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There are several knot invariants in the literature that are defined using singular instantons. Such invariants
provide strong tools to study the knot group and give topological applications, for instance, the topology
of knots in terms of representations of fundamental groups. In particular, it has been shown that any
traceless representation of the torus knot group can be extended to any concordance from the torus knot to
another knot. Daemi and Scaduto proposed a generalization that is related to a version of the slice-ribbon
conjecture for torus knots. Our results provide further evidence towards the positive answer to this
question. We use a generalization of Daemi and Scaduto’s equivariant singular instanton Floer theory
following Echeverria’s earlier work. We also determine the irreducible singular instanton homology of
torus knots for all but finitely many rational holonomy parameters as Z /4—graded abelian groups.
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1 Introduction

1.1 Background

Floer homology is an infinite-dimensional analog of Morse homology. In the context of gauge theory,
instanton Floer homology (see Floer [14]), Heegaard Floer homology (see Ozsvéth and Szab6 [37]) and
monopole Floer homology (Kronheimer and Mrowka [30]) have provided strong topological invariants
for low-dimensional manifolds. Knot invariants have also been developed in Floer theories. This list of
knot invariants includes knot Floer homology introduced by Ozsvath and Szab6 [36] and Rasmussen [40]
in Heegaard Floer theory, and Kronheimer and Mrowka [31] in monopole Floer theory. In the field of
instanton Floer theory, invariants of knots were constructed by Floer [15] and Braam and Donaldson [1]
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via framed surgery of knots. It is conjectured that their instanton knot invariants are related to knot
invariants in Ozsvath and Szabé [36] and Rasmussen [40] by Kronheimer and Mrowka [31]. Collin
and Steer [3] and Kronheimer and Mrowka [32] developed other type invariants for knots. While knot
invariants in [15; 1] are related to invariants of 3—manifolds via surgery along knots, knot invariants
in [3; 32] are related to 3—manifold invariants via branched covering.

The advantage of instanton invariants is that they are directly related to fundamental groups of the knot
complement. For example, Kronheimer and Mrowka [29] show that the knot group 71(S3\ K) for a
nontrivial knot K C S3 admits nonabelian representation 71 (S3 \ K) — SU(2). This is a refinement of
the result by Papakyriakopoulos [38] which states that K C 3 is unknot if only if 71 (S3\ K) is infinitely
cyclic. A concordance analog of the result of Kronheimer and Mrowka [29] was given by Daemi and
Scaduto [8] using a version of instanton Floer theory. Daemi and Scaduto [8] also show the following
statement which is specific to torus knots:

Theorem 1 [8, Theorem 8] Let S: T, , — K be a given smooth concordance. Then any traceless
SU(2)-representation of 7r1(S>\ Tp,q) extends over the concordance complement.

Here T 4 denotes the (p, g)—torus knot in S 3, where p and ¢ are positive coprime integers. An SU(2)—
traceless representation of 771 (S3\ K) is an SU(2)—representation of 771 (S3\ K) which sends a homotopy
class of meridian pg of K to a traceless element in SU(2). The motivation of this theorem is related to a
version of the slice-ribbon conjecture. A concordance S: K — K’ is called ribbon concordance if the
projection S3 x [0,1] D § — [0, 1] is a Morse function without any local maximums. Consider a knot
K which is concordant to the unknot U. The slice-ribbon conjecture proposed by Fox [16] states that
there is a ribbon concordance from U to K under this assumption. A generalization of the slice-ribbon
conjecture by Daemi and Scaduto [8] is:

Conjecture 2 [8, Question 2] Let K be a knot which is concordant to the (p, g)—torus knot Ty, 4. Then
there is a ribbon concordance from Ty 4 to K.

A necessary condition to show that a concordance S: K — K’ is ribbon can be stated in terms of
representations of knot groups. For a topological space X, we write R(X, SU(2)) for the SU(2)—character
variety of X (ie the space of conjugacy classes of SU(2)-representations of w1 (X)).

Theorem 3 (Gordon [21, Lemma 3.1] and Daemi, Lidman, Vela-Vick and Wong [7, Proposition 2.1])
Let S: K — K’ be a ribbon concordance between two knots. Then the inclusioni: S3\ K — $3 x [0, 1]
induces a surjection i*: R(S3 x [0,1]\ S, SU(2)) = R(S3\ K, SU(2)).

Hence Theorem 1 gives a piece of evidence towards Conjecture 2. The traceless condition on representa-
tions of 71 (S3\ T} 4) arises from the specific type of knot invariants developed by Daemi and Scaduto [9].
In light of Theorem 3 and Conjecture 2, it is natural to ask the following question:

Question 4 Can we drop the traceless condition in Theorem 1?
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We will affirmatively solve this question. To explain our strategy, let us describe the technical background
of Daemi and Scaduto’s work. It mainly consists of three ingredients: singular gauge theory, equivariant
Floer theory and the Chern—Simons filtration.

Firstly, let us explain the notion of singular connections. Let K C Y be a knot in a 3-manifold. Roughly
speaking, an SU(2)—singular connection A4 is an SU(2)—connection defined over the knot complement
with the holonomy condition

. eZm'ot 0
(1-1) rlgl})Hol,L(r)(A%[ 0 e_zm]

where (1 (r) is a radius-r meridian of K C Y and « is a fixed parameter in (O, %) Here ~ indicates that the
two matrices are conjugate in SU(2). The parameter « is called the holonomy parameter of the singular
connection A. In particular, a singular flat SU(2)—connection corresponds to an SU(2)-representation of
1(Y \ K) which sends the meridian pg of knot K to an element which is conjugate to the matrix in (1-1).
Kronheimer and Mrowka developed a singular version of Yang—Mills gauge theory in [27; 28; 32]. These
Floer homology theories constructed via singular connections are called singular instanton homology.
Singular gauge theory has different features compared to nonsingular. In fact, singular Floer homology
cannot be defined over the coefficient ring Z for a general holonomy parameter «. To be more precise,
singular instanton Floer homology is defined over Z only for a = %. This is called the monotonicity
condition. Most of the works in singular instanton homology including [9; 8] impose the monotonicity
condition. This is why the statement of Theorem 1 includes the traceless condition.

Next, we discuss the equivariant Floer theory. Frgyshov developed the homology cobordism invariant
in [18; 19] based on the equivariant Floer theory for integral homology 3—spheres, which was introduced
by Donaldson [10]. The equivariant Floer theory introduced by Daemi and Scaduto [9] produces invariants
for a knot K in an integral homology 3—sphere Y, and this can be regarded as the counterpart of Frgyshov’s
work in singular gauge theory. Daemi and Scaduto’s construction uses in a crucial way the U(1)-reducible
singular flat connection 8 which corresponds to the conjugacy class of the representation

1 (Y\K)— Hi(Y \K;Z)— SU(2)

whose image of the meridian ug of K C Y is trace-free. Here m1(Y \ K) > H{(Y \ K;Z) is the
abelianization. In this situation, the construction which is similar to Floer’s instanton homology [14]
produces a chain complex Cy (Y, K) for a knot in an integral homology 3—sphere. Its homology group
I(Y, K) can be interpreted as a categorification of the knot signature for the case ¥ = $3. Daemi and
Scaduto [9] also introduced chain complexes which have the form

Ci(Y,K):=Co(Y,K)® Cor1 (Y. K) D Z.

Such objects are called S—complexes. This can be interpreted as a version of S!—equivariant Floer theory.
Let B(Y, K) be the configuration space of singular connections over (Y, K) with a holonomy parameter
o= %. Then there is a configuration space B(Y, K)o of framed connections. The Chern—Simons functional
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on B(Y, K) lifts to B(Y, K)o in an equivariant way. An S—complex C«(Y, K) is related to the lifted
S1_equivariant Chern—Simons functional on B(Y, K)o.

Another feature of Daemi and Scaduto’s construction is the Chern—Simons filtration of S—complexes.
While the usual instanton Floer theory is the analog of Morse theory on the configuration space, its filtered
version can be seen the Morse theory on the universal covering of the configuration space. The Chern—
Simons filtration gives more refined structures on S—complexes. The counterpart idea in nonsingular
instanton Floer theory was used by Daemi [5] and Nozaki, Sato and Taniguchi [35], which provided
homology cobordism invariants.

Any of the above versions of singular instanton Floer theories can be extended to arbitrary holonomy
parameters if the integer coefficient ring is replaced with a Novikov ring A by Echeverria’s work [12].
To be more precise, the holonomy parameter should satisty the technical condition Ay, k) (emioy £,
where A(y k) is the Alexander polynomial for K C Y. One of the flavors of Echeverria’s Floer homology
is a categorification of the Levine-Tristram signature when ¥ = §3. For a knot K in an integral homology
3—sphere Y, the Levine—Tristram signature is given by

oo (Y, K) :=sign[(1 — e*™ )V + (1 —e 4™y T,
where V is a Seifert matrix form of K C Y. For the case Y = S3, we omit Y from the notation.

Our strategy to drop the traceless condition from Theorem 1 is constructing a family of S—complexes for
general holonomy parameters.

1.2 Summary of results

First we state our main theorem, which gives the positive answer to Question 4:

Theorem 1.1 For a given knot K and a smooth concordance S : T, ; — K, any SU(2)-representation of
71(S3\ Tp,q) extends to an SU(2)-representation of 1 ((S> x [0, 1])\ S).

The proof of Theorem 1.1 requires the special property that all generators of singular instanton homology
for torus knots have odd gradings. The outline of the proof is as follows. After extending the condition
of Daemi and Scaduto [9], we define analogous knot Floer theory of [9] for all @ € Z, where 7 is a
dense subset of [0, %] This means that all SU(2)-representations of 71 (S3\ T 4) with the holonomy
parameter o € Z extend to the concordance complement. The limiting argument shows that this extension
property is true for all SU(2)-representations of 71 (S \ 7,4) with any holonomy parameter o € [0, %]
As described above, singular instanton knot homology (see Echeverria [12]) and its equivariant counterparts
are key tools for the proof, so we review the essential properties of these objects we use. We consider the
Novikov ring AZITLTT which is given by

AZITTLTD { > prd” ‘ pr€Z[T7,T], VC >0, #{p, # 0}y>c <00} .
reR
Algebraic € Geometric Topology, Volume 24 (2024)
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Let o be a parameter in (0, 5). We introduce the subring %y of AZ (7=1.71

g JEETNA) it s g,

TZDAEE 6] it > L

where £, = A2*T2. The geometric aspect of the subring %, is described in Section 3.2.

Theorem 1.2 Let . be an algebra over %,. Let K C Y be an oriented knot in an integral homology
3—sphere. Choose a holonomy parameter « € Q N (0, %) so that Ay, k) (e*™i®%) £ 0. Then we can
associate a 7, /4—graded module 12 (Y, K; A &) over . to this parameter. Moreover, it . is an integral
domain, we can associate a 7. /4—graded S—complex (éf(Y, K;Ay), d. x) to a given triple (Y, K, o)
with Ay, k) (e*™i®) =£ 0, up to S—chain homotopy equivalence.

The precise definition of an S—complex can be seen in Section 3.1. We call 12(Y, K; A &) the irreducible
singular instanton knot homology over . with the holonomy parameter a. For the case Y = S3, we drop
Y from the notation. The difference between the construction of our Floer homology /¥ (Y, K; A &) and
1(Y, K, @) introduced by [12] is the choice of local coefficients. The construction of (C¥(Y, K), d) and
(éf(Y, K), d, x) depends on additional data (metric and perturbation), however their chain homotopy
classes in the sense of S—complexes are independent of such choices.

Remark 1.3 To be more precise, we need to specify the choice of positive integer v € Z~¢, called the
cone angle, to define the invariant /2 (Y, K, A &). The details are included in Remark 3.9. As conjectured
in [12], we expect that the invariant /X (Y, K, A &) does not depend on the choice of cone angle v € Z -,
and hence it is reasonable to drop v from the notation. Similar remarks are applied to the dependence
of invariants C%(Y, K, A) and h% (Y, K) which appear later. For a given holonomy parameter o, we
always assume that the cone angle v is a large enough integer.

Remark 1.4 For the coefficient . = %,, we consider underlying groups of CX(Y, K; A ) and
C *(Y, K, Ay) as Z-modules. Then if we fix the choice of auxiliary data, there exists a functional
giving the (ZxR)-bigraded structure on sets of generators of these underlying groups. Moreover, they
have a filtered structure induced from the R—grading. The precise descriptions of the (Z xR )-bigrading
and the filtered structure are contained in Sections 3.2 and 3.4.

The following statement describes the behavior of S—complexes under the connected sum:

Theorem 1.5 Let .7 be an integral domain over %,,. Let K C Y and K’ C Y’ be two oriented knots in
1

integral homology 3—spheres. Fix a holonomy parameter o« € QQ N (O, 5) such that
A,y (€ ) Ayr g (€%) #0.
Then there is a chain homotopy equivalence of S—complexes
CIY#Y K#K';Ay) =~ CLY,K;Ay)®5 CE(Y' K} A).

Algebraic € Geometric Topology, Volume 24 (2024)
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The precise definition of a chain homotopy equivalence of S—complexes can be seen in Definition 3.3.
This is a generalization of the connected sum theorem by Daemi and Scaduto [9]. The method of the
proof of [9, Theorem 6.1] cannot be directly adapted to prove Theorem 1.5 since we have to deal with the
nonmonotonicity situation which arises for general holonomy parameters.

As described in [9], we can associate an integer-valued invariant which is called the Frgyshov type
invariant to a given S—complex. Our construction of S—complexes provides an integer-valued invariant
h%(Y, K) for a knot in a homology 3—sphere (Y, K). We call h% (Y, K) the Frgyshov invariant for
(Y, K) over . with the holonomy parameter o . We drop Y from the notation when ¥ = S3. Note that
Echeverria [12] also introduced the Frgyshov type invariant denoted by 4 (Y, K, «), which is constructed
from singular instanton Floer homology with a different local coefficient system from our setting. The
invariant h% (Y, K) satisfies the following properties:

Theorem 1.6 Let (Y, K) and (Y, K') be two pairs of integral homology 3—spheres and knots. Assume
thatx € Q N (O, %) satisfies A(Y,K)(e“”i"‘) #0and Ay’ k) (e*™i®) =£ 0. Then
e (Y #Y',K#K')=h% (Y, K)+h% (Y’ K').
Moreover, if (Y, K) and (Y’, K') are homology concordant, then
h%(Y,K)=h%(Y' K.

Let us consider a knot in 3. It has been shown that the Frgyshov type invariant in [9] reduces to knot
signature (see Daemi and Scaduto [8, Theorem 7]). The invariant 4%, reduces to the Levine—Tristram
signature as follows:

Theorem 1.7 Let .¥ be an integral domain over %,,. For any knot K C S3 and for a holonomy parameter
a € (0, %) NQ with Ag(e*™'®) + 0, the following equality holds:

h%(K) = —30a(K).

For a given knot K C S and integer [, we define a knot /K C S3 so that
# K ifl >0,
[K := { U (unknot) if/ =0,
#_1(—K) ifl <0,
where —K is the mirror of K with the reverse orientation. More strongly, S—complexes have the following
structure theorem:

Theorem 1.8 Let .7 be an integral domain over Z,. Then for a knot K in S3 and for a holonomy
parameter ¢ € Q N (0, %) with Ag(e*™%) # 0, there is a two-bridge torus knot T 5,41 such that
ATy i1 (@*1%) %0, 04(T2,2n+1) = —2 and the relation

CHK:Ay) = C(IT22n11: Ax)
holds, where [ = —%OQ(K).

Algebraic € Geometric Topology, Volume 24 (2024)
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For the proof of Theorem 1.8, it is essential to observe behaviors of morphisms of S—complexes induced
from cobordisms between pairs (Y, K) and (Y’, K’). In [8], techniques demonstrated by Kronheimer [25]
are used to describe behaviors of morphisms of S—complexes for the case o = %. However, such techniques
do not directly adapt to prove Theorem 1.8 because of the lack of the monotonicity condition.

Theorems 1.5 and 1.8 imply the Euler characteristic formula
(1-2) AU(K. Ag)) = 304(K)

(see Section 5.1). Since our grading convention of generators coincides with that of Echeverria [12], the
above argument also gives an alternative proof of the Euler characteristic formula in [12, Theorem 17] for
the case ¥ = S3.

Next, we focus on (p, g)—torus knot T 4 in the 3—sphere. We always assume that p and g are positive
coprime integers. The following is a characteristic property of the torus knot and a key lemma for the
proof of Theorem 1.1. Let Ry (Y \ K, SU(2)) be the space of conjugacy classes of SU(2)-representations
of 71(Y \ K) with the holonomy parameter «. Let R (Y \ K, SU(2)) be its irreducible part.

Theorem 1.9 For any « € [0, %] with A, ,(e*™1%) #0,

IR (S*\ Tpq, SUQR))| = —506(Tp,q)-
Here |S| for a set S denotes the size of this set. In [23], Herald introduced the signed count of elements
in the character variety R (S3\ K, SU(2)) for a general knot K with a fixed holonomy parameter. One
first perturbs R (S3 \ K, SU(2)) into a discrete set R;’h (S3\ K,SU(2)) and then associates a sign to

each element of this set. The sum of these signs is Herald’s signed count of R (S>\ K, SU(2)), which
we denote by #R (S 3\ K,SU(2)). In general:

#R% (S \ K,SU(2)) = —30a(K).

See Herald [23, Corollary 0.2] and Lin [33] for the case o = %. In the case K = Tp 4, the character
variety R (S 3\ Tp,q,SU(2)) is already discrete and one does not make any perturbation. Theorem 1.9
implies that all elements of R*(S3\ T}, 4, SU(2)) have positive signs.

Theorem 1.9 implies that C¥ (T, 4; A ») is supported only on the odd graded components. In particular,
its homology groups are isomorphic to chain complexes,

If(Tp,q; AV) = Cf(Tp,q; Ay/),

since all differentials of chain complexes are trivial. This can be interpreted as the counterpart of the
computation of instanton homology of Brieskorn homology 3—spheres; see Fintushel and Stern [13].

Theorem 1.7 implies that rank C¥(Tp 4; A ») = h% (Tp,q), and by the definition of the invariant /% :

Algebraic € Geometric Topology, Volume 24 (2024)
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Theorem 1.10 Let . be an algebra over %,,. For o € (0, %) NQ with Ar,, (e*7i®) =£ 0, there is an
isomorphism

~ =0aTo.)/4] oy =0 (Tp.q)/4]
I (Tpqs Ay) = (7 7 7o

as a 7./ 4—graded abelian group.

Theorem 1.10 describes the grading of generators of the Floer chain and it is independent of the choice
of local coefficient system. A similar structure theorem holds for singular instanton knot homology
introduced by Echeverria [12].

Theorem 1.8 implies that S—complexes for knots are determined by the Levine—Tristram signature without
the (Z xR)-grading structure. On the other hand, the R—grading from the Chern—Simons filtration can
be expected to have stronger information on the knot concordance. In upcoming work of Daemi, Sato,
Scaduto, Taniguchi and the author [6], relying on the results here, we will introduce a generalization of
the I'—invariant of Daemi and Scaduto [9] for rational holonomy parameters, which can be regarded as a
gauge-theoretic refinement of the Levine—Tristram signature. Our techniques are also used in the future
work of Daemi and Scaduto to construct families of hyperbolic knots that are minimal with respect to the
ribbon partial order; see Gordon [21, Conjecture 1.1].

1.3 Outline

In Section 2, we review the background of SU(2)-singular gauge theory for rational holonomy parameters.
We also introduce the generalized definition of negative definite cobordism. In Section 3, we construct
Floer chain groups and S—complexes parametrized by holonomy parameters ¢, and introduce the Frgyshov
type invariant. The argument is almost parallel to [9; 8], however, we need a careful choice of local
coefficient system if we introduce the bigraded structure on the Floer chain complex. We also prove
Theorem 1.6. In Section 4, we prove the Levine—Tristram signature formula for torus knots (Theorem 1.9).
In the proof of Theorem 1.9, we use the correspondence of singular flat connections and nonsingular flat
connections over the branched covering space. We also use the pillowcase picture of the SU(2)—character
variety for the knot complement space. We prove Theorems 1.7, 1.8 and 1.10 in Section 5.1, and finally, we
give the proof of our main theorem (Theorem 1.1) in Section 5.2. The bigraded structure of S—complexes
plays an important role in the proof of the main theorem. The appendix consists of the proof of the
connected sum theorem (Theorem 1.5).

Acknowledgments The author would like to thank Aliakbar Daemi for his introduction to singular
instanton knot homology, helpful suggestions and answering many questions on papers [9; 8]. The author
would also like to thank Kouki Sato and Masaki Taniguchi for their helpful discussions. This work is
supported by JSPS KAKENHI grant JP21J20203.
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2 Background on singular instantons

In this section, we review singular gauge theory, mainly developed by Kronheimer and Mrowka [32].
We also give a generalization of the setting of singular SU(2)—gauge theory adopted by Daemi and
Scaduto [9; 8].

2.1 The space of singular connections

We review the construction of singular instantons over a closed pair of a 4-manifold and a surface. Let X
be a closed and oriented smooth 4—manifold and S be a closed and oriented embedded surface in X.
Let N be a tubular neighborhood of S in X. We identify N with a disk bundle over S and dN with
a circle bundle over S. Let 1 be a connection 1-form on a circle bundle dN. This means that 7 is
U(1)—invariant. We fix a decomposition of the SU(2)-bundle £ — X over the embedded surface S as
E|s = L& L*, where L is a U(1)-bundle over S. This decomposition extends to N. We define two
topological invariants,
k=c2(E)[X] and [ =—ci(L)[S].

Here k is called the instanton number, and / is called the monopole number.

Next, we fix a connection Ag over X of the form

b 0

Here b is a connection over L. This means that A° reduces to a U(1)—connection over S. We give the
polar coordinates (r, §) € D? on each fiber of N. Let 1 be a I-form obtained by a pulled-back 1-form on
dN which coincides d6 on each fiber, and ¥ be a cutoff function supported on N. We define the singular
base connection A% by

0
A% = Ag+iv |¢

where o € (0, %) Here « is called the holonomy parameter. Recall that 7 is defined only on N \ S, but
extends by 0 to X \ S after cutting off by . A% is a connection over X \ S. Let gg be the adjoint bundle
of E. Fora e Q1 (X \ S,gg), A% + a is called a singular connection.

Before defining the space of singular connections, we have to introduce functional spaces. We fix an
orbifold metric on X, which can be written in the form

2
g’ :du2+dv2+dr2+l’;—2d92

on N, where (u, v) is a local coordinate of S. We say that this orbifold metric has cone angle 277 /v. Then
(X, g") has a local structure U/Z,, near the singular locus S, where U is an open set in R*. The model
connection A% induces an SO(3)-adjoint connection on gg. We define the covariant derivative 6140( on
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the bundle A" ® g using the adjoint connection of A% and the Levi-Civita connection with respect to
the metric g¥. Let F — X be an orbifold vector bundle. The Sobolev space L,I; 4o (X'\'S, F) is defined
as the completion of the space of smooth sections of ' — X by the norm

m
517, =3 [ 1¥aesl? avoler
m.ae  —IJX\S

If we use orbifold metrics, the “Fredholm package” works. Let d;;, QUX\S,g5) = QT (X\S,gg) be
the linearized anti-self-dual operator defined by the metric g¥, and d ., : Q1(X\ S, gr) — Q°(X\ S.gg)
be the formal adjoint of the covariant derivative for the metric g”. Consider the elliptic operator Do =
—djo @ d;x acting on the Sobolev space

(2-1) LP u(X\S. N ®gg)—LE | 1o(X\S.(A’®AT)®gp).

Proposition 2.1 Let o be a rational holonomy parameter of the forma = p/q € (0, %) N Q. Choose a
cone angle 25t /v of orbifold metric so that 2vp/q € Z. Then the operator D 4« and its formal adjoint are
Fredholm, and the Fredholm alternative holds.

