
ATG

Algebraic & Geometric
Topology

msp

Volume 24 (2024)

Monoidal properties of Franke’s exotic equivalence

NIKITAS NIKANDROS

CONSTANZE ROITZHEIM





msp

Algebraic & Geometric Topology 24:9 (2024) 5161–5210
DOI: 10.2140/agt.2024.24.5161
Published: 27 December 2024

Monoidal properties of Franke’s exotic equivalence

NIKITAS NIKANDROS

CONSTANZE ROITZHEIM

Franke’s reconstruction functor R is known to provide examples of triangulated equivalences between
homotopy categories of stable model categories, which are exotic in the sense that the underlying model
categories are not Quillen equivalent. We show that, while not being a tensor-triangulated functor in
general, R is compatible with monoidal products.

55P42; 18N55

1 Introduction
For several decades, Franke’s exotic equivalence has been fascinating to homotopy theorists, as it is a
rare example of a machinery that provides an equivalence up to homotopy between two model categories
which are not Quillen equivalent. In practice, the known situations where Franke’s construction can be
applied to obtain the equivalence

R W D.Œ1�;1/.A/! Ho.M/

link an algebraic model category (D.Œ1�;1/.A/ is the derived category of a flavour of chain complexes in a
suitable abelian category A) with a stable model category M which is not necessarily algebraic. Key
examples include

� A the category of ��.R/–modules for a ring spectrum R and M the category of modules over R,
together with some extra assumption on the projective dimension of ��.R/ as well as ��.R/ being
concentrated in degrees that are multiples of some N > 1,

� A the category of E.1/�E.1/–comodules and M the category of K–local spectra at an odd prime.

In this paper, we will always assume that R exists and is an equivalence.

Both the algebraic side D.Œ1�;1/.A/ and the topological side Ho.M/ are equipped with monoidal structures
derived from the monoidal model category structures on C.Œ1�;1/.A/ and M, so it is only natural to consider
whether R is compatible with these. But as R is not derived from a Quillen functor C.Œ1�;1/.A/!M,
this problem requires a different approach working closely with the construction of R itself.

The example of K–local spectra at p D 3 tells us that we cannot expect R to be a monoidal functor in
general: the preimage of the mod-3 Moore spectrum is a chain complex that is a monoid, whereas the
mod-3 Moore spectrum has no associative multiplication [Ganter 2007, Remark 1.4.2]. However, we
obtain the following, which is the main result of this article.
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5162 Nikitas Nikandros and Constanze Roitzheim

Theorem 1.0.1 Let .M;^/ be a simplicial stable monoidal model category and let .A;˝/ be a hereditary
abelian monoidal category with enough projectives such that Franke’s reconstruction functor R exists and
is an equivalence. Then

R W .D.Œ1�;1/.A/;˝L/! .Ho.M/;^L/

commutes with the respective monoidal products up to a natural isomorphism

R.M�˝L N�/ŠR.M�/^L R.N�/:

The reconstruction functor R rebuilds M from algebraic data in the following way. Firstly, part of the
assumptions on A is that it splits into shifted copies of a smaller abelian category B. This is then used to
split an object of C.Œ1�;1/.A/ into pieces, which are placed in certain crown-shaped diagram CN . Using
this piecewise data, one then constructs a CN –shaped diagram in M. Finally, the homotopy colimit over
CN is applied to get to Ho.M/. Specifically, R is the composite

R W D.Œ1�;1/.A/
Q�1

���! L� Ho.MCN /
hocolimCN
�������! Ho.M/:

We therefore take the diagram

D.Œ1�;1/.A/�D.Œ1�;1/.A/

˝L

��

R^LR
// Ho.M/�Ho.M/

^L

��

D.Œ1�;1/.A/ R
// Ho.M/

which we would like to show to be commutative and refine it in the way below in order to deal with the
different components of R separately:

(1.0.2)

D.Œ1�;1/.A/�D.Œ1�;1/.A/

�˝L�

��

// Ho.MCN /�Ho.MCN / //oo

^L Š

��

Ho.M/

Ho.MCN�CN /

L pr!DHo Lanpr
��

hocolim
44

Ho.MDN /

i�

��

hocolimDN

99

D.Œ1�;1/.A/
Q�1

// Ho.MCN /
Q

oo
hocolimCN

// Ho.M/

Here, DN denotes a suitable modification of the crown-shaped diagram CN together with an inclusion
i W CN !DN . (All the ingredients will of course be defined in detail where appropriate.) The outline of
our proof roughly follows the key points of [Ganter 2007]; however, we choose to work in a setting of
model categories, which makes our exposition more explicit and straightforward. Overall, we have relied
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on contemporary methods and we refer to modern literature. Our techniques put Ganter’s theorem in firm
rigorous footing and in better context with other existing literature, as well as hopefully making it more
adaptable to future generalisations.

This paper is organised as follows.

In Section 2 we recall the background and tools that we need for our main result and proof, namely
simplicial replacements, homotopy Kan extensions, monoidal structures on diagram model categories, a
specific mapping cone construction, calculating homotopy colimits using the homology of a category
with coefficients in a functor, as well as a recap of the construction of Franke’s functor.

In Section 3 we will begin by setting up one of our main results, which involves working out the middle
vertical part of the diagram (1.0.2). The key ingredient is given by a spectral sequence argument calculating
the vertices of the functor L pr!.X ^Y /. We will then feed this into the definition of Franke’s functor Q
in order to obtain the necessarily formulas for monoidality on the left hand side of (1.0.2), dealing with
underlying graded modules of the twisted chain complexes and the differentials separately.

Section 4 now wraps up the right hand side of the diagram (1.0.2) which mostly involves standard
properties of homotopy colimits. We can finally assemble these results into the proof of the main theorem
and finish with some examples.

Acknowledgements

This paper is based on the PhD thesis of Nikandros under the supervision of Roitzheim. We would like to
acknowledge EPSRC grant EP/R513246/1 for funding this project. Furthermore, we would like to thank
Nora Ganter, Irakli Patchkoria and Neil Strickland for helpful comments and support.

2 Preliminaries

In this section we will introduce some of the terminology that we need for our result. We assume that the
reader is familiar with the basic background regarding simplicial sets, homological algebra and model
categories.

The category of simplicial sets is denoted by sSet. For n� 0, �n denotes the standard n–simplex. For an
arbitrary category C, the notation sC stands for the simplicial objects in C, ie sC D Fun.�op; C/. We have
I D �1 and IC D �

1 [� and S0 D �0 [�. Similarly, S1 stands for the simplicial circle I=.0 � 1/,
that is, �1=@�1.

We will let A be a graded (Z–graded) abelian category, which means that A possesses a shift functor Œ1�
which is an equivalence of categories, and Œn� denotes the n–fold iteration of Œ1�. The graded global
homological dimension of A, gl:dimA, is the supremum of the projective dimensions of objects in A.
An abelian category A is called hereditary if gl:dimAD 1. There are other, equivalent descriptions of
hereditary abelian categories but this one suits our purposes best.
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5164 Nikitas Nikandros and Constanze Roitzheim

2.1 Model categories

We will now set up our background on model categories. We write any cofibrant replacement functor
Q WM!M that comes with a natural weak equivalence q WQ! 1M.

Convention 2.1.1 We let Ho.M/ denote the category McofŒW�1�, where Mcof denotes the full subcate-
gory of cofibrant objects of M, and we denote the set of morphisms in Ho.M/ by ŒX;Y �.

Convention 2.1.1 allows us to provide a very simple description of the left derived functor LF of a left
Quillen functor F WM!N . Indeed, the functor

F jMcof WMcof!Ncof

preserves weak equivalences and, therefore, it induces a functor between the localization. This functor is
precisely LF with our convention.

Finally, an important class of model categories is the class of simplicial model categories. These are model
categories which are enriched, tensored and cotensored over sSet and which satisfy the pushout-product
axiom (SM7). If a simplicial model category is pointed, ie the terminal object is isomorphic to the initial
one, then M is enriched over the category sSet� of pointed simplicial sets. In particular, we have functors

� ˝ � W sSet� �M!M; MapM.�; �/ WM
op
�M! sSet�;

and the adjunction
HomM.K ^X;Y /Š HomsSet.K;MapM.X;Y //;

see [Barnes and Roitzheim 2020, Definition 6.1.28; Riehl 2014, Section 11.4].

2.1.1 Diagram categories We will use model structures on diagram categories throughout the paper.
Below we introduce the definition of a direct category which is a generalization of the concept of a poset;
see [Hovey 1999, Definition 5.1.1] for further details.

Definition 2.1.2 Let ! denote the poset category of the ordered set f0; 1; 2; : : :g. A small category J is
called direct if there is a functor f W J ! ! that sends nonidentity morphisms to nonidentity morphisms.
We refer to f .j / as the degree of the object j . Dually, J is an inverse category if there is a functor
J op! ! that sends nonidentity morphisms to nonidentity morphisms

Any finite poset J is a direct category, and dually J op is an inverse category. We provide some examples
that will be useful later on.

Definition 2.1.3 Suppose M is a small category with small colimits, J a small category, z an object
in J and Jz the category of all nonidentity morphisms with codomain z. The latching space functor
Lz WMJ !M is the composition

MJ
!MJz

colim
���!M;
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where the first arrow is the restriction functor. Equivalently the latching space of a diagram X is given by

LzX D colim.Jz ,! J
X
�!M/;

where Jz ,! J is the inclusion.

Note that we have a natural transformation LzX !Xz for any fixed object z 2 J .

We can now describe the projective model structure on MJ ; see [Hovey 1999, Theorem 5.1.3].

Proposition 2.1.4 Given a model category M and a direct category J , there is a model structure on
MJ in which a morphism f W X ! Y is a weak equivalence (resp. fibration) if and only if the map
fz WXz! Yz is a weak equivalence (resp. fibration) for all z 2 J . Furthermore , f WX ! Y is an (acyclic)
cofibration if and only if the induced map

Xz

a
Lz X

LzY ! Yz

is an (acyclic) cofibration for all z 2 J .

We will now give the finite posets J that are going to play a central role throughout this paper.

Example 2.1.5 By Œ1� we denote the poset 0� 1. We are aware that early in this section we also denoted
the shift functor on graded objects. Both are standard notation, and from our use of the poset 0� 1 there
is vanishingly little danger of confusing those two.

Example 2.1.6 Consider the poset

.0; 0/ //

��

.1; 0/

.0; 1/

denoted by p. Let � W Œ1�! p be the map of posets which sends 0 to .0; 0/ and 1 to .1; 0/. In other words, �
includes the interval Œ1� to the top horizontal line. Furthermore, consider the product of the interval posets
Œ1�� Œ1�. It is the poset

.0; 0/

��

// .1; 0/

��

.0; 1/ // .1; 1/

and we let ip W p! Œ1�� Œ1� be the inclusion.

Algebraic & Geometric Topology, Volume 24 (2024)
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Example 2.1.7 Let N � 2 be a natural number. The poset CN consists of elements fˇi ; �i j i 2Z=N Zg

such that ˇi < �i and ˇi < �iC1 for i 2 Z=N Z, ie

�0 �1 : : : �N�1

ˇ0

OO >>

ˇ1

OO >>

: : :

<<

ˇN�1

OO
jj

Then X 2MCN is cofibrant if and only if the canonical map LzX !Xz is a cofibration in M, ie if and
only if the Xˇi

;X�i
are cofibrant and the induced morphism

Xˇi�1
_Xˇi

!X�i

is a cofibration, where _ is the coproduct in M. We will refer to an object X 2MCN as a crowned
diagram due to the crown shape of the diagram CN .

Example 2.1.8 Let DN be the poset consisting of elements fˇn; 
n; �n j n 2 Z=N Zg such that

ˇn � 
n � �n and ˇn � 
nC1 and 
n � �nC1;

ie
�0 �1 : : : �N�1


0

OO >>


1

OO >>

: : :

OO


N�1

OO
jj

ˇ0

OO >>

ˇ1

OO >>

: : :

OO

ˇN�1

OO
jj

Remark 2.1.9 In what follows, when we have a direct category I and a model category M, the category
of diagrams MI will always have the model structure defined in Proposition 2.1.4 without further mention.
If not, we will explicitly say so.

It follows that for any model category M and direct category J , there is a Quillen adjunction

colim WMJ �M Wconst :

(Note that when we write an adjunction, the top arrow will always denote the left adjoint.)

