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On the invariance of the Dowlin spectral sequence

SAMUEL TRIPP

ZACHARY WINKELER

Given a link L, Dowlin constructed a filtered complex inducing a spectral sequence with E2–page
isomorphic to the Khovanov homology Kh.L/ and E1–page isomorphic to the knot Floer homology
1HFK.m.L// of the mirror of the link. We prove that the Ek–page of this spectral sequence is also a link
invariant, for k � 3.

57K18

1 Introduction

Dowlin [2024] associated a filtered chain complex to a link L. The spectral sequence this filtered complex
gives rise to has E2–page isomorphic to the (reduced) Khovanov homology Kh.L/ and converges to the
knot Floer homology 1HFK.m.L// of the mirror of the link. The fact that the E2– and E1–pages of the
spectral sequence are link invariants, independent of the diagram used to construct the filtered complex,
suggests that the same may be true of all the higher pages of the spectral sequence. This is the main result
of this paper.

Theorem 1.1 For k � 2, the Ek–page of Dowlin’s spectral sequence does not depend on the diagram
used to construct the filtered complex, and is thus a link invariant.

This theorem provides a whole family of link invariants fEk.L/g
1
kD2

. The invariance of these higher
pages of the Dowlin spectral sequence helps us further decipher the connection between Khovanov
homology and knot Floer homology.

This result opens several research directions. The first is to find knots (or families of knots) which have
the same Khovanov homology and knot Floer homology, but are distinguished by these higher page
invariants. The ranks of Khovanov homology and knot Floer homology tend to coincide for knots with
few crossings [Rasmussen 2005], so finding such examples may be computationally difficult.

A second direction is to consider implications in the study of transverse links. Plamenevskaya [2006]
identified an invariant of transverse links  .L/ 2 Kh.L/, which we can think of as residing in the E2

page of the Dowlin spectral sequence. One could hope to define a countable family of transverse link
invariants f k.L/g

1
kD2

by taking the image of  on each higher page Ek for k � 2, in the style of
Baldwin [2011]. It might prove interesting to compare these invariants, especially the image of  on the
E1 page 1HFK.m.L// with known transverse link invariants [Baldwin et al. 2013].
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5124 Samuel Tripp and Zachary Winkeler

A third direction for future work would be the investigate potential relationships between the s invariant
in Khovanov homology [Rasmussen 2010] and the � invariant in knot Floer homology [Ozsváth and
Szabó 2003]. For many knots, these invariants are related by the equation s D 2� ; however, we also know
of knots that break this rule [Hedden and Ording 2008]. Perhaps the spectral sequence could be used to
explain this (lack of a) pattern.

Organization

We begin by reviewing the construction of C�
2
.L/ in Section 2; as originally defined by Dowlin [2024],

this filtered complex induces the spectral sequence from Kh.L/ to 1HFK.m.L// for a given link L. In
Section 3, we prove that the homotopy type of this complex is invariant under a diagrammatic change
we call “relabeling vertices”. We then discuss MOY moves, another set of operations on diagrams, and
define maps associated to these moves in Section 4. With these in hand, we prove invariance of the higher
pages of the spectral sequence in Section 5.

Conventions

There are a few homological algebra conventions that we need to establish.

� We call our complexes chain complexes, despite the fact that our differentials usually have degree 1

with respect to the homological grading.

� Our filtrations are descending, which is to say that FiM � Fj M when i � j .

� A filtered quasi-isomorphism f WA!B is a filtered chain map which induces a quasi-isomorphism
between the associated graded complexes gr.f / W gr.A/ ! gr.B/. In other words, a filtered
quasi-isomorphism induces a quasi-isomorphism between E0–pages of spectral sequences, and
equivalently induces isomorphisms between E1–pages. If A and B are connected by a zigzag of
filtered quasi-isomorphisms, then they have the same weak filtered homotopy type, a relationship
which we denote by A' B.

� Because the E1–page of the filtered complex C�
2

is isomorphic to the Khovanov complex, and
not the Khovanov homology, we need to work with invariance maps which are not filtered quasi-
isomorphisms. Instead, they only induce quasi-isomorphisms on the E1–pages, or equivalently
induce isomorphisms on the E2–pages. We call these maps E1–quasi-isomorphisms (terminology
from [Cirici et al. 2020]). As above, we write A'1 B to denote that A and B are connected by a
zigzag of E1–quasi-isomorphisms.

� Since we work with two different notions of weak equivalence, we also need two different mapping
cones for a filtered map f W A ! B, denoted by cone.f / and cone1.f /. Both of them have
the same underlying unfiltered complex, but differ in the definition of the filtration. The former
filtration is defined to be Fi.cone.f // D FiA˚FiB, whereas the latter filtration is given by
Fi.cone1.f //D FiA˚Fi�1B.

Algebraic & Geometric Topology, Volume 24 (2024)
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2 The spectral sequence

In this section, we review the construction of the spectral sequence from Kh.L/ to 1HFK.L/ for a link L,
as originally defined by Dowlin [2024]. The spectral sequence arises from a filtered chain complex
C�

2
.D/ constructed from a partially singular braid diagram D associated to an unoriented link L. In

Section 2.A, we define these diagrams, and in Section 2.B we associate a filtered chain complex to each
such diagram. Finally, in Section 2.C, we discuss how to associate a partially singular braid diagram to
an unoriented link L, and we characterize the set of moves connecting any two such partially singular
braid diagrams.

2.A Partially singular braid diagrams

In this section, we define the types of diagrams we need to construct the spectral sequence.

We start by establishing some conventions regarding braid diagrams. If D is a closed braid diagram, we
can consider it as a 4–valent graph embedded in R2 with vertices V .D/ the set of crossings, and edges
E.D/ the set of arcs connecting these crossings. This agrees with the usual way of representing link
diagrams as graphs. Given a graph G, recall that a subdivision H of G is a graph obtained by adding
2–valent vertices along edges of G.

Definition 2.1 A (closed) partially singular braid diagram is an oriented graph embedded in R2 which
can be obtained as a subdivision of a closed braid diagram, equipped with the following extra information:

� a labeling of every 4–valent vertex as “positive”, “negative”, or “singular”,

� a further labeling of every singular vertex as either “fixed” or “free”, and

� exactly one distinguished edge, which is called the “decorated” edge.

An open partially singular braid diagram is defined identically to a closed one, except that it also has
2n 1–valent vertices (assuming n strands) corresponding to the endpoints of the strands. When drawing
partially singular braid diagrams, we indicate fixed singular vertices by drawing a circle around them, as

positive negative free fixed

Figure 1: The different types of vertices in a partially singular braid diagram.

Algebraic & Geometric Topology, Volume 24 (2024)



5126 Samuel Tripp and Zachary Winkeler

bivalent vertex decorated edge

Figure 2: Other features that can occur in a braid diagram.

in Figure 1; 2–valent vertices are drawn simply as dots on the strands, and the decorated edge is denoted
by two small lines, as in Figure 2.

Throughout, we assume the decorated edge is leftmost in the diagram. We also assume a fixed ordering
of the vertices whenever we consider a partially singular braid diagram D. We let Fixed.D/ denote the
set of fixed singular vertices of D and Free.D/ denote the set of free singular vertices of D.

A (fully) singular braid diagram is a partially singular braid diagram with no crossings. This type of
diagram may arise from resolving a partially singular braid diagram D in the following sense. Let D

be a partially singular braid diagram, with c.D/ the set of crossings of D; then a resolution, a function
I W c.D/ ! f0; 1g, gives a fully singular braid diagram DI by resolving each crossing according to
Figure 3. In words, the 0–resolution of a positive crossing is a singular vertex, and the 1–resolution is the
oriented smoothing with two subdivided edges. The 0– and 1–resolutions of a negative crossing are the
1– and 0–resolutions of a positive crossing, respectively. If a fully singular braid diagram S arises as a
complete resolution of a partially singular braid diagram D, then Fixed.S/D Fixed.D/, and Free.S/
contains all crossings in Free.D/ as well as those which were singularized in the resolution.

2.B The filtered complex C�

2
.D/

In this section, we recall Dowlin’s construction of the filtered chain complex C�
2
.D/ which gives rise to

the spectral sequence connecting Khovanov homology to knot Floer homology. Throughout, let D be a

0 1

1 0

Figure 3: The 0– and 1–resolutions of positive and negative crossings.

Algebraic & Geometric Topology, Volume 24 (2024)
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a b

c d

Figure 4: The local edge labels around a vertex.

partially singular braid diagram and I a resolution of D giving rise to the fully singular braid diagram DI .
We first construct C�

2
.DI / for each resolution I , then combine these into a cube complex C�

2
.D/ by

adding “edge maps”.

To begin, label each edge of D by a unique integer from 1 to kD jE.D/j, and let R.D/DQŒU1; : : : ;Uk �

be the polynomial ring over Q generated by one variable for each edge. Note that, whenever crossings in
D are resolved to get a diagram D0, there is a natural bijection between edges in D and edges in D0, so we
can extend our edge labels to any resolution of D. To each vertex v 2V .D/ we associate two polynomials,
L.v/ and LC.v/. Label the adjacent edges to each vertex v 2 V .D/ as in Figure 4; if we draw the vertex
such that all edges are oriented upwards, then we label the edge in the top left by a, the remaining edges
by b, c, and d as we traverse clockwise from the edge labeled a. Define L.v/DUaCUb �Uc �Ud and
LC.v/D UaCUbCUc CUd .

