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Monoidal properties of Franke’s exotic equivalence

NIKITAS NIKANDROS
CONSTANZE ROITZHEIM

Franke’s reconstruction functor R is known to provide examples of triangulated equivalences between
homotopy categories of stable model categories, which are exotic in the sense that the underlying model
categories are not Quillen equivalent. We show that, while not being a tensor-triangulated functor in
general, R is compatible with monoidal products.

55P42; 18N55

1 Introduction

For several decades, Franke’s exotic equivalence has been fascinating to homotopy theorists, as it is a
rare example of a machinery that provides an equivalence up to homotopy between two model categories
which are not Quillen equivalent. In practice, the known situations where Franke’s construction can be
applied to obtain the equivalence

R: DD (4) - Ho(M)
link an algebraic model category (D([l]’l)(A) is the derived category of a flavour of chain complexes in a
suitable abelian category .4) with a stable model category M which is not necessarily algebraic. Key

examples include

¢ A the category of w4 (R)-modules for a ring spectrum R and M the category of modules over R,
together with some extra assumption on the projective dimension of 74 (R) as well as . (R) being
concentrated in degrees that are multiples of some N > 1,

e A the category of E(1)«E(1)—comodules and M the category of K—local spectra at an odd prime.

In this paper, we will always assume that R exists and is an equivalence.

Both the algebraic side D{LD (4) and the topological side Ho(M) are equipped with monoidal structures
derived from the monoidal model category structures on c@n (A) and M, so it is only natural to consider
whether R is compatible with these. But as R is not derived from a Quillen functor C([l]’l)(A) —- M,
this problem requires a different approach working closely with the construction of R itself.

The example of K—local spectra at p = 3 tells us that we cannot expect R to be a monoidal functor in
general: the preimage of the mod-3 Moore spectrum is a chain complex that is a monoid, whereas the
mod-3 Moore spectrum has no associative multiplication [Ganter 2007, Remark 1.4.2]. However, we
obtain the following, which is the main result of this article.
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5162 Nikitas Nikandros and Constanze Roitzheim

Theorem 1.0.1 Let (M, A) be a simplicial stable monoidal model category and let (A, ®) be a hereditary
abelian monoidal category with enough projectives such that Franke’s reconstruction functor R exists and
is an equivalence. Then

R: DUV (), @) — (Ho(M), AT)

commutes with the respective monoidal products up to a natural isomorphism

R(My @ Ny) = R(My) A R(Ny).

The reconstruction functor R rebuilds M from algebraic data in the following way. Firstly, part of the
assumptions on .A is that it splits into shifted copies of a smaller abelian category B. This is then used to
split an object of C(11:1)(4) into pieces, which are placed in certain crown-shaped diagram Cy. Using
this piecewise data, one then constructs a Cy—shaped diagram in M. Finally, the homotopy colimit over
Cy is applied to get to Ho(M). Specifically, R is the composite

hocolimc N

—1
R:DUID (1) £ £ € Ho(MEN) ——5 Ho(M).
We therefore take the diagram

DU (4) x DD (4) “RATR L Ho (M) x Ho(M)

®’Ll Aml

pUlD(4) R Ho(M)

which we would like to show to be commutative and refine it in the way below in order to deal with the
different components of R separately:

D{LD (4) x DUD (4) ———— Ho(MN) x Ho(MEN) —— Ho(M)

AL | = hocolim
HO(MCNXCN)
(1.0.2) -@L— IL pry=Ho Lany,
Ho(MPw)
i*
Q_l
D([I],l)(_A) Ho(/\/lCN) . Ho(M)
Q hocolimcy,

Here, Dy denotes a suitable modification of the crown-shaped diagram Cp together with an inclusion
i: Cny — Dp. (All the ingredients will of course be defined in detail where appropriate.) The outline of
our proof roughly follows the key points of [Ganter 2007]; however, we choose to work in a setting of
model categories, which makes our exposition more explicit and straightforward. Overall, we have relied
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Monoidal properties of Franke’s exotic equivalence 5163

on contemporary methods and we refer to modern literature. Our techniques put Ganter’s theorem in firm
rigorous footing and in better context with other existing literature, as well as hopefully making it more
adaptable to future generalisations.

This paper is organised as follows.

In Section 2 we recall the background and tools that we need for our main result and proof, namely
simplicial replacements, homotopy Kan extensions, monoidal structures on diagram model categories, a
specific mapping cone construction, calculating homotopy colimits using the homology of a category
with coefficients in a functor, as well as a recap of the construction of Franke’s functor.

In Section 3 we will begin by setting up one of our main results, which involves working out the middle
vertical part of the diagram (1.0.2). The key ingredient is given by a spectral sequence argument calculating
the vertices of the functor LL prj(X A Y'). We will then feed this into the definition of Franke’s functor Q
in order to obtain the necessarily formulas for monoidality on the left hand side of (1.0.2), dealing with
underlying graded modules of the twisted chain complexes and the differentials separately.

Section 4 now wraps up the right hand side of the diagram (1.0.2) which mostly involves standard
properties of homotopy colimits. We can finally assemble these results into the proof of the main theorem
and finish with some examples.
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acknowledge EPSRC grant EP/R513246/1 for funding this project. Furthermore, we would like to thank
Nora Ganter, Irakli Patchkoria and Neil Strickland for helpful comments and support.

2 Preliminaries

In this section we will introduce some of the terminology that we need for our result. We assume that the
reader is familiar with the basic background regarding simplicial sets, homological algebra and model
categories.

The category of simplicial sets is denoted by sSet. For n > 0, A" denotes the standard n—simplex. For an
arbitrary category C, the notation sC stands for the simplicial objects in C, ie sC = Fun(A°P, C). We have
I=A'"and I = A'Ux and S® = A% U x. Similarly, S! stands for the simplicial circle 1/(0 ~ 1),
that is, A1 /9A1L.

We will let A be a graded (Z—graded) abelian category, which means that A possesses a shift functor [1]
which is an equivalence of categories, and [n] denotes the n—fold iteration of [1]. The graded global
homological dimension of A, gl.dim A, is the supremum of the projective dimensions of objects in .A.
An abelian category A is called hereditary if gl.dim A = 1. There are other, equivalent descriptions of
hereditary abelian categories but this one suits our purposes best.
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5164 Nikitas Nikandros and Constanze Roitzheim
2.1 Model categories

We will now set up our background on model categories. We write any cofibrant replacement functor
0: M — M that comes with a natural weak equivalence g: Q — 1 4.

Convention 2.1.1 We let Ho(M) denote the category McofW™!], where M.os denotes the full subcate-
gory of cofibrant objects of M, and we denote the set of morphisms in Ho(M) by [X, Y.

Convention 2.1.1 allows us to provide a very simple description of the left derived functor L F of a left
Quillen functor F: M — N. Indeed, the functor

F|Mcof: Meof = Noeof

preserves weak equivalences and, therefore, it induces a functor between the localization. This functor is
precisely L F' with our convention.

Finally, an important class of model categories is the class of simplicial model categories. These are model
categories which are enriched, tensored and cotensored over sSet and which satisfy the pushout-product
axiom (SM7). If a simplicial model category is pointed, ie the terminal object is isomorphic to the initial
one, then M is enriched over the category sSets of pointed simplicial sets. In particular, we have functors

—® —:sSety x M —> M, Map,,(—, —): M?P x M — sSety,

and the adjunction
Hom (K A X, Y) = Homgse (K, Map (X, Y)),

see [Barnes and Roitzheim 2020, Definition 6.1.28; Riehl 2014, Section 11.4].

2.1.1 Diagram categories We will use model structures on diagram categories throughout the paper.
Below we introduce the definition of a direct category which is a generalization of the concept of a poset;
see [Hovey 1999, Definition 5.1.1] for further details.

Definition 2.1.2 Let @ denote the poset category of the ordered set {0, 1,2,...}. A small category J is
called direct if there is a functor f: J — w that sends nonidentity morphisms to nonidentity morphisms.
We refer to f(j) as the degree of the object j. Dually, J is an inverse category if there is a functor
J°P? — @ that sends nonidentity morphisms to nonidentity morphisms

Any finite poset J is a direct category, and dually J°P is an inverse category. We provide some examples
that will be useful later on.

Definition 2.1.3 Suppose M is a small category with small colimits, J a small category, z an object
in J and J; the category of all nonidentity morphisms with codomain z. The latching space functor
L,: M7 — M is the composition

colim

M) > M2 =5 M,
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where the first arrow is the restriction functor. Equivalently the latching space of a diagram X is given by
. X
L;X =colim(J; — J — M),

where J, < J is the inclusion.

Note that we have a natural transformation L, X — X for any fixed object z € J.

We can now describe the projective model structure on M ; see [Hovey 1999, Theorem 5.1.3].

Proposition 2.1.4 Given a model category M and a direct category J, there is a model structure on
M7 in which a morphism f: X — Y is a weak equivalence (resp. fibration) if and only if the map
fz: Xz — Y, is a weak equivalence (resp. fibration) for all z € J. Furthermore, f: X — Y is an (acyclic)
cofibration if and only if the induced map

X [ LY > Y.
L. X
is an (acyclic) cofibration for allz € J.

We will now give the finite posets J that are going to play a central role throughout this paper.

Example 2.1.5 By [1] we denote the poset 0 < 1. We are aware that early in this section we also denoted
the shift functor on graded objects. Both are standard notation, and from our use of the poset 0 < 1 there
is vanishingly little danger of confusing those two.

Example 2.1.6 Consider the poset
(0,0) —— (1,0)

l
0,1

denoted by . Let ¢:[1] =" be the map of posets which sends 0 to (0, 0) and 1 to (1, 0). In other words, ¢
includes the interval [1] to the top horizontal line. Furthermore, consider the product of the interval posets
[1] x[1]. It is the poset

0,0) —— (1,0)

L

0.1) — (1.
and we let ir: "— [1] x [1] be the inclusion.
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5166 Nikitas Nikandros and Constanze Roitzheim

Example 2.1.7 Let N > 2 be a natural number. The poset Cy consists of elements {f;,¢; |i € Z/NZ}
such that 8; < ¢; and B; < {4 fori €e Z/NZ, ie

%o 4 EN-1
T T
Po B Pn-1

Then X € MEN is cofibrant if and only if the canonical map L, X — X, is a cofibration in M, ie if and
only if the Xpg,, X¢, are cofibrant and the induced morphism

X vV Xpg = Xy,

is a cofibration, where V is the coproduct in M. We will refer to an object X € MEN as a crowned
diagram due to the crown shape of the diagram Cy.

Example 2.1.8 Let Dy be the poset consisting of elements {8, ¥n,{n | n € Z /N Z} such that

Bn<vn=C and B, = Yn+1 and  yu < §n+1,
So 1 {N—1
LA
Yo Y1 YN—-1
74T

Bo B1 BN-1

ie

Remark 2.1.9 In what follows, when we have a direct category I and a model category M, the category
of diagrams M will always have the model structure defined in Proposition 2.1.4 without further mention.
If not, we will explicitly say so.

It follows that for any model category M and direct category J, there is a Quillen adjunction

colim: M7 2 M :const.

(Note that when we write an adjunction, the top arrow will always denote the left adjoint.)

Definition 2.1.10 The left derived functor of colim: MY — M is called the homotopy colimit and is
denoted by

hocolim: Ho(M? ) — Ho(M).
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If J =T, then the homotopy colimit is called homotopy pushout. A particular example of homotopy
pushout is the homotopy cofiber which is the homotopy pushout of a diagram of the form

X L Y
*
and we write
(2.1.11) hocofib( /) := hocolim(x < X i) Y).

In general, for notational convenience sometimes a homotopy pushout is denoted by

h
hocolim(Z « X —¥):=Z [ [ .
X

2.1.2 Homotopy colimits in simplicial model categories In Definition 2.1.10 we recalled the definition
of the homotopy colimit as a derived functor. Here, we will present an alternative construction via
simplicial techniques. After introducing some definitions we briefly explain how this method provides a
good theory of homotopy colimits; see also [Riehl 2014, Chapters 4, 5; Shulman 2006, Section 7].

Let M be a model category and consider the category of simplicial objects sM = MA™. We consider
sM as a simplicial category with tensors defined objectwise, ie for K € sSet and X € s M we have

Now, let M be a simplicial model category. Given a simplicial object X € s M we can construct an object
in M via geometric realization, see [Hirschhorn 2003, Definition 18.6.2].

Definition 2.1.12 (geometric realization) Let X € MA® . The geometric realization of X, denoted as
| X|, is defined as the coequalizer

coeq( ]_[ A e X, = ]_[ A" ®Xn).

o:[n]—[k]leA [n]leA

This is an example of a functor tensor product (coend). In this case, the geometric realization is the
functor tensor product of X : A°® — M and the functor A*: A — sSet, [n] — A”. In other words, the
realization | X| is the object

n
A.®AopX:/ An®Xn

The following theorem is the cornerstone of our exposition of homotopy colimits using geometric realiza-
tions; see [Goerss and Jardine 1999, VII 3.6; Hirschhorn 2003, 18.4.11; Riehl 2014, Corollary 14.3.10].
For details for the Reedy model structure on s M, see [Goerss and Jardine 1999, Definition 2.1].
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Theorem 2.1.13 If M is a simplicial model category, then
|—: MAT > M
is a left Quillen functor with respect to the Reedy model structure. In particular, | —| sends Reedy cofibrant

simplicial objects to cofibrant objects and preserves objectwise weak equivalences between them.

