0 such that �˛.T2;2kC1/D�2 and�T2;2kC1.e

4�i˛/¤0.
For the case ˛ > 1

4
, it follows that �˛.T2;2kC1/D�2 if only if 1

2
�3=.8kC4/ < ˛ < 1

2
�1=.8kC4/ by

the flip symmetry.

Proposition 5.3 For any ˛ 2Q\
�
0; 1
2

�
, there is an integer k > 0 such that �T2;2kC1.e

4�i˛/¤ 0 and
h˛S .T2;2kC1/D 1.

Proof By Lemma 5.2, we can find an integer k>0 such that �˛.T2;2kC1/D�2 and�T2;2kC1.e
4�i˛/¤0.

Consider a cobordism of pairs .Wk; Sk/ obtained by the composition

.Wk; Sk/ W .S
3; U /! .S3; T2;3/! � � � ! .S3; T2;2k�1/! .S3; T2;2kC1/;

where .S3; T2;2i�1/! .S3; T2;2iC1/ is obtained by the crossing change of the knot. Put .W k; Sk/ WD

.D4;D2/[.S3;U / .Wk; Sk/. Then it is easy to see that b1.W k/D b
C.W k/D 0 and d˛.W k; Sk/D 0

by the similar argument as in Proposition 2.23. Applying Proposition 5.1 to the pair .W k; Sk/, we obtain
a cycle c˛.W k; Sk/ 2 C

˛
1 .T2;2kC1/ such that ı1c˛.W k; Sk/¤ 0. This implies that h˛S .T2;2kC1/¤ 0.

Since rankC ˛� .T2;2nC1/D 1, we have h˛S .T2;2kC1/D 1.
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Proof of Theorem 1.8 Consider a knot K � S3 and a holonomy parameter ˛ 2 Q \
�
0; 1
2

�
with

�K.e
4�i˛/¤ 0. Since K � S3 is homotopic to any knot, it can be deformed into lT2;2nC1 by positive

and negative crossing changes, where l D �1
2
�˛.K/. This operation defines a cobordism of pairs

.Œ0; 1��S3; S/ W .S3; K/! .S3; lT2;2nC1/ where S is an immersed surface with normal self-intersection
points. Let S 0 W lT2;2nC1 ! K be the inverse cobordism of S . Since �˛.K/ D �˛.lT2;2nC1/, two
cobordisms S and S 0 induce negative definite cobordisms. Let zmS W zC ˛� .KI�S /! zC

˛
� .lT2;2nC1I�S /

and zmS 0 W zC ˛� .lT2;2nC1I�S /! zC
˛
� .KI�S / be induced cobordism maps on S–complexes. Since two

immersed cobordisms S 0 ı S and S ı S 0 can be deformed into product cobordisms by finitely many
finger moves, their induced maps zmS 0ıS and zmSıS 0 are S–chain homotopic to the identity up to the
multiplication of unit elements by Proposition 3.28. By the functoriality of S–morphisms, zmS 0 ı zmS and
zmS ı zmS are S–chain homotopic to the identity up to the multiplication of unit elements. The proof is
completed by Remark 3.4.

The proof of Theorem 1.7 immediately follows from Theorem 1.8:

Proof of Theorem 1.7 Comparing Frøyshov invariants for both sides of

zC ˛� .KI�S /' C
˛
� .lT2;2kC1I�S /;

we obtain h˛S .K/D lh
˛
S .T2;2kC1/ where l D�1

2
�.K/. Since h˛S .T2;2kC1/D 1 by Proposition 5.3, we

obtain the desired formula.

Remark 5.4 Since S–chain homotopy equivalence of two S–complexes zC�' zC 0� implies chain homotopy
equivalence between C� and C 0�, assume that �˛.K/ � 0. Then Theorems 1.5 and 1.8 imply the
S–chain homotopy equivalence zC ˛� .KI�S / ' zC

˛
� .T2;2nC1I�S /

˝l , and hence we have the Euler
characteristic formula

�.C ˛� .KI�S //D l�.C
˛
� .T2;2nC1I�S //:

If �˛.K/ > 0 then there is an S–chain homotopy equivalence zC ˛� .KI�S /' zC
˛
� .�T2;2nC1I�S /

˝�l

and we have
�.C ˛� .KI�S //D�l�.C

˛
� .�T2;2nC1I�S //:

By Proposition 5.3, �.C ˛� .T2;2nC1I�S //D�1. On the other hand, �.C ˛� .�T2;2nC1I�S //D 1 since
if we reverse the orientation of the 3–manifold, the Z=4–grading of the chain complex changes so that
gr�Y .ˇ/� 3� grY .ˇ/, which follows from (2-4). In any case,

�.C ˛� .KI�S //D
1
2
�˛.K/:

Note that this formula for the Euler characteristic is independent of the choice of the coefficient S .

Proof of Theorem 1.10 Consider an arbitrary knotK �S3. For any holonomy parameter ˛ 2
�
0; 1
2

�
\Q

with�K.e4�i˛/¤0, the Floer chain complex C ˛� .KI�S / is defined and the relation h˛S .K/D�
1
2
�˛.K/

holds. By the definition of the Frøyshov knot invariant, we have lower bounds of Floer homology groups

rank I˛1 .KI�S /�
˙
�
1
4
�˛.K/

�
and rank I˛3 .KI�S /�

�
�
1
4
�˛.K/

˘
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for any knot K � S3 with �˛.K/� 0. In particular, K D Tp;q satisfies this condition. Using the equality
rank I�.Tp;q/D�12�˛.Tp;q/, we obtain

rank I˛1 .Tp;qI�S /D
˙
�
1
4
�˛.Tp;q/

�
; rank I˛3 .Tp;qI�S /D

�
�
1
4
�˛.Tp;q/

˘
:

Since I˛� .Tp;q/ is supported only on the odd graded part, we obtain the statement.

5.2 An application to knot concordance

In this subsection, we complete the proof of our main theorem (Theorem 1.1).

The operators Z˙1 and U˙1 extend to the S–complex zC� in the obvious way. We also introduce
the operator

Wi;j;k WD ı1v
iU kZj W zC�! zC�:

If degR.Z
/ > degR.
/, the operator Z does not act on the filtered chain complex C Œ�1;R�� , and Wi;j

does not directly induce a map on zC Œ�1;R�� . For this reason, we introduce the map V Œ�1;R�
i;j;k

on the filtered
chain complex by the composition

zC
Œ�1;R�
� ,! zC

Œ�1;1�
�

Wi;j;k
����! zC

Œ�1;1�
� :

We also introduce the operator W ŒR0;R�

i;j;k
on the quotient filtered S–complex zC ŒR

0;R�
� by the composition

zC
ŒR0;R�
� ,! zC

Œ�1;1�
�

Wi;j;k
����! zC

Œ�1;1�
� � zC

ŒR0;1�
� :

Here, the last map is a natural quotient map.

Proposition 5.5 Let S WTp;q!Tp;q be a given self-concordance. Then there is a dense subset I �
�
0; 1
2

�
such that all elements in R˛.S3 n Tp;q;SU.2// extend to elements in R˛..S3 � Œ0; 1�/ n S;SU.2// for
any ˛ 2 I.

Proof We choose a dense subset I �
�
0; 1
2

�
such that Theorem 1.10 holds for Tp;q . Since all irreducible

critical points of the Chern–Simons functional of Tp;q are nondegenerate by Proposition 4.17, we can
choose a perturbation � so that it is supported away from flat connections. In particular, we can assume
that the chain complex C ˛� .Tp;qI�S / is generated by R�˛.S3 n Tp;q;SU.2//. Since the assertion for
˛ D 1

4
is proved in [8], we assume that ˛ ¤ 1

4
. In particular, we consider the case ˛ < 1

4
for a while.