Definition 2.1.10 The left derived functor of colim WMJ !M is called the homotopy colimit and is
denoted by

hocolim W Ho.MJ /! Ho.M/:
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If J D p, then the homotopy colimit is called homotopy pushout. A particular example of homotopy
pushout is the homotopy cofiber which is the homotopy pushout of a diagram of the form

X
f
//

��

Y

�

and we write

(2.1.11) hocofib.f / WD hocolim.� X
f
�! Y /:

In general, for notational convenience sometimes a homotopy pushout is denoted by

hocolim.Z X ! Y / WDZ

ha
X

Y:

2.1.2 Homotopy colimits in simplicial model categories In Definition 2.1.10 we recalled the definition
of the homotopy colimit as a derived functor. Here, we will present an alternative construction via
simplicial techniques. After introducing some definitions we briefly explain how this method provides a
good theory of homotopy colimits; see also [Riehl 2014, Chapters 4, 5; Shulman 2006, Section 7].

Let M be a model category and consider the category of simplicial objects sMDM�op
. We consider

sM as a simplicial category with tensors defined objectwise, ie for K 2 sSet and X 2 sM we have

.K˝X /n DK˝Xn:

Now, let M be a simplicial model category. Given a simplicial object X 2 sM we can construct an object
in M via geometric realization, see [Hirschhorn 2003, Definition 18.6.2].

Definition 2.1.12 (geometric realization) Let X 2M�op
. The geometric realization of X , denoted as

jX j, is defined as the coequalizer

coeq
� a
� W Œn�!Œk�2�

�k
˝Xn�

a
Œn�2�

�n
˝Xn

�
:

This is an example of a functor tensor product (coend). In this case, the geometric realization is the
functor tensor product of X W�op!M and the functor �� W�! sSet, Œn� 7!�n. In other words, the
realization jX j is the object

��˝�op X D

Z n

�n
˝Xn:

The following theorem is the cornerstone of our exposition of homotopy colimits using geometric realiza-
tions; see [Goerss and Jardine 1999, VII 3.6; Hirschhorn 2003, 18.4.11; Riehl 2014, Corollary 14.3.10].
For details for the Reedy model structure on sM, see [Goerss and Jardine 1999, Definition 2.1].
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5168 Nikitas Nikandros and Constanze Roitzheim

Theorem 2.1.13 If M is a simplicial model category, then

j�jWM�op
!M

is a left Quillen functor with respect to the Reedy model structure. In particular , j�j sends Reedy cofibrant
simplicial objects to cofibrant objects and preserves objectwise weak equivalences between them.

At this level of generality, this is the strongest result possible. It is not true that geometric realization
preserves all objectwise weak equivalences. However, the above will suffice for our purposes. We can now
start to work our way to the homotopy colimit of a diagram X 2MJ in a simplicial model category M.

Our first definition towards this goal is the simplicial replacement functor. That is to say, given any
diagram F W I !M we can replace it with simplicial object in M with good properties.

Definition 2.1.14 (simplicial replacement) Let I be a small category and consider a diagram X 2MI .
The simplicial replacement of X is the simplicial object in M, denoted srep X given in simplicial degree
Œn� by

.srep X /n D
a

.i0!i1!���!in/2N.I /n

Xi0
:

The coproduct is indexed over the set of n–chains

� D Œi0! i1! � � � ! in�

over the nerve of I . If 0� k < n, then

dk W .srep X /n! .srep X /n�1

maps the term Xin
indexed on � to the term Xin

indexed on

�.k/D Œi0! i1! ik�1! ikC1! � � � ! in�

via the identity, while for k D n, the map dn sends the term Xin
to Xin�1

indexed on

�.n/D Œi0! i1! � � � ! in�1�

via the induced map X.in! in�1/. The degeneracy maps

sj W .srep X /n! .srep X /nC1; 0� j � n

are easier to define. Each sj sends the summand Xin
corresponding to the summand

Œi0! i1! � � � ! in�

to the identical summand Xin
corresponding to the chain in which one has inserted the identity map

ij ! ij .
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In other words, the simplicial replacement is the following simplicial object,a
i0

Xi0

a
i0!i1

Xi0
oo
oo

a
i0!i1!i2

Xi0
� � �oo

oo
oo

;

where degeneracy maps are omitted. Note that this is can also be found in literature as the simplicial bar
construction or Bousfield–Kan construction denoted by B.�; I;X /.

Remark 2.1.15 The colimit of a diagram X 2MI , if it exists, agrees with the colimit of srep.X / 2 sM.
Indeed, consider the colimit of the diagram srep.X / as the coequilizera

i

Xi�
a

j i

Xi ;

but this is precisely the colimit of X . Therefore in this case, srep.X / has the augmentation

srep.F /! colim
I

F;

where we regard the object colimI F as a constant simplicial object.

We therefore reach the following result.

Lemma 2.1.16 Given a diagram X 2MI and its simplicial replacement srep.X / 2M�op
, there is a

canonical isomorphism
colim

I
X Š colim

�op
.srep.X //:

The proof can be found in [Riehl 2014, Lemma 4.4.2]. The following lemma will also be of importance,
see [Riehl 2014, Lemma 5.1.2; Shulman 2006, Lemma 8.7].

Lemma 2.1.17 Let I be a small category and let M be a simplicial model category. If F 2MI is
objectwise cofibrant , then srep.F / 2 sM is Reedy cofibrant.

The above Lemma 2.1.16 and Theorem 2.1.13 essentially mean that geometric realization of objectwise
cofibrant diagrams is a good model for calculating homotopy colimits. For details see [Riehl 2014,
Theorem 6.6.1].

2.2 Homotopy Kan extensions

In this subsection we will introduce homotopy Kan extensions, the homotopy invariant version of ordinary
Kan extensions, see eg [Hirschhorn 2003, Section 11.9].

Now, let M be a model category. Furthermore, let I;J be direct categories and f W I ! J a functor. The
pullback functor

f � WMJ
!MI

preserves weak equivalences, so it defines a functor between homotopy categories, which we denote by
the same letter. Recall the functor Lanf D f!, left adjoint to f �. We have the following proposition.
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Proposition 2.2.1 Let M be a model category and let f W I ! J be a map of direct categories. Then the
adjunction

f! WMI �MJ
Wf �

is a Quillen adjunction.

Proof This follows from the definition of the projective model structure; see Proposition 2.1.4. The
functor f � is a right adjoint by construction. It preserves weak equivalences and projective fibrations,
which means that f � is also a right Quillen functor.

Thus, the derived functors of the adjoint pair .f!; f
�/ define an adjoint pair on the level of homotopy

categories
LLanf WD Lf! W Ho.MI /� Ho.MJ / WRf �:

A useful fact about homotopy Kan extensions is that they does not change the homotopy colimit of a
diagram, which is similar to the properties of ordinary Kan extensions.

Corollary 2.2.2 Let M be a model category , f W I ! J a map of direct categories and let X 2MI .
Then there is a canonical isomorphism in Ho.M/

hocolim
J

Lf!X Š hocolim
I

X:

Proof This follows from the fact that for every pair of left Quillen functors F and G there is a natural
isomorphism

LF ıLG! L.F ıG/;

see [Hovey 1999, Theorem 1.37], together with the natural isomorphism

colim
J

Lanf X Š colim
I

X:

To conclude this section, we will shortly discuss how one calculates the values and edges of a homotopy
Kan extension. Recall the notion of a slice category for given posets C and D and a functor f W C !D,
namely

(2.2.3) f=d D fc 2 C j f .c/� dg

for d 2D. The following is [Cisinski 2009, Proposition 1.14], which tells us that homotopy Kan extensions
can be computed pointwise.

Proposition 2.2.4 Let f W I ! J be a map of posets and let X be any functor I !M. For any object
j 2 J there is a canonical isomorphism in Ho.M/

.Lf!F /j Š hocolim.f=j
�
�! I

X
�!M/:
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2.3 Monoidal model categories

Let us now turn to some results concerning monoidal model categories, see eg [Hovey 1999, Definition
4.2.6], [Barnes and Roitzheim 2011, Definition 6.1.9] or [Riehl 2014, Definition 11.4.6] for definitions.

Remark 2.3.1 Let .C;^/ be a closed symmetric monoidal category and let f WX0!X1 and g W Y0! Y1

be maps in C. The pushout-product map is the universal arrow

f �g WX0 ^Y1

a
X0^Y0

X1˝Y0!X1 ^Y1:

Another way to see the pushout-product map is as a left Kan extension. Again, consider a cocomplete,
(closed) monoidal category .C;^/. Let Œ1�D f0� 1g. Furthermore, consider the following map of posets.

pr W Œ1�� Œ1�! Œ1�; .0; 0/; .1; 0/; .0; 1/ 7! 0;

.1; 1/ 7! 1:

Now let f and g be morphisms in C. We can consider them as objects in the arrow category f;g2CŒ1�. The
functors f W Œ1�! C and g W Œ1�! C give rise to their objectwise tensor product f ^g, see Definition 2.3.2.
That is, the functor

f ^g W Œ1�� Œ1�! C

is the following commutative diagram:

X0 ^Y0
//

��

X1 ^Y0

��

X0 ^Y1
// X1 ^Y0

Note that the slice category pr=0 is the poset p and the slice pr=1 is the whole square. It follows that the
map

colim
p
.f ^g/! colim

Œ1��Œ1�
.f ^g/

induced by the inclusion p,! Œ1�� Œ1� is exactly the map

f �g WX0 ^Y1

a
X0^Y0

X1 ^Y1!X1 ^Y1:

So indeed, .Lanpr.f ^g//D pr!.f ^g/D f �g.

2.3.1 Smash products for diagram categories A monoidal category .M;^/ gives rise to more
monoidal categories by considering diagrams from small categories into M. In our next example we
discuss how this is related to model category theory.
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Definition 2.3.2 Let .M;^/ be a monoidal category and let I and J be direct categories. We define the
external product, which is the bifunctor

� ^ � WMI
�MJ

!MI�J

sending .X;Y / to the diagram

X ^Y W I �J !M; .i; j / 7!Xi ^Yj :

The external product is part of a two-variable adjunction. Since we do not use the extra structure will not
define the other two functors in the two-variable adjunction. We have the following proposition.

Proposition 2.3.3 Let .M;^/ be a monoidal model category. Then , the bifunctor

� ^ � WMI
�MJ

!MI�J

is a Quillen bifunctor , that is to say, it has a total left derived functor

� ^
L
� W Ho.MI /�Ho.MJ /! Ho.MI�J /:

Proof Suppose that the injective model structures MI
inj;M

J
inj and MI�J

inj exist, eg if M is a combinatorial
model category. Since in the injective model structures the cofibrations are the objectwise cofibrations,
the above proposition follows directly. The universal property of � ^L � implies that up to canonical
isomorphism both constructions give the same result.

We have the following corollary.

Corollary 2.3.4 In the context of Proposition 2.3.3, there is a functor isomorphism

hocolim
I�J

.X ^L Y /Š .hocolim
I

X /^L .hocolim
J

Y /:

Proof From Proposition 2.3.3, it follows that the external product preserves diagram cofibrant objects
and preserves trivial diagram cofibrations between diagram cofibrant objects. The result now follows
from the strict formula

colim
I�J

.X ^Y /Š .colim
I

X /^ .colim
J

Y /

as all the objects involved are cofibrant.

As a consequence of Proposition 2.3.3, we also obtain the following.

Example 2.3.5 Let .M;^/ be a monoidal model category and let J be a direct category. Consider
the diagram category MJ with the model structure of Proposition 2.1.4. The category MJ inherits a
monoidal structure

MJ
�MJ

!MJ; .X;Y / 7!X ^Y;

where X ^Y is the diagram j 7!Xj ^Yj . By a proof analogous to that of Proposition 2.3.3, .MJ ;^/ is
a monoidal model category.
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Corollary 2.3.6 Let .M;^/ be a pointed symmetric monoidal model category , and let f WX ! Y and
g W U ! V be morphisms in M. There is a canonical isomorphism

hocofib.f /^L hocofib.g/Š hocofib.f �L g/:

We will provide a proof since it is important to our exposition. A different proof can be found in [Hovey
2014, Proposition 4.1].

Proof We may assume that X;Y;U;V are cofibrant in M. By definition,

hocofib.f /^L hocofib.g/D hocolim.� X
f
�! Y /^L hocolim.� U

g
�! V /:

By Corollary 2.3.4, this is isomorphic to

(2.3.7) hocolim

0BBBBBBBB@

� X ^Voo // Y ^V

�

OO

��

X ^Uoo

��

//

OO

Y ^U

OO

��

� �oo // �

1CCCCCCCCA
:

We denote the above underlying p�p–diagram by Z . We define the following map of posets

pr W p�p! p; ..1; 0/; .1; 0// 7! .1; 0/;

..0; 0/; .0; 0//; ..0; 0/; .1; 0//; ..1; 0/; .0; 0// 7! .0; 0/;

else 7! .0; 1/;

and consider the homotopy left Kan extension

(2.3.8) Lpr! W Ho.Mp�p/! Ho.Mp/:

Applying the formula Proposition 2.2.4 to the diagram Z we obtain .Lpr!Z/.1;0/ D Y ^V . Next, for the
object .0; 0/ the slice category pr=.0; 0/ is just the poset p and we have

.Lpr!Z/.0;0/ D hocolim

0BBB@
X ^U

1^g
��

f^1
// Y ^U

X ^V

1CCCA
and finally, .Lpr!Z/.0;1/ Š �. Note that

.Lpr!Z/.0;0/! .Lpr!Z/.1;0/ D f �L g:
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Hence, the homotopy left Kan extension (2.3.8) of the underlying diagram (2.3.7) is the following
p–diagram:

X ^V
`

X^U Y ^U

��

// Y ^V

�

It follows directly that the homotopy colimit of this diagram is

hocofib.f �L g/:

2.3.2 Stable model categories and triangulated categories Recall that the homotopy category Ho.M/

of a pointed model category M supports a suspension functor

† W Ho.M/! Ho.M/

given by
†X WD hocolim.� X !�/;

with a right adjoint functor
� W Ho.M/! Ho.M/

given by
�X D holim.�!X  �/:

Definition 2.3.9 A stable model category is a pointed model category for which the functors † and �
are inverse equivalences.