At this level of generality, this is the strongest result possible. It is not true that geometric realization
preserves all objectwise weak equivalences. However, the above will suffice for our purposes. We can now
start to work our way to the homotopy colimit of a diagram X € M in a simplicial model category M.

Our first definition towards this goal is the simplicial replacement functor. That is to say, given any

diagram F: I — M we can replace it with simplicial object in M with good properties.

Definition 2.1.14 (simplicial replacement) Let I be a small category and consider a diagram X e M/,
The simplicial replacement of X is the simplicial object in M, denoted srep X given in simplicial degree

[n] by
(srep X), = 11 Xiy.

(io—>i1—>—>in)ENU)y

The coproduct is indexed over the set of n—chains
o=lig—>i] = — iy

over the nerve of I. If 0 < k < n, then

dy: (srep X)p — (srep X)p—1
maps the term X;, indexed on o to the term Xj;, indexed on

olk)=[ip = i1 = ix—1 = i1 = —in]

via the identity, while for & = n, the map d, sends the term X;, to X;,_, indexed on

o(n)=lip —> iy —> - —>ip_1]
via the induced map X (i, — i,—1). The degeneracy maps

sj:(srepX)p — (srep X )41, 0=j=<m
are easier to define. Each s; sends the summand Xj, corresponding to the summand
[io > i1 — - —in]

to the identical summand X;, corresponding to the chain in which one has inserted the identity map
ij —ij.
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In other words, the simplicial replacement is the following simplicial object,
[l = 1] %= 11 %o
io io—i1 ig—>i1—i2
where degeneracy maps are omitted. Note that this is can also be found in literature as the simplicial bar

construction or Bousfield—Kan construction denoted by B(x, I, X).

Remark 2.1.15 The colimit of a diagram X € MZ, if it exists, agrees with the colimit of srep(X) € sM.
Indeed, consider the colimit of the diagram srep(.X) as the coequilizer

[[x=]]x

j<i
but this is precisely the colimit of X. Therefore in this case, srep(X) has the augmentation
srep(F) — co}im F,
where we regard the object colimy F as a constant simplicial object.

We therefore reach the following result.

Lemma 2.1.16 Given a diagram X € M! and its simplicial replacement srep(X) € MA”, there is a
canonical isomorphism
co}im X x~ ccilim(srep(X ).
op

The proof can be found in [Riehl 2014, Lemma 4.4.2]. The following lemma will also be of importance,
see [Riehl 2014, Lemma 5.1.2; Shulman 2006, Lemma 8.7].

Lemma 2.1.17 Let I be a small category and let M be a simplicial model category. If F € M! is
objectwise cofibrant, then srep(F) € s M is Reedy cofibrant.

The above Lemma 2.1.16 and Theorem 2.1.13 essentially mean that geometric realization of objectwise
cofibrant diagrams is a good model for calculating homotopy colimits. For details see [Riehl 2014,
Theorem 6.6.1].

2.2 Homotopy Kan extensions

In this subsection we will introduce homotopy Kan extensions, the homotopy invariant version of ordinary
Kan extensions, see eg [Hirschhorn 2003, Section 11.9].

Now, let M be a model category. Furthermore, let 7, J be direct categories and f: I — J a functor. The

pullback functor

preserves weak equivalences, so it defines a functor between homotopy categories, which we denote by
the same letter. Recall the functor Lany = fj, left adjoint to ™. We have the following proposition.
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Proposition 2.2.1 Let M be a model category and let f: I — J be a map of direct categories. Then the
adjunction
fiiMl 2 Mm?

is a Quillen adjunction.

Proof This follows from the definition of the projective model structure; see Proposition 2.1.4. The
functor /™ is a right adjoint by construction. It preserves weak equivalences and projective fibrations,
which means that /™ is also a right Quillen functor. O

Thus, the derived functors of the adjoint pair ( f;, /*) define an adjoint pair on the level of homotopy
categories
LLans :=L fi: Ho(M’) 2 HoM”): R f*,

A useful fact about homotopy Kan extensions is that they does not change the homotopy colimit of a
diagram, which is similar to the properties of ordinary Kan extensions.
Corollary 2.2.2 Let M be a model category, f: I — J a map of direct categories and let X € M.
Then there is a canonical isomorphism in Ho(M)

hocylimIL SX = hoc?lim X.
Proof This follows from the fact that for every pair of left Quillen functors F and G there is a natural

isomorphism
LFoLG —» L(FoG),

see [Hovey 1999, Theorem 1.37], together with the natural isomorphism
colJim Lang X = co}im X. |
To conclude this section, we will shortly discuss how one calculates the values and edges of a homotopy

Kan extension. Recall the notion of a slice category for given posets C and D and a functor f: C — D,
namely

(2.2.3) fld=1{ceC| flc)<d}

for d € D. The following is [Cisinski 2009, Proposition 1.14], which tells us that homotopy Kan extensions
can be computed pointwise.

Proposition 2.2.4 Let f: I — J be a map of posets and let X be any functor I — M. For any object
j € J there is a canonical isomorphism in Ho(M)

(L /iF); = hocolim(f/j % I X M),
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2.3 Monoidal model categories

Let us now turn to some results concerning monoidal model categories, see eg [Hovey 1999, Definition
4.2.6], [Barnes and Roitzheim 2011, Definition 6.1.9] or [Riehl 2014, Definition 11.4.6] for definitions.

Remark 2.3.1 Let (C, A) be a closed symmetric monoidal category and let f: Xo — X; and g: Yy — Y3
be maps in C. The pushout-product map is the universal arrow

fOg:XorYy [ Xi®Ye—> X1 Y.
XonYy
Another way to see the pushout-product map is as a left Kan extension. Again, consider a cocomplete,
(closed) monoidal category (C, A). Let [1] = {0 < 1}. Furthermore, consider the following map of posets.
pr:[1]x[1]—=[1], (0,0),(1,0),(0,1)+ 0,
(1,1~ 1.
Now let f and g be morphisms in C. We can consider them as objects in the arrow category f, g € Cl!l. The

functors f:[1] — C and g:[1] — C give rise to their objectwise tensor product f A g, see Definition 2.3.2.
That is, the functor

frg:l]x[l]—=C

is the following commutative diagram:

XonYy—— X1 AY

I

XonYT — X1 A Y

Note that the slice category pr/0 is the poset ™ and the slice pr/1 is the whole square. It follows that the
map

colim(f A g) — colim(f A g)
r [1]x[1]
induced by the inclusion "< [1] x [1] is exactly the map

fOg: XoAY; ]_[ X{AY] > X; A Y.
XoAYo

So indeed, (Lany (/' Ag)) =pn(fAg)=fOg.

2.3.1 Smash products for diagram categories A monoidal category (M, A) gives rise to more
monoidal categories by considering diagrams from small categories into M. In our next example we
discuss how this is related to model category theory.
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Definition 2.3.2 Let (M, A) be a monoidal category and let / and J be direct categories. We define the
external product, which is the bifunctor

—A—MIxMT - mII
sending (X, Y) to the diagram

XANY: IxJ—->M, (6 j)—XinY.

The external product is part of a two-variable adjunction. Since we do not use the extra structure will not
define the other two functors in the two-variable adjunction. We have the following proposition.
Proposition 2.3.3 Let (M, A) be a monoidal model category. Then, the bifunctor

— A= MExMT > MY
is a Quillen bifunctor, that is to say, it has a total left derived functor

— Al —:Ho(MmT) x Ho(M?) — Ho(Mm*Y).

Proof Suppose that the injective model structures /\/lilnj, Mi{u- and MIIHJXJ exist, eg if M is a combinatorial
model category. Since in the injective model structures the cofibrations are the objectwise cofibrations,
the above proposition follows directly. The universal property of — AL — implies that up to canonical

isomorphism both constructions give the same result. |
We have the following corollary.

Corollary 2.3.4 In the context of Proposition 2.3.3, there is a functor isomorphism
hocolim(X AT ¥) 2 (hocolim X) AL (hocolim Y).
IxJ I J
Proof From Proposition 2.3.3, it follows that the external product preserves diagram cofibrant objects
and preserves trivial diagram cofibrations between diagram cofibrant objects. The result now follows

from the strict formula
colim(X A Y) = (colim X) A (colim Y')
IxJ 1 J

as all the objects involved are cofibrant. |
As a consequence of Proposition 2.3.3, we also obtain the following.

Example 2.3.5 Let (M, A) be a monoidal model category and let J be a direct category. Consider
the diagram category M with the model structure of Proposition 2.1.4. The category M inherits a

monoidal structure
M xMT > M (X, Y) > X Y,

where X A'Y is the diagram j — X; A Y;. By a proof analogous to that of Proposition 2.3.3, (M7, A) s
a monoidal model category.
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Corollary 2.3.6 Let (M, A) be a pointed symmetric monoidal model category, and let f: X — Y and
g:U — V be morphisms in M. There is a canonical isomorphism

hocofib( f) AL hocofib(g) = hocofib( f Ot g).

We will provide a proof since it is important to our exposition. A different proof can be found in [Hovey
2014, Proposition 4.1].

Proof We may assume that X, Y, U, V are cofibrant in M. By definition,

hocofib( /) AL hocofib(g) = hocolim( < X EN Y) AL hocolim(x < U & v).

By Corollary 2.3.4, this is isomorphic to

|
|

Kk —— %
B
F—> — >
<
~
K> —— >
=

2.3.7) hocolim

\ /

We denote the above underlying " x"—diagram by Z. We define the following map of posets

pI‘I'—X'_—> l—, ((1’0)’(1’0))'_)(1’0)’

((0,0),(0,0)), ((0,0), (1,0)), ((1,0), (0,0)) = (0,0),
else — (0, 1),

and consider the homotopy left Kan extension
(2.3.8) Lpr,: Ho(M X") — Ho(M").

Applying the formula Proposition 2.2.4 to the diagram Z we obtain (Lpr;Z),0) = ¥ A V. Next, for the
object (0, 0) the slice category pr/(0, 0) is just the poset " and we have

fnl
XANU—YAU
(LpryZ)(0,0) = hocolim ll/\g

XAV
and finally, (Lpr;2),1) = *. Note that
(Lpr,2)0.0) — (Lpri2)a0) = f O g.
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Hence, the homotopy left Kan extension (2.3.8) of the underlying diagram (2.3.7) is the following
M —diagram:
XAVIxv Y AU —=Y AV

|

*

It follows directly that the homotopy colimit of this diagram is
hocofib( f ok g). |

2.3.2 Stable model categories and triangulated categories Recall that the homotopy category Ho(M)
of a pointed model category M supports a suspension functor

3 :Ho(M) — Ho(M)
given by
2 X :=hocolim(* < X — %),
with a right adjoint functor
Q:Ho(M) — Ho(M)
given by
QX =holim(* — X <« *).

Definition 2.3.9 A stable model category is a pointed model category for which the functors ¥ and 2
are inverse equivalences.

Example 2.3.10 The prototypical example of a stable model category is the category of spectra, Sp.
There are of course many variants of spectra, but as our result does not depend on a choice of suitable,
monoidal model category, we will not need to specify this further.

Example 2.3.11 Let A be a graded abelian category with enough projectives, and let C'1-1(4) denote
the category of mwisted ([1], 1)~chain complexes or differential objects. An object of C{1:D(4) is a pair
(M, d) with M, € A together with a morphism (the differential)

d: My — M[1],

such that d[1] o d = 0. The category C{[':1)(4) admits a stable model structure, the projective model
structure, where the weak equivalences are the homology isomorphisms and the fibrations are the
surjections. In particular, the cofibrant objects are the projective objects of 4. We let D([l]’l)(A) denote
the homotopy category of C111(4). For an object (My, d) € C111:D(4) we define the homology
H(M) =kerd/imd, and so we have the homology functor

H,: DUV (1) - A

In the following we will let (A, ®, 1) be an abelian symmetric monoidal category with enough projectives.
In this case (C111D(4), ®) is a monoidal stable model category. Finally, we mention the homology
functor Hy: DULD(4) > Ais a lax symmetric monoidal functor via the Kiinneth morphism.
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We note that our methods throughout this paper also work in a setting where A does not have enough
projectives. In the case of A = E(1)4E(1)-comod, C11:D(4) can be equipped with a model structure
where the cofibrant twisted chain complexes are degreewise projective as E(1),—modules. This relative
projective model structure is also monoidal; see [Barnes and Roitzheim 2011, Section 5].

If M is a pointed simplicial model category, then the suspension functor
X : Ho(M) — Ho(M)
admits a simple description. Indeed, by the simplicial model category axioms, the functor
S'A—:M—> M

defined using the tensor with simplicial sets is a left Quillen functor. Then, X can be defined as the left
derived functor of ST A —, ie
X :=S'"Abx =St A Qx;

see [Hovey 1999, 6.1.1]. Note that if M is stable, then the homotopy category Ho(M) is a triangulated
category with X a shift functor; see [Barnes and Roitzheim 2011, Theorem 4.2.1; Hovey 1999, 7.1.6].