Let A%, be the adjoint of the singular connection A* and w: U — U/Z, be an orbifold chart with respect
to the orbifold metric g¥. If v € Z~¢ is chosen as in Proposition 2.1, the lift of the adjoint connection of
* A% has the asymptotically trivial holonomy along a small linking of the singular locus. Thus 7 * A%
extends smoothly over U. This means that AS; defines an orbifold connection. All analytical argument
reduces to the orbifold setting. From now on, we always fix v as in Proposition 2.1 for a given rational
holonomy parameter.

Assume that m > 2. The space of singular connections with a holonomy parameter o € (0, %) is given by
AX.S.0) ={A%+a|ae L a(X\S.A'®gE)}.

This is an affine space as the nonsingular case. Notice that A(X, S, «) is independent of the choice of the
base connection A*. We also introduce the group of gauge transformations,

G(X.S)={geAu(E)|ge L2 | 4(X\S End(E))}.
There is the smooth action of G(X, S) on A(X, S, «), and we can take the quotient.
B(X,S,a) =AX,S,a)/G(X,S).

A singular connection with the O—dimensional stabilizer for the action of G(X, §) is called an irreducible
connection. A singular connection is called reducible if it is not irreducible. The quotient space B(X, S, «)
has a smooth Banach manifold structure except for orbits of reducible connections. The set of gauge
equivalence classes of solutions for the anti-self-dual equation

M%(X,S)={[A] € B(X.S.a)| F{ =0}

Algebraic € Geometric Topology, Volume 24 (2024)
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is called the moduli space of singular anti-self-dual connections. M (X, S); denotes the subset of
M*(X,S) with expected dimension d. For a generic orbifold metric with a fixed cone angle, the
irreducible part of M*(X, S)y is a smooth manifold of dimension d = ind(d; @ d:), where [A] €
M*(X,S)y. It M¥(X, S)4 consists of reducible connections, we modify the dimension of the moduli
space so that d = ind(d; @ dj’) + dim H?, where H f1 is an i Mcohomology group of the deformation
complex. The index of the ASD-operator d; & d: is given by

ind(d} ®df)=8k+4—-3(1—b"+b%)—2(g(S) - 1),

where g(S) is the genus of the surface S. The index formula for the closed pair (X, S) does not depend on
the holonomy parameter «. On the other hand, the energy integral « (A) = || F4||  » for an ASD-connection
A is given by

k(A) =k + 20l —a?S-S.

We always assume that an integer v > 0 is chosen large enough for a fixed holonomy parameter o €
Qn (0, %), under the condition 2av € Z. Such choice of v is related to the bubbling and compactification
of moduli spaces. The details are described in [27; 28].

2.2 The Chern-Simons functional

We discuss singular connections over 3—manifolds. Let Y be an oriented integral homology 3—sphere and
K be an oriented knot in Y. Let E be an SU(2)-bundle over Y. This is always topologically trivial. We
fix a reduction of E to a line bundle over K as E|x = L @ L*, and fix orbifold metric g” along K as in
Section 2.1. For a fixed « € Q N (O, %), we choose v as in Proposition 2.1. We can similarly define the
spaces of singular connections and gauge transformations:

A(Y.K,0)={A%+alael? ,(Y\K.gp)}. G(Y.K)={geAut(E)|geL2 | 4o(Y\K End(E))}.

We define the quotient
B(Y,K,a)=A(Y,K,a)/G(Y, K).

We use the notation A, (Y, K, «) if we wish to emphasize that the space of singular connection is defined
by the completion of the Sobolev norm I:,Zn.

We describe the topology of G(Y, K) and B(Y, K, «). There are two other kinds of groups of gauge
transformations,

Gk ={g € Aut(L|g)} and GX(Y.K)={g e Au(E)|g|g =id}.
Then there is the exact sequence
1-6K¥. K) = G(Y.K) - Gk — 1.

There is the map G(Y, K) — Z & Z given by d(g) = (k,l), where k = deg(g: Y — SU(2)) and
| =deg(g|x: K — U(1)), and this map induces the isomorphism

m(G(Y,K)=ZZ.
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Using the homotopy exact sequence induced from the fibration G(Y, K) — A(Y, K, o) — B(Y, K, «), we

also have the isomorphism
m(BY,K,a)=Z&Z.

We define an L2—inner product on tangent spaces of A(Y, K, ) as follows:
{a,b) =/ —tr(a A *b).
Y\K

The *—operator is given by the orbifold metric g”. The Chern—Simons functional CS: A(Y, K, «) — R is
given by the formal gradient .
rad(CS)y = —5 * F,
grad(C8)q = —5 * Fy

with respect to the above L?—inner product on 7 A(Y, K, ). This uniquely determines CS up to a constant.
A e A(Y, K, @) is a critical point of CS if only if F4 = 0. The critical point set of CS is a space of flat
connections on Y \ K such that their holonomy along the meridian is conjugate to

eZnia 0
0 e—2nia .

Let Crit be the critical point set of the Chern—Simons functional CS: A(Y, K,«®) — R and Crit* =
CritN A*(Y, K, ). Let €(Y, K, @) and €*(Y, K, &) be images of Crit and Crit* by the natural projection
A, K,a) - B(Y, K, a). Then

C(Y,K,0) =R (Y \ K,SUQ2)) and €*(Y,K,x) =R,(Y \ K,SU(2))
by the holonomy correspondence of flat connections and representations of the fundamental group.

We have to perturb the Chern—Simons functional to achieve transversality. This is done by introducing a
cylinder function associated with a perturbation = € P

fri ALY, K, a) > R,

which we will construct in Section 2.4. Let Crit, be the critical point set of CS + f; and Crit}, =
Crit, N A*(Y, K, a). Their orbits of gauge transformations are denoted by € (Y, K, «) and €} (Y, K, @).

We define (perturbed) topological energy £, (y) of a path y: [0, 1] — A(Y, K, «) as
(2-2) En(y) = 2{(CS + fr) (¥ (1)) = (CS + fr) (v (0))}.
We also define the (perturbed) Hessian of 4 € A(Y, K, «) as
Hessg,r(a) = *dga + DV |a(a),
where V;; is a gradient of f, and DVy |4 is its derivative at A.

For each A € A(Y, K, o), we can regard the Hessian as the operator,
Hessan: Ly, 4a WV \K A ®@9E) > Ly 4oV \ K. A' ®0E).
Definition 2.2 A € Crit}; is called nondegenerate if Hessg |Ker(d;';) is invertible.
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This means that the Hessian is nondegenerate to the vertical direction of the gauge orbit. For irreducible
critical points of the unperturbed Chern—Simons functional, there is the following criterion for the
nondegeneracy condition:

Proposition 2.3 [32, Lemma 3.13] A critical point A € Crit* is nondegenerate if only if the kernel of
the map
H'(Y \ K;adp) > H'(uk;ad p)

is zero, where this map is induced by the natural embedding ug — Y \ K and p: w1 (Y \ K) — SU(2) is
the representation corresponding to the flat connection A.

We say that [4] € €, is nondegenerate if one of its representatives A € Crit, (and hence all) are
nondegenerate.

The nondegeneracy condition at the reducible critical point is given by a constraint on the holonomy
parameter. Let 6, be the gauge equivalence class of the reducible flat connection corresponding to
the conjugacy class of an SU(2)-representation of 71 (Y \ K) which factors through the abelianization
Hi(Y \ K,Z) and has a holonomy parameter «. Since Y is an integral homology 3—sphere, such 6y
uniquely exists. The following is obtained as a corollary of [32, Lemma 3.13]:

Proposition 2.4 [12, Lemma 15] The unique flat reducible 0y is isolated and nondegenerate if only if
Ay, k) (€¥1¥) £ 0.

Let us fix the definition of the Chern—Simons functional. We fix a reducible flat connection éa which
represents 0, and put the condition CS(6y) = 0. Then the R—valued functional CS is determined up to
the choice of a representative of 6. From now on, we fix a representative 6 for each pair (Y, K).

2.3 The flip symmetry

The flip symmetry is an involution that acts on a family of configuration spaces ere(O,l /2nQ B Y. K, o).
1

The flip symmetry changes holonomy conditions as « + 5 — . The 4-dimensional version is introduced
in [27], and the 3—dimensional version is similarly defined in [9]. We generalize the 3—dimensional version
of the flip symmetry as follows. Let y € H1(Y \ K, Z,) = 7, be a generator. Since H' (Y \ K, Z,) =
Hom(my (Y \ K), Z3), we can regard y as a representation y: w(Y \ K) — Z,. The representation y
satisfies y(uk) = —1, and forms a flat line bundle L, over Y \ K with a flat connection corresponding
to x. Since L is a trivial line bundle and there is an isomorphism E|y\ g = E|y\x ® Ly, we regard a
connection A ® y on E|y\ g ® Ly as a connection on E|y\ g. Thus the action of y € HYY \ K,Z53) on

Uae(o,l/z)m(@ B(Y, K, ) is defined by
1Al =[A® x].
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This action is called the flip symmetry, and gives the identification
B(Y,K,a) =B(Y.K, 3 —a).
In particular, it defines the involution on B(Y, K, 7).

The flip symmetry can be restricted to the space Uae(O,l /2)n@ Ra(Y \ K, SU(2)). In this case, the action
of y € HY(Y \ K, Z5) is simply described as y[p] = [p- x] where p- y: m1 (Y \ K) — SU(2) is the
SU(2)-representation defined as (p- y)(g) := p(g) x(g) for g € m1 (Y \ K). If p satisfies

eZnia 0
IO(MK) ~ |: 0 e—Znia:| ’
then

p2mi(1/2—0) 0
(o 0 (K) ~ [ 0 e—2ni(1/2—a)] .

2.4 Holonomy perturbations

In this subsection, we review the construction and properties of the perturbation term of the Chern—Simons
functional introduced by Floer [14] and Braam and Donaldson [1], and here we follow the notation of
Kronheimer and Mrowka [32] and Daemi and Scaduto [9].

Let g: S x D2 — Y \ K be a smooth immersion of a solid torus. Then (s,z) € S x D? denotes its
coordinates, regarding S! as R/Z and D? as the unit disk in C. Let Gg — Y be the bundle of the
group whose sections are gauge transformations of E. This is defined by Gg = P Xgy(2) SU(2), where
P is the corresponding SU(2)-bundle, and SU(2) acts in the obvious way on P and by conjugation
on the SU(2)—factor. Hol,(A): D? — ¢*(Gg) is a section of ¢*(Gg) which assigns the holonomy
Hol,(— ;)(A) of connection A € A(Y, K, o) along the loop g(—, z): S! - Y\ K toeach z € D?. Next,
we repeat the above constructions for an r—tuple of smooth immersions of solid tori

q=(q1.-...4r).
Assume that there is a positive number 7 > 0 such that
(2-3) qi(s,z) =q;(s,z) forall (s,z) € [-n,n]x D2

Then there are identifications
4/ (Gg) = q; (GE)

over [—1,n] x D2, and ¢*(G%;) denotes the fiber product of ¢} (GE).....q;(Gg) over [-n,n] x D2.
Then we can construct a section Hol, (A4): D? - q*(G'%) which assigns

(HOlql(—,z) (A), cees HOlqr (=,2) (A)) S SU(Z)r

for each z € D?. Next, we choose a smooth function on SU(2)” which is invariant under the diagonal action
of SU(2) on SU(2)" by the adjoint action on each factor. This smooth function induces # : ¢*(Gg) — R.
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Definition 2.5 Holy(A) and / are as above. Let j1 be a 2—form on D? such that [p2 = 1. A smooth
function f: A(Y, K,a) — R of the form

fdy= [ holy ()

is called a cylinder function.

Cylinder functions are determined by the choice of an r—tuple ¢ and a function /. Note that the construction
of cylinder functions is gauge invariant. Let P be the space of perturbations; see [32] for details. For each
7 € P, we can associate a cylinder function f;;. We call f; the holonomy perturbation and CS + f;; the
perturbed Chern—Simons functional.

Proposition 2.6 There is a residual subset of the Banach space of perturbations P’ C P such that, for any
sufficiently small = € P’, the perturbed Chern—Simons functional CS + f; has the nondegenerate critical
point set Crit}. and its image €% in B*(Y, K, ) is a finite point set. Moreover, the reducible critical point
8y is unmoved under the perturbation and is nondegenerate if Ay, k) (e*7i@) £ (.

Proof The finiteness property follows from a similar argument as in [32, Lemma 3.8]. The nondegeneracy
condition follows from the fact that f;; is dense in C °°(S) for any compact finite-dimensional submanifold
S C B*(Y, K, a); see [10, Section 5] for details. The argument in [9, Subsection 2.4] is adapted to show
that, for a suitable choice of an SU(2)—invariant smooth function /4, the unique flat reducible 6, is
unmoved under small perturbations. By Proposition 2.4, the unique flat reducible 6y, is still isolated and
nondegenerate for such perturbations under the condition Ay k) (emi®y £, |

2.5 The moduli space over the cylinder

We discuss trajectories for the perturbed gradient flow. Let (Z, S) = R x (¥, K) be a cylinder equipped
with a product metric gy + d¢. We introduce moduli spaces of instantons over the cylinder. E denotes
the pullback of the SU(2)-bundle £ — Y by the projection R x ¥ — Y. Consider a connection A on E
of the form A = B(t) + Cdt, where B(t) is a t—dependent singular connection on Y \ K. Let ¢ and S
be elements in €}, and let By and B; be their representatives in gauge equivariant classes. Consider a
singular connection Ag over the cylinder (Z, S) such that

Aoly\k)x{sy = B1 for t >0 and Aol(y\k)x{ry = Bo for 1 < 0.

Ay defines a path y: R — B(Y, K, o) by sending ¢ to [B(¢)], and z denotes its relative homotopy class in
1 (B(Y. K, a); Bo. 1)

Then we define the space of singular connection indexed by z:

A;(Z,S;Bo, B) ={A| A—Age L% , (Z\S,A' ® gg)}.

m’AO
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We also define the group of gauge transformations:
G:(Z.S) ={g e Aut(E) | V5 g € L*(Z\ S.End(E)). k =1,....m+1}.

The group G, (Z, S) actson A;(Z, §). Taking the quotient gives the configuration space B;(Z, S; Bo, B1)-
We introduce the moduli space of (perturbed) instantons over the cylinder associated with the perturbed
Chern—Simons functional CS + f7 . This is the moduli space of solutions of the perturbed ASD-equation

MZ (Bo, B1) = {[A] € B:(Z. S; Bo, B1) | Fif + Ve(4) = 0},

Here Vy is a term arising from the perturbation f;. The perturbed version of the ASD-complex is given by

df+DV,
Q%Z\ S, g5) 4> QY(Z\ S, gg) A QT (Z\ S, gE).

We consider the Fredholm operator
Dag: Ly 4,(Z\S. A ®g8) = L3y 4,(Z\S. (A’ ® AT) @ gR)
givenby Dy n = —dj @ (d: + DVy) and define the relative Z—grading for Bo, f1 € €5 (Y, K, ) as

gr;(Bo. B1) = ind(Dg,x).

where z is a path represented by A. Note that ind D4 - is independent of the choice of perturbation &
since the term DIZ, is a compact operator. The following proposition gives the well-defined mod-4
grading on the critical point set:

Proposition 2.7 [32, Lemma 3.1] Letz € w1 (B(Y, K, ®)) be a homotopy class represented by a path
which connects B and g*(B), where § = [B] and d(g) = (k,l). For § € €* and a homotopy class
zem (B, K,a); ), we have

gr, (B, B) =8k +4l1.

The mod-4 value of the Z—grading is independent of the choice of the homotopy class z, and hence we
can write

gr(Bo. B1) = gr;(Bo, B1) mod 4.
We also define the absolute Z—grading by
g1 (B. 6a) = ind(Dan: L7 — L3, ).

where qbizm is a weighted Sobolev space with a weight function ¢ which agrees with e8It over two ends
of the cylinder. Here § > 0 is chosen to be small enough. Similarly, we can define the mod-4 grading

gr(f) = gr,(B.6y) mod 4.

The moduli space M7 (Bo, B1) is called regular if the operator D4  is surjective for all [A] € M (Bo, B1).
For a generic choice of perturbation, the moduli space M7 (B0, B1) is a regular and smooth manifold
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of dimension gr,(Bo,B1). We explicitly write M (Bo, B1)q if the moduli space M (Bo,p1) has
dimension d, and write MZ” (Bo.B1)a—1 = MJ (Bo. B1)a/R. The argument in [10, Section 5] is adapted
to our situation, and we have the following properties:

Proposition 2.8 Let o € (O, %) be a holonomy parameter with Ag (e*™'®) % 0 and 7o € P’ be a small
perturbation such that €, = {0y} U @,";0 consists of finitely many nondegenerate points. Then there is a
small perturbation = € P’ such that

(i) frx = fro in a neighborhood of €,
(i) €7 =y,

(iii) MJ (B1. B2) is regular for all homotopy classes z and critical points 1 and 5.

Proof First, we fix a perturbation g € P as in Proposition 2.6. Then for each homotopy class z, we can
find a perturbation 7, € P which is supported away from critical points and the corresponding moduli
space is regular. This essentially follows from the argument in [10, Section 5]. Since the subset P, of
regular perturbations as above forms an open dense subset in P, we can find a desired perturbation 7 in
the countable intersection (), P;. |

From now on, we assume that the perturbation 7 € P always satisfies the properties in Proposition 2.8
and we drop 7 from the notation MJ (B1, B2).

2.6 Compactness

Consider a relative homotopy class z € w1 (B(Y, K, ), B1, B2). If B1 = B> then we assume that z is a
nontrivial homotopy class. Elements in M, (B1, B2) are called unparametrized trajectories.

Definition 2.9 A collection ([41],...,[4]]) € le (B1,B2) x -+ x le (Bi—1, B1) of unparametrized
trajectories is called an unparametrized broken trajectory from 1 to B;. If the composition of paths
z10-+-0z; is contained in the homotopy class z, then M F(B1, B;) denotes the space of unparametrized
broken trajectories from 8 to f;.

The compactness property of moduli spaces is as follows; see also [32, Proposition 3.22].

Proposition 2.10 Let 81,2 € €, and assume that dim M,(f1, B2) < 4. Then the space of un-
parametrized broken trajectories M +(B1, B2) is compact.

We can assign the energy £ (z) to a homotopy class z. In singular gauge theory for general holonomy
parameters, the counting #| J, M (B1. B>) with gr,(B1,B2) = 1 can be infinite. Instead, we use the
following finiteness result:

Proposition 2.11 [32, Proposition 3.23] For a given constant C > 0, there are only finitely many
critical points 1 and B, and homotopy classes z € 71 (B; B1, B2) such that the moduli space M, (81, B2)
is nonempty and £, (z) < C.
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Thus
U M:(B1.82)0

En (ZZ)<C
is a finite point set for any C > 0.

The gluing formula of the index tells us

(2’4) grz(,B07 9(1) +1 +gfz/(9a, ,81) = grz’oz(IBO’ ﬂl)

since 0 has a stabilizer S'. From this relation, we conclude that any broken trajectories in M, (Bo, B1)a
do not factor through 6,, if the dimension of M;(Bo, B1)4 is less than 3.

2.7 Cobordisms

Let (W, S) be a pair of an oriented 4-manifold and an embedded oriented surface such that )W =Y’'LI(-Y)
and 0S = K U K'. We call (W, S) the cobordism of pairs and write (W, S): (Y, K) — (Y, K’). Set

WF,81):=Reox (Y, K)U(W,S)URso x (Y, K').

We fix a metric on W\ ST with a cone angle 27/ v and cylindrical forms on each end. Let 8 € B(Y, K, «)
and B’ € B(Y’, K') be given connections and choose a singular SU(2)—connection Ag on (W1, ST) which
has a limiting connection 8 or B’(up to gauge transformations) on each end of (W™, S™). Here z denotes
the homotopy class of A. We define the space of connections and the group of gauge transformations as
follows:

Az (W, S:B.8)):={A|A=Age L}, 4 (WH\ST . gg ® AD)},
G:(W.S) :={g € Aw(E) | Vi g € L* W\ ST;End(E)).i =1.....m}.

We also define the quotient

B:(W,S;B.B) := A (W, S; B.B)/G-(W, S).

B(W, S B, B") denotes the union of B, (W, S; B, B’) for all paths. The perturbed ASD equation on (W, S)
has the form F A+ + Ury, = 0 where Uy, is a t—dependent perturbation. More concretely this can be
described as the following (the argument is based on [32]): Let , 7o € Py be two holonomy perturbations
on R x (Y, K). The perturbed ASD equation on R<¢ x (¥, K) has the form

FF+9)Va +vo(0) Ve =0,

where 1/ (¢) is a smooth cutoff function such that {(¢) = 1 if t < —1 and ¥ (¢) =0 at ¢ = 0. Then Vg
is a smooth function supported on (—1,0) x Y. We choose 7 € P so that &€, satisfies properties in
Propositions 2.6 and 2.8. The perturbation term can be described similarly on another end. For generic
choices of 7o and 7§ € Py, the irreducible part of the perturbed ASD-moduli space

MZ(WsS;ﬁ?IB,) CBZ(W7S?ﬁ’ﬂ,)
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is a smooth manifold. Consider the ASD-operator

2-5)  Da=-df®d: L% 4, (W\S,gg ®A') > L2 W\ S, 95 ® (A’ @ A1),

m,Aq m—1,Ap
where ¢ is a weight function. If a limiting connection of Ay is irreducible then we choose ¢ = 1 on
that end of (W™, S™). If Ag has a reducible limiting connection then we choose ¢ = eIl on that end,
where § > 0 is small enough. M (W, S; 8, /)4 denotes the union of the moduli spaces M, (W, S; B8, 8)
withind Dy =d.

Definition 2.12 We define the topological energy of A € B(W, S; B, B’) as

k(A):= Tr(Fq A Fy)

872 Jw+\s+
and the monopole number of A as

T

Q 0
Fyls+ = [0 _Q]

For the cylinder (W, S) = [0, 1] x (Y, K) and the trivial perturbation & = 0, the topological energy « is

V(A) = i/ Q—2aS -5,
S+

where

related to the energy £ of the Chern—Simons functional as 2« (A4) = £(A). Consider an SU(2)—connection
B on (Y, K), a connection A over the cylinder R x (Y, K) which is asymptotic to B at —oo, and a fixed
reducible flat connection 6, such that CS(6y) = 0 at co. Then CS(B) = k(A) by construction.

Similarly we define an R—valued function holg : A(Y, K, @) — R as follows:

Definition 2.13 Let A be an SU(2)—connection over the cylinder [0, 1] x (¥, K) as above. We define
holg (B) := —v(A).

If z is a path on (W, S) which is represented by a connection A, then we write k(z) for k(A) and v(z)
for v(A) since these numbers are independent of the choice of A.

Let (X, X) be a pair of a 4-manifold and an embedded surface with boundary dX =Y and 0% = K where
K is an oriented knot in an oriented integral homology 3—sphere Y. We assume that [2] = 0. Let ® be
a singular flat reducible connection with a holonomy parameter « = n/m and whose lift to the m—fold
cyclic branched covering X, is the trivial connection. We write H' (X \ Z; ©y) for the i™ cohomology
of X \ ¥ with the local coefficient system twisted by @. Let HT (X \ Z; O4) and H ™ (X \ Z; O4) be
the space of self-dual and anti-self-dual harmonic 2—forms on X \ X twisted by ®,, respectively.

Lemma 2.14 We define (X \ X:04) =) ; (=1) dim H (X \ X; Og) and

0(X\Z;0y)=dimHT(X\ Z;04) —dim H (X \ X; Og).
Then
X(X\E:0q) = x(X)—x(2) and o(X\%:0q) =0(X)+0a(Y,K).
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Proof Consider a rational holonomy parameter of the form « = n/m € Q. We take an m—fold branched
covering 7 : X,» — X whose branched locus is . The pullback of singular flat connection ®, extends
as the trivial flat connection over X, m. Let T: X, m—> X m be a generator of covering transformations. Then
its induced action 7 on the pulled-back bundle C is multiplication by e**’ n/m The index of the twisted
de Rham operator

do, +dg,: Q" (X \ £:04) - QX \ £:0,)
coincides with the index of
(2-6) d+d*: Qeven(fm;g)‘f _)Qodd(j('m;g)f’
where Q*(Xn: C)F = {w € Q*(Xm; C) | (t(x)) = T(w(x))}. The index of (2-6) is given by y(X) —
x(X). This can be seen by taking cell complex Cx(X ) of X, in 7—equivariant way. Then there are
decompositions of the underlying groups of the chain complex

n
C*(Xm)=c*(z)®c*(fm\2), C*(va\z:):@Ci,
i=1
where each C; is isomorphic to a copy of C«(X \ X). Since 7« acts as the identity on C«(X) and in a
cyclic way on Ci (fm \ £) = P;_, Ci, all eigenspaces of the action 4 on Cx (f m \ 2) are isomorphic.
On the other hand, there is the identity )(()? m) =my(X)—(m—1)y(X). Thus the t—invariant index of
the de Rham operator is given by y(X) — y(X).

