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Given a link L, Dowlin constructed a filtered complex inducing a spectral sequence with E,—page
isomorphic to the Khovanov homology Kh(L) and E,—page isomorphic to the knot Floer homology
HFK (m(L)) of the mirror of the link. We prove that the Ej—page of this spectral sequence is also a link
invariant, for k > 3.
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1 Introduction

Dowlin [2024] associated a filtered chain complex to a link L. The spectral sequence this filtered complex
gives rise to has E,—page isomorphic to the (reduced) Khovanov homology Kh(L) and converges to the
knot Floer homology HFK (m(L)) of the mirror of the link. The fact that the E,— and Es,—pages of the
spectral sequence are link invariants, independent of the diagram used to construct the filtered complex,
suggests that the same may be true of all the higher pages of the spectral sequence. This is the main result
of this paper.

Theorem 1.1 For k > 2, the E—page of Dowlin’s spectral sequence does not depend on the diagram
used to construct the filtered complex, and is thus a link invariant.

This theorem provides a whole family of link invariants { Ex(L)}72 ,. The invariance of these higher
pages of the Dowlin spectral sequence helps us further decipher the connection between Khovanov
homology and knot Floer homology.

This result opens several research directions. The first is to find knots (or families of knots) which have
the same Khovanov homology and knot Floer homology, but are distinguished by these higher page
invariants. The ranks of Khovanov homology and knot Floer homology tend to coincide for knots with
few crossings [Rasmussen 2005], so finding such examples may be computationally difficult.

A second direction is to consider implications in the study of transverse links. Plamenevskaya [2006]
identified an invariant of transverse links ¥ (L) € Kh(L), which we can think of as residing in the E,
page of the Dowlin spectral sequence. One could hope to define a countable family of transverse link
invariants {x (L)}72, by taking the image of ¥ on each higher page Ej for k > 2, in the style of
Baldwin [2011]. It might prove interesting to compare these invariants, especially the image of ¥ on the
E~ page HFK (m(L)) with known transverse link invariants [Baldwin et al. 2013].
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5124 Samuel Tripp and Zachary Winkeler

A third direction for future work would be the investigate potential relationships between the s invariant
in Khovanov homology [Rasmussen 2010] and the 7 invariant in knot Floer homology [Ozsvath and
Szabo 2003]. For many knots, these invariants are related by the equation s = 2t; however, we also know
of knots that break this rule [Hedden and Ording 2008]. Perhaps the spectral sequence could be used to
explain this (lack of a) pattern.

Organization

We begin by reviewing the construction of C5 (L) in Section 2; as originally defined by Dowlin [2024],
this filtered complex induces the spectral sequence from Kh(L) to HFK (m(L)) for a given link L. In
Section 3, we prove that the homotopy type of this complex is invariant under a diagrammatic change
we call “relabeling vertices”. We then discuss MOY moves, another set of operations on diagrams, and
define maps associated to these moves in Section 4. With these in hand, we prove invariance of the higher
pages of the spectral sequence in Section 5.

Conventions

There are a few homological algebra conventions that we need to establish.

¢ We call our complexes chain complexes, despite the fact that our differentials usually have degree 1
with respect to the homological grading.

* Our filtrations are descending, which is to say that ;M 2 %; M wheni < j.

o A filtered quasi-isomorphism f: A — B is a filtered chain map which induces a quasi-isomorphism
between the associated graded complexes gr(f): gr(4) — gr(B). In other words, a filtered
quasi-isomorphism induces a quasi-isomorphism between E—pages of spectral sequences, and
equivalently induces isomorphisms between E;—pages. If A and B are connected by a zigzag of
filtered quasi-isomorphisms, then they have the same weak filtered homotopy type, a relationship
which we denote by 4 ~ B.

* Because the E1—page of the filtered complex C; is isomorphic to the Khovanov complex, and
not the Khovanov homology, we need to work with invariance maps which are not filtered quasi-
isomorphisms. Instead, they only induce quasi-isomorphisms on the E|—pages, or equivalently
induce isomorphisms on the E,—pages. We call these maps E|—quasi-isomorphisms (terminology
from [Cirici et al. 2020]). As above, we write 4 ~; B to denote that A and B are connected by a
zigzag of E{—quasi-isomorphisms.

¢ Since we work with two different notions of weak equivalence, we also need two different mapping
cones for a filtered map f: A — B, denoted by cone( /) and cone;(f). Both of them have
the same underlying unfiltered complex, but differ in the definition of the filtration. The former
filtration is defined to be %;(cone( f)) = F; A & %; B, whereas the latter filtration is given by
Fi(coney () =FiADF;—1 B.
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2 The spectral sequence

In this section, we review the construction of the spectral sequence from Kh(L) to HFK (L) foralink L,
as originally defined by Dowlin [2024]. The spectral sequence arises from a filtered chain complex
C; (D) constructed from a partially singular braid diagram D associated to an unoriented link L. In
Section 2.A, we define these diagrams, and in Section 2.B we associate a filtered chain complex to each
such diagram. Finally, in Section 2.C, we discuss how to associate a partially singular braid diagram to
an unoriented link L, and we characterize the set of moves connecting any two such partially singular

braid diagrams.
2.A Partially singular braid diagrams

In this section, we define the types of diagrams we need to construct the spectral sequence.

We start by establishing some conventions regarding braid diagrams. If D is a closed braid diagram, we
can consider it as a 4—valent graph embedded in R? with vertices V(D) the set of crossings, and edges
E(D) the set of arcs connecting these crossings. This agrees with the usual way of representing link
diagrams as graphs. Given a graph G, recall that a subdivision H of G is a graph obtained by adding
2—valent vertices along edges of G.

Definition 2.1 A (closed) partially singular braid diagram is an oriented graph embedded in R? which
can be obtained as a subdivision of a closed braid diagram, equipped with the following extra information:
¢ a labeling of every 4—valent vertex as “positive”, “negative”, or “singular”,
¢ a further labeling of every singular vertex as either “fixed” or “free”, and

¢ exactly one distinguished edge, which is called the “decorated” edge.

An open partially singular braid diagram is defined identically to a closed one, except that it also has
2n l1-valent vertices (assuming n strands) corresponding to the endpoints of the strands. When drawing
partially singular braid diagrams, we indicate fixed singular vertices by drawing a circle around them, as

@

positive negative free fixed

Figure 1: The different types of vertices in a partially singular braid diagram.
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bivalent vertex decorated edge

Figure 2: Other features that can occur in a braid diagram.

in Figure 1; 2—valent vertices are drawn simply as dots on the strands, and the decorated edge is denoted
by two small lines, as in Figure 2.

Throughout, we assume the decorated edge is leftmost in the diagram. We also assume a fixed ordering
of the vertices whenever we consider a partially singular braid diagram D. We let Fixed(D) denote the
set of fixed singular vertices of D and Free(D) denote the set of free singular vertices of D.

A (fully) singular braid diagram is a partially singular braid diagram with no crossings. This type of
diagram may arise from resolving a partially singular braid diagram D in the following sense. Let D
be a partially singular braid diagram, with ¢(D) the set of crossings of D; then a resolution, a function
I:c¢(D) — {0, 1}, gives a fully singular braid diagram Dj by resolving each crossing according to
Figure 3. In words, the O-resolution of a positive crossing is a singular vertex, and the 1-resolution is the
oriented smoothing with two subdivided edges. The 0— and 1-resolutions of a negative crossing are the
1- and O-resolutions of a positive crossing, respectively. If a fully singular braid diagram S arises as a
complete resolution of a partially singular braid diagram D, then Fixed(S) = Fixed(D), and Free(S)
contains all crossings in Free(D) as well as those which were singularized in the resolution.

2.B The filtered complex C3 (D)

In this section, we recall Dowlin’s construction of the filtered chain complex C; (D) which gives rise to
the spectral sequence connecting Khovanov homology to knot Floer homology. Throughout, let D be a

Figure 3: The 0— and l-resolutions of positive and negative crossings.
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¢ d
Figure 4: The local edge labels around a vertex.

partially singular braid diagram and [ a resolution of D giving rise to the fully singular braid diagram Dy .
We first construct C; (Dy) for each resolution /, then combine these into a cube complex C; (D) by
adding “edge maps”.