Example 2.3.10 The prototypical example of a stable model category is the category of spectra, Sp.
There are of course many variants of spectra, but as our result does not depend on a choice of suitable,
monoidal model category, we will not need to specify this further.

Example 2.3.11 Let A be a graded abelian category with enough projectives, and let C.Œ1�;1/.A/ denote
the category of twisted .Œ1�; 1/–chain complexes or differential objects. An object of C.Œ1�;1/.A/ is a pair
.M�; d/ with M� 2A together with a morphism (the differential)

d WM�!M�Œ1�;

such that d Œ1� ı d D 0. The category C.Œ1�;1/.A/ admits a stable model structure, the projective model
structure, where the weak equivalences are the homology isomorphisms and the fibrations are the
surjections. In particular, the cofibrant objects are the projective objects of A. We let D.Œ1�;1/.A/ denote
the homotopy category of C.Œ1�;1/.A/. For an object .M�; d/ 2 C.Œ1�;1/.A/ we define the homology
H.M /D ker d= im d , and so we have the homology functor

H� W D.Œ1�;1/.A/!A:

In the following we will let .A;˝; 1/ be an abelian symmetric monoidal category with enough projectives.
In this case .C.Œ1�;1/.A/;˝/ is a monoidal stable model category. Finally, we mention the homology
functor H� W D.Œ1�;1/.A/!A is a lax symmetric monoidal functor via the Künneth morphism.
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We note that our methods throughout this paper also work in a setting where A does not have enough
projectives. In the case of ADE.1/�E.1/-comod, C.Œ1�;1/.A/ can be equipped with a model structure
where the cofibrant twisted chain complexes are degreewise projective as E.1/�–modules. This relative
projective model structure is also monoidal; see [Barnes and Roitzheim 2011, Section 5].

If M is a pointed simplicial model category, then the suspension functor

† W Ho.M/! Ho.M/

admits a simple description. Indeed, by the simplicial model category axioms, the functor

S1
^�WM!M

defined using the tensor with simplicial sets is a left Quillen functor. Then, † can be defined as the left
derived functor of S1 ^ � , ie

†X WD S1
^

L X D S1
^QX I

see [Hovey 1999, 6.1.1]. Note that if M is stable, then the homotopy category Ho.M/ is a triangulated
category with † a shift functor; see [Barnes and Roitzheim 2011, Theorem 4.2.1; Hovey 1999, 7.1.6].

In a simplicial model category M we can choose a particular model for the homotopy cofiber (2.1.11) of
a morphism, which will help with computations. It is called the mapping cone construction.

Definition 2.3.12 Suppose M is a simplicial stable model category and f WX ! Y a morphism in Mcof.
Let cone.f / be the pushout of f along the canonical morphism

incl˝1 W S0
˝X ! .I; 0/˝X D CX;

that is, cone.f / comes with the pushout square

X
f

//

incl˝1
��

Y

��

CX // conef

Here CX D .I; 0/˝X denotes the cone of X . The natural map

� W .I; 0/˝X ! S1
˝X

and the trivial map
�W Y ! S1

˝X

induce, using the universal property of pushout, a map @ W cone.f /! S1˝X .

The fact that the mapping cone construction represents the homotopy cofiber and further details can be
found in [Barnes and Roitzheim 2020, Section 4.3].
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Definition 2.3.13 Let M be a simplicial stable model category and f W X ! Y a morphism in Mcof.
The elementary triangle associated to f is the triangle

X
f
�! Y

�
�! cone.f /

@
�! S1

˝X:

A triangle .f;g; h/

A
f
�! B

g
�! C

h
�!†A

in Ho.M/ is called distinguished if it is isomorphic to an elementary one.

2.4 Homology of a category with coefficients in a functor

In this subsection we will introduce one our main tools, namely homology of a category with coefficients
in a functor. It is a particular case of functor homology that assigns the groups TorI

�.F;G/ to functors
F W I !A and G W I op!A with A an abelian category. Since we do not need such generality, we will
introduce it in a more down-to-earth way using simplicial techniques that dates back to Quillen. Traditional
references include [Oberst 1967; 1968], more contemporary references include [Gálvez-Carrillo et al.
2013; Richter 2020, Chapters 15, 16].

Before we define the homology of a category with coefficients in a functor we will define the associated
complex of a simplicial object in an abelian category.

Definition 2.4.1 Let D 2 sA be a simplicial object in A. We define the associated complex .C�.U /; @/ 2
Ch�0.A/ by

Cn.D/DDn; @n D

nX
iD0

.�1/ndi W Cn.D/! Cn�1.D/:

Note that the simplicial identities imply @2 D 0, so C�.D/ is indeed a chain complex. Moreover, this
evidently defines a functor C W sA! Ch�0.A/. In other words, the associated complex to a simplicial
object D 2 sA is the following chain complex:

(2.4.2) D0

d0�d1
 ����D1

d0�d1Cd2
 �������D2 � � � :

Definition 2.4.3 Let I be a small category and consider a diagram D W I ! A. The homology of the
category I with coefficients in the functor D is defined as the homology of the complex C�.D/, ie the
homology of the associated complex of the simplicial replacement srep.D/ 2 sA.

So, unwinding the definition, we start by first taking the simplicial replacement srep.D/ W�op!A of D,
see Definition 2.1.14, that is, the diagramM

i0

Di0

M
i0!i1

Di0
oo
oo

M
i0!i1!i2

Di0
� � �oo

oo
oo

:

Then, we consider the associated chain complex (2.4.2) of C�.D/. Then we defined Hp.I ID/ to be the
pth homology group of the chain complex C�.D/.
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Now we will investigate how these constructions help us calculate homotopy colimits. First, recall the
following.

Definition 2.4.4 We call a functor F� W Ho.M/!A homological if it satisfies the following conditions:

(i) F� is a graded functor, that is to say, it commutes with suspensions, so there are natural equivalences

F�.†X /Š F�.X /Œ1� WD F��1.X /

which are part of the structure.

(ii) F� is additive, ie it commutes with arbitrary coproducts.

(iii) F� converts distinguished triangles into long exact sequences.

(iv) Furthermore, if .M;^/ is a monoidal model category and .A;˝/ is a monoidal abelian category,
we require that F� is lax symmetric monoidal, that is, there is a natural Künneth morphism

�X ;Y W F�X ˝F�Y ! F�.X ^
L Y /:

Now let M be a simplicial stable model category, let I be a direct category and let X 2Ho.MI /. Further,
let

F� W Ho.M/!A

be a homological functor into an (graded) abelian category. Then there is a spectral sequence

(2.4.5) E2
pq DHp.I IFqX /) FpCq.hocolim

J
X /I

see [Richter 2020, 16.3.1]. The construction of the spectral sequence (2.4.5) arises from the skeletal
filtration of a simplicial object. This spectral sequence will play a central role in our calculations for the
monoidal properties of Q in Section 3.

2.5 Franke’s realization functor

In this subsection we will recall the construction of Franke’s equivalence

R W D.Œ1�;1/.A/! Ho.M/:

For a detailed exposition we refer to [Patchkoria 2012, Section 3.3; Roitzheim 2008]. Recall that CN is the
crown-shaped poset from Example 2.1.7, and that the category D.Œ1�;1/.A/ above is the derived category
of twisted chain complexes from Example 2.3.11, where A is a graded symmetric monoidal hereditary
abelian category with enough projectives, M is a simplicial stable model category, and F W Ho.M/!A
is a homological functor. Also, we assume A splits into shifted copies of another abelian category B,

AD
N�1M
iD0

BŒi �

for N > 1. Under these assumptions, R exists and is an equivalence.
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For an object X 2MCN we have the structure morphisms of X ,

li WXˇi
!X�i

; ki WXˇi�1
!X�i

; i 2 Z=N Z:

Furthermore, let

Z.i/.X /D F�.X�i
/; B.i/.X /D F�.Xˇi

/; C .i/.X /D F�.cone.ki//;

�.i/ W D F�li W B
.i/.X /!Z.i/.X /; i 2 Z=N Z;

where cone.ki/ denotes the cone construction from Definition 2.3.12. We will now list some additional
assumptions that we need in order to assemble the C .i/ into a chain complex C�.

Definition 2.5.1 Consider the full subcategory L of Ho.MCN / consisting of those diagrams X 2

Ho.MCN / which satisfy the following conditions:

(i) The objects Xˇi
and X�i

are cofibrant in M for any i 2 Z=N Z.

(ii) The objects F�.Xˇi
/ and F�.X�i

/ are contained in BŒi � for any i 2 Z=N Z.

(iii) The map �.i/ W F�.Xˇi
/! F�.X�i

/ is a monomorphism for any i 2 Z=N Z.

Next we construct a functor
Q W L! C.Œ1�;1/.A/:

Let X be an object of L. As the functor

F� W Ho.M/!A

is homological, the distinguished triangles

Xˇi�1

ki
�!X�i

! cone.ki/!†Xˇi�1

induce long exact sequences

� � � ! B.i�1/.X /!Z.i/.X /
�.i/

��! C .i/.X /
�.i/

��! B.i�1/.X /Œ1�!Z.i/.X /Œ1�! � � � :

Note that B.i�1/.X / 2 BŒi � 1� and Z.i/.X / 2 BŒi � for all i 2 Z=N Z, since X 2 L. Therefore, the
morphisms B.i�1/.X /!Z.i/.X / and B.i�1/.X /Œ1�!Z.i/.X /Œ1� are zero. As a consequence, for any
i 2 Z=N Z we actually obtain short exact sequence in A,

(2.5.2) 0!Z.i/.X /
�.i/

��! C .i/.X /
�.i/

��! B.i�1/.X /Œ1�! 0:

Now consider the following objects in A.

C�.X /D C .0/.X /˚C .1/.X /˚ � � �˚C .N�1/.X /;

Z�.X /DZ.0/.X /˚Z.1/.X /˚ � � �˚Z.N�1/.X /;

B�.X /D B.0/.X /˚B.1/.X /˚ � � �˚B.N�1/.X /:
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The morphisms �.i/; �.i/; �.i/; i 2 Z=N Z, induce morphisms between the direct sums

� W B�.X /!Z�.X /; �D �.0/˚�.1/˚ � � �˚�.N�1/;

� WZ�.X /! C�.X /; �D �.0/˚ �.1/˚ � � �˚ �.N�1/;

� W C�.X /! B�.X /Œ1�; �D �.0/˚ �.1/˚ � � �˚ �.N�1/:

After summing up, we get a short exact sequence of objects in A

(2.5.3) 0!Z�.X /
�
�! C�.X /

�
�! B�.X /Œ1�! 0:

Splicing this short exact sequence with its shifted copy gives an object in C.Œ1�;1/.A/. More precisely,
define

d D �Œ1��Œ1�� W C�.X /! C�.X /Œ1�:

We have d2 D 0 by construction and therefore we get a .Œ1�; 1/–twisted complex. We have now arrived at
the definition

Q W L! C.Œ1�;1/.A/; Q.X /D
� M

i2Z=N Z

F�.cone.ki//; d

�
D .C�.X /; d/:

It can be shown that Q is in fact an equivalence of categories. The composite

(2.5.4) C.Œ1�;1/.A/
Q�1

���! L
hocolim
����! Ho.M/:

factors over D.Œ1�;1/.A/!Ho.M/, which is Franke’s realization functor R. It follows from the construc-
tion of R that it commutes with suspensions and that F� ıRŠH�.

3 Monoidal properties of Q

In this section, we will examine properties of the bifunctor

i�Lpr!.� ^
L
�/ W Ho.MCN /�Ho.MCN /! Ho.MCN /

via Theorem 3.1.5, which is one of the main ingredients of the diagram (1.0.2).