One factor of C�
2
.DI / does not depend on the specific resolution but only on D; we denote this factor

by LC
D

. Let

LC
D
WD

O
v2Fixed.D/

R.D/
L.v/

//
R.D/

LC.v/

oo :

It should be noted that LC
D

is not a chain complex, but rather a matrix factorization (or curved complex).
A matrix factorization is a module M equipped with an endomorphism @ WM !M such that @2D! idM

for some potentially nonzero scalar !, which is called the potential of the matrix factorization. Despite
the fact that @ does not square to zero, we may still refer to it as a differential on M ; this is hopefully
clear from context. In the case of LC

D
, ! D

P
v2Fixed.D/L.v/LC.v/, which is often nonzero in R.D/.

Matrix factorizations are well-studied algebraic objects, but for our purposes we only need a few facts
about them; these can be found in Section 3.

The other factor of C�
2
.DI /, which is not the same for every I and depends on the specific resolution,

is the R.D/–module Q.DI / D R.D/=.L.DI /CN.DI //. Here, L.DI / and N.DI ) are two ideals
of R.D/. The first of these is the linear ideal L.DI /, defined as

L.DI / WD
X

v2Free.DI /

.L.v//:

The second is the nonlocal ideal N.DI /. Let � be a smoothly embedded disk in R2 that does not contain
the decorated edge, and such that the boundary only intersects D transversely at edges. Let In.�/ (resp.

Algebraic & Geometric Topology, Volume 24 (2024)
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Out.�/) denote the set of edges that intersect the boundary of � and are oriented inward (resp. outward).
We define N.�/ to be the polynomial

N.�/ WD
Y

i2Out.�/

Ui �

Y
j2In.�/

Uj :

The nonlocal ideal N.DI / is then generated by N.�/ for all such embedded disks �:

N.DI / WD
X
�

.N.�//:

With the above definitions in hand, the complex C�
2
.DI / is then defined as

C�2 .DI / WDQ.DI /˝LC
D

WDR.D/=.L.DI /CN.DI //˝

� O
v2Fixed.D/

R.D/
L.v/

//
R.D/

LC.v/

oo

�
:

It is shown in [Dowlin 2024, Lemma 2.4] that the potential ! of LC
D

is contained in L.DI /CN.DI /,
and thus is zero in Q.DI /. Thus, the endomorphism of C�

2
.DI / induced by LC

D
squares to 0, so it is

truly a differential; we denote it by d0.

As a module, define
C�2 .D/ WD

M
I2f0;1gc.D/

C�2 .DI /:

The differential on C�
2
.D/ is defined as a sum d0C d1, where d0 is induced by the differential d0 on the

summands C�
2
.DI /, and d1 is induced by edge maps that we have yet to define. In order to do so, we

must first restrict the set of partially singular braid diagrams we are working with.

Definition 2.2 [Dowlin 2024, Definition 2.2] The set DR contains all partially singular braid diagrams
D satisfying the following conditions for all I 2 f0; 1gc.D/:

� DI is connected, and

� the linear terms L.v/ for v 2 Free.DI / form a regular sequence1 over R.D/=N.DI /.

The latter condition is an algebraic restriction which is used in the proof of Theorem 3.1. It is equivalent to
the existence of an ordering v1; : : : ; vk of the vertices in Free.DI / such that L.vj / is not a zero divisor in
R.D/=.N.DI /C .L.v1/; : : : ;L.vj�1/// for each 1� j � k. Since R.D/ is a graded ring and the linear
terms L.v/ are homogeneous of positive degree, if this condition is true for one ordering of Free.DI /, it
is true for every ordering.

For the rest of the definition of C�
2
.D/, we assume D 2 DR. Let I and J be two resolutions with I � J ,

ie I and J agree on all crossings except a single c 2 c.D/, where I.c/D 0 and J.c/D 1. Let v be the
vertex corresponding to c, and label the edges adjacent to v according to Figure 4.

1The R in DR likely stands for “regular”.

Algebraic & Geometric Topology, Volume 24 (2024)
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The edge map dI;J W C�2 .DI /! C�
2
.DJ / depends on whether c is a positive or negative crossing. If I

and J differ at a positive crossing, let �C WQ.DI /!Q.DJ / be the unique R.D/–module map such that
�C.1/D 1, and define the edge map dI;J W C�2 .DI /! C�

2
.DJ / to be dI;J D �C˝ idLC

D
. Else, I and J

differ at a negative crossing v. In this case, let �� WQ.DI /!Q.DJ / be the unique R.D/–module map
such that ��.1/DUb�Uc , and define the edge map dI;J W C�2 .DI /! C�

2
.DJ / to be dI;J D ��˝ idLC

D
.

We may occasionally overload notation by referring to the edge map dI;J as �˙ when there is no risk of
confusion.

Combining all of these maps together into a single map induces d1 W C�2 .D/! C�
2
.D/, given by

d1 WD

X
I�J

�.I;J /dI;J :

Here, �.I;J / is a sign assignment, which is a labeling of the edges of the cube of resolutions by f˙1g

satisfying the property that every square face has an odd number of �1–labeled edges. Such a sign
assignment ensures that .d1/

2 D 0, and any two choices of � result in isomorphic complexes. As one
example, we may let �.I;J /D .�1/k , where k is the number of 1’s that come before the place at which
I and J differ, as in [Bar-Natan 2002]. We further abuse notation by referring to d1, the signed sum of
the edge maps dI;J for all I � J , itself as an edge map.

Consider C�
2
.D/ as a chain complex with total differential d0C d1. We filter C�

2
.D/ by weight in the

cube of resolutions, ie the filtration on C�
2
.D/ is given by

FpC�2 .D/ WD
M

w.I /�p

C�2 .DI /;

where w.I/D
P

c2c.D/ I.c/ is the weight of I , ie the number of 1–resolved crossings of DI . Note that
d0 preserves the weight, and d1 increases it by 1, so the differential on C�

2
.D/ is indeed filtered with

respect to this decomposition.

Remark 2.3 We could have alternately defined C�
2
.D/ by first defining C�

2
.S/ for fully singular braid

diagrams S , then defining C�
2
.D/ to be the mapping cone

C�2 .D/ WD cone1.�˝LC
D
/D .C�2 .D0/! C�2 .D1//;

where D0 and D1 above are the 0– and 1–resolutions of a particular crossing, and � WQ.D0/!Q.D1/

is the associated map of quotient modules. Iterating this construction produces a filtered complex that is
isomorphic to the one that we defined previously.

2.C Diagrams associated to a link

Each partially singular braid diagram gives rise to an unoriented link by taking the unoriented smoothing.

Definition 2.4 Let D be a partially singular braid diagram. The unoriented smoothing sm.D/ is the
unoriented link obtained from D by smoothing each singular vertex in the way that does not respect the
orientation.

Algebraic & Geometric Topology, Volume 24 (2024)
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sm
��!

Figure 5: Unoriented smoothing of a crossing.

Figure 5 shows a local picture of smoothing a singular vertex, and Figure 6 gives an example of a partially
singular braid diagram and the link obtained by taking the unoriented smoothing.

When sm.D/ is an `–component link, we can construct a “reduced” version of C�
2
.D/. First, choose a

set of edges e1; : : : ; e` 2E.D/ such that each ei is on a distinct component of sm.D/. Then, let

yC2.D/ WD C�2 .D/˝
O

ei

.R.D/
Uei��!R.D//:

We define the differentials given by multiplication by Uei
to have weight filtration degree 1. Therefore, we

get a weight filtration on yC2.D/ induced by the above definition as a tensor product of filtered complexes.
This is the filtered complex that is used to define the spectral sequence relating Khovanov homology and
knot Floer homology.

Theorem 2.5 [Dowlin 2024, Theorem 1.6] Let D 2 DR be a partially singular braid diagram with
sm.D/DL. The spectral sequence induced by the weight filtration on yC2.D/ has E2–page isomorphic
to Kh.L/ and converges to 1HFK.L/.

Dowlin [2024] proves that every link can be realized as the unoriented smoothing of a diagram in DR

by first considering a braid whose plat closure is the desired link, then turning that braid into a partially
singular braid diagram. We go about things similarly, but instead choose a different way of embedding
braid closures into DR that better fits our particular invariance proofs.

sm
��!

Figure 6: A diagram D and its unoriented smoothing sm.D/.

Algebraic & Geometric Topology, Volume 24 (2024)
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Figure 7: The partially singular braid diagram In in the case nD 3.

Proposition 2.6 Let L be an unoriented link. There is a partially singular braid diagram D 2 DR such
that sm.D/DL.