To begin, label each edge of D by a unique integer from 1 to k = | E(D)|, and let R(D) = Q[Uy, ..., U]
be the polynomial ring over Q generated by one variable for each edge. Note that, whenever crossings in
D are resolved to get a diagram D', there is a natural bijection between edges in D and edges in D’, so we
can extend our edge labels to any resolution of D. To each vertex v € V(D) we associate two polynomials,
L(v) and LT (v). Label the adjacent edges to each vertex v € V(D) as in Figure 4; if we draw the vertex
such that all edges are oriented upwards, then we label the edge in the top left by «, the remaining edges
by b, ¢, and d as we traverse clockwise from the edge labeled a. Define L(v) = U, 4+ Up — U, — U, and
LT(v)=U, + U+ U, + Uy.

One factor of C, (D) does not depend on the specific resolution but only on D; we denote this factor
by £}, Let
L)
&3 = ® R(D) —><+ R(D).

veFixed(D) L7 ()
It should be noted that 33; is not a chain complex, but rather a matrix factorization (or curved complex).
A matrix factorization is a module M equipped with an endomorphism 9: M — M such that % = w idys
for some potentially nonzero scalar w, which is called the potential of the matrix factorization. Despite
the fact that d does not square to zero, we may still refer to it as a differential on M ; this is hopefully
clear from context. In the case of i};, o= Zveﬁxed( D) L(v)L™(v), which is often nonzero in R(D).
Matrix factorizations are well-studied algebraic objects, but for our purposes we only need a few facts
about them; these can be found in Section 3.

The other factor of C; (Dy), which is not the same for every I and depends on the specific resolution,
is the R(D)-module Q(Dy) = R(D)/(L(Dy) + N(Dy)). Here, L(Dy) and N(Dy) are two ideals
of R(D). The first of these is the linear ideal L(Dy), defined as

L(Dp):= Y, (L.
v€Free(Dy)
The second is the nonlocal ideal N(Dy). Let Q be a smoothly embedded disk in R? that does not contain
the decorated edge, and such that the boundary only intersects D transversely at edges. Let In(€2) (resp.
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Out(£2)) denote the set of edges that intersect the boundary of €2 and are oriented inward (resp. outward).
We define N (£2) to be the polynomial

N := [] - [] U
i€0ut(2) JE€m(R)
The nonlocal ideal N (Dy) is then generated by N (£2) for all such embedded disks €2:

N(Dp) =) (N(Q)).
Q

With the above definitions in hand, the complex C; (Dy) is then defined as

C,(Dp):=Q(D) ® £,

L)
:= R(D)/(L(D;) + N(Dy)) ® ( Q) RD)— R(D)).
veFixed(D) LF (@)

It is shown in [Dowlin 2024, Lemma 2.4] that the potential w of 522; is contained in L(Dy) + N(Dy),

and thus is zero in Q(Dy). Thus, the endomorphism of C; (D) induced by EBJDF squares to 0, so it is
truly a differential; we denote it by dj.

As a module, define

D)= @ W

I1€{0,1}¢(D)
The differential on C5 (D) is defined as a sum do + d1, where dy is induced by the differential do on the

summands C; (Dy), and d; is induced by edge maps that we have yet to define. In order to do so, we
must first restrict the set of partially singular braid diagrams we are working with.

Definition 2.2 [Dowlin 2024, Definition 2.2] The set &% contains all partially singular braid diagrams
D satisfying the following conditions for all I € {0, 1}¢(D):
e Dy is connected, and

o the linear terms L (v) for v € Free(D;) form a regular sequence! over R(D)/N(Dy).

The latter condition is an algebraic restriction which is used in the proof of Theorem 3.1. It is equivalent to
the existence of an ordering vy, ..., v of the vertices in Free(Dy) such that L(v;) is not a zero divisor in
R(D)/(N(Dy)+ (L(vy),...,L(vj—1))) foreach 1 < j <k. Since R(D) is a graded ring and the linear
terms L (v) are homogeneous of positive degree, if this condition is true for one ordering of Free(Dy), it
is true for every ordering.

For the rest of the definition of C; (D), we assume D € %% Let I and J be two resolutions with 7 < J,
ie I and J agree on all crossings except a single ¢ € ¢(D), where I(c) =0 and J(c) = 1. Let v be the
vertex corresponding to ¢, and label the edges adjacent to v according to Figure 4.

IThe % in 97 likely stands for “regular”.
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The edge map dy, j: C5 (Dy) — C; (D) depends on whether ¢ is a positive or negative crossing. If /
and J differ at a positive crossing, let ¢4 : Q(Dy) — Q(D ) be the unique R(D)—module map such that
¢+(1) = 1, and define the edge map dy j: C; (Dr) — C; (D) to be df,j = ¢+ ®idg}. Else, I and J
differ at a negative crossing v. In this case, let ¢_: Q(Dy) — Q(Dy) be the unique R(D)-module map
such that ¢_(1) = Up — U, and define the edge map dy,j: C; (Dr) — C; (Dy) tobe dy,j = ¢— Qidg}.
We may occasionally overload notation by referring to the edge map dy j as ¢+ when there is no risk of
confusion.

Combining all of these maps together into a single map induces d; : C; (D) — C5 (D), given by

dl = Z 6(1, J)d[,_].
I<J

Here, €(1, J) is a sign assignment, which is a labeling of the edges of the cube of resolutions by {41}
satisfying the property that every square face has an odd number of —1-labeled edges. Such a sign
assignment ensures that (d;)? = 0, and any two choices of € result in isomorphic complexes. As one
example, we may let €(I, J) = (—1)K, where k is the number of 1’s that come before the place at which
I and J differ, as in [Bar-Natan 2002]. We further abuse notation by referring to d;, the signed sum of
the edge maps dy y for all I < J, itself as an edge map.

Consider C; (D) as a chain complex with total differential do + d. We filter C; (D) by weight in the
cube of resolutions, ie the filtration on C; (D) is given by

F,C;(D):= P C;(Dn),
w()=p
where w(/) = Zcec( p) 1(c) is the weight of I, ie the number of 1-resolved crossings of Dy. Note that
do preserves the weight, and d; increases it by 1, so the differential on C; (D) is indeed filtered with
respect to this decomposition.

Remark 2.3 We could have alternately defined C, (D) by first defining C; (S) for fully singular braid
diagrams S, then defining C; (D) to be the mapping cone

C5 (D) = cone; (¢ ® £,) = (C; (Do) — C3 (D1)),

where Dy and D, above are the 0— and 1-resolutions of a particular crossing, and ¢: Q(Dg) — Q(Dy)
is the associated map of quotient modules. Iterating this construction produces a filtered complex that is
isomorphic to the one that we defined previously.

2.C Diagrams associated to a link
Each partially singular braid diagram gives rise to an unoriented link by taking the unoriented smoothing.

Definition 2.4 Let D be a partially singular braid diagram. The unoriented smoothing sm(D) is the
unoriented link obtained from D by smoothing each singular vertex in the way that does not respect the
orientation.

Algebraic € Geometric Topology, Volume 24 (2024)
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NS
VR

Figure 5: Unoriented smoothing of a crossing.

Figure 5 shows a local picture of smoothing a singular vertex, and Figure 6 gives an example of a partially
singular braid diagram and the link obtained by taking the unoriented smoothing.

When sm(D) is an {—component link, we can construct a “reduced” version of C; (D). First, choose a
set of edges eq,...,e; € E(D) such that each ¢; is on a distinct component of sm(D). Then, let

Ca(D) = C5 (D) ® R)(R(D) 25 R(D)).

We define the differentials given by multiplication by U,; to have weight filtration degree 1. Therefore, we
get a weight filtration on CA'Z (D) induced by the above definition as a tensor product of filtered complexes.
This is the filtered complex that is used to define the spectral sequence relating Khovanov homology and
knot Floer homology.