3.1 Preliminaries on crowned diagrams

Recall the poset CN from Example 2.1.7 (the crown shape with two rows) and the poset DN from
Example 2.1.8 (the crown shape with three rows). We will be interested in two functors between these
two categories. The first functor is the projection functor

(3.1.1) pr W CN �CN !DN ; .ˇi ; ǰ / 7! ˇiCj ; .�i ; �j / 7! �iCj ;

.�i ; ǰ / 7! 
iCj ; .ˇi ; �j / 7! 
iCj :

Note, that we really should be writing ˇi .mod N / and 
iCj.modN / etc, but we commit a small abuse of
notation and avoid this. The other functor that we will be interested in is the functor

(3.1.2) i W CN !DN ; �n 7! �n; ˇn 7! 
n;
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which is the inclusion of the crown shape CN into the bottom two rows of DN . Since weak equivalences in
the diagram categories are given objectwise, the functor i� WMDN !MCN preserves weak equivalences.
Thus, it defines a functor on the homotopy categories, which we denote by the same letter, that is,

i� W Ho.MDN /! Ho.MCN /:

Next, recall the external smash product for diagrams X 2MI and Y 2MJ for I and J direct categories
from Definition 2.3.2. By choosing I D J D CN , it follows formally that we have the bifunctor

(3.1.3) � ^ � WMCN �MCN !MCN�CN :

By Proposition 2.3.3, the external product has a total left derived functor

(3.1.4) � ^
L
� W Ho.MCN /�Ho.MCN /! Ho.MCN�CN /:

Given diagrams X;Y 2Ho.MCN /, we can define the homotopy left Kan extension of the external smash
product X ^L Y 2 Ho.MCN�CN / along the projection functor pr W CN �CN !DN , that is,

E D Lpr!.X ^
L Y / 2 Ho.MDN /:

Now that we have all the necessary ingredients we can finally state the following theorem.

Theorem 3.1.5 The bifunctor

i�Lpr!.� ^
L
�/ W Ho.MCN /�Ho.MCN /! Ho.MCN /

satisfies the following. Let X;Y 2 L such that F�.X˛n
/;F�.Y˛n

/ 2 Aproj for any n 2 Z=N Z and any
˛ 2 fˇ; �g. Then , i�Lpr!.X ^

L Y / 2 L, that is to say, we have a bifunctor

i�Lpr!.� ^
L
�/ W L�L! L:

Furthermore , there is a natural isomorphism

Q.i�Lpr!.X ^
L Y //ŠQ.X /˝Q.Y /:

The theorem has two parts. First, we show that i�Lpr!.� ^
L �/ is in fact a bifunctor

i�Lpr!.� ^
L
�/ W L�L! L:

The second part is that for any two crowned diagrams X;Y 2 L satisfying the stated hypotheses, there is
a natural isomorphism

Q.i�Lpr!.X ^
L Y //ŠQ.X /˝Q.Y /:

The two parts combined yield that the following diagram commutes (up to natural isomorphism):

C.Œ1�;1/.A/�C.Œ1�;1/.A/

˝

��

L�LQ�Q
oo

i�Lpr!

��

C.Œ1�;1/.A/ L
Q

oo
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The first part of Theorem 3.1.5 is the content of Section 3.3 and Proposition 3.3.1. The natural isomorphism

Q.i�Lpr!.X ^
L Y //ŠQ.X /˝Q.Y /

is the content of Sections 3.4 and 3.5 and Proposition 3.6.6.

3.2 Slice categories of the projection functor

Again, the values of Lpr!.� ^
L �/ are given by the formula in Proposition 2.2.4. That is, the values of

E at the objects of DN are given by

E
n
D hocolim

pr=
n

.X ^L Y /;(3.2.1)

E�n
D hocolim

pr=�n

.X ^L Y /;(3.2.2)

Eˇn
D hocolim

pr=ˇn

.X ^L Y /:(3.2.3)

The structure morphisms of the diagram E, Oln WE
n
!E�n

and ykn WE
nC1
!E�n

, are the edges of the
homotopy Kan extension and are given by the natural maps

E
n
Š hocolim

pr=
n

.X ^L Y /! hocolim
pr=�n

.X ^L Y /ŠE�n
;(3.2.4)

E
nC1
Š hocolim

pr=
nC1

.X ^L Y /! hocolim
pr=�n

.X ^L Y /ŠE�n
;(3.2.5)

induced by the maps of posets � and  , respectively, see (3.2.8).

Since we are interested in the homotopy Kan extension of the functor pr W CN �CN !DN , we need to
identify all the slice categories involved, ie pr=�n, pr=
n and pr=ˇn. We have the following three cases.

(i) The first case is pr=�n. For n 2 Z=N Z and the object �n we have the slice category pr=�n

.�i ; �j /

.ˇi�1; �j /
.�i ; ǰ / .ˇi ; �j /

.�i ; ǰ�1/

.ˇi ; ǰ /

.ˇi�1; ǰ�1/

.ˇi�1; ǰ / .ˇi ; ǰ�1/

: : :

: : : : : :

: : :

where i C j � n .mod N /. Note that all the nonidentity morphisms are of the form .1; li/ or .li ; 1/ and
similarly .1; ki/ or .ki ; 1/ for any i 2Z=N Z. The poset pr=�n follows the same pattern to the left and to
the right.
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(ii) Next we have the case pr=
n. Let n 2Z=N Z and consider now the slice category pr=
n which looks
as follows,

.ˇi ; ǰ /

.ˇi ; �j /.�i ; ǰ /

.ˇi ; ǰ�1/.ˇi�1; ǰ /

.�iC1; ǰ�1/.ˇi�1; �iC1/

: : :: : :

where i C j � n .mod N /. Similarly to the above all the nonidentity morphisms are of the form .1; li/

or .li ; 1/ and .1; ki/ or .ki ; 1/ for any i 2 Z=N Z.

(iii) Next is the case pr=ˇn. Let again n 2Z=N Z but now we consider the slice category pr=ˇn. Notice
that it is

: : : .ˇi�1; ǰC1/ .ˇi ; ǰ / .ˇiC1; ǰ�1/ : : :

in which i C j � n .mod N /. In other words, it is a discrete category. This means that

Eˇn
D hocolim

pr=ˇn

.X ^L Y /Š
M

iCjDn

Xˇi
^

L Yˇj :

This is the only case that we can be explicit about the values of the homotopy left Kan extension
E D Lpr!.X ^

L Y /.

(iv) Our last example is a particular subposet of pr=�n and it is not strictly speaking a slice of any value.
However it will be very useful for us is the following. Consider the following subposet Jn � pr =�n
defined as follows

.�i ; �j /

.ˇi ; ǰ�1/

.�iC1; �i�1/

: : :.ˇi�1; ǰ /

.�i�1; �iC1/

: : :

where i C j � n .mod N /. In this poset, the nonidentity morphisms are of the form .ki ; li/ or .li ; ki/,
unlike the examples above where one arrow was always the identity arrow.

Remark 3.2.6 Now let � W Jn! pr=�n denote the inclusion of the subposet defined in (iv) into the poset
in (i). We will define a map of posets

L W pr=�n! Jn;

where it suffices to define it for the part of the poset visible in (i) as the rest can be defined analogously.
The map L is given by

L W pr=�n! Jn; .ˇiC1; ǰ / 7! .ˇiC1; ǰ /;

.ˇi ; ǰC1/ 7! .ˇi ; ǰC1/;

else 7! .�i ; �j /:
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We note that L left adjoint to � - this can quickly be verified straight from the definition as the morphism
sets in either poset are either empty or consist of exactly one element. As a consequence, since the
inclusion map � W Jn! pr =�n is a right adjoint, it is homotopy final, ie for any F 2Ho.Mpr=�n/ we have

hocolim
Jn

��.F /Š hocolim
pr=�n

F:

In other words, the value E�n
in (3.2.1) can be calculated as

(3.2.7) E�n
Š hocolim

pr=�n

.X ^L Y /Š hocolim
Jn

��.X ^L Y /:

We discuss homotopy finality in more detail in Section 4.1; see Definition 4.1.3.

Given any of subposet of CN �CN , eg pr=
n from example (ii), we can define the restriction of the external
smash product X^Y 2MCN�CN to pr=
n by taking the pullback along the inclusion � Wpr=
n!CN�CN ,
that is,

�� WMCN�CN !Mpr=
n :

Notice that �� preserves weak equivalences so it induces a functor on homotopy categories

�� W Ho.MCN�CN /! Ho.Mpr=
n/:

Moreover, we have maps between the subposets of CN �CN . The morphisms 
n! �n and 
nC1! �n

induce maps of posets

(3.2.8)  W pr=
n! pr=�n; � W pr=
n�1! pr=�n;

which in turn also induce pullback functors on the homotopy categories, that is,

�� W Ho.Mpr=�n/! Ho.Mpr=
n�1/; and  � W Ho.Mpr=�n/! Ho.Mpr=
n/:

We conclude this section with a convention.

Convention 3.2.9 Because of the above, we will commit an abuse of notation and instead of writing, for
example,

��.X ^L Y / 2 Ho.Mpr=
n/

we will simply write

X ^L Y 2 Ho.Mpr=
n/;

with the understanding that this diagram was given by a composition of restriction functors

Ho.MCN�CN /
��

��! Ho.Mpr=�n/
��

��! Ho.Mpr=
n/

unless we need the extra notation for clarification.
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Remark 3.2.10 Consider a diagram F 2 Ho.MCN�CN /. By Convention 2.1.1, we can assume that F

is a projective cofibrant object, so in particular, it is objectwise cofibrant. The external smash product

� ^ � WMCN �MCN !MCN�CN

as defined in (3.1.3) is a Quillen bifunctor, so in particular it preserves cofibrant objects. This implies that
X ^L Y is cofibrant in MCN�CN , so in particular it is objectwise cofibrant. Now, for any subposet

� W J ,! CN �CN ;

eg any of the slice categories of the projection functor pr (3.1.1), we have the pullback functor

�� WMCN�CN !MJ :

This functor is not necessarily a left Quillen functor with respect the projective model structures; see
Proposition 2.1.4. However, the diagram ��.X^LY /, is objectwise cofibrant, which means that the geomet-
ric realization of the simplicial replacement still models the homotopy colimit of the diagram ��.X ^L Y /.
In particular, the skeletal filtration of all the restrictions is always Reedy cofibrant; see Lemma 2.1.17.

3.3 Spectral sequence calculations

The main result of this subsection is that given crowned diagrams X;Y 2 L that for satisfying a simple
condition, the diagram i�E D i�Lpr!.X ^

L Y / is also in the subcategory L, ie the objects Xˇi
and X�i

are cofibrant in M, the objects F�.Xˇi
/ and F�.X�i

/ are in BŒi �, and the map

�.i/ W F�.Xˇi
/! F�.X�i

/

is a monomorphism for any i 2 Z=N Z; see Definition 2.5.1. Essentially, this condition is that for the
given homological functor F� WHo.M/!A, either the crowned diagram X or Y is objectwise projective.

Proposition 3.3.1 Let X;Y 2 L such that F�.X˛n
/;F�.Y˛n

/ 2 Aproj for any n 2 Z=N Z and any
˛ 2 fˇ; �g. Consider the homotopy left Kan extension E D Lpr!.X ^

L Y / 2 Ho.MDN / of

X ^L Y 2 Ho.MCN�CN /

along
pr W CN �CN !DN

with the values and morphisms given in (3.2.1)–(3.2.3) and (3.2.4), (3.2.5), respectively.

E�0
E�1

: : : E�N�1

E
0

OO ==

E
1

OO
==

: : :

<<

E
N�1

OO
kk

Eˇ0

OO ==

Eˇ1

OO
==

: : :

<<

EˇN�1

OO
kk
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Then , for any n 2 Z=N Z and any ˛ 2 fˇ; �g we have F�.E˛n
/ 2 BŒn� and the morphisms

F�.E
n
/! F�.E�n

/

induced by E
n
!E�n

are monomorphisms.

Corollary 3.3.2 Let X;Y be crowned diagrams satisfying the hypothesis of Proposition 3.3.1. The top
two rows of the diagram E D Lpr!.X ^

L Y / form an object in L, that is , the diagram i�E 2 L.

By our assumption, for any n2Z=N Z and any ˛ 2fˇ; �g the objects F�.X˛n
/ and F�.Y˛n

/ are projective
in A. This ensures that there are natural Künneth isomorphisms

(3.3.3) F�.X˛n
^

L Y˛n
/Š F�.X˛n

/˝F�.Y˛n
/:

Since the values E�n
;E
n

and Eˇn
are computed via homotopy colimits, we will use (2.4.5), the spectral

sequences converging to the homology of the homotopy colimit.

Lemma 3.3.4 There are spectral sequences

(3.3.5) E2
pq DHp.pr=
nIFq.X ^

L Y //) FpCq

�
hocolim

pr=
n

.X ^L Y /
�
Š FpCq.E
n

/

and

(3.3.6) E02pq DHp.pr=�nIFq.X ^
L Y //) FpCq

�
hocolim

pr=�n

.X ^L Y /
�
Š FpCq.E�n

/

and natural morphisms of spectral sequences f W fE2
pqg ! fE

02
pqg induced by the map in (3.2.4).