To prove Proposition 2.6, we make use of a special partially singular open braid diagram which we denote
by In. This open diagram In consists of 2n upward oriented strands with 2n�1 layers of singular vertices.
The layers are symmetric, meaning layer i has singular vertices between the same strands as layer 2n� i

for 1 � i < n. The first layer has a singular vertex between the strands n and nC 1. The second layer
has two singular vertices; one between strands n� 1 and n and one between strands nC 1 and nC 2. In
general, the i th layer has i consecutive singular vertices, beginning with one between strands nC 1� i

and nC 2� i and ending with one between strands n� 1C i and nC i . We let Fixed.In/ be the singular
vertices in layers n and nC 1, and let Free.In/ be the rest of the singular vertices. See Figure 7 for In in
the case nD 3.

Definition 2.7 Given a braid ˇ 2 Bn, let In.ˇ/ denote the partially singular braid diagram D built by
putting n downward-oriented strands to the right of ˇ, and putting In above and taking the braid closure.

Proof of Proposition 2.6 Given an unoriented link L, let ˇ be a braid with braid closure cl.ˇ/ isotopic
to L, the existence of which is guaranteed by Alexander’s theorem [1923]. The unoriented smoothing
sm.In.ˇ// is isotopic to the braid closure cl.ˇ/ of ˇ itself, so D D In.ˇ/ is a partially singular braid
diagram with sm.D/ isotopic to L. That D 2DR is an application of [Dowlin 2024, Lemma 7.1]. More
specifically, D contains a vertically mirrored copy of the open braid diagram S2n defined in [Dowlin
2024], where it is proven that any such diagram is in DR.

See Figure 8 for an example of the process of constructing a partially singular braid diagram with specified
unoriented smoothing.

Let DB D fIn.ˇ/ j ˇ 2 Bn; n 2 Zg be the set of partially singular braid diagrams constructed as above.2

Then we have the following classification theorem.

2Here, the B in DB stands for “braid”.

Algebraic & Geometric Topology, Volume 24 (2024)
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�! �!

Figure 8: The process of constructing a partially singular braid diagram with smoothing isotopic
to a given knot.

Theorem 2.8 Two diagrams in DB have the same unoriented smoothing if and only if the under-
lying braids are connected by a finite sequence of Reidemeister II moves , Reidemeister III moves ,
(de)stabilizations , and conjugations.

Proof This is just Markov’s theorem [1936], repackaged.

Since DB �DR, we can construct the complex C�
2
.D/ for any D 2DB. We overload notation by writing

C�
2
.ˇ/ instead of C�

2
.In.ˇ// for ˇ 2Bn. We prove invariance of C�

2
.ˇ/ under the moves in Theorem 2.8

in Section 5 using maps defined in Section 4.

3 Vertex relabeling

Before we continue towards a proof of invariance, we detour to comment on a quirk of the construction
of C�

2
.D/. One natural question to ask is why C�

2
.D/ treats fixed and free singular vertices differently. It

turns out that, in order for H�.C�2 .D// to be isomorphic to 1HFK.sm.D//, our diagram D needs to be
in DR, which means satisfying the regular sequence condition. This condition cannot be satisfied unless
D contains sufficiently many fixed vertices in a sufficiently nice arrangement. On the other hand, we
only know how to define the edge maps dI;J on free vertices, so we cannot make all of our vertices fixed
either.

As a sort of compromise, we choose some of the vertices to be fixed and some to be free. We do not
need to worry about which choice we have made when proving invariance under Reidemeister moves II
and III in Section 5, since they only involve local pictures of diagrams which contain some crossings but
no singular vertices. While not a local move, we define stabilization to be compatible with our vertex
labeling as well. Conjugation, however, requires us to change which vertices are fixed and which are free;
this is what motivates the following theorem.

Algebraic & Geometric Topology, Volume 24 (2024)
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While it is not immediately obvious, it turns out that the homotopy type of C�
2
.D/ does not depend on

the particular labeling of vertices as fixed or free in the following sense:

Theorem 3.1 If D;D0 2DR are identical partially singular braid diagrams up to relabeling of fixed and
free vertices , then C�

2
.D/' C�

2
.D0/.

To prove this, we need to introduce a slight variation on the technique of “excluding a variable” from
[Rasmussen 2015, Lemma 3.8] or [Khovanov and Rozansky 2008a, Proposition 9]. Both sources are also
good references for the relevant details on matrix factorizations, including the statement below on the
effect of change of basis on matrix factorizations.

We include the necessary details on matrix factorizations below. Let R be a ring. For a; b 2R, let fa; bg
denote the matrix factorization

fa; bg WDR
b
//
R

a
oo :

For Ea; Eb 2Rn, let

fEa; Ebg D

0BBB@
a1 b1

a2 b2
:::

:::

an bn

1CCCA
denote the matrix factorization

fEa; Ebg WD

nO
iD1

fai ; big D

nO
iD1

R
bi
//
R

ai

oo :

We have already seen a matrix factorization of this form; if we let Ea D .LC.v1/; : : : ;L
C.vn// and

Eb D .L.v1/; : : : ;L.vn// for a partially singular braid diagram D with Fixed.D/ D fv1; : : : ; vng, then
LC

D
D fEa; Ebg. By definition, the potential ! associated to the matrix factorization fEa; Ebg is

Ea � Eb D a1b1C � � �C anbn:

Starting with a matrix factorization fEa; Ebg, we can perform a change of basis operation to get an isomorphic
one. Specifically, sending Eei to Eei C c Eej for standard basis vectors Eei and Eej of Rn has the effect of
replacing the matrix factorization by fEa0; Eb0g, where

Ea0k D

�
Eak C cEaj if k D i;

ak otherwise;

and
Eb0k D

�
Ebk � c Ebi if k D j ;

bk otherwise:

For more details, see [Khovanov and Rozansky 2008a; Rasmussen 2015].

Algebraic & Geometric Topology, Volume 24 (2024)
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Let C D fEa; Ebg be any matrix factorization over R. We can decompose

C D C 0
b1
//
C 0

a1

oo ;

where C 0 D fEa0; Eb0g is the factorization obtained by omitting the first components of Ea and Eb. Define
� W C ! C 0˝R=.b1/ by �..c1; c2//D c2˝ 1. Before proving Theorem 3.1, we first prove that if the
potential of C is 0 and b1 is a nonzero divisor in R, then � is a quasi-isomorphism.

Lemma 3.2 If the potential of C is 0 and b1 is a nonzero divisor in R, then � is a quasi-isomorphism of
chain complexes.

Proof It is clear that � is surjective; since b1 is a nonzero divisor, multiplication by b1 is injective, so
we have the following short exact sequence:

0 C 0 C 0 0 0

0 C 0 C 0 C 0˝R=.b1/ 0

1

1 b1

b1

a1b1 a1

Let C 00 denote the first nonzero column in this sequence, the matrix factorization

C 0
1
//
C 0

a1b1

oo :

By the corresponding long exact sequence in homology, it suffices to show that C 00 is acyclic in order to
prove that � is a quasi-isomorphism. We write C 00 in matrix form, then apply our above remarks about
change of basis: 0BBB@

a1b1 1

a2 b2
:::

:::

an bn

1CCCA�
0BBB@

a1b1C a2b2 1

a2 0
:::

:::

an bn

1CCCA�
0BBB@
! 1

a2 0
:::
:::

an 0

1CCCA :
Since we know that the potential ! D 0, we see that

C 00 D fEa0; E0g
1
//
fEa0; E0g

0
oo ;

and therefore is acyclic.

With this lemma, we can now prove that C�
2
.D/ is independent of vertex labeling for D 2 DR:

Proof of Theorem 3.1 Let S 2 DR be a fully singular braid diagram, and let w 2 Fixed.S/ be some
fixed vertex such that if w were instead free, the new diagram S 0 would still be in DR. Note that
R.S 0/DR.S/, and Q.S 0/DQ.S/=.L.w//. Since C�

2
.S/DQ.S/˝LC

S
, we may consider C�

2
.S/ as

the matrix factorization fEa; Ebg over R D Q.S/ with Ea D .LC.v//v2Fixed.S/ and Eb D .L.v//v2Fixed.S/.
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Assume without loss of generality that b1 DL.w/. Since S 0 2 DR, we know that the linear terms L.v/

for v 2 Free.S 0/ form a regular sequence over R.S 0/=N.S 0/DR.S/=N.S/, and in particular, L.w/ is
a nonzero divisor in Q.S/, since w 2 Free.S 0/. We then get that

C�2 .S/DQ.S/˝R.S/ LC
S

Š fEa; Ebg

'Q.S/=.L.w//˝Q.S/ .Q.S/˝R.S/ fEa
0; Eb0g/ (by Lemma 3.2)

'
�
Q.S/=.L.w//˝Q.S/Q.S/

�
˝R.S/ fEa

0; Eb0g (by associativity of ˝)

'Q.S/=.L.w//˝R.S/ fEa
0; Eb0g

ŠQ.S 0/˝R.S/ LC
S 0

ŠQ.S 0/˝R.S 0/ LC
S 0

(since R.S/DR.S 0/)

D C�2 .S
0/:

Therefore, we see that changing a fixed vertex to a free one in a fully singular diagram does not change
the homotopy type of C�

2
.�/ as long as both diagrams are in DR.