In a simplicial model category M we can choose a particular model for the homotopy cofiber (2.1.11) of
a morphism, which will help with computations. It is called the mapping cone construction.
Definition 2.3.12 Suppose M is a simplicial stable model category and f: X — Y a morphism in M.
Let cone( /) be the pushout of f along the canonical morphism

incl®1:S°® X > (1,00 X =CX,
that is, cone( /) comes with the pushout square

X%Y

incl®ll l

CX —— cone f
Here CX = (1,0) ® X denotes the cone of X. The natural map

7:([,LO)RX > S'®X
and the trivial map
«V >S'@X

induce, using the universal property of pushout, a map 9: cone(f) — S! ® X.

The fact that the mapping cone construction represents the homotopy cofiber and further details can be
found in [Barnes and Roitzheim 2020, Section 4.3].
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Definition 2.3.13 Let M be a simplicial stable model category and f: X — Y a morphism in M.
The elementary triangle associated to f is the triangle

XLY—L>cone(f)iSl®X.
A triangle (f, g, h)

VRN RSy

in Ho(M) is called distinguished if it is isomorphic to an elementary one.
2.4 Homology of a category with coefficients in a functor

In this subsection we will introduce one our main tools, namely homology of a category with coefficients
in a functor. It is a particular case of functor homology that assigns the groups Tori (F, G) to functors
F:I — Aand G: I°°? — A with A an abelian category. Since we do not need such generality, we will
introduce it in a more down-to-earth way using simplicial techniques that dates back to Quillen. Traditional
references include [Oberst 1967; 1968], more contemporary references include [Gélvez-Carrillo et al.
2013; Richter 2020, Chapters 15, 16].

Before we define the homology of a category with coefficients in a functor we will define the associated
complex of a simplicial object in an abelian category.

Definition 2.4.1 Let D € s.A be a simplicial object in .A. We define the associated complex (C,(U), ) €
Chxo(A) by .
Ca(D) = Dy, 3p =y (—=1)"d;: Ca(D) - Cu—1(D).
i=0
Note that the simplicial identities imply 9% = 0, so C,(D) is indeed a chain complex. Moreover, this
evidently defines a functor C: s.4 — Ch>(A). In other words, the associated complex to a simplicial
object D € s A is the following chain complex:

do—d do—d+d
(2.4.2) Dot D <" D,

Definition 2.4.3 Let / be a small category and consider a diagram D: I — A. The homology of the
category I with coefficients in the functor D is defined as the homology of the complex C,(D), ie the
homology of the associated complex of the simplicial replacement srep(D) € s.A.

So, unwinding the definition, we start by first taking the simplicial replacement srep(D): A°? — A of D,
see Definition 2.1.14, that is, the diagram

Pro—= D= D o

l()—)ll l0—>ll—)12

Then, we consider the associated chain complex (2.4.2) of C,(D). Then we defined H,(/; D) to be the
p™ homology group of the chain complex C,(D).
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Now we will investigate how these constructions help us calculate homotopy colimits. First, recall the
following.

Definition 2.4.4 We call a functor Fy: Ho(M) — A homological if it satisfies the following conditions:
(i) Fiy is a graded functor, that is to say, it commutes with suspensions, so there are natural equivalences

Fo(SX) = Fo(X)[1]:= Faey (X)

which are part of the structure.
(i) F is additive, ie it commutes with arbitrary coproducts.
(iii)) Fi converts distinguished triangles into long exact sequences.

(iv) Furthermore, if (M, A) is a monoidal model category and (4, ®) is a monoidal abelian category,
we require that Fy is lax symmetric monoidal, that is, there is a natural Kiinneth morphism

kx.y: FxX ® FiY — Fu(X AL Y).
Now let M be a simplicial stable model category, let I be a direct category and let X € Ho(M?). Further,

let
Fy:Ho(M) — A

be a homological functor into an (graded) abelian category. Then there is a spectral sequence
(2.4.5) Elz,q =Hy(I; FgX) = Fpiq (hoc?lim X);

see [Richter 2020, 16.3.1]. The construction of the spectral sequence (2.4.5) arises from the skeletal
filtration of a simplicial object. This spectral sequence will play a central role in our calculations for the
monoidal properties of Q in Section 3.

2.5 Franke’s realization functor

In this subsection we will recall the construction of Franke’s equivalence
R: DULD(4) - Ho(M).

For a detailed exposition we refer to [Patchkoria 2012, Section 3.3; Roitzheim 2008]. Recall that Cyy is the
crown-shaped poset from Example 2.1.7, and that the category DULD (4) above is the derived category
of twisted chain complexes from Example 2.3.11, where A is a graded symmetric monoidal hereditary
abelian category with enough projectives, M is a simplicial stable model category, and F : Ho(M) — A
is a homological functor. Also, we assume A splits into shifted copies of another abelian category B,

N-1
A= P Hli]
i=0
for N > 1. Under these assumptions, R exists and is an equivalence.
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For an object X € MEN we have the structure morphisms of X,
li:Xﬂ,-_>X§,~, ki:Xﬂ,-,lﬁXé'iv iEZ/NZ.
Furthermore, let
ZOX) = Fu(Xy),  BO(X) = Fu(Xp,), CP(X) = Fu(cone(k:)),
2D = F;: BOX)>zO(X), ieZ/NZ,
where cone(k;) denotes the cone construction from Definition 2.3.12. We will now list some additional
assumptions that we need in order to assemble the C @ into a chain complex Ci.
Definition 2.5.1 Consider the full subcategory £ of Ho(MEN) consisting of those diagrams X e

Ho(MEN) which satisfy the following conditions:

(i) The objects Xg; and X, are cofibrant in M for any i € Z/N Z.
(i) The objects Fx(Xp;) and Fx(X¢,) are contained in B[i] for any i € Z/N Z.
(iii) The map A®: F, (Xp;) = Fx(X¢,;) is a monomorphism for any i € Z/N Z.

Next we construct a functor
Q: £ — cUlD(y).
Let X be an object of L. As the functor
Fy:Ho(M) — A
is homological, the distinguished triangles
ki
Xg,_, — X¢; — cone(k;) — X Xp, |
induce long exact sequences
. . o . o .
<= BU(X) - 2O (x) Lo D (x) L BED 01 - 2D (X0)[1] - -+
Note that BV~ (X) € B[i — 1] and Z®(X) € B[i] for all i € Z/NZ, since X € L. Therefore, the
morphisms B¢~V (X) - Z®O(X) and BE—D(X)[1] = Z® (X)[1] are zero. As a consequence, for any
i € Z/NZ we actually obtain short exact sequence in A,
. O) . @) .
(2.5.2) 0— ZzDx) = cDx) L BV x)[1] - o.
Now consider the following objects in A.
Cy(X) = C(O)(X) ® C(l)(X) DD C(N_l)(X),
Z.xX)=z20x) e zVx)@---@ 2NV (x),
B.(X)=BOX)e BV X)®---® BN V(X).
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The morphisms A® (D p® ; € 7 /N7, induce morphisms between the direct sums
A By(X) = Zo(X), r=20g1Vg...9a VD
10 Zx(X) = Cy(X), =P Dg...q,ND,
p: Co(X) = Bo(X)[1], p=pQ@pV @@ pN,
After summing up, we get a short exact sequence of objects in A
(2.5.3) 0= Ze(X) 5 C(X) L Bo(X)[1]— O.

Splicing this short exact sequence with its shifted copy gives an object in C([l]’l)(A). More precisely,
define
d = ([1JA[l]p: Cx(X) — Cu(X)[1].

We have d? = 0 by construction and therefore we get a ([1], 1)—twisted complex. We have now arrived at
the definition
0:£—-clVy, o) = ( P F*(cone(ki)),d) = (Cx(X). d).
i€eZ/NZ
It can be shown that Q is in fact an equivalence of categories. The composite

hocolim

11,1 o!
(2.5.4) cUD(4) = £ 22 Ho(M).

factors over DU1:1)(4) — Ho(M), which is Franke’s realization functor R. It follows from the construc-
tion of R that it commutes with suspensions and that Fy o R =~ Hy.

3 Monoidal properties of O

In this section, we will examine properties of the bifunctor
i*Lpr;(— A =): Ho(MEV) x Ho(MEN) — Ho(MEN)
via Theorem 3.1.5, which is one of the main ingredients of the diagram (1.0.2).

3.1 Preliminaries on crowned diagrams

Recall the poset Cy from Example 2.1.7 (the crown shape with two rows) and the poset Dy from
Example 2.1.8 (the crown shape with three rows). We will be interested in two functors between these
two categories. The first functor is the projection functor

(3.1.1) pr:Cy xCn — Dy, (Bi, Bj) = Bi+j, (i, §) = Givj,s

@i, Bj) = Vi+j, (Bi.§j) = Vit
Note, that we really should be writing B; (imoa &) and ¥; 1 jmodn) €tc, but we commit a small abuse of
notation and avoid this. The other functor that we will be interested in is the functor

(3.1.2) i:Cn—>Dn, Cu—>Cn, Bur Vi,
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which is the inclusion of the crown shape Cyy into the bottom two rows of Dy . Since weak equivalences in
the diagram categories are given objectwise, the functor i *: MPN — MEN preserves weak equivalences.
Thus, it defines a functor on the homotopy categories, which we denote by the same letter, that is,

i*: Ho(MPN) > Ho(MN).

Next, recall the external smash product for diagrams X € M and Y € M7 for I and J direct categories
from Definition 2.3.2. By choosing I = J = Cy, it follows formally that we have the bifunctor

(3.1.3) — A _:MCN XMCN _)MCNXCN'
By Proposition 2.3.3, the external product has a total left derived functor
(3.1.4) — AL —: Ho(MEN) x Ho(MEN) — Ho(MENXCN)Y.

Given diagrams X, Y € Ho(MSN), we can define the homotopy left Kan extension of the external smash
product X Al'Y € Ho(MEN*CN) along the projection functor pr: Cy x Cy — Dy, that is,

E =Lpry(X A Y) € Ho(MmPN).

Now that we have all the necessary ingredients we can finally state the following theorem.

Theorem 3.1.5 The bifunctor
i*Lpr;(— A =): Ho(MEV) x Ho(MEN) — Ho(MEN)

satisfies the following. Let X, Y € L such that Fyx(Xy,,), Fx(Yy,) € Aprj for any n € Z/N Z and any
a €{B,¢}. Then, i*Lpr (X ALY) € L, that is to say, we have a bifunctor

i*Lpr(— Al =) Lx £ — L.
Furthermore, there is a natural isomorphism

QG *Lpry(X AL Y)) = 0(X)® Q(Y).

The theorem has two parts. First, we show that i *Lpr,(— A —) is in fact a bifunctor
i*Lpry(— AV —): Lx £ — L.

The second part is that for any two crowned diagrams X, Y € £ satisfying the stated hypotheses, there is
a natural isomorphism

QG *Lpry(X AL'Y)) = Q(X) ® Q(Y).
The two parts combined yield that the following diagram commutes (up to natural isomorphism):

cULD () x cUID(4) X2 £

®l li*]Lpr!

S —
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The first part of Theorem 3.1.5 is the content of Section 3.3 and Proposition 3.3.1. The natural isomorphism
Q™ Lpry(X AT Y)) = Q(X) ® Q(Y)
is the content of Sections 3.4 and 3.5 and Proposition 3.6.6.

3.2 Slice categories of the projection functor

Again, the values of Lpr(— AL —) are given by the formula in Proposition 2.2.4. That is, the values of
E at the objects of Dy are given by

(3.2.1) E,, = hocolim(X AL Y),
pt/Vn

(3.2.2) E, = hocolim(X A Y),
pr/n

(3.2.3) Eg, = hocolim(X AL Y).
pr/Bn

The structure morphisms of the diagram E, ,: E,, — E¢, and ken: Ey, ., — E,, are the edges of the
homotopy Kan extension and are given by the natural maps

(3.2.4) E,, = hocolim(X AL Y) — hocolim(X Al YV) = E; ,
pr/¥n pr/&n

(3.2.5) Ey,., = hocolim(X A" ¥) — hocolim(X AL Y) = E¢,,
pr/Yn+1 pr/&n

induced by the maps of posets ¢ and i, respectively, see (3.2.8).

Since we are interested in the homotopy Kan extension of the functor pr: Cy x Cy — Dy, we need to
identify all the slice categories involved, ie pr/{y, pr/y» and pr/B,. We have the following three cases.

(i) The first case is pr/¢,. For n € Z /N Z and the object ¢, we have the slice category pr/{,
(i ¢j)

43;) Bi4))
(Bi-1.¢j) \/ G Bj—1)
yx’\\ / (Bi. Bj) \ /

Bi1.B)) Gibio)—

(Bi—1.Bj-1)

where i + j =n (mod N). Note that all the nonidentity morphisms are of the form (1, /;) or (/;, 1) and
similarly (1, k;) or (k;, 1) for any i € Z /N Z. The poset pr/{, follows the same pattern to the left and to
the right.
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(ii) Next we have the case pr/yy,. Let n € Z/ N Z and consider now the slice category pr/y, which looks

as follows,
(ﬂz 1, é‘z—i-l) (é‘l’ﬁ] (IBMEJ (§1+1,,B] 1)
/ (,31 1 ;81 (,Bl P IBJ (,31 ’ /3/ 1) \

where i + j =n (mod N). Similarly to the above all the nonidentity morphisms are of the form (1, /;)
or (/;,1) and (1,k;) or (k;, 1) foranyi € Z/NZ.