We will now begin the proof of Proposition 3.3.1.

Proof Our claim is that F�.E
n
/! F�.E�n

/ is a monomorphism, where

E D Lpr!.X ^
L Y / 2 Ho.MDN /

as before and F� W Ho.M/! A is our homological functor. To obtain information on F�.E
n
/ and

F�.E�n
/, we will start by working out the spectral sequence (3.3.5), which we explained is a special case

of the spectral sequence (2.4.5). The proof of the proposition is divided into three parts:

� calculating the E2–term Hp.pr=
nIFq.X ^
L Y //,

� calculating the E2–term Hp.pr=�nIFq.X ^
L Y //,

� showing that the induced map of spectral sequences gives the desired isomorphism.
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Step 1 Hp.pr=
nI Fq.X ^L Y //

We will use the simplicial replacement techniques explained in Section 2.4. Recall the poset pr=
n which
is

.ˇi ; ǰ /

.ˇi ; �j /.�i ; ǰ /

.ˇi ; ǰ�1/.ˇi�1; ǰ /

.�iC1; ǰ�1/.ˇi�1; �iC1/

: : :: : :

Here, i C j D n .mod N /, and so the functor X ^L Y 2 Ho.Mpr=
n/ looks as follows:

Xˇi
^Y

ǰ

Xˇi
^Y�jX�i

^Y
ǰ

Xˇi
^Y

ǰ�1
Xˇi�1

^Y
ǰ

X�iC1
^Y

ǰ�1
Xˇi�1

^Y�iC1

: : :: : :

Our goal is to compute

Hp.pr=
nIFq.X ^
L Y // for all p � 0 and all q 2 Z,

which are the E2–terms of the spectral sequence (3.3.5). In order to do so, we apply the homological
functor Fn.�/ to the previous diagram to get the diagram Fn.X ^

L Y / 2Apr=
n which, by (3.3.3), is

(3.3.7)

B.i/˝ zB.j/

B.i/˝ zZ.j/Z.i/˝ zB.j/

00

B.iC1/˝ zZ.j�1/B.i�1/˝ zZ.jC1/

: : :: : :

We will write

fij D �i ˝ 1 W B.i/˝ zB.j/!Z.i/
˝ zB.j/;(3.3.8)

gij D 1˝ Q�j W B
.i/
˝ zB.j/! B.i/˝ zZ.j/;(3.3.9)

to distinguish, for labelling purposes, the two different morphisms in the simplicial replacement below.
Note that since Bi and zBj and projective in A, by our convention they are automatically flat, hence the
morphisms (3.3.8) and (3.3.9) are monomorphisms.

Next, we consider the simplicial replacement of the diagram Fn.X ^
L Y / 2Apr=
n , that is

srep.Fn.X ^
L Y // 2A�

op
:

Following Definition 2.1.14 we have that

srep.F.X ^L Y //0 D
M

iCjDn

�
.B.i/˝ zB.j//˚ .Z.i/

˝ zB.j//˚ .B.i/˝ zZ.j//
�
;

srep.Fn.X ^
L Y //1 D

M
iCjDn

�
.B.i/˝ zB.j//fij

˚ .B.i/˝ zB.j//gij

�
;

with face maps given by “source” and “target” respectively. Because of the shape of the poset pr=
n, for
all m� 2 the simplices srep.Fn.X ^

L Y //m consist solely of degenerate simplices.
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Now we consider the associated complex C�.Fn.X^
LY // of this simplicial complex, see Definition 2.4.1.

We briefly explain the differential of the complex C�.E.1/�n.X ^
L Y //, namely the map

d D d0� d1 W C1.Fn.X ^
L Y //! C0.Fn.X ^

L Y //:

Notice from (3.3.7), we can consider the simpler case where the diagram is

Z.i/˝ zB.j/ B.i/˝ zZ.j/

B.i/˝ zB.j/
gij

77

fij

gg

Then, the differential of the associated complex of the simplicial replacement of this diagram is

dij D d0� d1 W .B
.i/
˝ zB.j//˚ .B.i/˝ zB.j//! .B.i/˝ zB.j//˚ .Z.i/

˝ zB.j//˚ .B.i/˝ zZ.j//;

.x;y/ 7! .xCy;�fij .x/;�gij .y//:

The 0th homology of the complex is just the pushout

B.i/˝ zZ.j/
a

B.i/˝ zB.j /

Z.i/
˝ zB.i/:

The first homology is the kernel of the differential dij . Since the maps fij and gij are injective, this
forces dij .x;y/D 0 if and only if x D y D 0, which implies that the first homology is trivial. It follows
from the diagram (3.3.7) that the differential d on the complex C�.Fn.X ^

L Y // is the direct sum of
the differentials dij for i C j D n. Now that we know the differential of the complex C�.Fn.X ^

L Y //

we will compute its homology. It follows that H0.pr=
nIFn.X ^
L Y // is the colimit of the diagram

Fn.X ^
L Y /. By inspecting the diagram Fn.X ^

L Y / above we can see the colimit of the diagram is a
direct sum (coproduct) of pushouts, that is,

H0.pr=
nIFn.X ^
L Y //D colim

pr=
n

Fn.X ^
L Y /D

M
iCjDn

�
Z.i/
˝ zB.j/

a
B.i/˝ zB.j /

B.i/˝ zZ.j/

�
:

Similar to the simpler case, the first homology

H1.pr=
nIFn.X ^
L Y //

is the kernel of the differential

d0� d1 W srep.Fn.X ^
L Y //1! srep.Fn.X ^

L Y //0:

Since it is a direct sum of the simpler differentials dij as above, it follows that

H1.pr=
nIFn.X ^
L Y //D 0:

Of course, all the higher homologies

Hq.pr=
nIFn.X ^
L Y //

vanish for all q � 2.
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Next, we apply the homological functor Fn�1.�/ to the diagram X ^L Y 2 Ho.Mpr=
n/ and we have
the diagram Fn�1.X ^

L Y / 2Apr=
n which is

0

00

Bi ˝ zB.j�1/B.i�1/˝ zB.j/

00

: : :: : :

Clearly,
H0.pr=
nIFn�1.X ^

L Y //D 0;

and
H1.pr=
nIFn�1.X ^

L Y //D
M

iCjDnC1

B.i/˝ zB.j/:

It follows that for all p � 0 and all m ¤ �n;�n� 1 mod N , the terms Hp.pr=
nIFm.X ^
L Y // all

vanish. This completes the computation of the E2 terms of the spectral sequence. It is concentrated in
degrees .0;m/ and .1;m� 1/ with m� n mod N . Therefore the spectral sequence collapses and we
have a short exact sequence

0!
M

iCjDn

�
Z.i/
˝ zB.j/

M
B.i/˝ zB.j /

B.i/˝ zZ.j/

�
! Fn.E
n

/!
M

iCjDnC1

B.i/˝ zB.j/! 0:

This concludes the calculation of the spectral sequence (3.3.5).

Step 2 Hp.pr=�nI Fq.X ^L Y //

We will now repeat the previous strategy and apply it to the spectral sequence (3.3.6). Recall the poset Jn

from (iv), which is the following subposet of pr=�n:

.�i ; �j /

.bi ; bj�1/

.�iC1; �i�1/

: : :.ˇi�1; ǰ /

.�i�1; �iC1/

: : :

By Remark 3.2.6, the inclusion functor � W Jn! pr=�n has a left adjoint L, and we have

E�n
Š hocolim

pr=�n

.X ^L Y /Š hocolim
Jn

��.X ^L Y /I

see (3.2.7). So, instead of the spectral sequence (3.3.6) we can compute the following spectral sequence

Hp

�
JnIFq.�

�.X ^L Y //
�
) FpCq

�
hocolim

Jn

��.X ^L Y /
�

since both converge to the same target, ie the F�–homology of E�n
,

F�

�
hocolim

Jn

��.X ^L Y /
�
Š F�

�
hocolim

pr=�n

.X ^L Y /
�
Š F�.E�n

/:
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In fact this, can be made stronger. The adjoint pair L W pr=�n� Jn W � induces a natural isomorphism

H�.pr=�nIFq.X ^
L Y //ŠH�.Jn; �

�Fq.X ^
L Y //:

From the diagram Jn we again only need to consider Fn.�/ and F�n�1.�/. Firstly, we apply Fn.�/ to
the diagram ��.X ^L Y / and we get Fn.�

�.X ^L Y // 2AJn as

Z.i/˝ zZ.j/

0

Z.iC1/˝ zZ.i�1/

: : :0

Z.i�1/˝ zZ.iC1/

: : :

From this we get that
H0

�
JnIFn.�

�.X ^L Y //
�
D

M
iCjDn

Z.i/
˝ zZ.j/

and
Hp

�
JnIFn.�

�.X ^L Y //
�
D 0; p � 1:

Next, we will apply the functor Fn�1.�/ to obtain the diagram Fn�1.�
�.X ^L Y // 2AJn depicted by

0

B.i/˝ zB.j�1/

0

: : :B.i�1/˝ zB.j/

0

: : :

From the above we get that

H1

�
JnIFn�1.�

�.X ^L Y //
�
D

M
iCjDnC1

B.i/˝ zB.j/

and
Hp

�
JnIFn�1.�

�.X ^L Y //
�
D 0 for p D 0 and p � 2.

This completes the computation of the E2–term of the final spectral sequence. It is concentrated in
degrees .0;m/ and .1;m� 1/ with m� n mod N . Therefore, the spectral sequence collapses and we
have a short exact sequence

0!
M

iCjDn

Z.i/
˝ zZ.j/

! Fn.E�n
/!

M
iCjDn�1

B.i/˝ zB.j/! 0:

Step 3 the monomorphism F�.E
n/! F�.E�n
/

Now that we have calculated both spectral sequences we can continue with the proof that F�.E
n
/!

F�.E�n
/ is a monomorphism. The map of posets  W pr=
n! pr=�n induces morphisms on homologies

of categories with coefficients Fn.�/ and Fn�1.�/ respectively, ie

H�.pr=
nIFn.X ^
L Y //!H�.pr=�nIFn.X ^

L Y //ŠH�
�
JnIFn.�

�.X ^L Y //
�
;

H�.pr=
nIFn�1.X ^
L Y //!H�.pr=�nIFn�1.X ^

L Y //ŠH�
�
JnIFn�1.�

�.X ^L Y //
�
:
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Hence we have a morphism of short exact sequences

0 //
L

iCjDn

�
Z.i/˝ zB.j/

`
B.i/˝ zB.j /

B.i/˝ zZ.j/
�

//

��

Fn.E
n
/ //

��

L
iCjDnC1

B.i/˝ zB.j/

Š

��

// 0

0 //
L

iCjDn

Z.i/˝ zZ.j/ // Fn.E�n
/ //

L
iCjDnC1

B.i/˝ zB.j/ // 0

By naturality, the left vertical map is the direct sum of the pushout-product maps

�i � z�j W

�
Z.i/
˝ zB.j/

a
B.i/˝ zB.j /

B.i/˝ zZ.j/

�
!Z.i/

˝ zZ.j/:

By Lemma 3.7.2, the map �i � z�j is injective which means that so is the left vertical map. The five
lemma now implies that the morphism

Fn.E
n
/! Fn.E�n

/

is an injection. In particular, F�.E
n
/ and F�.E�n

/ are concentrated in the correct degrees and the
induced morphisms F�.E
n

/! F�.E�n
/ are injections. This concludes the proof of the proposition.

Corollary 3.3.2 now follows: the diagram E is indeed in the subcategory L� Ho.MCN / as the vertices
are in the correct degree shifts of B, and F applied to the edges E
n

!E�n
is a monomorphism, which

is precisely how L was defined.

3.4 Cones

In the previous section we proved that for any two crowned diagrams X;Y 2 L which are objectwise
projective, i�E D i�pr!.X ^

L Y / 2 L. In this subsection we will prove that applying the functor Q to the
object i�E is a good model for the tensor product Q.X /˝Q.Y /. This will follow as a corollary from
the following proposition.

Proposition 3.4.1 Consider E 2 Lpr!.X ^
L Y / 2 Ho.MDN / and let i�E be the pullback of E along

i W CN !DN . For every n 2 Z=N Z we have a canonical isomorphism

cone.i�Eˇn�1
! i�E�n

/Š
_

iCjDn

cone.ki/^
L cone. Qkj /;

where ki WXˇi�1
!X�i

is a structure morphism of X 2 L.