Since the unique flat reducible �˛ with the holonomy parameter ˛ on S3 n Tp;q always extends to the
concordance complement, it is enough to consider the extension problem for irreducibles. We choose a
field S WDR˛˝Q. By Theorems 1.7 and 1.10 we have

h˛S .Tp;q/D�
1
2
�˛.Tp;q/D d;

where d WD rankC ˛� .Tp;qI�S /. This implies that there is a cycle ˇ0 2 C ˛� .Tp;qI�S / such that
ı1v

k.ˇ0/ D 0 if k < d � 1 and ı1vd�1.ˇ0/ ¤ 0. Put ˇi WD vi .ˇ0/ for 0 � i � d � 1. The chain
complex C ˛� .Tp;qI�S˛ / admits a .Z�R/–bigrading by fixing lifts Q�1; : : : ; Q�d of singular flat connections
�1; : : : ; �d 2R�˛.S3nTp;q;SU.2//. In particular, we may assume that degZ. Q�i /D1 or 3 by Theorem 1.10.
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degR

degZ

degZ D 2d � 1degZ D 2d � 3degZ D 5degZ D 3degZ D 1degZ D 0

R

ı1

v

v

v

v

v

Ǒ
0

Ǒ
1

Ǒ
d�3

Ǒ
d�2

Ǒ
d�1

Q�˛

Figure 3: Elements Ǒ0; : : : ; Ǒd�1 and their .Z�R/–gradings.

Using properties of elements ˇ0; : : : ; ˇd�1, we fix elements Ǒ0; : : : ; Ǒd�1 2 C ˛� .Tp;qI�S˛ /
Œ�1;1� in

the following way. Firstly, there exists a cycle Ǒd�1 such that degZ.
Ǒ
d�1/D 1 and satisfying

ı1. Ǒd�1/D
X
k�0

ckZ
k Q�˛

with c0 ¤ 0 since ı1.ˇd�1/¤ 0. Next, choose an element Ǒi . Then Ǒi�1 is defined as a cycle satisfying

v. Ǒi�1/D Ǒi :

Finally, we obtain cycles Ǒ0; : : : ; Ǒd�1 by induction.

Note that degZ.
Ǒ
i / D 2.d � 1/� 2i and 0 � degR.

Ǒ
i�1/ � � � � � degR.

Ǒ
0/. We fix R > 0 so that it

satisfies degR.
Ǒ
0/ < R and R … C �; see Figure 3.

Let �� < 0 be a small negative number such that an interval Œ��; 0/ does not contain any critical value of
the Chern–Simons functional CS. Our aim is to show that the cobordism map mS on the quotient filtered
chain zC ˛� .Tp;qI�S /

Œ��;R� is an isomorphism.
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Since zmS preserves the Z–grading, it is enough to show that zmS is an isomorphism onC ˛1 .Tp;qI�S /
Œ��;R�

and C ˛3 .Tp;qI�S /
Œ��;R�. We claim that C ˛1 .Tp;qI�S /

Œ��;R� and C ˛3 .Tp;qI�S /
Œ��;R� are generated by

elements of the form

fZjU 2kC1�.d�1/ Ǒ2kC1 j k;m2kC1 � j � n2kC1g or fZjU 2k�.d�1/ Ǒ2k j k;m2k � j � n2kg

over Q. To see this, consider the linear combination

(5-1)
X

0�i�d�1

X
mj�j�ni

ci;jZ
jU i�.d�1/ Ǒi D 0;

where ci;j are rational coefficients. Then we consider applying operators W Œ��;R�

i;j;k
to (5-1). Firstly,

we apply the operator for .i; j; k/D .0;�nd�1; 0/. Then we get c0;nd�1ı1. Ǒd�1/D 0 with ı1. Ǒd�1/
nonzero. Since S is an integral domain, cd�1;nd�1 D 0. Next, we apply the operator W Œ��;R�

.i;j;k/
for

.i; j; k/D .0;�nd�1C 1; 0/ to (5-1). Then we obtain cd�1;nd�1�1 using cd�1;nd�1 D 0. Inductively,
we obtain

cd�1;nd�1 D � � � D cd�1;md�1 D 0

by applying operators W Œ��;R�
0;�nd�1;0

; : : : ;W Œ��;R�
0;�md�1;0

. We repeat a similar arguments using the operators
fW Œ��;R�

1;j;1 gmd�2�j�nd�2 , and obtain

cd�2;nd�2 D � � � D cd�2;md�2 D 0:

Inductively, we conclude that
ci;ni D � � � D ci;mi D 0

for all 0� i � d � 1. So fZjU i�.d�1/ Ǒig for 0� i � d � 1 and mi � j � ni are linearly independent.

Put Ǒ0i WD mS . Ǒi /. Since the induced cobordism map zmS on an S–complex satisfies the relations
in Proposition 3.15, the elements Ǒ0; : : : ; Ǒd�1 have the same properties, and the same technique
shows that fZjU i�.d�1/ Ǒ0ig for 0 � i � d � 1 and mi � j � ni are linearly independent. Moreover,
degR.

Ǒ
i / D degR.

Ǒ0
i / by the construction of elements f Ǒig. We conclude that the map mS is an

isomorphism on C ˛1 .Tp;qI�S˛ /
Œ��;R� and C ˛3 .Tp;qI�S˛ /

Œ��;R�.

Note that the chain complex C ˛� .Tp;qI�S / is generated by those irreducible singular flat connections.
Then the degree 1 part C ˛1 .Tp;qI�S /

Œ��;R� of the quotient filtered chain complex is generated by elements
of the forms fZj Q�1gm1�j�n1 ; : : : ; fZ

j Q�lgml�j�nl over Q. We order these generators by values of the
Chern–Simons functional. Then the cobordism map mS can be represented by the form

(5-2)

26666664
L1 O � � �

L2 O � � �

: : : O � � �

: : : O

Lk

37777775 ;

where diagonal blocks Li are components that correspond to the basis with the same value of the Chern–
Simons functional. Note that components in Li are defined by counting (perturbed) flat connections
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over the concordance complement. Since mS is an isomorphism on the degree 1 part, the matrix (5-2) is
invertible over Q. Hence each diagonal block Li is also invertible. In particular, they do not contain any
zero-column. Since the regular condition on moduli space is an open condition with respect to choices of
perturbation, all flat connections �1; : : : ; �l extend to flat connections over the concordance complement.
The similar argument works for �lC1; : : : ; �d , and thus all elements in R�˛.S3 nTp;qI�S / extend to the
concordance complement.

Finally, we consider the case ˛ > 1
4

. Here we only change the above argument at the following point:
We apply the operator W Œ��;R�

0;�md�1
on (5-1) the first time. Then we obtain cd�1;md�1 D 0. Next we apply

the operator W Œ��;R�
0;�md�1C1;0

and obtain cd�1;md�1�1 D 0. We inductively obtain cd�1;nd�1 D � � � D
cd�1;md�1 D 0. The rest of the argument proceeds similarly, and finally all coefficients in (5-1) vanish.

Proof of Theorem 1.1 Let S W Tp;q ! K be a given concordance. Then we can construct a concor-
dance S ı S W Tp;q ! K ! Tp;q by the composition, where S is the opposite concordance of S . By
Proposition 5.5 there exists a dense subset I�

�
0; 1
2

�
such that there is a extension R˛.S3nTp;q;SU.2//!

R˛..S3 � Œ0; 1�/ nS ıS;SU.2// for any ˛ 2 I. Let ˛ 2
�
0; 1
2

�
be any holonomy parameter and consider

the representation � W �1.S3 nTp;q/! SU.2/ with

�.�Tp;q /�

�
e2�i˛ 0

0 e�2�i˛

�
:

Then we can choose a sequence f˛ig � I such that limi!1 ˛i D ˛ and SU.2/ representations �i of
�1.S

3 nTp;q/ with

�i .�Tp;q /�

�
e2�i˛i 0

0 e�2�i˛i

�
;

since �i extends to an SU.2/ representation ˆi W �1..S3 � Œ0; 1�/ nS ıS/! SU.2/ and we can choose a
convergent subsequence of fˆig with the limiting representation ˆ1 W �1..S3� Œ0; 1�/nS ıS/! SU.2/.
(Since SU.2/ is compact, we can choose a convergent subsequence fˆi .xj /gi for each generator xj of
�1..S

3 � Œ0; 1�/ nS ıS/, and limi!1ˆi .xj / defines a limiting representation ˆ1.) By restriction, we
get a representation �1..S3 � Œ0; 1�/ nS/! SU.2/ which is the extension of �.