Theorem 2.5 [Dowlin 2024, Theorem 1.6] Let D € %% be a partially singular braid diagram with
sm(D) = L. The spectral sequence induced by the weight filtration on Cs (D) has E,—page isomorphic
to Kh(L) and converges to HFK (L).

Dowlin [2024] proves that every link can be realized as the unoriented smoothing of a diagram in gyt
by first considering a braid whose plat closure is the desired link, then turning that braid into a partially
singular braid diagram. We go about things similarly, but instead choose a different way of embedding
braid closures into %% that better fits our particular invariance proofs.

N

Figure 6: A diagram D and its unoriented smoothing sm(D).

G\
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Figure 7: The partially singular braid diagram I, in the case n = 3.

Proposition 2.6 Let L be an unoriented link. There is a partially singular braid diagram D € %% such
that sm(D) = L.

To prove Proposition 2.6, we make use of a special partially singular open braid diagram which we denote
by I,,. This open diagram I, consists of 2n upward oriented strands with 2n — 1 layers of singular vertices.
The layers are symmetric, meaning layer i has singular vertices between the same strands as layer 2n — i
for 1 <i < n. The first layer has a singular vertex between the strands n and n + 1. The second layer
has two singular vertices; one between strands » — 1 and n and one between strands # + 1 and n + 2. In
general, the /™ layer has i consecutive singular vertices, beginning with one between strands 7 4+ 1 — i
and n 4+ 2 —i and ending with one between strands n — 1 + i and n 4+ i. We let Fixed(/,) be the singular
vertices in layers 7 and n + 1, and let Free(/,) be the rest of the singular vertices. See Figure 7 for I, in
the case n = 3.

Definition 2.7 Given a braid 8 € By, let I,,(8) denote the partially singular braid diagram D built by
putting n downward-oriented strands to the right of §, and putting 7, above and taking the braid closure.

Proof of Proposition 2.6 Given an unoriented link L, let 8 be a braid with braid closure cl(8) isotopic
to L, the existence of which is guaranteed by Alexander’s theorem [1923]. The unoriented smoothing
sm(/,(B)) is isotopic to the braid closure cl(f) of g itself, so D = I,(B) is a partially singular braid
diagram with sm(D) isotopic to L. That D € %% is an application of [Dowlin 2024, Lemma 7.1]. More
specifically, D contains a vertically mirrored copy of the open braid diagram S5, defined in [Dowlin
2024], where it is proven that any such diagram is in &%, a

See Figure 8 for an example of the process of constructing a partially singular braid diagram with specified
unoriented smoothing.

Let 9% = {I,(B) | B € Bn,n € Z} be the set of partially singular braid diagrams constructed as above.?
Then we have the following classification theorem.

2Here, the B in 92 stands for “braid”.
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C’-Q)HH

\

Figure 8: The process of constructing a partially singular braid diagram with smoothing isotopic
to a given knot.

Theorem 2.8 Two diagrams in %% have the same unoriented smoothing if and only if the under-
lying braids are connected by a finite sequence of Reidemeister Il moves, Reidemeister III moves,

(de)stabilizations, and conjugations.
Proof This is just Markov’s theorem [1936], repackaged. O

Since 9% C %%, we can construct the complex C, (D) forany D € %% . We overload notation by writing
C5 (B) instead of C (I(B)) for B € By. We prove invariance of C5 (8) under the moves in Theorem 2.8
in Section 5 using maps defined in Section 4.

3 Vertex relabeling

Before we continue towards a proof of invariance, we detour to comment on a quirk of the construction
of C5 (D). One natural question to ask is why C; (D) treats fixed and free singular vertices differently. It
turns out that, in order for Hx(C; (D)) to be isomorphic to HFK (sm(D)), our diagram D needs to be
in 9%, which means satisfying the regular sequence condition. This condition cannot be satisfied unless
D contains sufficiently many fixed vertices in a sufficiently nice arrangement. On the other hand, we
only know how to define the edge maps dy, s on free vertices, so we cannot make all of our vertices fixed

either.

As a sort of compromise, we choose some of the vertices to be fixed and some to be free. We do not
need to worry about which choice we have made when proving invariance under Reidemeister moves II
and III in Section 5, since they only involve local pictures of diagrams which contain some crossings but
no singular vertices. While not a local move, we define stabilization to be compatible with our vertex
labeling as well. Conjugation, however, requires us to change which vertices are fixed and which are free;
this is what motivates the following theorem.

Algebraic € Geometric Topology, Volume 24 (2024)
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While it is not immediately obvious, it turns out that the homotopy type of C;, (D) does not depend on
the particular labeling of vertices as fixed or free in the following sense:

Theorem 3.1 If D, D’ € %% are identical partially singular braid diagrams up to relabeling of fixed and
free vertices, then C5 (D) ~ C5 (D’).

To prove this, we need to introduce a slight variation on the technique of “excluding a variable” from
[Rasmussen 2015, Lemma 3.8] or [Khovanov and Rozansky 2008a, Proposition 9]. Both sources are also
good references for the relevant details on matrix factorizations, including the statement below on the
effect of change of basis on matrix factorizations.

We include the necessary details on matrix factorizations below. Let R be a ring. For a, b € R, let {a, b}

denote the matrix factorization

b
{a,b}:=R—R.
a

For a, be R™, let
aq bl
75} b2

a.by =
an by
denote the matrix factorization
- " " b;
{a,by = Qlaibi} = QR— R
i=1 i=1 ai
We have already seen a matrix factorization of this form; if we let @ = (L™ (vy),..., L*(v,)) and

b= (L(vy), ..., L(vy)) for a partially singular braid diagram D with Fixed(D) = {vy,..., vy}, then
S.BJIS = {a, b}. By definition, the potential @ associated to the matrix factorization {a, b} is

a-b=apb;+-+anby.

Starting with a matrix factorization {a, b}, we can perform a change of basis operation to get an isomorphic
one. Specifically, sending ¢&; to €; + c¢j for standard basis vectors €; and ¢j of R” has the effect of
replacing the matrix factorization by {a’, b’}, where

o ay +caj ifk =i,
ay otherwise,

and - -
> {bk—cb,‘ ifk=7,
by, otherwise.

For more details, see [Khovanov and Rozansky 2008a; Rasmussen 2015].

Algebraic € Geometric Topology, Volume 24 (2024)
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Let C = {d, b} be any matrix factorization over R. We can decompose

b

ai
where C' = {d’, b } is the factorization obtained by omitting the first components of ¢ and b. Define
7:C —C'"® R/(b1) by m((c1,¢2)) = ¢ ® 1. Before proving Theorem 3.1, we first prove that if the
potential of C is 0 and by is a nonzero divisor in R, then 7 is a quasi-isomorphism.

Lemma 3.2 If the potential of C is 0 and by is a nonzero divisor in R, then 7 is a quasi-isomorphism of
chain complexes.

Proof 1t is clear that 7 is surjective; since b; is a nonzero divisor, multiplication by b; is injective, so
we have the following short exact sequence:

0 s Ly s 0 s 0

[Loanfle ol ] 1l

0 —C P8 — 5 C'®R/(b) — 0

Let C” denote the first nonzero column in this sequence, the matrix factorization
RN
C'; C’.
a1b1
By the corresponding long exact sequence in homology, it suffices to show that C” is acyclic in order to

prove that 7 is a quasi-isomorphism. We write C” in matrix form, then apply our above remarks about
change of basis:

a1b1 1 a1b1+a2b2 1 o 1
a b ar 0 a, 0
an by dp by an 0

Since we know that the potential w = 0, we see that

C" ={@,0} # (@, 0},
and therefore is acyclic. a
With this lemma, we can now prove that C; (D) is independent of vertex labeling for D € G

Proof of Theorem 3.1 Let S € %% be a fully singular braid diagram, and let w € Fixed(S) be some
fixed vertex such that if w were instead free, the new diagram S’ would still be in %%. Note that
R(S") = R(S), and Q(S’) = Q(S)/(L(w)). Since C5 (S) = Q(S) ® £T, we may consider C5(S) as
the matrix factorization {a, l;} over R = Q(S) with @ = (LT (v))yeFixed(s) and b= (L(v))yeFixed(S)-