Similarly, the index of the signature operator twisted by the local coefficient ®, coincides with the index
of the signature operator over X,» which is restricted to e#7i"/ ™M_eigenspaces. This signature is equal to
0(X) +0,/m(Y, K) by the formula in [41]. |

Proposition 2.15 Let (W, S): (Y,K) — (Y’, K’) be a cobordism of pairs and [A] be an element of
B(W, S; 0y, 6,,). Then the index of the ASD operator D 4 is given by

ind D4 = 8k(A) +2(4a— Dv(A) =3 (c (W) + x (W) + x(S) + 8>S - S + 0o (Y. K) —0a (Y, K')— 1.

Proof Let X be a compact 4—manifold with X =Y and ¥ C Y be a Seifert surface of the knot K.
Pushing 3 into the interior of X, we obtain a pair (X, X) whose boundary is (Y, K). Moreover [X] =0
in Hp(X;Z). Similarly we can construct another pair (X’, X’) such that (0X’,d%’) = (Y’, K').

Set
(W, S):=(X,2)Ug.x) (W, S) Uy xn (X', Z).

Then (W, S) is a closed pair of a 4—manifold and an embedded surface. Let A; and A, be singular
flat reducible connections over (X, X) and (X, X’) which are extensions of 6, and 6, respectively.
Let A be a connection which represents an element of B(W, S; 6, 6,,). We consider the connection
A" = Ay #g, A#g, A over (W, S) obtained by the gluing.

Using the gluing formula for the index, we have

indDy =ind Dy, +ind Dg +ind D 4, + 2,
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where A’ is a singular connection on the closed pair (W, S) obtained by gluing Ay, A5 and A. Since A is
reducible, there is the decomposition 4; = 1& B, with respect to the decomposition of the adjoint bundle
R @ L®2, where 1 denotes the trivial connection. The deformation complex for D 4, decomposes into

2-7) Q°(x) % Ql(x) 45 ot (x)
and
+
(2-8) QO(X \ E:ad By) %85 Q1(X \ T: ad By) 22> QF(X \ T:ad By).

The index of (2-7) is given by —%(0 X))+ x(X))— % On the other hand, the index of (2-8) is given by
—0(X\X; By)—x(X\X; By). Using two formulae 6 (X \X; By) =0 (X)+o0 (Y, K) and y(X\Z, By) =
x(X)— x(¥) in Lemma 2.14, we obtain

ind Da, = —3(0(X) + (X)) —0a (Y, K) + ((2) — 3.
Similarly, we have

ind Dy, = =30 (X") + 2(X') +0a (Y, K') + 2(S)  §
since oq(—Y’, K') = —04(Y’, K’). The index formula for a closed pair in [27] gives
ind D 3 = 8k(A) + 2(4a — )v(A) = 3 (c(W) + x(W)) + x(5) + 8a>S - S + 2.

Hence we have the desired formula:

ind Dy = 8k(A) +2(4a—1)v(A) =2 (@ (W) + x (W) + x(S) +8c>S-S + 04 (Y, K)—0a(Y', K')—1. O
Remark 2.16 (i) The index formula in Proposition 2.15 recovers [9, Lemma 2.26] when o =
(ii) For a cobordism of pairs (W, S): (Y, K) — (Y’, K’), we define the integers

k(L) = —c1(L)?[W] and I(L) = —c1 (L)[S).

1
3

Then the Chern—Weil formula gives us another expression of the index formula in Proposition 2.15 as

ind Dy, =8k(L) +4l(L)—2(ac(W)+ x(W)) + x(S) + 0a (Y, K) —0a(Y', K') — 1.

Assume that the cobordism of pairs (W, S) satisfies b1 (W) = bT (W) = 0. Then there exists a unique
singular reducible instanton A7, corresponding to a decomposition £ = L @& L*.
Definition 2.17 We call A7 minimal if it minimizes ind D4, among all line bundles L.

1

Our definition of minimal reducible coincides with [, Subsection 2.3] if « = 4.

Let us describe relations between CS and «, and v and holg over cobordisms. Consider a connection
A over a cobordism (W, S): (Y, K) — (Y’, K’) whose limiting connections are B on (Y, K) and B’ on
(Y’, K’). Then the following statement holds:

Lemma 2.18 Fix a reducible connection Ay, over (W, S). Then there exist k, ! € Z such that
k(A)—«(AL) = CS(B)—CS(B")+k +2al and v(A)—v(AL)=holg/(B’) —holg(B)—2I.
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Proof Recall that R—valued functions CS and hol are fixed by choosing reducible flat connections 6y and
é& over pairs (Y, K) and (Y’, K'). If we choose a reducible connection Ay, so that it has two reducible
limits 6, and 6/, then we have

k(A) +CS(B’) =CS(B) +k(Ar,) and v(A4)—holg/(B") = —holg(B)+v(AL,)

by construction. If we change Ay to other homotopy classes of reducible connections, terms k + 2¢/ and
—2[ appear by gauge transformations. |

For a cobordism of pairs (W, S) and a fixed holonomy parameter ¢, we introduce real values «o (W, S, o)
and vo(W, S, ) as follows:

Definition 2.19 We define
ko(W,S,a) := min{k(Ar) | A minimal reducible},

vo(W. S.a) 1= v(Ar), where A is a minimal reducible with kg = k(Ar) if o #

1

Z?
min{v(Ar) | Az is a minimal reducible} ifa = %.
Note that the homotopy class of the path z: 6, — 6, represented by a minimal reducible A7 with
ko = k(Ar) is uniquely determined when o # %. Ifa= % then homotopy classes of paths represented by

minimal reducibles are not unique, but only finitely many exist. In particular, vo(W, S, @) is well defined.

Remark 2.20 If the cobordism of pairs (W, S) has a flat minimal reducible with a holonomy parameter «,
then ko(W, S, ) = vo(W, S, a) = 0.

We write ko = ko(W, S, «) and vy = vo(W, S, @) for short.

Definition 2.21 Let (W, S): (Y, K) — (Y, K’) be a cobordism of pairs where K and K’ are oriented
knots in integral homology 3—spheres ¥ and Y’. Let . be an integral domain over Zy. A cobordism of
pairs (W, S) is called negative definite over .7 if

(1) b'W)=b*(W) =0,
(2) the index of the minimal reducibles is —1,

(3) we have the nonzero element in .

na(W, S) = Z (_l)cl(L)2A’K0—K(AL)T])(AL)_VO‘

A7 minimal

Remark 2.22 Our definition of the negative definite cobordism coincides with that of [8] when o = %,
since instantons have minimal energy if only if they have minimal index.

Let (W1, S1): (Y1, K1) = (Y, K') and (W5, S3): (Y', K') — (Y2, K3) be negative definite cobordisms.
Note that their composition (W0 Wy, S2081): (Y1, K1) — (Y2, K>) is also a negative definite cobordism.
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Figure 1: Positive (left) and negative (right) crossings of a knot.

A cylinder [0, 1] x (Y, K) and a homology concordance (Y, K) — (Y’, K') are examples of negative
definite cobordisms. The following is also a basic example of negative definite cobordisms. Let K4 be a
knot in 3 which has at least one positive crossing. Let K_ be a knot which is obtained by replacing one
positive crossing in the knot K by one negative crossing; see Figure 1.

Since S3 is simply connected, K+ and K_ are homotopic. Approximating homotopy from K_ to K
by a smooth map, we get a smoothly immersed surface S C [0, 1] x S such that S N {0} x S3 = K
and S N {1} x §3 = K. Furthermore, we assume that S has a transverse self-intersection point. Let
S’: K4+ — K_ be an inverse cobordism of S. S has a positive self-intersection point in [0, 1] x §3.
Blowing up this self-intersection point, we obtain a new cobordism of pairs

(2-9) (CP2#([0,1]x §3),8): (S3, K_) > (S3, K4).

S is an embedded surface in CP2 # ([0, 1] x S3) obtained by resolving the self-intersection of S, and it
represents a homology class

2¢e € H*(CP?,Z) =~ H*(CP?#([0,1] x $3); ),
where e is an element represented by the exceptional curve. Similarly, we obtain a cobordism of pairs
(2-10) (CP2#([0,1] x S3),8"): (S3, Ky) — (S3, K_).
Cobordisms of pairs (W, S): (§3, K_) — (S3, K;) and (W', 5"): (S3, K4+) — (S3, K_) constructed as

above are called the cobordism of positive/negative crossing change, respectively.

Proposition 2.23  Fix a holonomy parameter « € (0, %) NQ with Ak (e*™i®) £ 0and Ag_(e*™%) #0.
Let . be an integral domain over Z,. We assume that o4(K+) = 0o (K_). Then the cobordism of
positive and negative crossing change are negative definite over ..

Proof Firstly, we show that (2-9) is a negative definite pair. Put W = CP2 # ([0, 1] x S3). Then it
is clear that W satisfies Definition 2.21(1) since H'(W;Z) = 0 and H*>(W;Z) = Z. Let Ay, be a
U(1)-reducible instanton corresponding to an element m € Z = H?*(W;Z). Then

K(Am) = —(c1(Lm) + a§)2 =(m+ 20‘)2,
where L, is a line bundle such that ¢ (L, )[e] = —m. We also have
V(Am) =2c1(Ly)[S] = —4m.
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The index computation yields that

ind(Dy,,) = 8(m + 2a)* 4 2(4a — 1)(—4m) — 320 + 04 (K ) — 0 (K-) — 1

=8m(m+ 1)+ 0y(K-)—0u(Ky)—1.

Thus m = 0, —1 minimize ind D4,,, and this means that A9 and A_; are minimal reducibles. Since
0o (K+) = 04(K-) by our assumption, the index for minimal instantons is —1 for the first case. Thus
(W, §) satisfies Definition 2.21(2). Since i (A;;) = m? + 4am + 4o, we have
1—2%IT4 ifa <1,
AldeT=4 1 ifa > I
Since 1 — A**~1T4 is invertible when o # % and nonzero when « = % by assumption, n%(W, S) is
nonzero in .. Hence (W, S) satisfies Definition 2.21(3) and (W, §) is a negative definite pair.

(W, S) =

It is also obvious that (W, S”) satisfies Definition 2.21(1). Since S’ has the trivial homology class in
H,(W; Z), minimal reducibles are only trivial with index —1. Hence (W, ') =1#0¢.7. |

Next, we discuss the transversality of moduli spaces at reducibles. Following [26; 4], we introduce the
perturbation supported on the interior of the cobordism. Let Z be an infinite countable set of indexes and
consider the following data:

* a collection of embedded 4-balls {B;}iez in WT\ ST,
e a collection of submersions g;: S x B; — W™\ ST such that ¢; (1, ) is the identity,

o forany x € W\ S, the set {¢; x | i €Z, x € B;} is a C!—dense subset in the space of loops based
atxeW\S.

For each i € Z, consider a self-dual 2—form w; on B; with supp(w;) C B;. These self-dual 2—forms w; can
be regarded as self-dual 2—forms on W\ S, We define V,,, : A, (W, S; B, B') > QT (WH\ST;5u(2)) as

Vi (A) := m(w; ® Holy, (A)),

where : SU(2) — su(2) is a map given by g +— g — % tr(g)1. The argument similar to [26] shows that
there are constants K, ; and differentials of V,,, which satisfy the inequality

n
10"V | (@ van)lljz = Knillolic 1‘[1 laillzz, , -
1=

where Ay is a singular connection which represents the homotopy class z and [ > 3. We choose a family
of positive constants {C;} so that

Ci = sup{Ky,,; |0<n <i}.

Consider a family of self-dual 2—forms {w;} such that ) .., C;|lw; | c: converges. For such a choice
of {w;}, Vo 1= ;s Vo, wi defines a smooth map

Az (W, S5 B, B) — ¢L2,(WT\ ST, AT ®5u(2))

between Banach manifolds.
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We define 7 :={(i, j) €IxZT|i#j, Bij:=BiNBj #S}andq; ;:Bij > WHt\ST by

Qi jxixS1 7= Gix % Qjox * Gy *
for each (i, j) € J. We choose a family of constants {C; ;},)es as before. Let w;,; be a self-dual

2—form on B; j. We introduce a Banach space )V which consists of sequences of self-dual 2—forms
o = {w;}iez U{w;, j},j)es With the following weighted ['—norm:
lollw:=Y"Cilwilci+ Y Cijloijlct

ieT G.))eq

For each w € W, we define a perturbation term
Vo(d):=) Vo, (D) @wi+ Y Vu (A ®wi;
i€T @i,j))eg

which defines a smooth map V,,: A, (W, S; 8, ') — I:,zn,e(WJr \ ST, AT ®su(2)). We call

Ff 4 Uny (A) + Ve (4) =0

the secondary perturbed ASD-equation over the cobordism of pairs (W, S): (Y, K) — (Y’, K’). Then
M™-@(W,S; B, B’) denotes the moduli space of solutions for the secondary perturbed ASD-equation.

Proposition 2.24 Let (W, S) be a cobordism of pairs such that b (W) = b™ (W) = 0. Assume that the
perturbation myy is chosen so that the perturbed ASD-equation

Ff +Ugy(4)=0

cuts out the irreducible part of the moduli space transversely. Let A*d = 1@ B be the adjoint connection
of abelian reducible ASD connection [A] € M(W, S: 0y, 0y)24+1 with ind(dg & d;) > 0. Then for
a small generic perturbation € W, the secondary perturbed ASD-equation cuts out the irreducible
part of the moduli space transversely. Moreover, M™-« (W, S; 6y, 0,)24+1 is regular at [A] and has a
neighborhood of [A] which is homeomorphic to a cone on £C Pe.

Proof For each connected component M™V*“ (W, S; B, B') of moduli spaces, the argument [4, Section 7]
is adapted to our case and reducible points are regular for generic perturbations. Taking countable
intersections of these subsets of regular perturbations in W, we can find a generic perturbation w € W
such that the statement holds. The claim about local structures around reducibles can be refined using the
standard argument; see [11, Proposition 4.3.20], for example. O

Essentially the same argument is used in [8]. From now on, we assume that perturbations over the
cobordism of pairs (W, S) are chosen so that they satisfy the statement of Proposition 2.24.

2.8 Orientation

We see the orientation of moduli spaces over the cylinder based on [32; 9]. Consider a reference connection
Ag on (W™, ST) as described in Section 2.7 and the ASD-operator (2-5). If the weight function ¢ has
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the form e 3!l on one end, the functional space gi)lv,i1 Ao consists of exponential decaying functions on
that end. On the other hand, if the weight function ¢ has the form %"l on one end, the functional space
qﬁlv,rzn Ao allows exponential growth functions. The index of the operator D4 depends on these choices
of weighted functions. To distinguish these two situations, 6y,+ denote reducible flat limits 6, with
weighted functions e*3/?l. Let z be a path along (W, S) between two critical limits 8 and 8’ on (Y, K)
and (Y’, K’). The family index of D4y defines a trivial line bundle detind(D4) on each B, (W, S, B, B’).
Let 0,[W, S Bo. B1] be the two-point set of the orientation of the determinant line bundle detind(Dy4;).
Then 0;[W, S; B, B'] is the set of orientation of the moduli space MZ (W, S; B, B’). There is a transitive
and faithful Z,—action on &;[W, S; B, B’]. For a composition of cobordisms (W5, S») o (W7, S1), there
is a pairing

O: 0, (W1, S1; B, B1®z, Oz, [Wa, S2; B, B”] = Ozyoz, [Wa 0o Wi, S2081; 8, 8]

which is induced from the gluing formula of the index. If we consider the gluing operation along the
reducible connection 6, we choose B’ = 6 + at the first component and 6y, — at the second component.
Since there is a natural isomorphism between &, [W, S; 8, '] and 0,/[W, S; B, B'], we omit z from the
above notation. We call an element of O[W, S; 04+, 6,_] a homology orientation of (W, S). For a given
knot in an integral homology 3—sphere (Y, K), we use the notation

OB :=0[Y xI,Kx1I;B,0,]
if B is irreducible, and
OBy :=OY xI,K X 1I;04+,64—].

There is an isomorphism
OW, S: O, + O, -l ag) = AP(H (W) @ HT (W),
and an element oy € O[W, S; 0y 1, 0y,—] is called a homology orientation.

Now we describe how the orientation of the moduli space M(W, S; B, 8’) is defined. Let oy €
O[W, S 0q,+,0x,—] be a given homology orientation for (W, S). We fix elements og € ¢[f] and
og: € O[B’]. Then the orientation o(w,s.,8/) € O[W, S; B, '] is fixed so that

@(Oﬂ ® Ow) = CD(O(W,S;ﬂ,ﬂ’) (034 Oﬂ/).

The moduli space M (Bo. B1) is oriented in the following way. First, we fix orientations og, € 0[]
and og, € A[B1]. Then the orientation of M(Bo, 1) is determined as above. Note that there is an
R-action on M;(B1, B2). Let t5(¢, y) = (¢t — s, y) be the transition on the cylinder (¥, K) x R. Then
the R—action on M(Bg. B1) is given by the pullback [A] — [t* A]. Finally, we orient M (B1, B2) so that
R x M (B1.B2) = M(B1, B2) is orientation preserving.

The boundary of moduli spaces is oriented so that the outward normal vector sits in the first place in the
tangent space.
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3 S—complexes and Frgyshov type invariants

In this section, we extend the construction of S—complexes C (Y, K) for (¥, K) in [9] to general holonomy
parameters. We also introduce Z x R-bigrading of S—complexes with rational holonomy parameters for
the specific choice of coefficient and its filtered subcomplex based on [35].

3.1 A review on S—complexes and Frgyshov invariants
The S—complex and Frgyshov type invariant introduced by [9; 8] are defined using purely algebraic objects:
Definition 3.1 Let R be an integral domain, and Csbea finitely generated and graded free R—module.
The triple (Cx, d, x) is called an S—complex if

(1) d:Cy — Cyisa degree —1 homomorphism,

2) x: Cy— Cyisa degree 4+ 1 homomorphism,

(3) d and x satisfy

e d2=0, )(2=O,anch)(+)(c§:O,
e Ker(y)/Im(x) = R(g), where Rg) is a copy of R in Co.

If (C«, d) is a given chain complex with the coefficient ring R, we can form an S—complex

5 d 00 000
(3-1) Ci=Cs®Cs—1®R, d=|v —d 62|, x=1]100],
51 00 000

where §1: C« — R, §2: R — Cx_1 and v: Cx — C«_5. Since there are conditions on d and X in
Definition 3.1, the components in d and x have to satisfy the following relations:

(3-2) 81d =0, déy=0 and dv—vd—38261 =0.

Conversely, if the S—complex (., d, X) is given then there is a decomposition Ci =Cyi ®Ci_1 D R.
The reader can find the details in [9, Section 4.1].

There is also the notion of an S—morphism, which is a morphism of S—complexes.

Definition 3.2 Let (Cx.d, y) and (C.,d’, y') be S—complexes. Fix decompositions Cx = Cx®Cx_1 D R
and C' = CL & C,_, ® R. A chain map m: Cx — C/ is called an S—morphism if it has the form

m 0 O
(3-3) A= m Ay,
A; O n
where n # 0 € R.
The condition that /7 is a chain map is equivalent to the following relations:
md —dm =0, A1d+7781— '1m=0, d/A2—8/2n+m52=0,
wd +mv — A8 —v'm —{—d/,u—S/zAl =0.
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Definition 3.3 Let 771, /i': Cx — C. be two S—morphisms. An S—chain homotopy of 7 and /' is a
degree 1 map /i: C — CJ such that
d'h+hd =i —i', Yh+hy=0.

Two S—complexes Cx and 54 are called S—chain homotopy equivariant if there are S—morphisms
fit: Cx — CL and /i’ : C|, — Cx such that 77’ and 7'/t are S—chain homotopic to the identity.
Remark 3.4 Consider S—morphisms 7i: Cx — C_ and /ii’: C|, — Cx. If there are unit elements ¢ and ¢’
in the coefficient ring R, and two S—chain homotopies

m'm ~ c ide* and mm’ ~ c/ida,

then the two S—complexes Cy and 5; are S—chain homotopy equivalent since both ¢ =1/ and ¢/~ 1/ are

e =1mm'm

S—chain homotopic to the composition ¢ mm'm.

The Frgyshov type invariant, defined from an S—complex, assigns an integer h(5 «) to each S—complex Ch.

Definition 3.5 [9, Proposition 4.15] e h(Cy) > 0 if and only if there is an element 8 € Cy such that
df =0and ;B8 #0.

e If h(Cx) = k > 0 then k is the largest integer such that there exists 8 € Cy satisfying
dB =0, 801 (B)#£0, §v'=0 fori<k-—2.

e If h(Cx) = k <0 then there are elements aq, ...,d_x € R and B € Cy such that
A=) v'&(a).
i=0

The followings are basic properties of the Frgyshov type invariant:

Proposition 3.6 [9, Corollary 4.14] If there is an S—morphism iii: Cyx — C/. then h(Cy) < h(C)).

Given two S—complexes (Cx. d, x) and (CL.d’, y'), the product S—complex (C®,d®, x®) is defined as
C®=Ci®C., d®=d®1+e®d and x®=y®1+e¢®y.

where €: C. — C. is given by €(8') = (—1)%eB) 8’ on elements of homogeneous degree. Let d®,
v®, 8? and 5? be components of d® with respect to the splitting C® = C®o CE’_ 1 @ R. Using the
decomposition C®& = (C @ C")x ® (C ® C')4—1 ® Cx ® C’, these maps are represented by

d®1+ed’ 0 0 0 vl 0 046 ®I1
4% — —€VQR14+e®V dR1—e®d €e®6, —6,Q1 0® — 0 v®l 0 0
- e8| 0 d o """ Tl o o v o |
5, ®1 0 0o d 0 H®10
52 =10.0.81.81], 52 =10.0,8,.8,]".

The Frgyshov type invariant behaves additively for the product of S—complexes:
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Proposition 3.7 [9, Corollary 4.28] h(C®) = h(Cx) + h(CL).
3.2 Floer homology groups with local coefficients

In this subsection, we construct the summand C in an S—complex as a Floer chain group with local
coefficients. Let (Y, K) be an oriented knot in an integral homology 3—sphere. We fix a holonomy
parameter « so that Ay k) (e*7™1@) £ ( to isolate the unique flat reducible connection 6. We assign
an abelian group A[p] for each elements [B] in the configuration space B(Y, K, o) and an isomorphism
Az: Arp,) — Arp,] for each homotopy class z € m1(B(Y, K, ), [Bo],[B1]). If this assignment is
functorial, a Floer chain complex with the local coefficient A is defined as follows:
CXY.K.A)= P Apolp] and (d(Bo).f1)= Y. Y e(A)®A;.
BeC (YK a) z: Bo—>B1 [Ale M. (Bo.B1)

The Z /4-grading of CX(Y, K, A) is defined by mod-4 grading for critical points. Consider a subring %,
in the Novikov ring AZIT™! "T1 which is introduced in Section 1.2.

Lemma 2.18 enables us to define a local coefficient system A = A, as follows:
Ay, [B] = @aACS(B)TholK(B) and Ay, ;= #MZ(,B, ﬂl)o)t_x(z)Tv(Z),

Note that this definition is independent of choices of representatives of [B] and 6. Write CX(Y, K; Ay,)
for a chain complex with the local coefficient system over %,,. For any algebra . over %,,, we can extend
the above construction to the coefficient ..