Appendix The connected sum theorem

In this section, we give the proof of the connected sum theorem. The connected sum theorem for
nonsingular settings was proved in [20], and the singular setting with ˛ D 1

4
was proved in [9]. We use

an argument similar to [9] to prove our connected sum theorem (Theorem 3.24). Let us recall the settings
which are introduced in [9, Section 6]. Let .Y;K/ and .Y 0; K 0/ be two given knots in integral homology
3–spheres. Fixing basepoints p 2K and p0 2K 0, we take a pair of the connected sum .Y #Y 0; K #K 0/
at these basepoints. We also fix a basepoint p# 2K #K 0. Construct a cobordism

.W; S/ W .Y tY 0; K tK 0/! .Y #Y 0; K #K 0/
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by attaching a pair of 1–handles .D1�D3;D1�D1/ to the product cobordism Œ0; 1��.Y tY 0; KtK 0/. Let

.W 0; S 0/ W .Y #Y 0; K #K 0/! .Y tY 0; K tK 0/

be a cobordism of the opposite direction. We define three oriented piecewise smooth paths 
 , 
 0 and

#on S �W . Assume that these paths intersect the boundaries of the cobordism only at their edge points.
The path 
 starts from p 2 Y and ends at the basepoint p# 2 Y # Y 0. Similarly, 
 0 starts from p0 2 Y 0

and ends at p#, and 
# starts from p 2 Y and ends at p0 2 Y 0. Let us define the paths � , � 0 and �# in S 0

as mirrors of 
 , 
 0 and 
#, respectively. We use the notation ˇ, ˇ0 and ˇ# (and their indexed versions)
for critical points of the perturbed Chern–Simons functional on .Y;K/, .Y 0; K 0/ and .Y #Y 0; K #K 0/,
respectively. Let �˛; � 0˛ and �#

˛ denote unique flat reducibles on .Y;K/, .Y 0; K 0/ and .Y #Y 0; K #K 0/,
respectively. We use the reduced notation for d–dimensional moduli spaces as follows:

Mz.ˇ; ˇ
0
Iˇ#/d WDMz.W; S Iˇ; ˇ

0; ˇ#/d and Mz.ˇ
#
Iˇ; ˇ0/d WDMz.W

0; S 0Iˇ#; ˇ; ˇ0/d :

We drop z from the notation above if we consider all unions of z. We define maps

H 

W B.W; S Iˇ; ˇ0; ˇ#/! S1 and H 
 0

W B.W; S Iˇ; ˇ0; ˇ#/! S1

as in Section 3.4. The moduli spaces cut down by these maps are defined by

M
;z.ˇ; ˇ
0
Iˇ#/d WD fŒA� 2Mz.ˇ; ˇ

0
Iˇ#/dC1 jH


 .ŒA�/D sg;

M
 0;z.ˇ; ˇ
0
Iˇ#/d WD fŒA� 2Mz.ˇ; ˇ

0
Iˇ#/dC1 jH


 0.ŒA�/D s0g;

M

 0;z.ˇ; ˇ
0
Iˇ#/d WD fŒA� 2Mz.ˇ; ˇ

0
Iˇ#/dC1 jH


 .ŒA�/D s; H 
 0.ŒA�/D s0g;

where s 2 S1 is a generic point. The orientation of moduli spaces over .W; S/ is defined in the following
way. Let oW 2OŒW; S I �˛C; �

0
˛C; �

#
˛�� be the canonical homology orientation of .W; S/, and oˇ 2OŒˇ�,

oˇ 0 2 OŒˇ0� and oˇ # 2 OŒˇ#� be given orientations for generators. Then oˇ;ˇ 0Iˇ # 2 OŒW; S Iˇ; ˇ0Iˇ#� is
fixed so that the relation

ˆ.oˇ ˝ oˇ 0 ˝ oW /Dˆ.oˇ;ˇ 0Iˇ # ˝ oˇ #/

holds.

The argument of the proof consists of the following steps:

(I) A cobordism of pairs .W; S/ W .Y tY 0; K tK 0/! .Y #Y 0; K #K 0/ induces an S–morphism

zm.W;S/ W zC
˛
� .Y;K/˝

zC ˛� .Y
0; K 0/! zC ˛� .Y #Y 0; K #K 0/:

(II) A cobordism of pairs .W 0; S 0/ W .Y #Y 0; K #K 0/! .Y tY 0; K tK 0/ induces an S–morphism

zm.W 0;S 0/ W zC
˛
� .Y #Y 0; K #K 0/! zC ˛� .Y;K/˝ zC

˛
� .Y

0; K 0/:

(III) Put zC # WD zC ˛� .Y #Y 0; K #K 0/. The composition zm.W;S/ ı zm.W 0;S 0/ is S–chain homotopic to id zC #

up to the multiplication of a unit element in S .

(IV) The composition zm.W 0;S 0/ ı zm.W;S/ is S–chain homotopic to id zC˝ .
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A.1 Step I

We define a map zm.W;S/ as follows. Using the decomposition of the Floer chain group

C˝ D .C ˝C 0/�˚ .C ˝C
0/��1˚C�˚C

0
�;

we define four maps:

mD Œm1; m2; m3; m4� W .C ˝C
0/�˚ .C ˝C

0/��1˚C�˚C
0
�! C #

� ;

�D Œ�1; �2; �3; �4� W .C ˝C
0/�˚ .C ˝C

0/��1˚C�˚C
0
�! C #

� ;

�1 D Œ�1;1; �1;2; �1;3; �1;4� W .C ˝C
0/0˚ .C ˝C

0/�1˚C0˚C
0
0!S ;

�2 WS ! C #
�1:

Each component of the above maps is defined as follows:

hm1.ˇ˝ˇ
0/; ˇ#

i D
P
z

#M
#;z.ˇ; ˇ
0
Iˇ#/0�

��.z/T �.z/;

hm2.ˇ˝ˇ
0/; ˇ#

i D
P
z

#Mz.ˇ; ˇ
0
Iˇ#/0�

��.z/T �.z/;

hm3.ˇ/; ˇ
#
i D

P
z

#Mz.ˇ; �
0
˛Iˇ

#/0�
��.z/T �.z/; hm4.ˇ

0/; ˇ#
i D

P
z

#Mz.�˛; ˇ
0
Iˇ#/0�

��.z/T �.z/;

h�1.ˇ˝ˇ
0/; ˇ#

i D
P
z

#M

 0;z.ˇ; ˇ
0
Iˇ#/0�

��.z/T �.z/;

h�2.ˇ˝ˇ
0/; ˇ#

i D
P
z

#M
;z.ˇ; ˇ
0
Iˇ#/0�

��.z/T �.z/;

h�3.ˇ/; ˇ
#
i D

P
z

#M
;z.ˇ; �
0
˛Iˇ

#/0�
��.z/T �.z/;

h�4.ˇ
0/; ˇ#

i D
P
z

#M
 0;z.�˛; ˇ
0
Iˇ#/0�

��.z/T �.z/;

�1;1.ˇ˝ˇ
0/D

P
z

#M
#;z.ˇ; ˇ
0
I �#
˛/0�

��.z/T �.z/; �1;2.ˇ˝ˇ
0/D

P
z

#Mz.ˇ; ˇ
0
I �#
˛/0�

��.z/T �.z/;

�1;3.ˇ/D
P
z

#Mz.ˇ; �
0
˛I �

#
˛/0�

��.z/T �.z/; �1;4.ˇ
0/D

P
z

#Mz.�
0
˛; ˇ
0
I �#
˛/0�

��.z/T �.z/;

h�2.1/; ˇ
#
i D

P
z

#Mz.�˛; �
0
˛Iˇ

#/0�
��.z/T �.z/:

As described in [9, Remarks 6.10 and 6.11], notice that

� H�1
ˇˇ1
.s/\H�1

ˇˇ 0
.s0/\M.ˇ; ˇ1/2 D∅ for distinct regular values s; s0 2 S1,

� #M
 .ˇ; ˇ
0Iˇ#/� #M
 0.ˇ; ˇ

0Iˇ#/D #M
#.ˇ; ˇ0Iˇ#/.