Algebraic € Geometric Topology, Volume 24 (2024)
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Assume without loss of generality that b; = L(w). Since S’ € %%, we know that the linear terms L (v)
for v € Free(S’) form a regular sequence over R(S’)/N(S’) = R(S)/N(S), and in particular, L(w) is
a nonzero divisor in Q(S), since w € Free(S’). We then get that
C5(S) = 0(S) ®r(s) L3

~ {4, b}

~ O(8)/(L(w)) ®g(s) (Q(S) @r(s) (@.'})  (by Lemma 3.2)

~ (Q(S)/(L(w)) ®g(s) O(S)) Qres) {d', b’y (by associativity of ®)

~ O(S)/(L(w) ®es) (@'}

= O(S") ®r(s) £3

=~ O(S) ®r(s) L4 (since R(S) = R(S"))

=C, (5.
Therefore, we see that changing a fixed vertex to a free one in a fully singular diagram does not change

the homotopy type of C; (—) as long as both diagrams are in g%,

Now, we need to extend this result. Let D, D’ € &% be partially singular braid diagrams that differ
only on the labeling of a single vertex w € Fixed(D) N Free(D'). We know that C (Dy) >~ C; (D7) for
all 1 € {0, I}C(D). In particular, we have a map in one direction: 7: C5 (Dy) — C; (D)) is a filtered
quasi-isomorphism inducing the above equivalence. Therefore, it suffices to show that 7 commutes with
the edge map d, which is the sum of dy_y. Since 7 is linear over Q(S), we get that it is additionally
R(S)-linear via the natural quotient map, and therefore commutes with scalar multiplication by elements
of R(S). Since the edge maps dy, ; are defined via scalar multiplication by 1 or Up — U,, we see that
7 does in fact commute with the edge maps, and therefore extends to a filtered quasi-isomorphism
7:C5 (D) — C5(D’) by Lemma A 4.

Given any two diagrams D’, D” € %7 that differ only by some number of vertex labels, we can construct
a diagram D € %% with Fixed(D) = Fixed(D’) U Fixed(D"), and therefore get that

C; (D)) ~ C5 (D) ~ C; (D",

thus proving the general case. a

4 MOY moves

Murakami, Ohtsuki, and Yamada [Murakami et al. 1998] studied local operations on singular diagrams
(“MOY moves”). While originally formulated for oriented planar trivalent graphs, they are relevant to
us because one can think of singular vertices in our braids and braid resolutions as pairs of trivalent
vertices instead. Two of these moves, MOY I and MOY I1I, represent planar isotopy when applied to the
unoriented smoothing of a diagram, and thus are useful to make up for the fact that we cannot isotope
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Figure 9: An MOY I move.

singularized crossings in the same ways that we can smoothed ones. The MOY II move corresponds to a
cup/cap cobordism, but is rather more limited in its application. Nevertheless, these three moves suffice
to define Reidemeister moves (and others) in Section 5. The maps that we choose to realize these moves
are inspired by those used in [Khovanov and Rozansky 2008a; 2008b].

In this section, we construct filtered chain maps relating C5 (D) and C5 (D’), where D and D’ are partially
singular braid diagrams connected by an MOY I, II, or III move.

4.A MOYI

Suppose D and D’ are partially singular braid diagrams that differ by an MOY I move, as illustrated
in Figure 9. In words, there is a fixed vertex v in D that meets the same edge e twice; without loss of
generality, e is to the right of v. The diagram D’ is then obtained from D by removing the edge ¢ and
relabeling v as a bivalent vertex.

Theorem 4.1 There exist R(D’)-linear filtered quasi-isomorphisms
wi: C3 (D) > C5 (D), pif: C5 (D) - C5 (D).
Under the identification E'1(C; (—)) = CKh™ (sm(—)), these maps induce the expected isomorphisms

corresponding to planar isotopy.

First, suppose S and S’ are fully singular braid diagrams that differ by an MOY I move, as illustrated in
Figure 9. Specifically, S contains a fixed singular vertex v that meets the same edge twice. We would
like to construct filtered chain maps j1: C5 (S) — C;(S”) and puy: C; (S”) — C5(S). To start, let us
characterize C5 (S) and C5 (S").

Without loss of generality, assume that the edge which is deleted by the MOY I move is to the right of
the vertex. Label this edge with the variable U,, label the top left edge Uy, and label the bottom left edge
with Us, again as in Figure 9.

Let R be the polynomial ring over all edges not shown in the local diagram; thus, R(S’) = R[U;] and
R(S) = R(S")[U,, Us]. We relate the associated quotient rings by the following proposition:

Proposition 4.2 As R(S’) modules, Q(S’) = Q(S)/(U; + U,).
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Proof We expand the right-hand side as a quotient of a free R(S’)-module:
0(8)/(Ur + Uz) = Q(S) ®r(s) R(S)/(Uy + Ur)

= R(S)/(L(S) + N(S)) ® R(S)/(U1 + U>)
= R(S)/(L(S) + N(S) + (U + U))
=~ R(S")[U2, Us]/(L(S) + N(S) + (Us + U2))
= R(S")[U2. Usl/(L(S) + N (S) + (U = U3) + (U1 + U2)
=~ R(S")/(L(S) + N(S)).

In the above, N (S) is the sum of the nonlocal relations other than Uy — Us; this is exactly equal to N (S”),

as any region intersecting these local diagrams can be made to avoid U, and any intersections with Us;
can be isotoped to intersect U instead. Further, L(S) = L(S’). Thus,

Q(8)/(Uy +Uz) = R(S")/(L(S) + N (S)) = R(S")/(L(S) + N(S")) = Q(S),
as desired. |
Proposition 4.3  The chain complexes C;, (S) and C; (S") are quasi-isomorphic as complexes over R(S").

Proof We can use Proposition 4.2 to expand C; (S):
C5(S) = 0(S) ®r(s) £

U,—-U;z ~

=0(9)® (R(S) —————R(S) ®§5§)

U+2U,+Us

0 ~
~Q0(S)® R(S) —————— R(S) ®$§ (using relation Uy — U3z in N(S))
U, +2U0,
~0S)QRWS)/ (U1 +Uy)® 5’5? (replacing 2U; + 2U, by the cokernel)
=~ (Q(S) ® R(S)/(U; + U)) ® T
~ 0(S") Qr(sy) 3335, (by Proposition 4.2)
=C5(S").
In the above, let
- L(w)
Pt = ® R(D) —>§+ R(D),
weFixed(D)\{v} L™ (w)

and note 93;5 e 5835/. Note that we may replace the mapping cone of 2U; + 2U, by its cokernel in the
fourth line only after checking that 2U; 4 2U, is not a zero divisor in Q(.S); by the logic in the proof of
Proposition 4.2, we may choose a generating set of relations for N(S) + L(.S), none of which contain
a term with a nonzero power of U,. Therefore, Q(S) is isomorphic to a free polynomial ring over U,;
since 2U; 4 2U, is a unit multiple (over Q) of a monic polynomial in U,, we therefore get that it is not a
zero divisor in Q(S). O
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Figure 10: An MOY II move.

Let uu1: C5 (S) — C5 (S”) be the quotient map implied by the above calculations. Explicitly on a simple
tensor, u1([r]® (a,b) ®5) = [rb]®5. Let up: C; (S') — C5(S) be the splitting of 11 given by inclusion
into the first R(S) summand in the equivalence of R(S)/(U; + U,) and

0
R(S) ————— R(S)
2U1+2U;
in the above proof. Explicitly on a simple tensor, u{([r]®5) =[r]® (0,1) ® 3.

For partially singular braid diagrams D and D’ related by an MOY I move, we extend both maps to the
cube of resolutions by defining uu1: C; (Dy) — C5 (D}) and pu;: C5 (D7) — C5(Dy) as above for each
I €{0,1}¢D),

Proof of Theorem 4.1 1t is clear that ji; and p are filtered maps, since they are defined componentwise
on the cube of resolutions.