Proof This proof has three main parts. Firstly, we will work out the morphism i�Eˇn�1
! i�E�n

by calculating the relevant values of Eˇn�1
and E�n

using their description as homotopy colimits over
slice categories; see Section 3.2. We will arrive at the conclusion that the left-hand side is actually
hocolimpr =�n

.cone."X^LY //, where "X^LY is the counit of a certain adjunction. We will then explicitly
determine the map of diagrams "X^LY in Step 2 and calculate its cone in Step 3.
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Step 1 unravelling i�Eˇn�1
! i�E�n

Recall the slice categories of the map pr W CN �CN !DN over �n, pr=�n from example (i), and pr=
n

from example (ii). By definition of i , we have that

.i�Eˇn�1
! i�E�n

/DE
n�1
!E�n

:

Let us begin by recalling the diagram X ^L Y 2 Ho.Mpr=�n/. The thick arrows show the image of the
map of posets � W pr=
n�1! pr=�n:

(3.4.2)

.�i ; �j /

.ˇi�1; �j /
.�i ; ǰ / .ˇi ; �j /

.�i ; ǰ�1/

.ˇi ; ǰ /

.ˇi�1; ǰ�1/

.ˇi�1; ǰ / .ˇi ; ǰ�1/

: : :

: : : : : :

: : :

Recall from (3.2.2) that

E�n
D hocolim.pr=�n

�
�! CN �CN

X^LY
�����!M/;

and we committed an abuse of notation by writing

E�n
D hocolim

pr=�n

.X ^L Y /D hocolim
pr=�n

��.X ^L Y /:

Also, recall from (3.2.5) that the morphism E
n�1
!E�n

is the canonical morphism

E
n�1
D hocolim

pr=
n�1

��.X ^L Y /! hocolim
pr=�n

.X ^L Y /DE�n

induced by the map of posets � W pr=
n�1! pr=�n. The pullback functor

�� W Ho.Mpr =�n/! Ho.Mpr =
n�1/

has a left adjoint defined by the homotopy left Kan extension L�!, that is,

L�! W Ho.Mpr=
n�1/� Ho.Mpr=�n/ W ��:

The counit of the derived adjunction " W L�!�
�! Id provides the canonical natural transformation

(3.4.3) "X^LY W L�!�
�.X ^L Y /!X ^L Y:

Lastly, since L�! is a homotopy left Kan extension, there is a canonical isomorphism

hocolim
pr=
n�1

��.X ^L Y /Š hocolim
pr=�n

L�!�
�.X ^L Y /:
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Putting all this together means that the left-hand side of Proposition 3.4.1 is

hocolim
pr =�n

.cone."X^LY //:

Step 2 working out "X^LY

The underlying diagram X ^L Y 2 Ho.Mpr=�n/ is

(3.4.4)

X�i
^Y�j

Xˇi�1
^Y�j

X�i
^Y

ǰ
Xˇi
^Y�j

X�i
^Y

ǰ�1

Xˇi
^Y

ǰ

Xˇi�1
^Y

ǰ�1

Xˇi�1
^Y

ǰ
Xˇi
^Y

ǰ�1

: : :

: : : : : :

: : :

Furthermore, the homotopy left Kan extension L�!�
�.X ^L Y / 2 Ho.Mpr =�n/ is

(3.4.5)

X�i�1
^Y�j

`h
Xˇi�1

^Y
ǰ�1

X�i
^Y

ǰ�1

Xˇi�1
^Y�j

Xˇi�1
^Y

ǰ
Xˇi
^Y

ǰ�1

X�i
^Y

ǰ�1

�

Xˇi�1
^Y

ǰ�1

Xˇi�1
^Y

ǰ
Xˇi
^Y

ǰ�1

: : :

: : : : : :

: : :

We briefly explain how we calculated the left homotopy Kan extension L�!.X ^
L Y /. From the formula

of Proposition 2.2.4 for calculating homotopy Kan extensions, we can calculate the homotopy left Kan
extension L�!�

� at an object .˛s; ˛t / 2 pr=�n as

L�!.X ^
L Y /.˛s ;˛t / Š hocolim

�
�=.˛s; ˛t /

�
�! pr=
n�1

��.X^LY /
��������!M

�
:

For the object .�i ; ǰ /, the slice �=.�i ; ǰ / consists only of the object the object . ǰ�1; ǰ /, which implies
that

.L�!/.�i ; ǰ / DXˇi�1
^Yˇj :
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For the object .ˇi ; �j /, the argument is the same as above. For .ˇi ; ǰ /, the slice category �=.ˇi ; ǰ / is
empty, which means that

.L�!/.ˇi ; ǰ / Š �:

For the object .�i ; �j /, the slice category �=.�i ; �j / is the poset

.ˇi�1; �j / .�i ; ˇj�1/

.ˇi�1; ˇj /

88

.ˇi�1; ˇj�1/

77gg

.ˇi ; ˇj�1/

ff

But the subposet
.ˇi�1; �j / .ˇi�1; ˇj�1/ //oo .�i ; ˇj�1/

is homotopy final, which means that

.L�!/.�i ;�j / Š .L�!/.�i ;�j / Š hocolim

0BBBB@
Xˇi�1

^Yˇj�1

ki^1
//

1^zkj
��

X�i
^Yˇj�1

Xˇi�1
^Y�j

1CCCCA :
Step 3 calculating the cone in the left-hand side

Next, we calculate the cone of the natural transformation "X^LY (3.4.3) of diagrams in Ho.Mpr=�n/. We
have the diagram cone."X^LY / 2 Ho.Mpr=�n/, which is

cone."X^LY / W pr =�n!M; .˛s; ˛t / 7! cone
�
�!.X ^

L Y /.˛s ;˛t /! .X ^L Y /.˛s ;˛t /

�
:

In other words, we are taking objectwise cones of the canonical map from the diagram (3.4.5) to the
diagram (3.4.4). This means that cone."X^LY / is

(3.4.6)

cone.ki �L zkj /

�

C i ^Y
ǰ

Xˇi
^ zC j

�

†Xˇi
^Y

ǰ

�

� �

: : :

: : : : : :

: : :

Here, we have denoted

C i
WD cone.ki/D cone.Xi�1!X�i

/; zC j
WD cone.zkj /D cone.Yj�1! Y�i

/:
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Next, we determine the homotopy colimit of the diagram cone."X^LY /. One way is to observe that
the homotopy colimit of the above diagram is isomorphic in Ho.M/ to the homotopy colimit of (finite)
coproduct of squares

(3.4.7)

†Xˇi
^Yˇj

��

// cone.ki/^Yˇj

��

Xˇi
^ cone.zkj / // cone.ki �L zkj /

where we can consider the above as an object in Ho.MŒ1��Œ1�/. Formally this is obtained by taking the
visually obvious map of posets f W Œ1�� Œ1�! pr=�n, ie

.0; 0/ 7! .ˇi ; ǰ /; .0; 1/ 7! .�i ; ǰ /; .1; 0/ 7! .ˇi ; �j /; .1; 1/ 7! .�i ; �j /

and considering the pullback

f � W Ho.Mpr=�n/! Ho.MŒ1��Œ1�/:

The bottom right corner of the poset Œ1�� Œ1� is its final object, which implies that the homotopy colimit of
the diagram (3.4.7) is naturally isomorphic to cone.ki �L zkj /. Hence the homotopy colimit over pr=�n
is, up to natural isomorphism, the coproduct

W
iCjDn cone.ki �L cone.zkj //. Another way of seeing this

is by pulling back the above diagram to �n W Jn! pr =�n, and we get the diagram

cone.ki�1�L kjC1/ cone.ki �L kj / cone.kiC1�L kj�1/

: : :

99

�

ee ;;

�

cc 99

: : :

ee

All in all, we have that the homotopy colimit of the diagram (3.4.6) is

(3.4.8) hocolim
pr =�n

.cone."X^LY //Š
_

iCjDn

cone.ki �L zkj /:

Finally, by Corollary 2.3.6, we have the canonical isomorphism

cone.ki �L zkj /Š cone.ki/^
L cone.zkj /

for each pair i; j 2 Z=N Z. The coproduct of these isomorphisms together with (3.4.8) gives us that

hocolim
pr =�n

.cone."X^LY //Š
_

iCjDn

cone.ki/^
L cone.zkj /:

Let us now gather all this information to prove Proposition 3.4.1. Calculating the homotopy cofiber (cone)
of the morphisms i�Eˇn�1

! i�E�n
is the same thing as calculating the homotopy cofiber E
n�1

!E�n
.
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We have the following natural isomorphisms:

cone.i�Eˇn�1
! i�E�n

/D cone.E
n�1
!E�n

/

D cone
�

hocolim
pr=
n�1

��.X ^L Y /! hocolim
pr =�n

.X ^L Y /
�

Š cone
�

hocolim
pr=�n

�!�
�.X ^L Y /! hocolim

pr=�n

.X ^L Y /
�

Š hocolim
pr =�n

�
cone

�
�!�
�.X ^L Y /! .X ^L Y /

��
Š

_
iCjDn

cone.ki �L zkj /

Š

_
iCjDn

cone.ki/^
L cone.zkj /:

Corollary 3.4.9 Let X;Y;E as before and assume furthermore that F�.X˛n
/;F�.Y˛n

/ 2Aproj for any
n 2 Z=N Z and any ˛ 2 f�; ˇg. Then there is a canonical isomorphism

C .n/.i�E/D F�.cone.i�Eˇn�1
! i�E�n

//Š
M

iCjDn

C .i/.X /˝C .j/.Y /:

Proof By our assumption, for any ˛ 2 f�; ˇg and any n 2 Z=N Z, the object F�X˛n
is projective.

Therefore, by definition, Z.n/.X / and B.n�1/.X / are projective. The short exact sequence (2.5.2) now
implies that for any i 2 Z=N Z the graded object C .i/.X / is projective. It follows by our assumptions
that

F�.cone ks ^
L cone zkt /Š F�.cone ks/˝F�.cone kt /:

By Proposition 3.4.1 we have

cone.i�Eˇn�1
! i�E�n

/Š
_

iCjDn

cone.ki/^
L cone. Qkj /;

and applying the functor F�.�/ we have

F�.cone.i�Eˇn�1
! i�E�n

//Š F�

� _
iCjDn

cone.ki/^
L cone. Qkj /

�
Š

M
iCjDn

F�.cone.ki/^
L cone zkj /

Š

M
iCjDn

F�.cone ki/˝F�.cone zkj /:

Shifting the above by Œn�D Œi C j � we have

C .n/.i�E/Š
M

iCjDn

C .i/.X /˝C .j/.Y /:
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3.5 Differentials

In the previous subsection we proved that C�.i
�E/Š C�.X /˝C�.Y / as objects in A, so the diagram

i�E is a good candidate for the tensor product

C�.X /˝C�.Y /:

The final step in order to show that indeed

Q.i�E/ŠQ.X /˝Q.Y /

as objects in C.Œ1�;1/.A/ is to prove that the differential d W C�.i
�E/! C�.i

�E/Œ1� coincides with the
differential of the tensor product C�.X /˝C�.Y /. That is, we have to show that

.C�.i
�E/; d/Š .C�.X /˝C�.Y /; d˝/;

where d˝ is the differential of the tensor product of the dg-objects .C�.X /; d/ and .C�.Y /; d/.

3.5.1 Reduction to the case of disks We will reduce the proof to a much simpler case. Let L� 2

C.Œ1�;1/.A/ and choose s 2 Z=N Z. Without loss of generality we will assume that L� is degreewise
projective. Consider the map of differential graded objects,

(3.5.1)

: : : // 0 //

��

Ls Ls
//

ds

��

0 //

��

: : :

: : :
dsC2

// LsC1
dsC1

// Ls
ds
// Ls�1

ds�1

// Ls�2
ds�2

// : : :

where we view the top differential graded object as an object in BŒs � 1�˚ BŒs�, meaning that it is
concentrated in degrees s�1 and s modulo N . We denote this by Ds.Ls/, and we denote the above map of
differential graded objects by fL;s WD

s.Ls/!L�. Under the equivalence of categories Q WL!C.Œ1�;1/.A/
there are crowned diagrams X and X 0 and a morphism F W X ! X 0 such that the morphism fL;s is
realized as Q.F /. This means that there are isomorphisms

Q.X /ŠDs.Ls/; Q.X 0/ŠL�

and the following diagram commutes:

Q.X /
Q.F /

//

Š

��

Q.X 0/

Š

��

Ds.Ls/
fL;s

// L�

Now let M� be another differential graded object, which we also assume to be degreewise projective, and
let t 2 Z=N Z. Similarly to (3.5.1) we have the morphism

gM;t WD
t .Mt /!M�:
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Again, under the equivalence Q there are crowned diagrams Y and Y 0 and a morphism G W Y ! Y 0 such
that

Q.Y /ŠDt .Mt /; Q.Y 0/ŠM�

and the following diagram commutes:

Q.Y /
Q.G/

//

Š

��

Q.Y 0/

Š

��

Dt .Mt / gM;t

// M�

We have the morphism of dg-objects fL;s˝gM;t WD
s.Ls/˝Dt .Mt /!L�˝M�, which is

(3.5.2)

� � � // Ls˝Mt
//

��

.Ls˝Mt /˚ .Ls˝Mt / //

.ds˝id;id˝ Qd t /

��

� � �

� � � //
L

iCjDn

Li ˝Mj
//

L
iCjDnC1

Li ˝Mj
// � � �

where the left vertical morphism is the inclusion of the .s; t/th summand and the right vertical map is the
universal map out of the coproduct.