Proposition A.1 There are the following relations:

d #
ımDm ı d˝;(A-1)

ı#
1 ımD�1 ı d

˝
C ı˝1 ;(A-2)

m ı ı˝2 D ı
#
2� d

#
ı�2;(A-3)

d #
ı�C� ı d˝ D v#

ım�m ı v˝C ı#
2 ı�1��2 ı ı

˝
1 :(A-4)
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Proof The identity (A-1) decomposes into the following four relations:

d #m1 Dm1.d ˝ 1/Cm1.�˝ d
0/�m2.�v˝ 1/Cm3.�˝ v

0/Cm3.�˝ ı
0
1/Cm4.ı1˝ 1/;(A-5)

d #m2 Dm2.d ˝ 1/�m2.�˝ d
0/;(A-6)

d #m3 Dm3.�˝ ı
0
2/Cm3d;(A-7)

d #m4 D�m2.ı2˝ 1/Cm4d
0:(A-8)

The identity (A-5) is obtained by counting the boundary of the compactified moduli spaceMC

#;z

.ˇ;ˇ0Iˇ#/1

for each path z. In fact, the oriented boundary of MC

#;z

.ˇ; ˇ0Iˇ#/1 consists of the following types of
codimension 1 faces:

M
#;z0.ˇ; ˇ
0
Iˇ#
1/0 �

MMz00.ˇ
#
1; ˇ

#/0; MMz0.ˇ; ˇ1/0 �M
#;z00.ˇ1; ˇ
0
Iˇ#/0;

.�1/gr.ˇ/ MMz0.ˇ
0; ˇ01/0 �M
;z00.ˇ; ˇ

0
1Iˇ

#/0;

.�1/gr.ˇ/C1.H�1ˇˇ1.s/\Mz0.ˇ; ˇ1/1/�Mz00.ˇ1; ˇ
0
Iˇ#/0;

.�1/gr.ˇ/.H�1
ˇ 0ˇ 01

.s/\Mz0.ˇ
0; ˇ01/1/�Mz00.ˇ; ˇ

0
1Iˇ

#/0;

.�1/gr.ˇ/ MMz0.ˇ
0; � 0˛/0 �Mz00.ˇ; �

0
˛Iˇ

#/0; MMz0.ˇ; �˛/0 �Mz00.�˛; ˇ
0
Iˇ#/0:

The identities (A-6)–(A-8) are obtained by counting the compactified moduli spaces MCz .ˇ; ˇ
0Iˇ#/1,

MCz .ˇ; �
0
˛Iˇ

#/1 andMCz .�˛; ˇ
0Iˇ#/1, respectively. We list up codimension 1 faces of each moduli space:

� codimension 1 faces of @MCz .ˇ; ˇ
0Iˇ#/1:

Mz0.ˇ; ˇ
0
Iˇ#
1/0 �

MMz00.ˇ
#
1; ˇ

#/0; MMz0.ˇ; ˇ1/�Mz00.ˇ1; ˇ
0
Iˇ#/0;

.�1/gr.ˇ/ MMz0.ˇ
0; ˇ01/0 �Mz00.ˇ; ˇ

0
1Iˇ

#/0;

� codimension 1 faces of @MCz .ˇ; �
0
˛Iˇ

#/1:

Mz0.ˇ; �
0
˛Iˇ

#
1/0 �

MMz00.ˇ
#
1; ˇ

#/0; .�1/gr.ˇ/ MMz0.�
0
˛; ˇ
0/0 �Mz00.ˇ; ˇ

0
Iˇ#/0;

MMz0.ˇ; ˇ1/�Mz00.ˇ1; �
0
˛Iˇ

#/0;

� codimension 1 faces of @MCz .�˛; ˇ
0Iˇ#/1:

Mz0.�˛; ˇ
0
Iˇ#
1/0 �

MMz00.ˇ
#
1; ˇ

#/0; MMz0.�˛; ˇ/0 �Mz00.ˇ; ˇ
0
Iˇ#/0;

MMz0.ˇ
0; ˇ01/0 �Mz00.�˛; ˇ

0
1Iˇ

#/0:

The relation (A-2) decomposes into the following four identities:

ı#
1m1 D�1;1.d ˝ 1/C�1;1.�˝ d

0/��1;2.�v˝ 1/C�1;2.�˝ v
0/C�1;3.�˝ ı

0
1/C�1;4.ı1˝ 1/;

ı#
1m2 D�1;2.d ˝ 1/��1;2.�˝ d

0/;

ı#
1m3 D�1;2.�˝ ı

0
2/C�1;3d C ı1;

ı#
1m4 D��1;2.ı2˝ 1/C�1;4d

0
C ı01:

Each relation is obtained by counting the boundaries of the compactified 1–dimensional moduli spaces
MC

#;z

.ˇ; ˇ0I �#
˛/1, MCz .ˇ; ˇ

0I �#
˛/1, MCz .�˛; ˇ

0I �#
˛/1 and MCz .ˇ; �

0
˛I �

#
˛/1 for each path z, and the
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argument is similar to the previous case. Note that M.�˛; � 0˛I �
#
˛/0 consists of the unique reducible

connection. The relation (A-3) reduces to

m3ı2Cm4ı
0
2 D ı

#
2� d

#�2;

and this reduces to the counting of the boundary of MCz .�˛; �
0
˛Iˇ

#/1 whose codimension 1 faces are

MMz0.�˛; ˇ/0 �Mz00.ˇ; �
0
˛Iˇ

#/0; MMz.�
0
˛; ˇ
0/0 �Mz00.ˇ; ˇ

0
I �#
˛/0;

MMz0.�˛; �
0
˛I �

#
˛/0 �

MMz00.�
#
˛; ˇ

#/0; Mz0.�˛; �
0
˛Iˇ

#
1/�

MMz00.ˇ
#
1; ˇ

#/:

The relation (A-4) reduces to four identities:

d #�1C�1.d ˝ 1/C�1.�˝ d
0/��2.�v˝ 1/C�2.�˝ v

0/C�3.�˝ ı
0
1/C�4.ı1˝ 1/

D v#m1�m1.v˝ 1/C ı
#
2�1;1;

d #�2C .d ˝ 1/��2.�˝ d
0/D v#m2�m2.v˝ 1/Cm4.ı1˝ 1/;

d #�3C�2.�˝ ı
0
2/C�3d D v

#m3�m3vC ı
#
2�1;3��2ı1;

d #�4��2.ı2˝ 1/C�4d
0
D v#m4�m1.ı1˝ 1/�m4v

0
C ı#

2�1;3��2ı
0
1:

These are obtained by counting the boundaries ofMC

 0;z.ˇ; ˇ
0Iˇ#/1, MC
;z.ˇ; ˇ

0Iˇ#/1, MC
;z.ˇ; �
0
˛Iˇ

#/1

and MC
 0 .�˛; ˇ
0Iˇ#/1; see also [9, Remark 6.11].