We need to check that j; and juf are chain maps, ie that they commute with the edge map d;. Let
I,J €{0,1¢P) with I < J. If I and J differ at a positive crossing, then dy,r is given by
P+ ®%} =102

Otherwise, d j is given by ¢_ ® $E=Up—U)® EBB Either way, the edge maps are given by
multiplication by an element of R(D’). Since uy and pj; were defined to be R(D’)-linear, we get that
they commute with d;. |

4B MOY I

Suppose D and D’ are partially singular braid diagrams with D’ the result of applying an MOY II move to
D and reducing the number of crossings, as shown in Figure 10. In words, D contains a free vertex vy, a
fixed vertex vy, and two edges es and eg from v, to v;. The diagram D’ is obtained from D by removing
es and eg and merging v; and v, into a single fixed vertex.

Theorem 4.4 There exists a direct sum decomposition C; (D) = C5 (D) @ C; (D') as filtered chain
complexes over R(D’). Define uy: C; (D) — C5(D’) to be projection onto the second summand,
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and define py;: C; (D) — C5 (D) to be inclusion into the first summand. Under the identification
E(C; (-)) = CKh™ (sm(—)), the maps i1y and py; induce the maps on Khovanov homology correspond-
ing to the cobordisms which delete and introduce a circle, respectively.

To start, let S and S’ be fully singular braid diagrams again with S’ the result of applying an MOY II
move to S reducing the number of crossings. Let R be the polynomial ring over all edges not shown in
the local diagrams, so that R(S") = R[U;, U,, U3, U], and R(S) = R(S")[Us, Us].

Proposition 4.5 As an R(S’)-module, Q(S) = Q(S")(1) ® Q(S’)(Us).

Proof First, note that Q(S) = Q(S")[Us, Ug]/(Us + Ug — Uy — U,, UsUg — U, U,). We do not need
to consider any other nonlocal relations, as any region €2 intersecting these diagrams can be isotoped
away from Us and Uy to give an equivalent or stronger relation. We want to prove that {1, Ug} is a
basis for Q(S) over Q(S’). To see that {1, Ug} is a generating set, it is enough to note that in Q(S),
Us = Uy + Uy — Usg, and that (U; + U, — Ug)Ug — U, U =0, so U62 = (U1 + Up)Ug — U3zU,. Linear
independence follows from the fact that U, 62 — (U1 + Uy)Ug + Uy U, is a monic polynomial of degree 2
in Ug. O

Using this proposition, we can decompose

C5(S) = O(S) ®r(s) L&

L(v)
~ 0(5) ®R(S)( R R(S)ZR(S))

vEFixed(S) L (v)

Il

L)
0S)&rs [ R R(S><_—>R(S))
vEFixed(S") L™ (v)

Il

R o) : 0(5)

v€EFixed(S”) LF(v)
L(v)
> X 0N ® (S {Us) = O(S')(1) ® O(S")(Us)
veEFixed(S”) Lt ()

lle

((® Q(S)<>—>Q(S><) ((® Q(S><U6><_Q(S)<U6>)

vEFixed(S”) Lt (v) veFixed(S”) LT ()
=~ (Q(S")(1) ® (s L&) ® (O(S){(Us) ® (s L)
= C; (S)(1) & C; (S")(Us).
Define juy: C5 (S) — C; (S”) to be projection onto the second summand in the above decomposition,

and define juj;: C5(S") — C;(S) to be inclusion into the first summand. For partially singular braid
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Figure 11: Variations of the MOY II move.

diagrams D and D’ related by an MOY II move, we extend both maps to the cube of resolutions by
defining py: C5 (D) — C5 (D) and puy: C5 (D7) — C5 (Dy) as above for each I € {0, 13¢(D),

Proof of Theorem 4.4 It is clear that sy and juj; are filtered maps, since they are defined componentwise
on the cube of resolutions. Next, we need to check that juy; and f; are chain maps, ie that they commute
with the edge map d;. Let I, J € {0, 1}®) with [ < J. If I and J differ at a positive crossing, then
dr,j is given by ¢+ ® Ft=1® 5875. Otherwise, dy_j is given by ¢_ ® PE=Up—U,) ® 5823. Either
way, the edge maps are given by multiplication by an element of R(D’). Since ui and puj; were defined
to be R(D’)-linear, we get that they commute with d;.

We used a direct sum decomposition of C5 () to define these maps on complete resolutions. We can
see this direct sum decomposition on the cube of resolutions as well. Specifically, we have a split exact
sequence:
0 — C3(D) 722 C5(D) ——=— (D)) — 0
1945 (Us—U1 @],

Finally, we want to show that these maps induce the correct morphisms on the Khovanov complex. The
cobordism corresponding to the introduction of a circle is induced by multiplication by 1 [Bar-Natan
2005]. This should correspond to jij;, which we can see also induces multiplication by 1 on homology.
The cobordism corresponding to the deletion of a circle should send 1 — 0 and X +— 1, where X is a
variable associated to the shrinking circle. In our case, p maps 1 — 0 and Ug + 1, inducing this same
map on homology. |

One can repeat the same argument to show that we also have similar MOY II decompositions for the
cases in Figure 11.

4.C MOY I1I

Suppose D and D’ are fully singular braid diagrams with D’ the result of applying an MOY III move to D
and reducing the number of crossings, as shown in Figure 12. In words, D contains a fixed vertex v, free
vertices v, and v3, and edges e7: v, — vy, eg: v3 — V1, and eg: V3 — v,. The diagram D’ is obtained
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Figure 12: An MOY III move.

from D by removing the edges e7, eg, and eg, merging v and v; into a single fixed vertex, removing v,,

and merging e into e3.

Theorem 4.6 There exist R(D’)-linear filtered quasi-isomorphisms pm: C5 (D) — C;(D') and
pp: C5 (D) — C5 (D). Furthermore, C (D') is isomorphic to a direct summand of C5 (D). Under the
identification E1(C; (—)) = CKh™ (sm(—)), these maps induce the expected isomorphisms corresponding
to planar isotopy.

Analogously to the MOY I and II cases, we again start by defining these maps on fully singular braid
diagrams, then extending them to the cube of resolutions. Let S and S’ be fully singular braid diagrams
with S the result of applying an MOY III move to S reducing the number of crossings as in Figure 12.
Below, our goal is to prove that C; (S) = C5 (S") @ Y, where Y, is some acyclic complex. Furthermore,
the MOY III move has a nontrivial horizontal mirroring. We also prove that in the case where S and S’
are connected by an MOY III move which is the mirror of Figure 12, we have C5 (S) = C5(S') @ Tg.
While it is true that Yp = Y, we neither need this fact nor prove it in this paper. Nevertheless, we may

refer to the complex as Y all the same.

We construct a map puyy: C5 (S) — C5 (S) and another map pu;: C5 (S) — C5 (S’) which splits puy,
thus proving that C; (S”) is a direct summand of C (S). Let S” be the fully singular braid diagram

4 5 6

Figure 13: The fully singular diagram S” used in the definitions of pyy and pjy.
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Figure 14: Variations of the MOY III move.

where the middle singular vertex v, is replaced by the oriented smoothing as in Figure 13, so that we
may define the map 1 ® 5835 :C5(S) — C;(S"). We may then apply an MOY II move puy; to the left two
strands in S” to get a map i : C5 (S”) — C5 (S’). Therefore, we define pum = puno (1® 55}'). We can
also reverse the order of these operations to define puj;; = (Ug — U3) ® 582;) o uy;- Note that the maps
1® ££§ and (Ug—U3) ® $§r are well defined since if v, were replaced by a positive or negative crossing,
these would simply be multiples of the edge maps corresponding to resolutions of that crossing.