Definition 3.8 Let (Y, K) be an oriented knot in an integral homology 3—sphere and . be an algebra
over Zy. Fix a € (0, %) N Q so that Ay k) (%) £ 0. The homology group of the Z/4—graded
chain complex (CX(Y, K; A ), d) is denoted by I12(Y, K; A ). We call I12(Y, K; A5) the irreducible
singular instanton knot homology over the local coefficient . with the holonomy parameter «.

Let (W, S): (Y, K) — (Y’, K’) be a negative definite cobordism over .. We define an induced morphism
m=mmy,s): CX¥(Y,K;Ay)—>C2(Y',K'; Ay) by
m('B) — Z Z #MZ(W,S;,B,ﬂ/)okKO_K(Z)TV(Z)_vO,B/.
B’ee*(Y,K,a) z: B—p’
Counting the boundary of 1-dimensional moduli space Mt (W, S; 8, 8’)1 for each homotopy class z, we
obtain the relation
dm—md' =0.
We remark that:
e For a composition of negative definite cobordisms (W, S) := (Wp, So) o (W1, S1), there is a map ¢
such that
dg —¢d = mw,,s1) ©MWy,50) ~ MW.S)>
where metrics and perturbation data on (W, S) are given by the composition of those of (Wy, S¢) and
(W1, S1).
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o If mw,s) and m/(W 5) are defined by different perturbations and metric data on an interior domain of
(W, §), they are chain homotopic.

o If (W,S)=10,1] x (Y, K) then m,s) is chain homotopic to the identity map.

Thus CX(Y, K; A ) is an invariant of (Y, K) up to chain homotopy. We write /¥(Y, K; A ») for its
homology group, and this is an invariant for (Y, K).

Remark 3.9 The above argument shows that the chain homotopy type of CZ(Y, K, A &) is independent
of the choice of orbifold metric with the same cone angle v € Z~¢. Hence, more precisely, the module
I1¢(Y, K, A ) should be denoted by 12(Y, K, v, A ). We implicitly assume that the cone angle v is
chosen as a large enough number so that gauge theory on the orbifold setup described in Section 2 works.

Next, we introduce the filtered construction for the Floer chain complex based on Nozaki, Sato and
Taniguchi [35]. For the filtered construction, we have to introduce the lift of critical points. Let Gg,o) be
a normal subgroup of the gauge group G(Y, K) which is given by

90,0 = {& | k() = 1(g) = 0}.
Consider the quotient of the space of singular connections
B(Y,K,a) := A(Y, K,a)/G0.0)-

The Chern—-Simons functional descends on E’(Y , K, o) as an R—valued function, and we still use the
same notation. The normal subgroup G ) is a connected component of the full gauge group G(Y, K)
which corresponds to (0,0) € Z & Z = wo(G(Y, K)). Thus there is an action of mo(G(Y,K)) =Z ® Z
on B(Y, K, &) as a covering transformation, and hence B(Y, K, «) is a covering space over B(Y, K, &)
with a fiber Z & Z.

Definition 3.10 A lift of [B] € B(Y, K, &) to the covering space B(Y, K, «) is called a lift of [B], and

—_~

denoted by [B].

For a fixed lift [E] of [B] € B(Y, K, &), the fiber of the projection B(Y, K, ) — B(Y, K, &) over a point
[B] can be described as

g1 :=1{g"([B) € B(Y,K,a) | g € m0(G(Y, K))}.

The fiber .#{ ) can be seen as the set of lifts of the element [B]. There is another description of lifts:
Let fy be a lift of reducible flat connections 6. Then a lift ,3 of B € €% is fixed by choosing a path
z: B — By of connections over the cylinder whose endpoint is O

We again choose the coefficient ring %, and fix a lift ,g for each critical points § € €, (Y, K, @).
Then we modify the local coefficient system A, so that

Ay p = T 2.C8(B) holk (B)
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with the same map Az, ;. Once we fix an orientation of B, each summand Ag &[f] in the chain complex
is generated (over Z) by the elements of the form A¥ Sé ,3~ = \k+2alp2l B where (k,l) € Z ® Z. The
action of /\k%‘é corresponds to the action of the gauge transformation with d(g) = (k, ). Such elements
can be identified with the set of lifts . of the critical point . Hence the chain complex CZ (Y, K:; Az, )
can be seen as a Z-module generated by the all lifts of €, (Y, K, o) under the modification as above.

Once we fix lifts of generators, the chain complex CZ (Y, K; Ay, ) admits a (ZxR)-bigrading as in [8],
that is we can associate a pair of values which is defined as follows:

For a lift ,3 of the critical point B € €, we define degy, (B) := gr,(B) where z is a path corresponding to
the lift 8. Then we extend degy, as

degy (\'§}P) = 8i + 4] + degz (B).
Next we define degg . For a lift 5 of a critical point 8 € €, we define degp (B) = CS(ﬁ). This extends
to elements of the form A/ &) ,g as

(3-4) deggr (A'€J B) = i +20j + degg (B).

In general, an element y € CZ(Y, K, «) has the form y = ) ; a;y; where y; € Uﬂe% Zg. This is
possibly an infinite sum. We define

degp (y) = max{degr (y;) | a; # 0}
for y # 0 and degp (0) = —oo.

In summary, we have the following proposition:

Proposition 3.11 Once we fix lifts of critical points of the Chern—Simons functional, the chain complex
(CI(Y,K,Agz,).d) admits the (ZxR)-bigrading.
We write CX(Y, K; Ag;a)[_oo’oo] for the chain complex CZ (Y, K; A, ) with the (ZxR)-bigrading.
Let €* C R be a subset defined by ¢ := CS(Crit*). For R € R \ €™, we define a subset

CI(Y. K: D )UK = {y € CHYV K: Agp) 720 | degg (v) < R

This defines a subcomplex of CX(Y, K; A,%)[_C’O’C’O]. For two numbers Ry, R € (R\ ¢*) U {£o0} such
that Ry < R1, we define a quotient complex as follows:

CAY, K Ay )RR .= (v, K: Ay, ) TR Co(Y, K Ay, 700 R0,

Definition 3.12 For Ry, Ry € R U {00} such that Ry < R; and Ro, Ry ¢ €* U ¢’™, we call
CX(Y,K;Agz,) a[Ro, R]filtered chain complex.

Consider a negative definite cobordism (W, S): (Y, K) — (Y’, K') with k9 = 0. A cobordism map m , s)
on C(Y, K; Ay, ) induces a map

CHY. K: Ay )TR = €Y K A )70
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Figure 2: Dots represent lifts of the irreducible flat connection B and squares represent lifts of the
reducible flat connection 6.

by the restriction, and hence this induces a map
(3-5) miRo R CY. K Ay ROR 5 CE (Y K'; A g ) RORI),

As described before, the covering transformation on B(Y, K, «) is generated by multiplications of elements
A*land E&H. We also introduce other generators which fit the (ZxR)-bigrading on CZ (Y, K; Ay, ). Let

us introduce two operators on C¥(Y, K; A %a)[_m’w],

(3-6) Z:|:1 = (A1_4aT_4):|:1 and U:|:1 = (AZ(XTZ):I:l'
These operators change the (ZxR)-bigrading as

(3-7) degZ(ZiB) = degy (,3) and degp (Zi,3~) = degp (B) + (1 —4a)i for the operator Z,
(3-8) degZ(Ui,é) = degZ(ﬁ) +4i and degR(Ui,é) = degR(B) + 2ai  for the operator U.

See Figure 2 for the case o < %. Since A = ZU?2, actions of the two operations Z and U (and their
inverses) on lifted critical points generate CX(Y, K; A %a)[_oo’w].
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3.3 Maps 61,82, A1 and A,

We introduce operators which are defined by counting instantons on a cylinder or a cobordism with the
reducible limit. We remark that the sign convention of counting moduli spaces in this subsection is the
same as that of [9]. Let (Y, K) and (Y’, K’) be two knots in integral homology 3—spheres. Let .% be an
integral domain over Z,. In this subsection, we assume that the holonomy parameter « is chosen so that

A(Y,K)(€4”i0¢) 75 0 and A(Y’,K’)(€4ﬂia) 75 0.

Definition 3.13 We define .’—linear chain maps §1: C¥(Y, K; A ) = & and 82: . — C%, (Y, K; A »)
as follows.
For e €5 (Y, K, a),

51(13) — Z #MZ(,B,QQ)OA_K(Z)TV(Z)

z: B—0qy

and

()= Y > #M (0. Blor O TEB.
Bect (Y.K,a) z: 04— B
er(B)=2

Since the compactified 1-dimensional moduli space M, (B, 64); has oriented boundaries

U U MZI(IB’ V)OXMzz(V, 90[)0,

yeey 21,72
ar(y)=171°%27%

it is straightforward to check that d o §; = 0. Similarly, §; o d = 0 holds.
Next, we define A1: CX(Y,K;Ay) —> % and Ay: ¥ — C2(Y',K'; A ») for a cobordism of pairs
(W, S): (Y,K) = (Y, K'):

Definition 3.14 We have
A1(B) = Z#Mz(W, S: B, Qé)oklco—/c(z)Tv(z)—vo,
z
A= Y Y H#M(W.S: 0, f)or 0O 0

ﬂ/e@"f‘[(Y/,K/’a) z

Proposition 3.15 Letm = my,5): CZ(Y,K;Ay) — CX(Y', K'; Ay) be a cobordism map induced
from the negative definite pair (W, S): (Y, K) — (Y’, K’). Then the relations

(i) Arod+néy—6jom=0,

() d'oAry—8n+modr =0,
hold, where n = n*(W, S) and’ denotes corresponding maps for the pair (Y’, K').
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Proof The relation (i) is given by counting the ends of each component of the 1-dimensional moduli
space M- (W, S; B, 6/,)1 as in [9, Proposition 3.10]. The boundary components of M, (W, S; 8, 6;,)1 with
the induced orientation are given by

@) - U U M B.B1)0x Mo, (W, S; B1, 6o,
Precr 0%,
(b) U U M ,(W.S:8.8)0x Mz, (B 6a)o.

/ ol Z1,Z2
4 €€7’2102’2=Z

() — | Mz (B.0n)o x M, (W, S:604.0))0.
Z]ZOIZ’ZZZ=Z

Note that product orientations of M, (8, y)o X M, (W, S:y.6.)0 and My/(B. 6a)o X M(W, S 64, 6.)0
are opposite to orientations induced as the boundaries of M, (W, S; B, 04)1. The signed counting of
the boundary components of types (a) and (b) contribute to —Aj o d(B) and &] o m(p), respectively.
Since M(W, S; 64, 6},)0 consists of minimal reducible elements, the counting of (c) gives —nd1 (). This

proves (i). The relation (ii) can be similarly proved considering the ends of the 1-dimensional moduli
space M, (W, S04, B)1. O

3.4 Mapsvand

In this subsection, we introduce maps induced from the cobordism of pairs (W, S) with an embedded
curve y C S. Our assumptions for the choice of holonomy parameter « and the coefficient . are the
same as the previous subsection. We remark that the sign convention of moduli spaces in this subsection
is also the same as that of [9]. In particular, if f: M — N is a smooth map between oriented manifolds
then f~!(y) for a regular value y € N is oriented so that

M = Nxf_l(Y)@ Txf_l(Y)

is orientation preserving, where Ny f ~1(y) is a fiber of the normal bundle for f~!(y) and its orientation
is induced from that of N. The mapping degree deg( f') is defined by using this orientation.

Assume that y: [0, 1] — § is a smoothly embedded loop. Fix a regular neighborhood Ny (¢) of y in W
with radius € > 0 and fix a basepoint xo € AN, (¢). We take a Seifert framing Y. C 9Ny (¢) of y so that it
passes through the basepoint xo. The bundle decomposition £ = L @ L* over S C W extends to Ny, (¢),
and the holonomy of the adjoint connection of [A] € B(W, S; B, B’) yields Hols, (A4 e S, Put

hp (A) = lim Holg, )

The construction above gives a map

(3-9) BW,S,a;B,p)— S!.

v
h B
Note that this map itself depends on the choice of the Seifert framing of y and orientations of K and S.
However, such dependence on auxiliary data can be ignored to define the following map:
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Definition 3.16 Let 8 and B’ be irreducible critical points of the (perturbed) Chern—Simons functional on
(Y, K) and (Y’, K'), respectively. We define amap pu = juw,s,y): CE (Y. K: Ay) = CH(Y',K'; Ay) by
nBy= 3. Y deglipglaovsip py)ACOTEOTIO TR

B’ect (Y.K,a)z: B—p’
foreach f € €% (Y, K, ).

The map u satisfies the following relation:
Proposition 3.17 dopu—pod=0.

Proof Consider the compactified 2-dimensional moduli space M (W, S; 8, B’)2 which has oriented
boundary of the types

- U U MIB B0 x ML S5 b1 o,

B1€C7 (Y, K, ) z'0z"=2

U | MIW.S:B.8)2-i x M (B i1,

Biee¢r (YK’ ,a) z'0z" =2
where i =1 or 2. Count the boundary of the 1-dimensional submanifold (h% ﬂ/)_l (s)CMTW,S:B,B)

for a regular value s € S'. Since the closed loop ¥ is supported on a compact subset of S, (h; ﬂ’)_l (s)
intersects faces of the boundary of M (W, S; B, ') with i = 1. Thus

#(yg) ™ (5) NOM (W S:B.p2) =d o pi—ppod =0. 0

We consider the case when (W, S) = R x (¥, K) and y C S is a curve R x {yo} where yy is a fixed
basepoint in K. Taking holonomy along y, we obtain a map

hg,p,: B(Y,K,a; B1, B2) — S*
similarly to (3-9), where §; for i = 1,2 are irreducible critical points of the Chern—Simons functional.

The holonomy map /g, g, is modified to extend broken trajectories as in [10]. Such modification of i, g,
near the broken trajectories gives the map

Hp p,: M(B1.B2)a — S'
with the following properties:
(i) Hg,p, = hg, g, on the complement of a small neighborhood of dM *(B1, B2)4-
(i) Hg,p,([A1].[A2]) = Hg,p,([A1]) Hg,p,([A2]) on unparametrized broken trajectories

M™T(B1.B2)i-1 x Mt (B2. B3)a—i.
where B is irreducible.

(iii) Hg,p, = 1if dim M (81, B2) = 0.
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Definition 3.18 We define the v—-map v: C¥(Y, K; Ay) — CX(Y, K; A ») by

v(B1) = Z Z deg(Hﬂlﬁz|MZ(51,BZ)I)A_K(Z)TV(Z),BL
Ba€ek z: p1—>B2

The v—map does not commute with the differential of the chain complex. However, the following relation
holds:

Proposition 3.19 dv—vd — 8261 =0.

Proof We consider the 1-dimensional moduli space

My,-(B1, B2)1 := Mz (B1, B2)2 N (Hp, g,) " (5)

for a generic s € S'\ {1}. As in the argument in the proof of [9, Proposition 3.16], the boundary of
M, (B1, B2) consists of unparametrized broken trajectories of the form

a = ([41]. [42]),
and there are the following cases:
(D a€Uomr—y Mz (B1, B3)o x Mz (B3, B2)1 where B3 € €E(Y, K, a),
I ae UZ’OZ”:Z MZ’(ﬂl’ :33)1 X MZ”(,B:’H :32)0 where 133 € €;kl'(Y’ K, Ol),
dm [A] e M, (B1, B2) factors through the reducible critical point 8.

For (I), the corresponding oriented boundary components of (Hg, 32)_1 (s)n M F(B1,B2)2 are

(Hmz)‘1<s>ﬂ—( U U Mz’(ﬂl’/%)oXMZ”(ﬁ3,52)1)

B3€¢r (YK a) z/0z"=z

=— U U Ma(Br.B3)ox (Hp,p,) " (5) N Mzr(B3. o)1,

Bsech (V.K.a) 2/0z"=2

since Hg, g, = 1. This contributes the term —(vd(B1), B2). For (II), the similar argument shows that this
contributes to the term (dv(f1), B2). Case (III) requires gluing theory at the reducible. Let U be an open
subset of M (B1, B2) which is given by

U={[A] e M(ﬂl,ﬁz) |14 _ﬂ*ea”L%((_l,l)x(y\K)) <€}
U; denotes the restriction of U to M (1, B2). There is the “ungluing” map
M:(B1.B2) DUz %> (0.00) x| ) Mz(B1.6a)ox S" x M (6a. B3)o.
z'oz!'=z
For T > 0 large enough, consider a subset U, 7 = ¥~ 1({(t, [A1], 5, [A2]) € U; | t > T}) of U,. Then
Y(Mz(B1,f2) Uz 1) =(Tooo) x| Ma(Br.6) x {s} x Mz (4. o).

z/oz!" =z
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Thus corresponding boundaries of 1-manifold H 5 1/32 (s) N Mt (B1, B2)> with induced orientations are
given by
— U Mz(B1.6)o x Mz (0a. B2)o.

z/oz/ =z
The sign counting of this contributes to the term —(8>,81(81), B2). Finally, we obtain the relation
((dv—vd —8261)(B1). B2) = 0. O

Next, we consider a negative definite pair (W, S): (Y, K) — (Y’, K’) with an embedded curve y: [0, 1] - S
such that y(0) = p € K and y(1) = p’ € K'. We identify y with its image. We define
y ¥ = (00,0l x {p} Uy U[0,00) x {p'} C ST

Assume that € €% (Y, K,«) and B’ € €% (Y', K', @). For each A € A(W, S; B, B'), taking the holonomy
of A% along the path y T, we obtain a map

hyg: BOV,S: B, B') — S,
and its modification
Hyg: M* (W, 88,84 — S!
so that H g 5= 1 on O—dimensional unparametrized broken trajectories.
Definition 3.20 We define amap = pw,s,,): Co (Y, K;Ay) - CE(Y', K'; Ay) by

)= ) S deg(H Yy lu.qw,sip.p0) A0 KOTO g
Beek(Y' K a)z: B—>pB’

Proposition 3.21 Let (W, S): (Y, K) — (Y’, K’) be a negative definite pair, and let m and u denote its
corresponding maps as above. Then
d'u+pd + A8y —85A1 —v'm+mv =0,
where the prime denotes corresponding maps for the pair (Y’, K').
Proof Consider a 2—dimensional moduli space M. Z"' (W, S; B, B")2 and its codimension 1 faces. Firstly,

there are two types of ends of M, (W, S B, B’)2 in which [A] € M(W, S; B, B’)> is broken at irreducible
critical points,

@ M (B.B1)i—1 x ML (W, S; B1. B)a—i.
(In MW, S; B, B)2—i x M7 (B1, B))1i

where i = 1, 2. Since
Hyg) "'l U Mz(B. B0 x MIEW.S: 1. )1
Bl z/oz! =z y
= U U Mz (B, B1)o x (Hé’lﬂ,)_l(s) N M, (W, S; B1., B)1.

By z/0z”
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the signed counting of points in d(( H g ﬂ/)_l (s)NM T (W, S; B, B')2) which are contained in codimension 1
faces of type (I) with i = 1 contributes to the term —(ud(B), B’). Next, we consider the case of type (I)
with i = 2. Since

Hig)'onl) U M. 81 x Mz(W, S; b1, 8)o
B1 z/oz/'=z y
=J U Hgs) () "M (B. 1)1 x M(W. S: 1. B)o.

B z/0z'=z
the signed counting of points in d(( H ,;/ ,3’)_1 (s)NM T (W, S; B, B')2) which are contained in codimension 1
faces of type (I) with i = 2 contributes to the term —(mv (), 8’). Similarly, a collection of codimension 1
faces of type (II) contributes to the term —(d’u(B), B’) if i = 1 and (v'm(B), B’) if i = 2. Finally, we
consider the ends of M, (W, S; 8, 8’), which break at reducibles. Such ends are described as in the poof
of Proposition 3.19 and contribute to the term —((A28; — 5, A1(B). B'). ad

Corollary 3.22 We have (éf(Y, K:Ay).d, x), where

3 [d 00 000
CI(Y,K;Ay)=CI(Y,K;Ay)dCY (Y. K;A)®, d=|v —d &8 and y=|100
6o 0 0 000

form an S—complex. Moreover, if (W, S): (Y, K) — (Y', K') is a given negative definite cobordism and
a satisfies Ay, k) (64”i“)A(y/’K/) (e*™i®) £ 0, then

m 0 0
mw,s)y=| i m Az
A 0 n

defines an S—morphism iy, s): CA(Y,K:Ay)—> CEY' K';Ay).

Proof The arguments in Section 3.3 and Proposition 3.19 show that (éf(Y, K;Ay), d, x) is an S—
complex. For a generic perturbation, moduli spaces over the negative definite pair (W, S) are regular at
reducible points by Proposition 2.24, and hence the counting of reducibles n = n*(W, §) is well defined.
The arguments in Section 3.2 and Propositions 3.15, and 3.21 show that 72,5y is an S—morphism. O

The S—complex 5,‘3 (Y, K; A ) itself depends on the choices of metric and perturbation. However, the
standard argument (see [9, Theorem 3.33]) shows that its S—chain homotopy class is a topological invariant
of pairs (Y, K, p) with Ay k) (e*™1®) £ 0, where K C Y is an oriented knot in an integer homology
3—sphere and p € K is a basepoint. The S—chain homotopy type of an S—complex itself depends on
the choice of basepoint, however, there is a canonical isomorphism between two homology groups of
S—complexes which are defined by different choices of basepoints.

Definition 3.23 We call
h% (Y, K) = h(CJ(Y,.K:Ay))

the Frgyshov invariant for (Y, K) over . with a holonomy parameter .
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The S—complex 6,‘:‘ (Y, K; A ») admits the following connected sum theorem:

Theorem 3.24 Let (Y, K) and (Y’, K’) be two oriented knots in integral homology spheres and « be a
holonomy parameter such that Ay, ) (647”“)A(Y/,K/) (€@ £ 0. Then

CIY#Y K#K';Ay) ~CAY,K;Ay) Ry CE(Y' K A),
where ~ denotes an S—chain homotopy equivalence.

The strategy of proof (found in the appendix) is essentially the same as [9, Section 6].

The following corollary gives the proof of Theorem1.6:

Corollary 3.25 Let (Y, K) and (Y', K') be knots in integral homology 3—spheres and « be a holonomy
parameter such that Ay, g)(e*™'*)A(y+ k) (e*™'%) # 0. Then
he (Y #Y' ,K#K')=h%(Y,K)+h% (Y, K').
Moreover, if there are two negative definite cobordisms
Ww,8):(Y,K)— (Y',K'Y and (W', S"):(Y',K')— (Y,K),
then
h% (Y, K)=h% (X', K').

Proof The first statement follows from Theorem 3.24 and Proposition 3.7. The second follows from
Corollary 3.22 and Proposition 3.6. |

The filtered construction can be applied to an S—complex for the coefficient Z,. A fixed lift 6y of a
reducible flat connection can be identified with 1 € %, and %, itself can be identified with the set of all
lifts of 6,. We extend the R—grading to 5,‘3 (Y, K; Ag,). First, we define

max{r |a, #0} if§#0,

—00 if § =0,

for§=) ,a,A" € Zy,ar € Z[T~',T]. Then for (B,y,8) € C(Y, K; Az )®CE (Y, K; Agy,) ® Has
we define

degg (8) =

degr (B, 7, ) := max{degg (B), degg (y), degg ()}

Obviously, we have the following proposition:

Proposition 3.26 If we fix a lift of each critical point of the Chern—Simons functional, then the S—
complex C2(Y, K; A, ) admits the (ZxR)—-grading.

Note that the R—grading of S—complexes extends to tensor products of S—complexes in a natural way.

The filtered S—complex C2(Y, K; Az, )RRl for Ry, Ry € (R U {£o0}) \ €* with Ry < R; can be
defined as follows. Put C2(Y, K; Ay, )oK := {(B,7.8) € CX(Y. K: Ay,) | degr (B.V.5) < R} and

CEY,K; Ay, BRI .= C(y, K: Ay, TR /CY, K Ay, )70 R0l
for R() < Rl.
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3.5 Cobordism maps for immersed surfaces

Let (W, S): (Y,K) — (Y’,S’) be a cobordism of pairs where S is possibly immersed. Blowing up all
double points of S, we obtain a cobordism of pairs (W, S) where S is an embedded surface.