A.2 Step II

We have
m0 D Œm01; m

0
2; m

0
3; m

0
4�

T
W C #
�! .C ˝C 0/�˚ .C ˝C

0/��1˚C�˚C
0
�;

�0 D Œ�01; �
0
2; �
0
3; �
0
4�

T
W C #
�! .C ˝C 0/�˚ .C ˝C

0/��1˚C�˚C
0
�;

�01 W C
#
1 !S :

�02 D Œ�
0
2;1; �

0
2;2; �

0
2;3; �

0
2;4�

T
WS ! .C ˝C 0/�1˚ .C ˝C

0/�2˚C�1˚C
0
�1;

Each component of the above maps is defined as follows:

hm01.ˇ
#/; ˇ˝ˇ0i D

P
z

#Mz.ˇ
#
Iˇ; ˇ0/0�

��.z/T �.z/;

hm02.ˇ
#/; ˇ˝ˇ0i D

P
z

#M�;z.ˇ
#
Iˇ; ˇ0/0�

��.z/T �.z/;

hm03.ˇ
#/; ˇi D

P
z

#Mz.ˇ
#
Iˇ; � 0˛/0�

��.z/T �.z/; hm04.ˇ
#/; ˇ0i D

P
z

#Mz.ˇ
#
I �˛; ˇ

0/0�
��.z/T �.z/;

h�01.ˇ˝ˇ
0/; ˇ#

i D
P
z

#M�;z.ˇ
#
Iˇ; ˇ0/0�

��.z/T �.z/;

h�02.ˇ˝ˇ
0/; ˇ#

i D
P
z

#M�� 0;z.ˇ
#
Iˇ; ˇ0/0�

��.z/T �.z/;

h�03.ˇ/; ˇ
#
i D

P
z

#M�;z.ˇ
#
Iˇ; � 0˛/0�

��.z/T �.z/;

h�04.ˇ
0/; ˇ#

i D
P
z

#M� 0;z.ˇ
#
I �˛; ˇ

0/0�
��.z/T �.z/;

h�01.1/; ˇ
#
i D

P
z

#Mz.ˇ
#
I �˛; �

0
˛/0�

��.z/T �.z/;
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�02;1.ˇ˝ˇ
0/D

P
z

#Mz.ˇ
#
Iˇ; ˇ0/0�

��.z/T �.z/; �02;2.ˇ˝ˇ
0/D

P
z

#M�;z.�
#
˛Iˇ; ˇ

0/0�
��.z/T �.z/;

�02;3.ˇ/D
P
z

#Mz.�
#
˛Iˇ; �

0
˛/0�

��.z/T �.z/; �02;4.ˇ
0/D

P
z

#Mz.�
#
˛I �
0
˛; ˇ
0/0�

��.z/T �.z/:

Proposition A.2 There are the following relations:

d˝ ım0 Dm0 ı d #;(A-9)

ı˝1 ım
0
D�01 ı d

#
C ı#

1;(A-10)

m0 ı ı#
2 D ı

˝
2 � d

˝
ı�02;(A-11)

d˝ ı�0C�0 ı d #
D v˝ ım0�m0 ı v#

C ı˝2 ı�
0
1��

0
2 ı ı

#
1:(A-12)

Proof The proof is similar to that of Proposition A.1. In this case, we consider the opposite cobordism
.W 0; S 0/.

A.3 Step III

Put .W o; So/ WD .W ıW 0; S ı S 0/. We define compositions of paths �# WD 
# ı �#, � WD 
 ı � and
�0 WD 
 0 ı � 0; see Figure 5. We regard the configuration space of connections over .W o; So/ as the
quotient of the space of SO.3/–adjoint connections by the determinant 1 gauge group G. Then there is an
exact sequence

G ,! Ge�H 1.W o
IZ2/;

where Ge is an SO.3/–gauge transformation and the second map gives the obstruction to lifting an
SO.3/–automorphism to an SU.2/–automorphism over the 1–skeleton. There is an action of Ge=G Š
H 1.W o;Z2/Š Z2 on the configuration space. In particular, there is an involution on the moduli space
M.W o; SoIˇ#; ˇ#

1/d and we denote its quotient by M.W o; SoIˇ#; ˇ#
1/
e
d

. We define

M�#Iz.W
o; SoIˇ#; ˇ#

1/
e
0 WD fŒA� 2Mz.W

o; SoIˇ#; ˇ#
1/
e
1 jH

�#
.ŒA�/D sg;

M�#�Iz.W
o; SoIˇ#; ˇ#

1/
e
0 WD fŒA� 2Mz.W

o; SoIˇ#; ˇ#
1/
e
2 jH

�#
.ŒA�/D s;H �.ŒA�/D s0g:

The cardinality of these moduli spaces is half of that of the usual ones. Assume that .W o; So/ is equipped
with a Riemannian metric with a long neck along the cylinder Œ0; 1�� .Y tY 0; K tK 0/. Then we have a
good gluing relation

M�#.W o; SoIˇ#; ˇ#
1/
e
0 D

F̌
;ˇ 0
M�#.W 0; S 0Iˇ#; ˇ; ˇ0/0 �M.W; S Iˇ; ˇ

0
Iˇ#
1/0

t
F̌
;ˇ 0
M.W 0; S 0Iˇ#; ˇ; ˇ0/0 �M
#.W; S Iˇ; ˇ0Iˇ#

1/0

t
F

ˇ 02C0�
M.W 0; S 0Iˇ#; �˛; ˇ

0/0 �M.W; S I �˛; ˇ
0
Iˇ#
1/0

t
F
ˇ2C�

M.W 0; S 0Iˇ#; ˇ; �˛/0 �M.W; S Iˇ; �
0
˛Iˇ

#
1/0:
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Figure 4: The family of metrics Go.

Let zm.W o;So;�#/ W
zC #
�!

zC #
� be an S–morphism whose components mo, �o, �o1 and �o2 are defined by

hmo.ˇ#/; ˇ#
1i D

P
z

#M�#;z.W
o; SoIˇ#; ˇ#

1/
e
0�
��.z/T �.z/;

h�o.ˇ#/; ˇ#
1i D

P
z

#M�#�;z.W
o; SoIˇ#; ˇ#

1/
e
0�
��.z/T �.z/;

�o1.ˇ
#/D

P
z

#M�#;z.W
o; SoIˇ#; �#

˛/
e
0�
��.z/T �.z/;

�o2.1/ˇ
#
D
P
z

#M�#;z.W
o; SoIˇ#; �#

˛/
e
0�
��.z/T �.z/:

Proposition A.3 We have that zm.W;S/ ı zm.W 0;S 0/ is S–chain homotopic to zm.W ıW 0;SıS 0I�#/.

Proof LetGo be the 1–parameter family of metrics which stretch the cobordism .W o; So/ as in Figure 4.
We modify the definition of the S–chain homotopy in [9, Proposition 6.16] in the following way:

hKo.ˇ#/; ˇ#
1i D

P
z

#
n
ŒA� 2

S
g2Go

M g
z .W

o; SoIˇ#; ˇ#
1/
e
0 jH

�#
.ŒA�/D s

o
���.z/T �.z/;

hLo.ˇ#/; ˇ#
1i D

P
z

#
n
ŒA� 2

S
g2Go

M g
z .W

o; SoIˇ#; ˇ#
1/
e
0 jH

�#
.ŒA�/D s;H �.ŒA�/D t

o
���.z/T �.z/;

hM o
1 .ˇ

#/; 1i D
P
z

#
n
ŒA� 2

S
g2Go

M g
z .W

o; SoIˇ#; �#/e0 jH
�#
.ŒA�/D s

o
���.z/T �.z/;

hM o
2 .1/; ˇ

#
i D

P
z

#
n
ŒA� 2

S
g2Go

M g
z .W

o; SoI �#
˛; ˇ

#/e0 jH
�#
.ŒA�/D s

o
���.z/T �.z/:

The rest of the argument is similar to [9, Proposition 6.16], and we can check that

H o
D

24Ko 0 0

Lo �Ko M o
2

M o
1 0 0

35
gives an S–chain homotopy from zm.W o;So/ to zm.WtW 0;StS 0/.

��#

Figure 5: Paths on .W o; So/.
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Proposition A.4 We have that zm.W ıW 0;SıS 0I�#/ is S–chain homotopic to id zC # , up to the multiplication
of a unit element in S .

Proof As in the proof of [9, Proposition 6.17], we consider the decomposition,

.W o; So/D .W c ; Sc/[ .S1 �D3; S1 �D1/

along .S1�S2; S1�2pt/. We arrange the perturbation data on .S1�D3; S1�D1/ and the gluing region
so that it is supported away from the moduli space of flat connections. Define the map zmC as zm.W o;So;�#/,
but using the metric on .W o; So/ which is stretched along the gluing region .S1 � S2; S1 � 2pt/. We
write mC, �C, �C1 and �C2 for corresponding components of zmC.