(iii) Next is the case pr/f8,. Let again n € Z/ N Z but now we consider the slice category pr/8,. Notice
that it is

(Bi=1.Bj+1) (Bi. Bj) (Bi+1.Bj-1)

in which i 4+ j =n (mod N). In other words, it is a discrete category. This means that

Eg, =hocolim(X A" Y)= @5 Xp AV g,
pr/Bn itj=n

This is the only case that we can be explicit about the values of the homotopy left Kan extension

E =Lpr (X AL Y).

(iv) Our last example is a particular subposet of pr/¢, and it is not strictly speaking a slice of any value.

However it will be very useful for us is the following. Consider the following subposet J, < pr /¢,

defined as follows

(Ci—1-Ci+1) (i &) Ci+1-8i—1)

NN N

(:31 1’,31 (ﬂlaﬂ] 1)

where i + j =n (mod N). In this poset, the nonidentity morphisms are of the form (k;, ;) or (/;, ki),
unlike the examples above where one arrow was always the identity arrow.

Remark 3.2.6 Now let 6: J, — pr/¢, denote the inclusion of the subposet defined in (iv) into the poset

in (i). We will define a map of posets
L:pt/¢y — Jy,

where it suffices to define it for the part of the poset visible in (i) as the rest can be defined analogously.
The map L is given by
L:pt/Sn— In. (Bit1. Bj) > (Biv1. Bj),
(Bi. Bj+1) = (Bi. Bj+1),
else — (i, &j).

Algebraic € Geometric Topology, Volume 24 (2024)



Monoidal properties of Franke’s exotic equivalence 5183

We note that L left adjoint to 6- this can quickly be verified straight from the definition as the morphism
sets in either poset are either empty or consist of exactly one element. As a consequence, since the
inclusion map 6: J,, — pr /&, is a right adjoint, it is homotopy final, ie for any F € Ho(MP/%n) we have

hocJolim 0*(F) = hocolim F.

pr/&n

In other words, the value E¢, in (3.2.1) can be calculated as

(3.2.7) E¢, = hocolim(X Al V) = hocolim 0*(x Al Y).

pr/&n

We discuss homotopy finality in more detail in Section 4.1; see Definition 4.1.3.

Given any of subposet of Cy x Cy, eg pr/yy, from example (ii), we can define the restriction of the external
smash product X AY € MENXCEN to pr/y, by taking the pullback along the inclusion v:pr/y, — Cx xCy,
that is,

V¥ MONXON 5 pqPt/ 7

Notice that v* preserves weak equivalences so it induces a functor on homotopy categories
V¥ Ho(MENXEN) s Ho(MP/ ),

Moreover, we have maps between the subposets of Cn x Cpr. The morphisms y, — {, and y,4+1 — {p
induce maps of posets

(3.2.8) Y ipr/Yn = pr/Sn. @:pr/Yn—1 = pr/én.
which in turn also induce pullback functors on the homotopy categories, that is,

¢*: Ho(MP/%7) — Ho(MP/¥n=1)and ¢ *: Ho(MP7%") — Ho(MP/ V7).
We conclude this section with a convention.

Convention 3.2.9 Because of the above, we will commit an abuse of notation and instead of writing, for
example,

¢* (X AL'Y) € Ho(MP/7n)
we will simply write
X ALY € Ho(MmPvm),

with the understanding that this diagram was given by a composition of restriction functors
TT* ¢>k
Ho(MEN*ENY 2 Ho(MPY5n) Zs Ho(MP/ V)
unless we need the extra notation for clarification.
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Remark 3.2.10 Consider a diagram F € Ho(MS~N*C~), By Convention 2.1.1, we can assume that F
is a projective cofibrant object, so in particular, it is objectwise cofibrant. The external smash product

— A —: MOV x MEN 5 pMONXCN

as defined in (3.1.3) is a Quillen bifunctor, so in particular it preserves cofibrant objects. This implies that
X ALY is cofibrant in MENXEN 5o in particular it is objectwise cofibrant. Now, for any subposet

t:J > Cy xChn,
eg any of the slice categories of the projection functor pr (3.1.1), we have the pullback functor
t*:McNXCN%MJ-
This functor is not necessarily a left Quillen functor with respect the projective model structures; see
Proposition 2.1.4. However, the diagram .* (X AL Y), is objectwise cofibrant, which means that the geomet-

ric realization of the simplicial replacement still models the homotopy colimit of the diagram ¢* (X AL ¥).
In particular, the skeletal filtration of all the restrictions is always Reedy cofibrant; see Lemma 2.1.17.

3.3 Spectral sequence calculations

The main result of this subsection is that given crowned diagrams X, Y € £ that for satisfying a simple
condition, the diagram i * E = i *Lpr (X AL Y) is also in the subcategory £, ie the objects X, g; and X,
are cofibrant in M, the objects Fx(Xp,) and Fix(X¢,) are in B[i], and the map

2D Fo(Xp,) — Fi(Xe,)
is a monomorphism for any i € Z/N Z; see Definition 2.5.1. Essentially, this condition is that for the
given homological functor Fy: Ho(M) — A, either the crowned diagram X or Y is objectwise projective.
Proposition 3.3.1 Let X,Y € L such that Fy(Xqy,), Fx(Yy,) € Apwoj for any n € Z/NZ and any
o € {B. ¢}. Consider the homotopy left Kan extension E = Lpr (X ALY) € Ho(MPN) of

X AFY € Ho(MENXEN)
along
pr: Cy xCny — Dy

with the values and morphisms given in (3.2.1)—3.2.3) and (3.2.4), (3.2.5), respectively.

Efo E§1 ECN—l
EVO Eyl ct EVN—]
Eg, Eg, Egy_,
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Then, foranyn € Z/NZ and any o € {f8, {} we have Fyx(E, ) € B[n] and the morphisms

Fu(Ey,) — Fu(Ey,)
induced by E,, — E¢, are monomorphisms.

Corollary 3.3.2 Let X, Y be crowned diagrams satistying the hypothesis of Proposition 3.3.1. The top
two rows of the diagram E = Lpr (X ALY) form an object in L, that is, the diagram i*E € L.

By our assumption, for any n € Z /N Z and any « € {B, {} the objects Fx (X, ) and Fx(Yy,, ) are projective
in A. This ensures that there are natural Kiinneth isomorphisms

(3.3.3) Fu(Xq, AV Yy,) = Fu(Xy,) ® Fu(Yy,).

Since the values E¢, , Ey, and Eg, are computed via homotopy colimits, we will use (2.4.5), the spectral
sequences converging to the homology of the homotopy colimit.

Lemma 3.3.4 There are spectral sequences

(3.3.5) E}, = Hy(pr/yn: Fg(X AV Y)) = Fpig (hc;?/c;}im(X AL Y)) = Fpyq(Ey,)

and

(3.3.6) En = Hy(pr/in: Fg(X A" Y)) = Fpyq (h%cr:%lim(X AL Y)) >~ Fp+q(Ee,)

and natural morphisms of spectral sequences f:{E J%q} —{E l/qu} induced by the map in (3.2.4).

We will now begin the proof of Proposition 3.3.1.

Proof Our claim is that Fx(Ey,) — F«(E¢,) is a monomorphism, where
E = Lpr(X AF Y) € Ho(MPN)

as before and Fy: Ho(M) — A is our homological functor. To obtain information on Fx(E,,) and
Fy«(E¢,), we will start by working out the spectral sequence (3.3.5), which we explained is a special case
of the spectral sequence (2.4.5). The proof of the proposition is divided into three parts:

e calculating the Ey—term Hp(pr/yn; Fq(X A YY),
e calculating the E,—term Hp(pr/$y; Fy(X AL YY),

¢ showing that the induced map of spectral sequences gives the desired isomorphism.
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Step1 Hp(pr/yn; Fq(X AL'Y))

We will use the simplicial replacement techniques explained in Section 2.4. Recall the poset pr/y;, which
is

(,31 1»;:4—1) (é‘l»ﬁj (ﬁl’gj (§z+1 ,81 1)

(Bi-1. Bj) (Bi. Bj) (Bi.Bj—1)
Here, i + j =n (mod N), and so the functor X AT Y € Ho(MP/¥7) looks as follows:
Xﬁt 1 A Y§1+1 XC! A Y.Bj Xﬁt A Yé-] X§t+1 A Yﬂ] 1

X A Y X, Y, X A Y,

Our goal is to compute
Hy,(pr/yn: Fg(X AL Y))  forall p>0andallq € Z,

which are the E2—terms of the spectral sequence (3.3.5). In order to do so, we apply the homological
functor Fy,(—) to the previous diagram to get the diagram Fy,(X AL Y) € AP/¥n which, by (3.3.3), is

Bi-D g ZU+D 7O g B B o 7(0) B+ g ZG-
(33.7) /\/\/\/\
BW g BU)
We will write
(3.3.8) fii=r®1:BD g BY) » 70 g g0,
(3.3.9) gij=1®kj: B9 BY) - B g 7W),

to distinguish, for labelling purposes, the two different morphisms in the simplicial replacement below.
Note that since B' and B/ and projective in A, by our convention they are automatically flat, hence the
morphisms (3.3.8) and (3.3.9) are monomorphisms.

Next, we consider the simplicial replacement of the diagram F,,(X AL Y) € APY/¥x that is
srep(Fp(X AL Y)) € AR,

Following Definition 2.1.14 we have that

i+j=n

step(Fu (X A Y)) = @ (BY @BV, @ (BY @ BY),,)).

i+j=n
with face maps given by “source” and “target” respectively. Because of the shape of the poset pr/yy,, for
all m > 2 the simplices srep(Fy (X AL Y)),, consist solely of degenerate simplices.
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Now we consider the associated complex Cy (F,, (X AL Y)) of this simplicial complex, see Definition 2.4.1.
We briefly explain the differential of the complex Cx(E (1)_n(X AL Y)), namely the map

d=dy—dy: Ci(Fp(X AFY)) > Co(Fu(X AL Y)).
Notice from (3.3.7), we can consider the simpler case where the diagram is
70 & BU) BW g ZU)
X gij
B® g BU)
Then, the differential of the associated complex of the simplicial replacement of this diagram is
dij =do—dy: (BD @ By (BO? @ BV > (BO g B (2O @ BY)a (BD @ ZW)),
(x, ») = (x +p, = fij (%), =gij ().
The 0™ homology of the complex is just the pushout
BWD g ZzU) L[ z® g BO,
BHOQBU)
The first homology is the kernel of the differential d;;. Since the maps f;; and g;; are injective, this
forces d;j(x, y) = 0 if and only if x = y = 0, which implies that the first homology is trivial. It follows
from the diagram (3.3.7) that the differential d on the complex Cx(F, (X AL Y)) is the direct sum of
the differentials d;; for i + j = n. Now that we know the differential of the complex Ci (Fy (X Al YY)
we will compute its homology. It follows that Ho(pr/yu; Fn(X AL Y)) is the colimit of the diagram

Fn(X AL Y). By inspecting the diagram F, (X Al“ Y) above we can see the colimit of the diagram is a
direct sum (coproduct) of pushouts, that is,

HoGor/ i FaX A1) =colim Fy(X AL 1) = @) (20080 [ 500 20).
pr/¥Yn i+j=n BHOQBU)

Similar to the simpler case, the first homology

Hy(pr/yn: Fa(X AT Y))
is the kernel of the differential

do —dy = step(Fu(X AV Y)) = srep(Fu(X AL Y)),.
Since it is a direct sum of the simpler differentials d;; as above, it follows that
Hy(pr/yni Fa(X A Y)) =0,
Of course, all the higher homologies

Hy(pr/yn; Fa(X ALY))

vanish for all g > 2.
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Next, we apply the homological functor F,_;(—) to the diagram X ALY € Ho(MP"?7) and we have
the diagram F,_ (X AL Y) € AP/7n which is

\/\/\/\

BU-1 g BU) 0 Bi@ BU-D

Clearly,
Ho(pr/yn; Fa1 (X AL Y)) =0,
and

Hi(pr/yn: Fast (X AF YY) = @ BD @ BY.
i+j=n+1

It follows that for all p > 0 and all m # —n,—n —1 mod N, the terms H,(pr/yn; Fm(X AL Y)) all
vanish. This completes the computation of the E? terms of the spectral sequence. It is concentrated in
degrees (0,m) and (1, m — 1) with m =n mod N. Therefore the spectral sequence collapses and we
have a short exact sequence

0— @ (Z(i)®§(j) D B(i)®2(j)) S RE— @ BY@BY -0,
i+j=n BOQBU) i+j=n+1
This concludes the calculation of the spectral sequence (3.3.5).
Step 2 Hp (pr/Sns Fg (X AL Y))

We will now repeat the previous strategy and apply it to the spectral sequence (3.3.6). Recall the poset J,
from (iv), which is the following subposet of pr/,:

(Gi-1.Civ1) (i. 8j) Git1,8i-1)
N N N
(Bi-1.B)) (bi,bj—1)

By Remark 3.2.6, the inclusion functor 6: J, — pr/{, has a left adjoint L, and we have

E¢, = hocolim(X AL Y) hocJolim 0*(X Al Y);

pr/&n

see (3.2.7). So, instead of the spectral sequence (3.3.6) we can compute the following spectral sequence
Hy(Ju: Fy(0*(X ALY))) = Fpyy (hocjolim 9% (X AL Y))
since both converge to the same target, ie the Fx—homology of E¢ ,

Fy (hocjolim 0*(x AL Y)) ~ F, (hoc;);hm(x AL Y)) ~ Fi(Eg,).