Proposition 4.7y splits py, ie pm o gy = ides (s7)-

Proof We expand out the definitions of pyr and pjy; to get

pamr o gy = pio (1@ £5) o (Ug — Us) @ £F) o
= pno (Us—Us) ® £E) o ufy

~ Uy —UUs \ {1\ _ ot
=( 1)( 1 U4+U5—U3) (o)®°%5
=) <LL

= idC;(S’) . O

Therefore, we get a direct sum decomposition C; (S) = Y (1) @ C; (S){Ug — Us). For partially singular
braid diagrams D and D’ related by an MOY III move, we extend both maps to the cube of resolutions
by defining pm: C5 (D) — C5 (D) and puy;: C5 (D7) — C5(Dy) as above for each I € {0, 13D,

Proof of Theorem 4.6 It is clear that /4y and ju;; are filtered maps, since they are defined componentwise
on the cube of resolutions. Furthermore, we can extend our proof of Proposition 4.7 to partially singular
braid diagrams since both the edge maps and MOY Il maps are defined on such diagrams, so C; (D)
really is a summand of C; (D).
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We also need to check that pyy and g, are chain maps, ie that they commute with the edge maps d;.
Let 1,J € {0,1}P) with I < J. If I and J differ at a positive crossing, then dy,j is given by
¢+ ® LF, = 1® £L. Otherwise, dy s is given by ¢_ ® £1 = (U, — U;) ® £7,. Either way, the
edge maps are given by multiplication by an element of R(D’). Since p and puy; were defined to be
R(D’)-linear, we get that they commute with d. O

As before, a similar argument shows that we also have MOY III decompositions for the cases in Figure 14.

5 Invariance

In this section, we prove that C;, () is an invariant of the braid closure cl(f8) by showing that it is invariant
under each of the four moves of Theorem 2.8. The first two moves, Reidmeister II and III, apply to any
partially singular braid diagram D, whereas the second two moves, stabilization and conjugation, are
specific to diagrams of the form D = I,,(8).

5.A Reidemeister 11

We begin by proving invariance under Reidemeister II moves. There are two distinct such moves, but
they are mirror images of each other, and their proofs are almost identical. We prove one of the cases in
detail below.

Theorem 5.1 If D and D’ are two partially singular braid diagrams that differ by a Reidemeister IT move,
then C5 (D) ~; C5(D') over R(D").

Proof Let D and D’ be the diagrams in Figure 15, with D’ the result of eliminating two crossings from
D' by means of a Reidemeister Il move. We use Lemma A.1 to simplify C; (D) and C; (D) to see they
have the same homotopy type. Label the edges of D with variables Uy, ..., Ug as in Figure 15, and order
the crossings from top to bottom. Let ¢; = ¢+ = 1 be the edge map corresponding to the top (positive)

1 2 1 2

3 4 1 2

Figure 15: A Reidemeister II move.
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vertex, and let ¢, = ¢_ = Ug — U3 be the edge map corresponding to the bottom (negative) vertex. Then,
fixing a sign assignment without loss of generality, we expand the cube of resolutions for C; (D) as:

_ ¢ _
C5 (Do) —— C5(D1o)

|- [

_ ¢ _
C; (Do1) —— C5(D11)

Note that C5 (Do) is isomorphic to C5 (D) via the removal of bivalent vertices, so our goal is to show that
C5 (D)~ C5 (Do) as afiltered chain complex over R(D"). We work over the larger ring R(D")[Us, Uy],
but do not enforce linearity with respect to Us or Us. First, note that C; (Dgo) = C;, (D11). We see that we
can apply the MOY II decomposition from Section 4.B to write C;, (Do) = C; (D11)(1) ®C; (Doo)(Us)-
We compute the maps induced by ¢; and ¢, on these decompositions to get an isomorphic cube of

resolutions:
1

C5 (Doo) > C5(D10)

[ o5

C5(D11){1) & C5 (Doo)(Us) 25 C5 (D)

This is the first of several times we use Lemma A.1 to simplify a cube of resolutions in this paper. This
key lemma allows us to effectively cancel out isomorphisms of direct summands in cubes. In this case, it
yields the E;—quasi-isomorphic complex:

0 —— C; (Do)
[
00— 0

We conclude by noting that C5 (Djo) = C; (D’) as chain complexes over R(D’)[Us, Uy]. This proves
invariance under one type of Reidemeister II move; the proof of the mirror-image move is analogous. O

5.B Reidemeister 111

We aim to prove invariance under the Reidemeister III move shown in Figure 16, which corresponds
to sliding a strand over a positive crossing. In terms of the braid group, it represents the relation
0i0i+10i = 0j4+10;0;+1. All other variations of the Reidemeister III move follow from this one plus the
Reidemeister II invariance result from Theorem 5.1.

Theorem 5.2 If D and D’ are two partially singular braid diagrams that differ by a Reidemeister IIT
move, then C5 (D) ~ C; (D).

Proof Let D be the diagram on the left and D’ the diagram on the right in Figure 16. We aim to use
Lemma A.1 to simplify C; (D) and C5 (D’) to see they have the same homotopy type.
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Figure 16: A Reidemeister III move.

4

To start, label the edges of D with variables Uy, ..., Ug as in Figure 16, and order the crossings from top
to bottom. We expand the cube of resolutions for C; (D) as:

C, (D1oo) — C5(D110)
C5 (Dooo) — C5 (Do10) C, (D1o1) — C5(D111)
C5 (Doo1) — C5 (Do11)
Since our local picture of D consists of only positive crossings, all edge maps in this cube are given by

¢+ = 1 up to a sign assignment, which we take to be the one in the above cube of resolutions without

loss of generality.

By Theorem 4.6, we note C;, (Dooo) = C, (D110) ® Y, where T is acyclic. By a slight generalization of
Lemma A.3, we get an E1—quasi-isomorphic cube after replacing C; (Dooo) by C; (D110). Furthermore,
Theorem 4.4 gives us that C5 (Dg19) = C5 (D110)(1) & C; (D110){(Uy). Therefore, the above cube is

E1—quasi-isomorphic to:

C5 (D100) > C, (D110)

N

C5 (D110) —— C;(D110)(1) ®C5 (D110) C, (D1o1) — C,(D111)

C5 (Doo1) » C5 (Do11)
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We compute the induced maps in the above cube to be

a=(_i]3), B=(1Us).

By Lemma A.1, we can cancel the isomorphisms of direct summands in the above cube to obtain the
E{—quasi-isomorphic complex:

C,(D1go) —— 0 \
0 <) 0 v CZ_(DIOI) — C;(Dlll)
C;(D()()]) — Cz_(DOII)

Removing the trivial complexes in the above cube, and noting that the map y induced by cancellation is
given by multiplication by 1, we get the complex:

C5 (D100) — C5 (D1o1)

™

C5 (D111)
C; (Doo1) — C5 (Do11)

Now, recalling that we have a second diagram D’ to work with, we may go through the same steps to
simplify C; (D’) to get the complex:

C; (D1go) — G5 (D))
C; (D)
C; (Dgor) — €5 (Dgyy)
We conclude by noting that the reduced complexes for C5 (D) and C; (D’) are isomorphic via the map
that reflects the complexes about a horizontal axis, ie swaps the 100— and 001-resolutions, swaps the

101- and 011-resolutions, and fixes the 111-resolution. This map is a chain map since all the edge maps
are +1, and therefore C5 (D) ~ C; (D). |
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In In—l

D: stabilized/original D’ original/destabilized

Figure 17: Diagrams related by a positive stabilization. Depending on context, we either consider
the diagram D and its destabilization D', or we consider the diagram D’ and its stabilization D.

5.C Stabilization

Let B € B,—1 be an element of the braid group for n > 2, and consider 8 as an element of B,, via the
natural inclusion B,_; < Bj, adjoining a straight strand to the right of 8. Let 6,,— € By, be the generator
which introduces a positive crossing between strands 7 — 1 and n. The positive stabilization of B is the
braid 6,18 € B,. Analogously, the negative stabilization of 8 is the braid crn__ll B € B,. For a braid
B = ';t_ll B’ € By, in the image of one of these operations, we say that 8’ € B,_; is the destabilization

of B.

Theorem 5.3 The E1—-homotopy type of the filtered complex C; () is invariant under positive and
negative (de)stabilization, ie C5 (0,—18) > C;(an_ll,B) ~1 C5(B).