Definition 3.27 We say (W, S) is negative definite if its blowup (W, S) is negative definite. We define a
cobordism map for a negative definite cobordism (W, S) where S is possibly immersed surface as

mmw.s) -=Mw,s)-
We describe the relation between operations on immersed surface cobordisms and induced S—morphisms:

Proposition 3.28 Let . be an integral domain over the ring %,. Assume that (W, S) is a negative
definite pair over ./ where S is a possibly immersed surface. Let S* be a surface obtained from S by a
positive or negative twist move, or a finger move. Then 7w, s+ is S—chain homotopic to my,s) up to
the multiplication of a unit element in .7 .

The definition of positive twist, negative twist and finger moves can be found in [17].

Proof Since the monotonicity condition cannot be assumed in our setting, we have to modify the
argument in [25].

(i) (positive twist move) Consider the blowup at the positive self-intersection point (W, S*) =
(W, S) #(CP2, S,), where S, is an embedded sphere whose homology class is —2e € H(CP2;Z).
Note that Re(S3\ ST, SU(2)) = {0y} for a € (0, 1). Assume that (W, S*) has a metric g7 such that
(S3,81) has a neighborhood which is isometric to [T, T] x (S3, S1), where T > 0 is large enough.
Let A7 be an instanton on {(W, S$*), g7} which is contained in the 0O—dimensional moduli space. Ao
denotes the limiting instanton of A7 with respect to 7 — oo, and A and A, denote its restriction to
components obtained by attaching cylindrical ends on (W, S) and (CIP2, S5), respectively. Then we have

ind Dy, +1+ind Dy, =ind Dy_, <O.

The last inequality essentially follows from [27, Corollary 8.4] and our assumption. The index formula
for the closed pair (CPP2, S») shows that ind D4, = —1 mod 4, and we have ind D4, = —1. By the
perturbation, the instanton A, on CP? satisfies H 1;2 = sz =0, and the gluing along R (S3\S1) = {0y}
is unobstructed. The moduli space M (W, S*; B, B')¢ is diffeomorphic to

MW, S: B, B)o x M*(CP?, S»)o.

Note that there is a diffeomorphism M*(CP2\ D*, S5\ D?;6y)0 2= M*(CP2, S3)0 by the removable
singularity theorem. Since ind D4, = —1, A3 is a minimal reducible. Moreover, minimal reducibles on
(CP2, S,) define elements in M*(CP?2, S»)o. Counting elements in the moduli space M (W, S; B, B')o
defined by the limiting metric limr_, o, g7 contributes the relation

(G 5B B) = n*(CP2, S2) (fiw.s)8. B)-
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Since A4(x 1T4 f 1
—— 1 —A"%" ifao <z

*(CP2,8,) = -

e R Py B P

n*(CP2, S,) is a unit in .#. Considering the 1—-parameter family of moduli spaces gives an S—chain

oo

homotopy between 7 07.5%) and IT’I(W’ 5+)- In particular, n*(CP2, S5) has the top term 1, and hence the

statement follows.

(i1) (megative twist move) In this case, we change S5 in the above argument to an embedded sphere Sg
whose homology class is trivial. Thus we obtain 7%(CP2, Sp) = 1.

(iii) (finger move) Consider the decomposition (W, S) = (Wy, S1) U (Wa, S») where W, = D* and
S, = D21 D2, Let (W, §*) = (W1, S1) U (W,, S5) be the double blowup of (W, S$*). In this case, W,
is a 4-manifold obtained by removing a disk from CP?#CP?2 and S, is two disjoint disks. Note that
R :=Rqa(S3\(STUST), SU(2)) = [0, 7] for fixed o € (0, 3 ), the interior of R consists of irreducible flat
connections and two endpoints are reducible. Moreover, the endpoint map ry: M (W1, S1: B, B )o — Ra
has its image in the irreducible part of R,,. See [25, Lemma 3.2] for details.

We claim that the counting of the two moduli spaces M (Wi, S1; B, 8")o and M(W, S; B, 8')o can be
identified up to multiplication by a unit element in .. Firstly, we define an S—morphism 77w, s,) as

<m(W1,S1)/3’ﬂ/) _ Z#MZ(Wla Sy /3’ IBI)AKO_K(Z)TV(Z)_VO,B',
zZ

and similarly for other components in 7w, s,). Here k(z), ko, v(z) and vo are similarly defined as
in Section 2.7. We have to modify the argument in [25] which is related to the unobstructed gluing
along the pair (S3,S' U S1). For p € Ry which is in the image of r1, we take its extension A4, to
(D*, D21 D?). Consider the double (S*, $? L §?) = (D*, D? U D?) U(s3 51y (D*, D? U D?). Then
ind Dg, 44, =2ind D4, + 1 by the gluing formula. Consider the pair of connected sum (S 4.82u8?%) =
(8%, 82) #(53.5) (S*,§2). Then ind Dy 44, = 2ind D444, |(s4,52) + 3 and the left-hand side is equal
to 1. Hence we have ind D4, = 0. Thus the relation

ind D4, +dim Hy = —dim H{ +dim H —dim H}

tells us that Hjo = 0 since dim ng =0and dim H jp = 1. Here H ‘} is the cohomology with the local
coefficient system associated with the flat connection p. Thus the Morse—Bott gluing of instantons over
(W1, S1) and (W>, S») is unobstructed. For a metric on (W, S) with a long neck along the cylinder
[0, 1] x (S3,81uSh), we have the diffeomorphism,

MW.S:B.B"Yo = M(W1. S1: 8. B')o rx M*(D*, D> 1 D?),
where

r: M(Wl, Sl;,B,ﬁ/)O —)Ra

and

r': M¥%(D*, D?UD?); - Rq
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are restriction maps. For simplicity, we consider the case o < %. Since flat connections on (S3, ST U S1)
uniquely extend to (D*, D? L1 D?), the induced cobordism map has the form

’%(W,S) = (1 + chz_k)ﬁ’l(wl,sl),
k>0

where ¢ € Z and Z = A174¢T 4, Thus mw,s) and my, s,) differ by the multiplication of a unit
element in ..

Assume that the cobordism of pairs (W, $*) is equipped with a metric such that (W, S*) has a long
neck along (S3, S' U S!). Then the moduli space M(W, S*; B, B’)o decomposes into a union of fiber
products

M(Wl,Sl,,BwB/)d r1 Xra2 Ma(WZ/;Sé)d’
with d +d’ = 1, where

ry: M(Wl, Sl,ﬂ,ﬁ/)d — Ry and rp: Ma(WZ,,Sé)d/ — Ry

are restriction maps. Since d’ = 1 mod 4 by the index formula, we have d = 0 and d’ = 1. Thus there is
the coefficient ¢ € .7 such that n"i(W’ 5% = cmw,s). Consider the special case of a finger move which is
the composition of one positive twist move and one negative twist move. In this case, the coefficient ¢
turns out to be 1 —A**~174 for o < % and A174¢T~4 1 for o > % by the argument above. Finally, we
conclude that there is a unit element ¢ € . such that /i (,s+) and cimy,s) are S—chain homotopic. O

4 Nondegeneracy of the representation variety

In this section we will discuss conjugacy classes of representations

p:m (Y \ K)— SU(2),

with the condition
2rwia
e 0
p(K) ~ |: 0 e—2n’ia:| .

We write [p] for its conjugacy class to distinct elements in Hom(sr; (Y \ K), SU(2)) and R(Y \ K, SU(2)).
Firstly, we introduce the method of taking cyclic branched coverings. Considering a knot in an integral
homology 3-sphere (Y, K), we can take a cyclic branched covering Y,(K) over Y branched along K. Let
N(K) be a tubular neighborhood of K C Y, and V =Y \ int(N(K)) be its exterior. V denotes the r—fold
unbranched covering over V' with (V) being a kernel of 71 (Y \ K) > H1(Y \K,Z) —> Z/rZ. N(K)
and V have a torus boundary, and let #: IN(K) — 3V bea gluing map which sends g a meridian of K
to its lift fig. Then the r—fold cyclic branched covering over Y is defined by

Y, (K)=NK)U, V.
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Lett: }7, — Yr be a covering transformation. We define an induced action of (17,, p) with a basepoint p
missing the fixed point set of the T—action on Y,. For this, we fix another basepoint ¢ inside the fixed point
set and a path connecting p and ¢. Such a choice of path defines a (noncanonical) isomorphism between
T (Yr, p) and m(f"r, q). Since t induces a natural action on 5y ()7r, q), we define an induced action T4
on (}7,, p) via the above isomorphism. The t—action induces the action 7* on Hom(7r; (}7,, p),S0(3))
by *(p) = p o 7+. This also defines an action on R*(¥;, SO(3)) by t*[p] = [t*(p)]. We define the
following subsets:

R**(Y,,S0(3)) = {[p] € R*(¥;,SO(3)) | T*[p] = [p]},
R**(Y,SU(2)) = {[p] € R*(Y,SU(2)) | Ad[p] € R*(Y,SO(3))}.

Since a different choice of basepoints of fundamental groups induces a canonical isomorphism on
R* (Yr, SO(3)), we may omit the choice of basepoints and a path between them from the notation here.

The aim of Section 4.1 is giving the construction of the lifting map
m: || Rpen\K.SUQ)— R (¥,,SUQ)),
1<l<r—1
which sends singular flat connections to nonsingular flat connections on a cyclic branched covering of the
knot K C Y. We will see that the lifting map IT satisfies the following proposition.

Proposition 4.1 Assume that the r—fold cyclic branched covering Y, ofaknot K in an integral homology
3—sphere Y is an integral homology 3—sphere. Then the lifting map I1 gives a two-to-one correspondence

m: || Rpen\K.SUQ)— R (¥,,SUQ)).

1<l<r—1
This is a generalization of the argument in [2].

Let X(K) be the complement of a tubular neighborhood of the knot K C §3. Its boundary 0X(K) is a torus.
In Section 4.2, we will show that the restriction map r: R*(S>\ Tp.4, SU(2)) — R(0X(Tp,q), SU(2)) is
a smooth immersion of a 1-manifold without any perturbation of flat connections, using the setting of
gauge theory by Herald [22] and computations of the group cohomology of 7r;. In Section 4.3, we will
give a proof of Theorem 1.9 using the results in Section 4.1.

4.1 The construction of the lifting map

We assign the second Stiefel-Whitney class w € H?(Y, Z,) to [p] € R(Y,SO(3)). We can construct a
flat bundle E = Y Xp R3 from an SO(3)-representation p and define w([p]) := wa(E) € H*(Y, Z»),
where wy (E) is the second Stiefel-Whitney class of E. If w(p) = 0 then the SO(3)-bundle E lifts to an
SU(2)-bundle F. Let P and Q be the corresponding principal bundles of £ and F, respectively. The
natural map p: Q — P is a fiberwise double covering map. Let 6, be a connection form on P which
corresponds to the flat connection p. Then p*6, defines a flat connection on Q. Thus each element of
R(Y,SO(3)) lifts to R(Y, SU(2)) if its second Stiefel-Whitney class vanishes.
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Proposition 4.2 Let X be Y or Y \ K. Then there is an action of H'(X, Z,) on R(X,SU(2)) and the
map Ad: R(X,SU(2)) — R°(X, SO(3)) induces a bijection

R(X,SU2))/H (X, Z,) = R°(X,SO(3)).

Here R°(X, SO(3)) denotes the set of conjugacy classes of SO(3)—representations whose second Stiefel—
Whitney class vanishes.

Proof Let p: m1(X) — SO(3) be a representation whose second Stiefel-Whitney class vanishes and
p: m1(X) — SU(2) be its SU(2)-lift. Consider another lift 5': 71(X) — SU(2). Then there is a map
x: m1(X) — {£1} such that p’(g) = y(g)p(g) for any g € m1(X). We can directly check that y is
a homomorphism and determine an element y € Hom(w1(X),Z,) = H'(X,Z,). Conversely, two
SU(2)-representation o1, 02 : w(X) — SU(2) such that there exists y € Hom(r1(X), Z5) and satisfying
01(g) = x(g)o2(g) for any g € 1 (X) induces the same SO(3)-representation. We define an action of
HY(X,Z,) on Hom(r1(X),SU(2)) by 0 — x -0, where (x-0)(g) = x(g)o(g) for g € m1(X). The
action of y commutes with the conjugacy action and descends to R(X, SU(2)). m|

Note that the action of H!(Y \ K, Z,) coincides with the flip symmetry. From Proposition 4.2, we get
the following corollary:

Corollary 4.3 For an integral homology 3—sphere Y , all elements in R(Y, SO(3)) have a unique lift in
R(Y,SU(2)).

Proof Since H2(Y,Z,) = 0, the second Stiefel-Whitney class of [p] € R(Y, SO(3)) vanishes, and p
lifts to an SU(2)-representation. By Proposition 4.2, this lift is unique since H'(Y, Z,) = 0. |

If [p] € R(Y \ K, SU(2)) satisfies

e2ni o 0
p(uk) ~ |: 0 e 2wia ]
then the induced SO(3)-representation satisfies
1 0 0
4-1) Adp(ug) ~ |0 cos(dma) —sin(4ma)

0 sin(4wra) cos(4ma)
Let Ry (Y \ K,SO(3)) be a subset of R(Y \ K,SO(3)) whose elements are represented by SO(3)-
representations of 71 (Y \ K) such that their images of px are conjugate to the right-hand side of (4-1).

Before proceeding with the argument, we introduce the orbifold fundamental group of Y \ K. (It appears
in [2; 3], for example.)

Definition 4.4 The orbifold fundamental group of Y \ K is nIV (Y. K:r) :=m1 (Y \ K) /().
Proposition 4.5 The orbifold fundamental group 7T1V (Y, K; r) admits the split short exact sequence
1> mY,)—>af (Y.Kir)—>Z/r — 1.
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Proof Let K C ¥, be the branched locus. Then there is the exact sequence
1> mi(Y,\K) > m(Y\K)—>Z/r — 1.

since ¥, \ K — Y \ K is a regular covering. Applying the van Kampen theorem to ¥, \ int N(K) U N(K),
we have 771 (¥,) = 1 (Y, \ K)/ {1 g). Since 71 (¥, \ K) — 71 (Y \ K) maps 1 g to /i), this induces 1 —
m(Y,) —> JTIV(Y, K;r). Since w1 (Y \ K) — Z/r maps  to 1, this induces JTIV(Y, K;r)— 7Z/r which
sends g to a generator of Z/r. The spitting Z/r — n}/ (Y, K;r) sends a generator of Z/r to ug. O

Lemma 4.6 There is a natural one-to-one correspondence
r—1
R*(my (Y. K:r).S0(3)) = |_| R}z, (¥ \ K.SO(3)).
=1
Proof Let p: m1(Y \ K) — SO(3) be a representation with [p] € R}k/(Zr)(Y \ K,SO(3)). Then it factors
through an (Y, K; r). Conversely, any representation o : an (Y, K;r) — SO(3) satisfies
1 0 0
o(ug) ~ |0 cos(dra) —sin(4ra) |,
0 sin(4ra) cos(4mwa)

where o = [/(2r) for some 0 <[ < r. Thus ¢ defines the desired representation of 1 (Y \ K). |

Proposition 4.7 There is a bijection

r—1
| | R}an (Y \ K.SO(3)) = R**(Y,, SO(3)).
=1

Proof Since there is the natural one-to-one correspondence in Lemma 4.6, we only have to construct
R*(n} (Y. K:r).SO(3)) & R**(¥;,S0(3)).

This is induced from 7y (?r) LN an (Y, K; r) in the short exact sequence in Proposition 4.5. We claim that

if p: n}/ (Y, K;r) — SO(3) is irreducible then poi is also irreducible. Since Y, is an integral homology

sphere, any reducible SO(3)-representation of 7y (Y,) is the trivial representation. If poi is trivial, then p

factors through JTIV (Y, K;r)/i(m ()7,)) =~ 7 /r, and hence is reducible. This is a contradiction.

We will construct the inverse correspondence of the above. Let o be an SO(3)-representation of (Yr)
which represents an element in ’R*”(Yr, SO(3)). Since the conjugacy class of ¢ is fixed by the induced
action of t, there is a matrix A € SO(3) such that

t*o(u) = Ao(u)A™!
for any u € m; (17 +). A is uniquely determined since ¢ is irreducible and has the trivial stabilizer {1} in
SO(3), and A is conjugate to the matrix of the form

1 0 0
(4-2) 0 cos2rl/r) —sin(2wl/r)
0 sinQrl/r) cos2nl/r)
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Since t has order r, we get the relation
ouy=A"o(u)A™"

for any u € my (?r), and we get A” = 1 using the irreducibility of o. Thus we can assign a unique order-r
element A; € SO(3) for each 0. Finally, we assign a representation

(4-3) Gl (V. K:r)=m(Y,)xZ/r - SO@3), (u,t*)— o(u)- A%,
to a given representation o, where ¢ € Z/r is a generator. This satisfies 6 (ug) = Ag. The above
construction gives the inverse of R* (JTlv(Y, K:r),SO(3)) 3 [p] — [poi] € R**(¥,,SO(3)). ad
We write

r—1

;|| R} /ary (¥ \ K.SO(3)) = R**(¥,,S0(3))
=1

for the bijection constructed above.

Definition 4.8 Let K be a knot in an integral homology 3—sphere Y, and assume that Y, is also an
integral homology 3—sphere. Then IT: |_|lr;} R;‘/(Zr)(Y \ K,SU(2)) — R** (Y, SU(2)) is given by the
following composition:

r—1 r—1

’ ~ —1 ~
| | R} /2y (Y \K.SU@) 2% | | Rf) 5y (Y \ K. SO(3)) I R¥¥ (¥, SO(3)) 24— R** (¥, SU(2)).
I=1 I=1

We call TI([p]) a lift of [p].

An SU(2)-representation that factors through Pin(2) subgroups is called a binary dihedral representation.
An SO(3)-representation that factors through O(2) subgroups is called a dihedral representation. Note
that O(2) is embedded in SO(3) as

A0
[o detA:| €S00),

where A € O(2). The adjoint representation of a binary dihedral representation is a dihedral representation.
In the proof of Proposition 4.1, which is an important property of the lift I1, we use the following lemma:

Lemma 4.9 [39] The fixed point set of the H'(Y \ K, Z)-action on R(Y \ K,SU(2)) consists of
conjugacy classes of binary dihedral representations.

Proof Let [p] € R(Y \ K,SU(2)) be a fixed point of the action of H(Y \ K, Z,). We regard this as a
representation p: 771 (Y \ K) — SU(2) such that there exists A € SU(2) and (y - p)(u) = Ap(u)A~! for
any u € m1(Y \ K). Here y € H'(Y \ K) is a generator. Since y has order 2, p(u) = A%p(u)A=2. If
p is reducible then its image is contained in a circle in SU(2) and is a binary dihedral representation.
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Assume that p is irreducible and consider two cases, A2 = 1 and A% = —1. We regard SU(2) as the
unit sphere in the quaternions. Then Pin(2) = S' U jS!. If 42 =1 then A = +1 and —p(u) = p(u)
for some u € 1 (Y \ K). This cannot happen in SU(2). If A2 = —1 then we can assume that A = i
after a conjugation, and then p(u) = +ip(u)i~! for any u € (Y \ K). If p(u) = ip(u)i~! then
p(u) € S = {a +bi}. If p(u) = —ip(u)i~! then p(u) € jS! = {¢j + dk}. Thus the image of p is
contained in S'U jS!. O

Lemma 4.10 Let r € 27Z. If p: nIV(Y, K;r) — SO(3) is a dihedral representation, then its pullback
T (}7,) — SO(3) by the orbifold exact sequence in Proposition 4.5 is a reducible representation.

Proof Since p factors through O(2), we have a representatlon o'ty V(Y,K:;r) = O(2). Composing
with det: O(2) — Z/2, we have a representation detop’: rrl (Y K;r) — Z/2. Since detop’ factors
through the abelianization | VY, K;ir)=m (Y \ K)/(/,LK ) Ab, Z[/LK]/</LK ), we have the diagram

nY,) —/— Ty (v, K; r) LA 0R)——17Z/2

where 7} (17 ) LN JTV(Y K; r) is the inclusion map in the orbifold exact sequence. By construction, Ab
coincides with the map 7/ V(Y,K;r) — Z/r in the orbifold exact sequence. Thus Aboi is the trivial
representation, and hence detop’ o1 is also the trivial representation. This implies that the image of p’ o i
is contained in SO(2). Thus poi: m1(¥,) — SO(3) factors through SO(2), and this means that p o i
is reducible. |

The following proposition gives the proof of Proposition 4.1:

Proposition 4.11 Let K C Y be a knot in an integral homology 3—sphere whose r—fold cyclic branched
covering Y, is also an integral homology 3—sphere. For each [p] € R**(Y,SU(2)), I1"'([p]) consists of
two elements which correspond to each other by the flip symmetry.

Proof Applying Proposition 4.2 to the 3—manifold Y \ K, we have a bijection
(4-4) R(Y \K.SU@)/H'(Y \ K.Z2) = R(Y \ K,SO(3)).

Note that R(Y \ K, SO(3)) = R%(Y \ K, SO(3)) since H?(Y \ K, Z,) = 0. We restrict this correspondence
to elements with holonomy parameter « = [/(2r) for/ =1,...,r — 1. Note that H'(Y \ K, Z5) acts on

Ry(Y\ K,SU22))URT (Y \ K, SU(2)) since the flip symmetry changes the holonomy parameter as

1/2—«a
o % — o, and the bijection (4-4) is restricted to
r—1 r—1
(4-5) [ | | R en @\ K. SU(2))} / H'(Y\K.Z2) = | | R}, (¥ \ K.SO(3)).
=1 =1
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Fix [p] € R*7 (¥, SU(2)). The composition
|| Rfen @\ K.503) T> R*%(F,.50(3)) 25 R**(F,.5U(2))

o<l<r
is bijective. Thus we have a unique element [p'] € | |y;, R;‘/(zr)(Y \ K, SO(3)) which corresponds
to [p]. TI™1([p]) is the inverse image of [p’] by the map

r—1 r—1
|| RS /0y \ K.SUQ@) 25 | | R 2y (Y \ K.SO(3)).
I=1 I=1

Finally, we prove that Ad~'([p']) consists of two elements. Let [0] € Ad™'([p']) be an element
contained in R;‘/(zr)(Y \ K,SU(2)). If r is odd then [ /(2r) # % —1/(@2r), and thus [p] # x[p] in
Llo<i<r R] /(2r) (Y\ K, SU(2)) since p and yp have different holonomy parameters, where y is a generator
of H'(Y \ K. Z5) = Z,. This means that the H' (Y \ K, Z5)-action on Jy; -, Ri/@2r (Y \ K.SU(2))
is free and Ad~!([p]) consists of two elements. If r is even and 2/ # r, then Ad~!([p]) consists of two
elements by the same reason. If 2/ =r then H'(Y \ K, Z») acts on RT/4(Y \ K, SU(2)). The fixed points
of the H'(Y \ K, Z,)-action on Ry / 4+(Y'\ K,SU(2)) are binary dihedral representations by Lemma 4.9.
We show that IT!([p]) does not contain a binary dihedral representation. Let o”: 1 (Y \ K) — SU(2)
be a binary dihedral representation with holonomy parameter o« = %. Then Ad o’ defines a dihedral
representation an (Y, K;r) — SO(3). Then the induced representation Ado”’ o : m(Y,) - SO(@3) is
reducible by Lemma 4.10 and its SU(2)-lift is also reducible. This means that TI~1([p]) does not contain
any binary dihedral representation. Thus H'(Y \ K, Z,) acts freely on TI~([p]), and hence TT~([p])
consists of two elements which are related by the flip symmetry. O

4.2 Nondegeneracy results

The purpose of this subsection is to associate the nondegeneracy property of the critical point set €
of the singular Chern—Simons functional and the transversality of the moduli space of irreducible flat
connections R*(Y \ K, SU(2)). Let us recall the setting of the gauge theory used in [22; 23] to deal with
the “pillowcase picture” of perturbed flat connections. In this subsection, ¥ denotes a (general) oriented
closed 3-manifold and K is a knot in Y. Let E be an SU(2)-bundle over X =Y \ N(K). We fix a
Riemannian metric on X. We introduce the space of SU(2)—connections over X and dX = T2 as follows:

Ax = L3(X,5u) ® A),  Ap2 = L3 ,(T? su(2) @ Ah).