Pr/Sn
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In fact this, can be made stronger. The adjoint pair L: pr/{, & J,: 6 induces a natural isomorphism
Hi(pr/Cn: Fg(X AV Y)) = Hy(Jy, 0% Fy(X AL Y)).

From the diagram J; we again only need to consider Fy,(—) and F_,_;(—). Firstly, we apply F,(—) to
the diagram 6*(X AL Y) and we get F,,(0*(X AL Y)) € A7 as

7G-D) g 76+  ZO g 7()  Zi+D) g Fi-1)

7N NN

From this we get that
Ho(Ju: Fa(0*(X AV YY) = @ 2P 02D
i+j=n
and
Hy(Jus Fa(0* (X AV Y))) =0, p=1.

Next, we will apply the functor F,_;(—) to obtain the diagram F,_; (6*(X Al Y)) € A7» depicted by

/\/\/\

BG-1 g BU) BW g BG-D

From the above we get that

Hy(Ju: Fasr 0" (X AV YY) = @ BD e BY
i+j=n+1
and
Hy(Jn; Fu1 (0*(X AL Y))) =0 for p=0and p > 2.

This completes the computation of the E2—term of the final spectral sequence. It is concentrated in
degrees (0,m) and (1,m — 1) with m =n mod N. Therefore, the spectral sequence collapses and we
have a short exact sequence

0> P 2902V > FuE,) > @ BP®BY —o.
i+j=n i+j=n—1
Step 3 the monomorphism F,(E,,) = Fs(E¢,)

Now that we have calculated both spectral sequences we can continue with the proof that Fi(E,,) —
F«(E¢,) is a monomorphism. The map of posets v : pr/y, — pr/{, induces morphisms on homologies
of categories with coefficients F,(—) and F,_;(—) respectively, ie

Hio(pt/ yn; Fa(X AV Y)) = Hy(pr/ln; Fa(X AV Y)) = Hy(Jn; Fa(0*(X AT Y))),
Hi(pr/Vn: Fae1 (X AV Y)) = Hy(pr/Sn: Fae1 (X AV Y)) 2 Hi(Jn: Fumr (0% (X AL Y))).
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Hence we have a morphism of short exact sequences

0— &P (Z(i) ® BU) ]—[BU)@E(J') BW g Z(J')) — Fy(E),) — @D B g BU) 0

i+j=n l i+j=n+1

0 D zOgzW Fu(Ee) — @ BOQBY —0
i+j=n i+j=n+1

By naturality, the left vertical map is the direct sum of the pushout-product maps

MO (Z(") ®89 | BV Z‘f)) PP 0}
BO®BU)
By Lemma 3.7.2, the map A; O Y j 1s injective which means that so is the left vertical map. The five
lemma now implies that the morphism

Fu(Ey,) = Fu(Eg,)

is an injection. In particular, Fx(Ey,) and Fy«(E¢,) are concentrated in the correct degrees and the
induced morphisms Fx(Ey,) — Fx(E¢,) are injections. This concludes the proof of the proposition. O

Corollary 3.3.2 now follows: the diagram E is indeed in the subcategory £ € Ho(MEN) as the vertices
are in the correct degree shifts of 5, and F applied to the edges Ey, — E¢, is a monomorphism, which
is precisely how £ was defined.

3.4 Cones

In the previous section we proved that for any two crowned diagrams X, Y € £ which are objectwise
projective, i * E =i *pr(X ALY) € £. In this subsection we will prove that applying the functor Q to the
object i * E is a good model for the tensor product Q(X) ® Q(Y'). This will follow as a corollary from
the following proposition.

Proposition 3.4.1 Consider E € Lpr (X AL'Y) € Ho(MPN) and let i* E be the pullback of E along
i:Cny — Dp. Foreveryn € Z./ N Z we have a canonical isomorphism

cone(i*Eﬂn_1 —i*E;,) = \/ cone(k;) Ak Cone(lgj),
i+j=n

where k;: Xg, | — X, is a structure morphism of X € L.

Proof This proof has three main parts. Firstly, we will work out the morphism i*Eg,_, — i*E,

by calculating the relevant values of Eg _, and E¢, using their description as homotopy colimits over

1
slice categories; see Section 3.2. We will arrive at the conclusion that the left-hand side is actually
hocolimy, /¢, (cone(ey Ly )), where ey 4Ly is the counit of a certain adjunction. We will then explicitly

determine the map of diagrams €y Ly in Step 2 and calculate its cone in Step 3.
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Step 1 unravelling i*Eg,_, —i*E¢,

Recall the slice categories of the map pr: Cy x Cy — Dy over {y, pr/{, from example (i), and pr/yy
from example (ii). By definition of i, we have that

(i*Eﬂn—l - I*ECH) = EVn—l - Eg'n

Let us begin by recalling the diagram X ALY € Ho(MP"ér). The thick arrows show the image of the
map of posets ¢: pr/yu—1 — pr/&n:

(s“l,ij
4 ) (
(ﬂ, 1 g ’ /3 & Bj-1)
(3.4.2) \ /
(,3“
(/31 1»,3] (ﬂhﬂ] 1)
(ﬂl—l:ﬁj—l)

Recall from (3.2.2) that

XAly
E¢, = hocolim(pr/¢y, = Cy xCyn AN M),
and we committed an abuse of notation by writing

E, = hocolim(X A ¥) = hocolim 7* (X AL Y).
pr/&n pr/&n

Also, recall from (3.2.5) that the morphism E, | — E¢, is the canonical morphism

E,, _, =hocolim o (X AL Y) — hocolim(X AL Y) = Eg,
pr/¥n—1 pr/&n

induced by the map of posets ¢: pr/y,,—1 — pr/{,. The pullback functor
P*: Ho(/\/lpr/z”) N HO(MPI/Vn—l)
has a left adjoint defined by the homotopy left Kan extension L¢,, that is,
Ly : Ho(MP/7n=1) 2 Ho(MP7/n): ¢*.
The counit of the derived adjunction ¢: L¢y¢* — Id provides the canonical natural transformation
(3.4.3) ex iy Log* (X ALY) — X Al Y.
Lastly, since ¢ is a homotopy left Kan extension, there is a canonical isomorphism

hocolim ¢* (X A Y) 2 hocolim Ly * (X AL Y).
pr/Yn—1 pr/n
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Putting all this together means that the left-hand side of Proposition 3.4.1 is

hocolim(cone(ey  Ly)).
pr/én

Step 2 working out ey Ly
The underlying diagram X ALY e Ho(MP/%n) is
X gl A YCJ

/\ Yﬂ] Xﬂz AN Y;]

: Xﬂl IAYz] Xe; N Y,
(3.4.4) /
Xﬂ, P A Yﬂ, Xp; NYp,
Xﬁi—l A Yﬂj—l

Furthermore, the homotopy left Kan extension L¢y¢* (X AL Y) € Ho(MP'/én) is

th 1 A ng ]—[XBI 1/\YB /\ Y'B] 1

Xi /\Yﬂ Xﬂl/\Yﬂ

: Xﬂl LAY i A Yﬂ, 1
(3.4.5)

Xﬂz 1/\Y/3] /\Yﬂ] 1

Xﬁi—l A Yﬁj—l

We briefly explain how we calculated the left homotopy Kan extension Ly (X AL Y). From the formula
of Proposition 2.2.4 for calculating homotopy Kan extensions, we can calculate the homotopy left Kan
extension L¢h¢™* at an object (a5, ;) € pr/¢y, as

¢*(XALY)
L1 (X AY Y) (g, == hocolim(¢/ (s, @) = pr/yu—1 ———> M).

For the object (;, B;), the slice ¢ /({;, B;) consists only of the object the object (8;_1, B;), which implies
that

(]L¢!)(§'i,/3j) =Xg_, A Yﬁj'
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For the object (B;, {;), the argument is the same as above. For (B;, B;), the slice category ¢ /(B;, B;) is
empty, which means that

(L) (pi.py) = *-
For the object ({;, {;), the slice category ¢/(&;, {j) is the poset

(Bi—1.Bj) (Bi-1.Bj-1) (Bi. Bj-1)

But the subposet

(Bi—1.¢j) «— (Bi—1.Bj—1) — (&i. Bj—1)

is homotopy final, which means that

kini
Xg; /\Yﬂj—l X, /\Yﬁj—l
(L)@ 6 = (Ld) g ¢;) = hocolim lm%
Xpiy N Y,
Step 3 calculating the cone in the left-hand side

Next, we calculate the cone of the natural transformation ey \y (3.4.3) of diagrams in Ho(MP"/%7). We
have the diagram cone(ey ALy ) € Ho(MP"/%n), which is

cone(ex ALy):pr/in —> M, (a5, ;) > cone(d(X AL Y )0 = (X AL Y)(@,.a0))-

In other words, we are taking objectwise cones of the canonical map from the diagram (3.4.5) to the
diagram (3.4.4). This means that cone(ey Ly ) is

cone(k; O lﬂc‘J)

AY&. Xﬂi /\Ej

*

Here, we have denoted
C' := cone(k;) = cone(X;_; — X¢,), C/ .= cone(Ej) = cone(Yj_1 — Y¢,).
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Next, we determine the homotopy colimit of the diagram cone(ey Ly ). One way is to observe that
the homotopy colimit of the above diagram is isomorphic in Ho(M) to the homotopy colimit of (finite)
coproduct of squares

EX/gl. AN Yﬂj _— cone(k,-) N Yﬂj

(3.4.7) l l

Xg; A cone(ic}) — cone(k; O Ej)

where we can consider the above as an object in Ho(./\/l[l]x[l]). Formally this is obtained by taking the
visually obvious map of posets f: [1] x [1] = pr/{p, ie

0,0) = (Bi. ;). (0.1) = (&, Bj), (1.0) = (Bi.¢), (L 1) (. &)

and considering the pullback
f*: HO(MPr/Zn) N Ho(/\/l[l]x[l]).

The bottom right corner of the poset [1] x[1] is its final object, which implies that the homotopy colimit of
the diagram (3.4.7) is naturally isomorphic to cone(k; (" k 7). Hence the homotopy colimit over pr/¢y,
is, up to natural isomorphism, the coproduct \/; . j=n cone(k; m cone(l’cvj)). Another way of seeing this
is by pulling back the above diagram to 8,: J, — pr /{,, and we get the diagram

cone(k;_, O kjt1) cone(k; O kj) cone(k;; O kj—1)

N N N

All in all, we have that the homotopy colimit of the diagram (3.4.6) is

(3.4.8) hocolim(cone(ey ALy )) = \/ cone(k; O™ Ej).

pr/¢n itj=n

Finally, by Corollary 2.3.6, we have the canonical isomorphism
cone(k; ot l:,-) =~ cone(k;) AL cone(Ej)
for each pair i, j € Z /N Z. The coproduct of these isomorphisms together with (3.4.8) gives us that

hoc%lim(cone(sX,\L y)) = \/ cone(k;) Ak cone(ic}).

pr/on i+j=n

Let us now gather all this information to prove Proposition 3.4.1. Calculating the homotopy cofiber (cone)
of the morphisms i * Eg, | — i* E¢, is the same thing as calculating the homotopy cofiber E,, | — Eg, .
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We have the following natural isomorphisms:
cone(i*Ep, , —i*Ey,) =cone(Ey,_, — Eg,)
— cone (hocoum¢>*(X AL Y) = hocolim(X AL Y))
T

pr/Yn—1 pr/&n
~ cone(hocolim $1¢* (X AT Y) = hocolim(X AT Y))
pr/Sn pr/&n
o~ hoc;)glim(cone(q‘)!d)*(X AFY) > (X AL Y)))
Pr/Sn

= \/ cone(k; OF Ej)

i+j=n
~ \/ cone(k;) AL cone(l@-). |

i+j=n

Corollary 3.4.9 Let X, Y, E as before and assume furthermore that Fyx(Xy,), Fx(Yy,) € Apj for any
ne€Z/NZ and any o € {{, B}. Then there is a canonical isomorphism

CW(*E) = Fu(cone(i*Ep, | —~i*Eg,)) = @ cOx)ecP ().
i+j=n

Proof By our assumption, for any « € {{, B} and any n € Z/NZ, the object Fx Xy, is projective.
Therefore, by definition, Z® (X)) and B®#~1(X) are projective. The short exact sequence (2.5.2) now
implies that for any i € Z /N Z the graded object C (i)(X ) is projective. It follows by our assumptions
that

Fy(cone k; AL cone l;) >~ Fy(coneky) ® Fy(conek;).