Now assume that
Q.i�pr!.X ^

L Y //ŠQ.X /˝Q.Y /;

that is, we prove our claim for the case of X ŠQ�1.Ds.Ls// and Y ŠQ�1.Dt .Mt //. The commutativity
of the square (3.5.2) implies that the bottom vertical maps must also coincide with the tensor product
L�˝M�, ie

Q.i�pr!.X
0
^

L Y 0//ŠL�˝M�

and the following diagram commutes degreewise:

Q.i�pr!.X ^
L Y // //

��

Q.i�pr!.X
0 ^L Y 0//

��

Ds.Ls/˝Dt .Mt / // L�˝M�

The horizontal maps are indeed maps of dg-objects, so if we can show that the left hand vertical map is too,
then the claim follows for the general L� and M�. The proof of the former will occupy the next subsection.

3.6 Differentials for disks

To prove the claim for disks, we discuss a crowned diagram that corresponds to the disks. By [Patchkoria
2012, Proposition 3.2.1], there is an object A 2 Ho.M/, such that F�A 2 BŒs� 1�DLs , which is due to
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the fact that our assumptions force the corresponding Adams spectral sequence to collapse. Consider the
crowned diagram

X D

� A � : : :

: : :

>>

�

OO ??

A

??

�

OO >>

where the nontrivial entries are at the .s�1/–spot, ie

Xˇs�1
DX�s�1

DA:

The diagram X is in L since

B�.X /D B.s�1/.X /D F�Xˇs�1
D F�A and Z�.X /DZ.s�1/.X /D F�X�s�1

D F�A:

Next, we calculate .C�.X /; d/ 2 C.Œ1�;1/.A/. The only nontrivial cones are cone.ks�1/ and cone.ks/.
This means that

C .s/.X /D F� cone.ks/D F� cone.A!�/D F�.†A/Š .F�A/Œ1�;

C .s�1/.X /D F� cone.ks�1/D F� cone.�!A/D F�A;

C�.X /D C .s�1/.X /˚C .s/.X /:

We obtain that � WB�.X /!Z�.X / is the identity map, � WZ�.X /!C�.X / is inclusion to the first factor
and � W C�.X /! B�.X / is the projection to the second factor. It follows that d W C�.X /! C�.X /Œ1� is
the identity. Similarly, Dt .Lt / is mapped to a crowned diagram Y in which

Yˇt�1
D Y�t�1

D zA;

where the only nontrivial morphism is the identity.

We now have the ingredients to deal with the following proposition.

Proposition 3.6.1 Let X and Y be the objects of L of the form Q�1.Ds.Ls// and Q�1.Dt .Mt //. Then

Q.i�Lpr!.X ^
L Y //Š .C�.X /˝C�.Y /; d˝/;

where .C�.X /˝C�.Y /; d˝/ is the tensor product of C�.X / and C�.Y / in C.Œ1�;1/.A/.

Proof We note that the tensor product Ds.Ls/˝Dt .Mt / is concentrated in degrees sC t , sC t � 1,
and sC t � 2 modulo N . As we already know that our chain complexes agree degreewise, these are the
only degrees where we have to calculate our differential. As usual, we write E D Lpr!.X ^

L Y /.

We will work out the differential in the chain complex Q.i�Lpr!.X ^
L Y //, beginning with

Q.i�E/sCt
D C .sCt/.i�E/! C .sCt�1/.i�E/DQ.i�E/sCt�1;

and we will discuss the other degree

C .sCt�1/.i�E/! C .sCt�2/.i�E/
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afterwards. Our proof is divided into the following steps.

We start by going through the definition Q applied to i�E using the descriptions given in Section 2.5,
where we will arrive at the exact triangle

cone.yksCt /!†E
sCt�1
!†E�sCt�1

!†cone.yksCt�1/:

The next steps separately determine E�sCt�1
followed by the maps

cone.yksCt /!†E
sCt�1
; E
sCt�1

!E�sCt�1
and E�sCt�1

! cone.yksCt�1/:

Putting those together, we obtain the desired differential.

Step 1 recalling the construction of Q.i�E/sCt ! Q.i�E/sCt�1

By Proposition 3.3.1 and Proposition 3.4.1 we can construct a diagram E DLpr!.X ^
L Y / 2Ho.MDN /

such that
i�E 2 L and cone.i�Eˇn�1

! i�E�n
/Š

_
iCjDn

cone.ki/^ cone.zkj /:

For notational convenience we will write

ykn W i
�Eˇn�1

! i�E�n
and Oln W i

�Eˇn
!E�n

for the structure maps of the crowned diagram i�E. We briefly recall the construction of the differential

d W C�.i
�E/! C�.i

�E/Œ1�; d D �Œ1��Œ1��C�.i
�E/! C�.i

�E/Œ1�:

Degreewise, the differential on C .n/.i�E/! C .n�1/.i�E/ is given by applying F�.�/ to the sequence
of maps

(3.6.2) cone.ykn/!†E
n�1
!†E�n�1

!†cone.ykn�1/:

Therefore, we have to show that for nD sC t the sequence of maps (3.6.2) after applying F�.�/ gives
us the differential of the tensor product of disks. By Proposition 3.4.1, we have

cone.yksCt /Š cone.ks/^
L cone.zkt /;

cone.yksCt�1/Š .cone.ks�1/^
L cone.zkt //_ .cone.ks/^

L cone.zkt�1//:

Recall that ADXˇs�1
DX�s�1

and zAD Yˇs�1
D Y�s�1

as before. Directly from the structure morphisms
of the crowned diagrams X and Y we have

cone.yksCt /Š .†A/^ .† zA/; cone.yksCt�1/Š .A^† zA/_ .†A^ zA/:

To analyse the sequence of maps (3.6.2) it remains to calculate E
sCt�1
;E�sCt�1

;E�sCt
and the maps

E
sCt�1
!E�sCt�1

. The maps

cone.yksCt /!†E
sCt�1
;(3.6.3)

†E�sCt�1
!†cone.yksCt�1/(3.6.4)
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are the canonical maps that are given by construction of distinguished triangles in a simplicial stable
model category. The map (3.6.3) is the canonical map

cone.yksCt /! S1
^E
sCt�1

I

see Definition 2.3.13. Similarly, the map (3.6.4) is the suspension of the canonical map

E�sCt�1
! cone.yksCt�1/I

see Definition 2.3.13.

Step 2 calculating E�n

To compute the above, let us recall from (iv) the poset Jn with inclusion � W Jn ,! pr=�n and left adjoint
L W pr=�n! Jn. For i C j � n modulo N the poset Jn looks as follows:

.�i ; �j /

.ˇi ; ǰ�1/

.�iC1; �i�1/

: : :.ˇi�1; ǰ /

.�i�1; �iC1/

: : :

Also, recall from (ii) the slice category pr=
n, which for i C j � n is

.ˇi ; ǰ /

.ˇi ; �j /.�i ; ǰ /

.ˇi ; ǰ�1/.ˇi�1; ǰ /

.�iC1; ǰ�1/.ˇi�1; �iC1/

: : :: : :

By definition of homotopy left Kan extensions, we have

E�n
D hocolim

pr=�n

X ^L Y Š hocolim
Jn

��.X ^L Y /; E
n
D hocolim

pr=
n

.X ^L Y /:

The maps
E
n�1

!E�n
and E
n�1

!E�n�1

are the maps of homotopy colimits induced by the respective map of posets

 W pr =
n�1! pr =�n and � W pr =
n�1! pr =�n�1:

We start with calculating E�sCt�1
. The underlying diagram ��.X ^L Y / 2 Ho.MJsCt�1/ is

(3.6.5)

� � �

: : :

>>

A^ zA

<<bb

�

@@^^

: : :

``

where the only nontrivial entry is at .ˇs�1; ˇt�1/. From the diagram above we get

E�sCt�1
D hocolim

pr=�sCt�1

.X ^L Y /Š hocolim
JsCt�1

��.X ^L Y /Š†A^ zA:
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We do the same for E
sCt
;E
sCt�1

and E
sCt�2
. The value E
sCt�2

is the homotopy colimit of the
diagram X ^L Y 2 Ho.Mpr=
sCt�2/, which is

� A^ zA A^ zA �

: : :

??

�

==]]

A^ zA �

AAaa

: : :

__

with nontrivial entries at the places .ˇs�1; ˇt�1/ on the bottom, .�s�1; ˇt�1/ on the left and .ˇs�1; �t�1/

on the right. Thus, E
sCt�2
ŠA^ zA. Similarly, we have

E
sCt
D hocolim

pr=
sCt

.X ^L Y /Š �; E
sCt�1
D hocolim

pr=
sCt�1

.X ^L Y /Š†A^ zA:

Step 3 calculating cone.yksCt/!†E
sCt�1

We move on to calculate the map cone.yksCt /! S1˝E
sCt�1
. From Definition 2.3.13 we have the

pushout square

E
sCt�1

yksCt
//

��

E�sCt

��
�

��

.I; 0/˝E
sCt�1
//

�^1 ,,

cone.yksCt /

''

S1˝E
s�t�1

which, based on our computations, is

†A^ zA

��

// �

��

��

.I; 0/˝†.A^ zA/

�^1 --

// cone.yksCt /

''

S1˝ .†A^ zA/

Recall from Proposition 3.4.1, (3.4.8), and Corollary 2.3.6 that there is a series of canonical isomorphisms

cone.yksCt /Š cone.ks�L zkt /Š cone.ks/^
L cone.zkt /:

In our particular case, in which ks WA!A and zk W zA!�, this is

cone.yksCt /Š cone.ks�L kt /Š†
2A^ zAŠ†A^† zAŠ cone.ks/^

L cone.zkt /:

This implies that the universal map out of the pushout is the identity map. Thus, the map

cone.yksCt /!†E
sCt�1
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is the map †A^† zA! †2.A^ zA/, which is the composition of the canonical map (commutation of
colimits) and the identity map.

Step 4 calculating OlsCt�1 W E
sCt�1
! E�sCt�1

From the posets above we can see directly that the map

OlsCt�1 WE
sCt�1
!E�sCt�1

is the identity map induced by
 W pr=
sCt�1! pr =�sCt�1:

Therefore the map
†OlsCt�1 WE
sCt�1

!†E�sCt�1

is the identity map
1 W†2.A^ zA/!†2.A^ zA/:

Step 5 calculating E�sCt�1
! cone.yksCt�1/

Lastly it remains to figure out the map

E�sCt�1
! cone.yksCt�1/:

Recall from the proof of Proposition 3.4.1 that cone.yksCt�1/ can be written as a homotopy colimit,

cone.yksCt�1/Š hocolim
pr=�sCt�1

.cone."X^LY //;

where � W pr=
sCt�2! pr=�sCtC1, and " is the counit of the derived adjunction .L�!; �
�/. Pulling back

the diagram cone."X^LY / to JsCt�1 along the inclusion � W JsCt�1! pr=�sCt�1, we obtain the diagram

†A^ zA

�

�

: : :�

A^† zA

: : :

with nontrivial entries at .�s�1; �t / and .�s; �t�1/ respectively. Recall the following diagram from (3.6.5)
��.X ^L Y / 2 Ho.MJsCt�1/,

�

��

�A^ zA

��

: : :: : :

with the only nontrivial entry at .ˇs�1; ˇt�1/, left top being .�s�1; �t / and right top being .�s; �t�1/.
Because of the shape of the underlying posets and the map, we can safely ignore the trivial entries, so the
map E
sCt�1

! cone.yksCt�1/ can be taken as the map of homotopy pushouts

hocolim.� A^ zA!�/! hocolim.A^† zA �!†A^ zA/;
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induced by the following map of posets:

�

��

A^ zAoo //

��

�

��

A^† zA �oo // †A^ zA

Now consider the above map of diagrams and the following map at the bottom:

�

��

A^ zAoo //

��

�

��

A^† zA

�
��

�oo

��

//

��

†A^ zA

†A^ zA �oo // †A^ zA

Here, � is the map

A^† zADA^ .S1
^ zA/Š .A^S1/^ zA

�
�! .S1

^A/^ zAŠ†A^ zA

and the first map is the associativity isomorphism. By Lemma 3.7.1 the induced map of homotopy colimits
is, up to weak equivalence, the diagonal map

diag W†A^ zA! .†A^ zA/_ .†A^ zA/:

Hence, the map (3.6.2) is up to weak equivalence the diagonal map but with a sign introduced by the
twist map as above. This and Corollary 3.4.9 imply that indeed the differential

d W C .sCt/.i�E/! C .sCt�1/.i�E/

coincides with the differential of the tensor product of

..DsLs/˝ .Dt zLt //sCt
! ..DsLs/˝ .Dt zLt //sCt�1:

Step 6 Q.i�E/sCt�1 ! Q.i�E/sCt�2

We do not need to do any extra work to determine the other differential, namely to check that the
differential

C .sCt�1/.i�E/! C .sCt�2/.i�E/

coincides with the differential

..DsLs/˝ .Dt zLt //sCt�1
! ..DsLs/˝ .Dt zLt //sCt�2;

since by construction .C�.i�E/; d/ is a differential graded object and that means that by necessity
d Œ1� ı d D 0 on C�.i

�E/. This concludes the proof.