Let �1 be a generator of the S2n2pt factor and �2 be a generator of the S1 factor in �1.S1�S2nS1�2pt/.
The equivalence classes of the critical point set C of the Chern–Simons functional on .S1�S2; S1�2pt/
can be identified with

R˛.S1 �S2 nS1 � 2pt/D fˇ 2 Hom.�1;SU.2// j trˇ.�1/D 2 cos.2�˛/g=SU.2/

by the holonomy correspondence. The character variety R˛.S1 � S2 n S1 � 2pt/ is identified with
S1 as follows. Let �1 be a generator of �1.S1 � .S2 n 2pt// arising from the S2 n 2pt factor, and �2
be another generator arising from the S1 factor. Since trˇ.�1/ D 2 cos.2�i˛/, there is an element
gˇ 2 SU.2/ with gˇˇ.�1/g�1ˇ D e2�i˛ 2 S1. Since �1 and �2 commute and ˛ ¤ 0; 1

2
, there is

�.ˇ/ 2 Œ0; 2�/ and we have gˇˇ.�2/g�1ˇ D ei�.ˇ/ 2 S1. The correspondence ˇ 7! ei�.ˇ/ gives a
bijection R˛.S1 �S2 nS1 � 2pt/Š S1.

Let A be a singular flat connection which is the extension of � 2 C over .S1 �D3; S1 �D1/. Since all
elements in C have U.1/–stabilizer, dimH 0.S1 �D3 nS1 �D1I adA/D 1. Also,

dimH 1.S1 �D3 nS1 �D1I adA/D 1

by the computation of group cohomology of �1.S1 � .D3 nD1//. Thus the critical point set C D
R˛.S1 � .S2 n 2pt// is Morse–Bott nondegenerate. Consider the closed pair .S1 � S3; S1 � S1/ D
.S1 �D3; S1 �D1/[.S1�S2;S1�2pt/ .S

1 �D3; S1 �D1/. Then the gluing of the index formula is

2 indDAC dimCC dim Stab.�/D indDA#�A:

Since dimCD dim Stab.�/D 1 and indDA#�A D 0 by the index formula for a closed pair, indDA D�1.
This implies that

dimH 2.S1 �D3 nS1 �D1I adA/D 0;

and hence the gluing theory is unobstructed at the flat connection. Morse–Bott gluing theory tells us that
the moduli space M�#.W o; SoIˇ#; ˇ#

1/0 has the structure of the union of fiber products as follows:

M.W c ; Sc Iˇ#; ˇ#
1/d �CM�#.S1 �D3; S1 �D1/irred

d 0 for d C d 0 D 1;

M.W c ; Sc Iˇ#; ˇ#
1/1 �CM�#.S1 �D3; S1 �D1/red:

The first case is excluded for index reasons.
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Consider the restriction map
r 0 WM�#.S1 �D3; S1 �D1/red

! C:

By the holonomy condition H �#
.ŒA�/D 1 on the moduli space M.S1 �D3; S1 �D1/, the image of r 0

consists of two points �; � 02C. Hence, if the metric on .W o; So/ has a long neck along .S1�S2; S2�2pt/,
the moduli space M�#.W o; SoIˇ#; ˇ#

1/ is two copies of

M.W c ; Sc Iˇ#; �; ˇ#
1/0 �M.S

1
�D3; S1 �D1I �/red:

In particular,P
z

#M�#;z.W
o; SoIˇ#; ˇ#

1/0�
��.z/T �.z/

D2
P
z

P
z0ız00Dz

#Mz0.S
1
�D3; S1�D1I �/red���.z

0/T �.z
0/#Mz00.W

c ; Sc Iˇ#; �; ˇ#
1/0�

��.z00/T �.z
00/

D2
� P
k�0

ckZ
k
�P
z00

#Mz00.W
c ; Sc Iˇ#; �; ˇ#

1/0�
��.z00/T �.z

00/:

Since flat connections on .S1 �S2; S1 � 2pt/ uniquely extend to .S1 �D3; S1 �D1/, we have c0 D 1.

Since 2#M�#.W o; SoIˇ#; ˇ#
1/
e
0 D #M�#.W o; SoIˇ#; ˇ#

1/0, there is a unit element C1 2S and we have

hmC.ˇ#/; ˇ#
1i D C1

P
z

#Mz.W
c ; Sc Iˇ#; �; ˇ#

1/0�
��.z/T �.z/:

The same argument withM�#�.W
o;SoIˇ#;�;ˇ#

1/0,M�#.W o;SoIˇ#;�;�#
˛/0 andM�#.W o;SoI�#

˛;�;ˇ
#
1/0

instead of M�#.W o; SoIˇ#; ˇ#
1/0 gives

h�C.ˇ#/; ˇ#
1i D C1

P
z

#M�;z.W
c ; Sc Iˇ#; �; ˇ#

1/0�
��.z/T �.z/;

h�C1 .ˇ
#/; 1i D C1

P
z

#Mz.W
o; SoIˇ#; �; �#

˛/0�
��.z/T �.z/;

h�C2 .1/; ˇ
#
1i D C1

P
z

#Mz.W
o; SoI �#

˛; �; ˇ
#
1/0�

��.z/T �.z/:

Replacing the pair .S1 �D3; S1 �D1/ with .D2 � S2;D2 � 2pt/, we obtain the product cobordism
Œ0; 1�� .Y #Y 0; K #K 0/. By stretching the metric on Œ0; 1�� .Y #Y 0; K #K 0/ along the attaching domain,
the moduli space M.Œ0; 1�� .Y #Y 0; K #K 0/ˇ#; ˇ#

1/0 has the structure of the union of fiber products

(A-13) M.W c ; Sc Iˇ#; ˇ#
1/�CM.D

2
�S2;D2 � 2pt/red:

Let A0 be an extended flat connection on .D2�S2;D2� 2pt/ of the flat connection � . Such A0 uniquely
exists. Moreover, it can be checked that the point ‚ is unobstructed as follows. Consider the closed pair

.S4; S2/ WD .D2 �S2;D2 � 2pt/[.S1�S2;S1�2pt/ .S
1
�D3; S1 �D1/

and the glued reducible flat connection A0 #� A on .S4; S2/. Then we have

indDA0#�A D indDA0 C dim Stab.�/C dimCC indDA:

Since b1.X/D bC.X/D 0 and S Š S2, the index formula for a closed pair shows that indDA0#A D�1.
Moreover, indDA D�1 by the previous argument. Thus indDA0 D�2.
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Y

Y 0


#
�# Q�

Q�0 N� N�0

Figure 6: Paths on .W I ; SI /.

Since dimH 0.D2 � .S2 n 2pt/I adA0/D 1 and dimH 1.D2 � .S2 n 2pt/I adA0/D 0 by the computation
of group cohomology, dimH 2.D2 � .S2 n 2pt/I adA0/ vanishes.

Now, the fiber product structure (A-13) implies that there is a unit element C2 2S and

hmC.ˇ#/; ˇ#
1i D C2

P
z

#Mz.Œ0; 1�� .Y #Y 0; K #K 0/Iˇ#; ˇ#
1/0�

��.z/T �.z/:

Similarly

h�C.ˇ#/; ˇ#
1i D C2

P
z

#M�;z.Œ0; 1�� .Y #Y 0; K #K 0/Iˇ#; ˇ#
1/0�

��.z/T �.z/;

�C1 .ˇ
#/D C2

P
z

#Mz.Œ0; 1�� .Y #Y 0; K #K 0/Iˇ#; �#
˛/0�

��.z/T �.z/;

h�C2 .1/; ˇ
#
i D C2

P
z

#Mz.Œ0; 1�� .Y #Y 0; K #K 0/I �#
˛; ˇ

#
1/0�

��.z/T �.z/:

Finally, there is a unit element c 2S and we have

zmC D c zmŒ0;1��.Y #Y 0;K#K0/:

The right-hand side is S–chain homotopic to the identity since it is induced from the product cobordism.
By construction, the unit element c has the top term 1, and hence zm.W ıW 0;SıS 0I�#/ is S–chain homotopic
to the identity up to the multiplication of a unit element in S .