Here we fix a trivialization of the SU(2)-bundle over X and 0X, and identify the trivial connection to
zero elements in each functional space. We also introduce spaces of gauge transformations:

Gx ={gcAuw(E)|ge L3, Gr={gcAut(E|r)]|ge Lg/z}.

The action of gauge transformations on connections and su(2)—valued p—forms are given in obvious
ways. Gx and Gr2 have Banach Lie group structures and act smoothly on Ay and Ap2, respectively. A
connection whose stabilizer of gauge transformations is {1} is called irreducible. A} denotes the subset
of irreducible connections.
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We introduce the following spaces of p—forms with boundary conditions:
Q7(X, su(2)) = {o € QP(X,5u(2)) | *wpx =0}, Q7(X,s5u(2)) = {w € QP(X,5u(2)) | wlpx = 0}.
We define the L2?—inner product on 7 (X, su(2)) by the formula

{a,b) = —/ tr(a A xb).
X
For each A € Ay, the slice of the action of Gy on Ay is given by
X4 =A+Kerd;NL3QM(X, su(2)).
For each flat connection A € A, the space of harmonic p—forms is given by
HP(X:ad A) = {w € QY (X, 5u(2)) | dyw =0, djow = 0},
HP(X,0X;ad A) = {w € QP(X,5u(2)) | daw =0, djow = 0}.

The holonomy perturbation / defines a compact perturbation term V3, : Ay — Q1 (X, su(2)) and a perturbed
flat connection can be defined as a solution of the equation

(4-6) xFq 4+ 1V, =0.
R*"(X,SU(2)) denotes gauge equivalence classes of irreducible solutions for (4-6). Consider the
restriction map r: R*" (X, SU(2)) — R(T'2,SU(2)). For a generic perturbation h, R*" (X, SU(2)) is a

smooth 1-manifold. Moreover, the restriction map r is a smooth immersion of R*”(X, SU(2)) to the
smooth part of the pillowcase. The detailed argument is contained in [22]. Put

Se 1= {p € R(T?,SUQR)) | tr p(ug) = 2cos(2mia)}.

This is a vertical slice in the pillowcase. Note that Ry (X, SU(2)) = r~1(S¢) N R(X,SU(2)) and we
define REM(X,SU(2)) := r=1(Sy) N R*" (X, SU(2)).

Proposition 4.12 Let K C Y be a knot in a closed 3—manifold, and « be an arbitrary holonomy
parameter in (0, %) Assume that [p] € R3(Y \ K,SU(2)) is a nondegenerate critical point. We
also assume that the image of R*(Y \ K, SU(2)) by the restriction map r is contained in the smooth
part of the pillowcase. Then R*(Y \ K,SU(2)) is smooth near [p]. Moreover, the restriction map

r:R*(Y \ K,SU(2)) — R(T?,SU(2)) is an immersion to the smooth part of the pillowcase at [p].
For the proof of Proposition 4.12, we need gauge theory on 3—manifolds with the boundary described above.

Lemma4.13 Let By be an abelian SU(2)—flat connection on a torus T?. Then the su(2)—valued harmonic
form h € H'(T?; ad By) has the diagonal form

ai 0
h_|:0 —ai]’
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Proof Since By is an abelian flat connection, it defines a splitting of the SU(2)-bundle E over T2 into
E = L@ L*, where L is the trivial line bundle. Then the adjoint bundle of E has a splitting g = R&® L%®2.
Let dg, = d @ dc be the covariant derivative induced on Q7 (T2, gg) = QP(T?,R) ® QP (T?, L®?).
Any section w € QP(T?, gg) has the form

_ a_i b
= —b —ail’

where a € QP(T?) and b € QP(T?, L®?). The space of harmonic forms H?(T?;ad By) splits into
HP(T?;R) @ HP(T?; L®?) with respect to the decomposition of (27 (T2, gg), dp,). Let us compute
HY(T?;ad By) using H (71 (T?); ad p), where p is an abelian SU(2)-representation corresponding to By.
Let 1 and A be canonical generators of 771 (7?). Then the space of 1—cocycles consists of the element
y:m1(T?) — su(2) = R3 such that

(1= Adpy)y(A) = (1 =Ady)) v (W),

since i and A commute. Let F: R3 @ R3 — R? be a linear map given by
F(x1,x2) = (1= Ap)x1 — (1= 4))xz,

where A, := Ad,(,) and A, := Ad,,). Since A, and A, are SO(3)-linear transformations acting
on R3, they have 1-dimensional axes of rotation R w and R, respectively. Let C,, and C, be their
orthogonal complement spaces. Then Im(1 — A4,) = C,, and Im(1 — A4,) = C,, and hence F is
surjective. Thus the space of I—-cocycles is isomorphic to R*. On the other hand, the space of 1—
coboundaries is spanned by Im(1 — Ad,,)) for all g € my (T?), and this is 2—dimensional since p is
reducible. Thus H!(7?;ad Bg) = H(7;(T?);ad p) = R2. Therefore H(T?; L®?) vanishes since
HY(T?;R) = HY(T?;R) = R2. This means that if ® € Q!(T?, gg) is a harmonic form then b = 0.
Thus & € H!(T?; ad Bog) has only diagonal components. m|

Since By is a reducible connection with U(1)—stabilizer, #°(7?;ad Bg) = Kerdp, =~ R. We fix a
generator yo € H°(72;ad By).

Lemma 4.14 There is a Gpa>—invariant neighborhood Np, of By € Ap> and Gp2—invariant map
n: Np, — Q%(T2, su(2)) such that

(1) n(Bo) = yo.
(2) [r2te(Fp An(B)) =0 forall B € Np,.

Proof Take a small neighborhood of By in the slice of the action of G2 on Ar2 as
Xpy.e ={Bo+b|beL3,Q"(T? su(2).ds b =0, 161z, < b

where € > 0 is small enough. Firstly, we define an Q°(72, su(2))—valued map 7 on the slice X Bo,e and
then extend it to a gauge-invariant neighborhood. For B = Bg + b € Xp, ¢, define

n(B) := yo.
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Then

/thr(FB/\yo) =/T2tr((d30b+b/\b)/\)/o) = /thr(dgob/\yo)+/T2tr(b/\b/\yo).

Using Stokes’ theorem and the condition d BoYo =0,

/thr(dBOb AYo) = /Tzd tr(h A o) = 0.

Thus

(4-7) /T w(Fg An(B)) = fT (b Ab A Y.

Since d;ob =0, we have h € #H'(T?;ad By) and o € Q2(T2, 5u(2)) such that
(4-8) b=h+djo.

Using (4-7) and (4-8),

[ Lu(F An(B))

= /thr[(h +dj o) A(h+dj,0) Aol
- /thr(h AR AYO) + /thr(d;;ow AR AYO) + /thr(h A3 o Ayo) + /thr(dg,fow A ® A Vo).
Note that,
/thr(*dBO xw AR A YY) = /thr(dBO xw A %h A Yo)

:—/thr(*a)/\dBO*h/\)/())'i‘/thr(*a)/\*h/\dBOyo) =0.

Here we use Stokes’ theorem at the second equality. Similarly,
/thr(h Adjy o Ayo) = — /thr(a’BO * 1A %0 A Vo) — /T2tr(*h A% Adgyyo) =0,

thr(dgow/\dgow/\yo) =—/thr(dgo*a)/\*a)/\yo)—/thr(dBO*w/\*w/\dgoyo)=0.

Hence

/thr(FB/\r)(B)) =/T2tr(h/\h/\)/o).

Since yo € #°(T?; ad By) is an element of the Lie algebra of the stabilizer of By, Stab(By) = U(1) and
it has the pointwise form

ri 0
where r € R. Similarly, # € #!(T?; ad By) has the form
ai 0
=[5 o]
by Lemma 4.13. By the pointwise computation of tr(z A i A yg), we obtain

ail ail ri0 —ra Aai0
w(h Ak A Y0)() _tr(|:0—ai] é |:0—ai] a |:O—rii|) _tr[ Ora Aai i| =0
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Thus n: Xy, — QO%(T?,5u(2)) satisfies sz tr(Fp An(B)) = 0 for all B € Xp, . Define Np, :=
Gr2 - Xp, . and extend 1 to Np, in a gauge-equivariant way (ie 7(g*(B)) = g~ 'n(B)g). |

Let Ao be a flat irreducible SU(2)—connection on X. We can assume that Ag|72 is a noncentral flat
connection on 72 by the assumption of Proposition 4.12, and we write Ag|r2 = Bp. Let Uy, be a gauge
invariant neighborhood of A4¢ in Ay. We define 7j: Uy, — QO(X,su(2)) as a smooth extension of 7,
which satisfies

1(Alax = n(Alax).

Here we assume that the extension 7 satisfies d4,7(A40) € H!(X,dX;ad Ap); this is possible by the
following lemma:

Lemma 4.15 For n € H%(T?2; ad By) there is an extension ij on X such that d4,7 € H'(X,0X;ad Ao).
Proof For n € H°(T?,ad By), we take an arbitrary smooth extension 7 to X . Then
day i € Kerdaglq1 (x.cui2y) = 4o Qe (X, 5u(2)) @ H' (X, 3X; ad Ao).

Let dA0§ be the dq,Q%(X, su(2))—component of dg4,7. Then da, (7 — é) e HY(X,0X;ad Ag) with
(n— §)|8X = 1. Hence we can choose an extension 7 of 7 as d4,7 € H'(X, X ;ad Ao). a

We define a map
®: Uy, x L3Q(X,5u(2)) xR — LI(X,5u(2) ® A1)

by ®(A,¢,t) = *F4q 4+ dal +tdan(A). The linearized operator of ® at (Ag, 0, 0) has the form

D®44,0,0(a, 8, 1) =*daya +da ¢ +1day7(Ao).
Coker D®(4,.0,0) is HY(X,0X;adg,) N (dAof](Ao))J- by the Hodge decomposition.

Lemma4.16 ®(A,¢,t)=0ifonlyif F4=0,{=0andt =0.
Proof Assume that ®(A4,¢,¢) = 0. Then

| Fal?s = — /X tr(Fg A% Fg) = /X r(Fg A dal) +1 /X tr(Eg A dai(A)).

Using Stokes’ theorem and the Bianchi identity,

/};tr(FA/\dAé')ILdtr(FAAf)—/)(tr(dAFAAf)Z/thr(FA|T2/\é'ITz).

The last term vanishes by the boundary condition on ¢. Consider the remaining term

(4-9) /X tr(Fgq A dgn(A)).
Using Stokes’ theorem and the Bianchi identity, this is equal to
[ wtrm Aneey,
T2
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where B = A|r2. By Lemma 4.14, this is equal to zero and we have Fq = 0. Thus 0 = xFq =
—d4(¢ + t1n(A)) by our assumption. Since A is an irreducible connection, dy has trivial kernel and
¢ = —t7(A). Restricting this to the boundary 72, we have the relation t7(B) = 0. Since n(B) = yp is a
generator of 7°(72; ad By), we have n(B) # 0. Hence t = 0 and ¢ = 0 follow.

Conversely, if we assume that F4 =0, { =0 and ¢ = 0, then clearly ®(A4, ¢, t) = 0. |

Lemma 4.16 means that the two equations F4 = 0 and ®(4, {,¢) = 0 have the same zero set near an
irreducible flat connection Ag. Hence ® = 0 defines the space of flat connections near Ag.

Proof of Proposition 4.12 Natural embeddings (g <> 0X < X induce maps on cohomology groups
with a local coefficient system,

(4-10) H'(X;adp) L H'(0X;ad p) — H'(1ug;ad p).

The nondegeneracy condition on [p] is equivalent to the condition that the composition (4-10) is injective
by Proposition 2.3. This implies that j is also injective. Thus the restriction map R*(X,SU(2)) —
R(T?,SU(2)) to the pillowcase is an immersion at [p] if we show that R*(X,SU(2)) has a smooth
manifold structure near [p]. Next, we show that R* (X, SU(2)) is a smooth manifold near [p]. Consider
the long exact sequence of cohomology with local coefficient associated to the pair (X, X),

o HO0X:;adp) S HY(X,9X;adp) - H ' (X;adp) L H'(0X:adp) — ---.

The cokernel of the connecting homomorphism 9 is zero since j is injective. Using the harmonic
representative of the cohomology with local coefficient, the connecting homomorphism 9 is given
by vo — du,1(Ap), where Ag is an SU(2)—flat connection corresponding to p. Thus Cokerd =
HU(X,0X;adg,) N (dAOﬁ(Ao))L = 0. This means that the equation ®(A, {,7) = 0 has a surjective
linearization map at (Ao, 0, 0). Thus there is a neighborhood V4, of Ag € ®~1(0) which has a smooth
structure by the implicit function theorem. Since Ay is irreducible, the quotient singularity by gauge
transformations Gy does not occur. Thus R* (X, SU(2)) has a smooth manifold structure near [p]. O

By Proposition 2.3, the following shows that the singular Chern—Simons functional for a (p, g)—torus
knot has nondegenerate irreducible critical points without perturbations:

Proposition 4.17 For any [p] € R*(S>\ Tp.4, SU(2)), the natural map

(4-11) H'(S?\ Ty q4:adp) - H'(ur, ,:ad p)

is injective.

Proof Firstly, we compute H!(S>\ T, 4;ad p) using the group cohomology of 71 (Y \ K). Since the

fundamental group 771 (S3\ 7),4) has a presentation (x, y | x? = y9), 1—cocycles y: 71 (S3\ Tp,q) — 5u(2)
satisfy the relation

(I 4+ Ay + -+ A2 Dy(x) = (I + Ay +--+ AT Hy(y)
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where Ay := Ad,(y) and Ay := Ad,(y). Since Ax and A, are SO(3)-linear transformation acting on R3,
they have 1-dimensional axis of rotation Ry and R, respectively. Let C, and C,, denote their orthogonal
complement spaces. Then Im(/ — Ayx) = Cy and Im(/ — A4,) = C,. Note that p(x) and p(y) are
contained in different great circles in SU(2) = S since p is an irreducible SU(2)-representation. Thus
p satisfies p(x)? = p(y)4 = +1 and hence A2 = A% = I. Thus Ker(I + Ay +---+ AZ™") = C, and
Ker(/ + Ay +---+ Ag_l) = C,. Since p is irreducible, Ry and R, are independent in R>. Consider a
linear map L: R3 @ R3 — R3 defined by

L(xp.x2) = + A+ + A2 Dx; —(I + Ay + -+ A2 Dx,.

This has rank 2, and the space of 1-cocycles has dimension 4. On the other hand, the space of 1-
coboundaries is a subspace of R? spanned by Im(/ —Ad,(g)) forall g € 1 (S 3\ Tp,q), and this coincides
with R itself. Therefore H'(S3\ T, 4;ad p) = R*/R3 = R.

Next we compute H'! (4T, ,:ad p). Here the space of 1-cocycles is isomorphic to R3 since its elements
are determined by choosing y () € su(2) = R3. The space of 1-coboundaries is Im(/ — Ady) = C.
Thus H!(u;adp) = R3/C = R.

Finally, we prove that the map (4-11) is surjective. If y: 71 (S 3\Tp,q) — s1u(2) represents a nonzero element
in H1(S3\Tp,4;ad p) then y(g) ¢ Im(/ —Ad,(g)) forany g € my (S3\Tp4)- Thus y(u) ¢ Im(I —Adpy())
for the meridian p € 71(S3\ Tp4), and this means that the image of [y] € H1(S3\ Tp,4:adp) in
H! (41, s ad p) is a nonzero element. a

Consider a knot K in S3. Note that the image of the restriction map r: R*(S3\ K, SU(2)) — R(T 2, SU(2))
is contained in the smooth part of the pillowcase. By Propositions 4.17 and 4.12 we get the following
statement:

Corollary 4.18 The natural restriction map R*(S3\ T, 4, SU(2)) — R(T?, SU(2)) to the smooth part
of the pillowcase is an immersion of a smooth 1-manifold.

In fact, it is known that the irreducible representation variety R* (S \ 7,4, SU(2)) is a disjoint union of
%(p —1)(¢ — 1) segments; see [24].

4.3 Levine-Tristram signature and representation variety

The following statement relates the size of the set of singular flat connections over S3\ Ty 4 and the set
of flat connections over the cyclic branched covering.

Lemma 4.19 Let p, g and r be relatively coprime positive integers and X(p,q,r) be a Brieskorn
homology sphere. Then

r—1
2R*(Z(p.q,7), SU@)| = ) R}y (S \ Tp.q, SUQ))I-
=1
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Proof We apply Proposition 4.1 to the r—fold cyclic branched covering X (p, g, r) of Tp 4 C S>. Note
that the covering transformation 7 induces the trivial action on R*(Z(p, ¢, r), SU(2)) by [2], and hence
there is a two-to-one correspondence

L IR 20y (5% \ Tpg. SU@) 2 R*(S(p. 4. 7). SU()). 0
)

The nondegeneracy condition at irreducible critical points can be interpreted in the pillowcase as follows:
Lemma 4.20 Leto € (0, %) be a fixed holonomy parameter. Assume that [p] € R} (S>\ K, SU(2)) is
nondegenerate. Then Sy and the image of R*(S>\ K, SU(2)) by the restriction map
r:R*(S3\ K,SUQ)) — R(T?,SU))

intersect transversely at r([p]).

Proof Consider the natural map p: R(T?,SU(2)) — R(uk.SU(2)) induced from the embedding
ug <= T?. Let [0] € R(uk, SU(2)) be an element such that tr(o (g )) = 2 cos(2ar). Then p~1([o]) =
So C R(T?,SU(2)) by definition. Note that S, is contained in the smooth part of the pillowcase, and

[o] is also contained in the smooth part of R(ug, SU(2)) since the quotient singularity by the conjugacy
action of SU(2) does not happen when « # 0, 2. Thus the kernel of the map

dpion: Tio'R(T?,SU(2)) = H' (T?;ad p) — Tjo)R(1k. SUR)) = H' (g ad p)

induced on their tangent spaces is T{5]S¢, Where [0'] = r([p]). Note that R*(S 3\ K, SU(2)) is smooth
near [p] by Proposition 4.12. The composition of the natural maps

(4-12)  TR(S*\ K, SUQ) = H'(S*\ K;adp) &> H'(T%;ad p) > H' (1 ad p)

is injective by our nondegeneracy assumption. Thus the image of H1(S3\ K;ad p) in H(T?;ad p)
is independent of Ker(H ! (T?;ad p) — H!(jug;ad p)). This means that r(R*(S3\ K, SU(2))) and Sy
intersect transversely at 7 ([p]). |

There is a relation between 04 (K) and R, (S 3\ K,SU(2)). We use the following inequality in the proof
of Proposition 4.22:

Lemma 4.21 Let K be a knot in S3. Assume that R%(S3 \ K, SU(2)) is nondegenerate. Then
0w (K)| < 2IR5(S*\ K, SUQ))|
foro € [(), %] with Ag (e*™'%) £ 0.
Proof By Proposition 4.12, R*(S3\ K, SU(2)) — R(T?,SU(2)) is an immersion to the smooth part
of the pillowcase. By Proposition 4.17 and Lemma 4.20, the immersed image of R*(S3\ K, SU(2))

intersects transversely to S,. After taking a small perturbation, the image of R**(S3 \ K, SU(2))
intersects to Sy transversely and the number of intersection points do not change,

(4-13) IR*(S3\ K,SUQ2) Nr~ 1 (Se)| = IR*(S3\ K, SUQ2)) N r~1(Sa)].
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If Ag(e*™%) % 0 and the perturbation / is chosen so that it satisfies the conditions in [23, Lemma 5.1]
then the signed counting #R;’h (S3\ K, SU(2))) can be defined, and

#REM(S3\ K, SUQ)) = —Loa(K)
holds by [23, Corollary 0.2]. On the other hand, the left side of (4-13) is just the size of the set
RE(S3\ K, SU(2)) by definition. o

Since K = T} 4 satisfies the assumption of Lemma 4.21, |04 (T 4)| < 2|R2(S>\ Tp.4, SU(2))| holds for
a €[0, 5] with Ag,  (e*7*) # 0.

Proposition 4.22 Let p, g and r be positive and relatively coprime integers. The formula

—301/2r) Tp.g) = IR} 0 (S \ Tp.q, SU))|

holds for 1 <1 <r —1 with Ar, ,(e?™1/7) #£0.
For the proof we use the similar argument as in the proof of [2, Theorem 3.4].

Proof Consider a 4-ball B* and a torus knot in its boundary 7, ;, C S = dB*, and take a Seifert surface
S for Tpqg as S C B* and S NdB* = 3S. The r—fold cyclic branched covering of B* branched along S
is the Milnor fiber

M(p.q.r)={(z1.22,23) | 20 + 2 + 2§ = e} N B® C C?,

where € > 0 is small enough. Furthermore, dM (p, q,r) = X(p, ¢, r) is an r—fold cyclic branched covering
of dB* = §3, branched along T 4. There is the following formula (see [13, Corollary 2.9]):

_%U(M(p9 q, r)) = |R*(E(p’ q, l"), SU(Z))|

Using the signature formula in [41], Lemma 4.19 and decomposition of o (M (p, ¢, r)) into the equivariant
signature o (M(p, q,r); é), we have

r—1

r—1
1
=5 2_01/enTp.g) = )_IR})2)(S* \ Tp.g. SUQ))I.
=1 =1

Note that 07/(2,)(Tp,q) < 0 since Tp 4 is a positive knot. If we assume that the inequality in Lemma 4.21
is strict for some /, then —%O’(M(p, q.1)) <|R*(Z(p.q.r))|, and this is a contradiction. |

Proof of Theorem 1.9 When o = 0 or %,. or,, = 0 and R;(S3 \ Tp,q,SU(2)) is empty. So we
consider the case o € (0, %) with Ap, (e*™'®) =£ 0. Since the image of R* (S \ Tp,q,SU(2)) in the
pillowcase intersects Sy transversely, there is a small € > 0 such that for any @’ € (@ — €, o + €) we have
Ar,, (e*™1®) =£ 0 and

IR*(S?\ Tpq. SUR)) N1 (Sa)| = IR*(S? \ Tpq. SUR)) N7~ (Sw)|.
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Thus [RE(S3\ Tp.4,SUQ2))| = IR/ (S 3\ Tp.g,SU(2))|. The Levine-Tristram signature is piecewise
constant and jumps at the roots of the Alexander polynomial. Hence o7, , (e?7io) = 0T, , (e*mie’y if
€ > 0 is small enough. We can find a positive integer r which is coprime to p and ¢, and a positive integer
[ such that [ /(2r) € (¢ — €, + €). Then

=501/ (Tp.g) = IR} (5> \ Tp.g. SU)))|
by Proposition 4.22. Thus we have
—30a(Tp,g) = IRG(S*\ Tp,q. SU2))]. m

5 Properties of instanton knot invariants and their applications

In this section, we give the proof of Theorem 1.1, our main theorem. The important consequence of
Section 5.1 is that the Floer chain C¥(Tp 4; A ») is supported only on the odd graded part. The key
argument is that the Frgyshov invariant of a knot K C S3 for an appropriate choice of coefficient .
reduces to the Levine-Tristram signature. This is a generalization of the corresponding result in [8] and
the argument is parallel. Section 5.2 gives the proof of Theorem 1.1 using this specific property of the
Floer chain complex C%(Tp.4; A ) and the Frgyshov knot invariant.