Now, we need to extend this result. Let D;D0 2 DR be partially singular braid diagrams that differ
only on the labeling of a single vertex w 2 Fixed.D/\Free.D0/. We know that C�

2
.DI /' C�

2
.D0

I
/ for

all I 2 f0; 1gc.D/. In particular, we have a map in one direction: � W C�
2
.DI /! C�

2
.D0

I
/ is a filtered

quasi-isomorphism inducing the above equivalence. Therefore, it suffices to show that � commutes with
the edge map d1, which is the sum of dI;J . Since � is linear over Q.S/, we get that it is additionally
R.S/–linear via the natural quotient map, and therefore commutes with scalar multiplication by elements
of R.S/. Since the edge maps dI;J are defined via scalar multiplication by 1 or Ub �Uc , we see that
� does in fact commute with the edge maps, and therefore extends to a filtered quasi-isomorphism
� W C�

2
.D/! C�

2
.D0/ by Lemma A.4.

Given any two diagrams D0;D00 2DR that differ only by some number of vertex labels, we can construct
a diagram D 2 DR with Fixed.D/D Fixed.D0/[Fixed.D00/, and therefore get that

C�2 .D
0/' C�2 .D/' C�2 .D

00/;

thus proving the general case.

4 MOY moves

Murakami, Ohtsuki, and Yamada [Murakami et al. 1998] studied local operations on singular diagrams
(“MOY moves”). While originally formulated for oriented planar trivalent graphs, they are relevant to
us because one can think of singular vertices in our braids and braid resolutions as pairs of trivalent
vertices instead. Two of these moves, MOY I and MOY III, represent planar isotopy when applied to the
unoriented smoothing of a diagram, and thus are useful to make up for the fact that we cannot isotope
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1 2

3 2 1

1

�I

�0
I

Figure 9: An MOY I move.

singularized crossings in the same ways that we can smoothed ones. The MOY II move corresponds to a
cup/cap cobordism, but is rather more limited in its application. Nevertheless, these three moves suffice
to define Reidemeister moves (and others) in Section 5. The maps that we choose to realize these moves
are inspired by those used in [Khovanov and Rozansky 2008a; 2008b].

In this section, we construct filtered chain maps relating C�
2
.D/ and C�

2
.D0/, where D and D0 are partially

singular braid diagrams connected by an MOY I, II, or III move.

4.A MOY I

Suppose D and D0 are partially singular braid diagrams that differ by an MOY I move, as illustrated
in Figure 9. In words, there is a fixed vertex v in D that meets the same edge e twice; without loss of
generality, e is to the right of v. The diagram D0 is then obtained from D by removing the edge e and
relabeling v as a bivalent vertex.

Theorem 4.1 There exist R.D0/–linear filtered quasi-isomorphisms

�I W C�2 .D/! C�2 .D
0/; �0I W C

�
2 .D

0/! C�2 .D/:

Under the identification E1.C�2 .�// Š CKh�.sm.�//, these maps induce the expected isomorphisms
corresponding to planar isotopy.

First, suppose S and S 0 are fully singular braid diagrams that differ by an MOY I move, as illustrated in
Figure 9. Specifically, S contains a fixed singular vertex v that meets the same edge twice. We would
like to construct filtered chain maps �I W C�2 .S/! C�

2
.S 0/ and �0I W C

�
2
.S 0/! C�

2
.S/. To start, let us

characterize C�
2
.S/ and C�

2
.S 0/.

Without loss of generality, assume that the edge which is deleted by the MOY I move is to the right of
the vertex. Label this edge with the variable U2, label the top left edge U1, and label the bottom left edge
with U3, again as in Figure 9.

Let R be the polynomial ring over all edges not shown in the local diagram; thus, R.S 0/DRŒU1� and
R.S/DR.S 0/ŒU2;U3�. We relate the associated quotient rings by the following proposition:

Proposition 4.2 As R.S 0/ modules , Q.S 0/ŠQ.S/=.U1CU2/.
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Proof We expand the right-hand side as a quotient of a free R.S 0/–module:

Q.S/=.U1CU2/ŠQ.S/˝R.S/R.S/=.U1CU2/

ŠR.S/=.L.S/CN.S//˝R.S/=.U1CU2/

ŠR.S/=.L.S/CN.S/C .U1CU2//

ŠR.S 0/ŒU2;U3�=.L.S/CN.S/C .U1CU2//

ŠR.S 0/ŒU2;U3�=.L.S/C zN .S/C .U2�U3/C .U1CU2//

ŠR.S 0/=.L.S/C zN .S//:

In the above, zN .S/ is the sum of the nonlocal relations other than U1�U3; this is exactly equal to N.S 0/,
as any region intersecting these local diagrams can be made to avoid U2 and any intersections with U3

can be isotoped to intersect U1 instead. Further, L.S/DL.S 0/. Thus,

Q.S/=.U1CU2/ŠR.S 0/=.L.S/C zN .S//DR.S 0/=.L.S 0/CN.S 0//DQ.S 0/;

as desired.

Proposition 4.3 The chain complexes C�
2
.S/ and C�

2
.S 0/ are quasi-isomorphic as complexes over R.S 0/.

Proof We can use Proposition 4.2 to expand C�
2
.S/:

C�2 .S/DQ.S/˝R.S/ LC
S

DQ.S/˝

�
R.S/

U1�U3
//
R.S/

U1C2U2CU3

oo ˝ zLC
S

�

ŠQ.S/˝R.S/
0

//
R.S/

2U1C2U2

oo ˝ zLC
S

(using relation U1�U3 in N.S/)

'Q.S/˝R.S/=.U1CU2/˝ zL
C

S
(replacing 2U1C 2U2 by the cokernel)

Š
�
Q.S/˝R.S/=.U1CU2/

�
˝ zLC

S

ŠQ.S 0/˝R.S 0/ LC
S 0

(by Proposition 4.2)

D C�2 .S
0/:

In the above, let

zLC
S
D

O
w2Fixed.D/nfvg

R.D/
L.w/

//
R.D/

LC.w/

oo ;

and note zLC
S
D LC

S 0
. Note that we may replace the mapping cone of 2U1C 2U2 by its cokernel in the

fourth line only after checking that 2U1C 2U2 is not a zero divisor in Q.S/; by the logic in the proof of
Proposition 4.2, we may choose a generating set of relations for N.S/CL.S/, none of which contain
a term with a nonzero power of U2. Therefore, Q.S/ is isomorphic to a free polynomial ring over U2;
since 2U1C2U2 is a unit multiple (over Q) of a monic polynomial in U2, we therefore get that it is not a
zero divisor in Q.S/.
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Figure 10: An MOY II move.

Let �I W C�2 .S/! C�
2
.S 0/ be the quotient map implied by the above calculations. Explicitly on a simple

tensor, �I.Œr �˝ .a; b/˝ Qs/D Œrb�˝ Qs. Let �0I W C
�
2
.S 0/! C�

2
.S/ be the splitting of �I given by inclusion

into the first R.S/ summand in the equivalence of R.S/=.U1CU2/ and

R.S/
0

//
R.S/

2U1C2U2

oo

in the above proof. Explicitly on a simple tensor, �0I.Œr �˝ Qs/D Œr �˝ .0; 1/˝ Qs.

For partially singular braid diagrams D and D0 related by an MOY I move, we extend both maps to the
cube of resolutions by defining �I W C�2 .DI /! C�

2
.D0

I
/ and �0I W C

�
2
.D0

I
/! C�

2
.DI / as above for each

I 2 f0; 1gc.D/.

Proof of Theorem 4.1 It is clear that �I and �0I are filtered maps, since they are defined componentwise
on the cube of resolutions.

We need to check that �I and �0I are chain maps, ie that they commute with the edge map d1. Let
I;J 2 f0; 1gc.D/ with I � J . If I and J differ at a positive crossing, then dI;J is given by

�C˝LC
D
D 1˝LC

D
:

Otherwise, dI;J is given by �� ˝LC
D
D .Ub � Uc/˝LC

D
. Either way, the edge maps are given by

multiplication by an element of R.D0/. Since �II and �0II were defined to be R.D0/–linear, we get that
they commute with d1.

4.B MOY II

Suppose D and D0 are partially singular braid diagrams with D0 the result of applying an MOY II move to
D and reducing the number of crossings, as shown in Figure 10. In words, D contains a free vertex v1, a
fixed vertex v2, and two edges e5 and e6 from v2 to v1. The diagram D0 is obtained from D by removing
e5 and e6 and merging v1 and v2 into a single fixed vertex.

Theorem 4.4 There exists a direct sum decomposition C�
2
.D/Š C�

2
.D0/˚C�

2
.D0/ as filtered chain

complexes over R.D0/. Define �II W C�
2
.D/ ! C�

2
.D0/ to be projection onto the second summand ,
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and define �0II W C�
2
.D0/ ! C�

2
.D/ to be inclusion into the first summand. Under the identification

E1.C�2 .�//Š CKh�.sm.�//, the maps �II and �0II induce the maps on Khovanov homology correspond-
ing to the cobordisms which delete and introduce a circle , respectively.