By Proposition 3.4.1 we have

cone(i*Eg, , —i*Eg,) = \/ cone(k;) AL cone(k;),
i+j=n

and applying the functor Fx(—) we have

Fy(cone(i*Ep, , —i*Eg,)) = F*( \/ cone(k;) Al cone(/gj))

i+j=n

>~ @ Fy(cone(k;) Ak cone/@)
i+j=n

= @ F*(conek,-)®F*(cone/€j).
i+j=n

Shifting the above by [n] = [i + j] we have
cCWi*E)y= P cPx)ecP). 0
i+j=n
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3.5 Differentials

In the previous subsection we proved that Cx (i *E) =~ Cx(X) ® C«(Y) as objects in A, so the diagram
i*E is a good candidate for the tensor product
Ci(X) ® Cx(Y).
The final step in order to show that indeed
QU*E) = Q(X)®Q(Y)

as objects in CU11:1D(4) is to prove that the differential d : Cx(i* E) — Cx (i * E)[1] coincides with the
differential of the tensor product Cy(X) ® C«(Y). That is, we have to show that

(Cx(i"E).d) = (C«(X) ® Cx(Y), dg).
where dg is the differential of the tensor product of the dg-objects (C«x(X), d) and (C«(Y), d).
3.5.1 Reduction to the case of disks We will reduce the proof to a much simpler case. Let Ly €

CU1-D(4) and choose s € Z /N Z. Without loss of generality we will assume that Ly is degreewise
projective. Consider the map of differential graded objects,

e 0 = L 0
3.5.1) l H ldﬁ l
ds+2 Ls+1 ds+l Ls_l dsfl LS—Z dsfz e

where we view the top differential graded object as an object in B[s — 1] @ B[s], meaning that it is
concentrated in degrees s —1 and s modulo V. We denote this by D* (L), and we denote the above map of
differential graded objects by f7, s: D®(Ls)— L«. Under the equivalence of categories Q: L — c@lD(4)
there are crowned diagrams X and X’ and a morphism F: X — X’ such that the morphism f7 s is
realized as Q(F). This means that there are isomorphisms

9(X)=D’(Ls), QX)L

and the following diagram commutes:

o(x) 22, o(x)

% F

DS(Lg) — Ly
fL,s

Now let M, be another differential graded object, which we also assume to be degreewise projective, and
lett € Z/NZ. Similarly to (3.5.1) we have the morphism

EM - Dt(Mt) — M.
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Again, under the equivalence Q there are crowned diagrams Y and Y’ and a morphism G: Y — Y’ such
that
Q(Y) = D'(M;), Q(Y')= M,

and the following diagram commutes:

o) 29 o)

= F

t
We have the morphism of dg-objects f7.s ® garr: D¥(Ls) ® D' (M;) — L« ® My, which is
—>L3®Mt—>(LS®Mt)@(LS®Mt)—>

(3.5.2) l l(d“'@)id, id®d")

— P LiMj ——— b LiMj ——---
i+j=n i+j=n+1

where the left vertical morphism is the inclusion of the (s, 7)™ summand and the right vertical map is the
universal map out of the coproduct.

Now assume that
Q(i*pry(X AT Y)) = Q(X) ® Q(Y),

that is, we prove our claim for the case of X = Q™1 (D%(Ly)) and Y = Q! (D?(M,)). The commutativity
of the square (3.5.2) implies that the bottom vertical maps must also coincide with the tensor product
Ly ® My, ie

0@ *pry(X' AL Y')) = L, @ M,

and the following diagram commutes degreewise:

Q@*pry(X AV Y)) —— QG *pr (X' AT Y))

J |

DS(Lg) ® D' (M;) —— Ly ® My

The horizontal maps are indeed maps of dg-objects, so if we can show that the left hand vertical map is too,
then the claim follows for the general L and M. The proof of the former will occupy the next subsection.

3.6 Differentials for disks

To prove the claim for disks, we discuss a crowned diagram that corresponds to the disks. By [Patchkoria
2012, Proposition 3.2.1], there is an object A € Ho(M), such that Fx A € B[s — 1] = L, which is due to
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the fact that our assumptions force the corresponding Adams spectral sequence to collapse. Consider the

- AN

where the nontrivial entries are at the (s—1)—spot, ie
X'Bs—l = sz—l =4.

crowned diagram
A

A

The diagram X is in £ since
Bi(X) =B V(X)=FuXp_, = Fsd and Zu(X)=Z""D(X)=F.X;,_, = FsA.

Next, we calculate (Cyx(X), d) € C1LD(4). The only nontrivial cones are cone(ks—;) and cone(ky).
This means that

CW(X) = Fy cone(ky) = Fx cone(A — %) = Fy(SA) = (FyxA)[1],
COED(X) = Fycone(ky_1) = Fy cone(x — A) = Fy A,
Ce(X)=CO6 D(x)e CcWx).

We obtain that A : By (X) — Z4(X) is the identity map, t: Z(X) — Cx«(X) is inclusion to the first factor
and p: Cx(X) — B« (X) is the projection to the second factor. It follows that d: Cx(X) — Cx(X)[1] is
the identity. Similarly, D?(L,) is mapped to a crowned diagram Y in which

Yg,_, =Y, = A,
where the only nontrivial morphism is the identity.

We now have the ingredients to deal with the following proposition.

Proposition 3.6.1 Let X and Y be the objects of £ of the form Q1 (D*(Ly)) and Q~'(D*(M,)). Then
Qi*Lpr(X AT Y)) 2 (Cu(X) ® Cu(Y). do).

where (Cx(X) ® Cx(Y), dg) is the tensor product of Cx(X) and Cy(Y) in CT11D (4).

Proof We note that the tensor product DS(Lg) ® D'(M;) is concentrated in degrees s +1, s +1—1,

and s +7 —2 modulo N. As we already know that our chain complexes agree degreewise, these are the
only degrees where we have to calculate our differential. As usual, we write £ = Lpr (X AL Y).

We will work out the differential in the chain complex Q(i *Lpr, (X AL Y)), beginning with
Q(l'*E)S+t — C(S+t)(l*E) — C(S+t—l)(l~*E) — Q(i*E)S-‘rt—l’
and we will discuss the other degree
C(S-l-t—l)(i*E) N C(S+t_2)(i*E)
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afterwards. Our proof is divided into the following steps.

We start by going through the definition Q applied to i * E using the descriptions given in Section 2.5,
where we will arrive at the exact triangle

Cone(l€s+,) —XEy ., > XE,, , — Econe(/€s+,_1).
The next steps separately determine E¢ ., followed by the maps
cone(l/c\sﬂ) —->XEy ., Ey,, ,—>F¢,, , and E¢ .  — cone(lger,_l).
Putting those together, we obtain the desired differential.
Step 1 recalling the construction of Qi *E)*t — Q(i*E)s*!-1

By Proposition 3.3.1 and Proposition 3.4.1 we can construct a diagram E = Lpr, (X A Y) e Ho(MmPw)
such that
i*Eel and cone(i*Eg, , —i*E;, )= \/ cone(ki) A cone(gj).
i+j=n
For notational convenience we will write

lg,,:i"‘E,gnf1 —i*Eg, and Ip: i*Eg, — Eg,
for the structure maps of the crowned diagram i * E. We briefly recall the construction of the differential
d:Cy(i*E) — Cx(i*E)[1], d=1]A[1]pCx(i*E) — C«(i* E)[1].

Degreewise, the differential on C ™ (i* E) — C =D (i* E) is given by applying Fy(—) to the sequence
of maps

(3.6.2) cone(lg,,) —XEy, > XE; | — Econe(l?,,_l).

Therefore, we have to show that for n = s + ¢ the sequence of maps (3.6.2) after applying Fi(—) gives
us the differential of the tensor product of disks. By Proposition 3.4.1, we have

cone(lgs.;_t) =~ cone(ky) Al cone(E,),
cone(l’c\sﬂ_]) ~ (cone(kg_1) Al cone(l:,)) v (cone(ks) AE cone(l;,_l)).

Recall that 4 = Xg | = X¢,_, and A= Yg,_, = Y¢,_, asbefore. Directly from the structure morphisms
of the crowned diagrams X and Y we have

cone(ks4s) = (SA) A (SA),  cone(ksis1) = (AASA)V (SAA A).

To analyse the sequence of maps (3.6.2) it remains to calculate £y, |, E¢ ., E¢ , and the maps
EVs+t—1 - Efs-i—t—l . The maps

(3.6.3) cone(ky+r) = SEy,,,_,.
(3.6.4) SEe,,, , — Scone(kyir—1)
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are the canonical maps that are given by construction of distinguished triangles in a simplicial stable

model category. The map (3.6.3) is the canonical map
cone(ky 1) = S A Eyyy_y
see Definition 2.3.13. Similarly, the map (3.6.4) is the suspension of the canonical map

Eé's.H_] - Cone(ks-i-t—l);
see Definition 2.3.13.

Step 2 calculating E,

To compute the above, let us recall from (iv) the poset J, with inclusion 0: J, < pr/{, and left adjoint
L:pr/{, — Jy. Fori + j =n modulo N the poset J, looks as follows:

(Gi—1,8i+1) &, &) (Gi+1,8i-1)
/ (:31 1’,31 (ﬂlaﬂ] 1) ’\
Also, recall from (ii) the slice category pr/yy, which fori + j =n is
(,31 1, §l+1) é‘l,ﬂ] ,Blaé‘j Zl—}-l ,81 1)
/ (Bi-1.B)) (Bi. Bj) (Bi. Bj—1) \

By definition of homotopy left Kan extensions, we have

E¢, = hoc/oé_th/\ Y =~ hocohm9 (X/\ Y), E,, = hoc/ohm(X/\ Y).
pr/¢n T/ Vn
The maps

Ey,, ,—>E;,, ad E,_, —> FE¢
are the maps of homotopy colimits induced by the respective map of posets
Yipr/Yn—1 = pr/ln and  @:pr/yp_y —pr/{p—y.
We start with calculating E¢, ., _,. The underlying diagram 6* (X ALY) e Ho(MTs+i-1) is

NN

ANA

where the only nontrivial entry is at (85—1, f;—1). From the diagram above we get

Eg,., l—hocohm(X/\ Y)~ hocohm@ XALY)>TAAA.
pr/8s4r—1 Js+1—1
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We do the same for £y, Ey ., |, and Ey , ,. The value Ey , , is the homotopy colimit of the
diagram X ALY € Ho(MP"/¥s+1-2) which is

INSN NN

with nontrivial entries at the places (85—1, Bs—1) on the bottom, ({s—;, B;—1) on the left and (B5—1, {;—1)
on the right. Thus, £, o = AAA. Similarly, we have

Ey,., =hocolim(X AFY) =%, E, . , =hocolim(X AL'Y)=ZAAA.
pr/Vs+t P/ Vs4t—1

Step 3 calculating cone(ic\ s+1) > 2XEy ., ,
We move on to calculate the map cone(l€s+,) — S'® E,,,,_,. From Definition 2.3.13 we have the

pushout square

if\s—i—t
%
E}’s+z—1 E§s+t

| |

(1,0) ® Ey,,, — cone(ky+)

which, based on our computations, is

SANA ———— %

| |

(7,0)®@ Z(4A A /T) o cone(l€s+t)

S'f R (AN A)
Recall from Proposition 3.4.1, (3.4.8), and Corollary 2.3.6 that there is a series of canonical isomorphisms
cone(l€s+,) =~ cone(k; ot l:,) =~ cone(ky) AL cone(l;,).
In our particular case, in which k5: A — A and k: A — *, this is
cone(l€s+,) ~ cone(ks O% k;) = S2A A A= SANTA ~ cone(ks) AT cone(l;,).
This implies that the universal map out of the pushout is the identity map. Thus, the map

cone(l/c\sﬂ) —>XEy .,
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is the map £ A4 A 4 —> T2(AA /T), which is the composition of the canonical map (commutation of
colimits) and the identity map.

Step 4 calculating 4, q: Ey . ,—E¢.,,

From the posets above we can see directly that the map

iS+l—1 tEy o > Ee,
is the identity map induced by
Y ipr/Ys4i—1 = Pr/Esyi—1.
Therefore the map
z:is~l-z‘—1 L E

Vs+i—1 7 z:Eé's-i-t—l

is the identity map
1:22(AAA) > Z2(AAA).

Step S5 calculating E;  ,_, — cone(l/c\s_,_,_l)
Lastly it remains to figure out the map
Eeofo— cone(l/c\sﬂ_l).
Recall from the proof of Proposition 3.4.1 that cone(l€s+,_1) can be written as a homotopy colimit,

cone(/’c\sﬂ_l) =~ hocolim(cone(ey ALy)),
Pr/Ss+r—1

where ¢ : pr/ys+s—2 — pr/{s+s+1, and ¢ is the counit of the derived adjunction (L¢y, ¢*). Pulling back
the diagram cone(ey ALy ) to Jg4,—; along the inclusion 6: Jy4;—1 — pr/{s4;—1, we obtain the diagram

ANTA SAAA

NN\

with nontrivial entries at ({s—y, {;) and (s, ¢;—1) respectively. Recall the following diagram from (3.6.5)
0*(X AL Y) € Ho(Ms+i-1),

N NSNS

ANA

with the only nontrivial entry at (Bs—1, B;—1), left top being (¢s—1, {;) and right top being (¢, {;—1).
Because of the shape of the underlying posets and the map, we can safely ignore the trivial entries, so the
map Ey _,_, — cone(ksy,—1) can be taken as the map of homotopy pushouts

hocolim(x <— A A A— *) — hocolim(4 A YA x—>TAA /T),
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induced by the following map of posets:

*(—A/\/T—)*

I

AANDA * SAAA

Now consider the above map of diagrams and the following map at the bottom:

ke ANA —— 5 %

I

AADA * SAAA
a1 J |
SAAA * SAAA

Here, 7 is the map
ANZSA=ANGS'AD = (AASHAAS (SIANAA=SANA

and the first map is the associativity isomorphism. By Lemma 3.7.1 the induced map of homotopy colimits
is, up to weak equivalence, the diagonal map

diag: SAAA — (SAAA)V (SAA A).