To conclude this section, by combining Corollary 3.4.9 and Proposition 3.6.1 we have proved the following
proposition.

Algebraic & Geometric Topology, Volume 24 (2024)



5204 Nikitas Nikandros and Constanze Roitzheim

Proposition 3.6.6 Let X;Y 2 L such that F�.X˛n
/;F�.Y˛n

/ 2 Aproj for any n 2 Z=N Z and any
˛ 2 fˇ; �g. There is a natural isomorphism

Q.i�Lpr!.X ^
L Y //ŠQ.X /˝Q.Y /:

3.7 Technical lemmas

In this subsection we prove two technical lemmas that are used in the previous proofs. The first lemma is
about the canonical map from the suspension of an object to the wedge product of suspensions in a stable,
simplicial model category M. The second lemma is about pushout-products of injective morphisms in a
hereditary abelian category A.

Lemma 3.7.1 Let M be a stable simplicial model category and let X 2M. Consider the following map
of homotopy pushouts

hocolim.� X !�/! hocolim.†X  �!†X /:

Then the above map is , up to isomorphism in Ho.M/, the diagonal map

diag W†X !†X _†X:

Proof Let CX D .I; 0/˝X be the cone of X and let i WX ! CX be the canonical inclusion, which is
a cofibration. We choose a model for †X as the homotopy pushout

†X Š hocolim.CX  X ! CX /:

In fact, we can take this to be the ordinary pushout colim.CX  � X ! CX / since i W X ! CX is a
cofibration. From this model we get directly that the induced map on pushouts

CX

�˝1
��

X
i
oo

i
//

��

CX

�˝1
��

†X �oo // †X

where � W I ! S1 is the projection is indeed the diagonal map diag W †X ! †X _†X . Hence, the
induced map of homotopy pushouts is the diagonal map up to natural isomorphism.

Lemma 3.7.2 Let A be a hereditary abelian category. Let X;Y;U;V 2 Aproj and let f W X ! Y and
g W U ! V be injective maps. Then the pushout-product map f �g is injective.

Proof Since g W U ! V is monomorphism we have the short exact sequence

0! U
g
�! V

j
�! coker g! 0:
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Notice that the dimension of the abelian category E.1/�–modules is 1, which implies that coker g is a
projective module since it is a submodule of V . Since X is flat, X ˝ � is an exact functor, which means
that the sequence

0!X ˝U
1˝g
���!X ˝V

1˝j
���!X ˝ coker g! 0

is short exact. Consider the diagram

0 // X ˝U
1˝g

//

f˝1

��

X ˝V
1˝j
//

��

X ˝ coker g // 0

0 // Y ˝U // P //

f�g

��

X ˝ coker g //

f˝1

��

0

0 // Y ˝U
1˝g

// Y ˝V
1˝j
// Y ˝ coker g // 0

where P is the pushout of 1˝g and g˝ 1. Since the top left square is cocartesian, the canonical map
coker.1˝g/

Š
�! coker.Y ˝U ! P / is an isomorphism, so the middle row is also exact. Now note that

the morphism f ˝ 1 WX ˝ coker g! Y ˝ coker g is injective since coker g is projective. Applying the
snake lemma gives us that f �g is a monomorphism.

4 Main result

4.1 Homotopy colimit calculations

In this section we discuss how the functor i�Lpr! interacts with the homotopy colimits of the various
diagram categories, giving us the right hand side of the main diagram (1.0.2). The main result of the
section is the following.

Theorem 4.1.1 For any pair of diagrams .X;Y / 2 Ho.MCN /�Ho.MCN /, the homotopy colimit of
the diagram i�Lpr!.X ^

L Y / 2 Ho.MCN / is naturally isomorphic to the smash product of the homotopy
colimits of X and Y , that is ,

hocolim
CN

.i�Lpr!.X ^
L Y //Š hocolim

CN

X ^L hocolim
CN

Y:

Recall that the functor

i�Lpr!.� ^
L
�/ W Ho.MCN /�Ho.MCN /! Ho.MCN /

is the composition

Ho.MCN /�Ho.MCN /
^L

��! Ho.MCN�CN /
Lpr!
���! Ho.MDN /

i�

�! Ho.MCN /:
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In order to prove Theorem 4.1.1 we will break it apart into smaller pieces. Consider the following diagram:

Ho.MCN /�Ho.MCN / //

^L

��

Ho.M/

Ho.MCN�CN /

Lpr!

��

66

Ho.MDN /

i�

��

==

Ho.MCN /

EE

The top horizontal functor is the smash product of homotopy colimits of crowned diagrams, that is,
hocolimCN

X ^L hocolimCN
Y . The three other functors are the homotopy colimit functors,

hocolim
CN�CN

W Ho.MCN�CN /! Ho.M/;

hocolim
DN

W Ho.MDN /! Ho.M/;

hocolim
CN

W Ho.MCN /! Ho.M/:

Theorem 4.1.1 asserts that the outer triangle above commutes up to isomorphism. This will follow once
we show that all the small triangles commute up to isomorphism.

Lemma 4.1.2 The top triangle and the middle triangle commute. That is ,

hocolim
CN

X ^L hocolim
CN

Y Š hocolim
CN�CN

.X ^L Y /

and

hocolim
CN�CN

.X ^L Y /Š hocolim
DN

pr!.X ^
L Y /:

Proof The first assertion follows from Corollary 2.3.4 as a direct application for C DD D CN . The
second assertion follows from the fact that the homotopy colimit of a homotopy left Kan extension of a
diagram is isomorphic to the homotopy colimit of the diagram itself [Richter 2020, Proposition 4.3.2].

We will prove Theorem 4.1.1 by proving that the functor i W CN !DN satisfies the following definition;
see [Riehl 2014, Definition 8.5.1].

Definition 4.1.3 A functor between small categories K WC!D is homotopy final (or homotopy terminal)
if for every object d 2D, the simplicial set N.d=K/ is contractible.
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A convenient way to check whether a poset is contractible is given by Quillen [1978, Section 1.5]: a
poset C is conically contractible if there is an object c0 2 C and a map of posets f W C ! C such that
c � f .c/� c0 for every c 2C . In this case one can show that the identity 1C , the map f , and the constant
map with value c0 from C to itself are homotopic (that is to say, their realizations are homotopic), and
hence C is contractible. So, given a diagram E 2 Ho.MDN /, to check that the canonical morphism

�i W hocolim
CN

i�E! hocolim
DN

E

is an isomorphism it suffices to check that the slice categories ˛n= i of the functor i W CN ! DN are
contractible for any ˛ 2 f�; 
; ˇg and any n 2 Z=N Z.

We will now apply this to our functor i W CN ! DN , which is the inclusion of the two-row crowned
diagram into the three-row crowned diagram (3.1.2).

Lemma 4.1.4 The functor i W CN !DN is homotopy final.

Proof We will prove the above proposition by applying Quillen’s criterion of conical contractible posets.
First, we identity the slice categories �n= i , 
n= i and ˇn= i and then we will check that they are indeed
conically contractible. We start with �n= i . By definition,

�n= i D f˛n 2 CN j i.˛n/� �ng D f�ng:

Since this poset contains only one element it is obviously contractible. The next slice categories are of
the form 
n= i . By definition,


n= i D f˛n 2 CN j i.˛n/� 
ng;

that is, 
n= i is the poset
�n �nC1

ˇn

OO ==

We choose ˇn and 1 W 
n= i ! 
n= i . Directly from above we can see that 
n= i is conically contractible.
The last case is the slices ˇn= i . By definition,

ˇn= i D f˛n 2 CN j i.˛n/� ˇng;

which is the poset
�n �nC1

ˇn

OO ==

ˇnC1

OO

We choose ˇn and the map of ˇn= i ! ˇn= i as

�n 7! �n; �nC1 7! �nC1; ˇn 7! ˇn; ˇnC1 7! �nC1:

With these choices, we can see that the poset ˇn= i is conically contractible.
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Finally, we obtain the commutativity of the bottom triangle of our big diagram, which also concludes the
proof of Theorem 4.1.1.

Corollary 4.1.5 The bottom triangle of (1.0.2) commutes , that is ,

hocolim
CN

i�E Š hocolim
DN

E:

4.2 Proof of main theorem

Finally, we are in a position to assemble all our work into our main theorem.

Theorem 4.2.1 Let A be a hereditary abelian category , and M be a monoidal stable model category
such that Franke’s functor

R W .D.Œ1�;1/.A/;˝L/! .Ho.M/;^L/

exists and is an equivalence. Then R preserves the monoidal products up to a natural isomorphism , that is ,

R.M�˝L M�/ŠR.M�/^L R.M�/:

Proof We assemble our proof along the lines of the diagram (1.0.2). Let M� and N� be objects in
D.Œ1�;1/.A/. By Convention 2.1.1, both objects are cofibrant. Since M� is cofibrant, the functor

M�˝ � W C.Œ1�;1/.A/! C.Œ1�;1/.A/

is left Quillen, see [Hovey 1999, Remark 4.2.3], which means it preserves cofibrant objects. Since both
objects are cofibrant, the tensor product M�˝N� represents the derived tensor product in .D.Œ1�;1/.A/;˝L/

and in particular it also cofibrant. Recall from Example 2.3.11 that the cofibrant objects in C.Œ1�;1/.A/ are
the projective objects in A. This means, in particular, that M�;N� and M�˝N� all belong to Aproj. We
recall some notation from Section 3. Given a crowned diagram X 2MCN as

X�0
X�1

: : : X�N�1

Xˇ0

OO
44

Xˇ1

OOaa

: : :

``

Xˇ�1

OO
bb

we set

Z.n/.X /D F�.X�n
/; B.n/.X /D F�.Xˇn

/; C .n/.X /D F�.cone.Xˇn�1
!X�n

//:

Given .M�; d/ 2 C.Œ1�;1/.A/, one can construct a crowned diagram X in L such that

.C�.X /; d/Š .M�; d/; Z�.X /Š ker d; B�.X /Š im d:

By the discussion above, M� 2Aproj. By assumption, A is a hereditary abelian category, in other words,
gl:dimAD 1. This implies that ker d; im d 2Aproj since they are submodules of M�.
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Hence, for the crowned diagram X Š Q�1.M�/ we have F�.X˛n
/ 2 Aproj for every n 2 Z=N Z and

any ˛ 2 f�; ˇg. Similarly, for the dg-object .N�; d/ we get a crowned diagram Y ŠQ�1.N�/ such that
F�.Y˛n

/ 2Aproj for every n 2 Z=N Z and any ˛ 2 f�; ˇg.

Now, by Theorem 3.1.5,

Q.i�Lpr!.X ^
L Y //ŠQ.X /˝Q.Y /DM�˝N�

and by Theorem 4.1.1,

hocolim
CN

.i�Lpr!.X ^
L Y //Š hocolim

CN

X ^L hocolim
CN

Y:

Finally, we recall that Franke’s realization functor (2.5.4) is defined by

RD hocolim
CN

ıQ�1;

which concludes the proof.

The assumptions of Theorem 4.2.1 are satisfied in the following instances.

Example 4.2.2 From [Patchkoria 2012, Corollary 5.2.1] we know that

R WD.��R/!D.R/D Ho.R-mod/

is an equivalence for a ring spectrum R with ��.R/ concentrated in degrees that are multiples of some
N > 1 and global dimension of ��.R/ equal to 1. This satisfies the assumption of our Theorem 4.2.1 and
applies to RDKU , RDKU.p/, RDE.1/ (complex K–theory), and RD k.n/ (connective Morava
K–theory).

Example 4.2.3 By [Franke 1996; Roitzheim 2008] we know that

R W D.Œ1�;1/.A/! Ho.L1S/

is an equivalence. Here, A is the category of E.1/�E.1/–comodules, and L1S is a suitable category
of spectra equipped with the K–local model structure at an odd prime. Note that as mentioned in
Example 2.3.11, that while A does not have enough projectives, all our proofs also work when working
with comodules whose underlying E.1/�–module is projective; see also the first author’s thesis [Nikandros
2022].
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