To start, let S and S 0 be fully singular braid diagrams again with S 0 the result of applying an MOY II
move to S reducing the number of crossings. Let R be the polynomial ring over all edges not shown in
the local diagrams, so that R.S 0/DRŒU1;U2;U3;U4�, and R.S/DR.S 0/ŒU5;U6�.

Proposition 4.5 As an R.S 0/–module , Q.S/ŠQ.S 0/h1i˚Q.S 0/hU6i.

Proof First, note that Q.S/DQ.S 0/ŒU5;U6�=.U5CU6 �U1 �U2;U5U6 �U1U2/. We do not need
to consider any other nonlocal relations, as any region � intersecting these diagrams can be isotoped
away from U5 and U6 to give an equivalent or stronger relation. We want to prove that f1;U6g is a
basis for Q.S/ over Q.S 0/. To see that f1;U6g is a generating set, it is enough to note that in Q.S/,
U5 D U1CU2�U6, and that .U1CU2�U6/U6�U1U2 D 0, so U 2

6
D .U1CU2/U6�U3U4. Linear

independence follows from the fact that U 2
6
� .U1CU2/U6CU1U2 is a monic polynomial of degree 2

in U6.

Using this proposition, we can decompose

C�2 .S/ŠQ.S/˝R.S/ LC
S

ŠQ.S/˝R.S/

� O
v2Fixed.S/

R.S/
L.v/

//
R.S/

LC.v/

oo

�

ŠQ.S/˝R.S/

� O
v2Fixed.S 0/

R.S/
L.v/

//
R.S/

LC.v/

oo

�

Š

O
v2Fixed.S 0/

Q.S/
L.v/

//
Q.S/

LC.v/

oo

Š

O
v2Fixed.S 0/

Q.S 0/h1i˚Q.S 0/hU6i

L.v/
//
Q.S 0/h1i˚Q.S 0/hU6i

LC.v/

oo

Š

� O
v2Fixed.S 0/

Q.S 0/h1i
L.v/

//
Q.S 0/h1i

LC.v/

oo

�
˚

� O
v2Fixed.S 0/

Q.S 0/hU6i

L.v/
//
Q.S 0/hU6i

LC.v/

oo

�
Š .Q.S 0/h1i˝R.S 0/ LC

S 0
/˚ .Q.S 0/hU6i˝R.S 0/ LC

S 0
/

Š C�2 .S
0/h1i˚C�2 .S

0/hU6i:

Define �II W C�2 .S/! C�
2
.S 0/ to be projection onto the second summand in the above decomposition,

and define �0II W C
�
2
.S 0/! C�

2
.S/ to be inclusion into the first summand. For partially singular braid
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Figure 11: Variations of the MOY II move.

diagrams D and D0 related by an MOY II move, we extend both maps to the cube of resolutions by
defining �II W C�2 .DI /! C�

2
.D0

I
/ and �0II W C

�
2
.D0

I
/! C�

2
.DI / as above for each I 2 f0; 1gc.D/.

Proof of Theorem 4.4 It is clear that �II and �0II are filtered maps, since they are defined componentwise
on the cube of resolutions. Next, we need to check that �II and �0II are chain maps, ie that they commute
with the edge map d1. Let I;J 2 f0; 1gc.D/ with I � J . If I and J differ at a positive crossing, then
dI;J is given by �C˝LC

D
D 1˝LC

D
. Otherwise, dI;J is given by ��˝LC

D
D .Ub �Uc/˝LC

D
. Either

way, the edge maps are given by multiplication by an element of R.D0/. Since �II and �0II were defined
to be R.D0/–linear, we get that they commute with d1.

We used a direct sum decomposition of C�
2
.S/ to define these maps on complete resolutions. We can

see this direct sum decomposition on the cube of resolutions as well. Specifically, we have a split exact
sequence:

0 C�
2
.D0/ C�

2
.D/ C�

2
.D0/ 0

�0II �II

1˝LC
D

.U6�U1/˝LC
D

Finally, we want to show that these maps induce the correct morphisms on the Khovanov complex. The
cobordism corresponding to the introduction of a circle is induced by multiplication by 1 [Bar-Natan
2005]. This should correspond to �0II, which we can see also induces multiplication by 1 on homology.
The cobordism corresponding to the deletion of a circle should send 1 7! 0 and X 7! 1, where X is a
variable associated to the shrinking circle. In our case, �II maps 1 7! 0 and U6 7! 1, inducing this same
map on homology.

One can repeat the same argument to show that we also have similar MOY II decompositions for the
cases in Figure 11.

4.C MOY III

Suppose D and D0 are fully singular braid diagrams with D0 the result of applying an MOY III move to D

and reducing the number of crossings, as shown in Figure 12. In words, D contains a fixed vertex v1, free
vertices v2 and v3, and edges e7 W v2! v1, e8 W v3! v1, and e9 W v3! v2. The diagram D0 is obtained
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Figure 12: An MOY III move.

from D by removing the edges e7, e8, and e9, merging v1 and v3 into a single fixed vertex, removing v2,
and merging e6 into e3.

Theorem 4.6 There exist R.D0/–linear filtered quasi-isomorphisms �III W C�
2
.D/ ! C�

2
.D0/ and

�0III W C
�
2
.D0/! C�

2
.D/. Furthermore , C�

2
.D0/ is isomorphic to a direct summand of C�

2
.D/. Under the

identification E1.C�2 .�//ŠCKh�.sm.�//, these maps induce the expected isomorphisms corresponding
to planar isotopy.

Analogously to the MOY I and II cases, we again start by defining these maps on fully singular braid
diagrams, then extending them to the cube of resolutions. Let S and S 0 be fully singular braid diagrams
with S 0 the result of applying an MOY III move to S reducing the number of crossings as in Figure 12.
Below, our goal is to prove that C�

2
.S/ŠC�

2
.S 0/˚‡L, where ‡L is some acyclic complex. Furthermore,

the MOY III move has a nontrivial horizontal mirroring. We also prove that in the case where S and S 0

are connected by an MOY III move which is the mirror of Figure 12, we have C�
2
.S/Š C�

2
.S 0/˚‡R.

While it is true that ‡R D‡L, we neither need this fact nor prove it in this paper. Nevertheless, we may
refer to the complex as ‡ all the same.

We construct a map �III W C�2 .S
0/! C�

2
.S/ and another map �0III W C

�
2
.S/! C�

2
.S 0/ which splits �III,

thus proving that C�
2
.S 0/ is a direct summand of C�

2
.S/. Let S 00 be the fully singular braid diagram

1 2 3

4 5 6

7

8

9

Figure 13: The fully singular diagram S 00 used in the definitions of �III and �0III.
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Figure 14: Variations of the MOY III move.

where the middle singular vertex v2 is replaced by the oriented smoothing as in Figure 13, so that we
may define the map 1˝LC

S
W C�

2
.S/! C�

2
.S 00/. We may then apply an MOY II move �II to the left two

strands in S 00 to get a map �II W C�2 .S
00/! C�

2
.S 0/. Therefore, we define �III D �II ı .1˝LC

S
/. We can

also reverse the order of these operations to define �0III D ..U9�U3/˝LC
D
/ ı�0II. Note that the maps

1˝LC
S

and .U9�U3/˝LC
S

are well defined since if v2 were replaced by a positive or negative crossing,
these would simply be multiples of the edge maps corresponding to resolutions of that crossing.

Proposition 4.7 �III splits �0III, ie �III ı�
0
III D idC�

2
.S 0/.

Proof We expand out the definitions of �III and �0III to get

�III ı�
0
III D �II ı .1˝LC

S
/ ı ..U9�U3/˝LC

S
/ ı�0II

D �II ı ..U9�U3/˝LC
S
/ ı�0II

D
�
0 1

� ��U3 �U4U5

1 U4CU5�U3

��
1

0

�
˝LC

S

D
�
1
�
˝LC

S

D idC�
2
.S 0/ :

Therefore, we get a direct sum decomposition C�
2
.S/Š‡h1i˚C�

2
.S 0/hU9�U3i. For partially singular

braid diagrams D and D0 related by an MOY III move, we extend both maps to the cube of resolutions
by defining �III W C�2 .DI /! C�

2
.D0

I
/ and �0III W C

�
2
.D0

I
/! C�

2
.DI / as above for each I 2 f0; 1gc.D/.

Proof of Theorem 4.6 It is clear that �III and �0III are filtered maps, since they are defined componentwise
on the cube of resolutions. Furthermore, we can extend our proof of Proposition 4.7 to partially singular
braid diagrams since both the edge maps and MOY II maps are defined on such diagrams, so C�

2
.D0/

really is a summand of C�
2
.D/.
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We also need to check that �III and �0III are chain maps, ie that they commute with the edge maps d1.
Let I;J 2 f0; 1gc.D/ with I � J . If I and J differ at a positive crossing, then dI;J is given by
�C ˝ LC

D
D 1˝ LC

D
. Otherwise, dI;J is given by �� ˝ LC

D
D .Ub � Uc/˝ LC

D
. Either way, the

edge maps are given by multiplication by an element of R.D0/. Since �III and �0III were defined to be
R.D0/–linear, we get that they commute with d1.

As before, a similar argument shows that we also have MOY III decompositions for the cases in Figure 14.