We note that 8, 0,18, and on__ll B all have isotopic braid closures. Before we prove stabilization invari-
ance, we need to relate diagrams containing the open braid diagrams [, and I,,_1, as the (de)stabilization
operations alter the number of strands of our partially singular braid diagrams. Therefore, we first note
that we can see [,_; as a subdiagram of I, by ignoring the rightmost vertices in every row. Equivalently,
we can build 7, inductively from I,,—; as in Figure 18.

Consider 1,(0,—18), as shown in Figure 19. Let R be the polynomial ring over all edges not labeled in
Figure 19, and label the rest of the edges accordingly, so that R(1,(0,—18)) = R[U1, Uy, U3, Uy, Us].

Let ¢ = ¢+ = 1 be the edge map corresponding to the positive crossing of 0,—;. We write the one-
dimensional cube of resolutions corresponding to resolving the crossing

C; (n(0n-18)0) 2> C3 (In(0n-1B)1).
The diagrams corresponding to these resolutions are illustrated in Figure 20.

Our goal now is to use MOY moves to modify both resolutions so that they can be represented using a
common diagram, tracking the effect on the complexes. By an abuse of notation, we denote this common
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n—1 n—2

2n

2n

T, )
T

—— |

n—1 n—1

Figure 18: Constructing I, from I,,_; by adding two more strands and marking two new vertices
as fixed.

diagram I;,(8), which is gotten analogously to I,(8): we place a straight strand to the right of 8, place n
straight strands to the right of that, top this diagram with /,, and take the braid closure. It remains to
define ;. We let I, be I,,, without the singular vertex between strands 7 and 7 + 1 in the first layer. As
for I, we can also define I, by building on ,,_;, as in Figure 21.

With this definition in mind, we now see that 7, (0,—1 )0 is one MOY III move away from I,(8), and
I,(0,—1B)1 is one MOY II move away from I;,(8). On the one-dimensional cube of resolutions, then,
we get

C3 (I,(B)(Us — Us) & T 25 C5 (1,(B) (1) & C; (1;,(B)){Us).

1
3 4

/)
5
p

Figure 19: Relevant edge labels near 0,,—1. Note that the top vertex is fixed only when n = 2, and
is otherwise free for n > 3. For this reason, we use a dashed circle to indicate that the top vertex
may be fixed or free.
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p p
I 111 I 111

Figure 20: The mapping cone decomposition induced by o,,—;.

R
X
|

lg

Since T is acyclic, we can ignore it by Lemma A.2. We compute the map induced by ¢ on the summands

as
(")

C Uy (B){Us — Us) =————=> C; (I, (B)){1) & C5 (I (B)){Usa)-

Since the —1 entry represents an isomorphism of C (1, (8)) summands, we can cancel it by Lemma A.1.

This proves the following lemma.
Lemma 5.4 The complexes C; (0,—18) and C5 (I,(B)) have the same E—homotopy type.
Therefore, to prove conjugation invariance, it remains to prove the following proposition.

Proposition 5.5 The complexes C; (I,,(B)) and C; (B) have the same E—homotopy type.

n—1 n—2
e e ——

—— N’
n—1 n—2

Figure 21: Building 7, from I,,_;.
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n—1 n—3 n—1

Figure 22: Shifting vertices in I,,(8).

Proof To begin, we note that /, (8) and I,,_; () are really braid closures, so for ease of understanding
the upcoming MOY moves, we replace our usual depiction of I, (8) with a shifted version, as in Figure 22.

In this shifted version, we identify the local picture on the left in Figure 23, consisting of a pair of
intersecting strands and n — 2 other strands which intersect both. We can apply » —2 MOY III moves to
simplify this part of the diagram to the local picture on the right in Figure 23, consisting of 7 — 2 straight
strands and one pair of intersecting strands. By Theorem 4.6, each of these preserves the E;—homotopy
type of the complex. The global picture at this stage can be seen on the left in Figure 24. To arrive at the
diagram for 7,,_1(B), we apply two MOY I moves to the two remaining fixed vertices outside of /,_;. By
Theorem 4.1, each of these preserves the E;—homotopy type of the complex. This leads to the diagram

on the right in Figure 24, which is exactly the diagram for 7,,_; (B). m|
n—3
——
N——
n—3 n—3

Figure 23: Local pictures of diagrams related by a sequence of n — 2 MQOY III moves.
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n—1 n73 n—1 n—3

|i H
i

N In—l

I,
B p
N e’ N e’ N —
n—1 n—3 n—1 n—3

Figure 24: The last step in simplifying I;,(8) in the proof of Proposition 5.5.

Proof of Theorem 5.3 We have shown that C5 (0,—18) ~ C5 (I,;(B)) ~ C;(B). We can simplify
(O (an__ll B) to C; (1,(B)) as well. Using the same edge labels and notation as before, we write the cube
of resolutions for C5 (B) as

C5 (In(B)0) L C3 (In(B)1)

where this time ¢ = ¢_ = Uz — Us. Applying an MOY II move to I,(f)¢ and an MOY III move to
I (B)1 to write our complexes in terms of C5 (1,,(f)) gives us the complex

C5 (I,(B)(1) & C (1 (B){Us) 2> C3 (5 (U3 —Us) & Y.
Again, excluding Y and computing the map induced by ¢, we get

C5 (IL(B))(1) & C5 (IL(B))(Us) L2 5 (1,(8)) (Us — Us).

As before, we may cancel the 1 in the above matrix to see that C; (crn__1 B) ~1 C5(I,(B)) as well. The
rest of the proof follows from Proposition 5.5. Since we have covered both the positive and negative
cases, this suffices to show invariance under stabilization. O

5.D Conjugation
Conjugation invariance is the following statement:
Theorem 5.6 For any o, B € By, we have that C; (o™ 1Ba) ~4 G5 (B).

To begin, we prove a lemma relating complexes associated to diagrams that locally look like the pictures
in Figure 25.

Lemma 5.7 Let A and A’ be partially singular braid diagrams that are identical outside of a specific
region, where they look like the diagrams in Figure 25, ie A has two opposite crossings whereas A’ has
oriented smoothings. Then C5 (A4) ~; C5(4').

Algebraic € Geometric Topology, Volume 24 (2024)



5152 Samuel Tripp and Zachary Winkeler

en—1 Ju1

A/
Figure 25: Local pictures of diagrams with equivalent C5 (—). As before, the dashed circles
indicate that the vertices may be fixed or free.

Proof Let ¢; = ¢4+ = 1 be the edge map corresponding to the left (positive) crossing, and let
¢r = ¢— = a, — ey—1 be the edge map corresponding to the right (negative) crossing. We expand
the cube of resolutions for C5 (A4) as follows:

C5 (Ago) —2 C5(410)

|- B

- ¢ -
C; (Ao1) —— C; (A11)
The diagrams for these four partial resolutions look like Figure 26.

We can use MOY III moves to simplify three of the four corners of this cube. For Ao, we can start with
a MOY III move on the left, simplifying the diagram. Each MOY III move we apply allows us to perform

.

another, until we have done 7 — 1 such moves moving left-to-right. We denote the resulting diagram A;

it is shown in Figure 27. By Theorem 4.6, A¢o and A60 are E';—quasi-isomorphic.

Similarly, we can simplify 41, to A, by performing n — 1 MOY III moves right-to-left, and we can
simplify Ag; to Ay, by performing n — 1 MOY III moves left-to-right. In each case, Theorem 4.6 ensures

Figure 26: The cube of resolutions for diagram A in Figure 25.
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Figure 27: The reduced cube of resolutions.

we are preserving the E{—quasi-isomorphism type. The resulting diagrammatic cube of resolutions is
shown in Figure 27. Thus we obtain the complex

C5 (Al (x) — s €5 (410)

ld’z l¢2
C (AL (x) & T —2s C5(47,)(x)

This cube ignores the Y summands in Ao and A1 by Lemma A.3, but retains the T :=Y1; ®--- B Y}
summand in Aq;. Further, as every vertex in the middle row is free, we may choose

x=(br—c1) -+ (bp—1 —cn—1)
to be the generator for all three complexes modulo the linear ideal L.