Hence, the map (3.6.2) is up to weak equivalence the diagonal map but with a sign introduced by the
twist map as above. This and Corollary 3.4.9 imply that indeed the differential

d:COTDG*E) > cO6H=DG*E)
coincides with the differential of the tensor product of
(D°L*) ® (D'LY))* — (D*L) @ (D' L))"+,
Step6 Q(i*E)**'~1 > Q(i*E)+'~2

We do not need to do any extra work to determine the other differential, namely to check that the
differential

C(Ht_l)(i*E) — G+1-2) (i*E)
coincides with the differential
(D°L) @ (D'L")**' ™! — (D°L*) ® (D' L))+ 72,
since by construction (Cx(i*E),d) is a differential graded object and that means that by necessity

d[1]od =0 on Cy(i* E). This concludes the proof. |

To conclude this section, by combining Corollary 3.4.9 and Proposition 3.6.1 we have proved the following
proposition.

Algebraic € Geometric Topology, Volume 24 (2024)



5204 Nikitas Nikandros and Constanze Roitzheim

Proposition 3.6.6 Let X,Y € L such that Fy(Xqy,), Fx(Ya,) € Apwj for any n € Z/NZ and any
a € {B, }. There is a natural isomorphism

QG *Lpry(X AL Y)) = 9(X) ® Q(Y). O
3.7 Technical lemmas

In this subsection we prove two technical lemmas that are used in the previous proofs. The first lemma is
about the canonical map from the suspension of an object to the wedge product of suspensions in a stable,
simplicial model category M. The second lemma is about pushout-products of injective morphisms in a
hereditary abelian category A.

Lemma 3.7.1 Let M be a stable simplicial model category and let X € M. Consider the following map
of homotopy pushouts
hocolim(* <— X — %) — hocolim(ZX <« % — X X).
Then the above map is, up to isomorphism in Ho(M), the diagonal map
diag: XX - X Vv XX,
Proof Let CX = (/,0) ® X be the cone of X and leti: X — CX be the canonical inclusion, which is
a cofibration. We choose a model for X X as the homotopy pushout
Y X =~ hocolim(CX < X — CX).

In fact, we can take this to be the ordinary pushout colim(CX «— X — CX) sincei: X - CX isa
cofibration. From this model we get directly that the induced map on pushouts

CxX ' —x ", cx

w| | e

SX+—x—3¥X

where : I — S! is the projection is indeed the diagonal map diag: ©X — X v £ X. Hence, the
induced map of homotopy pushouts is the diagonal map up to natural isomorphism. |

Lemma 3.7.2 Let A be a hereditary abelian category. Let X, Y, U,V € Apj and let f: X — Y and
g: U — V be injective maps. Then the pushout-product map f [ g is injective.

Proof Since g: U — V is monomorphism we have the short exact sequence
g J
0—->U—V > cokerg — 0.
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Notice that the dimension of the abelian category E(1)«—modules is 1, which implies that coker g is a
projective module since it is a submodule of V. Since X is flat, X ® — is an exact functor, which means
that the sequence

1® 1®j
05 XQU —2 X®V —5 X ®cokerg — 0

is short exact. Consider the diagram

1®g 1®j
00— X QU — XQ®V —— X ®cokerg —— 0

o

0—Y QU P X ®cokerg —— 0

| |

0—YQR®U — Y Q®®V —— Y ®cokerg —— 0
10g 1®)

where P is the pushout of 1 ® g and g ® 1. Since the top left square is cocartesian, the canonical map
coker(1 ® g) = coker(Y ® U — P) is an isomorphism, so the middle row is also exact. Now note that
the morphism f ® 1: X ® coker g — Y ® coker g is injective since coker g is projective. Applying the
snake lemma gives us that f [0 g is a monomorphism. |

4 Main result

4.1 Homotopy colimit calculations

In this section we discuss how the functor i *LLpr, interacts with the homotopy colimits of the various
diagram categories, giving us the right hand side of the main diagram (1.0.2). The main result of the
section is the following.

Theorem 4.1.1 For any pair of diagrams (X, Y) € Ho(M%N) x Ho(ME~), the homotopy colimit of
the diagram i *Lpr)(X AT Y) € Ho(MEN) is naturally isomorphic to the smash product of the homotopy
colimits of X and Y, that is,

hocolim(i *Lpr (X AL Y)) = hocolim X AL hocolim Y.
Cn ’ Cn Cn

Recall that the functor
i*Lpr,(— AL —): Ho(ME¥) x Ho(MEN) — Ho(MEN)
is the composition
L Lpr, j*
Ho(MEV) x Ho(MEN) 255 Ho(MEN*EN) 22 Ho(mPN) Ls Ho(MEN).
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In order to prove Theorem 4.1.1 we will break it apart into smaller pieces. Consider the following diagram:

Ho(MEN) x Ho(MEN) —— Ho(M)

Ho(MEN)

The top horizontal functor is the smash product of homotopy colimits of crowned diagrams, that is,
hocolim¢c,, X AL hocolimc,, Y. The three other functors are the homotopy colimit functors,
hocolim: Ho(MEN*EN) s Ho(M),
CN XCN
hocl:)olim: Ho(MP~) = Ho(M),
N

hoccolim: Ho(M®N) = Ho(M).
N

Theorem 4.1.1 asserts that the outer triangle above commutes up to isomorphism. This will follow once
we show that all the small triangles commute up to isomorphism.

Lemma 4.1.2 The top triangle and the middle triangle commute. That is,

hocolim X AT hocolim ¥ 2 hocolim(X AL Y)
CN Cn CNXCN

and
hocolim(X AL Y) = hocolim pry (X Al Y).
CN XCN DN ’
Proof The first assertion follows from Corollary 2.3.4 as a direct application for C = D = Cy. The

second assertion follows from the fact that the homotopy colimit of a homotopy left Kan extension of a
diagram is isomorphic to the homotopy colimit of the diagram itself [Richter 2020, Proposition 4.3.2]. O

We will prove Theorem 4.1.1 by proving that the functor i : Cy — Dy satisfies the following definition;
see [Riehl 2014, Definition 8.5.1].

Definition 4.1.3 A functor between small categories K : C — D is homotopy final (or homotopy terminal)
if for every object d € D, the simplicial set N(d/K) is contractible.
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A convenient way to check whether a poset is contractible is given by Quillen [1978, Section 1.5]: a
poset C is conically contractible if there is an object ¢y € C and a map of posets f: C — C such that
¢ < f(c) = cq for every ¢ € C. In this case one can show that the identity 1¢, the map f', and the constant
map with value ¢y from C to itself are homotopic (that is to say, their realizations are homotopic), and
hence C is contractible. So, given a diagram E € Ho(MPN), to check that the canonical morphism
¢; : hocolim i * E — hocolim E
Cn Dn

is an isomorphism it suffices to check that the slice categories oy, /i of the functor i: Cy — Dy are
contractible for any « € {¢,y, 8} and anyn € Z/ N Z.

We will now apply this to our functor i : Cy — D, which is the inclusion of the two-row crowned
diagram into the three-row crowned diagram (3.1.2).

Lemma 4.1.4 The functori: Cny — Dy is homotopy final.

Proof We will prove the above proposition by applying Quillen’s criterion of conical contractible posets.
First, we identity the slice categories {,/i, v,/i and B,/i and then we will check that they are indeed
conically contractible. We start with ¢, /7. By definition,

Cn/i ={an € Cn |i(an) = Cn} = {Cn}.

Since this poset contains only one element it is obviously contractible. The next slice categories are of
the form y,,/i. By definition,

Yn/i ={on € Cn | i(on) = ¥n}s
that is, y;, /i is the poset

En Cnt1
%

We choose B, and 1: v, /i — y,/i. Directly from above we can see that y,/i is conically contractible.
The last case is the slices 8, /i. By definition,

Bun/i ={on € Cn |i(an) = Bn},
which is the poset

Sn nt
|1
Bn Bn+1

We choose B, and the map of 8,/i — B,/i as

Cn=>Cnn Cnv1=>Cuvts Bu= Bu Buvi = Cutr.

With these choices, we can see that the poset B,/ i is conically contractible. O
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Finally, we obtain the commutativity of the bottom triangle of our big diagram, which also concludes the
proof of Theorem 4.1.1.

Corollary 4.1.5 The bottom triangle of (1.0.2) commutes, that is,

hocolim i * E = hocolim E. |
CN Dy

4.2 Proof of main theorem

Finally, we are in a position to assemble all our work into our main theorem.

Theorem 4.2.1 Let A be a hereditary abelian category, and M be a monoidal stable model category
such that Franke’s functor
R: TPV (4), @) - (Ho(M), AT)

exists and is an equivalence. Then R preserves the monoidal products up to a natural isomorphism, that is,

R(My @ My) = R(My) AV R(M,).

Proof We assemble our proof along the lines of the diagram (1.0.2). Let M, and N, be objects in
DD (4). By Convention 2.1.1, both objects are cofibrant. Since My is cofibrant, the functor

My @ —: CUD(4) - cUID(y)

is left Quillen, see [Hovey 1999, Remark 4.2.3], which means it preserves cofibrant objects. Since both
objects are cofibrant, the tensor product M, ® N, represents the derived tensor product in DD (1), @T)
and in particular it also cofibrant. Recall from Example 2.3.11 that the cofibrant objects in c@L.n (A) are
the projective objects in A. This means, in particular, that My, Ny and My ® Ny all belong to Ay We
recall some notation from Section 3. Given a crowned diagram X € MEN as

X, X,

X,B . X.B

0

1
we set

Z™W(X) = Fu(Xe,), B™(X) = Fi(Xg,), C™(X)= Fau(cone(Xp,_, — Xz,)).
Given (My, d) € C111D(4), one can construct a crowned diagram X in £ such that
(Cx(X),d) = (My,d), Z«(X)=x=kerd, B«(X)=imd.

By the discussion above, My € Aprj. By assumption, A is a hereditary abelian category, in other words,
gl.dim A = 1. This implies that ker d,imd € Ay since they are submodules of M.
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Hence, for the crowned diagram X =~ Q~!(M,) we have Fy(Xy,) € Aproj for every n € Z /N Z and
any o € {¢, B}. Similarly, for the dg-object (N, d) we get a crowned diagram Y == Q~!(N,) such that
F«(Yy,) € Apoj forevery n € Z/NZ and any « € {{, B}.

Now, by Theorem 3.1.5,

QG *Lpry(X AL Y)) = Q(X)® Q(Y) = My ® N,
and by Theorem 4.1.1,
hocolim(i * Lpr (X Ak Y)) = hocolim X AF hocolim Y.
CN ’ Cn Cn

Finally, we recall that Franke’s realization functor (2.5.4) is defined by

R = hocolimo Q™ !,
Cn
which concludes the proof. a

The assumptions of Theorem 4.2.1 are satisfied in the following instances.

Example 4.2.2 From [Patchkoria 2012, Corollary 5.2.1] we know that
R: D(m«R) — D(R) = Ho(R-mod)

is an equivalence for a ring spectrum R with 7« (R) concentrated in degrees that are multiples of some
N > 1 and global dimension of m«(R) equal to 1. This satisfies the assumption of our Theorem 4.2.1 and
applies to R = KU, R = KU(p), R = E(1) (complex K-theory), and R = k(n) (connective Morava
K—-theory).

Example 4.2.3 By [Franke 1996; Roitzheim 2008] we know that
R: DU (4) - Ho(L;S)

is an equivalence. Here, A is the category of E (1)« E(1)—comodules, and LS is a suitable category
of spectra equipped with the K—local model structure at an odd prime. Note that as mentioned in
Example 2.3.11, that while .4 does not have enough projectives, all our proofs also work when working
with comodules whose underlying E(1)«—module is projective; see also the first author’s thesis [Nikandros
2022].