5 Invariance

In this section, we prove that C�
2
.ˇ/ is an invariant of the braid closure cl.ˇ/ by showing that it is invariant

under each of the four moves of Theorem 2.8. The first two moves, Reidmeister II and III, apply to any
partially singular braid diagram D, whereas the second two moves, stabilization and conjugation, are
specific to diagrams of the form D D In.ˇ/.

5.A Reidemeister II

We begin by proving invariance under Reidemeister II moves. There are two distinct such moves, but
they are mirror images of each other, and their proofs are almost identical. We prove one of the cases in
detail below.

Theorem 5.1 If D and D0 are two partially singular braid diagrams that differ by a Reidemeister II move ,
then C�

2
.D/'1 C�

2
.D0/ over R.D0/.

Proof Let D and D0 be the diagrams in Figure 15, with D0 the result of eliminating two crossings from
D0 by means of a Reidemeister II move. We use Lemma A.1 to simplify C�

2
.D/ and C�

2
.D0/ to see they

have the same homotopy type. Label the edges of D with variables U1; : : : ;U6 as in Figure 15, and order
the crossings from top to bottom. Let �1 D �C D 1 be the edge map corresponding to the top (positive)

3 4

1 2

5 6

1

1

2

2

Figure 15: A Reidemeister II move.
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vertex, and let �2 D �� DU6�U3 be the edge map corresponding to the bottom (negative) vertex. Then,
fixing a sign assignment without loss of generality, we expand the cube of resolutions for C�

2
.D/ as:

C�
2
.D00/ C�

2
.D10/

C�
2
.D01/ C�

2
.D11/

�1

�2 ��2

�1

Note that C�
2
.D10/ is isomorphic to C�

2
.D0/ via the removal of bivalent vertices, so our goal is to show that

C�
2
.D/'1 C�

2
.D10/ as a filtered chain complex over R.D0/. We work over the larger ring R.D0/ŒU3;U4�,

but do not enforce linearity with respect to U5 or U6. First, note that C�
2
.D00/ŠC�

2
.D11/. We see that we

can apply the MOY II decomposition from Section 4.B to write C�
2
.D01/DC�

2
.D11/h1i˚C�

2
.D00/hU6i.

We compute the maps induced by �1 and �2 on these decompositions to get an isomorphic cube of
resolutions:

C�
2
.D00/ C�

2
.D10/

C�
2
.D11/h1i˚C�

2
.D00/hU6i C�

2
.D11/

1

�
�U3

1

�
U3�U2

.1 U2/

This is the first of several times we use Lemma A.1 to simplify a cube of resolutions in this paper. This
key lemma allows us to effectively cancel out isomorphisms of direct summands in cubes. In this case, it
yields the E1–quasi-isomorphic complex:

0 C�
2
.D10/

0 0

We conclude by noting that C�
2
.D10/Š C�

2
.D0/ as chain complexes over R.D0/ŒU3;U4�. This proves

invariance under one type of Reidemeister II move; the proof of the mirror-image move is analogous.

5.B Reidemeister III

We aim to prove invariance under the Reidemeister III move shown in Figure 16, which corresponds
to sliding a strand over a positive crossing. In terms of the braid group, it represents the relation
�i�iC1�i D �iC1�i�iC1. All other variations of the Reidemeister III move follow from this one plus the
Reidemeister II invariance result from Theorem 5.1.

Theorem 5.2 If D and D0 are two partially singular braid diagrams that differ by a Reidemeister III
move , then C�

2
.D/'1 C�

2
.D0/.

Proof Let D be the diagram on the left and D0 the diagram on the right in Figure 16. We aim to use
Lemma A.1 to simplify C�

2
.D/ and C�

2
.D0/ to see they have the same homotopy type.
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1 2 3

4 5 6

7

8

9

1 2 3

4 5 6

7

8

9

Figure 16: A Reidemeister III move.

To start, label the edges of D with variables U1; : : : ;U9 as in Figure 16, and order the crossings from top
to bottom. We expand the cube of resolutions for C�

2
.D/ as:

C�
2
.D100/ C�

2
.D110/

C�
2
.D000/ C�

2
.D010/ C�

2
.D101/ C�

2
.D111/

C�
2
.D001/ C�

2
.D011/

��

�
�

Since our local picture of D consists of only positive crossings, all edge maps in this cube are given by
�C D 1 up to a sign assignment, which we take to be the one in the above cube of resolutions without
loss of generality.

By Theorem 4.6, we note C�
2
.D000/Š C�

2
.D110/˚‡ , where ‡ is acyclic. By a slight generalization of

Lemma A.3, we get an E1–quasi-isomorphic cube after replacing C�
2
.D000/ by C�

2
.D110/. Furthermore,

Theorem 4.4 gives us that C�
2
.D010/Š C�

2
.D110/h1i˚C�

2
.D110/hU9i. Therefore, the above cube is

E1–quasi-isomorphic to:

C�
2
.D100/ C�

2
.D110/

C�
2
.D110/ C�

2
.D110/h1i˚C�

2
.D110/hU9i C�

2
.D101/ C�

2
.D111/

C�
2
.D001/ C�

2
.D011/

��

˛

ˇ

�
�
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We compute the induced maps in the above cube to be

˛ D

�
�U3

1

�
; ˇ D

�
1 U2

�
:

By Lemma A.1, we can cancel the isomorphisms of direct summands in the above cube to obtain the
E1–quasi-isomorphic complex:

C�
2
.D100/ 0

0 0 C�
2
.D101/ C�

2
.D111/

C�
2
.D001/ C�

2
.D011/




�

Removing the trivial complexes in the above cube, and noting that the map 
 induced by cancellation is
given by multiplication by 1, we get the complex:

C�
2
.D100/ C�

2
.D101/

C�
2
.D111/

C�
2
.D001/ C�

2
.D011/

�

Now, recalling that we have a second diagram D0 to work with, we may go through the same steps to
simplify C�

2
.D0/ to get the complex:

C�
2
.D0

100
/ C�

2
.D0

101
/

C�
2
.D0

111
/

C�
2
.D0

001
/ C�

2
.D0

011
/

�

We conclude by noting that the reduced complexes for C�
2
.D/ and C�

2
.D0/ are isomorphic via the map

that reflects the complexes about a horizontal axis, ie swaps the 100– and 001–resolutions, swaps the
101– and 011–resolutions, and fixes the 111–resolution. This map is a chain map since all the edge maps
are ˙1, and therefore C�

2
.D/'1 C�

2
.D0/.
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ˇ

� � � � � �

In

� � �� � �

� � � � � �

D: stabilized/original

ˇ

� � � � � �

In�1

� � �� � �

� � � � � �

D0: original/destabilized

Figure 17: Diagrams related by a positive stabilization. Depending on context, we either consider
the diagram D and its destabilization D0, or we consider the diagram D0 and its stabilization D.

5.C Stabilization

Let ˇ 2 Bn�1 be an element of the braid group for n � 2, and consider ˇ as an element of Bn via the
natural inclusion Bn�1 ,!Bn adjoining a straight strand to the right of ˇ. Let �n�1 2Bn be the generator
which introduces a positive crossing between strands n� 1 and n. The positive stabilization of ˇ is the
braid �n�1ˇ 2 Bn. Analogously, the negative stabilization of ˇ is the braid ��1

n�1
ˇ 2 Bn. For a braid

ˇ D �˙1
n�1

ˇ0 2 Bn in the image of one of these operations, we say that ˇ0 2 Bn�1 is the destabilization
of ˇ.

Theorem 5.3 The E1–homotopy type of the filtered complex C�
2
.ˇ/ is invariant under positive and

negative (de)stabilization , ie C�
2
.�n�1ˇ/'1 C�

2
.��1

n�1
ˇ/'1 C�

2
.ˇ/.

We note that ˇ, �n�1ˇ, and ��1
n�1

ˇ all have isotopic braid closures. Before we prove stabilization invari-
ance, we need to relate diagrams containing the open braid diagrams In and In�1, as the (de)stabilization
operations alter the number of strands of our partially singular braid diagrams. Therefore, we first note
that we can see In�1 as a subdiagram of In by ignoring the rightmost vertices in every row. Equivalently,
we can build In inductively from In�1 as in Figure 18.

Consider In.�n�1ˇ/, as shown in Figure 19. Let R be the polynomial ring over all edges not labeled in
Figure 19, and label the rest of the edges accordingly, so that R.In.�n�1ˇ//DRŒU1;U2;U3;U4;U5�.

Let � D �C D 1 be the edge map corresponding to the positive crossing of �n�1. We write the one-
dimensional cube of resolutions corresponding to resolving the crossing

C�2 .In.�n�1ˇ/0/
�
�! C�2 .In.�n�1ˇ/1/:

The diagrams corresponding to these resolutions are illustrated in Figure 20.