A.4 Step IV

Set N� WD � ı 
 , N�0 WD � 0 ı 
 0, Q� WD � 0 ı 
 and Q�0 WD � ı 
 0; see Figure 6.

Proposition A.5 We have that zm.W 0;S 0/ ı zm.W;S/ is S–chain homotopic to zm.W 0ıW;S 0ıS/.

Proof Let GI be a 1–parameter family of metrics stretching .W I ; SI / WD .W 0 ıW;S 0 ı S/ along
.Y #Y 0; K #K 0/. Let zm.W I ;SI / be the cobordism map for .W I ; SI /. We claim that there is an S–chain
homotopy H I such that

Qd˝H I
CH I Qd˝ D zm.W 0;S 0/ ı zm.W;S/� zm.W I ;SI /:

Let us write each components of H I as

H I
D

24KI 0 0

LI �KI M I
2

M I
1 0 0

35 ;
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where KI and LI are 4�4 matrices. Before defining each component of these matrices, we introduce the
notation

mIz .ˇ; ˇ
0; ˇ1; ˇ

0
1/ WD #

S
g2GI

M g
z .W

I ; SI ; ˇ; ˇ0Iˇ01; ˇ
0
1/�1;

mIı1;:::;ıd Iz.ˇ; ˇ
0; ˇ1; ˇ

0
1/

WD #
n
ŒA� 2

S
g2GI

M g
z .W

I ; SI ; ˇ; ˇ0Iˇ01; ˇ
0
1/d�1 jH

ı1.ŒA�/D s1; : : : ;H
ıd .ŒA�/D sd

o
;

where ı1; : : : ; ıd are elements in the set of paths f
#; �#; N�; N�0; Q�; Q�0g. Then each component of KI , LI ,
M I
1 and M I

2 is given as follows:

� components of KI

hKI11.ˇ˝ˇ
0/; ˇ1˝ˇ

0
1i D

P
z
mI
#Iz.ˇ; ˇ

0
Iˇ1; ˇ

0
1/�
��.z/T �.z/;

hKI12.ˇ˝ˇ
0/; ˇ1˝ˇ

0
1i D

P
z
mIz .ˇ; ˇ

0
Iˇ1; ˇ

0
1/�
��.z/T �.z/;

hKI13.ˇ/; ˇ1˝ˇ
0
1i D

P
z
mIz .ˇ; �

0
˛Iˇ1; ˇ

0
1/�
��.z/T �.z/;

hKI14.ˇ
0/; ˇ1˝ˇ

0
1i D

P
z
mIz .�˛; ˇ

0
Iˇ1; ˇ

0
1/�
��.z/T �.z/;

hKI21.ˇ˝ˇ
0/; ˇ1˝ˇ

0
1i D

P
z
mI
#;�#Iz.ˇ; ˇ

0
Iˇ1; ˇ

0
1/�
��.z/T �.z/;

hKI22.ˇ˝ˇ
0/; ˇ1˝ˇ

0
1i D

P
z
mI�#Iz.ˇ; ˇ

0
Iˇ1; ˇ

0
1/�
��.z/T �.z/;

hKI23.ˇ/; ˇ1˝ˇ
0
1i D

P
z
mI�#Iz.ˇ; �

0
˛Iˇ1; ˇ

0
1/�
��.z/T �.z/;

hKI24.ˇ
0/; ˇ1˝ˇ

0
1i D

P
z
mI�#Iz.�˛; ˇ

0
Iˇ1; ˇ

0
1/�
��.z/T �.z/;

hKI31.ˇ˝ˇ
0/; ˇ1i D

P
z
mI
#Iz.ˇ; ˇ

0
Iˇ1; �

0
˛/�
��.z/T �.z/;

hKI32.ˇ˝ˇ
0/; ˇ1i D

P
z
mIz .ˇ; ˇ

0
Iˇ1; �

0
˛/�
��.z/T �.z/;

hKI33.ˇ/; ˇ1i D
P
z
mIz .ˇ; �

0
˛Iˇ1; �

0
˛/�
��.z/T �.z/;

hKI34.ˇ
0/; ˇ1i D

P
z
mIz .�˛; ˇ

0
Iˇ1; �

0
˛/�
��.z/T �.z/;

hKI41.ˇ˝ˇ
0/; ˇ01i D

P
z
mI
#Iz.ˇ; ˇ

0
I �˛; ˇ

0
1/�
��.z/T �.z/;

hKI42.ˇ˝ˇ
0/; ˇ01i D

P
z
mIz .ˇ; ˇ

0
I � 0˛; ˇ

0
1/�
��.z/T �.z/;

hKI43.ˇ/; ˇ
0
1i D

P
z
mIz .ˇ; �

0
˛I �
0
˛; ˇ
0
1/�
��.z/T �.z/;

hKI44.ˇ
0/; ˇ01i D

P
z
mIz .�˛; ˇ

0
I � 0˛; ˇ1/�

��.z/T �.z/;
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� components of LI

hLI11.ˇ˝ˇ
0/; ˇ1˝ˇ

0
1i D

P
z
mI
#; N�Iz.ˇ; ˇ

0
Iˇ1; ˇ

0
1/�
��.z/T �.z/;

hLI12.ˇ˝ˇ
0/; ˇ1˝ˇ

0
1i D

P
z
mIN�Iz.ˇ; ˇ

0
Iˇ1; ˇ

0
1/�
��.z/T �.z/;

hLI13.ˇ/; ˇ1˝ˇ
0
1i D

P
z
mIN�Iz.ˇ; �

0
˛Iˇ1; ˇ

0
1/
��.z/

�
T �.z/;

hLI14.ˇ
0/; ˇ1˝ˇ

0
1i D

P
z
mIN�0Iz.�˛; ˇ

0
Iˇ1; ˇ

0
1/�
��.z/T �.z/;

hLI21.ˇ˝ˇ
0/; ˇ1˝ˇ

0
1i D

P
z
mI�#; N�Iz.ˇ; ˇ

0
Iˇ1; ˇ

0
1/�
��.z/T �.z/;

hLI22.ˇ˝ˇ
0/; ˇ1˝ˇ

0
1i D

P
z
mI�#; N�Iz.ˇ; ˇ

0
Iˇ1; ˇ

0
1/�
��.z/T �.z/;

hLI23.ˇ/; ˇ1˝ˇ
0
1i D

P
z
mI�#; N�Iz.ˇ; �

0
˛Iˇ1; ˇ

0
1/�
��.z/T �.z/;

hLI24.ˇ
0/; ˇ1˝ˇ

0
1i D

P
z
mI�#; N�0Iz.�˛; ˇ

0
Iˇ1; ˇ

0
1/�
��.z/T �.z/;

hLI31.ˇ˝ˇ
0/; ˇ1i D

P
z
mI
#; N�Iz.ˇ; ˇ

0
Iˇ1; �

0
˛/�
��.z/T �.z/;

hLI32.ˇ˝ˇ
0/; ˇ1i D

P
z
mIN�Iz.ˇ; ˇ

0
Iˇ1; �

0
˛/�
��.z/T �.z/;

hLI33.ˇ/; ˇ1i D
P
z
mIN�0Iz.ˇ; �

0
˛Iˇ1; �

0
˛/�
��.z/T �.z/;

hLI34.ˇ
0/; ˇ1i D

P
z
mI
Q�0Iz.�˛; ˇ

0
Iˇ1; �

0
˛/�
��.z/T �.z/;

hLI41.ˇ˝ˇ
0/; ˇ01i D

P
z
mI
#; N�0Iz.ˇ; ˇ

0
I �˛; ˇ

0
1/�
��.z/T �.z/;

hLI42.ˇ˝ˇ
0/; ˇ01i D

P
z
mI
Q�Iz.ˇ; ˇ

0
I � 0˛; ˇ

0
1/�
��.z/T �.z/;

hLI43.ˇ/; ˇ
0
1i D

P
z
mI
Q�Iz.ˇ; �

0
˛I �
0
˛; ˇ
0
1/�
��.z/T �.z/;

hLI44.ˇ
0/; ˇ01i D

P
z
mIN�0Iz.�˛; ˇ

0
I � 0˛; ˇ1/�

��.z/T �.z/;