5.1 The Frgyshov knot invariant and the structure theorem

Let W be a compact oriented smooth 4-manifold with 5! (W) = b+ (W) =0, whose boundary dW =Y is
an integral homology 3—sphere. Let K C Y be an oriented knot and S C W be an embedded oriented surface
with 0§ = K. Throughout this subsection, we assume that .# is an integral domain over %,. We define

K(A):=k(A) + (@ — 5)v(A) +a>S-S and d¥W.S) :=4K(Amin) —&(S) — 204 (Y. K)—1

for each holonomy parameter o € (0, %) N Q. Here Ap;, is a minimal reducible, and note that K (Amin) is
independent of the choice of minimal reducibles. Moreover d%(W, §) is an integer by the index theorem.
The value of the Frgyshov knot invariant is evaluated by the following proposition:

Proposition 5.1 Let (W, S) and (Y, K) be as above and o € (O, %) NQ satisty Ay, k) (eHmi®y £ 0. If

d :=d%(W,S) = 0 then there is a cycle c*(W, S) € C3, | (Y, K; Ay) satisfying

0 if0<j<d,
n*(W,S) if j =d.
Proof We define ¢*(W,S) e Cy, | (Y,K;Ay) by

(CCW.9).B)= Y e(ro D,
[4]eM(W.S:B)o

§1v7 (¢*(W, S)) = {

where M(W, S, B)o is a zero-dimensional moduli space. Since dc®(W, §) corresponds to the counting
of the boundary of the 1-dimensional moduli space M (W, S: B/)T, we have dc®(W, S) = 0. Let
MW, S, 0y)24+1 be the moduli space of instantons A over (W, S) which are asymptotic to 6, and
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satisfy K (A) = k(Amin). If d > 0 then we can perturb the ASD equation so that each reducible connection
in Mz (W, S;0y)24+1 has a neighborhood which is homeomorphic to the cone of C Pe. Removing
small (2d +1)-balls of each reducible point from M, (W, S;0y)24+1, We get a (2d +1)-manifold M,
whose boundary is |_|(:|:C]P’d), where the sign + is determined by the orientation of each reducible point.
Cutting down M/ by codimension 2 divisors {V; }1<; <4 associated to d pointsin S, M,NViN---NVyisa
1-manifold with boundary. Then ), #9(M/NViN---N V) Ako—, @) Tv(2)=v0 — p® (W, §). On the other
hand, M, NV, N---NV; has ends arising from the sliding end of instantons. Define ¢ € C; (Y, K; A ») by
(B.y)=> > e(Aprro A vivo,
z 4]
where [A] runs through all elements in #(M; (W, S;B)q NVi N---NVy,) for each z. Then ¥ and
vec®(W, S) are homologous. Since 8§y = n®(W, S), we have §;v4c*(W, S) = n%(W, S). If j <d,
M;(W,S;04)2j+1 does not contain reducible points and we have §; v/ (W, §) =0. |

Before the proof of Theorem 1.8, we state Lemma 5.2 and Proposition 5.3 related to two-bridge torus knots.

Lemma 5.2 For any o € (O, l) there exists an integer k > 0 such that 04(T3 2k+1) = —2 and

2
AT2.2k+1 (e4ma) # 0.

Proof Consider the case o < %. By [34, Proposition 1], 04(T% 2% +1) is given by

0a(T22k+1) = N1 —na2,
where 17 is the number of lattice points {(l, m) | (k + %)(1 +4a) <m <2k + l} and n, is the number
of lattice points {(1, m)|0<m< (k + %)(1 + 4a)}. Thus 04 (T3 2k+1) = —2 if only if 1/(8k +4) <
a < 3/(8k 4+ 4). Moreover, note that the interval (1/(8k + 4), 3/(8k + 4)) does not contain any root of
AT, 44, (). Thus, forany o < 1 we can find k > 0 such that 0a(T22k+1)=—2and Ar, ,, ., (emi®) £,
For the case o > %, it follows that 0 (T3 2k +1) = —2 if only if % -3/8k+4)<a< % —1/(8k +4) by
the flip symmetry. O

Proposition 5.3 Foranya € QN (0, %), there is an integer k > 0 such that Ar, ,, . | (e*™i®) =£ () and
he (T2 2k+1) = 1.

Proof By Lemma 5.2, we can find an integer kK > 0 such that 04 (T3 24 +1) =—2and A, ,, | (emiey £,
Consider a cobordism of pairs (W, Si) obtained by the composition

Wi, Si): (82.U) = (8. Ta3) = -+ = (S, Tapi—1) = (82, Taak41),
where (S3, T2 2i—1) — (S3, T2.2i+1) is obtained by the crossing change of the knot. Put (W, S;) :=
(D*, D?) U3,y (Wi, Sk). Then it is easy to see that b (W) = b (W) =0 and d*(Wy, Sx) =0
by the similar argument as in Proposition 2.23. Applying Proposition 5.1 to the pair (W, S ), we obtain
acycle c*(Wy, Sy) € C{¥(T3,2k+1) such that 81¢%(W g, Sg) # 0. This implies that h% (T, o5 +1) # 0.
Since rank C¢(T2,2n+1) = 1, we have h% (T ok 1) = 1. O
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Proof of Theorem 1.8 Consider a knot K C S3 and a holonomy parameter « € Q N (0, %) with
Ak (e*™1®) £ 0. Since K C S is homotopic to any knot, it can be deformed into /75 2,41 by positive
and negative crossing changes, where | = —%aa (K). This operation defines a cobordism of pairs
([0,1]x 83, 8): (83, K) — (S3,1T2 2n+1) where S is an immersed surface with normal self-intersection
points. Let S": [T2 2,41 — K be the inverse cobordism of S. Since 0¢(K) = 04(IT2 2n+1), tWO
cobordisms S and S’ induce negative definite cobordisms. Let /7ig : 5;" (K;Ay) — 52‘ (T2 on+1:Ay)
and mg: 5;3‘ (T2 on+1: Ay) — 5,,‘3‘(1(; A &) be induced cobordism maps on S—complexes. Since two
immersed cobordisms S’ o S and S o S’ can be deformed into product cobordisms by finitely many
finger moves, their induced maps mg/os and mgos’ are S—chain homotopic to the identity up to the
multiplication of unit elements by Proposition 3.28. By the functoriality of S—morphisms, /s’ o /m g and
mg omg are S—chain homotopic to the identity up to the multiplication of unit elements. The proof is
completed by Remark 3.4. a

The proof of Theorem 1.7 immediately follows from Theorem 1.8:
Proof of Theorem 1.7 Comparing Frgyshov invariants for both sides of
CHEK: Ay) = CHUTa 413 M),

we obtain h% (K) = [h% (T3 2k+1) Where [ = —%O(K). Since h% (T, 2k+1) = 1 by Proposition 5.3, we
obtain the desired formula. O

Remark 5.4 Since S—chain homotopy equivalence of two S—complexes Cyi~C + implies chain homotopy
assume that 04(K) < 0. Then Theorems 1.5 and 1.8 imply the
S—chain homotopy equivalence 5}:‘ (K;Ay) ~ éf(Tz,z,,H; A y)®l, and hence we have the Euler

equivalence between Cy and CJ,

characteristic formula
X(CIK; A ) =1x(CH(T22n+15 A ).

If 04 (K) > 0 then there is an S—chain homotopy equivalence 6;3‘ (K;Ay) ~ 5,‘3 (—T2.2n+1; Ay)@’_l

and we have
X(CHK:Ay)) = =Ix(CH(=T22n+1: Ay)).

By Proposition 5.3, y(C¥(T2,2n+1: A»)) = —1. On the other hand, x(CZ(—T2,2n+1: A»)) = 1 since
if we reverse the orientation of the 3—manifold, the Z /4—grading of the chain complex changes so that
gr_y(B) = 3 —gry (B), which follows from (2-4). In any case,

X(CHK: Ay)) = 30a(K).
Note that this formula for the Euler characteristic is independent of the choice of the coefficient ..

Proof of Theorem 1.10 Consider an arbitrary knot K C 3. For any holonomy parameter o € (0, %) nQ
with Ag (e*™/%) =0, the Floer chain complex CZ(K; A ) is defined and the relation h%(K)= —%aa (K)
holds. By the definition of the Frgyshov knot invariant, we have lower bounds of Floer homology groups

rank I{(K; Ay) > [—104(K)] and rank I§(K;Ay) > |—104(K)|

Algebraic € Geometric Topology, Volume 24 (2024)



5104 Hayato Imori

for any knot K C S with 04 (K) < 0. In particular, K = T, 4 satisfies this condition. Using the equality

rank I« (Tpq) = —lao,(Tp q), We obtain
rank I{(Tp.q: Ay) = [—30a(Tp,g) | tank I§ (Tp.q: Ay) = | —50a(Tp.q) .
Since 1 (Tp,q) is supported only on the odd graded part, we obtain the statement. m|

5.2 An application to knot concordance

In this subsection, we complete the proof of our main theorem (Theorem 1.1).

The operators Z*! and U*! extend to the S—complex C, in the obvious way. We also introduce

the operator
W jk =810 UKZ7: Cy — Cs.

If degr (Zy) > degr (y), the operator Z does not act on the filtered chain complex Cl_oo’R], and Wi ;
does not directly induce a map on éi_m’R]. For this reason, we introduce the map Vl.[_jolf’R] on the filtered
chain complex by the composition

6>|[<—oo,R] N él—oo,oo] Wi jk C[ 00 oo]

R]

We also introduce the operator Wl.[lj % on the quotient filtered S—complex C ,,ER Rl by the composition

a'[(R’,R] N C'l—oo,oo] Wi jk a’[—oo,OO] s &[R/,OO]‘
Here, the last map is a natural quotient map.

Proposition 5.5 Let S: T, 4 — Ty 4 be a given self-concordance. Then there is a dense subset Z C (0, 2)
such that all elements in Ry (S> \ Tp,4, SU(2)) extend to elements in Ry ((S> x [0,1]) \ S, SU(2)) for
anyo € 7.

Proof We choose a dense subset Z C (0, 2) such that Theorem 1.10 holds for 7}, 4. Since all irreducible
critical points of the Chern—Simons functional of T}, ; are nondegenerate by Proposition 4.17, we can
choose a perturbation 7 so that it is supported away from flat connections. In particular, we can assume
that the chain complex C¥(7,4; A ) is generated by R} (S 3\ Tp,4.SU(2)). Since the assertion for
o= % is proved in [8], we assume that o # %. In particular, we consider the case o < % for a while.
Since the unique flat reducible 6, with the holonomy parameter o on S3\ Ty 4 always extends to the
concordance complement, it is enough to consider the extension problem for irreducibles. We choose a
field . 1= %, ® Q. By Theorems 1.7 and 1.10 we have

h%(Tp.q) = _%Ua(Tp,q) =d
where d := rank CY(Tp 4; A»). This implies that there is a cycle Bo € C¥(Tp,4: A») such that
§1v5(Bo) = 0if k <d —1 and 8;v9"1(By) # 0. Put B; := vi(Bg) for 0 < i < d — 1. The chain
complex CY(Tp.q4; A »,) admits a (ZxR)-bigrading by fixing lifts p1, ..., pg of singular flat connections
P1s---,Ppd €ERY (S3\Tp,q, SU(2)). In particular, we may assume that deg (0;) = 1 or 3 by Theorem 1.10.
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degp

degy,

degy; =0 degy =1 degy;=3 degzy=>5 degy =2d -3 degy =2d —1
Figure 3: Elements ﬁo, ey ,éd—l and their (ZxR)—gradings.

Using properties of elements By, ..., B4_1, we fix elements 30, ... »Bd—l € CHTpyq: Aya)[_°°’°°] in
the following way. Firstly, there exists a cycle Bz such that degy (847—1) = 1 and satisfying

81(Ba—1) = _ ek 204

k<0
with ¢o # 0 since 81 (84_1) # 0. Next, choose an element f;i. Then ﬁi_l is defined as a cycle satisfying
v(Bi-1) = Bi.
Finally, we obtain cycles ﬁo, cees ,3Ad—1 by induction.

Note that degZ(Bi) =2(d—-1)—2i and 0 < degR(ﬁi_l) <-... < degR(,éo). We fix R > 0 so that it
satisfies degg (B0) < R and R ¢ ¢*; see Figure 3.

Let —e < 0 be a small negative number such that an interval [—¢, 0) does not contain any critical value of
the Chern—Simons functional CS. Our aim is to show that the cobordism map m g on the quotient filtered
chain C&(Tp.4: A »)"SRV is an isomorphism.
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Since /g preserves the Z—grading, it is enough to show that 772 is an isomorphism on C{* (T 4; A y)[_€=R]
and C5 (Tp,q4: A )R] We claim that CH(Tyq; A )=€R] and C3(Tpq: A)7€R] are generated by
elements of the form

(ZI Uk g N komggsy < J <nggpgry or {ZJUPKRTUEDBo [k omyp < j <ng)

over Q. To see this, consider the linear combination

(5-1) YooY @Z/Uu@g =0,

0<i<d—1m;<j<n;
where c¢; ; are rational coefficients. Then we consider applying operators lA/Vi[;fI;R] to (5-1). FAirstly,
we apply the operator for (i, j, k) = (0, —n4z_;,0). Then we get co,n,_,61(Bg—1) = 0 with §1(Bg—1)
nonzero. Since . is an integral domain, c¢g_1,, , = 0. Next, we apply the operator W([l_;,f)] for
(i,j.k) =(0,—ng_; +1,0) to (5-1). Then we obtain c4_; ,, ,—1 using cg_1,_, = 0. Inductively,
we obtain

Cd—1ng_1 = " =Cd-1my_, = 0

by applying operators W[_E’R] [—€.R]

0.—ng 1,00+ Wo.—m,_,0- Werepeat a similar arguments using the operators

—6,R :
{WLJiI ]}md—zfjfnd_z, and obtain
Cd_2>”d*2 == Cd—2,md72 == 0.
Inductively, we conclude that
Cin; = "=Cim; = 0

forall0 <i <d —1. So {ZjUi_(d_l),[;l-} for0 <i <d —1and m; < j <n; are linearly independent.

Put ,31/ = ms(ﬁi). Since the induced cobordism map /g on an S—complex satisfies the relations
in Proposition 3.15, the elements fo,..., 84—1 have the same properties, and the same technique
shows that {Z/U~(@-1 ﬁl/} for0 <i <d—1and m; < j <n; are linearly independent. Moreover,
degg (Bi) = degg(B;) by the construction of elements {f;}. We conclude that the map mg is an
isomorphism on C¥ (T 4; A5, )7 R and C¥(Tp.q: A5 )R,

Note that the chain complex CJ(Tp,4: A ») is generated by those irreducible singular flat connections.
Then the degree 1 part C{¥(Tp,4: A ) [=€.R] of the quotient filtered chain complex is generated by elements
of the forms {Z/ p1}my<j<ny»-- - AZ7 p1}m,<j<n, over Q. We order these generators by values of the
Chern—Simons functional. Then the cobordism map mg can be represented by the form

L, O --.

L, O ---
(5-2) o0 -,
. 0

Li

where diagonal blocks L; are components that correspond to the basis with the same value of the Chern—
Simons functional. Note that components in L; are defined by counting (perturbed) flat connections

Algebraic € Geometric Topology, Volume 24 (2024)



Instanton knot invariants with rational holonomy parameters and an application for torus knot groups 5107

over the concordance complement. Since m g is an isomorphism on the degree 1 part, the matrix (5-2) is
invertible over Q. Hence each diagonal block L; is also invertible. In particular, they do not contain any
zero-column. Since the regular condition on moduli space is an open condition with respect to choices of
perturbation, all flat connections py, ..., p; extend to flat connections over the concordance complement.
The similar argument works for p; 11, ..., pg, and thus all elements in R%(S3\ 7, 4; A ») extend to the
concordance complement.

Finally, we consider the case o > 1. Here we only change the above argument at the following point:

1
We apply the operator W([)__e;,g_l on (5-1) the first time. Then we obtain ¢g_1 ;,,_, = 0. Next we apply
the operator W(g,_—e;fd]_lﬂ,o and obtain ¢gy_1 ,, ,—1 = 0. We inductively obtain cg_1,, , ==

Cd—1,my_, = 0. The rest of the argument proceeds similarly, and finally all coefficients in (5-1) vanish. O

Proof of Theorem 1.1 Let S: 7, ; — K be a given concordance. Then we can construct a concor-
dance So S: Tyq — K — Tp 4 by the composition, where S is the opposite concordance of S. By
Proposition 5.5 there exists a dense subset Z C [0, 3] such that there is a extension Rq (S>\ Tp 4. SU(2)) —
Ra((S3x[0,1])\ S0 S,SU(2)) forany « € . Let o € [0, %] be any holonomy parameter and consider
the representation p: 71(S>\ Tp,4) — SU(2) with

e2m’ o 0
p(ﬂTp,q) ~ |: 0 e—2nia] :

Then we can choose a sequence {¢;} C Z such that lim; . @; = o and SU(2) representations p; of
71(S3\ Tp,q) with

62711' o 0

Pi (/’LT[),(/) ~ |: 0 e—2niai:| ’

since p; extends to an SU(2) representation ®; : 771 ((S3 x [0, 1]) \ S 0 S) — SU(2) and we can choose a
convergent subsequence of {®;} with the limiting representation ®oo: 71 ((S3 x [0, 1])\ S 0 §) — SU(2).
(Since SU(2) is compact, we can choose a convergent subsequence {®; (x;)}; for each generator x; of
m1((S3x[0,1]))\ S ©S), and lim; oo ®; (x;) defines a limiting representation ®w.) By restriction, we
get a representation 71 ((S3 x [0, 1]) \ ) — SU(2) which is the extension of p. |

Appendix The connected sum theorem

In this section, we give the proof of the connected sum theorem. The connected sum theorem for
1
4
an argument similar to [9] to prove our connected sum theorem (Theorem 3.24). Let us recall the settings

nonsingular settings was proved in [20], and the singular setting with @ = 7 was proved in [9]. We use

which are introduced in [9, Section 6]. Let (Y, K) and (Y’, K’) be two given knots in integral homology
3—spheres. Fixing basepoints p € K and p’ € K’, we take a pair of the connected sum (Y #Y’, K # K’)
at these basepoints. We also fix a basepoint p* € K # K’. Construct a cobordism

W,S): (YUY ,KUK')— (Y #Y',K#K')
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by attaching a pair of 1-handles (D! x D3, D! x D?) to the product cobordism [0, 1]x (Y LUY’, KUK’). Let
W',S): (Y#Y  K#K')—> (YUY KUK')

be a cobordism of the opposite direction. We define three oriented piecewise smooth paths y, y’ and
y¥on S C W. Assume that these paths intersect the boundaries of the cobordism only at their edge points.
The path y starts from p € Y and ends at the basepoint p* € Y #Y’. Similarly, y’ starts from p’ € Y’
and ends at p*, and y* starts from p € Y and ends at p’ € Y’. Let us define the paths o, ¢’ and o* in S’
as mirrors of y, ¥’ and y¥, respectively. We use the notation 8, 8’ and B# (and their indexed versions)
for critical points of the perturbed Chern—Simons functional on (Y, K), (Y’,K’) and (Y #Y', K# K'),
respectively. Let 0, 6, and 6% denote unique flat reducibles on (Y, K), (Y', K') and (Y #Y', K # K'),
respectively. We use the reduced notation for d—dimensional moduli spaces as follows:

Mz (B,B's 8" a = M:(W,S;8,8",%a and Mo (B": B, ")a := Mz (W', S"; B, . 8")a.
We drop z from the notation above if we consider all unions of z. We define maps
HY:BW,S;B,B8.p"H —S' and HY:BW,S:B.p.B* — S!
as in Section 3.4. The moduli spaces cut down by these maps are defined by
My,z (B, B’ 8)a = {[A] € Mz (B, B’ B)a+1 | HY ([A]) = s},
My (BB B)a = {[A] € Mz(B. B": B a1 | HY (1A]) = 5},
My (B, B': B a == {[A] € Mz(B. B’ B)as1 | HY ([A]) = s. HY ([A]) = 5'},
where s € S! is a generic point. The orientation of moduli spaces over (W, S) is defined in the following
way. Let o € O[W, S: Op+. 0, . 6%_] be the canonical homology orientation of (W, S), and 0g € O[],
og' € O[B'] and ogs € 0[B*] be given orientations for generators. Then op.p.pt € OIW.S:B.B"; B is
fixed so that the relation
CI)(Oﬁ (%) op’ ® OW) = @(Oﬂ,ﬂ/;ﬂ# & 05#)
holds.
The argument of the proof consists of the following steps:
(I) A cobordism of pairs (W, S): (YUY, KUK') - (Y #Y’, K # K’) induces an S—morphism
Aiw.s): CE(Y,K)®CE(Y',K') - CX(Y #Y' K#K').
(I) A cobordism of pairs (W', S"): (Y #Y',K#K') — (Y UY’, K U K’) induces an S—morphism
A sn: CEY #Y' K#K') — C2(Y,K)@ C2(Y', K').
(1) Put C*:=C&(Y #Y’, K #K’). The composition Mw,s) © M- s is S—chain homotopic to idg,
up to the multiplication of a unit element in .7.

(IV) The composition iy sy © M (w,s) is S—chain homotopic to0 idzg .
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A.1 Stepl

We define a map 77w, s) as follows. Using the decomposition of the Floer chain group

CP?=(CRCNBDICRCuo1®Cu®CL,
we define four maps:

m=[my,my,mz,myl: (CRCx®(C C")u1 ®Cx ®CL — CF,
=11, w2, 13, 1al: (C ® CN ®(C ®C')u1 ® Co ® Cl — CE,
A1 =[A11,012,A13,A14]: (CRCNoD(CRC')_1dCo®dC)— 7,
Azzy—>Cfl.

Each component of the above maps is defined as follows:
(mi(B® p). B = Z #M,i (B, B BoA <O TV,
(ma(B & p). %) = ; #M (B, B’ oA ATV,
(m3(B), p*) = ;#Mz(ﬂ’ 6L: BHoA K OT® (my(p)), pt) = ;#Mz(Qa, B/ BH)pA K@ TV
(u1(B®p"). p*) = X #Myyz (BB BH)oA K@ TV,
(2(B® B, ") = X #My: (BB B A KO TVE).
(u3(B), B*) = X #M,, . (B, 6L; oA <O TV,
(1a(B). B) = L #My 20 B': 1)0A T,
A1 (BOB) =Y #My (B, B':00)0r *OT D, A1 2(BoB) =Y #M: (B, ' 65)0r DT,
A13(B) =2 #M:(B. 6, 0f)oA <@ TV, BB =L H#M: (6, B 6102 DTV,
(Ax(1), B¥) = Y #M (0. 0} BH)oA O TV,

As described in [9, Remarks 6.10 and 6.11], notice that
. ng_ﬁl1 (s)N ng_l;,(s/) N M(B, B1)> = @ for distinct regular values s,s” € S!,
o #M,(B,B"; B) —#M, (B, B B*) = #M,+ (B, B'; B).

Proposition A.1 There are the following relations:

(A-1) d*om=mod®,

(A-2) S*fom:Alod@—i-S@,

(A-3) mos® =684 —d*oA,,

(A-4) d#ou—i—uod@:v#om—mov®+8§oA1—A208i®.
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Proof The identity (A-1) decomposes into the following four relations:

(A-5) d'mi=mi(d 1) +mi(e®d)—ma(cv®1) +mz(e @V') +m3(e ®8)) +mq(8; 1),
(A-6) d'my=mar(d @1)—ma(c®d’),

(A-7)  d*ms =m3(e ® 85) + mad,

(A-8) d¥my=-mr82®1)+mad’.