Our goal now is to use MOY moves to modify both resolutions so that they can be represented using a
common diagram, tracking the effect on the complexes. By an abuse of notation, we denote this common
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In

: : :

� � �

„ƒ‚…
2n

2n‚…„ƒ
In�1

: : : : : :

� � � � � �

„ ƒ‚ …
n�1

n�1‚ …„ ƒ n�2‚…„ƒ

„ ƒ‚ …
n�1

Figure 18: Constructing In from In�1 by adding two more strands and marking two new vertices
as fixed.

diagram I 0n.ˇ/, which is gotten analogously to In.ˇ/: we place a straight strand to the right of ˇ, place n

straight strands to the right of that, top this diagram with I 0n, and take the braid closure. It remains to
define I 0n. We let I 0n be In, without the singular vertex between strands n and nC 1 in the first layer. As
for In, we can also define I 0n by building on In�1, as in Figure 21.

With this definition in mind, we now see that In.�n�1ˇ/0 is one MOY III move away from I 0n.ˇ/, and
In.�n�1ˇ/1 is one MOY II move away from I 0n.ˇ/. On the one-dimensional cube of resolutions, then,
we get

C�2 .I
0
n.ˇ//hU3�U5i˚‡

�
�! C�2 .I

0
n.ˇ//h1i˚C�2 .I

0
n.ˇ//hU4i:

ˇ

� � � � � �

� � �� � �

� � � � � �

:::In

1 2

3 4

5

Figure 19: Relevant edge labels near �n�1. Note that the top vertex is fixed only when nD 2, and
is otherwise free for n� 3. For this reason, we use a dashed circle to indicate that the top vertex
may be fixed or free.
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ˇ

� � � � � �

� � �� � �

� � � � � �

:::

ˇ

� � � � � �

� � �� � �

� � � � � �

:::

�

Figure 20: The mapping cone decomposition induced by �n�1.

Since ‡ is acyclic, we can ignore it by Lemma A.2. We compute the map induced by � on the summands
as

C�2 .I
0
n.ˇ//hU3�U5i

�
U1CU2�U5
�1

�
��������! C�2 .I

0
n.ˇ//h1i˚C�2 .I

0
n.ˇ//hU4i:

Since the �1 entry represents an isomorphism of C�
2
.I 0n.ˇ// summands, we can cancel it by Lemma A.1.

This proves the following lemma.

Lemma 5.4 The complexes C�
2
.�n�1ˇ/ and C�

2
.I 0n.ˇ// have the same E1–homotopy type.

Therefore, to prove conjugation invariance, it remains to prove the following proposition.

Proposition 5.5 The complexes C�
2
.I 0n.ˇ// and C�

2
.ˇ/ have the same E1–homotopy type.

I 0n

: : :

� � �

„ƒ‚…
2n

2n‚…„ƒ
In�1

: : : : : :

� � � � � �

„ ƒ‚ …
n�1

n�1‚ …„ ƒ n�2‚ …„ ƒ

„ ƒ‚ …
n�2

Figure 21: Building I 0n from In�1.
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In�1

� � � � � �

� � � � � �

n�1‚ …„ ƒ n�3‚…„ƒ

ˇ

„ ƒ‚ …
n�1

„ƒ‚…
n�3

In�1

� � � � � �

� � � � � �

n�1‚ …„ ƒ n�3‚…„ƒ

ˇ

„ ƒ‚ …
n�1

„ƒ‚…
n�3

Figure 22: Shifting vertices in I 0n.ˇ/.

Proof To begin, we note that I 0n.ˇ/ and In�1.ˇ/ are really braid closures, so for ease of understanding
the upcoming MOY moves, we replace our usual depiction of I 0n.ˇ/ with a shifted version, as in Figure 22.

In this shifted version, we identify the local picture on the left in Figure 23, consisting of a pair of
intersecting strands and n� 2 other strands which intersect both. We can apply n� 2 MOY III moves to
simplify this part of the diagram to the local picture on the right in Figure 23, consisting of n� 2 straight
strands and one pair of intersecting strands. By Theorem 4.6, each of these preserves the E1–homotopy
type of the complex. The global picture at this stage can be seen on the left in Figure 24. To arrive at the
diagram for In�1.ˇ/, we apply two MOY I moves to the two remaining fixed vertices outside of In�1. By
Theorem 4.1, each of these preserves the E1–homotopy type of the complex. This leads to the diagram
on the right in Figure 24, which is exactly the diagram for In�1.ˇ/.

� � �

: : :

n�3‚…„ƒ

„ƒ‚…
n�3

� � �

: : :

n�3‚…„ƒ

„ƒ‚…
n�3

Figure 23: Local pictures of diagrams related by a sequence of n� 2 MOY III moves.
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In�1

� � � � � �

� � � � � �

n�1‚ …„ ƒ n�3‚…„ƒ

ˇ

„ ƒ‚ …
n�1

„ƒ‚…
n�3

In�1

� � � � � �

� � � � � �

n�1‚ …„ ƒ n�3‚…„ƒ

ˇ

„ ƒ‚ …
n�1

„ƒ‚…
n�3

Figure 24: The last step in simplifying I 0n.ˇ/ in the proof of Proposition 5.5.

Proof of Theorem 5.3 We have shown that C�
2
.�n�1ˇ/ ' C�

2
.I 0n.ˇ// ' C�

2
.ˇ/. We can simplify

C�
2
.��1

n�1
ˇ/ to C�

2
.I 0n.ˇ// as well. Using the same edge labels and notation as before, we write the cube

of resolutions for C�
2
.ˇ/ as

C�2 .In.ˇ/0/
�
�! C�2 .In.ˇ/1/

where this time � D �� D U3 �U5. Applying an MOY II move to In.ˇ/0 and an MOY III move to
In.ˇ/1 to write our complexes in terms of C�

2
.I 0n.ˇ// gives us the complex

C�2 .I
0
n.ˇ//h1i˚C�2 .I

0
n.ˇ//hU4i

�
�! C�2 .I

0
n.ˇ//hU3�U5i˚‡:

Again, excluding ‡ and computing the map induced by �, we get

C�2 .I
0
n.ˇ//h1i˚C�2 .I

0
n.ˇ//hU4i

.1 U4/
����! C�2 .I

0
n.ˇ//hU3�U5i:

As before, we may cancel the 1 in the above matrix to see that C�
2
.��1

n�1
ˇ/'1 C�

2
.I 0n.ˇ// as well. The

rest of the proof follows from Proposition 5.5. Since we have covered both the positive and negative
cases, this suffices to show invariance under stabilization.

5.D Conjugation

Conjugation invariance is the following statement:

Theorem 5.6 For any ˛; ˇ 2 Bn, we have that C�
2
.˛�1ˇ˛/'1 C�

2
.ˇ/.

To begin, we prove a lemma relating complexes associated to diagrams that locally look like the pictures
in Figure 25.

Lemma 5.7 Let A and A0 be partially singular braid diagrams that are identical outside of a specific
region , where they look like the diagrams in Figure 25, ie A has two opposite crossings whereas A0 has
oriented smoothings. Then C�

2
.A/'1 C�

2
.A0/.
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b0

b1 bn�1b2

c1 c2 cn�1

e0 f0 e1 f1 en�1 fn�1

� � �

� � �

� � �

an

bn�2

A

� � �

� � �

� � �

A0

Figure 25: Local pictures of diagrams with equivalent C�
2
.�/. As before, the dashed circles

indicate that the vertices may be fixed or free.

Proof Let �1 D �C D 1 be the edge map corresponding to the left (positive) crossing, and let
�2 D �� D an � en�1 be the edge map corresponding to the right (negative) crossing. We expand
the cube of resolutions for C�

2
.A/ as follows:

C�
2
.A00/ C�

2
.A10/

C�
2
.A01/ C�

2
.A11/

�1

�2 �2

�1

The diagrams for these four partial resolutions look like Figure 26.

We can use MOY III moves to simplify three of the four corners of this cube. For A00, we can start with
a MOY III move on the left, simplifying the diagram. Each MOY III move we apply allows us to perform
another, until we have done n� 1 such moves moving left-to-right. We denote the resulting diagram A00

00
;

it is shown in Figure 27. By Theorem 4.6, A00 and A0
00

are E1–quasi-isomorphic.

Similarly, we can simplify A11 to A0
11

by performing n� 1 MOY III moves right-to-left, and we can
simplify A01 to A0

01
by performing n�1 MOY III moves left-to-right. In each case, Theorem 4.6 ensures

� � �

� � �

� � �

� � �

� � �

� � �

� � �

� � �

� � �

� � �

� � �

� � �

�1

�2 �2

�1

Figure 26: The cube of resolutions for diagram A in Figure 25.
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� � �

� � �

� � �

� � �

� � �

� � �

� � �

� � �

� � �

˚‡ � � �

� � �

� � �

�1

�2 �2

�1

Figure 27: The reduced cube of resolutions.

we are preserving the E1–quasi-isomorphism type. The resulting diagrammatic cube of resolutions is
shown in Figure 27. Thus we obtain the complex

C�
2
.A00

00
/hxi C�

2
.A10/

C�
2
.A00

01
/hxi˚‡ C�

2
.A00

11
/hxi

�1

�2 �2

�1

This cube ignores the ‡ summands in A00 and A11 by Lemma A.3, but retains the ‡ WD‡1˚� � �˚‡n�1

summand in A01. Further, as every vertex in the middle row is free, we may choose

x D .b1� c1/ � � � .bn�1� cn�1/

to be the generator for all three complexes modulo the linear ideal L.