� components of M I
1

M I
1;1.ˇ˝ˇ

0/D
P
z
mI
#Iz.ˇ; ˇ

0
I �˛; �

0
˛/�
��.z/T �.z/;

M I
1;2.ˇ˝ˇ

0/D
P
z
mIz .ˇ; ˇ

0
I �˛; �

0
˛/�
��.z/T �.z/;

M I
1;3.ˇ/D

P
z
mIz .ˇ; �

0
˛I �˛; �

0
˛/�
��.z/T �.z/; M I

1;4.ˇ
0/D

P
z
mIz .�˛; ˇ

0
I �˛; �

0
˛/�
��.z/T �.z/;

� components of M I
2

hM I
2;1.1/; ˇ˝ˇ

0
i D

P
z
mIz .�˛; �

0
˛Iˇ; ˇ

0/���.z/T �.z/;

hM I
2;2.1/; ˇ˝ˇ

0
i D

P
z
mI�#Iz.�˛; �

0
˛Iˇ; ˇ

0/���.z/T �.z/;

hM I
2;3.1/; ˇi D

P
z
mIz .�˛; �

0
˛Iˇ; �

0
˛/�
��.z/T �.z/; hM I

2;4.1/; ˇ
0
i D

P
z
mIz .�˛; �

0
˛I �˛; ˇ

0/���.z/T �.z/:
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component of (A-14) corresponding family of moduli spaces

(1, 1)
˚
ŒA� 2

S
g2GI M

g
z .W

I ; SI Iˇ; ˇ0Iˇ1; ˇ
0
1/0 jH


#
.ŒA�/D s

	
(1, 2)

S
g2GI M

g
z .W

I ; SI Iˇ; ˇ0Iˇ1; ˇ
0
1/0

(1, 3)
S
g2GI M

g
z .W

I ; SI Iˇ; � 0˛Iˇ1; ˇ
0
1/0

(1, 4)
S
g2GI M

g
z .W

I ; SI I �˛; ˇ
0Iˇ1; ˇ

0
1/0

(2, 1)
˚
ŒA� 2

S
g2GI M

g
z .W

I ; SI Iˇ; ˇ0Iˇ1; ˇ
0
1/2 jH


#
.ŒA�/D s;H�#

.ŒA�/D t
	

(2, 2)
˚
ŒA� 2

S
g2GI M

g
z .W

I ; SI Iˇ; ˇ0Iˇ1; ˇ
0
1/1 jH

�#
.ŒA�/D s

	
(2, 3)

˚
ŒA� 2

S
g2GI M

g
z .W

I ; SI Iˇ; � 0˛Iˇ1; ˇ
0
1/1 jH

�#
.ŒA�/D s

	
(2, 4)

˚
ŒA� 2

S
g2GI M

g
z .W

I ; SI I �˛; ˇ
0Iˇ1; ˇ

0
1/1 jH

�#
.ŒA�/D s

	
(3, 1)

˚
ŒA� 2

S
g2GI M

g
z .W

I ; SI Iˇ; ˇ0Iˇ1; �
0
˛/1 jH


#
.ŒA�/D s

	
(3, 2)

S
g2GI M

g
z .W

I ; SI Iˇ; ˇ0Iˇ1; �
0
˛/0

(3, 3)
˚
ŒA� 2

S
g2GI M

g
z .W

I ; SI Iˇ; � 0˛Iˇ1; �
0
˛/1 jH

N�0.ŒA�/D t
	

(3, 4)
S
g2GI M

g
z .W

I ; SI I �˛; ˇ
0Iˇ1; �

0
˛/0

(4, 1)
˚
ŒA� 2

S
g2GI M

g
z .W

I ; SI Iˇ; ˇ0I �˛; ˇ
0
1/1 jH


#
.ŒA�/D s

	
(4, 2)

S
g2GI M

g
z .W

I ; SI Iˇ; ˇ0I � 0˛; ˇ
0
1/0

(4, 3)
S
g2GI M

g
z .W

I ; SI Iˇ; � 0˛I �
0
˛; ˇ
0
1/0

(4, 4)
S
g2GI M

g
z .W

I ; SI I �˛; ˇ
0I � 0˛; ˇ1/0

Table 1

Then we can check that there are the following identities:

d˝KI CKId˝ Dm0m�mI ;(A-14)

v˝KI � d˝LI C ı˝2 M
I
1 CL

Id˝�KIv˝CM I
2 ı
˝
1 D �

0mCm0�C�02�1��
I ;(A-15)

ı˝1 K
I
CM I

1 d
˝
D�01mC�1��

I
1 ;(A-16)

�d˝M I
2 �K

I ı˝2 Dm
0�2C�

0
2��

I
2 :(A-17)

The identities above are proved by counting oriented boundaries of corresponding moduli spaces. For
example, such moduli spaces for identity (A-14) are given in Table 1. Other identities can be proved in
similar ways.

Proposition A.6 We have that zm.W 0ıW;S 0ıS/ is S–chain homotopic to id zC˝ .

Proof Consider a family of metrics G0I on .W I ; SI / which stretch the cobordism along .S3; S1/ as in
Figure 7. Let zmI be the map defined by a long stretched metric on .W I ; SI /. The family of metrics G0I

gives an S–chain homotopy between zm.W I ;SI / and zmI . Let .W c0 ; Sc
0

/ be a disjoint union

.Y � Œ0; 1� nD4; K � Œ0; 1� nD2/t .Y 0 � Œ0; 1� nD4; K 0 � Œ0; 1� nD2/:

We can also define zmI by counting instantons on .W c0 ; Sc
0

/. We will show that zmI is an isomorphism of
S–complexes. We obtain a pair of cylinders Œ0; 1�� .Y tY 0; K tK 0/ by gluing back two pairs of disks
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Figure 7: Family of metrics G0I .

.D4;D2/ to .W c0 ; Sc
0

/. Consider the character variety C0 with the holonomy parameter ˛ on .S3; S1/.
For 0 < ˛ < 1

2
, C0 is a one-point set which consists of the unique flat reducible �˛ , and the moduli space

M.D4;D2I �˛/0 also consists of one element ‚˛ which is the unique extension of �˛ to D4 nD2. The
computation of group cohomology of �1.S3 nS1/ shows that dimH 1.S3 nS1I ad �˛/D 0. Taking the
double of .D4;D2/, we have the relation of indices

2 indD‚˛ C 1D indD‚˛#‚˛ :

Moreover, indD‚˛#‚˛ D �1 by the index formula for the closed pair .S4; S2/. Thus indD‚˛ D �1
and H 2.D4 nD2I ad‚˛/D 0. In particular, the gluing along C0 is unobstructed. The Morse–Bott gluing
argument shows that

M.Œ0; 1��Y; Œ0; 1��KIˇ; ˇ1/d DM.Œ0; 1��Y nD
4; Œ0; 1��K nD2Iˇ; �˛; ˇ

0/d ;

and similarly for the pair .Y 0; K 0/. Thus

#M g1

z .W I ; SI ; ˇ; ˇ0Iˇ1; ˇ
0
1/D#Mz0.W

I ; SI Iˇ; �˛; ˇ1/#Mz00.W
I ; SI Iˇ0; �˛; ˇ

0
1/

D#Mz0.Y �Œ0; 1�;K�Œ0; 1�Iˇ; ˇ1/#Mz00.Y
0
�Œ0; 1�;K 0�Œ0; 1�Iˇ0; ˇ01/:

Therefore zm.W I ;SI / is S–chain homotopic to the morphism zmprod which is induced from the product
cobordism .Y t Y 0; K tK 0/� Œ0; 1�. The S–morphism zmprod is an isomorphism of S–complexes (see
[9, Lemma 6.29]), and in fact S–chain homotopic to the identity by the formal argument.
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