We further decompose A7, via an MOY II move on the right into two copies of Ago, generated by x
and a,x. Additionally, we see that Aj, and A/, are isomorphic. We can compute the maps induced by
¢1 and ¢, and write our complex as

_ ] _
C; (Ag)(x) . > C5(Ajo)
—€n—1
1 (02}

(1 Sn—1 *)

C; (A5 (x) ® CS (A {anx) ® T ———— C5(Ay,)(x)
We may cancel the 1’s in the above matrices to reduce the complex by Lemma A.1 to obtain

0 —— Cz_(AIO)

|

T —0
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I, Iy

Figure 28: When y = 1, the diagram D is the result of conjugating the braid 8 in D’ by a
generator of the braid group.

Since Y is a direct sum of Ej—acyclic complexes, we see that the E,—page of the above complex is
isomorphic to that of C5 (41¢), which is isomorphic to C (A4’), thereby proving Lemma 5.7 in the case
of a positive crossing on the left and a negative one on the right.

The opposite case is analogous; applying the same moves (mirrored horizontally) results in the complex

Jo
—1

C (Ag){x) L) C5 (Ag)(x) ® C5 (Ao (box) Y
lvﬁz l(l €o *)
C5 (Ao1) & > C5 (Age)(x)

which we can simplify to get that the E>—page is the same as that of C; (4¢1) and therefore C; (4'). O

With this lemma in hand, we are now prepared to prove conjugation invariance.

+1
l
group (or its inverse). Therefore, let g; € B, be the generator which introduces a positive crossing between

Proof of Theorem 5.6 It suffices to prove this in the case that « = 07" is any generator of the braid

strands 7 and i + 1.

Graphically, we would like to show that C5 (D) ~ C5 (D’), where D and D’ are the partially singular
braids depicted in Figure 28, when y = 1. In order to prove this, we instead show that

C; (D") ~y C3(D") ~; C5 (D)
for a generic y € By, where D” and D"’ are the diagrams in Figure 29.

Since we are considering the case @ = o7, note that in D", the positive crossing occurs between strands i
and i 4+ 1. If we decompose I, we see that for any i, we locally get a picture like Figure 25, where the
top row of vertices is fixed if i = 1, and free if i > 1. Therefore, we may apply Lemma 5.7 directly to see
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Iy Iy

B 12 B 14

D// D//l

Figure 29: Alternate diagrams for proving conjugation invariance.

v N A

Figure 30: The steps to prove conjugation invariance forn = 2 and ¢ = o;.

that C; (D) ~ C5 (D’). Additionally, note that in D", the negative crossing occurs between strands i
and i + 1. If we decompose I, we see that for any i, we locally get a picture like Figure 25, except that
the bottom row of vertices is fixed if i = 1, and free if i > 1. In the latter case, this is not an issue and we
may proceed as before to use Lemma 5.7 to prove that C; (D") ~; C5(D’). If i = 1, then we first use
Theorem 3.1 to relabel the top row of vertices as free and the bottom row as fixed; this diagram is still in
%™ as it contains the open braid S5, from [Dowlin 2024] as a subdiagram, so we may proceed with the
rest of the proof as usual.

Therefore, we can prove the desired equivalence C; (D) ~ C; (D’) when y = 1 by first perform-
ing a Reidemeister II move to add two crossings to the right side of D, then using the equivalences
C; (D") =~ C5(D') and C5 (D"") ~1 C; (D') to simplify the diagram to D’. This proves Theorem 5.6
in the case of @ = o0;. We illustrate these steps for the case n = 2 and o = o in Figure 30. The proof for
1

a =o; ' is analogous, from which the proof for general « € B, follows. |

Appendix Homological algebra

In this section we review a few lemmas in homological algebra to aid in our calculations. We note that all
four lemmas are true for filtered complexes, replacing maps with filtered maps and quasi-isomorphisms
with filtered quasi-isomorphisms. Additionally, if we instead assume that filtered maps have filtration
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degree 1, then these lemmas still hold, replacing cone( /') with cone; (/) and filtered quasi-isomorphism

with E{—quasi-isomorphism.

Lemma A.1 [Bar-Natan 2007, Lemma 4.2] If ¢: A — B is an isomorphism of complexes, then the
double complexes
(5) (£2) (v)
C-t%5AeD LS BOE-"5F
and

_ —1
ctpew i g,

are quasi-isomorphic.

This lemma is proved for the very general case of additive categories in [Bar-Natan 2007], and is well
known in the specific case of free modules over a ring as the “cancellation lemma” or “reduction algorithm”.
We require it to prove invariance in Section 5, as it greatly simplifies calculations involving cubes of
resolutions.

Lemma A.2 Let /: A — B be a map of complexes, and suppose that A =~ A’ ® A” and B~ B’ ® B”,
where A” and B” are acyclic. Let t: A < A and 7: B — B’ be the associated inclusion and projection

maps, respectively. Then cone( f) ~ cone(mw o f o).

Proof First, we note that cone(t) is acyclic. One way to see this is via a cancellation argument: we have
that cone(t) = (4" — A’ @& A”), which is quasi-isomorphic to A” by Lemma A.1. Similarly, we get that

cone(r), being quasi-isomorphic to B”, is acyclic as well.

For any two maps o: X — Y and f: Y — Z of complexes, we have a long exact sequence relating
the homology groups of cone(«), cone(f), and cone(f o «) (for example, via the octahedral axiom
for triangulated categories applied to the derived category of R—modules). Therefore, we get that
cone( f) >~ cone( f ot) >~ cone(mw o fou). |

Lemma A.3 Let A, B, C, and D be complexes, and suppose that A =~ A’ ® A” and D ~ D' & D",
where A” and D" are acyclic. Lett: A’ < A and w: D —» D’ be the associated inclusion and projection
maps, respectively. Then the following two cube of resolutions complexes have the same homotopy type:

41y B LNy
lgl lgz lgl oL lﬂ og>
c -, p c oL p

Proof We know that the inclusion cone(g; ot) < cone(g) and the projection cone(g,) —> cone(r 0 g»)
are quasi-isomorphisms by the proof of Lemma A.2:

idp

A —— A B —2+ B
lgl‘” lgl g2 lﬂogz
c M, ¢ D% D
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We can also view the maps f1: A — B and f,: C — D as components of amap f:cone(g) — cone(gy).
Therefore, we can compose f with the inclusion and projection to get a single map

f': cone(gq ot) — cone(r o g7).

By the same long exact sequence logic as before, the cone of this map has the same homotopy type as f,
ie

cone( /) = cone(cone(g; ot) — cone(m o g,)) =~ cone(cone(g) — cone(g,)) = cone( f).
We conclude by noting that the complex on the left in Lemma A.3 is cone( /'), and the complex on the
right is cone( f”). O
While the above lemma is phrased only for squares, it can be iterated to reduce summands of higher-
dimensional cubes as well.

Since our complexes in this paper are often constructed as mapping cones, it helps to know when a
quasi-isomorphism is induced by maps on the components of the cone.

Lemma A.4 Suppose that we have the following commutative diagram of chain maps:

A0L>A1

lfo lfl
p

By — By

Let A = cone(g) and B = cone(g’), so that we get amap f: A — B with components fo and f1. If f
and f| are quasi-isomorphisms, then so is f .

Proof By properties of the mapping cone, f induces a map of short exact sequences (with grading shifts

Aq A Ay
lfl lf lfo
B B By

We can look at the induced map of long exact sequences in homology

suppressed):

\
4

~
[en)

\
7

0 >

\
7

~
)

coo —— Hy(A1) —— Hy(A) —— Hyi(4g) —— -+
lH*( ) lH"‘ ) lH*(fo)
e % Hi(By) —— Hy(B) —— Hu(Bg) —> ---

to conclude that Hy( /) must be an isomorphism as well, so f is a quasi-isomorphism. m|

To prove the filtered generalizations of Lemma A.4, one replaces Hx(—) with E(—) or E;(—) (see
[Weibel 1994, Exercise 5.4.4]).
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