We further decompose A00
01

via an MOY II move on the right into two copies of A00
00

, generated by x

and anx. Additionally, we see that A00
00

and A00
11

are isomorphic. We can compute the maps induced by
�1 and �2 and write our complex as

C�
2
.A00

00
/hxi C�

2
.A10/

C�
2
.A00

00
/hxi˚C�

2
.A00

00
/hanxi˚‡ C�

2
.A00

00
/hxi

�1

0BB@
�en�1

1

�

1CCA �2�
1 fn�1 �

�

We may cancel the 1’s in the above matrices to reduce the complex by Lemma A.1 to obtain

0 C�
2
.A10/

‡ 0
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ˇ 


� � � � � �

In

� � � � � �

� � �

� � � � � �

� � �

� � �

� � � � � � � � �

D

ˇ 


� � � � � �

In

� � � � � �

� � �

� � � � � �

� � �

� � �

� � � � � � � � �

D0

Figure 28: When 
 D 1, the diagram D is the result of conjugating the braid ˇ in D0 by a
generator of the braid group.

Since ‡ is a direct sum of E1–acyclic complexes, we see that the E2–page of the above complex is
isomorphic to that of C�

2
.A10/, which is isomorphic to C�

2
.A0/, thereby proving Lemma 5.7 in the case

of a positive crossing on the left and a negative one on the right.

The opposite case is analogous; applying the same moves (mirrored horizontally) results in the complex

C�
2
.A00

00
/hxi C�

2
.A00

00
/hxi˚C�

2
.A00

00
/hb0xi˚‡

C�
2
.A01/ C�

2
.A00

00
/hxi

0BB@
f0

�1

�

1CCA

�2

�
1 e0 �

�
�1

which we can simplify to get that the E2–page is the same as that of C�
2
.A01/ and therefore C�

2
.A0/.

With this lemma in hand, we are now prepared to prove conjugation invariance.

Proof of Theorem 5.6 It suffices to prove this in the case that ˛ D �˙1
i is any generator of the braid

group (or its inverse). Therefore, let �i 2Bn be the generator which introduces a positive crossing between
strands i and i C 1.

Graphically, we would like to show that C�
2
.D/'1 C�

2
.D0/, where D and D0 are the partially singular

braids depicted in Figure 28, when 
 D 1. In order to prove this, we instead show that

C�2 .D
00/'1 C�2 .D

0/'1 C�2 .D
000/

for a generic 
 2 Bn, where D00 and D000 are the diagrams in Figure 29.

Since we are considering the case ˛ D �i , note that in D00, the positive crossing occurs between strands i

and i C 1. If we decompose In, we see that for any i , we locally get a picture like Figure 25, where the
top row of vertices is fixed if i D 1, and free if i > 1. Therefore, we may apply Lemma 5.7 directly to see
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ˇ

In

� � � � � �� � �

� � � � � � � � � � � �

� � �

� � �� � � � � � � � �




D00

ˇ 


� � � � � �

In

� � � � � �

� � �

� � � � � �

� � �

� � �

� � � � � � � � �

D000

Figure 29: Alternate diagrams for proving conjugation invariance.

ˇ ˇ ˇ

ˇ ˇ

ˇ

Figure 30: The steps to prove conjugation invariance for nD 2 and ˛ D �1.

that C�
2
.D00/'1 C�

2
.D0/. Additionally, note that in D000, the negative crossing occurs between strands i

and i C 1. If we decompose In, we see that for any i , we locally get a picture like Figure 25, except that
the bottom row of vertices is fixed if i D 1, and free if i > 1. In the latter case, this is not an issue and we
may proceed as before to use Lemma 5.7 to prove that C�

2
.D000/'1 C�

2
.D0/. If i D 1, then we first use

Theorem 3.1 to relabel the top row of vertices as free and the bottom row as fixed; this diagram is still in
DR as it contains the open braid S2n from [Dowlin 2024] as a subdiagram, so we may proceed with the
rest of the proof as usual.

Therefore, we can prove the desired equivalence C�
2
.D/ '1 C�

2
.D0/ when 
 D 1 by first perform-

ing a Reidemeister II move to add two crossings to the right side of D, then using the equivalences
C�

2
.D00/'1 C�

2
.D0/ and C�

2
.D000/'1 C�

2
.D0/ to simplify the diagram to D0. This proves Theorem 5.6

in the case of ˛ D �i . We illustrate these steps for the case nD 2 and ˛ D �1 in Figure 30. The proof for
˛ D ��1

i is analogous, from which the proof for general ˛ 2 Bn follows.

Appendix Homological algebra

In this section we review a few lemmas in homological algebra to aid in our calculations. We note that all
four lemmas are true for filtered complexes, replacing maps with filtered maps and quasi-isomorphisms
with filtered quasi-isomorphisms. Additionally, if we instead assume that filtered maps have filtration
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degree 1, then these lemmas still hold, replacing cone.f / with cone1.f / and filtered quasi-isomorphism
with E1–quasi-isomorphism.

Lemma A.1 [Bar-Natan 2007, Lemma 4.2] If ' W A! B is an isomorphism of complexes , then the
double complexes

C

�
˛
ˇ

�
��!A˚D

�
'


ı
�

�
����! B˚E

.� �/
����! F

and
C

ˇ
�!D

��
'�1ı
������!E

�
�! F

are quasi-isomorphic.

This lemma is proved for the very general case of additive categories in [Bar-Natan 2007], and is well
known in the specific case of free modules over a ring as the “cancellation lemma” or “reduction algorithm”.
We require it to prove invariance in Section 5, as it greatly simplifies calculations involving cubes of
resolutions.

Lemma A.2 Let f WA! B be a map of complexes , and suppose that AŠA0˚A00 and B Š B0˚B00,
where A00 and B00 are acyclic. Let � WA0 ,!A and � W B � B0 be the associated inclusion and projection
maps , respectively. Then cone.f /' cone.� ıf ı �/.

Proof First, we note that cone.�/ is acyclic. One way to see this is via a cancellation argument: we have
that cone.�/Š .A0!A0˚A00/, which is quasi-isomorphic to A00 by Lemma A.1. Similarly, we get that
cone.�/, being quasi-isomorphic to B00, is acyclic as well.

For any two maps ˛ W X ! Y and ˇ W Y ! Z of complexes, we have a long exact sequence relating
the homology groups of cone.˛/, cone.ˇ/, and cone.ˇ ı ˛/ (for example, via the octahedral axiom
for triangulated categories applied to the derived category of R–modules). Therefore, we get that
cone.f /' cone.f ı �/' cone.� ıf ı �/.

Lemma A.3 Let A, B, C , and D be complexes , and suppose that A Š A0˚A00 and D Š D0˚D00,
where A00 and D00 are acyclic. Let � WA0 ,!A and � WD � D0 be the associated inclusion and projection
maps , respectively. Then the following two cube of resolutions complexes have the same homotopy type:

A B A0 B

C D C D0

f1

g1 g2

f1ı�

g1ı� �ıg2

f2 �ıf2

Proof We know that the inclusion cone.g1ı �/ ,! cone.g1/ and the projection cone.g2/� cone.� ıg2/

are quasi-isomorphisms by the proof of Lemma A.2:

A0 A B B

C C D D0

�

g1ı� g1

idB

g2 �ıg2

idC �
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We can also view the maps f1 WA!B and f2 WC!D as components of a map f W cone.g1/! cone.g2/.
Therefore, we can compose f with the inclusion and projection to get a single map

f 0 W cone.g1 ı �/! cone.� ıg2/:

By the same long exact sequence logic as before, the cone of this map has the same homotopy type as f ,
ie

cone.f 0/D cone.cone.g1 ı �/! cone.� ıg2//' cone.cone.g1/! cone.g2//D cone.f /:

We conclude by noting that the complex on the left in Lemma A.3 is cone.f /, and the complex on the
right is cone.f 0/.

While the above lemma is phrased only for squares, it can be iterated to reduce summands of higher-
dimensional cubes as well.

Since our complexes in this paper are often constructed as mapping cones, it helps to know when a
quasi-isomorphism is induced by maps on the components of the cone.

Lemma A.4 Suppose that we have the following commutative diagram of chain maps:

A0 A1

B0 B1

g

f0 f1

g0

Let AD cone.g/ and B D cone.g0/, so that we get a map f WA! B with components f0 and f1. If f0

and f1 are quasi-isomorphisms , then so is f .

Proof By properties of the mapping cone, f induces a map of short exact sequences (with grading shifts
suppressed):

0 A1 A A0 0

0 B1 B B0 0

f1 f f0

We can look at the induced map of long exact sequences in homology

� � � H�.A1/ H�.A/ H�.A0/ � � �

� � � H�.B1/ H�.B/ H�.B0/ � � �

H�.f1/ H�.f / H�.f0/

to conclude that H�.f / must be an isomorphism as well, so f is a quasi-isomorphism.

To prove the filtered generalizations of Lemma A.4, one replaces H�.�/ with E1.�/ or E2.�/ (see
[Weibel 1994, Exercise 5.4.4]).
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