References

[Barnes and Roitzheim 2011] D Barnes, C Roitzheim, Monoidality of Franke’s exotic model, Adv. Math. 228
(2011) 3223-3248 MR Zbl

[Barnes and Roitzheim 2020] D Barnes, C Roitzheim, Foundations of stable homotopy theory, Cambridge Stud.
Adyv. Math. 185, Cambridge Univ. Press (2020) MR Zbl

Algebraic € Geometric Topology, Volume 24 (2024)


https://doi.org/10.1016/j.aim.2011.08.005
http://msp.org/idx/mr/2844942
http://msp.org/idx/zbl/1246.55009
https://doi.org/10.1017/9781108636575
http://msp.org/idx/mr/4211772
http://msp.org/idx/zbl/1481.55003

5210 Nikitas Nikandros and Constanze Roitzheim

[Cisinski 2009] D-C Cisinski, Locally constant functors, Math. Proc. Cambridge Philos. Soc. 147 (2009) 593-614
MR Zbl

[Franke 1996] J Franke, Uniqueness theorems for certain triangulated categories possessing an Adams spectral
sequence, preprint (1996)

[Galvez-Carrillo et al. 2013] I Galvez-Carrillo, F Neumann, A Tonks, Thomason cohomology of categories, J.
Pure Appl. Algebra 217 (2013) 2163-2179 MR Zbl

[Ganter 2007] N Ganter, Smash product of é(1)-local spectra at an odd prime, Cah. Topol. Géom. Différ. Catég.
48 (2007) 3-54 MR Zbl

[Goerss and Jardine 1999] P G Goerss, JF Jardine, Simplicial homotopy theory, Progr. Math. 174, Birkhéuser,
Basel (1999) MR Zbl

[Hirschhorn 2003] P S Hirschhorn, Model categories and their localizations, Math. Surv. Monogr. 99, Amer.
Math. Soc., Providence, RI (2003) MR Zbl

[Hovey 1999] M Hovey, Model categories, Math. Surv. Monogr. 63, Amer. Math. Soc., Providence, RI (1999)
MR Zbl

[Hovey 2014] M Hovey, Smith ideals of structured ring spectra, preprint (2014) arXiv 1401.2850

[Nikandros 2022] N Nikandros, Franke’s realization functor and monoidal products, PhD thesis, University of
Kent (2022) Available at https://www.proquest.com/docview/2892043197

[Oberst 1967] U Oberst, Basiserweiterung in der Homologie kleiner Kategorien, Math. Z. 100 (1967) 36-58 MR
Zbl

[Oberst 1968] U Oberst, Homology of categories and exactness of direct limits, Math. Z. 107 (1968) 87-115 MR
Zbl

[Patchkoria 2012] I Patchkoria, On the algebraic classification of module spectra, Algebr. Geom. Topol. 12
(2012) 2329-2388 MR Zbl

[Quillen 1978] D Quillen, Homotopy properties of the poset of nontrivial p—subgroups of a group, Adv. Math. 28
(1978) 101-128 MR Zbl

[Richter 2020] B Richter, From categories to homotopy theory, Cambridge Stud. Adv. Math. 188, Cambridge
Univ. Press (2020) MR Zbl

[Riehl 2014] E Riehl, Categorical homotopy theory, New Math. Monogr. 24, Cambridge Univ. Press (2014) MR
Zbl

[Roitzheim 2008] C Roitzheim, On the algebraic classification of K—local spectra, Homology Homotopy Appl.
10 (2008) 389—412 MR Zbl

[Shulman 2006] M Shulman, Homotopy limits and colimits and enriched homotopy theory, preprint (2006)
arXiv math/0610194

School of Mathematics, Statistics and Actuarial Science, University of Kent
Canterbury, United Kingdom

School of Mathematics, Statistics and Actuarial Science, University of Kent
Canterbury, United Kingdom

nnikandros@gmail.com, c.roitzheim@kent.ac.uk

Received: 31 January 2023 Revised: 28 November 2023

Geometry & Topology Publications, an imprint of mathematical sciences publishers :.msp


https://doi.org/10.1017/S030500410900262X
http://msp.org/idx/mr/2557145
http://msp.org/idx/zbl/1185.18013
https://doi.org/10.1016/j.jpaa.2013.02.005
http://msp.org/idx/mr/3057083
http://msp.org/idx/zbl/1285.18020
http://www.numdam.org/item/CTGDC_2007__48_1_3_0
http://msp.org/idx/mr/2317294
http://msp.org/idx/zbl/1126.18007
https://doi.org/10.1007/978-3-0348-8707-6
http://msp.org/idx/mr/1711612
http://msp.org/idx/zbl/0927.55022
https://doi.org/10.1090/surv/099
http://msp.org/idx/mr/1944041
http://msp.org/idx/zbl/1017.55001
https://www.ams.org/books/surv/063/
http://msp.org/idx/mr/1650134
http://msp.org/idx/zbl/0909.55001
http://msp.org/idx/arx/1401.2850
https://www.proquest.com/docview/2892043197
https://doi.org/10.1007/BF01111327
http://msp.org/idx/mr/225849
http://msp.org/idx/zbl/0267.18019
https://doi.org/10.1007/BF01111023
http://msp.org/idx/mr/244347
http://msp.org/idx/zbl/0176.28902
https://doi.org/10.2140/agt.2012.12.2329
http://msp.org/idx/mr/3020210
http://msp.org/idx/zbl/1264.18017
https://doi.org/10.1016/0001-8708(78)90058-0
http://msp.org/idx/mr/493916
http://msp.org/idx/zbl/0388.55007
https://doi.org/10.1017/9781108855891
http://msp.org/idx/mr/4411367
http://msp.org/idx/zbl/1465.18001
https://doi.org/10.1017/CBO9781107261457
http://msp.org/idx/mr/3221774
http://msp.org/idx/zbl/1317.18001
https://doi.org/10.4310/HHA.2008.v10.n1.a17
http://msp.org/idx/mr/2426109
http://msp.org/idx/zbl/1162.55008
http://msp.org/idx/arx/math/0610194
mailto:nnikandros@gmail.com
mailto:c.roitzheim@kent.ac.uk
http://msp.org
http://msp.org

ALGEBRAIC & GEOMETRIC TOPOLOGY
msp.org/agt

EDITORS

PRINCIPAL ACADEMIC EDITORS

John Etnyre
etnyre @math.gatech.edu
Georgia Institute of Technology

Kathryn Hess
kathryn.hess @epfl.ch
Ecole Polytechnique Fédérale de Lausanne

BOARD OF EDITORS

Julie Bergner

Steven Boyer

Tara E Brendle

Indira Chatterji
Alexander Dranishnikov
Tobias Ekholm

Mario Eudave-Mufioz
David Futer

John Greenlees

Tan Hambleton
Matthew Hedden
Hans-Werner Henn
Daniel Isaksen
Thomas Koberda

Markus Land

University of Virginia
jeb2md@eservices.virginia.edu
Université du Québec a Montréal
cohf@math.rochester.edu
University of Glasgow
tara.brendle @ glasgow.ac.uk
CNRS & Univ. Cote d’ Azur (Nice)
indira.chatterji @math.cnrs.fr
University of Florida
dranish@math.ufl.edu

Uppsala University, Sweden
tobias.ekholm @math.uu.se
Univ. Nacional Auténoma de México
mario @matem.unam.mx

Temple University
dfuter@temple.edu

University of Warwick
john.greenlees @warwick.ac.uk
McMaster University
ian@math.mcmaster.ca
Michigan State University
mhedden @math.msu.edu
Université Louis Pasteur
henn@math.u-strasbg.fr

Wayne State University

isaksen @math.wayne.edu
University of Virginia
thomas.koberda@virginia.edu
LMU Miinchen

markus.land @math.Imu.de

Christine Lescop
Robert Lipshitz
Norihiko Minami
Andrés Navas
Robert Oliver
Jessica S Purcell
Birgit Richter
Jéréme Scherer
Vesna Stojanoska
Zoltan Szabo
Maggy Tomova
Chris Wendl
Daniel T Wise

Lior Yanovski

Université Joseph Fourier
lescop@ujf-grenoble.fr
University of Oregon
lipshitz@uoregon.edu

Yamato University
minami.norihiko @yamato-u.ac.jp
Universidad de Santiago de Chile
andres.navas @usach.cl
Université Paris 13

bobol @math.univ-paris13.fr
Monash University
jessica.purcell@monash.edu
Universitit Hamburg
birgit.richter @uni-hamburg.de
Ecole Polytech. Féd. de Lausanne
jerome.scherer@epfl.ch

Univ. of Illinois at Urbana-Champaign
vesna@illinois.edu

Princeton University

szabo @math.princeton.edu
University of Towa
maggy-tomova@uiowa.edu
Humboldt-Universitit zu Berlin
wendl @math.hu-berlin.de
McGill University, Canada
daniel.wise@mcgill.ca

Hebrew University of Jerusalem
lior.yanovski @ gmail.com

See inside back cover or msp.org/agt for submission instructions.

The subscription price for 2024 is US $705/year for the electronic version, and $1040/year (4-$70, if shipping outside the US) for print and
electronic. Subscriptions, requests for back issues and changes of subscriber address should be sent to MSP. Algebraic & Geometric Topology is
indexed by Mathematical Reviews, Zentralblatt MATH, Current Mathematical Publications and the Science Citation Index.

Algebraic & Geometric Topology (ISSN 1472-2747 printed, 1472-2739 electronic) is published 9 times per year and continuously online, by
Mathematical Sciences Publishers, c/o Department of Mathematics, University of California, 798 Evans Hall #3840, Berkeley, CA 94720-3840.
Periodical rate postage paid at Oakland, CA 94615-9651, and additional mailing offices. POSTMASTER: send address changes to Mathematical
Sciences Publishers, c¢/o Department of Mathematics, University of California, 798 Evans Hall #3840, Berkeley, CA 94720-3840.

AGT peer review and production are managed by EditFlow® from MSP.
PUBLISHED BY
:I mathematical sciences publishers
nonprofit scientific publishing

https://msp.org/
© 2024 Mathematical Sciences Publishers


http://dx.doi.org/10.2140/agt
mailto:etnyre@math.gatech.edu
mailto:kathryn.hess@epfl.ch
mailto:jeb2md@eservices.virginia.edu
mailto:cohf@math.rochester.edu
mailto:tara.brendle@glasgow.ac.uk
mailto:indira.chatterji@math.cnrs.fr
mailto:dranish@math.ufl.edu
mailto:tobias.ekholm@math.uu.se
mailto:mario@matem.unam.mx
mailto:dfuter@temple.edu
mailto:john.greenlees@warwick.ac.uk
mailto:ian@math.mcmaster.ca
mailto:mhedden@math.msu.edu
mailto:henn@math.u-strasbg.fr
mailto:isaksen@math.wayne.edu
mailto:thomas.koberda@virginia.edu
mailto:markus.land@math.lmu.de
mailto:lescop@ujf-grenoble.fr
mailto:lipshitz@uoregon.edu
mailto:minami.norihiko@yamato-u.ac.jp
mailto:andres.navas@usach.cl
mailto:bobol@math.univ-paris13.fr
mailto:jessica.purcell@monash.edu
mailto:birgit.richter@uni-hamburg.de
mailto:jerome.scherer@epfl.ch
mailto:vesna@illinois.edu
mailto:szabo@math.princeton.edu
mailto:maggy-tomova@uiowa.edu
mailto:wendl@math.hu-berlin.de
mailto:daniel.wise@mcgill.ca
mailto:lior.yanovski@gmail.com
http://dx.doi.org/10.2140/agt
http://www.ams.org/mathscinet
http://www.emis.de/ZMATH/
http://www.ams.org/bookstore-getitem/item=cmp
http://www.isinet.com/products/citation/wos/
https://msp.org/
https://msp.org/

ALGEBRAIC & G

Volume 24 Issue 9 (page

Cartesian fibrations of (oo, 2)—categories
ANDREA GAGNA, YONATAN HARPAZ and ED
On the profinite distinguishability of hyperbolic Dehn
PAUL RAPOPORT
Index-bounded relative symplectic cohomology

YUHAN SUN

Heegaard Floer homology, knotifications of links, and
singularities

MACIEJ BORODZIK, BEIBEI LIU and IAN ZEM
Classifying spaces of infinity-sheaves

DANIEL BERWICK-EVANS, PEDRO BOAVIDA
Chern character for infinity vector bundles

CHEYNE GLASS, MICAH MILLER, THOMAS T
Derived character maps of group representations

YURI BEREST and AJAY C RAMADOSS

Instanton knot invariants with rational holonomy par.
groups

HAYATO IMORI
On the invariance of the Dowlin spectral sequence
SAMUEL TRIPP and ZACHARY WINKELER
Monoidal properties of Franke’s exotic equivalence
NIKITAS NIKANDROS and CONSTANZE ROITZ
Characterising quasi-isometries of the free group

ANTOINE GOLDSBOROUGH and STEFANIE ZBI


http://dx.doi.org/10.2140/agt.2024.24.4731
http://dx.doi.org/10.2140/agt.2024.24.4779
http://dx.doi.org/10.2140/agt.2024.24.4799
http://dx.doi.org/10.2140/agt.2024.24.4837
http://dx.doi.org/10.2140/agt.2024.24.4837
http://dx.doi.org/10.2140/agt.2024.24.4891
http://dx.doi.org/10.2140/agt.2024.24.4939
http://dx.doi.org/10.2140/agt.2024.24.4991
http://dx.doi.org/10.2140/agt.2024.24.5045
http://dx.doi.org/10.2140/agt.2024.24.5045
http://dx.doi.org/10.2140/agt.2024.24.5123
http://dx.doi.org/10.2140/agt.2024.24.5161
http://dx.doi.org/10.2140/agt.2024.24.5211

	1. Introduction
	Acknowledgements

	2. Preliminaries
	2.1. Model categories
	2.1.1. Diagram categories
	2.1.2. Homotopy colimits in simplicial model categories

	2.2. Homotopy Kan extensions
	2.3. Monoidal model categories
	2.3.1. Smash products for diagram categories
	2.3.2. Stable model categories and triangulated categories

	2.4. Homology of a category with coefficients in a functor
	2.5. Franke's realization functor

	3. Monoidal properties of `3́9`42`"̇613A``45`47`"603AQ
	3.1. Preliminaries on crowned diagrams
	3.2. Slice categories of the projection functor
	3.3. Spectral sequence calculations
	3.4. Cones
	3.5. Differentials
	3.5.1. Reduction to the case of disks

	3.6. Differentials for disks
	3.7. Technical lemmas

	4. Main result
	4.1. Homotopy colimit calculations
	4.2. Proof of main theorem

	References
	
	