The identity (A-5) is obtained by counting the boundary of the compactified moduli space M ;;’Z (B.B: B

for each path z. In fact, the oriented boundary of M;; ,(B.B"; B%)1 consists of the following types of
codimension 1 faces:

My (B.B': Bo x Mzr(BY, B0, Mz (B, B1)o x Mys (B, B's B0,
(—=DEO M (B, B)o x My (B. BL: Bo.
(—=DEPF(HGS (5) N M (B. B1)1) x Mz (B1. B B%)o.
(DD (H g (5) N Mz (B, B)1) x Mz (B, By: B)o.
(—DEOM (B, 0)0 x Mzr(B.0): B0, Mzr(B.0u)o x Mzr(Ba. B': B0

The identities (A-6)—(A-8) are obtained by counting the compactified moduli spaces M (B, 8'; )1,
M (B, 6L; B%)1 and M (0y, B'; B*)1, respectively. We list up codimension 1 faces of each moduli space:

e codimension 1 faces of IM (B, B'; B*)1:

Mz (B. B B1)o x Mz (BT, B*)o.  Mz(B. B1) x Mz (B1. B': B)o.
(~DE DM (B, )0 x Mz (B, By: BMo.
« codimension 1 faces of IM (B, 0L; B*)1:
Mz (B, 05 B0 x Mzr(BY. %Yo, (=D P M8, B')o x Mz (B. B+ %o
Mz (B. B1) x Mz (B1. 6, 8o,
e codimension 1 faces of IM (0, B'; BH)1:
Mz (8a. B BDo x Mzr (B}, B%)0.  Mz/(8a. B)o x Mz (B. B B*)o.
Mz (B, 1)o x Mz (6. BY: B%)o.
The relation (A-2) decomposes into the following four identities:
§imi=A11d @)+ A11(e®d)—A12(ev® 1) + A 2(e®V) + A13(e®5)) + A1a(61® 1),
§imy = A12(d ®@1)—A12(e®d’),
§ims = A1 2(e ®85) + A1 3d + 681,

5?1’”4 = —A1,2(52 ® 1) + A1,4d/ +8/1
Each relation is obtained by counting the boundaries of the compactified 1-dimensional moduli spaces
M;,Z(ﬂ,ﬂ’;e#)l, M (B, B 681, MF(0y,B';0%)1 and M (B,6,,;0%); for each path z, and the

o o’
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argument is similar to the previous case. Note that M (6, 0: Gﬁ)o consists of the unique reducible
connection. The relation (A-3) reduces to
msdy + I’H45/2 = 5§ — d#Az,
and this reduces to the counting of the boundary of M (6, 0),; B#)1 whose codimension 1 faces are
MZ/(QQ’ ,B)O X MZ”(ﬁy 0(;? 13#)05 MZ(Q(;’ ﬁ/)o X MZN(ﬂ’ 13/5 0(?)05
M/ (0a., 00 05)0 x Mzr (05, B0, M2(0a. 6 BY) x Mo (BY. B).
The relation (A-4) reduces to four identities:
d¥ s+ p1d @)+ p1(e®d) — pa(ev ® 1) + pa(e ® V) + p3(e ® 87) + pa(81 ® 1)
=v'mi —mi(v® 1)+ A1,
d*pz+(d @ 1)~ pa(e®d") = v ma—ma(v @ 1) +ma(61 ® 1),

d¥ s + pa(e ® 85) 4 pad = vimz —mav +85A1 3 — A28y,

d¥ s — 1282 ® 1) + pad’ = v¥mg —mi (81 @ 1) —mav’ + 85415 — As8).
These are obtained by counting the boundaries of M;;,, (BB B, M);':Z B, B BH1, M;:Z (B, 6L B
and M} (6, B'; B%)1; see also [9, Remark 6.11]. O
A2 Step Il

Wehave / / / / /1T # / / /
m' =[my,my,mz,my] :C; > (CRCHxsB(CR®CHs1DCxDCy,

= [ . i, 1] CE > (CRCH®(CRC)m1 B Cu®Cy,
Ay Cf— 7.
Ay =[A) 1 Ay 5 A3 AL LT > (CRCH 1B (CRC) 2@ C1BCy,

Each component of the above maps is defined as follows:

(m (8. B B') = g#Mz (8% B, BoA <T@,
(my(B"). B B') = b #Mo2 (B B, B))oA KO TG,
(m3(8"). B) = 2 #M; (B*: B, 6L)oA <O T*E  (mly (B, ) = Y #M: (B%: 04, oA O TV,
(Wi (BB, ") = ; #Moz (8% . B))oA O TV,
(ur(B @B, B*) = ; #Moor 2 (B B, B)oA ¥ TV,
(15(B). B*) = ; #Ms,2 (B B.0))oA ATV,
(3B, B") = 3 #Mor 2 (B*: 60, B)oA O TV,
N TON-ES é#Mz(ﬂ#; O, 0)0 ATV ),

Algebraic € Geometric Topology, Volume 24 (2024)



5112 Hayato Imori

Ay ((BRB) =Y #M-(B*: B. BoA I TVE AL L(BRB) =Y #Mo (05 B. B oA DT,
zZ zZ

Ab 3(B) = S #M (6% B, 0,)or O TV, Ab 4(B) =S #M(0}: 0}, B)oA DT,
Z zZ

Proposition A.2 There are the following relations:

(A-9) d®om’ =m'od?,

(A-10) §8om' = Ayod® 4681,

(A-11) m' o8y =62 —d®oA),

(A-12) d®op' + ' od* =v®om’ —m' ov* + 820 A} — AL o8t

Proof The proof is similar to that of Proposition A.1. In this case, we consider the opposite cobordism
w',s". m|

A.3 Step III

Put (W°,8°) := (WoW’,So0S’). We define compositions of paths p* := y* o o*, p:= y 0o and
p =y’ o0o’; see Figure 5. We regard the configuration space of connections over (W?, S§°) as the
quotient of the space of SO(3)-adjoint connections by the determinant 1 gauge group G. Then there is an
exact sequence

G G® - H\(W?°;Z,),

where G¢ is an SO(3)—gauge transformation and the second map gives the obstruction to lifting an
SO(3)—automorphism to an SU(2)—automorphism over the 1-skeleton. There is an action of G¢/G =~
HY(W?°,Z,) = 7, on the configuration space. In particular, there is an involution on the moduli space
MW?e,S°; B*, ,Bf)d and we denote its quotient by M(W?, S?; p*, ﬂf)fi. We define

#
M. (WO, 8% %, B1)G := {[A] € Mo (W?, 8% 8%, B){ | HP ([A]) = s},
#
Mz (WO, S 8%, DG i= {[A] € Mo (WO, 5% B*, BDS | HP ([A]) = 5, HP([A]) = 5"},
The cardinality of these moduli spaces is half of that of the usual ones. Assume that (W?, S?) is equipped

with a Riemannian metric with a long neck along the cylinder [0, 1] x (Y UY’, K U K'). Then we have a
good gluing relation
My (W, 8% B, BG = || Mor(W'.S"; B*, B, 8')0 x M(W, S: . 8" B}o
U L] M(W'.S": % B, B')o x Mys(W.S: B, B": B)o
B.B
(| I_l M(W/,S/,,B#,Qa,ﬁ/)oXM(WaSa@a,,B,aﬂ#)O
ﬂ/ee:/*
U Ll MW’ S": 8. B.0n)o x M(W.S: B.6,: B}o.
Bec*
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Figure 4: The family of metrics G°.
Let /7t (o g0 pt: C! — C! be an S—morphism whose components m®, 11, A9 and A$ are defined by
(m (B7). BT) = L #Mpr - (W7, 55 B, BGAT O TV,
(W2 (B"). B1) = LM (WO, S B BEAT T,
z
AQ(BY) = L #Mp (W, % B*, 0554~ T,
z

Ag(l)ﬂ#=z# Z(Wo So ,3# 9# e —IC(Z)TV(Z)
z

Proposition A.3 We have that iii(w,s) o w57y is S—chain homotopic to M (wow’,505": pt)-

Proof Let G be the 1-parameter family of metrics which stretch the cobordism (W?, S?) as in Figure 4.
We modify the definition of the S—chain homotopy in [9, Proposition 6.16] in the following way:
(KB B1) = L#{lAle U MEW®, S 8%, B | HY (4D = s|a—<OT°@,
z geGo

(L), B1) = L #{l4] € U MEWO, 5% B, B | HY ([A]) = 5. HP([4]) = A=< T,
z g€ o

(MPBH. 1) = L #{ldle U MEW, 5% p* 0% | H (14]) = s|A~OT@,

geGo
(M), B%) = S #{lale U MEW,$%:05 B9 | HY'(4]) = s} A7 OO,
z geG?
The rest of the argument is similar to [9, Proposition 6.16], and we can check that
K° 0 0
H’=|L° —K° M}
My 0 O
gives an S—chain homotopy from /7 (wo so) to mmwuw’ sus’)- a

C—

Figure 5: Paths on (W?, §9).
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Proposition A.4 We have that mwow’ s05';pt) 15 S—chain homotopic to idz,, up to the multiplication
of a unit element in ..

Proof As in the proof of [9, Proposition 6.17], we consider the decomposition,
(W°,8% = (W€, 8)U(S'x D3, S x D)

along (S x §2, S! x2pt). We arrange the perturbation data on (S! x D3, S x D) and the gluing region
so that it is supported away from the moduli space of flat connections. Define the map ™ as Mwo,s0,pt)»
but using the metric on (W, §°) which is stretched along the gluing region (S! x $2, 5! x 2pt). We

J’_

write m*, ut, A;r and A; for corresponding components of 717,

Let /11 be a generator of the S2\ 2pt factor and 11, be a generator of the S factor in 771 (S x S2\ ST x2pt).
The equivalence classes of the critical point set € of the Chern—Simons functional on (S x 2, 51 x 2pt)
can be identified with

Rao (ST x 82\ S x2pt) = {B € Hom(r1, SU(2)) | tr B(i1) = 2 cos(2rer)}/ SU(2)

by the holonomy correspondence. The character variety Ry (S x S2\ S1 x 2pt) is identified with
S1 as follows. Let it be a generator of 71 (S! x (S2 \ 2pt)) arising from the S2 \ 2pt factor, and 11

be another generator arising from the S ! factor. Since tr B(;1) = 2cos(2mia), there is an element

1
) A’ 2’
0(B) € [0,2m) and we have gﬂ,B(,uz)gﬂ_l = ¢!9B) ¢ §1. The correspondence B > ¢!9®) gives a

bijection Re (St x S2\ ST x 2pt) =~ ST

gp € SU(2) with g/gﬂ(,ul)glgl = ¢?7i® ¢ §1 Since p; and o commute and o # 0, 3, there is

Let A be a singular flat connection which is the extension of p € € over (S x D3, S! x D). Since all
elements in € have U(1)—stabilizer, dim H%(S! x D3\ S! x D!;ad 4) = 1. Also,

dim H'(S'x D3\ S!'x Dl;adA) =1
by the computation of group cohomology of m1(S! x (D3 \ D')). Thus the critical point set € =

Re (ST x (82 \ 2pt)) is Morse—Bott nondegenerate. Consider the closed pair (S! x §3, 5! x S1) =
(S'x D3, 8 x DY) U(g1xs2 s1x2p1) (S' x D3, 81 x D). Then the gluing of the index formula is

2ind D4 + dim € 4 dim Stab(p) = ind Dasy,a.

Since dim € = dim Stab(p) = 1 and ind D 4 ,4 = 0 by the index formula for a closed pair, ind D4 = —1.

This implies that
dim H2(S'x D3\ S' x D';ad A) =0,
and hence the gluing theory is unobstructed at the flat connection. Morse—Bott gluing theory tells us that
the moduli space M +(W?, §¢; B, ,B’f)o has the structure of the union of fiber products as follows:
MW, S B* B a xe Mpr(S' x D3, ST x DI for d +d' =1,
MW, S B* B 1 xe Mpr(S' x D3, St x D1y,

The first case is excluded for index reasons.
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Consider the restriction map
r' M)O#(S1 x D3, Stx phHred 5 ¢,

By the holonomy condition H”#([A]) = 1 on the moduli space M(S! x D3, S! x D), the image of r’
consists of two points 6, 6" € €. Hence, if the metric on (W?, §°) has a long neck along (S 14§52 82 x2pt),
the moduli space M +(W?, S°; B*, B¥) is two copies of

MW*®, S %6, Hox M(S' x D3, S' x D1; gy,
In particular,

S #M i (WO, 8% ¥, oA+ V@)
z
=2 Y #Mo(S'x D3 S'x Do)y A TV (we, ¢ BY, 0. Boa TV ED

Z z/oz'=z

k<0 z

Since flat connections on (S! x S2, ST x 2pt) uniquely extend to (S x D3, S! x D), we have ¢y = 1.
Since 2#Mp#(W0, SO, ,8#, ﬁf)g = #Mp#(W", SO, ,3#, ,Bf)o, there is a unit element C; € . and we have
(m+(,3#), ﬂi#) — Cl Z#MZ(WC, SC;,B#, 9’ ﬂT)OA—K(Z)TV(Z).

zZ
The same argument with M g+, (W, S 8%,0,8%0. Mp#(WO,SO;/S’#,H, 6%)0 and Mp#(W",S”;Ggf,@,ﬁf)o
instead of M #(W?°, S%; B*, B¥)o gives
(" (). 1) = Cr o #Mp - (W, S B0, BoA O TV,
zZ

(AT (B, 1) = C1 Y #M,(W°, 5% B*,6,6%)0A <O @),
zZ

(AT (), By =C1 S #M,(W°,8°; 6%, 6, oA Tv@),
zZ

Replacing the pair (S x D3, S! x D) with (D? x 2, D? x 2pt), we obtain the product cobordism
[0,1]x (Y #Y', K#K’). By stretching the metric on [0, 1] x (Y #Y’, K # K') along the attaching domain,
the moduli space M ([0, 1] x (Y #Y’, K # K') B, ,B*f)o has the structure of the union of fiber products

(A-13) M(W*®, S B, B%) xe M(D? x 52, D? x 2pt)™,

Let A’ be an extended flat connection on (D? x S2, D? x 2pt) of the flat connection 6. Such A’ uniquely
exists. Moreover, it can be checked that the point ® is unobstructed as follows. Consider the closed pair

(§%.8%):=(D?x §%, D* x2pt) U(g1 552 s1xapy (S' x D, 8" x D)
and the glued reducible flat connection A’ #¢ A on (S*#, S?). Then we have
ind Dgrg, 4 = ind D4/ + dim Stab(6) 4- dim € +ind Dy4.

Since b1 (X) =bT(X) =0and S = S?, the index formula for a closed pair shows that ind D44 = —1.
Moreover, ind D4 = —1 by the previous argument. Thus ind D4 = —2.
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Figure 6: Paths on (W7, ST).
Since dim H°(D? x (S2\ 2pt);ad A’) = 1 and dim H ' (D? x (S?\ 2pt); ad A’) = 0 by the computation
of group cohomology, dim H?(D? x (S \ 2pt); ad A’) vanishes.
Now, the fiber product structure (A-13) implies that there is a unit element C; € . and
(mT (%), By = Co X #M, ([0, 1] x (Y #Y', K # K'); B¥, B)o A~ (),
Similarly :
(W (B BT) = C2 o #Mp o (10. 1] x (Y #Y' K #K'): ¥, B1oA O T,
z
AT (BY) = Ca X #M, ([0, 1] x (Y #Y', K # K'); B*, 68)oa <O V@)
z
(AT (1), %) = Co S #M, ([0, 1] x (Y #Y', K #K'); 6%, oA <D 7@,
z
Finally, there is a unit element ¢ € .¥ and we have
MY = Mo 1< (Y#¥’, K#K")-

The right-hand side is S—chain homotopic to the identity since it is induced from the product cobordism.
By construction, the unit element ¢ has the top term 1, and hence 7 (wow- 505 ) i8 S—chain homotopic
to the identity up to the multiplication of a unit element in .. a

A4 Step IV
Setp:=coy,p:=0"0y’,p:=0"oyand p := 0 oy)’; see Figure 6.
Proposition A.5 We have that m gy 57y o mw,s) is S—chain homotopic to M (w'ow,s’oS)-

Proof Let G! be a 1—parameter family of metrics stretching (W, ST) := (W' o W, S’ 0 S) along
(Y#Y',K#K'). Let M1 sy be the cobordism map for (W1, ST). We claim that there is an S—chain
homotopy H ' such that

d®H! + H1d® = I’l""l(W/’S/) Of}v’l(W,S) —Fﬁ(WI,SI).

Let us write each components of H as

Kl 0 0
H =| L' —k! Mm!|,
Ml 0 0
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where K'and L’ are 4x4 matrices. Before defining each component of these matrices, we introduce the
notation

mlB. B B1. B :=# U MEW! ST BB BL. B -1.

geG!
1 / /
me, od;z(ﬁﬂlg ’131’:81)

=#{l4] e U MEW!. ST B BB Ba—t | HO (AD = s1.... . HO (4] = sa.
geGT

where o1, ..., o4 are elements in the set of paths {y*,o*, 5, 5, 5, f’}. Then each component of K/, L7,
M 11 and MZI is given as follows:

e components of K/
(KL (B®B). p1® ) = )> wl, (BB 1 BOAFO TV,
(KL (B&B). b1 ® B1) = Ly (B B 1. a1 C,
(Ki3(B). 1 ® B1) = L mz (B.0g: 1. BA~ TV,
(Kia(B): B1® B1) = L (B B's B, AT,
(K2 (B® ). pr®B1) = Lmys oo, (BB Br BATO T,
(K (B@B). f1® B1) = L, (BB 1. A~ 7",
(K23(B). 1 ® B1) = L mgs,. (B, by Br. fA— O T,
(K24(B): 1 ® B1) = e, (6u B's 1. B2~ TV,
(K51 (B® ). 1) = Lmye (BB Br. G2~ T,
(K52(B® ). 1) = L mi (B s Br. O)A~ T,
(K33(B), B1) = L mz (B 0 B, 6,2~ T,
(K34(B): B1) = Lm; (6u B: 1. GAE VG
(Kir(B® B B1) = L mye (B B': b fA™ T,
(Kia(B® B)). B1) = Lmy (B B': b B2~ T,
(Kis(B), B1) = L mz (B 03 60 B2 T,
(Kia(B): B1) = Lm: (B /303 A OTE,
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 components of L/
(L1, (B®B). B1®BY) = ;mi#,ﬁ;z(ﬂ, B B, fOA—KOTVE),
(L12(B® ). 1@ 1) = L. (8.5 Br, BOAE@ V@),
(L13(B). B1®BY) = ;mg,(ﬁ, 0 B, B KO TG,
(L14(B). B1®BY) = ;mg;z(ea, B': By, BN TV,
(L3, (B®B). p1®BY) = ;mé#’ﬁ;z(ﬁ’ B pr. BA—EO TV,
(L8 ® ). 1 ® B1) = Sl 5. (6.5 . ) L@ VE),
(L1;(B). pr®B}) = ;mg#,ﬁgz(ﬂ, 6L: By, pATCO TV,
(L34(B). 1 ® B1) = g . (O B3 1. BA—<E T,
(L3 (B®B). B1) = Ly 5 (BB 1. G2 T,
(L3a(B®B). B1) = Lo (BB 1, 62—,
(L3a(B): B1) = Lompy.. (B. 0o B LA TVE),
(L34(B), B1) = L miy; (O B3 B1. 6027,
(Lir(B®B).B1) = Loy 5, (B s O fAT T,
(Lia(B @B, B1) = T (BB 05 FAT T,
(Lis(B). B1) = L mp; (B. 6,: 6, A OTE,
(Laa(B). 1) = Lompy; (6u B 65 fA—OTE,

e components of M 11
I n _ I 0.0 A—K(Z) v(z)
Ml,l(ﬂ®13)_zmy#;z(ﬂ’13 s Var s o[) T )
z

ML, (B®B) =Y ml(B, B 60, ATV,
zZ
M{5(8) = X ml(B. by 6a. A OTY . M{,(B) = 3 ml (B B's 6. o)A O T,
z z

e components of M21
(M5 (1), BRB') = X ml (6, 6 B, BHIA O TV,
V4

(MI,(1).® ) = Y ml,_(Ba. 0: . BIA <O TVE),
z
(M3 5(1), B) = X ml (6, Oy B, O)A™ DT O (M4 (1), ') = X ml (O, 0 00, B2 T,
z z
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component of (A-14) corresponding family of moduli spaces
(1, 1) Al € Ugegr MEOW! ST 8.8 B1. B1o | HY ([A) = s
(1,2) Ugegr MEWL. ST 88" B1.Bo
(1, 3) Ugegr MEW!.ST:8.0,:B1. 8o
(1,4) Ugegr MZ W, 87560, 8 B1. Bo
2. 1) A1 € Ugegr MEWT ST BB 1. B2 | HY' ([A]) = 5. HO' ([A]) =1}
2,2) {4l € Ugegr MEWT.ST:B.B":p1. 81 | HO' ([4]) = s}
2.3) {[A] € Ugegr MEW!. ST B,64: 1. 81 | HO (14]) = s}
2, 4) Al € Ugegr MEWT.ST:06. " 1. )1 | HO'(1A]) = 5)
3. 1) {41 € Ugegr MEW,ST; 8. 8" B1.04)1 | HY' (14]) = s}
(3,2) Ugegr MEW?!, ST 8,8 B1.0)o
(3.3) {41 € Ugegr MEW! . ST:B.05:1.0,)1 | H? ([A]) =1}
(3, 4) Ugegr MEWT.ST:6,.8": B1.6)o
4, 1) {41 € Ugegr MEW! . ST:B. B 0. B)1 | HY ([A]) = s}
4.2) Ugegr MEWT,ST; 8,856, B1)o
4,3) Ugegr MEWT.ST:8.60,:6,. 810
4, 4) Ugegr MEWT, 8204, 86}, B1)o

Table 1

Then we can check that there are the following identities:

(A-14) d®KT + K1d® =m'm—m!,

(A-15) vOKT —d®LT 1 88MT 4+ L1d® — KTo® + MI8® = wWm+m'p+ A A —pt,
(A-16) SEKT 4+ MId® = ANym+ Ay — AT,

(A-17) —d®M{ — K182 =m' Ay + Ay — AL

The identities above are proved by counting oriented boundaries of corresponding moduli spaces. For
example, such moduli spaces for identity (A-14) are given in Table 1. Other identities can be proved in
similar ways. O

Proposition A.6 We have that m @ ow,s’0s) 1S S—chain homotopic to idz g .

Proof Consider a family of metrics G’ on (W', ST) which stretch the cobordism along (S3, S1) as in
Figure 7. Let /7 be the map defined by a long stretched metric on (W7, S7). The family of metrics G’/
gives an S—chain homotopy between 77y g1y and il Let (W€, $¢") be a disjoint union

(Y x[0,1]\ D* K x[0,1]\ D?)u (Y’ x[0,1]\ D* K’ x[0,1]\ D?).

We can also define 7/ by counting instantons on (WC/, S C/). We will show that 7/ is an isomorphism of
S—complexes. We obtain a pair of cylinders [0, 1] x (Y UY’, K U K') by gluing back two pairs of disks
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T

Figure 7: Family of metrics G'/.

(D*, D?) to (Wc/, S c/). Consider the character variety ¢’ with the holonomy parameter o on (S3, S1).
For0<a < % ¢’ is a one-point set which consists of the unique flat reducible 6, and the moduli space
M(D*, D?;0,)0 also consists of one element ©, which is the unique extension of 6, to D%\ D?. The
computation of group cohomology of 71 (S3\ S!) shows that dim H1(S3\ S!;ad ) = 0. Taking the
double of (D*, D?), we have the relation of indices

2ind Dg, + 1 =ind Dg_se,,.

Moreover, ind Dg,#0, = —1 by the index formula for the closed pair (S 4.82). Thus ind De, = -1
and H2(D*\ D?;ad ®4) = 0. In particular, the gluing along ¢ is unobstructed. The Morse—Bott gluing
argument shows that

M([0, 1] x Y, [0, 1] x K; B, B1)a = M([0,1]x Y \ D*,[0,1] x K\ D?; 8,6a, B")a.
and similarly for the pair (Y, K’). Thus
#MEZ (W ST BB Br. B =Mz (W ST B bo. p)#Mz W' ST B 6 BY)
=#M_ (Y x[0,1], K x[0, 1]; B, B1)#M-»(Y'x[0,1], K'x[0,1]; B’, BY)-
Therefore m 1 g1y is S—chain homotopic to the morphism 77,04 Which is induced from the product

cobordism (Y UY’, K U K’) x [0, 1]. The S—morphism ipoq is an isomorphism of S—complexes (see
[9, Lemma 6.29]), and in fact S—chain homotopic to the identity by the formal argument. a
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